Import Switching and the Impact of a Large Devaluation

Dan Lu1, Asier Mariscal2, and Luis Fernando Mejía3

1University of Rochester
2University of Alicante
3Ministry of Finance, Colombia

June 16, 2013

Abstract

In Colombia, from 1998 to 1999, during a large external shock the RER depreciated by 26\% and import value dropped 32\%. Since imports became more expensive during the devaluation, we would expect increases in exit of firms from the import market as well as larger dropped varieties for continuing firms. However, using detailed firm level import transactions, we find that compared to normal times the value of firms dropped varieties and exit falls. To be sure, we do find that firms use less imported varieties, but it’s due to fewer adding of new imported varieties rather than more dropping of varieties.

Regarding firms adjustment mechanisms, we find: 1) Most importers add and drop import varieties all the time. 2) Firms add and drop varieties with similar intensity. 3) Both the values of added and dropped products by continuing firms comove positively with the real exchange rate, as does entry and exit. Our findings suggest that firms select their imported varieties, and reorganize their imported inputs and production over time. We introduce searching for imported inputs into a model with endogenous choice of imported intermediate inputs. Firms search for imported input suppliers and reorganize their input usage. With an imported input cost shock, e.g., a devaluation, the benefit from searching new suppliers decreases, which leads to less adding and dropping in firms’ imported inputs. Our model focuses on the dynamic aspects of import reorganization, and shows that a devaluation can slow down the import churning and lead to larger TFP declines beyond those previously found. The model predicts more productive firms use more imported inputs, and do more adding and dropping

\footnote{This is a preliminary draft, comments welcome. We’d like to thank seminar and conference participants at University of Rochester, Beijing University, and RME. We also thank Yan Bai, Mark Bils and Andreas Moxnes for comments on an early draft and Alejo Forero for his excellent research assistance. We thank the Ministerio de Ciencia e Innovación and FEDER funds under project SEJ-2007 62656.}

\footnote{Corresponding author: danlu@rochester.edu}
at the same time. During the devaluation, fewer firms add and drop import varieties, and if they do, the shares of adding and dropping among their total import decreases. In the data, firm level imports switching behavior is consistent with these predictions, and results are robust to controlling for export switching behavior.

1 Introduction

In Colombia, from 1998 to 1999, during a large external shock the real exchange rate depreciated by 26% \(^1\) and import value dropped 32% \(^2\). As imports became more expensive during the devaluation, we would expect increases in exit of firms from the import market as well as more dropped varieties for continuing firms. However, using detailed firm level import transactions, we find that compared to normal times the value of firms’ dropped varieties and exit falls\(^3\). To be sure, we find that firms using less imported varieties but this is due to fewer adding of new imported varieties rather than larger dropping of varieties.

This pattern not only occurs in extreme episodes like the motivating one. To show this, we plot the RER together with aggregate adjustment of the three pairs of gross margins: firm entry, and exit; for each continuing firm, the value of new added imported products, and the value of dropped products; the increased value of continuing products, and the decreased value for continuing products\(^4\). We find falls in aggregate volumes of adding and dropping during a depreciation. A remarkably similar pattern appears for entry and exit. The same patterns appear if we use numbers of added and dropped import varieties within firms instead of values. In other words, firms dropped less imported varieties than before, and also added less imported varieties during the devaluation. So again, the fall in aggregate import observed during a depreciation is caused by reductions in margins that contribute positively rather than increases in margins that contribute negatively to import value. We find these results have the flavor of (Shimer 2012), where he reports that unemployment increases are due to falling job finding rates rather than increases in job separation rates.

In a nutshell, we find that gross margins reveal large adjustments that move contrary to the net and the gross adjustment is large, being at least three times the net. Many firms are acting against our conventional economic intuition by adding new import products and entering import market in a period of devaluation. Furthermore, firms dropped less imported inputs during devaluation. These facts are puzzling and hard to be explained by models of endogenous choice of imported inputs as (Gopinath and Neiman 2011) and (Halpern, Koren, and Szeidl 2011). The systematic relations we find between the gross margins and RER suggest that the opposite movements are not due to idiosyncratic shocks.

\(^1\)The reported exchange rate is US to Colombia: US is Colombia’s major trading partner and the change is from August 1998 to August 1999.

\(^2\)The equivalent import value drop for manufacturing firms is 23%.

\(^3\)The same patterns hold for firms that only import but dont export.

\(^4\)More precisely, we filter quarterly values for the six margins and the RER data to then focus on the trend.
A further inquiry into the firm level data shows that the number of firms that only drop are similar to those that only add, and that many more firms actually do both add and drop. Hence, for this last group, we plot the number of products added and dropped by each firm and find a very strong positive correlation, i.e., these firms add just as many products as they drop; so firms are substituting some imported products for others. At the firm level, this adding and dropping occurs all years and is not a small share with an average around 30% of their total import value. During the devaluation, there are fewer firms doing both add and drop, and for firms doing both, the shares of adding and dropping among their total import decreased.

Our findings suggest that firms select their imported varieties and suppliers, and reorganize their imported inputs and production over time. During the devaluation, firms not only use less imported varieties, but also do less adding and dropping of imported inputs. Accordingly, we introduce searching for imported inputs into a model with endogenous choice of imported intermediate inputs based on (Halpern, Koren, and Szeidl 2011). Firms choose to import an endogenous range of inputs depending on input productivity. Over time, importers decide if they want to pay a search cost to be connected with a new bunch of foreign input suppliers. After they pay the search cost, the productivity of new suppliers is realized, and firms adjust the imported input varieties/suppliers.

The theory predicts that searching for new input suppliers increases profits, and the increase in profits is larger for more productive firms. Accordingly, more productive firms pay the searching cost, and add and drop input varieties at the same time. With an imported input cost shock, as would occur in a devaluation, the benefit from searching new suppliers decreases, which leads to fewer firms switching, and less adding and dropping in firms imported inputs. This mechanism reduces manufacturing TFP, not only through firms using fewer varieties, but also through less reallocation within firms toward the most efficient use of inputs.

Finally, we provide further evidence consistent with the predictions of the model. First, more productive firms do more adding and dropping, and in turn import switching improves firm productivity. Second, more productive inputs, measured as those having larger import value, are less likely to be dropped. Third, there is less adding and dropping when the RER is low. Fourth, we confirm that larger firms use more imports, in value and numbers of products. All of this evidence is robust to an exporter dummy and an export switching dummy.

Our paper is related to the recent work on the relationship between firm imports and productivity. (Halpern, Koren, and Szeidl 2011) estimate the effects of imported inputs use on total factor productivity for Hungarian firms. (Goldberg, Khandelwal, Pavcnik, and Topalov 2010) find reducing input tariff induces new products. (Amiti and Konings 2007) show that reducing import tariff leads to large productivity gains. (Gopinath and Neiman 2011) study the effects of the Argentine trade collapse during the Argentine currency devaluation. (Bernard, Redding, and Schott 2010) find US manufacturing firms reassign resources by add and drop products, and product switching contributes to a reallocation of resources within firms toward their most efficient use. We find firms adjust their
imported inputs, and input adding and dropping is another margin of firms’ adjustment. Our model focuses on the dynamic aspects of input reorganization, and shows that devaluation can slow down input churning and lead to larger TFP declines beyond those previously found.

The remainder of the paper is structured as follows. Section 2 describes our dataset and reports main empirical findings. Section 3 outlines the model. Section 4 shows further evidence on firms level switching that is consistent with the model predictions. Section 5 concludes.

2 Data and Empirical Evidence

We use two data sources. The first one, the import and export data, comes from DIAN, the government tax authority. We have all import (export) transactions from 1994 to 2011 with data on value, quantity, HS code at 10 digits, country of origin (destination) and crucially with NIT, the tax identifier. Using the NIT we keep all manufacturing firms to avoid distributors.

The second source, the manufacturing survey, is conducted by the national statistical office, DANE. The survey, called EAM (Encuesta Anual Manufacturera), is a panel and we have data for the period 1994-2009.

In Colombia, from 1998 to 1999, during a large external shock the RER depreciated by 26% causing an import value drop of 32%. As we mention in the introduction, during this episode we observe lots of action against conventional economic intuition. We would expect increases in exit of firms from the import market as well as larger values for dropped varieties for continuing firms. However, we do not see that. There are many firms entering the import market at all times and churning value goes down during the devaluation.

In table 1, we highlight dimensions on which (Gopinath and Neiman 2011) did not focus to show the relevance of gross margins. We split changes in imports into 6 dimensions rather than 3: firm entry, and exit; for each continuing firm, the value of new added imported products, and the value of dropped products; the increased value of continuing products, and the decreased value for continuing products. We define dropped products as products that are never bought by the firm again, whereas added products as those that have never been bought by the firm before; while results are qualitatively the same with a less conservative definition of add and drop, using this definition, we avoid an inventory explanation as in (Alessandria, Kaboski, and Midrigan 2010).

5 Before restricting our sample to manufacturing firms our dataset aggregates to virtually the same value as the DANE aggregate trade value statistics. Aggregate manufacturing trade closely tracks total Colombian trade and is around 50-60% of total value.
6 The reported RER is Colombia to US, its major trading partner and the change is from August 1998 to August 1999.
7 The equivalent import value drop for manufacturing firms is 23%.
8 In case of HS code change, we use detailed documents of HS revisions to create a concordance which is available upon request. For more on this, see section 7.1 in the Empirical Appendix.
Table 1: Net And Gross Shares Of Adjustment Margins Of Aggregate Imports In 1998-1999.

Table 19, shows net as well as gross adjustments of import change for the period 1998-1999 in Colombia and compares them to those reported for Argentina. While our import drop is around half of that in Argentina, the adjustment patterns for the net are very similar to the Argentinian case. However, as the gross adjustment patterns show, the net obscures much action. First, notice how gross shares of the fall in aggregate imports reveal large adjustments that move contrary to the net. In particular, entry of firms, added products of continuing firms and increasing value of continuing products for stayers all show values that are close to their corresponding negatively contributing margins.

To analyze the impact of the devaluation, let’s first look at how gross margins look in other episodes. In figure 1 we report change values for our 3 pairs of adjustment modes during two different episodes: a period of import value increase, 1994/1995, and a period in which there is a fall, 1998/1999. In both episodes, value for entry of firms is close to the exit of firms, value for added products of continuing firms is similar to dropped products, and the increasing value of continuing products is similar to the decreased value. During the depreciation period, 1999, net import value falls because entry, add and increasing value of continuing products all fall in value, not because firms dropped a larger value of imported inputs. In both cases, adjustment modes that go against conventional wisdom are not at all negligible in terms of value.

In figure 2 we show the number of firms that use a given adjustment mechanism between 1994/1995 and 1998/1999. It is surprising that the 1999 figure is so similar to 1995 since in the former the RER is lower. During the devaluation one would expect major shifts towards drop and exit. However, we do not see that. We only observe minor differences in the number of firms that only add or enter. Many firms are acting against our conventional economic intuition by adding products and entering in a period of devaluation. The most salient difference between the two episodes is that there are fewer firms doing both add and drop during the devaluation; this is particularly true if one wants to understand aggregate adjustment, for which the entry and exit margins contribute marginally.

9The data for Argentina is total trade whereas figures for Colombia represent trade for manufacturing firms.
Figure 1: Decomposition of Imports Change.

Figure 2: Number Of Firms By Adjustment Mechanism.
We complete the picture by showing that this adding and dropping is not a small value at the firm level. Figure 3 presents the average value that firms add(drop) as a fraction of their total imports. These shares are large at around 30% for both margins10. Also note that during the devaluation period, both shares fall but more intensely so add which is consistent with the previous evidence.

To deepen our understanding of the role of the RER, we plot it together with aggregate adjustment volumes of the three pairs of margins. In order to study this connection, we filter quarterly values for the six margins and RER data to then focus on the trend11. We do this because in 3 our explanation of aggregate patterns is about slow moving factors, in particular, technology choice by firms. Figure 4 shows that the value of added and dropped products by continuing firms12 comoves positively with the exchange rate; falls in aggregate volumes of adding and dropping are observed with a depreciation. This pattern is essentially the same when replicating the analysis for the average number of added and dropped products across firms. A remarkably similar pattern appears for the remaining 4 margins

10This is the most conservative value, i.e., defining add (drop) as products never used by the firm before (anymore). Using the standard definition, the value is around 50%.

11More precisely, we take logs first and then apply the HP filter using the conventional value of 1600 for lambda.

12Only changes are meaningful in this figure. Levels are not.
in figures 8 and 9 in the appendix. The implication is that the fall in aggregate import observed as a consequence of a depreciation is caused by reductions in margins that contribute positively rather than increases in margins that contribute negatively to import value.

Since a large pool of firms add and drop products simultaneously, on figure 5 we plot the number of products added and dropped by each firm13. The strong positive correlation found provides evidence that these firms add just as many products as they drop. In this way we rule out an explanation where our results are due to a composition effect, where firms suffer idiosyncratic shocks that make them either add or drop but not both. Contrary to such scenario, what we find is that firms are substituting some imported products for others.

All of our results are robust to the exclusion of capital goods. We do that by using the HS codes classified by (Caselli and Wilson 2004) as capital goods.

These findings suggest that firms select their imported varieties and suppliers, and reorganize their imported inputs and production over time. During the devaluation, firms not only use less imported varieties, but also do less churning of imported inputs. In the following section we present a theory of endogenous input selection, where firms search for import inputs suppliers and reorganize their inputs usage over time. All of the results are robust to an exporter dummy and an export switching dummy.

13In table 12 in the Empirical Appendix, we show how adding and dropping activities are related to firm size. Larger firms do more adding and also more dropping. See section 4 for a regression version of this results.
In Section 4 we provide further evidence on firms’ imported input switching behavior that is consistent with model predictions.

(TBA export switching. To separate the effects of devaluation on export switching and pass on trade, we also look at importers only, and all the results are similar.)

3 Baseline Model

To capture the features in the data, we introduce searching for imported inputs into a model with endogenous choice of import intermediate inputs ((Halpern, Koren, and Szeidl 2011)).

3.1 Production and Imported Inputs

The demand firm i faces is:

$$q(i) = Dp(i)^{-\rho}.$$

Each firm i produces a single good using labor and intermediate inputs,

$$Y_i = A_i L_i^{1-\alpha} X_i^\alpha.$$

Intermediate inputs consist of a bundle of intermediate goods indexed by $j \in [0, 1]$ and aggregated
according to a Cobb-Douglas technology:
\[
X_i = \exp \left[\int_0^1 \ln X_{ij} dj \right].
\]

For each type \(j \) of intermediate goods, there are two varieties: home, \(H \), and foreign, \(M \),
\[
X_{ij} = \left[H_{ij}^{\frac{s-1}{s}} + (b_{ij} M_{ij})^{\frac{s-1}{s}} \right]^{\frac{s}{s-1}}
\]
where \(s \) is the elasticity of substitution between the home and foreign varieties in the production function. \(b_{ij} > 1 \) measure the productivity advantage of the foreign varieties \(j \) in producing \(i \).

We focus on the imports variety decision and ignore firms entry and exit for now. Firms know their productivity \(A \). Furthermore, to import \(n \) varieties firms need to pay a fixed cost of \(n\eta F \) units of labor. We assume \(\eta > 1 \) so the cost function is convex on the number of varieties as in (Gopinath and Neiman 2011). Unlike them, each input productivity has a distribution \(f(b) \), with support over \((1, \infty)\). After the imported inputs productivity are realized, firms decide their imported input bundle. Given this setup, firm \(i \) would use all the home inputs, and some foreign inputs which depend on the trade off between productivity advantage and convex cost of importing. Assume home varieties have price \(p_H \) and foreign varieties have the same price \(p_F/\varepsilon \).

3.2 Firms Problem

For a firm with productivity \(A \), after the imported input productivity realized, he decides which foreign inputs to use:
\[
\min_{L, \Omega, \{H_{ij}, F_{ij}\}} \left\{ wL + \int_0^1 p_H H_{ij} dj + \int_{\Omega} \frac{p_F}{\varepsilon} M_{ij} dj + |\Omega|^\eta wF \right\}
\]
such that:
\[
Y = AL^{1-\alpha} X^\alpha
\]
\[
X = \exp \left[\int_0^1 \ln X_{ij} dj \right]
\]
\[
X_{ij} = \left[H_{ij}^{\frac{s-1}{s}} + (b_{ij} M_{ij})^{\frac{s-1}{s}} \right]^{\frac{s}{s-1}}
\]

We guess the solution is firms use imported inputs that have productivity larger than \(b^* \). By the law of large numbers, there is a \(f(b) \) fraction of inputs with productivity equal to \(b \), so
\[
\exp \left[\int_0^1 \left(\ln \left[1 + I'im \left(b_{ij} \frac{p_H}{p_F} \right)^{\frac{s-1}{s}} \right] \right) dj \right] = \exp \left[\int_{b^*}^\infty \ln \left[1 + \left(\frac{p_H}{p_F} \right)^{\frac{s-1}{s}} \right]^{\frac{s}{s-1}} f(b) db \right].
\]
And the measure of inputs firm would use is \(\int_{b^*}^\infty f(b) db \).

Solving the firm problem\(^{14}\), we can express his unit cost, \(\lambda \), as
\(^{14}\)See Theoretical Appendix for a detailed derivation of the model.
\[\lambda = \frac{C}{A} G(b^*)^{-\alpha}. \]

where \(C = \left(\frac{w}{\alpha} \right)^{1-\alpha} \left(\frac{\sigma \eta}{\alpha} \right)^{\alpha}, \ G(b^*) = \exp \left[\int_{b^*} (\ln B) f(b) \, db \right] \) and \(B = \left[1 + \left(\frac{\sigma \eta}{\rho \rho} \right)^{\sigma-1} \right] \). So the unit cost depends on firm’s productivity \(A \), the home country factor costs \(C \), and the benefit from using more productive foreign inputs \(G(b^*) \). Notice that more foreign inputs, implied by a lower cutoff, reduces the marginal production cost.

If the firm uses \(m(b^*) \) measure of inputs, and produce output \(Y \), his total cost is,

\[\lambda Y + m(b^*)^\eta w F, \]

and so maximizes net profits given by:

\[\max_{Y,b^*} \left(\frac{Y}{D} \right)^{-\frac{1}{\rho}} Y - \lambda Y - m(b^*)^\eta w F \]

where \(m(b^*) = \int_{b^*} f(b) \, db \).

The two first order conditions are for optimal output and the cutoff \(b^* \). Plugging the former into the latter, we have that the marginal input\(^{15}\) satisfies,

\[\alpha D \left(\frac{\rho - 1}{\rho} \right)^\rho \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\alpha(\rho-1)} \ln B^* = \eta m(b^*)^{\eta-1} w F. \] (3)

Adding more imports, i.e., a smaller \(b^* \), increases the benefit from using more productivity foreign inputs \(G(b^*) = \exp \left[\int_{b^*} (\ln B) f(b) \, db \right] \), hence the unit cost is lower. Moreover this way the firm faces higher demand. On the other hand, using more imports incurs an increasing fixed cost.

Profits are \(\frac{1}{\rho - 1} \lambda Y - m(b^*)^\eta w F \). Using the FOC for \(b^* \), profits can be written as

\[\pi = m(b^*)^{\eta-1} w F \left(\frac{1}{\rho - 1} \frac{\eta}{\alpha \ln B^*} - m(b^*) \right). \] (4)

3.3 Switching

At period \(^{16}\), importers decide if they want to pay a searching cost \(F_s \) to be connected with a new bunch of foreign input supplier. If they pay the sunk cost, they get a new draw for each input produced in the foreign country. For each input, firms choose to import from the more productive suppliers. Suppose the optimal inputs set for a firm is \(\Omega_1 \) at time 1 and \(\Omega_2 \) at time 2. Firm may add a variety if \(b_{j1} \notin \Omega_1 \) and \(b_{j1} \in \Omega_2 \) (won’t be the case) or \(b_{j2} \in \Omega_2 \). The firm may also keep a variety if \(b_{j1} \in \Omega_1 \) and \(b_{j1} \) or \(b_{j2} \in \Omega_2 \), he may drop a variety if \(b_{j1} \in \Omega_1 \) and \(b_{j1} \notin \Omega_2 \), \(b_{j2} \notin \Omega_2 \).

\(^{15}\)There is a unique \(b^* \) if the second order condition is negative. See Theoretical Appendix for parameter restriction.

\(^{16}\)Firms are born in period 1.
We assume \(f(b) \), the productivity distribution for each supplier is a Frechet distribution, which will give us close form solutions\(^{17}\),

\[
F(b) = \exp \left(-T (b - 1)^{-\theta} \right)
\]

The maximum productivity of two draws for an input has a Frechet distribution with parameter \(2T \). Letting small \(a \) denote the measure of suppliers a firm has met, then the distribution of the productivity of inputs would be \(f_a(b) \) with parameter \(aT \).

Firms decide between paying the fixed searching cost and connect with a new bunch of suppliers, or not search.

\[
V(a, A) = \max \left\{ \text{search, not search} \right\} \{ \pi(a + 1, A) - wF_s + \beta V(a + 1, A), \pi(a, A) + \beta V(a, A) \},
\]

the firm would pay to search for new draws if

\[
\pi(a + 1, A) - wF_s + \beta V(a + 1, A) > \pi(a, A) + \beta V(a, A)
\]

which rearranging in terms of gains from switching versus the cost of switching becomes

\[
\pi(a + 1, A) - \pi(a, A) + \beta (V(a + 1, A) - V(a, A)) > wF_s
\]

If the current period change of profit due to searching \(\pi(a + 1, A) - \pi(a, A) \) increases with \(A \), we can prove the LHS increases with \(A \)^{18}; in that case, the solution is: for every \(a \), there exists an \(\bar{A}(a) \), such that if \(A > \bar{A}(a) \), the firm searches, and vice versa. Since the optimal policy depends only on the current period, from now on we will focus on one period profit change.

3.4 Solution

To summarize, firm with productivity \(A \) and supplier measure \(a \), uses inputs that have productivity larger than a cutoff \(b_a^* \) that satisfies,

\[
\alpha D \left(\frac{\rho - 1}{\rho} \right) \left(\frac{C}{\bar{A}} \right)^{1-\rho} G(b_a^*)^\alpha (\rho - 1) \ln B_a^* = \eta m(b_a^*)^\eta - 1 wF,
\]

and search for new draws if \(A > \bar{A}(a) \), and \(\bar{A}(a) \) satisfies:

\[
\pi(a + 1, \bar{A}(a)) - \pi(a, \bar{A}(a)) + \beta (V(a + 1, \bar{A}(a)) - V(a, \bar{A}(a))) = wF_s
\]

Note that given parameters \((\alpha, C, \rho, \sigma, \eta, w, F, F_s, \frac{\sigma \rho}{\rho F}, T, \theta) \), for each firm \(A \), we can solve the optimal imports cutoff \(b_a^* \), \(a = 1, 2, 3... \)

\(^{17}\)The model can be simulated for more general distributional assumptions.

\(^{18}\)see Appendix.
3.5 Propositions

The first theoretical proposition highlights the well established fact, also present in our data, that more productive firms use more imported inputs.

Proposition 1 More productive firms use more inputs.

Proof. See Theoretical Appendix in section 6.3.

\[
\frac{db^*}{dA} < 0,
\]

so when firm productivity increases, the input cutoff decreases and the firm uses more inputs as \(m(b^*) = \int_{b^*} f(b) \, db \). □

One of the key features we find in the data is that firms are simultaneously adding and dropping imported varieties. Our model generates such behavior by combining search of better inputs with the possibility of dropping those that are less productive. The next proposition shows this feature of the model analytically.

Proposition 2 If firms pay the search costs to find new suppliers, they will add and drop varieties simultaneously.

Proof. See Theoretical Appendix in section 6.4. \(\frac{db^*}{da} > 0 \), searching new suppliers raises the cutoff. Some original inputs should be dropped, but the measure of imported inputs increases, as \(\frac{dm(b^*)}{da} > 0 \). So if firms paid the search cost, they add and drop imported inputs simultaneously. □

In our model firms add and drop simultaneously; but what firms? The next proposition shows how the reorganization choices of a firm depends on its productivity.

Proposition 3 Searching new input suppliers increases profits. And the increased profits are larger for more productive firms. Hence, larger firms are more likely to do add and drop.

Proof. See Theoretical Appendix in section 6.5. \(\frac{d\pi}{da} > 0 \), so more productive firms are more likely to pay the search cost. When firms want to find better imported inputs they pay a fixed cost to reorganize production and search. Once paid that fixed cost, their variable cost reduced which allows them to sell more. The benefit is larger for more productive firms, they are more likely to pay the search cost, and more likely to add and drop varieties. □

Conditional on a given firm productivity, because some inputs are more productive than others, the former are likely to stay longer within a firm than the latter. The next proposition deals with this intuition formally.

\(^{19}\)Note the productivity distribution of imported inputs also shifts to the right.
Proposition 4 Conditional on importing, the higher an inputs productivity, the lower the probability of it being dropped.

Proof. See Theoretical Appendix.

Our evidence uses RER variation to document that adding and dropping is reduced during a devaluation in Colombia; as we show in section 4 also net imports fall. In our model firms do adding and dropping; and during devaluation, they use less imported inputs.

Proposition 5 In a devaluation firms use less imported inputs.

Proof. See Theoretical Appendix in section 6.6. \(\frac{db^*}{d\varepsilon} < 0 \), then when \(\varepsilon \) decreases, the productivity cutoff increases, firms use less imported inputs.

The last proposition shows that the number of firms that add and drop decreases with a RER devaluation.

Proposition 6 When the currency devaluates, less firms would like to pay the search costs to find new suppliers.

Proof. See Theoretical Appendix in section 6.7. Because \(\frac{d(\frac{d\pi}{da})}{d\varepsilon} > 0 \), the change of profit from searching is lower when the currency devaluates as imports have become more expensive. Accordingly, fewer firms would pay these searching cost. Therefore, fewer firms would add and drop simultaneously.

4 Evidence On Firm Import Switching Behavior

4.1 Imported Input Switching

In this section we provide further evidence on firms imported input switching behavior that is consistent with model predictions. All of the results in this section are robust to an export switching dummy, see Appendix in section 7.3, and an exporter dummy. We first show run 7 regressions, which are associated with the main propositions in the Section 3. Then, we show another set of other implications that follow from the model.

In this section all variables are defined in logs unless otherwise stated. First, in Proposition 1 we show that more productive firms use more imported inputs. Accordingly we run,

\[\text{Imports}_{it} = \alpha_t + \gamma_i + \beta \text{Productivity}_{i, t-1} + \varepsilon_{it} \]

where \(\text{Imports}_{it} \) is import value or number of different variety of firm \(i \) in time \(t \). \(\alpha_t \) and \(\gamma_i \) are time and firm fixed effects.\(^{21}\)

\(^{20}\) If a firm does not export we set export switching dummy equal to zero. Results available upon request.

\(^{21}\) Our results in this section are qualitatively similar with industry fixed effects rather than firm fixed effects.
Table 2: Import Level And Productivity At the Firm Level.

In table 2, we run import value or the number of different imported varieties on lagged firm size\(^{22}\). We proxy firm productivity with sales\(^{23}\), and do so throughout this section. Consistent with the model and the literature, we find that more productive firms import more.

We next turn to Proposition 3 which states that larger firms gain more through the complementarity between firm TFP and the gain in productivity from importing. That is, larger firms are more likely to do switching. To confirm that, we run a linear probability model, LPM, for adding and dropping simultaneously vs all other alternatives\(^{24}\). The equivalent intensive margin is that larger firms will do more intense switching so there will be more adding and dropping. We run,

Extensive: \(\text{DummyAddandDrop}_{it} = \alpha_t + \gamma_i + \beta \text{Productivity}_{t-1} + \varepsilon_{it} \)

Intensive: \(\Delta M_{it} = \alpha_t + \gamma_i + \beta \text{Productivity}_{t-1} + \varepsilon_{it} \)

where \(\text{DummyAddandDrop}_{it} \) is a dummy with value one if firm \(i \) at time \(t \) does add and drop at the same time, and \(\Delta M_{it} \) is the gross change, i.e., value(number) of added inputs and value(number) of dropped inputs.

\(^{22}\) All variables are in logs in this section.

\(^{23}\) Other measures available soon.

\(^{24}\) In unreported results, we use 4 definitions for the switching dummy: add vs do nothing, drop vs do nothing, either add or drop vs do nothing, and add and drop at the same time; we always obtain the same answer: larger firms switch more.
Table 3: Probability of Adding And Dropping Imported Inputs And Firm Productivity.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_log_v_outputs</td>
<td>0.00855***</td>
<td>0.0121***</td>
</tr>
<tr>
<td></td>
<td>(6.240)</td>
<td>(8.264)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.572***</td>
<td>0.413***</td>
</tr>
<tr>
<td></td>
<td>(26.65)</td>
<td>(19.24)</td>
</tr>
<tr>
<td>Observations</td>
<td>39,399</td>
<td>39,399</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.518</td>
<td>0.509</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 4: Adding And Dropping Imported Inputs And Firm Productivity.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_log_v_outputs</td>
<td>0.135***</td>
<td>0.133***</td>
<td>0.0926***</td>
<td>0.0925***</td>
</tr>
<tr>
<td></td>
<td>(3.075)</td>
<td>(3.318)</td>
<td>(2.907)</td>
<td>(3.220)</td>
</tr>
<tr>
<td>Constant</td>
<td>8.413***</td>
<td>3.912***</td>
<td>0.0611</td>
<td>-3.106***</td>
</tr>
<tr>
<td></td>
<td>(12.49)</td>
<td>(6.187)</td>
<td>(0.125)</td>
<td>(-6.839)</td>
</tr>
<tr>
<td>Observations</td>
<td>30,613</td>
<td>30,613</td>
<td>30,613</td>
<td>30,613</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.329</td>
<td>0.320</td>
<td>0.328</td>
<td>0.320</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Extensive and intensive results are reported in table 3 and 4, respectively. For the LPM, we find positive coefficients so more productive firms are more likely to add and drop. On the intensive margin, i.e., conditional on adding and dropping products, we find larger firms switch more, both in terms of value and number of varieties.

In Proposition 3 we show that the gross change of inputs matters for firms productivity growth. In particular, a key prediction of the model is that firms that pay the fixed cost of switching engage in adding and dropping which in turn improves their productivity and sales. Accordingly, we run,
\[
\text{ChangeProd}_{it} = \alpha_t + \gamma_i + \beta_1 \text{ChangeofInputs}_{it} + \varepsilon_{it}
\]

where \(\text{ChangeProd}_{it}\) is the change in productivity between \(t\) and \(t+1\) for firm \(i\), and \(\text{ChangeofInputs}_{it}\) can be either the change in value or numbers, between \(t\) and \(t+1\).

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{d}\log\text{v}\text{outputs})</td>
<td>-0.229***</td>
<td>-0.225***</td>
</tr>
<tr>
<td></td>
<td>(-6.571)</td>
<td>(-6.530)</td>
</tr>
<tr>
<td>(\text{log}\text{gross}\text{margin}_\text{val})</td>
<td>0.00141***</td>
<td>0.00194***</td>
</tr>
<tr>
<td></td>
<td>(3.440)</td>
<td>(3.545)</td>
</tr>
<tr>
<td>(\text{log}\text{gross}\text{margin}_\text{ndiff})</td>
<td></td>
<td>0.00194***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.545)</td>
</tr>
<tr>
<td>Constant</td>
<td>3.437***</td>
<td>3.304***</td>
</tr>
<tr>
<td></td>
<td>(6.753)</td>
<td>(6.321)</td>
</tr>
<tr>
<td>Observations</td>
<td>39,001</td>
<td>39,001</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.315</td>
<td>0.314</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Productivity Growth And Gross Import Change.

In table 5 we obtain results consistent with the prediction. Notice how gross changes for both value and number of varieties are positively associated with changes in sales.

The previous results could be the result of reverse causality, for example, firms that grow more, are also reorganizing their production, or, more generally, the result of a spurious correlation between growth and switching. To take care of these issues, we instrument gross changes with the RER, which as predicted by the theory are positively related. When the RER is high there is more switching because the net gain from searching is larger. More precisely,

1\text{st Stage}: \(\text{ChangeofInputs}_{it} = \alpha_1 + \gamma_i + \beta_1 \text{RER}_t + \delta_1 \text{Productivity}_{it-1} + \omega_{it}\)

2\text{nd Stage}: \(\text{ChangeProd}_{it} = \alpha_2 + \gamma_i + \beta_2 \text{ChangeofInputs}_{it} + \delta_2 \text{Productivity}_{it-1} + \varepsilon_{it}\)
where the variable definitions are consistent with the previous regressions. The IV results are reported in table 6. On the first stage, we confirm that gross import changes comove positively with the RER. On the second stage, we obtain that gross changes are positively associated with changes in sales.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_gross_margin</td>
<td>2.340***</td>
<td>1.663***</td>
<td>-0.606***</td>
<td></td>
</tr>
<tr>
<td>_log_v_outputs</td>
<td>(18.43)</td>
<td>(18.07)</td>
<td>(-7.284)</td>
<td></td>
</tr>
<tr>
<td>log_rer</td>
<td>4.362***</td>
<td>2.624***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10.09)</td>
<td>(8.30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log_gross_margin</td>
<td></td>
<td></td>
<td></td>
<td>0.212***</td>
</tr>
<tr>
<td>val</td>
<td></td>
<td></td>
<td></td>
<td>(6.231)</td>
</tr>
<tr>
<td>log_gross_margin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valdiff</td>
<td>0.128***</td>
<td></td>
<td></td>
<td>0.212***</td>
</tr>
<tr>
<td>(6.853)</td>
<td></td>
<td></td>
<td></td>
<td>(6.231)</td>
</tr>
<tr>
<td>Observations</td>
<td>38,191</td>
<td>38,191</td>
<td>38,191</td>
<td>38,191</td>
</tr>
<tr>
<td>R-squared</td>
<td>-2.162</td>
<td>-22.632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Number of id_firm2</td>
<td>4.681</td>
<td>4.681</td>
<td>4.681</td>
<td>4.681</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Productivity Growth, Gross Import Change and RER.

Relatedly to the IV results, we also test Proposition 6, which shows that, during the devaluation, less firms were doing add and drop, and each firm was doing less add and drop. The former prediction is the extensive margin: fewer firms do switching during a devaluation. To confirm that, we run a linear probability model; more specifically, our specification is,

\[DummyAddandDrop_{it} = \gamma_i + \beta_1 \text{Productivity}_{t-1} + \beta_2 \text{RER}_t + \varepsilon_{it} \]

where \(DummyAddandDrop_{it} \) is a dummy that takes a value of one if firm \(i \) at time \(t \) adds and drops imports simultaneously and zero otherwise. Results in table 7 show that less firms do simultaneous adding and dropping when the RER\(^{25}\) goes down, i.e., during the devaluation. In light of our model, we interpret this as firms reducing their reorganizing activities as a consequence of input prices going up.

\(^{25}\text{RER}_t \) is the US-Colombia, RER with base year 1992. We follow the IMF definition.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>add_and_drop</td>
<td>add_and_drop</td>
</tr>
<tr>
<td>$l_{\log v_{\text{outputs}}}$</td>
<td>0.00959***</td>
<td>0.00743***</td>
</tr>
<tr>
<td></td>
<td>(6.938)</td>
<td>(5.206)</td>
</tr>
<tr>
<td>$\log \text{rer}$</td>
<td>0.220***</td>
<td>0.158***</td>
</tr>
<tr>
<td></td>
<td>(15.34)</td>
<td>(8.188)</td>
</tr>
<tr>
<td>$\log v_{\text{outputs}} X l_{\log \text{rer}}$</td>
<td></td>
<td>0.00676***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.916)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.382***</td>
<td>0.405***</td>
</tr>
<tr>
<td></td>
<td>(19.19)</td>
<td>(20.08)</td>
</tr>
<tr>
<td>Observations</td>
<td>39,399</td>
<td>39,399</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.512</td>
<td>0.513</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Import Switching LPM and RER.

To be sure, not only there is less adding and dropping during a devaluation but also, in line with a simple price impact on quantity, the net also falls. I.e. Proposition 5 holds in the data. This is shown in Table 8 which is obtained from running,

$$NetImports_{it} = \alpha_1 + \gamma_i + \beta_1 RER_t + \omega_{it}$$

where $NetImports_{it}$ can be either import value or number of different imported inputs by firm i at time t. Notice that both import value and the number of varieties imported fall in a devaluation, i.e., when the RER goes down.
Next we turn to the model predictions that have to do with products. We use within firm variation to show that the likelihood of dropping an input is related to its productivity. This is shown in proposition 4. In our model, searching allows productivity of inputs to improve over time. If the productivity draw of an input was large, the firm will use relatively more of it, and it will be more difficult that a better draw is obtained; hence that product will be kept. To test this hypothesis, we run,

$$DummyDrop_{i,j,t} = \alpha_t + \gamma_i + \beta_1 Size_{i,j,t-1} + \varepsilon_{i,j,t}$$

where $DummyDrop_{i,j,t}$ is a dummy for whether input j was dropped or not, 1 and 0 respectively. $Size_{i,j,t}$ can be either $ImportValue_{i,j,t}$ is either the imported value of input j by firm i or the size of firm i at time t. Table 9 shows the results, which are in accordance with the theory: a larger import value for an intermediate is associated with a lower dropping likelihood. Furthermore, larger firms drop more which, in our model, occurs because they search more.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>prod</td>
<td>drop_prod</td>
<td>drop_prod</td>
</tr>
<tr>
<td>(\text{l}\log_{\text{prod_value}})</td>
<td>-0.00962***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-70.57)</td>
<td></td>
</tr>
<tr>
<td>(\text{l}\log_{\text{v_outputs}})</td>
<td>0.00148***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.245)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.404***</td>
<td>0.314***</td>
</tr>
<tr>
<td></td>
<td>(157.9)</td>
<td>(61.46)</td>
</tr>
<tr>
<td>Observations</td>
<td>702,510</td>
<td>702,510</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.123</td>
<td>0.113</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Imported Input Dropping Relation to its Productivity.

4.2 Dynamic Implications from Product Switching

On the dynamic implications of the model, we have highlighted that, if firms choose to search for suppliers, over time they will increase imported inputs and suppliers. This implies that older firms use more imported inputs. Table 10 is obtained by running

\[
NumProd_{it} = \alpha_t + \gamma_i + \beta_1 Age_{it} + \beta_2 Age_{it}^2 + \varepsilon_{it}
\]

where \(NumProd_{it} \) is the number of products imported by firm \(i \) at time \(t \). The results show that the coefficient on age is positive.
Evidence On Firms Import Supplier Switching Behavior

In this subsection, we use supplier information from the import transaction data to show how the buyer and supplier relation is consistent with the model. According to our theory, larger firms have more suppliers and buy from smaller suppliers on average (in the model, have a lower cutoff). Firms increase suppliers over time, so older firms have more suppliers. Since the mass of better than known suppliers gets smaller over time, it is naturally harder to find better productive suppliers. This means older firms are less likely to search and also do less switching. To obtain evidence on the relation of the number of suppliers and age, we run

$$\text{NumSup}_{it} = \alpha_t + \gamma_i + \beta_1 \text{Age}_{it} + \beta_2 \text{Age}_{it}^2 + \varepsilon_{it}$$

where \(\text{NumSup}_{it} \) is the number of suppliers that firm \(i \) at time \(t \) sources from. Table 11 confirms that the number of suppliers increases with age.

Table 10: Number of products and age.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_firm_products</td>
<td>log_firm_products</td>
<td>log_firm_products</td>
<td>log_firm_products</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.0480***</td>
<td>0.0685***</td>
<td>0.0779***</td>
<td>0.184***</td>
</tr>
<tr>
<td></td>
<td>(10.93)</td>
<td>(8.275)</td>
<td>(24.88)</td>
<td>(21.05)</td>
</tr>
<tr>
<td>age2</td>
<td>-0.00182***</td>
<td>-0.00885***</td>
<td></td>
<td>-0.00885***</td>
</tr>
<tr>
<td></td>
<td>(-2.788)</td>
<td>(-12.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.907***</td>
<td>0.905***</td>
<td>0.522***</td>
<td>0.521***</td>
</tr>
<tr>
<td></td>
<td>(22.52)</td>
<td>(22.45)</td>
<td>(14.23)</td>
<td>(14.21)</td>
</tr>
<tr>
<td>Observations</td>
<td>13,440</td>
<td>13,440</td>
<td>13,440</td>
<td>13,440</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.790</td>
<td>0.790</td>
<td>0.091</td>
<td>0.101</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Industry FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

While we dont report the extensive margin, results are consistent with the reported intensive margin.
Finally, Figures 6 and 7 show that on average larger importers buy from smaller suppliers in two alternative ways. The former uses a local polynomial plot using all the available supplier-firm-year observations; the latter figure shows the results of averaging supplier supplier by firm size and plots it on a log-log scale.

![Number of supplier groups level](image)

Figure 6: Size of suppliers and size of importer. Polynomial plot.
Figure 7: Size of suppliers and size of importer. Log-log plot.
5 Conclusion

To analyze the impact of devaluation on firms’ imports, we look at the change of firms imported varieties during a large devaluation in Colombia. We observe that many firms exited from imports market and many firms dropped some imported varieties, but we also observe many firms entered, and those who dropped imports varieties added new varieties at the same time. This leads us to compare firms import switching behavior during devaluation with other normal episodes. We find most of firms add and drop import varieties all the time. During the devaluation, they actually dropped fewer varieties than the normal time, but the new varieties they added are even less, which caused the fall in their imports varieties.

To rationalize our findings, we introduce searching for imported inputs into a model with endogenous choice of imported intermediate inputs. Firms search for imported inputs suppliers and reorganize their input usage over time. With an imported input cost shock, e.g., a devaluation, the benefit from searching new suppliers decreases, which leads to less adding and dropping in firms imported inputs. The model predicts that more productive firms use more imports, they benefit more from searching new suppliers, and do add and drop simultaneously. In a devaluation, fewer firms add and drop varieties, and for firms that do add and drop, the value of adding and dropping decreases. We find a wide range of predictions of model regarding import switching and firms’ size and age are consistent with the model predictions. (To be continued.)
6 Theoretical Appendix

6.1 Intertemporal problem

Here we show that, to study optimal firm policy, we can focus on the static problem. Firms have two alternatives: either they pay the fixed searching cost and connect to a new bunch of suppliers, or not search.

\[V(a, A) = \max_{\{\text{search, not search}\}} \{\pi(a + 1, A) - wF_s + \beta V(a + 1, A), \pi(a, A) + \beta V(a, A)\}, \]

the firm would pay to search for new draws if

\[\pi(a + 1, A) - \pi(a, A) + \beta \left(V(a + 1, A) - V(a, A) \right) > wF_s \] \hspace{1cm} (7)\]

Since the current period change of profit due to searching \(\pi(a + 1, A) - \pi(a, A) \) increases with \(A \), we guess the optimal policy for a firm with productivity \(A \) and age \(a \) is: for every \(a \), there exists an \(\bar{A}(a) \), such that if \(A > \bar{A}(a) \), the firm searches, and vice versa. And \(\bar{A}'(a) > 0 \).

At \(\bar{A}(a) \), the firm is indifferent between searching and not, so

\[\pi(a + 1, \bar{A}(a)) - \pi(a, \bar{A}(a)) + \beta \left(V(a + 1, \bar{A}(a)) - V(a, \bar{A}(a)) \right) = wF_s \]

For \(A \leq \bar{A}(a) \), the firm does not search, so

\[V(a, A) = \pi(a, A) + \beta V(a, A) \]
\[V(a, A) = \frac{\pi(a, A)}{1 - \beta} \]

For \(A > \bar{A}(a) \), the firm would search, since it is harder to find more productive suppliers over time. Assume the firm would search until period \(N \). Then at period \(N \), the value function is

\[V(N, A) = \pi(N, A) + \beta V(N, A) \]
\[V(N, A) = \frac{\pi(N, A)}{1 - \beta}, \]

and at \(N - 1 \)

\[V(N - 1, A) = \pi(N, A) - wF_s + \beta V(N, A) \]
\[= \frac{\pi(N, A)}{1 - \beta} - wF_s \]
\[V(N - 2, A) = \pi(N - 1, A) + \beta \frac{\pi(N, A)}{1 - \beta} - wF_s(1 + \beta) \]
If the firm does not search at \(a + 1\), the LHS of 7 is

\[
\pi(a + 1, A) - \pi(a, A) + \beta(V(a + 1, A) - V(a, A))
\]

\[
= \pi(a + 1, A) - \pi(a, A) + \beta \frac{\pi(a + 1, A) - \pi(a, A)}{1 - \beta}
\]

If the firm searches at \(a + 1\), the LHS is

\[
\pi(a + 1, A) - \pi(a, A) + \beta(V(a + 1, A) - V(a, A))
\]

\[
= \pi(a + 1, A) - \pi(a, A) + \beta(\pi(a + 2, A) - \pi(a + 1, A) + \beta w_F)
\]

Hence if \(\pi(a + 1, A) - \pi(a, A)\) increases with \(A\), the LHS increases with \(A\). The gain from searching is larger for more productive firms. Therefore, for every \(a\), there is a productivity cutoff, and firms with productivity above the threshold search.

6.2 Firms’ Problem

The Lagrangian for the firm problem in the main text is:

\[
L = wL + \int_0^1 p_H H_j dj + \int_{\Omega} \frac{PF}{\varepsilon} M_j dj + |\Omega|^\eta wF + \lambda (Y - AL^{1-\alpha} X^\alpha) + \psi \left[X - \exp \left[\int_0^1 \ln X_j dj \right] \right]
\]

\[
+ \int_{\Omega} \chi_j \left[X_j - \left[H_j^{\frac{\alpha-1}{\sigma-1}} + (b_j M_j)^{\frac{\alpha-1}{\sigma-1}} \right] \right] dj
\]

Guess that the solution is that firms use imported inputs that have productivity larger than \(b^*\). By the law of large numbers, because there are \(f(b)\) fraction of inputs draw productivity equal \(b\).

\[
\int_0^1 \ln \left[1 + I(im) \left(\left(\frac{b_j w_H}{PF} \right)^{\sigma-1} \right) \right] \frac{1}{\sigma-1} \frac{1}{1-\sigma} f(b) db = \int_{b^*}^{\infty} \ln \left[1 + \left(\frac{b_j w_H}{PF} \right)^{\sigma-1} \right] \frac{1}{\sigma-1} f(b) db.
\]

And the measure of inputs the firm would use is \(\int_{b^*}^{\infty} f(b) db\).

Solving this problem, we get for intermediate good \(j\):

\[
X_j = \frac{\lambda \alpha Y}{p_H \left[1 + \left(b_j \frac{w_H}{PF} \right)^{\sigma-1} \right]^{\frac{1}{\sigma-1}}} \text{ if } M_j > 0,
\]

and firm unit cost is

\[
\lambda = \frac{1}{A} \left(\frac{w}{1-\alpha} \right)^{1-\alpha} \left(\exp \left[\int_0^1 \ln p_H dj \right] \right)^{\alpha} \left(\alpha \exp \left[\int_{b^*}^{\infty} \ln \left[1 + \left(\frac{b_j w_H}{PF} \right)^{\sigma-1} \right] \frac{1}{\sigma-1} f(b) db \right] \right)^{\alpha}.
\]
Define \(C = \left(\frac{w}{\alpha} \right)^{1-\alpha} \left(\frac{p_{H}}{\alpha} \right)^{\alpha}, \) \(G(b^*) = \exp \left[\int_{b^*}^{\infty} (\ln B) f(b) \, db \right], \) and \(B = \left[1 + \left(\frac{b^{p_{H}}}{p_{F}} \right)^{\sigma-1} \right]^{\frac{1}{\sigma}} \) to obtain unit cost as

\[
\lambda = \frac{1}{A} CG(b^*)^{-\alpha}.
\]

Firm’s total cost is then:

\[
\lambda Y + |\Omega|^{\eta} wF,
\]

and firm maximizes net profits:

\[
\max_{Y,b} \left(Y - \frac{1}{\rho} \right)^{\rho} Y - \lambda Y - |\Omega|^{\eta} wF
\]

\[
= \max_{Y,b} \left(Y - \frac{1}{\rho} \right)^{\rho} Y - \lambda Y - m(b^*)^{\eta} wF,
\]

where \(m(b^*) = \int_{b^*}^{\infty} f(b) \, db. \)

The two first order conditions are

\[
Y = \left(\frac{\rho - 1}{\rho} \right)^{\rho} D\lambda^{-\rho}
\]

and

\[
- \frac{d\lambda}{db} Y - \eta m^{\eta-1} m' wF = 0
\]

This last condition can be written as

\[
- \frac{d\lambda}{db} Y - \eta m^{\eta-1} f(b^*) wF = - Y CG(b^*)^{-\alpha} G'(b^*) + \eta m^{\eta-1} f(b^*) wF
\]

\[
\alpha Y CG(b^*)^{-\alpha-1} \left(G(b^*) (-1) \ln \left[1 + \left(\frac{b^{p_{H}}}{p_{F}} \right)^{\sigma-1} \right] \right) f(b^*) + \eta m^{\eta-1} f(b^*) wF = 0,
\]

Using a more compact form, the marginal input satisfies:

\[
\alpha Y CG(b^*)^{-\alpha} \ln B^* = \eta m(b^*)^{\eta-1} wF
\]

and using the FOC for \(Y \) becomes 3 in the main text:

\[
\alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\alpha (p-1)} \ln B^* = \eta m(b^*)^{\eta-1} wF
\]

By rewriting the above equation, we obtain the next equation which will be the basis of our proofs:
\[\alpha D \left(\frac{\rho - 1}{\rho} \right)^\rho \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\rho(\rho-1)} \ln B^* - \eta m(b^*)^{\eta-1} wF \]

To check the property of the optimal \(b^* \) we differentiate 9. Also note that the second order condition is \(-\frac{d^2}{db^*} \), which is negative as long as

\[
\alpha D \left(\frac{\rho - 1}{\rho} \right)^\rho \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\rho(\rho-1)} f(b^*) \left(\alpha (\rho - 1) (\ln B)^2 f(b^*) - \left(\frac{\varepsilon p H}{\rho F} \right)^{\sigma-1} b^* \sigma - 2 \right) \cdot \\
- \eta (\eta - 1) m^{\eta-2} (f(b^*))^2 wF < 0
\]

which occurs if \(\eta \) is large enough. In that case the optimal \(b^* \) is unique.

The profit is

\[\pi = \frac{1}{\rho - 1} \lambda Y - m(b^*)^{\eta} wF, \]

and \(Y = \left(\frac{\rho - 1}{\rho} \right)^\rho D P^{\rho-1} \lambda^{-\rho} \), so

\[\pi = \frac{1}{\rho - 1} D \left(\frac{\rho - 1}{\rho} \right)^\rho \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\rho(\rho-1)} - m(b^*)^{\eta} wF, \]

which using 8 can be written as

\[\pi = \frac{1}{\rho - 1} \eta m(b^*)^{\eta-1} wF - m(b^*)^{\eta} wF = m(b^*)^{\eta-1} wF \left(\frac{1}{\rho - 1} \frac{\eta}{\alpha \ln B^*} - m(b^*) \right). \] (10)

Next is another key equation in our proofs. The total profit change if they search for new suppliers is \(\frac{dV(a,A)}{da} \), and the firm will pay to search for new draws if it is larger than \(wF_s \), i.e.,

\[\pi (a + 1, A) - \pi (a, A) + \beta (V(a + 1, A) - V(a, A)) > wF_s \] (11)

6.3 Proof of proposition 1

Proof. From equation 9, \(\frac{d(9)}{db^*} > 0 \) and \(\frac{d(9)}{dA} > 0 \). So \(\frac{db^*}{dA} = -\frac{d(9)}{dA} < 0 \).

\[\frac{db^*}{dA} < 0, \]

so when firm productivity increases, the input cutoff decreases and the firm uses more inputs.

6.4 Proof of proposition 2

1. If firms pay the search costs, they will drop some varieties.

 Proof. From equation 9, \(\frac{d(9)}{db^*} > 0 \), because \(SOC = -\frac{d(9)f(b)}{db} = -\frac{d(9)}{db} f(b) \) and

 \[
 \frac{d(9)}{da} = \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} \ln B^* \alpha (\rho - 1) G(b^*)^{\alpha (\rho - 1) - 1} \frac{dG(b^*)}{da} - \\
 \cdots \eta(\eta - 1)m(b^*)^{\eta - 2} wF \frac{dm(b^*)}{da} = \\
 \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} \ln B^* \alpha (\rho - 1) G(b^*)^{\alpha (\rho - 1) - 1} \int_{b^*} \ln B^* \frac{df(b)}{da} db - \\
 \cdots \eta (\eta - 1) m(b^*)^{\eta - 2} wF \int_{b^*} \frac{df(b)}{da} db
 \]

 (12)

 Looking at the second term we notice that using more inputs, improves productivity but increases marginal costs as well. \(\frac{d(9)}{da} \) can be positive or negative. If \(\eta \) big enough, it is negative. Since \(\frac{db^*}{da} = -\frac{d(9)}{da} > 0 \), searching new suppliers increases cutoff. Some original inputs should be dropped.

2. If firms search new inputs, they will add some varieties.

 \[
 \frac{dm(b^*)}{da} = -f(b^*) \frac{db^*}{da} + \int_{b^*} \frac{df(b)}{da} db = -f(b^*) \left[-\frac{da}{db^*} \right] + \int_{b^*} \frac{df(b)}{da} db = \\
 f(b^*) \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} \ln(B^*) \alpha (\rho - 1) G^{\alpha (\rho - 1)} f_b^* \ln(B) \frac{df(b)}{da} db - \eta(\eta - 1)m^{\eta - 2} wF \int_{b^*} \frac{df(b)}{da} db
 \]

 \[
 f(b^*) \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} \ln(B^*) \alpha (\rho - 1) G^{\alpha (\rho - 1)} f_b^* \ln(B) \frac{df(b)}{da} db - \eta(\eta - 1)m^{\eta - 2} wF \int_{b^*} \frac{df(b)}{da} db
 \]

 \[
 = \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} \ln(B^*) \alpha (\rho - 1) G^{\alpha (\rho - 1)} f(b^*) \left[\frac{E_b^{\rho - 2} - (\rho - 1)ln(B^*)^2 f(b^*)}{1 + E_b^{\rho - 2}} \right] + \eta(\eta - 1)m^{\eta - 2} wF f(b^*)
 \]

 \[
 \int_{b^*} \frac{df(b)}{da} db = \\
 f(b^*) \frac{E_b^{\rho - 2}}{1 + E_b^{\rho - 2}} - \alpha (\rho - 1) (ln(B^*)^2 f(b^*)) \frac{E_b^{\rho - 2}}{1 + E_b^{\rho - 2}} \int_{b^*} \frac{df(b)}{da} db
 \]

 Some original inputs should be dropped, but the measure of imported inputs increases. So if firm paid the search cost, they add and drop imported inputs simultaneously.

6.5 Proof of proposition 3

1. Searching new input suppliers increases profits.
Proof.

\[\frac{dx}{da} = \frac{\partial x}{\partial b^*} + \frac{\partial x}{\partial a} \bigg|_{b^*_e} = \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\alpha(\rho-1)-1} \frac{dG(b^*)}{da} - \eta m(b^*)^{\eta-1} w \frac{dm(b^*)}{da} = \]

\[\alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\alpha(\rho-1)-1} \int\! \ln B \frac{df(b)}{da} \! db - \eta m(b^*)^{\eta-1} w \frac{dm(b^*)}{da} = \]

\[\frac{\eta m(b^*)^{\eta-1} w F}{\ln B^*} \int\! \ln B \frac{df(b)}{da} \! db - \eta m(b^*)^{\eta-1} w F \int\! \frac{df(b)}{da} \! db = \]

\[\eta m(b^*)^{\eta-1} w F \int\! \left(\frac{\ln B}{\ln B^*} - 1 \right) \frac{df(b)}{da} \! db > 0 \]

where the 3rd equality uses equation 10, and the 5th equation 8.

2. The increased profit from searching new suppliers is larger for more productive firms. For this part of the proof start using the intermediate step derived above,

\[\frac{dx}{da} = \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\alpha(\rho-1)-1} \int\! \ln B \frac{df(b)}{da} \! db - \eta m(b^*)^{\eta-1} w \frac{dm(b^*)}{da} \]

Now, take derivatives wrt A,

\[\frac{d^2x}{dA^2} = \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} (\rho - 1) A^{\rho-2} C^{1-\rho} G(b^*)^{\alpha(\rho-1)-1} \int\! \ln B \frac{df(b)}{da} \! db + \]

\[\left(-\eta \left(\eta - 1 \right) m^{\eta-2} f(b^*) w F - \eta m^{\eta-1} w F \left(\int\! \ln B \frac{df(b)}{da} \! db \right) \left(\frac{e^{\eta-1} m^{\eta-2} f(b^*) w F}{(\ln B^*)^2} \left(\frac{1 + \left(\frac{b^* C}{A} \right)^{\eta-1} \left(\frac{b^* C}{A} \right)^{\eta-2}}{1 + \left(\frac{b^* C}{A} \right)^{\eta-1} \left(\frac{b^* C}{A} \right)^{\eta-2}} \right) \right) \right) \frac{db^*}{dA} > 0 \]

because the first term is positive and \(\frac{db^*}{dA} < 0 \)

6.6 Proof of proposition 5

Proof. From equation 9, \(\frac{d(9)}{db^*} > 0 \). We also have

\[\frac{d(9)}{\varepsilon} = \alpha D \left(\frac{\rho - 1}{\rho} \right)^{\rho} \left(\frac{C}{A} \right)^{1-\rho} G(b^*)^{\alpha(\rho-1)-1} \left(\frac{1 + \left(\frac{b^* C}{A} \right)^{\eta-1} \left(\frac{b^* C}{A} \right)^{\eta-1}}{1 + \left(\frac{b^* C}{A} \right)^{\eta-1} \left(\frac{b^* C}{A} \right)^{\eta-1}} \right) \int\! \left(\frac{b^* C}{A} \right)^{\eta-1} f(b) \! db > 0 \]
Since $\frac{db^*}{d\varepsilon} = -\frac{d(b^*)}{d\varepsilon} < 0$, then when ε decreases, the productivity cutoff increases, firms use less imported inputs: $m(b^*)$ falls.

6.7 Proof of Proposition 6

Proof. Equation 11 states the condition under which firms search for new draws. Taking a as continuous,

\[
\frac{d\left(\frac{d\varepsilon}{da}\right)}{d\varepsilon} = \frac{d\left(\eta m(b^*)^{\eta-1}wF \int_{b^*} \left(\ln B \ln b - 1\right) \frac{df(b)}{da} \, db\right)}{d\varepsilon} = \frac{d\eta m(b^*)^{\eta-1}wF \int_{b^*} \left(\ln B \ln b - 1\right) \frac{df(b)}{da} \, db\, db^*}{d\varepsilon} =
\]

\[
\left(\eta(\eta-1)m^{\eta-2}f(b^*)wF - \eta m^{\eta-1}wF \left(\int_{b^*} \ln B \frac{df(a)}{da} \, da\right) \frac{(\sigma b^* \sigma-1 \left(\frac{\sigma-1}{\sigma-1}
ight)^\left(\frac{\sigma-1}{\sigma-1}\right) - 1}{\left(\frac{\sigma-1}{\sigma-1}\right)^\left(\frac{\sigma-1}{\sigma-1}\right)} \right) \frac{db^*}{d\varepsilon} =
\]

\[
\left(-\eta(\eta-1)m^{\eta-2}f(b^*)wF - \eta m^{\eta-1}wF \left(\int_{b^*} \ln B \frac{df(a)}{da} \, da\right) \frac{(\sigma b^* \sigma-1 \left(\frac{\sigma-1}{\sigma-1}\right) - 1}{\left(\frac{\sigma-1}{\sigma-1}\right)^\left(\frac{\sigma-1}{\sigma-1}\right)} \right) \frac{db^*}{d\varepsilon} > 0
\]

because $\frac{db^*}{d\varepsilon} < 0$. The change of profit from searching is lower when the currency devaluates as imports have become more expensive. Accordingly, fewer firms would pay the searching cost.

32
7 Empirical Appendix

7.1 Harmonized System Code

There are changes of product classification over time by the Harmonized Commodity Description and Coding system, which would create variety adding and dropping by firms. We create a correspondence using the document that specify during 1993-2012, the date when a Decree was approved, the code that it affected and how it affected it, and the date when the change was applied.

We look at the most conservative case by defining dropped products as products that are never bought by the firm again, whereas added products as those that have never been bought by the firm before. Our algorithm uses the concordance and compares the varieties in the current quarter with all the previous quarters to find added varieties, and with all the following quarters to find dropped varieties within each firm.
7.2 Extra Figures and tables

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Total</th>
<th>Add</th>
<th>Drop</th>
<th>Net</th>
<th>Add share</th>
<th>Drop share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.04</td>
<td>2.19</td>
<td>2.17</td>
<td>0.57</td>
<td>0.63</td>
<td>0.36</td>
</tr>
<tr>
<td>2</td>
<td>7.55</td>
<td>2.85</td>
<td>2.67</td>
<td>0.82</td>
<td>0.65</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>12.67</td>
<td>4.80</td>
<td>4.25</td>
<td>1.49</td>
<td>0.62</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>52.25</td>
<td>15.28</td>
<td>14.49</td>
<td>8.11</td>
<td>0.47</td>
<td>0.33</td>
</tr>
<tr>
<td>Total</td>
<td>20.98</td>
<td>6.67</td>
<td>6.26</td>
<td>2.97</td>
<td>0.58</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Table 12: Number Of Different Products By Quantile. Average Over 1994-2009.

Figure 8: Aggregate Entry And Exit Value Against The RER. HP Filtered Data.

7.3 AVAILABLE SOON!
Figure 9: Aggregate Continuing Products Value Against The RER. HP Filtered Data.

References

