Existence and Indeterminacy of Markovian
Equilibria in Dynamic Bargaining Games

Vincent Anesi† † John Duggan‡

September 21, 2016

Abstract

The paper studies stationary Markov perfect equilibria in multidimensional models of dynamic bargaining, in which the alternative chosen in one period determines the status quo for the next. We generalize a sufficient condition for existence of equilibrium due to Anesi and Seidmann (2015). We then use this existence result to show that if a weak gradient restriction holds at an alternative, then when players are sufficiently patient, there is a continuum of equilibria with absorbing sets arbitrarily close to that alternative. Our restriction holds, in particular, if the gradients of all players’ utilities are linearly independent at that alternative; and when the dimensionality of the set of alternatives is high, the linear independence condition holds at almost all alternatives, and equilibrium absorbing sets are dense in the set of alternatives. Under an alternative condition, a Pareto optimal alternative can be approximated by equilibria with only Pareto optimal outcomes. These results imply that constructive techniques, which explicitly specify a particular equilibrium and are common in the literature, implicitly rely on a restrictive selection of equilibria. These results apply, in particular, to pie-division settings and, more generally, all economies with a private good component.

1 Introduction

Most formal political analyses of legislative policymaking, until recently, have used models in which legislative interaction ends once a proposal is passed (e.g., Romer and Rosenthal 1978, Baron and Ferejohn 1989, and Banks and Duggan 2000, 2006). As pointed out by Baron (1996) and later by Kalandrakis (2004), however, most legislatures have the authority to change existing laws by enacting new legislation; so that laws continue in effect only in the absence of new legislation. To explore this dynamic feature of legislative policymaking, these authors have introduced an alternative model that casts the classical
spatial collective-choice problem into a dynamic bargaining framework. Each period begins with a status quo policy inherited from the previous period, and a legislator is chosen randomly to propose any feasible policy, which is then subject to an up or down vote. If the proposal is voted up, then it is implemented in that period and becomes the next period’s status quo; if it is voted down, then the ongoing status quo is implemented and remains in place until the next period. This process continues ad infinitum.

The problem immediately encountered in this framework is that existence results for stationary Markov perfect equilibria provided in the extant game-theoretic literature do not apply. The consequence has been a fast growing body of literature consisting of work that explicitly constructs stationary Markovian equilibria for bargaining games with an endogenous status quo, and then analyzes the properties of policy outcomes implied by these constructions (e.g., Baron, 1996; Kalandrakis 2004, 2010, 2014; Bowen and Zahran, 2012; Nunnari, 2014; Richter, 2014; Baron and Bowen, 2014; Zápal, 2014; and Anesi and Seidmann, 2015). These analyses are an important development in the study of legislative dynamics; but almost all either assume that the space of alternatives is unidimensional, or focus on pie-division settings where each bargainer’s utility only depends on her own share of the pie. There are no known conditions that guarantee the existence of a stationary Markovian equilibrium for more general multidimensional choice spaces.\(^1\)

In this paper, we provide gradient restrictions at a given alternative that are sufficient for existence of a stationary Markov perfect equilibrium in pure strategies with an absorbing set close to that alternative, when players are sufficiently patient. In fact, our gradient restriction holds at every interior alternative when there is private good that can be allocated across the players, and it delivers a continuum of stationary Markov perfect equilibria with distinct absorbing points close to that alternative. Thus, in a large class of models of dynamic bargaining with an endogenous quo, equilibria are indeterminate—despite the fact that stationary Markovian strategies depend on the history of play only through the current status quo, sharply constraining the ability to punish and reward players for past behavior. Our results have important implications for applied bargaining models of legislative policymaking, where the norm is to construct a particular equilibrium in closed form and to analyze the properties of this equilibrium selection as parameters are varied: when players are sufficiently patient, the implicit equilibrium selection made in such analyses may be a restrictive one, with the danger that insights derived from those analyses are driven by the equilibrium selection, rather than equilibrium incentives in general. In

\(^1\)An exception is Duggan and Kalandrakis (2012), who establish existence of stationary Markovian equilibria in pure strategies for general environments. They modify the basic framework by adding noise to the status quo transition and assuming preference shocks in each period. This paper concentrates on existence conditions that do not rely on such noise.
the absence of further justifications for such a selection, the multiplicity of equilibria we highlight suggests limits on the usefulness of these constructions in predicting the policy outcomes and understanding the dynamics and comparative statics of legislative bargaining. Studies of dynamic bargaining with an endogenous status quo thus face an important equilibrium refinement issue.

Our analysis allows the feasible set of alternatives to be any nonempty subset of multidimensional Euclidean space, and we rely only on smoothness of utilities to apply techniques from differential topology; we do not impose any functional form restrictions or assume the existence of a private good. The bargaining protocol is the standard one, described above, and we permit the voting rule to be any non-collegial rule, i.e., no player has a veto. Our main indeterminacy result is that when players are sufficiently patient, a continuum of stationary Markov perfect equilibria in pure strategies can be constructed with absorbing sets close to any alternative at which a weak gradient restriction holds. This gradient restriction holds if the gradients of all players’ utilities are linearly independent at the given alternative; and, generically, this in turn holds at almost all alternatives when the dimensionality of the set of alternatives is greater than or equal to the number of players. Linear independence of all players’ gradients is sufficient for our condition, but not necessary: we provide a more general condition requiring only that linear independence of the gradients of players belonging to a given “oversized” coalition (a decisive coalition that remains decisive if any one member is removed), and that linear independence is maintained if a player outside the coalition is switched with one inside. Given a high-dimensional set of alternatives, our linear independence condition holds generically outside a set of alternatives with measure zero, with the implication that equilibria typically abound in such models.

The above indeterminacy result makes use of equilibria in which Pareto inefficient alternatives are proposed and passed. This is important in itself, as it shows that equilibria may fail a basic efficiency criterion, but it leaves open the possibility that indeterminacy may be addressed by restricting attention to equilibria with Pareto optimal outcomes. We show, however, that when players are sufficiently patient, a second gradient restriction leads to a continuum of stationary Markov perfect equilibria in pure strategies with Pareto optimal absorbing points close to a given Pareto optimal alternative. This condition holds, in particular, if the gradients of every coalition consisting of all but one player are linearly independent, and if in addition the Hessian matrices of the players’ utilities at this alternative are negative definite.\(^2\) Again, our general result holds more generally under a weaker restriction that applies to a given oversized coalition. We conclude that the use of Pareto

\(^2\)This local concavity condition is used only to ensure that the Pareto set has a manifold structure near the given alternative, so that calculus-based techniques can be applied.
inefficient alternatives is not essential for the indeterminacy result, and that refining away equilibria with inefficient outcomes still leaves a continuum of equilibria. We emphasize that both gradient restrictions described above are easily verified in economic environments and, together, cover many applications encountered in the literature, including pie-division settings and, more generally, the large class of economies with a private good component.

The analysis of equilibrium indeterminacy develops constructive techniques due to Anesi and Seidmann (2015), who establish existence, but not indeterminacy, of stationary Markov perfect equilibria for the pie-division model. The approach rests in identifying possible absorbing sets of equilibria when players are sufficiently patient. In doing so, the latter authors define the concept of a “simple solution” as a list of alternatives, each associated with a decisive coalition supporting it, such that for every player: the player’s utility takes two values over the list of alternatives, a reward payoff and a punishment payoff; the player is included in some but not all coalitions; and the player receives her reward payoff when included in a coalition and receives her punishment payoff when excluded.

The authors show that in the pie-division setting, given any simple solution and assuming sufficiently patient players, there is a stationary Markov perfect equilibrium with an absorbing set that coincides with the simple solution. To capture more general environments, our equilibrium construction uses the concept of “semi-simple solution,” which generalizes Anesi and Seidmann’s (2015) simple solutions by allowing for the possibility of multiple punishment payoffs. This gain in flexibility allows us to push their approach well beyond pie division and to shed many of the assumptions usually made in the dynamic bargaining literature, dropping convexity and compactness of the set of alternatives, and assuming only weak gradient restrictions on players’ utilities.

As mentioned earlier, existence results for stationary Markov perfect equilibria provided in the literature on stochastic games do not apply to the dynamic bargaining framework, as they rely on continuity conditions on the transition probability that are violated in the bargaining model (cf. Duggan 2016a for a more detailed discussion). Existence and characterization results for Markov perfect equilibria have been obtained in alternative frameworks of dynamic bargaining in which the policy space is finite (Anesi 2010; Diermeier and Fong 2011, 2012; and Battaglini and Palfrey 2012) or without discounting (Anesi and Seidmann 2014) or when the set of possible status quos is countable (Duggan 2016a).

A roadmap of the paper is as follows. The bargaining framework and equilibrium concept are defined in Section 2. Section 3 presents the concept of semi-simple solution and establishes that when players are sufficiently patient, a semi-simple solution can be obtained as the absorbing set of a stationary Markov perfect equilibrium in pure strategies; in addition, we present the weaker concept of “mixed” semi-simple solution and show that it
can be supported if mixed proposal strategies are permitted. Section 4 shows that given any alternative, if the gradients of members of an oversized coalition are linearly independent, and if linear independence is maintained when a player outside the coalition is switched with one inside, then there is a continuum of semi-simple solutions in an arbitrarily small neighborhood of that alternative; and Section 5 provides a second gradient restriction under which near a given Pareto optimal alternative, we can find a continuum of semi-simple solutions involving only Pareto optimal alternatives. Section 6 combines the above observations and presents our result on indeterminacy of equilibria in dynamic bargaining games. Finally, Appendices A–C contain formal proofs omitted from the text.\footnote{Supplementary arguments are located in online Appendices D–F.}

2 Dynamic Bargaining Framework

In each of an infinite number of discrete periods, indexed \(t = 1, 2, \ldots \), a finite set of players \(N \equiv \{1, \ldots, n\} \), with \(n \geq 3 \), must reach a collective choice from a nonempty set of alternatives, \(X \subseteq \mathbb{R}^d \), which has full dimension. Let \(x_t \) denote the alternative chosen in period \(t \). Bargaining takes place as follows. Each period \(t \) begins with a status-quo alternative \(x_{t-1} \), in place from the previous period. Player \(i \) is selected with probability \(p_i \in (0, 1) \) to propose a policy in \(X \); all players then simultaneously vote to accept or to reject the chosen proposal. It is accepted if a coalition \(C \in \mathcal{D} \) of players vote to accept, and it is rejected otherwise, where \(\mathcal{D} \subseteq 2^N \setminus \{\emptyset\} \) is the nonempty collection of \textit{decisive coalitions}, which have the authority to decide policy in a given period. If proposal \(y \) is accepted, then it is implemented in period \(t \) and becomes the status quo next period (i.e., \(x_t = y \)); otherwise the previous status quo, \(x_{t-1} \), is implemented and remains the status quo in period \(t+1 \) (i.e., \(x_t = x_{t-1} \)). This process continues \textit{ad infinitum}. The initial status quo, \(x^0 \in X \), is exogenously given.

We assume the voting rule \(\mathcal{D} \) is \textit{proper}, i.e., every pair of decisive coalitions has nonempty intersection: \(C, C' \in \mathcal{D} \) implies \(C \cap C' \neq \emptyset \). In addition, we assume \(\mathcal{D} \) is \textit{monotonic}, i.e., any superset of a decisive coalition is itself decisive: \(C \in \mathcal{D} \) and \(C \subseteq C' \) imply \(C' \in \mathcal{D} \). Finally, we assume that \(\mathcal{D} \) is \textit{non-collegial}, in the sense that no player has a veto: we have \(N \setminus \{i\} \in \mathcal{D} \) for all \(i \in N \). Thus, we allow for any \textit{quota rule} defined by \(\mathcal{D} = \{C : |C| \geq q\} \), the only restrictions on the quota \(q \) being \(\frac{n}{2} < q < n \). For future use, we say a decisive coalition \(C \) is \textit{oversized} if every member of the coalition is redundant: for all \(i \in C \), \(C \setminus \{i\} \in \mathcal{D} \). Let \(\mathcal{D}^* \) denote the collection of oversized coalitions, and note that \(N \in \mathcal{D}^* \), since \(\mathcal{D} \) is non-collegial.

The preferences of each player \(i \) over lotteries over sequences of alternatives are rep-
resented by a von Neumann-Morgenstern stage utility function \(u_i : X \to \mathbb{R} \) that is twice continuously differentiable and bounded above. We say \(u_i \) is Euclidean if there exists \(\hat{x}^i \in X \) such that for all \(x \in X \), we have \(u_i(x) = -||x - \hat{x}^i||^2 \). We say \(u_i \) is strictly pseudo-concave at \(x \) if for all \(y \in X \setminus \{x\} \) with \(u_i(y) \geq u_i(x) \), we have \(\nabla u_i(x) \cdot (y - x) > 0 \). That is, a player’s utility increases when moving from \(x \) toward a weakly preferred alternative. Of course, Euclidean preferences are strictly pseudo-concave at every alternative. More generally, if \(u_i \) is strictly concave, then it is strictly pseudo-concave. Given a sequence of alternatives \(\{x^t\} \in X^\infty \), player \(i \)'s payoff is the discounted sum \((1 - \delta_i) \sum_{t=1}^\infty \delta_i^{t-1} u_i(x^t) \), where \(\delta_i \in [0, 1) \) is her discount factor.

For a coalition \(C \), say \(x \) is Pareto optimal for \(C \) if there is no \(y \in X \) such that for all \(i \in C \), we have \(u_i(y) \geq u_i(x) \), with strict inequality for at least one member of \(C \). Let \(PO(C) \) denote the alternatives that are Pareto optimal for \(C \). When \(C = N \), we drop the qualifier on the coalition in the latter terminology. In general, given \(C \subseteq N \), it may not be that \(PO(C) \subseteq PO(N) \), as all members of \(C \) may be indifferent between two distinct alternatives, while some non-member is not. For \(x \in \text{int}X \), however, if \(x \in PO(C) \) and \(u_i \) is strictly pseudo-concave at \(x \) for all \(i \in C \), then \(x \in PO(N) \), i.e., \(x \) is indeed Pareto optimal.

A noteworthy special case of our general environment is that of a mixed economy, in which an alternative \(x = (x_1, \ldots, x_n, g) \) consists of a private component \((x_1, \ldots, x_n) \in \mathbb{R}^n_+ \) and possibly a public component \(g \in \mathbb{R}^{d-n}_+ \), \(d \geq n \). Here, the set of alternatives is \(X = \{x \in \mathbb{R}^d : f(- \sum_{i \in N} x_i, g) \leq 0\} \), where \(f : \mathbb{R}^{d-n+1}_+ \to \mathbb{R} \) is a continuous, weakly monotonic function. We then require that each \(u_i \) is strictly increasing in \(x_i \) and constant in \(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \); more formally, \(\frac{\partial u_i}{\partial x_i}(x) > 0 \) and \(\frac{\partial u_i}{\partial x_j}(x) = 0 \) for all \(x \) and all \(j \neq i \). We interpret \(x_i \) as an amount of a resource allocated to \(i \), and our restriction on utilities reflects the assumption that there are no consumption externalities in the private good. An obvious example of a mixed economy (where the public good level is fixed at zero and therefore suppressed) is the setting of pie-division with free disposal, in which \(X = \{(x_1, \ldots, x_n) \in [0, 1]^n : \sum_{i \in N} x_i \leq 1\} \) is the \(n \)-dimensional unit simplex; but mixed economies with richer policy spaces are also common in the political economy literature (e.g., Jackson and Moselle 2002).

An alternative setting is that of pie-division with no disposal, in which the pie must be fully divided; it does not constitute a mixed economy, as defined above. This model, which has received considerable attention in the literature on bargaining (both with and without an endogenous status quo), is also captured by our framework. To this end, define \(X = \{(x_1, \ldots, x_{n-1}) \in [0, 1]^{n-1} : \sum_{i=1}^{n-1} x_i \leq 1\} \) as the \((n - 1)\)-dimensional unit simplex, and assume: (i) \(\frac{\partial u_i}{\partial x_i}(x) > 0 \) and \(\frac{\partial u_i}{\partial x_j}(x) = 0 \) for all \(x \), all \(i < n \), and all \(j \in N \setminus \{i, n\} \);
and (ii) there exists a differentiable, real-valued function \(v \) on \([0, 1]\) with \(v' > 0 \) such that
\[
u_n(x) = v(1 - \sum_{i=1}^{n-1} x_i)
\]
for all \(x = (x_1, \ldots, x_{n-1}) \). The set of alternatives, formulated thusly, has full dimension, and an alternative at which each player consumes a positive amount belongs to the interior of \(X \), so calculus-based methods can be directly applied.

We focus on subgame perfect equilibria in which players use pure stationary Markov strategies, defined as follows. For any player \(i \in N \), a stationary Markov strategy \(\sigma_i = (\pi_i, \alpha_i) \) consists of a proposal strategy \(\pi_i : X \to X \), where \(\pi_i(x) \) is the proposal made by player \(i \) when the current status quo is \(x \) (conditional on her being selected to propose), and a voting strategy \(\alpha_i : X^2 \to \{0, 1\} \), where \(\alpha_i(x, y) \) is the (degenerate) probability that \(i \) votes to accept a proposal \(y \) when the current status quo is \(x \). A stationary Markov perfect equilibrium is a subgame perfect equilibrium in which all players use stationary Markov strategies. We follow the standard approach of concentrating throughout on equilibria in stage-undominated voting strategies; i.e., those in which, at any voting stage, no player uses a weakly dominated strategy. Hence, we refer to a pure stationary Markov perfect equilibrium in stage-undominated voting strategies more succinctly as a stationary bargaining equilibrium.

Every stationary Markov strategy profile \(\sigma = (\sigma_1, \ldots, \sigma_n) \) (in conjunction with recognition probabilities) generates a transition function \(P^\sigma : X^2 \to [0, 1] \), where \(P^\sigma(x, y) \) is the probability, given \(\sigma \), that the alternative implemented in the next period is \(y \), given that the alternative implemented in the current period is \(x \).\(^4\) We say that \(x \in X \) is an absorbing point of \(\sigma \) if and only if \(P^\sigma(x, x) = 1 \), and we denote the set of absorbing points of \(\sigma \) by \(A(\sigma) \equiv \{ x \in X : P^\sigma(x, x) = 1 \} \). We will say that \(\sigma \) is no-delay if and only if: (i) \(A(\sigma) \neq \emptyset \); and (ii) for all \(x \in X \), there is \(y \in A(\sigma) \) such that \(P^\sigma(x, y) = 1 \). In words, a strategy profile is no-delay if an absorbing point is implemented in every period (both on and off the equilibrium path).

The next definition extends Anesi and Seidmann’s (2015) definition of a simple solution for the pie-division setting to the general framework.

Definition 1. A subset of alternatives \(S \subset X \) is a simple solution if there exist payoffs \((v_1, \ldots, v_n), (w_1, \ldots, w_n) \in \mathbb{R}^n \), a mapping \(\gamma : N \to D \), and an onto mapping \(\xi : N \to S \) such that for all \(i \in N \):

(i) \(v_i > w_i \);

(ii) \(i \in \gamma(i) \) and for some \(j \in N \setminus \{i\}, i \notin \gamma(j) \); and

\(^4\)As all players use pure strategies, \(P^\sigma(x, \cdot) \) is a discrete probability density with \(|\text{supp}(P^\sigma(x, \cdot))| \leq n \) for all \(x \in X \).
(iii) for all \(j \in N \),
\[
 u_j(\xi(i)) = \begin{cases}
 v_j & \text{if } j \in \gamma(i), \\
 w_j & \text{otherwise.}
 \end{cases}
\]

In the above definition, every player \(j \) is associated with an alternative \(\xi(j) \) and a coalition \(\gamma(j) \); here, \(\xi(j) \) is interpreted as a prize for \(j \), and \(\gamma(j) \) is the set of players who share that prize. It is required that player \(j \) receive a reward payoff \(v_j \) from \(\xi(j) \); that she receive the same reward payoff from supporting any player \(i \) with \(j \in \gamma(i) \); and that she receive the same punishment payoff \(w_j \) whenever a player \(i \) with \(j \notin \gamma(i) \) obtains their reward \(\xi(i) \). Note that each player receives a unique punishment payoff whenever she does not share in the prize.

Anesi and Seidmann (2015) show that in pie-division settings, each simple solution identifies alternatives that are absorbing points of stationary bargaining equilibria for the corresponding bargaining games when players are sufficiently patient. It is a simple matter to extend their arguments to establish the same connection between simple solutions and equilibrium absorbing points in general bargaining games.

Proposition 1. Let \(S \) be a simple solution. There is a threshold \(\bar{\delta} \in (0,1) \) such that if \(\min_{i \in N} \delta_i > \bar{\delta} \), then there exists a no-delay stationary bargaining equilibrium \(\sigma \) such that \(A(\sigma) = S \).

Thus, when players are patient enough, we can construct a stationary bargaining equilibrium corresponding to any simple solution. This observation points to the possibility of generating stationary bargaining equilibria by developing a method to locate simple solutions. However, while Proposition 1 shows that the properties of simple solutions are sufficient to engender a correspondence with stationary bargaining equilibria, those properties are far from necessary for this linkage. Simple solutions always exist in the pie division model with free disposal, which is the focus of Anesi and Seidmann (2015), but there remains the possibility that a more general concept has greater applicability in general environments yet is still sufficient for the construction of stationary bargaining equilibria.

3 Semi-simple Solutions and Existence of Equilibria

In this section, we push the approach of Anesi and Seidmann (2015) further to obtain the existence of stationary bargaining equilibria corresponding to sets of alternatives exhibiting a more general structure. To this end, we propose the weaker concept of semi-simple solution and show that when players are sufficiently patient, every semi-simple solution can be supported as the absorbing set of a stationary bargaining equilibrium. This generalizes
the result of Proposition 1, and as we show in the following section, it allows us to obtain a continuum of stationary bargaining equilibria near any alternative satisfying a general gradient restriction. In turn, this will imply indeterminacy of stationary bargaining equilibria in a broad class of dynamic bargaining games.

Definition 2. A set of alternatives $S \subset X$ is a **semi-simple solution** if

(i) there is a one-to-one mapping $\rho: S \to N$ such that for all $x \in S$,

$$\rho(x) \in C(x) \equiv \left\{ i \in N : u_i(x) = \max_{z \in S} u_i(z) \right\} \in D,$$

(ii) for all $i \in N$, u_i is not constant on S.

In the definition of semi-simple solution, for any player i, we interpret $\max_{z \in S} u_i(z)$ as the player’s reward payoff, and payoffs below this value as punishments. Thus, part (i) requires that for each $x \in S$, there is a decisive coalition that supports x to implement the reward payoff of player $\rho(x)$; and since $u_{\rho(x)}$ is not constant on S, by part (ii), it follows that there is also a decisive coalition willing to implement a punishment payoff for the player. In contrast to Definition 1, a player i does not have a single punishment payoff, but instead this can vary across alternatives that do not solve $\max_{z \in S} u_i(z)$. To see that the semi-simple solutions indeed generalize the simple solutions, let S be a simple solution, and define ρ on S by $\rho(x) = i$ for all $x \in S$, where i is any player such that $\xi(i) = x$. Observe that such a player can be found because ξ is onto, and that for all $j \in \gamma(i)$, we have $u_j(x) = u_j(\xi(i)) = v_j = \max_{z \in S} u_j(z)$, which implies $\gamma(i) \subseteq C(\xi(i))$. Thus, $\rho(x)$ belongs to $C(x)$, and the coalition is decisive, fulfilling part (i) of Definition 2. Moreover, for each player i, we have $i \in \gamma(i)$ and for some $j \neq i$, $i \notin \gamma(j)$, which implies $u_i(\xi(i)) = v_i \neq w_j = u_i(\xi(j))$ and yields part (ii).

The first part of Definition 2 implies that a semi-simple solution contains at most n alternatives, and the second part implies that the collection $\{C(x): x \in S\}$ of decisive coalitions has empty intersection. It is known from the social choice literature that the number of coalitions must therefore meet or exceed the Nakamura number of the voting rule; for the quota rule case, this means that $m \geq \lceil \frac{n}{n-q} \rceil$. For an example, assume $n = 5$ and D is majority rule, i.e., $q = 3$. Let $\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\}$ be a subset of alternatives such that

\footnote{The Nakamura number of a general, non-collegial voting rule D is the size of the smallest collection of decisive coalitions having empty intersection. In the foregoing, $\lceil r \rceil$ is the smallest integer greater than or equal to real number r.}
players 1, 2, 3, and 4 have the payoffs below,

\[
\begin{array}{c|cccc}
\bar{x}^1 & 1 & 1 & 1 & 0 \\
\bar{x}^2 & 1 & 1 & 0 & 1 \\
\bar{x}^3 & 1 & 0 & 1 & 1 \\
\bar{x}^4 & 0 & 1 & 1 & 1 \\
\end{array}
\]

(1)

while player 5 is not indifferent over all four alternatives. Here, \(C(\bar{x}^1) \setminus \{5\}\) is equal to the majority coalition \(\{1, 2, 3\}\), \(C(\bar{x}^2) \setminus \{5\}\) is \(\{1, 2, 4\}\), \(C(\bar{x}^3) \setminus \{5\}\) is \(\{1, 3, 4\}\), and \(C(\bar{x}^4) \setminus \{5\}\) is \(\{2, 3, 4\}\), in which case \(\bar{x}^k\) yields the reward payoff to all members of \(C(\bar{x}^k) \setminus \{5\}\), \(k = 1, 2, 3, 4\). To fulfill Definition 2, we then define the mapping \(\rho\) on \(\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\}\) by: \(\rho(\bar{x}^k) = k\) for all \(k = 1, 2, 3, 4\). Because player 5’s payoffs are unspecified, beyond the assumption that \(u_5\) is not constant over \(\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\}\), this example shows that the concept of simple solution is strictly stronger than that of semi-simple solutions.

For another example of a semi-simple solution, assume \(n = 7\), majority rule, i.e., \(q = 4\), and preferences over six alternatives as below,

\[
\begin{array}{c|cccccc}
\bar{x}^1 & 1 & 1 & 1 & 1 & 0 & 2 \\
\bar{x}^2 & 1 & 1 & 1 & 0 & 1 & 2 \\
\bar{x}^3 & 1 & 1 & 0 & 1 & 1 & 2 \\
\bar{x}^4 & 1 & 0 & 1 & 1 & 1 & 2 \\
\bar{x}^5 & 0 & 1 & 1 & 1 & 1 & 2 \\
\bar{x}^6 & 1 & 1 & 1 & 1 & 1 & 0 \\
\end{array}
\]

while player 7 is not indifferent over all six alternatives. Then \(\{\bar{x}^1, \ldots, \bar{x}^6\}\) is a semi-simple solution, with \(C(\bar{x}^k) \setminus \{7\} = \{1, \ldots, 6\} \setminus \{6 - (k \mod 6)\}\) and the mapping \(\rho\) defined by: \(\rho(\bar{x}^1) = 1\), \(\rho(\bar{x}^2) = 2\), \(\rho(\bar{x}^3) = 4\), \(\rho(\bar{x}^4) = 6\), \(\rho(\bar{x}^5) = 5\), and \(\rho(\bar{x}^6) = 3\). Note that no alternative can be deleted from the semi-simple solution, as then some player would be indifferent over the remaining five alternatives. Note further that the same argument holds if one changes player 5’s payoff from \(\bar{x}^0\) to \(-1\) (instead of 1), so that she has two punishment payoffs, 0 and \(-1\).

Next, we generalize Proposition 1 to support any semi-simple solution as the absorbing set of a stationary bargaining equilibrium. Thus, if one can show that a semi-simple solution exists, then necessarily the dynamic bargaining game (with discount factors close enough to one) will possess a stationary bargaining equilibrium. However, existence of a semi-simple solution is not generally guaranteed. For instance, it is readily checked that no semi-simple solution can exist in settings with a unidimensional set of alternatives,
$n \geq 3$, majority rule, and single-peaked utilities, as in Baron (1996), Kalandrakis (2014), and Zápal (2014).6

Theorem 1. Let S be a semi-simple solution. There is a threshold $\bar{\delta} \in (0,1)$ such that if $\min_{i \in N} \delta_i > \bar{\delta}$, then there exists a no-delay stationary bargaining equilibrium σ such that $A(\sigma) = S$.

The proof of Theorem 1 generally follows the lines of the construction of Anesi and Sindmann (2015). To convey the idea of the proof, we briefly discuss the construction based on a simple solution, and we then explain how the argument carries over to a semi-simple solution. Consider the special case in which $n = 5$, D is majority rule, and assume that $\delta_i \approx 1$ for each player i. Let $C = (C_1, C_2, C_3, C_4, C_5)$, where $C_1 = \{1,2,3,5\}$, $C_2 = \{1,2,4,5\}$, $C_3 = \{1,3,4,5\}$, $C_4 = \{1,2,3,4\}$, and $C_5 = \{2,3,4,5\}$; and let $\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4, \bar{x}^5\}$ be a simple solution, where $\xi(i) = \bar{x}^i$ and $\gamma(i) = C_i$ for every $i = 1,2,3,4,5$. We say that coalition $C_i \in C$ “forms” in period t if alternative \bar{x}^i is implemented, i.e., if $x^t = \bar{x}^i$. Now consider a stationary Markov strategy profile σ with the following features. In every period t, the current status quo reveals whether a coalition formed in period $t-1$ or not; then events unfold as follows: (a) if no coalition in C formed in $t-1$, then every proposer i offers to form coalition C_i, and this proposal is accepted by the four members of C_i; (b) if a coalition, say $C_i \in C$, formed in $t-1$, then every proposer j offers to form coalition C_i again in t by proposing \bar{x}^i; (c) if a coalition, say $C_i \in C$, formed in $t-1$, then any (off-the-equilibrium-path) proposal that does not involve forming C_i is rejected by the members of C_i. Observe that on the path of play prescribed by σ, one of the alternatives in $\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4, \bar{x}^5\}$ is implemented in the first period and then never amended: in the first period, some coalition C_i forms with probability p_i and then forms in all future periods with probability one. The same occurs following any period in which no coalition formed. Hence, each player j’s stage utility can only take two values on the path: her “reward payoff” v_j if she is a member of C_i, or her “punishment payoff” w_j otherwise.

Suppose that coalition C_i formed in period $t-1$ and that, contrary to (b) above, the proposer selected in period t does not offer to form C_i again. By accepting such a proposal, each member j of C_i would face the risk of not being a member of the coalition that will form and, therefore, of receiving $w_i < v_i$ in all future periods. This implies that, in period t, it is always profitable for the farsighted members of coalition C_i to oppose any proposal that does not involve forming C_i again, as prescribed by (c). As C_i is a majority coalition, it is thus impossible for any proposer j to prevent C_i from forming in period t. Therefore, proposer j cannot profitably deviate from passing, as prescribed by (b). By the same logic,

6Also note that a semi-simple solution would not exist if D were collegial, as in Nunnari (2014).

11
if no coalition formed in period $t - 1$, then no player j can improve on accepting an offer to form coalition $C_i \ni j$, thereby obtaining her reward payoff v_j with probability one in all future periods. It is therefore optimal for proposer i to (successfully) offer to form C_i, as prescribed by (a).

Now, if we have a set $\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\}$ that is merely a semi-simple solution with payoffs as depicted in (1), then the above arguments must be modified as follows. Letting $C_1 = \{1, 2, 3\}$, $C_2 = \{1, 2, 4\}$, $C_3 = \{1, 3, 4\}$, and $C_4 = \{2, 3, 4\}$, we again specify a strategy profile satisfying (a)–(c), where we modify (a) so that player $i = 5$ simply proposes an alternative with maximum utility in $\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\}$. When a coalition, say C_k, has formed in period $t - 1$, it is again impossible to change the status quo, because any deviation from \bar{x}^k would be voted down by the members of C_k. If no coalition formed in period $t - 1$, it is once again optimal for players $i = 1, 2, 3, 4$ to propose \bar{x}^i, and since player 5 is not indifferent over $\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\}$, for her to propose her favorite among those alternatives.

There are two key insights in weakening the concept of simple solution. First, to support m alternatives as absorbing points, we need only m decisive coalitions who are willing to pass them, and for this it suffices that the members of the coalition $C(\bar{x}^k)$ supporting \bar{x}^k receive their reward payoffs from the alternative. Second, m may be strictly less than n; what is critical is that each player receive strictly less than her reward payoff from at least one alternative, and for this it suffices that we can select, in a one-to-one way, a player $\rho(\bar{x}^k)$ from each coalition $C(\bar{x}^k)$ to propose alternative \bar{x}^k.

Remark on mixed proposal strategies. The definition of semi-simple solution requires an injective assignment of players to decisive coalitions due to our focus on stationary bargaining equilibria in pure strategies: in our equilibrium construction, each alternative x in S is proposed with probability one by player $\rho(x)$ when selected as proposer. This focus strengthens our equilibrium indeterminacy result, but we note that the concept of semi-simple solution can be relaxed further if mixed proposal strategies are allowed. In the following, we drop the requirement of a one-to-one assignment of players to coalitions, and in the equilibrium construction, we simply specify that each player i’s proposal strategy puts positive probability on each alternative that generates her reward payoff, i.e., each $x \in S$ satisfying $u_i(x) = \max_{z \in S} u_i(z)$.

Definition 2*. A finite set of alternatives $S \subset X$ is a mixed semi-simple solution if (i) for all $x \in S$, $C(x) \equiv \left\{ i \in N : u_i(x) = \max_{z \in S} u_i(z) \right\} \in D$, (ii) for all $i \in N$, u_i is not constant on S.
Next, we state a version of Theorem 1 using the weaker concept of mixed semi-simple solution, but delivering equilibria in mixed—rather than pure—proposal strategies. The proof is a simple modification of the proof of Theorem 1 and can be found in the online appendix.

**Theorem 1*. Let S be a mixed semi-simple solution. There is a threshold $\delta \in (0, 1)$ such that if $\min_{i \in N} \delta_i > \delta$, then there exists a no-delay stationary bargaining equilibrium in mixed proposal strategies with absorbing set S.

4 Multiplicity of Semi-simple Solutions

To leverage Theorem 1, it remains to find conditions under which semi-simple solutions exist. Our approach is to exploit restrictions on the gradients of players’ utility functions at an interior alternative x that are sufficient for existence of semi-simple solutions near x. To provide a preliminary intuition, consider the case of the pie division with free disposal. In this setting, one can easily satisfy the conditions of Definition 1, and therefore Definition 2, at any interior alternative $x = (x_1, \ldots, x_n)$ by transferring shares of the pie between players: for example, given sufficiently small $\epsilon > 0$, we can construct \bar{x}^i by transferring $(n-1)\epsilon$ from player i to the other players, increasing the consumption of every other player by ϵ. Then $\{\bar{x}^1, \ldots, \bar{x}^n\}$ is a (semi-)simple solution in which each player i receives her punishment payoff w_i from \bar{x}^i and her reward payoff v_j from \bar{x}^j for $j \neq i$. Of course, a continuum of (semi-)simple solutions can thus be obtained arbitrarily close to x by varying ϵ. The crux of the proof of our first existence result is to translate this simple argument into more general environments, where we cannot freely adjust the players’ payoffs by re-allocating a transferable private good. This is where our first gradient restriction kicks in: it allows us to apply the logic of the pie-division model with free disposal to construct a continuum of semi-simple solutions in any open neighborhood of an alternative satisfying our condition (C1). The latter condition can fail in pie division models with no disposal (this is the case if D is a quota rule with $q = n - 1$) but we show that a similar construction yields a continuum of semi-simple solutions near any Pareto optimal alternative satisfying a weaker gradient restriction that is satisfied in such settings.

More precisely, condition (C1) requires that the gradients of the members of some oversized coalition C^* are linearly independent at an interior alternative x; moreover, there is some member j of the coalition such that if we switch j with any non-member k, the gradients of members of the resulting coalition $(C^* \setminus \{j\}) \cup \{k\}$ remain linearly independent. The condition is obviously implied if the gradients $\{\nabla u_i(x) : i \in N\}$ of all players are linearly independent, for in this case, the second requirement is in fact vacuously
satisfied.

(C1) There is an oversized coalition $C^* \in D^*$ such that (i) the gradients $\{\nabla u_i(x) : i \in C^*\}$ are linearly independent, and (ii) there exists $j \in C^*$ such that for all $k \in N \setminus C^*$, the gradients $\{\nabla u_i(x) : i \in (C^* \setminus \{j\}) \cup \{k\}\}$ are linearly independent.

Intuitively, when condition (C1) holds at x, we can obtain all values of the utility profile $u = (u_i)_{i \in C^*}$ in some open neighborhood of $u(x) \in \mathbb{R}^{|C^*|}$ by arbitrarily small variations of x, i.e., the Jacobian of u at x has full row rank. As mentioned above, a sufficient condition for (C1) that is satisfied in many economic applications is that the collection $\{u_i(x) : i \in N\}$ of all players’ gradients is linearly independent. The latter condition is satisfied whenever the set of alternatives has a private good component; a fortiori, given our formulation of mixed economies, (C1) holds at any alternative x in the interior of X. In particular, (C1) holds in the model of pie-division with free disposal, as studied in Baron and Bowen (2014), Richter (2014), and Anesi and Seidmann (2015). Letting m^* denote the size of the smallest oversized coalition, i.e., $m^* = \min\{|C| : C \in D^*\}$, condition (C1) holds as well in the model of pie division with no disposal as long as $m^* < n$, for then if a coalition of size m^* includes player n, it must exclude some player $i < n$, and the members’ gradients will be linearly independent. More generally, (C1) holds if for every size m^* coalition C, the gradients $\{\nabla u_i(x) : i \in C\}$ are linearly independent; and for a quota rule, this reduces to the requirement that the gradients of every coalition with $q + 1$ members are linearly independent at x. In multidimensional settings with $d \geq m^*$, the latter sufficient condition for (C1) generically holds outside a closed set of measure zero of alternatives (Smale 1974).

The next result establishes a continuum of semi-simple solutions in non-collegial, dynamic bargaining games under (C1). In fact, we show that given any interior alternative satisfying (C1), we can find a continuum of semi-simple solutions arbitrarily close to that alternative.

Theorem 2. Let x be any interior point of X at which (C1) is satisfied. Every open neighborhood U of x contains a continuum of semi-simple solutions.

For a sketch of the proof, consider a simple three-player majority-voting game, let x be any interior point of X, and for simplicity assume that condition (C1) is satisfied at x. Since the only oversized coalition is $N = \{1, 2, 3\}$, condition (C1) implies that $\{\nabla u_i(x) : i = 1, 2, 3\}$ is linearly independent. Our approach, in the context of this example, is to find a set of alternatives $\{\bar{x}^1, \bar{x}^2, \bar{x}^3\}$ such that for each alternative $k = 1, 2, 3$, the coalition supporting \bar{x}^k is $C(\bar{x}^k) = N \setminus \{k\}$, whereas player k receives her punishment.
payoff from \bar{x}^k. Then each $C(\bar{x}^k)$ is decisive, and we fulfill Definition 2 by specifying the mapping ρ so that $\rho(\bar{x}^k) = (k + 1) \mod 3$. To this end, define f as the function that maps vectors of alternatives $(x^1, x^2, x^3) \in X^3$ to corresponding utility vectors $(u_i(x^j))_{i,j \in N} \in \mathbb{R}^9$. The argument is depicted in Figure 1, where we place $(u_1(x), u_2(x), u_3(x))$ at the center of the simplex in \mathbb{R}^3. Condition (C1) implies that the Jacobian of f has full row rank at x. By the local submersion theorem (e.g., Guillemin and Pollack, 1974), therefore, we can perturb x to alternatives $\bar{x}^1, \bar{x}^2, \bar{x}^3$, so as to give player i her punishment payoff at \bar{x}^i and the remaining players their reward payoffs, e.g., for sufficiently small $\epsilon > 0$, we can set $u_i(\bar{x}^i) = u_i(x) - \epsilon$, whereas $u_{i+1}(\bar{x}^i) = u_{i+1}(x) + \epsilon$ and $u_{i+2}(\bar{x}^i) = u_{i+2}(x) + \epsilon$. Thus, $\{\bar{x}^1, \bar{x}^2, \bar{x}^3\}$ is a semi-simple solution. It is readily checked that we can use the same argument for a continuum of values of ϵ that each yield a different semi-simple solution.

The preceding argument illustrates the proof approach in a particular example, where the only oversized coalition is the entire set of players, N itself. This is necessarily the case if the voting rule is a quota rule with $q = n - 1$, but more generally (as in the case of majority rule with $n \geq 5$) the gradient restriction imposed in (C1) will be weaker when satisfied using a smaller coalition $C^* \subsetneq N$. Returning to the example of Figure 1, maintain majority rule, but now assume $n = 5$, and assume that (C1) is satisfied with $C^* = \{1, 2, 3, 4\}$. In this case, the the selection of four alternatives $\{x^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\}$ proceeds as above and satisfies part (i) of Definition 2—but we must address the possibility that a

\[\text{Figure 1: Mapping to utility vectors}\]

\[\text{7Here, addition is understood to be modulus 3.}\]

\[\text{8In fact, it is easy to verify that, when } \{\nabla u_i(x) : i \in N\} \text{ is linearly independent, this logic yields a simple solution.}\]
player outside C^*, namely player 5, is indifferent over $\{x^1, \tilde{x}^2, \tilde{x}^3, \tilde{x}^4\}$. In case player 5 is not indifferent, then we set $\tilde{x}^1 = x^1$; and otherwise, we perturb x^1 as follows. Following the argument of Figure 1, we can, by varying x^1 in an arbitrarily small open set, vary the payoffs of players in $(C^* \setminus \{1\}) \cup \{5\}$ in an open set around $(u_2(x^1), u_3(x^1), u_4(x^1), u_5(x^1))$. Thus, we can choose \tilde{x}^1 such that the utilities of players 2, 3, and 4 are unchanged (preserving their reward and punishment payoffs), and such that player 5’s utility changes; moreover, we can make the perturbation small enough that player 1’s payoff from \tilde{x}^1 remains less than her reward payoff. In both cases, we obtain a set $\{\tilde{x}^1, \tilde{x}^2, \tilde{x}^3, \tilde{x}^4\}$ such that part (i) of Definition 2 is preserved, and player 5 is not indifferent over $\{\tilde{x}^1, \tilde{x}^2, \tilde{x}^3, \tilde{x}^4\}$; that is, the set is a semi-simple solution. In the general case, if multiple players outside C^* are indifferent over the alternatives in the provisional solution, then we iterate this procedure for each one.

Remark on pie division with no disposal and $m^* = n$. As mentioned above, Theorem 2 does not cover the model of pie division with no disposal when $m^* = n$. Nevertheless, the result can be adapted to cover that environment by adding the assumption that x is Pareto optimal and weakening the gradient restriction of (C1) so that the gradients of every size $n - 1$ coalition are linearly independent.

(C1*) (i) x is Pareto optimal, and (ii) for all $i \in N$, the gradients $\{\nabla u_j(x) : j \in N \setminus \{i\}\}$ are linearly independent.

Although (C1) fails in the model of pie division with no disposal when $m^* = n$, condition (C1*) holds at all interior alternatives in this environment, capturing the settings of Kalandrakis (2004 and 2010) and Bowen and Zahran (2012). These and the previous examples show that conditions (C1) and (C1*) are easy to check and that they apply to a range of economic environments of interest. In fact, the following variant of Theorem 2 establishes a continuum of simple solutions under (C1*). The proof can be found in the online appendix.

Theorem 2*. Let x be any interior point of X at which (C1*) is satisfied. Every open neighborhood U of x contains a continuum of simple solutions.

5 Semi-simple Solutions and Pareto Optimality

The semi-simple solutions established in Theorem 2, relying as they do on (C1), may involve Pareto inefficient alternatives; indeed, if (C1) is satisfied using $C^* = N$, then x is necessarily inefficient, and solutions near x will be as well. But under some conditions,
we can construct semi-simple solutions using only Pareto optimal alternatives, even in cases where no alternative satisfies condition (C1), as when $d < m^*$. To see this, let $N = \{1, 2, 3\}$, let D be majority rule, and assume each $i \in N$ has Euclidean utility on $X = \mathbb{R}^2$ with equidistant ideal alternatives \hat{x}^i, $i = 1, 2, 3$. Here, (C1) is violated everywhere in X, because X has dimension 2, which is less than the size of the only oversized coalition, N. Nevertheless, as seen in Figure 2, semi-simple solutions such as $\{\bar{x}_1, \bar{x}_2, \bar{x}_3\}$ can be constructed in any open neighborhood of alternative x, or indeed near any alternative belonging to the interior of the convex hull of the players’ ideal alternatives. The crucial properties of such alternatives is that they are Pareto optimal and that the gradients of any two players are linearly independent at x.

Next, we provide a general sufficient condition, termed (C2), for the construction of semi-simple solutions using only Pareto optimal alternatives. The condition is naturally compared to (C1*), as part (i) requires that x is Pareto optimal, and part (ii) imposes linear independence of the gradients remaining when any member of a given oversized coalition, C^*, is removed. Part (iii) of (C2) adds a local concavity condition in order to ensure that the Pareto set $PO(C^*)$ has a manifold structure around x. The statement of this part relies on the fact that (i) and (ii) imply existence and uniqueness (up to a common scale factor) of positive coefficients $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n_{++}$ such that $\sum_{i \in N} \alpha_i \nabla u_i(x) = 0$; using these coefficients as weights, the requirement is that the weighted sum of the players’ Hessian matrices $D^2 u_i(x)$ is negative definite. Part (iv) is more involved, but note that it is moot if x is Pareto optimal for N, if the Hessian matrix at x is negative definite for all players, and if for all $i \in N$, the gradients $\{\nabla u_j(x) : j \in N \setminus \{i\}\}$ are linearly independent. Indeed, because D is non-collegial, it follows that N is oversized, and we may then set $C^* = N$ to

Figure 2: Semi-simple solution under (C2)
fulfill (i)–(iii), so that (iv) holds vacuously.

In part (iv) of the definition of (C2), a coalition C^* is fixed, and we are given players i and j in C^* and a player k outside C^*. Let $U_{i,j,k}: X \to \mathbb{R}^{C^* - 1}$ denote the function that gives the utilities of player k and all members of C^*, less players i and j, i.e., $U_{i,j,k}(z) = (u_b(z))_{b \in (C^* \setminus \{i,j\}) \cup \{k\}}$. Parts (i)–(iii) ensure there is an open set $G \subseteq \mathbb{R}^d$ containing x such that $M_{C^*}(x) \equiv G \cap PO(C^*)$ is a manifold of dimension $|C^*| - 1$, and the level set $L_{i,j,k}(x) \equiv \{y \in G : U_{i,j,k}(y) = U_{i,j,k}(x)\}$ is a manifold of dimension $d - |C^*| + 1$. We write $L_{i,j,k}(x) \cap M_{C^*}(x)$ to indicate that \mathbb{R}^d is spanned by the sum of the tangent space of $M_{C^*}(x)$ and the tangent space of the level set of $U_{i,j,k}$ through x; in particular, the intersection of $M_{C^*}(x)$ and $L_{i,j,k}(x)$ is a manifold of codimension $(d - |C^*| + 1) + (|C^*| - 1) = d$, i.e., it consists of isolated points.\(^{10}\)

(C2) There is an oversized coalition $C^* \in \mathcal{D}^*$ such that (i) x is Pareto optimal for C^*, (ii) for all $i \in C^*$, the gradients $\{\nabla u_j(x) : j \in C^* \setminus \{i\}\}$ are linearly independent, (iii) $\sum_{i \in N} \alpha_i D^2 u_i(x)$ is negative definite, and (iv) there exist $i, j \in C^*$ such that for all $k \in N \setminus C^*$, $L_{i,j,k}(x) \cap M_{C^*}(x)$.

Unlike (C1*), condition (C2) can be satisfied in settings where the gradients of some coalitions of size $n - 1$ do not have full rank, as long as an oversized coalition of size less than n fulfills parts (i)–(iii); in this case, however, part (iv) of the condition has bite. The local concavity condition in part (iii) of (C2) is obviously fulfilled if each Hessian $D^2 u_i(x)$ is negative definite, but that version of the condition would preclude environments with a private good component: in that case, $u_i(x)$ is constant in other players’ consumption of the private good, and negative definiteness is violated (although negative semi-definiteness can be satisfied). We formulate part (iii) more generally to capture such economic environments. In a mixed economy, for example, assume that the Hessian $D^2 (x_i, g) u_i(x_1, \ldots, x_n, g)$ is negative definite for each player (here we differentiate only through i’s consumption x_i and the public good level g); then part (iii) is fulfilled. We discuss the applicability of part (iv) of (C2) in greater detail later in this section.

The next result establishes a continuum of semi-simple solutions in non-collegial, dynamic bargaining games under (C2). The statement strengthens that of Theorems 2 and 2*, in an important respect, by locating the semi-simple solutions in the $(|C^*| - 1)$-dimensional manifold $M_{C^*}(x) = G \cap PO(C^*)$; in particular, if the utility functions of players in C^* are strictly pseudo-concave, then these alternatives are Pareto optimal.

\(^{9}\)See Theorem 5 of Duggan (2016b).

\(^{10}\)Note that the intersection contains x and is therefore nonempty.
Theorem 3. Let \(x \) be any interior point of \(X \) at which (C2) is satisfied using coalition \(C^* \). Every open neighborhood \(U \) of \(x \) is such that \(U \cap PO(C^*) \) contains a continuum of semi-simple solutions.

The proof of Theorem 3 follows the lines of the proof of Theorem 2, but now, returning to the example of \(n = 3 \) and majority rule, (C2) allows us only to control the utility of any two players, e.g., 2 and 3, in an open set around \((u_2(x), u_3(x))\). As suggested in the example of Figure 2, we can perturb \(x \) to \(x^1 \), which increases the utility of both players and gives their reward payoff. Because \(x \) is Pareto optimal for \(C^* = \{1, 2, 3\} \), this move necessarily decreases the utility of player 1, giving her punishment payoff. Similarly, we can perturb \(x \) to \(x^2 \) to give players 1 and 3 their reward payoff and player 2 her punishment payoff, and we can perturb \(x \) to \(x^3 \) to give players 1 and 2 their reward payoff and player 3 her punishment payoff. As in the proof of Theorem 2, when \(C^* \subseteq \mathbb{N} \), e.g., \(n = 5 \) and voting is by majority rule, we can construct a subset \(\{\bar{x}^1, x^2, x^3, x^4\} \) satisfying part (i) of Definition 2, but we must address the possibility that a player outside \(C^* = \{1, 2, 3, 4\} \), namely player 5, is indifferent over \(\{\bar{x}^1, x^2, x^3, x^4\} \).

Now, in contrast to the proof of Theorem 2, we fix \(\bar{x}^1 \), and we perturb \((x^2, x^3, x^4)\) to \((\bar{x}^2, \bar{x}^3, \bar{x}^4)\) in a way that increases the reward payoff of player 1, keeping the reward payoffs of players 3 and 4 constant; moreover, we can make the perturbation small enough that player 2’s payoff from \(\bar{x}^2 \) is still smaller than her reward payoff. Importantly for the conclusion of Theorem 3, we must, using properties of payoffs over \(PO(C^*) \), restrict these perturbations to the set of alternatives Pareto optimal for \(C^* \). Setting \(i = 1 \) and \(j = 2 \), for the sake of argument, (C2) implies that \(L_{1,2,5}(x) \) intersects \(M_{C^*}(\bar{x}^2) \) transversally, so that the intersection is an isolated point. Then the perturbation to \(\bar{x}^2 \) must change the utility of player 3, 4, or 5; and since the utilities of players 3 and 4 are maintained by construction, it follows that in fact player 5’s changes. This yields a set \(\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\} \) such that part (i) of Definition 2 is preserved, and player 5 is not indifferent over \(\{\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{x}^4\} \); that is, the set is a semi-simple solution.

To understand the applicability of part (iv) of (C2), and the gain of (C2) over (C1*), it is necessary to consider an example in which there is an oversized coalition that does not include every player. To this end, assume that \(n = 5 \), that voting is by majority rule, that \(X \) is a subset of \(\mathbb{R}^3 \), and that utilities are Euclidean. Let \(C^* = \{1, 2, 3, 4\} \), and consider any interior alternative \(x \in PO(C^*) \). Since alternatives lie in a three-dimensional space, (C1*) always fails, but (C2) imposes a weaker gradient restriction that can be satisfied, say, with the oversized coalition \(C^* \). Then part (ii) of (C2) requires that for all \(i \in C^* \), the gradients \(\{\nabla u_j(x) : j \in C^* \setminus \{i\}\} \) are linearly independent, and part (iii) imposes local concavity around \(x \), and it follows that near \(x \), the Pareto set of \(C^* \) is a three-dimensional
manifold. We depict the Pareto set for C^* as a three-dimensional space containing x in Figure 3, and we illustrate the weakness of part (iv) of (C2) with $i = 1$ and $j = 2$. There is just one player outside C^*, namely $k = 5$, so part (iv) requires that $L_{1,2,5}(x)$ intersect $PO(C^*)$ transversally. Here, $L_{1,2,5}(x)$ consists of alternatives z such that $u_3(z) = u_3(x)$, $u_4(z) = u_4(x)$, and $u_5(z) = u_5(x)$, i.e., alternatives that lie on the level sets of players 3, 4, and 5 at x. Player 3’s level set through x is a sphere centered at the ideal point \hat{x}^3, just as player 4’s is a sphere centered at \hat{x}^4. These two level sets intersect in a circle, depicted in Figure 3. This circle will pass through player 5’s level set at x, also a sphere, and it will typically contain alternatives inside and outside the sphere, as in the figure. Thus, $L_{1,2,5}(x)$ consists of just the singleton \{x\}, and the intersection of this level set, a zero-manifold in the example, with the Pareto set, a three-dimensional manifold, is indeed transversal. Thus, while (C1*) cannot apply in this example, (C2) does, highlighting the applicability of the latter condition.

6 Indeterminacy of Stationary Bargaining Equilibria

Theorem 1, combined with Theorems 2 and 3, immediately yields an equilibrium existence result for the dynamic bargaining game: as discount factors become close to one, absorbing points of stationary bargaining equilibria exist near every alternative that satisfies either
(C1) or (C2). Of greater importance are the implications of these results for the predictive power of stationary bargaining equilibria in this class of games: when players are sufficiently patient, the dynamic bargaining game admits a continuum of equilibria. Beginning with the analysis of our first condition, the next result establishes indeterminacy of stationary bargaining equilibria when any alternative satisfies (C1) and players are sufficiently patient.

Theorem 4. Let \(x\) be any interior point of \(X\) at which (C1) is satisfied. For every open neighborhood \(U\) of \(x\), there exists \(\hat{\delta} \in (0,1)\) such that if \(\min_{i \in N} \delta_i > \hat{\delta}\), then there is a continuum of semi-simple solutions in \(U\) corresponding to absorbing sets of no-delay stationary bargaining equilibria with discount factors \(\delta_1, \ldots, \delta_n\).

Note that the theorem is not an immediate corollary of Theorems 1 and 2. Indeed, the threshold \(\bar{\delta}_{S}\) identified in Theorem 1 was only shown to apply to a given semi-simple solution \(S\), not to the continuum of semi-simple solutions in \(U\) described in Theorem 2. Henceforth, let \(\bar{\delta}_{S}\) be the threshold associated with \(S\), and let \(S\) be the continuum of semi-simple solutions from Theorem 2. It remains to be established that there is a subcontinuum, say \(S^\ast\), of that continuum such that \(\hat{\delta} = \sup \{\bar{\delta}_{S}: S \in S^\ast\} < 1\). Here, we provide a short argument that uses the axiom of choice to construct the needed subcontinuum; an online appendix contains a longer proof that does not use the axiom of choice, but rather relies on the implicit function theorem. To this end, let \(U \subseteq X\) be an arbitrary open neighborhood of \(x\). For each natural number \(k\), set \(S^k = \{S \in S : \bar{\delta}_{S} < 1 - \frac{1}{k}\}\), and note that \(S = \bigcup_{k=1}^{\infty} S^k\). Thus, \(S\) is the union of countably many sets. Since \(S\) is a continuum, the axiom of choice implies that some set \(S^k\) is uncountable, and is in fact also a continuum.\(^{11}\) Then we set \(S^\ast = S^k\) and \(\hat{\delta} = 1 - \frac{1}{k}\) to complete the proof.

The political economy literature on bargaining games with an endogenous status quo has devoted considerable attention to the set \(A^\ast\) of dynamically stable alternatives, i.e., the alternatives that can be supported as long run outcomes of stationary bargaining equilibria. Formally, we define \(A^\ast\) to consist of every alternative \(x\) for which there exists \(\hat{\delta} \in (0,1)\) such that if \(\min_{i \in N} \delta_i > \hat{\delta}\), then there is a stationary bargaining equilibrium \(\sigma\) for discount factors \(\delta_1, \ldots, \delta_n\) such that \(x \in A(\sigma)\). In terms of predicting bargaining outcomes, the characterization of dynamically stable alternatives is only informative if \(A^\ast\) is "small" relative to the set of alternatives. This is typically not the case in the dynamic bargaining game with a high-dimensional set of alternatives, for an immediate corollary of Theorem 4 shows that under generic conditions, the dynamically stable alternatives are dense in the set of alternatives.

\(^{11}\)By the axiom of choice, the countable union of countable sets is itself countable, so it follows immediately that some \(S^k\) is uncountable. That some \(S^k\) has the cardinality of the continuum is known, and a proof is available under question 199274 at http://math.stackexchange.com.
Corollary 1. If the set of alternatives at which (C1) holds is dense in \(\text{int} X \), then the set \(A^* \) of dynamically stable alternatives is dense in \(\text{int} X \).

This observation is reminiscent of the cycling results in the social choice literature (e.g., McKelvey, 1979). Just as the top cycle is generically dense in the set of alternatives in sufficiently high dimensional spaces, we find that long-run bargaining outcomes for any such environment are highly indeterminate. Whereas McKelvey’s chaos theorem evokes the picture of collective choices moving arbitrarily through the set of alternatives over time, however, our results establish the possibility that collective choices via dynamic bargaining can come to rest at arbitrary locations in the set of alternatives.

The above indeterminacy result relies on stationary bargaining equilibria with Pareto inefficient absorbing points, but Theorem 3 can be used to deduce indeterminacy within the Pareto set of any coalition used to fulfill (C2). The proof of the next result follows the lines of the proof of Theorem 4.

Theorem 5. Let \(x \) be any interior point of \(X \) at which (C2) is satisfied using coalition \(C^* \). For every open neighborhood \(U \) of \(x \), there exists \(\hat{\delta} \in (0, 1) \) such that if \(\min_{i \in N} \delta_i > \hat{\delta} \), then there is a continuum of semi-simple solutions in \(U \cap \text{PO}(C^*) \) corresponding to absorbing sets of no-delay stationary bargaining equilibria with discount factors \(\delta_1, \ldots, \delta_n \).

If the utility functions of the players in \(C^* \) are strictly pseudo-concave, then the alternatives Pareto optimal for the coalition are, in particular, Pareto optimal, so we record an analogous corollary for the (C2) case.

Corollary 2. Assume each \(u_i \) is strictly pseudo-concave. If the set of alternatives at which (C2) holds is dense in \(\text{PO}(N) \cap \text{int} X \), then the set \(A^* \) of dynamically stable alternatives is dense in \(\text{PO}(N) \cap \text{int} X \).

We conclude that as players become patient, stationary bargaining equilibria may not only be indeterminate, but when the space of alternatives is high-dimensional, every interior alternative can be approximated by equilibrium absorbing points. Moreover, the indeterminacy is not created by the possibility of Pareto inefficient equilibria, but nevertheless, in the absence of \textit{a priori} bounds on the players’ discount factors, they demonstrate difficulties for the prediction and analysis of social choices in dynamic environments that must be addressed in future work on dynamic bargaining with an endogenous status quo.

A Proof of Theorem 1

Let \(S = \{ \bar{x}^1, \ldots, \bar{x}^m \} \), \(m \leq n \), be a semi-simple solution. We will proceed in six steps. Step 1 defines the threshold \(\bar{\delta} = \delta(\bar{x}^1, \ldots, \bar{x}^m) \). Steps 2 and 3 construct \(\sigma \) and verify that
it is a no-delay stationary Markov strategy profile. Step 4 derives players’ continuation values from the definition of σ. Finally, Steps 5 and 6 use these continuation values to establish that σ is a stationary bargaining equilibrium.

Step 1: Definition of $\tilde{\delta}(\bar{x}^1, \ldots, \bar{x}^m)$. Let $p^\min_i \equiv \min_{i \in N} p_i$ and, for each $i \in N$, let
\[
\tilde{\delta}_i(\bar{x}^1, \ldots, \bar{x}^m) \equiv \frac{u_i^{sup} - \max_h u_i(\bar{x}^h) - p^\min_i \min_h u_i(\bar{x}^h) - (1 - p^\min_i) \max_h u_i(\bar{x}^h)}{u_i^{sup} - p^\min_i \min_h u_i(\bar{x}^h) - (1 - p^\min_i) \max_h u_i(\bar{x}^h)},
\]
where $u_i^{sup} > \max_h u_i(\bar{x}^h)$ is an upper-bound for $u_i(X)$ (recall that the u_i’s are bounded above). By condition (ii) in the definition of a semi-simple solution,
\[
p^\min_i \min_h u_i(\bar{x}^h) + (1 - p^\min_i) \max_h u_i(\bar{x}^h) < \max_h u_i(\bar{x}^h)
\]
and, therefore, $\tilde{\delta}_i(\bar{x}^1, \ldots, \bar{x}^m) \in (0, 1)$ for every $i \in N$. This in turn implies that
\[
\tilde{\delta}(\bar{x}^1, \ldots, \bar{x}^m) \equiv \max_{i \in N} \tilde{\delta}_i(\bar{x}^1, \ldots, \bar{x}^m) \in (0, 1).
\]
Moreover, as u_i is continuous for each i, $\tilde{\delta}_i$ is continuous in $(\bar{x}^1, \ldots, \bar{x}^m)$. Hence, $\tilde{\delta}$ is a continuous function of $(\bar{x}^1, \ldots, \bar{x}^m)$.

Henceforth, we assume that $\min_{i \in N} \delta_i > \tilde{\delta}(\bar{x}^1, \ldots, \bar{x}^m)$.

Step 2: Definition of stationary Markov strategy profile σ. The definition of proposal strategies relies on an n-tuple of alternatives $(\hat{x}^1, \ldots, \hat{x}^n) \in \{\bar{x}^1, \ldots, \bar{x}^m\}^n$, defined as follows. From condition (i) in Definition 2, there exists a one-to-one mapping $\rho: \{\bar{x}^1, \ldots, \bar{x}^m\} \to N$ such that for all $k = 1, \ldots, m$, $\rho(\bar{x}^k) \in \{i \in N : u_i(\bar{x}^k) = \max_h u_i(\bar{x}^h)\}$. For each $i \in \rho(\{\bar{x}^1, \ldots, \bar{x}^m\})$, we define \hat{x}^i as the alternative \bar{x}^k in the semi-simple solution such that $\bar{x}^k = \rho^{-1}(i).$ If $N \setminus \rho(\{\bar{x}^1, \ldots, \bar{x}^m\}) \neq \emptyset$, then, for each $i \notin \rho(\{\bar{x}^1, \ldots, \bar{x}^m\})$, we select \hat{x}^i among the maximizers of u_i on $\{\bar{x}^1, \ldots, \bar{x}^m\}$. Observe that, by condition (ii) in Definition 2, we have $u_i(\hat{x}^i) = \max_h u_i(\bar{x}^h) > \min_h u_i(\bar{x}^h)$, for all $i \in N$. Moreover, since ρ is one-to-one, we also have
\[
\sum_{j \in N} p_j u_i(\hat{x}^j) \leq p^\min_i \min_h u_i(\bar{x}^h) + (1 - p^\min_i) \max_h u_i(\bar{x}^h),
\]
for all $i \in N$.

We are now in a position to define $\sigma = (\sigma_1, \ldots, \sigma_n)$. For each $i \in N$, σ_i prescribes the following behavior to player i:

(a) In the proposal stage of any period t with ongoing status quo x, (conditional on her being selected to make a proposal) she proposes
\[
\phi^i(x) \equiv \begin{cases}
 x & \text{if } x \in \{\bar{x}^1, \ldots, \bar{x}^m\}, \\
 \hat{x}^i & \text{otherwise};
\end{cases}
\]
(b) in the voting stage of any period \(t \) with ongoing status quo \(x \), she accepts proposal \(y \) if and only if \(W_i(y) > W_i(x) \), where
\[
W_i(z) \equiv (1 - \delta_i)u_i(z) + \delta_i \sum_{j \in N} p_j u_i(\phi^j(z)), \text{ for all } z \in X.
\]

It is easy to see that \(\sigma \) is stationary Markov.

Step 3: Verification that \(\sigma \) is no-delay with \(A(\sigma) = \{\bar{x}^1, \ldots, \bar{x}^m\} \). It follows immediately from part (a) in the definition of \(\sigma \) that every element of the semi-simple solution is absorbing, that is, \(\{\bar{x}^1, \ldots, \bar{x}^m\} \subseteq A(\sigma) \). What remains to be established, therefore, is that any status quo \(x \notin \{\bar{x}^1, \ldots, \bar{x}^m\} \) is immediately amended to an alternative in \(\{\bar{x}^1, \ldots, \bar{x}^m\} \) with probability one. To see this, observe that each proposer \(i \in N \) offers alternative \(\hat{x}^i \) in \(\{\bar{x}^1, \ldots, \bar{x}^m\} \) when the status quo is \(x \notin \{\bar{x}^1, \ldots, \bar{x}^m\} \). Moreover, by definition of a semi-simple solution, there is a decisive coalition \(C(\hat{x}^i) \in D \) such that
\[
W_k(\hat{x}^i) = u_k(\hat{x}^i) = \max_h u_k(\bar{x}_h) \\
> (1 - \delta_k)u_k^{\sup} + \delta_k \left[p^{\min_h} \min_h u_k(\bar{x}^h) + (1 - p^{\min_h}) \max_h u_k(\bar{x}^h) \right] \\
\geq (1 - \delta_k)u_k(x) + \delta_k \sum_{j \in N} p_j u_k(\hat{x}^j) \\
= W_k(x),
\]
for all \(k \in C(\hat{x}^i) \). (The first inequality follows from Step 1: \(\delta_k > \delta_k(\bar{x}^1, \ldots, \bar{x}^m) \) for all \(k \in N \).) From part (b) in the definition of \(\sigma \), all players in the decisive coalition \(C(\hat{x}^i) \) accept \(\hat{x}^i \in A(\sigma) \), which is therefore implemented.

Step 4: Continuation values. We denote by \(V_i(x|\sigma) \) player \(i \)'s expected discounted payoff from implementing alternative \(x \) in a given period. Suppose first that \(x \in \{\bar{x}^1, \ldots, \bar{x}^m\} \). It follows immediately from part (a) in the definition of \(\sigma \) that
\[
V_i(x|\sigma) = u_i(x) = (1 - \delta_i)u_i(x) + \delta_i \sum_{j \in N} p_j u_i(\phi^j(x)) = W_i(x).
\]

Suppose now that \(x \notin \{\bar{x}^1, \ldots, \bar{x}^m\} \). Each player \(i \) receives \((1 - \delta_i)u_i(x)\) in the current period. Then, in the next period, player \(j \) is selected with probability \(p_j \) and, as shown in Step 3, successfully proposes \(\hat{x}^j = \phi^j(x) \). Hence,
\[
V_i(x|\sigma) = (1 - \delta_i)u_i(x) + \delta_i \sum_{j \in N} p_j u_i(\phi^j(x)) = W_i(x), \quad (2)
\]
for all \(i \in N \) and all \(x \in X \).
Step 5: Verification that players do not cast stage-dominated votes. Consider an arbitrary voting stage, in which a proposal y has been made to amend the current status quo x. Coupled with (2), part (b) in the definition of σ guarantees that each player i only accepts y if $V_i(y|\sigma) > V_i(x|\sigma)$, and only rejects y if $V_i(y|\sigma) \leq V_i(x|\sigma)$.

Step 6: Verification that σ is a stationary bargaining equilibrium. It follows from Step 5 (and the one-shot deviation principle) that, in any voting stage, no player can profitably deviate from σ. To complete the proof of Theorem 1, we must therefore show that there is no profitable (one-shot) deviation from σ in any proposal stage. Suppose first that the current status quo x belongs to $\{\bar{x}_1, \ldots, \bar{x}_m\}$. In this case, σ prescribes proposer i to maintain x. If she deviates by proposing to change x to any other alternative $y \neq x$, then her proposal will be rejected. Indeed, if y also belongs to $\{\bar{x}_1, \ldots, \bar{x}_m\}$, then part (i) in Definition 2 implies that there is a decisive coalition $C(x) \in D$ such that $W_i(x) = u_i(x) \geq u_i(y) = W_i(y)$ for all $i \in C(x)$; if y does not belong to $\{\bar{x}_1, \ldots, \bar{x}_m\}$, then similarly part (i) in Definition 2 implies that, for each member i of the decisive coalition $C(x)$,

$$W_i(x) = u_i(x)$$

$$= \max_h u_i(\bar{x}_h)$$

$$> (1 - \delta_i)u_i^{\text{sup}} + \delta_i \left[p^{\text{min}} \min_h u_i(\bar{x}_h) + (1 - p^{\text{min}}) \max_h u_i(\bar{x}_h) \right]$$

$$\geq (1 - \delta_i)u_i(y) + \sum_{j \in N} p_j u_i(\hat{x}^j)$$

$$= (1 - \delta_i)u_i(y) + \delta_i \sum_{j \in N} p_j u_i(\hat{y}^j)$$

$$= W_i(y).$$

(The first inequality follows from Step 1: $\delta_i > \delta_i(\bar{x}_1, \ldots, \bar{x}_m)$ for all $i \in N$.) Hence, all members of the decisive coalition reject y in both cases. It is therefore impossible for any proposer to profitably deviate from σ when the current status quo is in $\{\bar{x}_1, \ldots, \bar{x}_m\}$.

Suppose now that the current status quo x does not belong to $\{\bar{x}_1, \ldots, \bar{x}_m\}$. If proposer i plays according to σ, then she successfully proposes \hat{x}^i (recall Step 3), thus obtaining a dynamic payoff of $V_i(\hat{x}^i|\sigma) = u_i(\hat{x}^i) = \max_h u_i(\bar{x}_h)$. Because she could simply propose x itself, instead of proposing an alternative that is rejected, it follows that if she has a profitable deviation, then she can profit from making a successful proposal y. If y belongs to $\{\bar{x}_1, \ldots, \bar{x}_m\}$, then the deviation is not profitable since $V_i(\hat{x}^i|\sigma) = \max_h u_i(\bar{x}_h) \geq u_i(y) = \max_h u_i(\bar{x}_h)$. If y does not belong to $\{\bar{x}_1, \ldots, \bar{x}_m\}$, then the deviation is not profitable since $V_i(\hat{x}^i|\sigma) = \max_h u_i(\bar{x}_h) \geq u_i(y) = \max_h u_i(\bar{x}_h)$.
\[V_i(y|\sigma). \] If \(y \) does not belong to \(\{\bar{x}^1, \ldots, \bar{x}^m\} \), then
\[V_i(\hat{x}^i|\sigma) = \max_h u_i(\bar{x}_h) > (1 - \delta_i)u_i(y) + \delta_i \sum_{j \in N} p_j u_i(\phi^j(y)) = V_i(y|\sigma), \]
where as above, the inequality follows from \(\delta_i > \bar{\delta}_i(\bar{x}^1, \ldots, \bar{x}^m) \). Hence, the deviation is again unprofitable. This completes the proof of the theorem.

B Proof of Theorem 2

Let \(x \) be an interior point of \(X \) that satisfies (C1) using coalition \(C^* \in D^* \), i.e., (i) the gradients \(\{\nabla u_i(x) : i \in C^*\} \) are linearly independent, and (ii) there exists \(j \in C^* \) such that for all \(k \in N \setminus C^* \), the gradients \(\{\nabla u_i(x) : i \in (C^* \setminus \{j\}) \cup \{k\}\} \) are linearly independent. For simplicity, enumerate the members of \(C^* \) as \(\{1, \ldots, m\} \), and assume without loss of generality that player \(j = 1 \) fulfills part (ii) of (C1). Now, let \(U \subseteq X \) be an open neighborhood of \(x \). Define the mapping \(f : X^m \rightarrow \mathbb{R}^{m^2} \) by
\[
 f(x^1, \ldots, x^m) = \begin{pmatrix}
 u_1(x^1) \\
 \vdots \\
 u_1(x^m) \\
 \vdots \\
 u_m(x^1) \\
 \vdots \\
 u_m(x^m)
\end{pmatrix},
\]
where for each player \(i = 1, \ldots, m \), there are \(m \) rows giving player \(i \)'s payoff from alternatives \(x^1, \ldots, x^m \). The derivative of \(f \) at arbitrary \((x^1, \ldots, x^m) \in X^m \) is the \(m^2 \times md \)
matrix
\[
Df(x^1, \ldots, x^m) = \begin{bmatrix}
Du_1(x^1) & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & Du_1(x^m) \\
Du_2(x^1) & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & Du_2(x^m) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
Du_m(x^1) & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & Du_m(x^m)
\end{bmatrix},
\]
where we view $Du_i(x^j)$ as a $1 \times d$ row matrix. By assumption, the matrix $Df(x^1, \ldots, x^m)$ has full row rank at (x, \ldots, x). Moreover, we have $d \geq m$, since the players’ gradients are linearly independent, and therefore $dm \geq m^2$.

Let $y = (y^1, \ldots, y^m) = f(x, \ldots, x)$, where $y^i = (u_i(x), \ldots, u_i(x))$ is then the m-fold copy of player i’s utility from x. By the local submersion theorem (e.g., Guillemin and Pollack, 1974), we can choose an arbitrarily small open set $\tilde{U} \subseteq U$ containing x such that
the image $\tilde{V} \equiv f(\tilde{U}^m)$ is an open set containing y. Therefore, there exists $\epsilon > 0$ such that

$$y_\epsilon = \begin{pmatrix}
 u_1(x) - \epsilon \\
 u_1(x) + \epsilon \\
 \vdots \\
 u_1(x) + \epsilon \\
 u_2(x) + \epsilon \\
 u_2(x) - \epsilon \\
 u_2(x) + \epsilon \\
 \vdots \\
 u_2(x) + \epsilon \\
 \vdots \\
 u_m(x) + \epsilon \\
 \vdots \\
 u_m(x) + \epsilon \\
 u_m(x) - \epsilon
\end{pmatrix}$$

belongs to \tilde{V}. Moreover, by part (ii) of (C1), we can choose \tilde{U} sufficiently small that for all $\tilde{x} \in \tilde{U}$ and all $k = m + 1, \ldots, n$, the gradients $\{\nabla u_i(\tilde{x}) : i = 2, \ldots, m, k\}$ are linearly independent.

Since $y_\epsilon \in \tilde{V}$, there is a vector $(x_1^\epsilon, \ldots, x_m^\epsilon) \in \tilde{U}^m$ such that $f(x_1^\epsilon, \ldots, x_m^\epsilon) = y_\epsilon$. We claim that for all $i = 1, \ldots, m$, u_i is not constant on $\{x_1^\epsilon, \ldots, x_m^\epsilon\}$. Indeed, for each $k = 1, \ldots, m$ and each $i \in C^* \setminus \{k\}$, we have

$$u_i(x_k^\epsilon) = u_i(x) + \epsilon = \max_h u_i(x_h^\epsilon),$$

which is strictly greater than $u_i(x_k^\epsilon) = u_i(x) - \epsilon = \min_h u_i(x_h^\epsilon)$, as claimed. To fulfill part (ii) of Definition 2, it remains for us to confront the possibility that players outside C^* are indifferent over the m alternatives, i.e., for some $i \in N \setminus C^*$, u_i is constant on $\{x_1^\epsilon, \ldots, x_m^\epsilon\}$. To address this problem, we iteratively perturb x_1^ϵ, and we construct these perturbations recursively to break any indifferences over $\{x_1^\epsilon, \ldots, x_m^\epsilon\}$ among players $m + 1, \ldots, n$, while continuing to punish player 1 and maintaining the reward payoffs of players $2, \ldots, m$. To begin, set $z^0 = x_1^1$.

Step 1: If player $m + 1$ is indifferent over $\{z^0, x_2^\epsilon, \ldots, x_m^\epsilon\}$, then we form the coalition
\[
C^1 = (C^* \setminus \{1\}) \cup \{m + 1\}, \text{ which has size } m. \text{ Define the mapping } g^1: X \to \mathbb{R}^m \text{ by }
\[
g^1(z) = \begin{pmatrix}
 u_2(z) \\
 \vdots \\
 u_m(z) \\
 u_{m+1}(z)
\end{pmatrix},
\]
which gives the vector of payoffs to players in \(C^1\). Since \(z^0 \in \check{U}\), the gradients \(\{\nabla u_i(z^0) : i \in C^1\}\) are linearly independent, so that \(Dg^1(z^0)\) has full row rank. By the local submersion theorem, we can choose an open set \(\check{U}^1 \subseteq \check{U}\) containing \(z^0\) such that \(\check{V}^1 \equiv g^1(\check{U}^1)\) is open. Moreover, we can choose \(\check{U}^1\) sufficiently small that for all \(z \in \check{U}^1\), we have
\[
u_1(x) > u_1(z).
\]
Since \(\check{V}^1\) is open and contains \(g^1(z^0)\), there exists \(\epsilon^1 > 0\) such that
\[
y^1 = \begin{pmatrix}
 u_2(x_1^k) \\
 \vdots \\
 u_m(x_1^k) \\
 u_{m+1}(z^0) + \epsilon^1
\end{pmatrix}
\]
belongs to \(\check{V}^1\). Since \(y^1 \in \check{V}^1\), there is an alternative \(z^1 \in \check{U}^1\) such that \(g^1(z^1) = y^1\). If player \(m + 1\) is not indifferent over \(\{z^0, x_2^e, \ldots, x_m^m\}\), then set \(z^1 = z^0\).

In general, assume we are given \(z^{k-1} \in \check{U}\) such that (a) \(u_1(x) > u_1(z^{k-1})\), (b) for all \(i = 2, \ldots, m\), we have \(u_i(z^{k-1}) = u_i(x_1^k)\), and (c) for all \(i = m + 1, \ldots, k - 1\), \(u_i\) is not constant on \(\{z^{k-1}, x_2^e, \ldots, x_m^m\}\). Then we proceed as follows.

Step \(k\): If player \(m + k\) is indifferent over \(\{z^{k-1}, x_2^e, \ldots, x_m^m\}\), then we form the coalition \(C^k = (C^* \setminus \{1\}) \cup \{m + k\}\), which has size \(m\). Define the mapping \(g^k: X \to \mathbb{R}^m\) by
\[
g^k(z) = \begin{pmatrix}
 u_2(z) \\
 \vdots \\
 u_m(z) \\
 u_{m+k}(z)
\end{pmatrix},
\]
which gives the vector of payoffs to players in \(C^k\). Since \(z^{k-1} \in \check{U}\), the gradients \(\{\nabla u_i(z^{k-1}) : i \in C^k\}\) are linearly independent, so that \(Dg^k(z^{k-1})\) has full row rank. By the local submersion theorem, we can choose an open set \(\check{U}^k \subseteq \check{U}\) containing \(z^{k-1}\) such that \(\check{V}^k \equiv g^k(\check{U}^k)\) is open. Moreover, by (a), we can choose \(\check{U}^k\) sufficiently small that for all \(z \in \check{U}^k\), we have
\[
u_1(x) > u_1(z).
\]
Finally, by (c), we can choose \bar{U}^k small enough that for all $z \in \bar{U}^k$ and all $i = m+1, \ldots, k-1$, u_i is not constant on $\{z, x_1^2, \ldots, x_\ell^m\}$. Since \bar{U}^k is open and contains $g^k(z^{k-1})$, there exists $\epsilon^k > 0$ such that

$$y^k = \begin{pmatrix} u_2(z^{k-1}) \\ \vdots \\ u_m(z^{k-1}) \\ u_{m+k}(z^{k-1} + \epsilon^k) \end{pmatrix}$$

belongs to \bar{U}^k. Since $y^k \in \bar{U}^k$, there is an alternative $z^k \in \bar{U}^k$ such that $g^k(z^k) = y^k$, and by (b), we have $u_i(z^k) = u_i(x_1^k)$ for all $i = 2, \ldots, m$. If player $m + k$ is not indifferent over $\{z^{k-1}, x_1^2, \ldots, x_\ell^m\}$, then set $z^k = z^{k-1}$.

After Step $n - m$, we define the m-tuple $(\bar{x}_1, \ldots, \bar{x}_\ell^m) = (z^{n-m}, x_1^2, \ldots, x_\ell^m)$, and we claim that $\{\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_\ell^m\}$ is a semi-simple solution. Indeed, define the mapping $\rho: \{\bar{x}_1, \ldots, \bar{x}_\ell^m\} \rightarrow N$ such that for all $i = 1, \ldots, m$, $\rho(\bar{x}_i) = (i + 1) \mod m$. For each $k = 1, \ldots, m$, the coalition $C(\bar{x}_k^i)$ of players supporting \bar{x}_k^i includes $C^* \setminus \{k\}$, and since C^* is oversized, this implies $C(\bar{x}_k^i) \in \mathcal{D}$. Of course, it follows that ρ is a one-to-one selection from the coalitions $C(\bar{x}_k^i)$. Thus, the set $\{\bar{x}_1, \ldots, \bar{x}_\ell^m\}$ satisfies parts (i) and (ii) of Definition 2, i.e., it is a semi-simple solution contained in the open set U, as claimed.

Following the argument for $\epsilon > 0$, we can similarly construct vectors $y_\gamma \in \bar{U}$ and $(x_1^\gamma, \ldots, x_\gamma^m) \in U^m$ for all $\gamma \in (0, \epsilon)$. By construction, $\gamma_1 \neq \gamma_2$ implies $u_1(x_1^{\gamma_1}) = u_1(x) + \gamma_1 \neq u_1(x) + \gamma_2 = u_1(x_1^{\gamma_2})$ and, therefore, $\{x_1^{\gamma_1}, \ldots, x_\gamma^m\} \neq \{x_1^{\gamma_2}, \ldots, x_\gamma^m\}$. We conclude that there is a continuum of semi-simple solutions contained in U.

C Proof of Theorem 3

Assume x satisfies (C2), i.e., there is an oversized coalition $C^* \in \mathcal{D}^*$ such that (i) x is Pareto optimal for C^*, (ii) for all $i \in C^*$, the gradients $\{\nabla u_j(x) : j \in C^* \setminus \{i\}\}$ are linearly independent, (iii) $\sum_{i \in N} \alpha_i D^2 u_i(x)$ is negative definite, and (iv) there exist $i, j \in C^*$ such that for all $k \in N \setminus C^*$, $L_{i,j,k}^* \supseteq M_{C^*}(x)$. For simplicity, enumerate the members of C^* as $\{1, \ldots, m\}$, and let $i = 1$ and $j = 2$ fulfill part (iv), so that $L_{1,2,k}^* \supseteq M_{C^*}(x)$. Let $U \subseteq X$ be an open neighborhood of x. Since $M_{C^*}(x)$ is a manifold of dimension $m - 1$, we can choose an open subset $G_0 \subseteq \mathbb{R}^{m-1}$ with $0 \in G_0$, an open subset $G_x \subseteq U \subset \mathbb{R}^d$ with $x \in G_x$, and a differentiable mapping $\xi: G_0 \rightarrow G_x \cap M_{C^*}(x)$ such that ξ is a diffeomorphism between G_0 and G_x with $\xi(0) = x$. Technically, ξ is a parameterization of $G_x \cap M_{C^*}(x)$ that selects an element of G_x as a function of the coordinates on G_0. Furthermore, because transversality is an open property, we can choose G_x sufficiently small that for all $z \in G_x$.
and all $k \in N \setminus C^*$, $L_{1,2,k}(z) \cap M_{C^*}(x)$; in particular, the intersection of $L_{1,2,k}(z)$ and $M_{C^*}(x)$ consists of isolated points, and this means that a small move from z in the manifold $M_{C^*}(x)$ must change the utility of at least one member of $(C^* \setminus \{1, 2\}) \cup \{k\}$.

Define the mapping $\phi: G_0^m \rightarrow \mathbb{R}^{m(m-1)}$ by

$$
\phi(r^1, \ldots, r^m) = \left(\begin{array}{c}
 u_1(\xi(r^2)) \\
 \vdots \\
 u_1(\xi(r^m)) \\
 u_2(\xi(r^1)) \\
 u_2(\xi(r^3)) \\
 \vdots \\
 u_2(\xi(r^m)) \\
 \vdots \\
 u_m(\xi(r^1)) \\
 \vdots \\
 u_m(\xi(r^{m-1}))
\end{array} \right),
$$

where $r^h = (r^h_1, \ldots, r^h_{m-1})$ for each $h = 1, \ldots, m$. This gives the payoff to each player i from alternatives $\xi(r^j)$ for $j \neq i$. Then the derivative of ϕ, namely $D\phi(r^1, \ldots, r^m)$, is the
\(m(m - 1) \times m(m - 1) \) square matrix

\[
\begin{bmatrix}
0 & Du_1(x^2)D\xi(r^2) & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & Du_1(x^{m-1})D\xi(r^{m-1}) & 0 \\
0 & 0 & \cdots & 0 & Du_1(x^m)D\xi(r^m) \\
Du_2(x^1)D\xi(r^1) & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & Du_2(x^{m-1})D\xi(r^{m-1}) & 0 \\
0 & 0 & \cdots & 0 & Du_2(x^m)D\xi(r^m) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
Du_m(x^1)D\xi(r^1) & 0 & \cdots & 0 & 0 \\
0 & Du_m(x^2)D\xi(r^2) & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & Du_m(x^{m-1})D\xi(r^{m-1}) & 0 \\
0 & 0 & \cdots & 0 & Du_m(x^m)D\xi(r^m)
\end{bmatrix}
\]

where we write \(x^h = \xi(r^h) \) for each \(h = 1, \ldots, m \). Compared to the proof of Theorem 2, where (C1) is satisfied, now the effect of varying the arguments of \(\phi \) is mediated by the diffeomorphism in each coordinate, reflected in the matrix product \(Du_i(x^h)D\xi(r^h) \), which projects the gradient of player \(i \) onto the tangent space to \(M_{C^*}(x) \) at \(x^h \).

This tangent space is independent of the choice of parameterization, and so linear independence of \(\{Du_i(x^h)D\xi(r^h) : i \in N \setminus \{h\} \} \) is also independent of parameterization. Then, by Theorem 7 of Duggan (2016b), we can choose \(G_x \) sufficiently small that for all \(i \in C^* \), all \(h \in C^* \setminus \{1\} \), and all \(r^h \in G_0 \), the projected gradients \(\{Du_j(x^h)D\xi(r^h) : j \in C^* \setminus \{h\} \} \) are in fact linearly independent. Thus, \(D\phi(0) \) has full row rank, and since it is square, it is actually invertible.

Let \(y = (y^1, \ldots, y^m) = \phi(0, \ldots, 0) \), where now \(y^i \) is an \((m - 1)\)-dimensional vector with \(u_i(x) \) in each coordinate. By the local submersion theorem, there is an arbitrarily small open set \(\tilde{U} \subseteq G_0 \) containing zero such that the image \(\tilde{V} = \phi(\tilde{U}^m) \) is an open set containing
belongs to \tilde{V}. That is, in contrast to the proof of Theorem 2, where (C1) is satisfied, now y_ϵ only pins down the payoffs of each player at $m - 1$ alternatives, and y_ϵ simply modifies y by adding ϵ to each payoff. Note that since $\tilde{U} \subseteq G_0$, we have $\xi(\tilde{U}) \subseteq U$.

Since $y_\epsilon \in \tilde{V}$, there exists $(r_1^\epsilon, \ldots, r_m^\epsilon) \in \tilde{U}^m$ such that $\phi(r_1^\epsilon, \ldots, r_m^\epsilon) = y_\epsilon$. For each $i = 1, \ldots, m$, set $x_i^\epsilon = \xi(r_i^\epsilon)$. Then $\{x_1^\epsilon, \ldots, x_m^\epsilon\} \subseteq U$, and we claim that for all $i = 1, \ldots, m$, u_i is not constant on $\{x_1^\epsilon, \ldots, x_m^\epsilon\}$. Indeed, note that for all $i \in C^*$ and all $k \in C^* \setminus \{i\}$, we have

$$u_i(x_k^\epsilon) = u_i(x) + \epsilon > u_i(x).$$

Since x is Pareto optimal for C^* and we have $u_j(x_i^\epsilon) > u_j(x)$ for all $j \in C^* \setminus \{i\}$, it follows that $u_i(x_i^\epsilon) < u_i(x) < u_i(x) + \epsilon$, as claimed.

To fulfill part (ii) of the Definition 2, we must again perturb $(x_1^\epsilon, \ldots, x_m^\epsilon)$ to break indifferences over $\{x_1^\epsilon, \ldots, x_m^\epsilon\}$ among players $k = m + 1, \ldots, n$, if any. Now, however, we perturb $x_2^\epsilon, \ldots, x_m^\epsilon$ to $\tilde{x}_2^\epsilon, \ldots, \tilde{x}_m^\epsilon$ in a way that increases player 1’s utility, while maintaining the utility of players in $C^* \setminus \{1\}$. Informally, let $k \in N \setminus C^*$ be a player outside C^* who is indifferent over $\{x_1^\epsilon, \ldots, x_m^\epsilon\}$. By part (iv) of (C2), the intersection of $L_{1,2,k}(x_2^\epsilon)$ and $M_{C^*}(x)$ consists of isolated points and, therefore, the perturbation of x_2^ϵ to \tilde{x}_2^ϵ must change the utility of at least one member of $(C^* \setminus \{1,2\}) \cup \{k\}$. Since we have maintained the utility of players in $C^* \setminus \{1,2\}$, this implies that the utility for player k has changed; this means that $u_k(\tilde{x}_2^\epsilon) \neq u_k(x_1^\epsilon)$, so that player k is no longer indifferent over $\{x_1^\epsilon, \tilde{x}_2^\epsilon, \ldots, \tilde{x}_m^\epsilon\}$. Iterating this argument for each $k = m + 1, \ldots, n$, we fulfill part (ii) of Definition 2.
Proceeding with the formal argument, define $\psi^1: \tilde{U}^{m-1} \rightarrow \mathbb{R}^{m-1}$ by

$$\psi^1(r^2, \ldots, r^m) = \begin{pmatrix} u_1(\xi(r^2)) \\ \vdots \\ u_1(\xi(r^m)) \end{pmatrix},$$

which gives the utility of player 1 from the alternatives corresponding to r^2, \ldots, r^m. For each $i = 2, \ldots, m$, define $\psi^i: \tilde{U}^{m-1} \rightarrow \mathbb{R}^{m-2}$ by

$$\psi^i(r^2, \ldots, r^m) = \begin{pmatrix} u_i(\xi(r^2)) \\ \vdots \\ u_i(\xi(r^{i-1})) \\ u_i(\xi(r^{i+1})) \\ \vdots \\ u_i(\xi(r^m)) \end{pmatrix},$$

which gives the utility of player i from the alternatives corresponding to the vectors r^j for each $j \in C^* \setminus \{1, j\}$. Then define the mapping $\psi: \tilde{U}^{m-1} \rightarrow \mathbb{R}^{m-1+(m-1)(m-2)} = \mathbb{R}^{(m-1)^2}$ by $\psi = (\psi^1, \psi^2, \ldots, \psi^m)$. Note that in contrast to the mapping ϕ defined earlier, ψ is not a function of r^1; the perturbation argument to follow leaves the punishment alternative for player 1 fixed, while adjusting the remaining alternatives corresponding to r^2, \ldots, r^m.

The derivative of ψ at $(r^2_\varepsilon, \ldots, r^m_\varepsilon)$, namely $D\psi(r^2_\varepsilon, \ldots, r^m_\varepsilon)$, is the $(m-1)^2 \times (m-1)^2$
where we write \(x^h_i = \xi(r^h_i) \) for each \(h = 2, \ldots, m \). Because \((r^2_\epsilon, \ldots, r^m_\epsilon) \in \bar{U}^{m-1}, \) it follows as in the proof of Theorem 2 that for all \(i \in C^* \) and all \(h \in C^* \setminus \{i\}, \) the set of projected gradients \(\{Du_j(x^h_\epsilon)\xi(r^h_\epsilon) : j \in C^* \setminus \{h\}\} \) is linearly independent. Thus, \(\psi(r^2_\epsilon, \ldots, r^m_\epsilon) \) has full row rank.

Let \(y = (y^1, \ldots, y^m) = \psi(r^2, \ldots, r^m), \) so that \(y^1 = (y^1_1, \ldots, y^1_{m-1}) \in \mathbb{R}^{m-1}, \) and \(y^1_1 \) equals player 1’s utility from \(x^1_i; \) and so that for all \(i = 2, \ldots, m, \) \(y^i \in \mathbb{R}^{m-2}, \) and \(y^1_j \) equals player \(i \)’s utility from \(x^j_i \) for each \(j \in C^* \setminus \{1, i\}. \) By the local submersion theorem, there is an arbitrarily small open set \(\bar{U} \subseteq \bar{U}^{m-1} \) containing \((r^2_\epsilon, \ldots, r^m_\epsilon)\) such that the image
\(\bar{V} = \psi(\bar{U}) \) is an open set containing \(y \). Therefore, there exists \(\eta > 0 \) such that

\[
\bar{y}_\eta = \begin{pmatrix}
 u_1(x^2) + \eta \\
 \vdots \\
 u_1(x^m) + \eta \\
 u_2(x^3) \\
 \vdots \\
 u_2(x^m) \\
 \vdots \\
 u_m(x^2) \\
 \vdots \\
 u_m(x^{m-1})
\end{pmatrix}
\]

belongs to \(\bar{V} \). That is, we increase the reward payoff of player 1 by \(\eta \), while maintaining the reward payoff of all players \(j = 2, \ldots, m \).

Moreover, we can choose \(\bar{U} \) sufficiently small to preserve strict preferences for all \((\bar{r}^2, \ldots, \bar{r}^m) \in \bar{U} \), in the following two senses. First, for all \(i \in C^* \setminus \{1\} \) and all \(j \in C^* \setminus \{1, i\} \), we have \(u_i(\xi(r^j)) > u_i(\xi(r^i)) \), so that the perturbed punishment payoffs for players \(i = 2, \ldots, m \) are still less than their reward payoffs. Second, for all \(k \in N \setminus C^* \) and all \(i, j \in C^* \), if \(u_k(x^i_\eta) \neq u_k(x^j_\eta) \), then \(u_k(\xi(r^j)) \neq u_k(\xi(r^i)) \), so that perturbations cannot create new indifferences among the \(m \) alternatives for players outside \(C^* \). Finally, recall that for all \(j \in C^* \setminus \{1\} \), all \(r^j \in G_0 \), and all \(k \in N \setminus C^* \), we have \(L_{1,2,k}(\xi(r^j)) \mapsto M_{C^*}(x) \). In particular, since \(\bar{U} \subseteq \bar{U}^{m-1} \), this implies that \(x^2_\eta \) is isolated, i.e., there is an open set \(G' \subseteq G_x \) such that \(G' \cap L_{1,2,k}(x^2_\eta) \mapsto M_{C^*}(x) = \{x^2_\eta\} \). Our last restriction on \(\bar{U} \) is that it be contained in the open set \(\xi^{-1}(G') \times \mathbb{R}^{(m-1)(m-2)} \).

Since \(\bar{y}_\eta \in \bar{V} \), there exist \((\bar{r}^2, \ldots, \bar{r}^m) \in \bar{U} \) such that \(\psi(\bar{r}^2, \ldots, \bar{r}^m) = \bar{y}_\eta \). Set \(\bar{x}_1^1 = x^1_\eta \), and for each \(h = 2, \ldots, m \), set \(\bar{x}_h^h = \xi(\bar{r}^h) \). We claim that \(\{\bar{x}_1^1, \bar{x}_2^2, \ldots, \bar{x}_m^m\} \) is a semi-simple solution. Define the mapping \(\rho: \{\bar{x}_1^1, \ldots, \bar{x}_m^m\} \to N \) by \(\rho(\bar{x}_k^k) = (k + 1) \mod m \). For each \(k = 1, \ldots, m \), the coalition \(C(\bar{x}_k^k) \) of players supporting \(\bar{x}_k^k \) includes \(C^* \setminus \{k\} \), and since \(C^* \) is oversized, this implies \(C(\bar{x}_k^k) \in \mathcal{D} \). Of course, it follows that \(\rho \) is a one-to-one selection from the coalitions \(C(\bar{x}_k^k) \). Thus, \(\{\bar{x}_1^1, \bar{x}_2^2, \ldots, \bar{x}_m^m\} \) satisfies part (i) of Definition 2. To verify part (ii), since perturbations in \(\bar{U} \) maintain rewards and punishments for players in \(C^* \), and they cannot create indifferences over \(\{\bar{x}_1^1, \ldots, \bar{x}_m^m\} \) for any player outside \(C^* \), it suffices to consider a player \(k = m + 1, \ldots, n \) such that \(u_k(x^1_\eta) = u_k(x^2_\eta) \). By construction,
we have \(r^2 \in \xi^{-1}(G') \setminus \{x^2_1\} \), and thus we have \(L_{1,2,k}(x^2_1) \subseteq M_{C^*}(x) \). Since \(u_j(x^2_1) = u_j(\bar{x}^2_1) \) for all \(j \in C^* \setminus \{1,2\} \), this implies that \(u_k(\bar{x}^1_1) = u_k(x^1_1) = u_k(x^2_1) \neq u_k(\bar{x}^2_1) \), and thus \(u_k \) is not constant on \(\{\bar{x}^1_1, \ldots, \bar{x}^m_1\} \), as required for part (ii). We conclude that the set \(\{\bar{x}^1_1, \bar{x}^2_1, \ldots, \bar{x}^m_1\} \) is a semi-simple solution contained in the open set \(U \), as claimed.

As in the proof of Theorem 2, following the argument for \(\epsilon > 0 \), we can construct vectors \(y_\gamma \in \bar{V} \) and \((\bar{x}^1_\gamma, \ldots, \bar{x}^m_\gamma) \in U^m \) for all \(\gamma \in (0, \epsilon) \). By construction, \(\gamma_1 \neq \gamma_2 \) implies \(u_1(\bar{x}^1_{\gamma_1}) = u_1(x) + \gamma_1 \neq u_1(x) + \gamma_2 = u_1(\bar{x}^2_{\gamma_2}) \) and, therefore, \(\{\bar{x}^1_{\gamma_1}, \ldots, \bar{x}^m_{\gamma_1}\} \neq \{\bar{x}^1_{\gamma_2}, \ldots, \bar{x}^m_{\gamma_2}\} \). We conclude that there is a continuum of semi-simple solutions contained in \(U \).

References

D Online Appendix: Proof of Theorem 1*

Let \(\{\bar{x}^1, \ldots, \bar{x}^m\} \) be a mixed semi-simple solution. As in the proof of Theorem 1, we proceed in six steps.

Step 1: Definition of \(\bar{\delta} = \bar{\delta}(\bar{x}^1, \ldots, \bar{x}^m) \). For each \(i \in N \), let \(X_i \equiv \{ \bar{x}^k : u_i(\bar{x}^k) = \max_h u_i(\bar{x}^h) \} \); for each \(h = 1, \ldots, m \), let \(\pi_h \equiv \sum_{i : \bar{x}^h \in X_i} \frac{p_i}{|X_i|} \in (0,1) \) (part (i) in Definition 2* ensures that \(\pi_h \) is well-defined and positive); let \(\pi_{\min} \equiv \min_h \pi_h \in (0,1) \); and for each \(i \in N \), let

\[
\bar{\delta}_i(\bar{x}^1, \ldots, \bar{x}^m) \equiv \frac{u_i^{\sup} - \max_h u_i(\bar{x}^h)}{u_i^{\sup} - \pi_{\min} \max_h u_i(\bar{x}^h) - (1 - \pi_{\min}) \max_h u_i(\bar{x}^h)},
\]

where \(u_i^{\sup} > \max_h u_i(\bar{x}^h) \) is an upper-bound for \(u_i(X) \) (recall that the \(u_i \)'s are bounded above). Condition (ii) in Definition 2* implies that

\[
\pi_{\min} \min_h u_i(\bar{x}^h) + (1 - \pi_{\min}) \max_h u_i(\bar{x}^h) < \max_h u_i(\bar{x}^h)
\]

and, therefore, \(\bar{\delta}_i(\bar{x}^1, \ldots, \bar{x}^m) \in (0,1) \) for every \(i \in N \). This in turn implies that

\[
\bar{\delta}(\bar{x}^1, \ldots, \bar{x}^m) \equiv \max_{i \in N} \bar{\delta}_i(\bar{x}^1, \ldots, \bar{x}^m) \in (0,1).
\]

Henceforth, we assume that \(\min_{i \in N} \delta_i > \bar{\delta}(\bar{x}^1, \ldots, \bar{x}^m) \).

Step 2: Definition of stationary Markov strategy profile \(\sigma = (\sigma_1, \ldots, \sigma_n) \). For each player \(i \in N \), \(\sigma_i \) prescribes the following behavior:

(a) In the proposal stage of any period \(t \) with ongoing status quo \(x \), there are two different cases:

(a.1) if \(x \in \{\bar{x}^1, \ldots, \bar{x}^m\} \), then (conditional on her being selected to make a proposal) she proposes \(x \);

(a.2) if \(x \notin \{\bar{x}^1, \ldots, \bar{x}^m\} \), then she proposes each alternative in \(X_i \) with equal probability.

(b) in the voting stage of any period \(t \) with ongoing status quo \(x \), she accepts proposal \(y \) if and only if \(W_i(y) > W_i(x) \), where

\[
W_i(z) \equiv \begin{cases} u_i(z) & \text{if } z \in \{\bar{x}^1, \ldots, \bar{x}^m\}, \\ (1 - \delta_i) u_i(z) + \delta_i \sum_{h=1}^{m} \pi_h u_i(\bar{x}^h) & \text{otherwise}. \\ \end{cases}
\]
It is easy to see that σ is stationary Markov. Moreover, observe that, from (a.2), if the status quo does not belong to $\{\bar{x}^1, \ldots, \bar{x}^m\}$, then each alternative \bar{x}^h in the mixed semi-simple solution is proposed with probability π^h.

Step 3: Verification that σ is no-delay with $A(\sigma) = \{\bar{x}^1, \ldots, \bar{x}^m\}$. It follows immediately from part (a.1) in the definition of σ that every element of the mixed semi-simple solution is absorbing, that is, $\{\bar{x}^1, \ldots, \bar{x}^m\} \subseteq A(\sigma)$. What remains to be established, therefore, is that any status quo $x \notin \{\bar{x}^1, \ldots, \bar{x}^m\}$ is immediately amended to an alternative in $\{\bar{x}^1, \ldots, \bar{x}^m\}$ with probability one. To see this, observe that each proposer $i \in N$ offers an alternative \bar{x}^k in $X_i \subseteq \{\bar{x}^1, \ldots, \bar{x}^m\}$ whenever the status quo is $x \notin \{\bar{x}^1, \ldots, \bar{x}^m\}$. Moreover, by definition of a mixed semi-simple solution, there is a decisive coalition $C(\bar{x}^k)$ such that

$$W_\ell(\bar{x}^k) = u_\ell(\bar{x}^k),$$

and the rest of the solution guarantees that each player i receives $\pi^h u_\ell(\bar{x}^h)$. (The first inequality follows from Step 1: $\delta_\ell > \bar{\delta}_\ell(\bar{x}^1, \ldots, \bar{x}^m)$ for all $\ell \in N$.) From part (b) in the definition of σ, all players in the decisive coalition $C(\bar{x}^k)$ accept $\bar{x}^k \in A(\sigma)$, which is therefore implemented.

Step 4: Continuation values. We denote by $V_i(x|\sigma)$ player i’s expected discounted payoff from implementing alternative x in a given period. Suppose first that $x \in \{\bar{x}^1, \ldots, \bar{x}^m\}$. It follows immediately from part (a.1) in the definition of σ that $V_i(x|\sigma) = u_i(x) = W_i(x)$. Suppose now that $x \notin \{\bar{x}^1, \ldots, \bar{x}^m\}$. Each player i receives $(1 - \delta_0)u_i(x)$ in the current period. Then, in the next period, player j is selected with probability p_j and, as shown in Step 3, successfully proposes each \bar{x}^h in X_j with probability $1/|X_j|$. Hence, $V_i(x|\sigma) = (1 - \delta_i)u_i(x) + \delta_i \sum_{h=1}^m \pi^h u_i(\bar{x}^h) = W_i(x)$. We thus have

$$V_i(x|\sigma) = W_i(x), \text{ for all } i \in N \text{ and all } x \in X.$$

(3)

Step 5: Verification that players do not cast stage-dominated votes. Consider an arbitrary voting stage, in which a proposal y has been made to amend the current status quo x. Coupled with (3), part (b) in the definition of σ guarantees that each player i only accepts y if $V_i(y|\sigma) > V_i(x|\sigma)$, and only rejects y if $V_i(y|\sigma) \leq V_i(x|\sigma)$.
Step 6: Verification that \(\sigma \) is a stationary bargaining equilibrium. It follows from Step 5 (and the one-shot deviation principle) that, in any voting stage, no player can profitably deviate from \(\sigma \). To complete the proof of Theorem 1’, we must therefore show that there is no profitable (one-shot) deviation from \(\sigma \) in any proposal stage. Suppose first that the current status quo \(x \) belongs to \(\{\bar{x}^1, \ldots, \bar{x}^m\} \). In this case, \(\sigma \) prescribes proposer \(i \) to maintain \(x \). If she deviates by proposing to change \(x \) to any other alternative \(y \neq x \), then her proposal will be rejected. Indeed, if \(y \) also belongs to \(\{\bar{x}^1, \ldots, \bar{x}^m\} \) then, from part (i) in the definition of a mixed semi-simple solution, there is a decisive coalition \(C(x) \in \mathcal{D} \) such that \(W_i(x) = u_i(x) = \max_h u_i(\bar{x}_h) \geq u_i(y) = W_i(y) \) for all \(i \in C(x) \); and if \(y \) does not belong to \(\{\bar{x}^1, \ldots, \bar{x}^m\} \) then, for each member \(i \) of the decisive coalition \(C(x) \),

\[
W_i(x) = u_i(x)
= \max_h u_i(\bar{x}_h)
> (1 - \delta_i) u_i(\bar{x}_h) + \delta_i \left[p^{\min_h} \min_h u_i(\bar{x}_h) + (1 - p^{\min_h}) \max_h u_i(\bar{x}_h) \right]
\geq (1 - \delta_i) u_i(y) + \delta_i \sum_{h=1}^m \pi^h u_i(\bar{x}_h)
= W_i(y),
\]

(The first inequality follows from Step 1: \(\delta_i > \delta_i(\bar{x}^1, \ldots, \bar{x}^m) \) for all \(i \in N \).) Hence, all the players in the decisive coalition \(C(x) \) reject proposal \(y \). It is therefore impossible for any proposer to profitably deviate from \(\sigma \) when the current status quo is in \(\{\bar{x}^1, \ldots, \bar{x}^m\} \).

Suppose now that the current status quo \(x \) does not belong to \(\{\bar{x}^1, \ldots, \bar{x}^m\} \). If proposer \(i \) plays according to \(\sigma \), then she successfully proposes some \(\bar{x}^k \in X_i \) (recall Step 3), thus obtaining a dynamic payoff of \(V_i(\bar{x}^k|\sigma) = u_i(\bar{x}^k) = \max_h u_i(\bar{x}_h) \). Because she could simply propose \(x \) itself, instead of proposing an alternative that is rejected, it follows that if she has a profitable deviation, then she can profit from making a successful proposal \(y \). If \(y \) belongs to \(\{\bar{x}^1, \ldots, \bar{x}^m\} \), then the deviation is not profitable since \(V_i(\bar{x}^k|\sigma) = \max_h u_i(\bar{x}_h) \geq u_i(y) = V_i(y|\sigma) \). If \(y \) does not belong to \(\{\bar{x}^1, \ldots, \bar{x}^m\} \), then

\[
V_i(\bar{x}^k|\sigma) = \max_h u_i(\bar{x}_h) > (1 - \delta_i) u_i(y) + \delta_i \sum_{h=1}^m \pi^h u_i(\bar{x}_h) = V_i(y|\sigma),
\]

where as above, the inequality follows from \(\delta_i > \delta_i(\bar{x}^1, \ldots, \bar{x}^m) \). Hence, the deviation is again unprofitable. This completes the proof of the theorem.
E Online Appendix: Proof of Theorem 2*

Let \(x \) be an interior point of \(X \) that satisfies (C1*), i.e., (i) \(x \) is Pareto optimal, and (ii) for all \(i \in N \), the gradients \(\{ \nabla u_j(x) : j \in N \setminus \{i\} \} \) are linearly independent; and let \(U \subseteq X \) be an open neighborhood of \(x \). Define the mapping \(g: X^n \to \mathbb{R}^{n(n-1)} \) by

\[
g(x^1, \ldots, x^n) = \begin{pmatrix}
 u_1(x^2) \\
 \vdots \\
 u_1(x^n) \\
 u_2(x^1) \\
 u_2(x^3) \\
 \vdots \\
 u_2(x^n) \\
 \vdots \\
 u_n(x^1) \\
 \vdots \\
 u_n(x^{n-1})
\end{pmatrix}.
\]

The derivative of \(g \) at arbitrary \((x^1, \ldots, x^n) \in X^n \) is the \(n(n-1) \times nd \) matrix

\[
Dg(x^1, \ldots, x^n) = \begin{bmatrix}
 0 & Du_1(x^2) & 0 & \cdots & 0 \\
 0 & 0 & Du_1(x^3) & \cdots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & Du_1(x^n) \\
 Du_2(x^1) & 0 & 0 & \cdots & 0 \\
 0 & 0 & Du_2(x^3) & \cdots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & Du_2(x^n) \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 Du_n(x^1) & 0 & 0 & \cdots & 0 \\
 0 & Du_n(x^2) & 0 & \cdots & 0 \\
 0 & 0 & Du_n(x^3) & \cdots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

By (ii), this matrix has full row rank at \((x, \ldots, x) \).
Let $y = (y^i, \ldots, y^n) = g(x, \ldots, x)$, where y^i is an $(n-1)$-dimensional vector with $u_i(x)$ in each coordinate. By the local submersion theorem, there is an arbitrarily small open set $\tilde{U} \subseteq U^n$ containing (x, \ldots, x) such that the image $\tilde{V} = g(\tilde{U})$ is an open set containing y. Therefore, there exists $\epsilon > 0$ such that

$$z_\epsilon = \begin{pmatrix}
 u_1(x) + \epsilon \\
 \vdots \\
 u_1(x) + \epsilon \\
 u_2(x) + \epsilon \\
 \vdots \\
 u_2(x) + \epsilon \\
 \vdots \\
 u_n(x) + \epsilon \\
 \vdots \\
 u_n(x) + \epsilon
\end{pmatrix}
$$

belongs to \tilde{V}. That is, in contrast to the first case, we simply modify y by adding ϵ to each component. Since $z_\epsilon \in \tilde{V}$, there exists $(\tilde{x}_\epsilon^1, \ldots, \tilde{x}_\epsilon^n) \in U^n$ such that $g(\tilde{x}_\epsilon^1, \ldots, \tilde{x}_\epsilon^n) = z_\epsilon$.

To see that $\{\tilde{x}_\epsilon^1, \ldots, \tilde{x}_\epsilon^n\}$ constitutes a simple solution, note that for each i and each $j \neq i$, we have $u_j(\tilde{x}_\epsilon^i) = u_j(x) + \epsilon > u_j(x)$, and since x is Pareto optimal, $u_i(\tilde{x}_\epsilon^i) < u_i(x)$. We can thus define each player i’s “reward payoff” by $v_i = u_i(x) + \epsilon$ and her “punishment payoff” by $w_i = u_i(\tilde{x}_\epsilon^i) < v_i$. We fulfill parts (ii) and (iii) of Definition 1 by specifying the mappings γ and ξ so that, for each $i \in N$, $\gamma(i) = N \setminus \{i + 1\}$ and $\xi(i) = \tilde{x}_{\epsilon}^{i+1}$, where addition is understood to be modulus n. As D is non-collegial, each coalition $\gamma(i)$ is decisive. Thus, the set $\{\tilde{x}_\epsilon^1, \ldots, \tilde{x}_\epsilon^n\}$ satisfies parts (i)-(iii) of Definition 1, i.e., it is a simple solution contained in the open set U, as claimed.

Following the argument for $\epsilon > 0$, we can similarly construct vectors $z_\gamma \in \tilde{V}$ and $(\tilde{x}_\gamma^1, \ldots, \tilde{x}_\gamma^n) \in U^n$ for all $\gamma \in (0, \epsilon)$. By construction, $\gamma_1 \neq \gamma_2$ implies $u_1(\tilde{x}_{\gamma_1}^2) = u_1(x) + \gamma_1 \neq u_1(x) + \gamma_2 = u_1(\tilde{x}_{\gamma_2}^2)$ and, therefore, $\{\tilde{x}_{\gamma_1}^1, \ldots, \tilde{x}_{\gamma_1}^n\} \neq \{\tilde{x}_{\gamma_2}^1, \ldots, \tilde{x}_{\gamma_2}^n\}$. We conclude that there is a continuum of simple solutions contained in U.

\vspace{1cm}
F Online Appendix: Proof of Theorems 4 and 5

We prove Theorem 4 for the case where there is an alternative \(x \in \text{int}X \) at which (C1) is satisfied using an oversized coalition \(C^* = \{1, \ldots, m\} \), as the proof of Theorem 5 follows the same lines (and is actually simpler). In the proof of Theorem 2, we define a mapping \(f: X^m \to \mathbb{R}^{m^2} \) and show that the Jacobian \(Df(x, \ldots, x) \) has full row rank at the interior point \(x \) satisfying (C1). Thus, the column rank of \(Df(x, \ldots, x) \) is \(m^2 \), and there is a subspace \(L \subseteq \mathbb{R}^{md} \) with dimension \(m^2 \) such that the linear transformation from \(L \) to \(\mathbb{R}^{m^2} \) given by the matrix \(Df(x, \ldots, x) \) is bijective on \(L \). Let

\[
W = ((x, \ldots, x) + L) \cap X^m
\]

be the \(m^2 \)-dimensional manifold defined, essentially, by translating the linear subspace \(L \) to \((x, \ldots, x)\). Define \(\tilde{f}: W \to \mathbb{R}^{m^2} \) as the restriction of \(f \) to \(W \), and note that the derivative \(D\tilde{f} \) is invertible. Now define the mapping \(g: W \times \mathbb{R} \to \mathbb{R}^{m^2} \) by

\[
g(w, \gamma) = \tilde{f}(x^1, \ldots, x^m) - \gamma,
\]

where we write \(w = (x^1, \ldots, x^m) \), and note that this mapping is continuously differentiable. Moreover, \(g(x, \ldots, x, 0) = 0 \), and if \(x \) satisfies (C1), then the derivative of \(g \) with respect to \(w \) is invertible.\(^{12}\) Then the implicit function theorem (e.g., Theorem 11.2 of Loomis and Sternberg, 1968) yields \(\epsilon > 0 \) and a continuous function \(\xi: (0, \epsilon) \to W \) such that for all \(\gamma \in (0, \epsilon) \), we have \(g(\xi(\gamma), \gamma) = 0 \). Setting \((x^1_{\gamma}, \ldots, x^m_{\gamma}) \) equal to \(\xi(\gamma) \) for all \(\gamma \in (0, \epsilon) \), we obtain the \(m \)-tuple \((x^1_{\gamma}, \ldots, x^m_{\gamma}) \) in the proof of Theorem 2 as a continuous function of \(\gamma \). Recall that the “tentative semi-simple solution” \(\{x^1, \ldots, x^m\} \) must be perturbed to break any indifferences over the \(m \) alternatives among the players outside \(C^* \).

Now, to prove Theorem 4, consider any alternative \(x \in \text{int}X \) such that (C1) holds, and consider any open neighborhood \(U \subseteq X \) of \(x \). We can invoke the argument in the proof of Theorem 2, modified as above, to obtain \(\epsilon > 0 \) and a set \(S_\epsilon = \{(x^1_{\gamma}, \ldots, x^m_{\gamma}) : \gamma \in (0, \epsilon)\} \) of distinct \(m \)-tuples with \(S_\epsilon \subseteq U^m \) and such that \((x^1_{\gamma}, \ldots, x^m_{\gamma}) \) is continuous as a function of \(\gamma \) on \((0, \epsilon)\). In the proof of Theorem 1, we construct a continuous threshold function \(\tilde{\delta}(\bar{x}^1, \ldots, \bar{x}^m) \) such that if a semi-simple solution \(\{\bar{x}^1, \ldots, \bar{x}^m\} \) satisfies \(\min_{i \in N} \delta_i > \delta(\bar{x}^1, \ldots, \bar{x}^m) \), then there exists a no-delay stationary bargaining equilibrium with absorbing points \(\{\bar{x}^1, \ldots, \bar{x}^m\} \). Thus, \(\tilde{\delta}(x^1_{\gamma}, \ldots, x^m_{\gamma}) \) is continuous as a function of \(\gamma \) on \((0, \epsilon)\), and it therefore takes a maximum on the interval \([\bar{y}, \bar{x}^1]\). Then there exists \(\hat{\delta} < 1 \) such that \(\tilde{\delta}(x^1_{\gamma}, \ldots, x^m_{\gamma}) < \hat{\delta} \) for all \(\gamma \in [\bar{y}, \bar{x}^1] \). Invoking again the argument in the proof of Theorem 2, we can set \((\bar{x}^2_{\gamma}, \ldots, \bar{x}^m_{\gamma}) = (x^2_{\gamma}, \ldots, x^m_{\gamma}) \) and perturb each \(x^1_{\gamma} \) to obtain

\(^{12}\)To prove Theorem 5, we would use \(\phi(r^1, \ldots, r^m) - y \), and make use of the fact that \(D\phi(0) \) is invertible.
a semi-simple solution \(\{ \bar{x}_1^\gamma, \ldots, \bar{x}_m^\gamma \} \). Continuity of \(\bar{\delta}(x_1^\gamma, \ldots, x_m^\gamma) \) in \((x_1^\gamma, \ldots, x_m^\gamma) \) implies that for sufficiently small perturbations, we have \(\bar{\delta}(\bar{x}_1^\gamma, \ldots, \bar{x}_m^\gamma) < \hat{\delta} \) for all \(\gamma \in [\frac{\epsilon}{2}, \frac{2\epsilon}{3}] \). We conclude that if \(\min_{i \in N} \delta_i > \hat{\delta} \), then for each semi-simple solution in the collection \(\{ \{ \bar{x}_1^\gamma, \ldots, \bar{x}_m^\gamma \} : \gamma \in [\frac{\epsilon}{2}, \frac{2\epsilon}{3}] \} \), there is a no-delay stationary bargaining equilibrium with absorbing points \(\{ \bar{x}_1^\gamma, \ldots, \bar{x}_m^\gamma \} \). As this set has the cardinality of the continuum and \(\hat{\delta} < 1 \), this completes the proof of Theorem 4.