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Abstract

A signal is privacy-preserving with respect to a collection of privacy sets, if the

posterior probability assigned to every privacy set remains unchanged conditional on

any signal realization. We characterize the privacy-preserving signals for arbitrary state

space and arbitrary privacy sets. A signal is privacy-preserving if and only if it is a

garbling of a reordered quantile signal. These signals are equivalent to couplings, which

in turn lead to a characterization of optimal privacy-preserving signals as solutions to

an optimal transport problem. We discuss the economic implications of our characteri-

zation for statistical discrimination, the revelation of sensitive information in auctions,

monopoly pricing, and price discrimination.
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Morris, Barry Nalebuff, Aniko Öry, Benjamin Polak, Doron Ravid, Aaron Roth, Fedor Sandomirskiy, Ludvig
Sinander, Omer Tamuz, Nathan Yoder, Alexander Zentefis, and Jidong Zhou for their valuable comments
and suggestions. We also thank Jialun (Neil) He for his research assistance. All errors are our own.

†Department of Economics, Yale University, Email: philipp.strack@yale.edu
‡School of Management, Yale University, Email: kaihao.yang@yale.edu

1



1 Introduction

In many economic settings, there are constraints on what information can be used or revealed:

Characteristics such as race, gender, and sexual orientation are protected in many contexts,

and the information that can be revealed about them is limited due to legal, regulatory, or

social norms. Motivated by this, we study the set of signals (Blackwell experiments) which

are constrained to not reveal certain information.

For example, consider the case of a bank determining whether to grant a loan to an indi-

vidual. In making this decision, the bank benefits from using an individual’s characteristics

to predict whether they will default. However, the Equal Credit Opportunity Act prohibits

discrimination against loan applicants on the basis of their “protected characteristics”, such

as race, gender, or age. As a result, the bank is legally required to ensure that its loan deci-

sions are not influenced by these protected characteristics. In other words, the information

used by the bank in making loan decisions cannot be based on these characteristics.

This paper presents a framework for understanding information disclosure in situations

where certain aspects of the state of the world must be kept private, or equivalently, where

decisions must be taken independent of certain characteristics. Following Blackwell (1953),

we model information as a signal about an abstract state of the world ω ∈ Ω. To capture a

notion of protected information, we introduce a collection of events called privacy sets, which

represent the information that cannot be disclosed. For instance, in the context of a bank

loan, the privacy sets would include all the protected characteristics. We define a signal as

privacy-preserving if, for any signal realization, the posterior probability of any privacy set

remains unchanged and equals its prior probability. In other words, a privacy-preserving

signal does not reveal any information about events that belong to the privacy sets.

We characterize all privacy-preserving signals. The privacy sets can always be represented

as a random variable θ defined on the same state space Ω, so that a signal s is privacy-

preserving if and only if it is independent of θ. In the bank loan example, the random variable

θ would indicate an applicant’s protected characteristics. A privacy-preserving signal s can

be informative about the applicant in many aspects, including their default probabilities, but

must be independent of the applicant’s protected characteristics θ.

Our first main result characterizes all privacy-preserving signals: For any one-dimensional

statistic ϕ ∶ Ω→ R of the state ω, we define the ϕ-quantile signal as the signal that reveals the
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empirical quantile of ϕ conditional on θ, plus potentially some noises when it has an atom.

This signal is privacy-preserving as it is uniformly distributed on [0,1] for every value of θ.

A reordered ϕ-quantile signal is a signal obtained by further (possibly randomly) reordering

the unit interval for each realization of θ while preserving its distribution.

Theorem 1 establishes that for any statistic ϕ such that (ϕ, θ) fully reveals the state ω, a

signal is privacy-preserving if and only if it is Blackwell-dominated by a reordered ϕ-quantile

signal. As a result, the set of all privacy-preserving signals can essentially be generated

by a single ϕ-quantile signal, via garbling and reordering. Moreover, these reordered ϕ-

quantile signals are Blackwell undominated among all privacy-preserving signals. Therefore,

the reordered ϕ-quantile signals are exactly the frontier of all privacy-preserving signals in

Blackwell’s sense.

Although privacy-preserving signals in general do not have a single Blackwell-maximum,

when only the posterior means of a one-dimensional statistic ϕ are relevant, Theorem 3 shows

that the distribution of posterior means induced by the ϕ-quantile signal is a mean-preserving

spread of the distribution of posterior means induced by any other privacy-preserving signal.

Consequently, in settings where the only economically relevant variables are the posterior

means (e.g., when a decision-maker has a payoff that is affine in a statistic ϕ), every privacy-

preserving signal leads to a lower expected payoff than the ϕ-quantile signal. Thus, regardless

of how complex the privacy sets are, these privacy constraints can be completely summarized

by a majorization constraint when only posterior means are relevant.

Our results extend to the setting where privacy-preserving is defined conditional on an-

other given random variable y. A signal is conditionally privacy-preserving if it is independent

of θ conditional on y. This extension allows us to analyze settings where signals (or decisions)

are allowed to reveal some information about the protected characteristics, as long as it based

on information contained in y. For example, banks cannot directly base discriminatory loan

decisions on race, but can make predictions using applicants’ credit history, which is deemed

“materially relevant”, even though credit histories may be correlated with race.

Having characterized the set of privacy-preserving signals, we then explore how to op-

timize over this set. Consider a decision-maker who chooses an action a ∈ A to maximize

their payoff u(ω, a), after observing a privacy-preserving signal. Our results imply that it

is without loss to restrict attention to reordered quantile signals. Proposition 2 shows that

the resulting optimization problem is equivalent to a an optimal transport problem. When

3



payoffs depends only on a single dimensional statistic ϕ and on θ, we fully characterize the

optimal privacy-preserving signals for a wide class of decision and persuasion problems, in-

cluding when the payoff is single-crossing in (ϕ, a), or linear in ϕ, when the statistic ϕ takes

binary values, and when actions are binary. This characterization covers a broad range of

decision problems that appeared in the literature.

To illustrate the usefulness of our mathematical results, we apply them to various eco-

nomic contexts. First, we consider statistical discrimination and fairness in algorithm design.

In legal contexts, the notion of disparate impact describes the situation where different groups

experience different outcomes even if the underlying policy are not explicitly based on group

identities. Our results lead to a characterization of optimal signals for a decision maker that

do not create disparate impacts, which generalizes existing results in the algorithmic fair-

ness literature. Furthermore, we lay out an optimal and detail-free procedure for regulating

statistical discrimination.

The second application considers disclosure in ad auctions without violating users’ privacy.

A publisher runs a second price auction to sell targeted audiences to multiple advertisers. The

publisher has rich information about the targeted audience, and can selectively disclose some

information to the advertisers. However, some information about the audience cannot, or

should not be disclosed, such as religious beliefs and sexual orientation. Theorem 3, together

with the results of Bergemann, Heumann, Morris, Sorokin, and Winter (2022), provides a

characterization of optimal privacy-preserving information disclosure for the auctioneer.

The third application considers a monopolistic pricing setting where both the buyer and

the seller receive a signal about the buyer’s value. For arbitrarily fixed signal of the seller,

we characterize the buyer’s signals that maximize their surplus. We prove that the buyer-

optimal signal must be privacy-preserving with respect to the seller’s signal, so that the

seller cannot make any inferences about the buyer’s posterior expected value. Theorem 3,

together with the arguments developed by Roesler and Szentes (2017), then characterizes the

buyer-optimal signal, as well as all feasible welfare outcomes.

The fourth application considers price discrimination and market segmentation in the

spirit of Bergemann, Brooks and Morris (2015). In a setting where a monopolist is able

to segment consumers based on their values, we consider a situation where consumers with

different protected characteristics (e.g., gender and race), must face the same distribution of

prices, even though the monopolist engages in third-degree price discrimination. Solving the
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optimal transport problem derived in Proposition 2 allows us compute the market segmen-

tation that maximizes the monopolist’s revenue while preventing price discrimination based

on consumers’ protected characteristics.

Related Literature We follow the extremal approach of Blackwell (1953) and model in-

formation as signals about an underlying state. We generalize Blackwell’s characterization

of feasible signals, by characterizing all feasible signals that do not reveal information about

a given collection of events. While Blackwell shows that a signal is feasible if and only if it

is dominated by the signal which fully reveals the state, we show that a signal is feasible and

privacy-preserving if and only if it is dominated by a “reordered quantile signal”.

In the literature on algorithmic fairness, one of the most common criteria for fairness

requires the decisions to be statistically independent of protected characteristics (see, e.g.,

Calders, Kamiran and Pechenizkiy 2009; Hardt, Price and Srebro 2016; Corbett-Davies,

Pierson, Feller, Goel and Huq 2017). These papers characterize optimal fair algorithms for

decision problems with binary actions, binary states, or specific payoff structures.

He, Sandomirskiy and Tamuz (2023) introduce a Blackwell approach, and use tools from

mathematical tomography, to characterize the optimal privacy-preserving signals for all de-

cision problems with a binary state and general payoffs that do not depend on protected

characteristics.1 Our results unify and generalize their findings and findings from the com-

puter science literature to more than two actions, more than two states, and general payoffs.

Liang, Lu and Mu (2023) and Doval and Smolin (2023) also consider fairness and algo-

rithm design. They adopt different notions of fairness and characterizes the Pareto frontier

in terms of payoffs different groups. Eilat, Eliaz and Mu (2021) consider mechanism de-

sign problems under privacy constraints where a reduction in privacy is measured by the

Kullback-Leibler divergence between the designer’s prior and posterior belief.

Privacy-preserving signals also relate to the notion of belief-invariant Bayes correlated

equilibria (Forges 1993, 2006; Liu 2015) in games with incomplete information, which requires

the action recommendations received by each player not to affect the player’s belief about the

unknown state and other players’ types. While both notions are stated in terms of statistical

1He et al. (2023) and our paper use different notions of Blackwell dominance, and we provide a detailed
discussion in §6.1. Less directly related to our work, He et al. also introduce the multi-agent concept of “pri-
vate private” signals, which are signals structures such that no agent’s signal realization reveals information
about the signal realization of other agents.
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independence, we are interested in the informational content that can be provided subject to

privacy constraints, rather than the strategic implications of correlating actions in games.

2 Model

States Throughout the paper, we fix the probability space (Ω × [0,1],F × B,P) where

(Ω,F) is a standard Borel space, B is the Borel sigma algebra on [0,1], and P is the product

measure induced by some probability measure over Ω and the Lebesgue measure over [0,1].
We denote the outcome by

(ω, r) ∈ Ω × [0,1] .

The first component of the outcome ω is the state, which captures all economically relevant

information, the second part of the outcome r is the source of additional randomization that

is independent of the state. We impose no further restrictions on the state ω and it might be

multi-dimensional to capture all relevant characteristics of an economic agent such as income,

age, gender, race, address, etc.

Signals A signal is a random variable s ∶ Ω× [0,1]→ S.2 This definition of a signal is com-

pletely equivalent to the definition of experiments given in Blackwell (1953).3 Intuitively, if

the signal is random conditional on the state ω, this randomization is achieved by explic-

itly conditioning on the randomization device r. For any signal s, let P[⋅ ∣ s] denote the

conditional distribution given s.4

2If one focuses on the case of countably many signal realizations, then this definition of a signal is equivalent
to the one in Green and Stokey (2022). To see this, consider the partition of [0,1] induced by the signal
realization {(ω, r) ∈ Ω × [0,1]∶ s(ω, r) = ŝ}ŝ∈S . The posterior belief after observing signal realization ŝ is then
the conditional distribution of P over Ω given the event {(ω, r) ∈ Ω × [0,1]∶ s(ω, r) = ŝ}. Conversely, for any
countable partition of Ω× [0,1], one can define a random variable s as an indicator function of its partitional
elements.

3To see this, note that for every signal we can define a (essentially) unique Blackwell experiment by
(S,P[s ∈ ⋅∣ω]ω∈Ω). Conversely, as the probability space (Ω × [0,1],F × B,P) is standard, for every Blackwell
experiment we can construct a random variable s with the correct joint distribution (see von Neumann 1932;
Rokhlin 1952).

4More precisely, since (Ω × [0,1],F × B) is a standard Borel space, a regular version of the conditional
expectation given the σ-algebra generated by s exists, which we denote by P[⋅ ∣ s] (Çinlar 2010, Theorem 2.7,
pp. 151).
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Definition 1 (Blackwell Dominance). A signal s is Blackwell dominated by a signal s̃,

denoted by s ⪯ s̃, if for every measurable function u ∶ Ω ×A→ R and action set A

E [sup
a∈A

E [u(ω, a) ∣ s]] ≤ E [sup
a∈A

E [u(ω, a) ∣ s̃]] .

Privacy-Preserving Signals We are interested in signals about the state—or decisions

that are made conditional on signal realizations—that do not reveal certain type of informa-

tion. For example, in some economic context the signals might be required to preserve some

notion of privacy; or actions taken by a firm might not be allowed to condition on protected

characteristics, such as race and gender. For a collection of privacy-sets

P ⊆ F

that are closed under finite intersections,5 each P ∈ P defines an event that has be to “kept

private” and no information about it can be revealed. The number of privacy sets is allowed

to be finite, countably infinite, or uncountable. Privacy sets encode what information (or

characteristics) are protected in a given context, such as a person’s race, gender, or age.

Definition 2 (Privacy-Preserving Signals). A signal s is privacy-preserving (with respect to

P) if the prior and posterior probability of the state being in any privacy set coincide, i.e.,

for all P ∈ P, a.s.
P[ω ∈ P ∣ s] = P[ω ∈ P ] . (1)

Our main result will establish a characterization of all Blackwell undominated privacy-

preserving signals.

Remark 1 (Privacy and Discrimination). One can think of the signal s as a decision taken

which affects the outcomes of an economic agent (e.g., whether or not to grant a loan, or what

interest rate to charge). The privacy sets encode protected characteristics based on which

discrimination is illegal, such as race, age or gender. The set of privacy-preserving signals

then corresponds to the set of decision rules that are “non-discriminatory”, in the sense that

5This requirement is equivalent to saying that, if two sets P1 and P2 are events that need to be kept
private, then their intersection P1 ∩P2 has to be kept private too. For example, if a privacy-preserving signal
is not allowed to reveal information about a person’s race or gender, then it is also not allowed to reveal
information about whether a person is a white male or a non-white female.
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the decision is independent of the agent’s protected characteristics. This connection between

discrimination and privacy goes beyond the formal level: Often people want to keep certain

information private, such as their sexual orientation, exactly because they fear discrimination.

3 Characterization of Privacy-Preserving Signals

We first note that the privacy sets P can always be encoded into a random variable θ, which

will lead to more succinct notation.

Lemma 1. There exists a random variable θ ∶ Ω→ Θ such that the following are equivalent:

(i) The signal s is privacy-preserving, (ii) s is independent of θ.

For finite P we can define θ = (θP )P ∈P ∈ Θ = {0,1}∣P ∣ to be a vector of indicators indicating

which privacy sets the state belongs to, i.e., θP (ω) = 1{ω ∈ P}. For example, if the privacy

sets divide the population into female/male and white/non-white, then the realization of θ

would correspond to non-white females; non-white males; white females; and white males.

The proof for the infinite case is slightly more involved and provided in the Appendix.

We next establish that the set of privacy-preserving signals is closed with respect to the

Blackwell order.

Lemma 2. Every signal Blackwell-dominated by a privacy-preserving signal is privacy-preserving.

Lemma 2 follows from the following observation. Consider the decision problem where the

decision-maker bets on the probability of a privacy set P ∈ P and faces a quadratic penalty,

i.e., A = [0,1] and
u(ω, a) ∶= − (1{ω ∈ P} − a)2 .

For each signal realization ŝ, the unique optimal action equals P[ω ∈ P ∣ ŝ], which by definition

is not updated and equals P[ω ∈ P ]. Thus, a signal is privacy-preserving if and only if it does

not increase the value in any such problem. Since any Blackwell dominated signal leads to

a (weakly) lower payoff in any, and thus, these specific decision problems, it follows that a

signal dominated by a privacy-preserving signal is itself privacy-preserving.

Conditionally Revealing Signals We next consider signals that reveal the state to an

outside observer who knows the characteristic θ.
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Definition 3 (Conditionally Revealing Signals). A signal s is conditionally revealing if ob-

serving s and θ reveals ω.6

The definition of a conditionally revealing signal does not have direct implications for the

informativeness of the signals s, as the characteristic θ is unknown. Moreover, a conditionally

revealing signal may not be privacy-preserving.7 However, our next result establishes that

every privacy-preserving signal is less informative than a conditionally revealing, privacy-

preserving signal.

Proposition 1. A signal is privacy-preserving if and only if it is Blackwell dominated by

some conditionally revealing privacy-preserving signal.

The “if” part follows immediately from Lemma 2. To get an intuition for the “only if”

part, suppose that Θ is finite and consider an arbitrary privacy-preserving signal s. We

explicitly construct a signal s′ that Blackwell dominates s: First, take a vector of random

variables (tθ̂)θ̂∈Θ ∶ Ω × [0,1]→ Ω∣Θ∣ such that

(i) (tθ̂)θ̂∈Θ are independent;

(ii) tθ̂ has the same distribution as ω conditional on θ = θ̂ and s, i.e.,

P[ω ∈ A ∣ θ = θ̂, s] = P[tθ̂ ∈ A ∣ s] ,

for all θ̂ ∈ Θ and for any measurable set A ⊆ Ω.
Define the new signal s′ = (s, t′) that reveals the original signal s and in addition a signal

(t′
θ̂
)θ̂∈Θ defined as

t′
θ̂
(ω, r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω, if θ(ω) = θ̂
tθ̂(ω, r), otherwise

.

The signal s′ = (s, t′) dominates the original signal s as it reveals more information. It is

conditionally revealing as one can read off ω simply from the vector (t′
θ̂
)θ̂∈Θ if one knows the

realization of θ. Finally, it is privacy-preserving as the distribution of t′ conditional on s

is—by construction—the same for every realization of the characteristic θ.8

6Or more formally, for any A ∈ F , P[ω ∈ A ∣ s, θ] ∈ {0,1} a.s..
7For instance, the fully-revealing signal s(ω, r) = ω is conditionally revealing, but not privacy-preserving.
8This construction breaks down in the case where the Θ is uncountable as it is impossible to construct a ran-

dom vector that involves uncountably many independent random variables. The general proof in Lemma A.2
the Appendix thus uses a different method.
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Quantile Signals According to Proposition 1, a conditionally revealing privacy-preserving

signal always exists, and any privacy-preserving signal is a garbling of some conditionally

revealing privacy-preserving signal. We next explicitly construct a conditionally revealing

privacy-preserving signal, and show that it can further generate all such signals.

Consider any random variable ϕ ∶ Ω → R, which summarizes the state into a single

dimensional statistic. Let

Fϕ(z ∣ θ̂) ∶= P[ϕ(ω) ≤ z ∣ θ̂]

be the distribution of ϕ conditional on θ̂, F −ϕ (⋅ ∣ θ̂) its left limit, and F −1ϕ (⋅ ∣ θ̂) its inverse.9

Definition 4 (Quantile Signal). Define the ϕ-quantile signal as

qϕ ∶= rFϕ(ϕ ∣ θ) + (1 − r)F −ϕ (ϕ ∣ θ) . (2)

If Fϕ(⋅ ∣ θ̂) is continuous for all θ̂ ∈ Θ, then qϕ is the empirical quantile of the realization

of ϕ. For example, qϕ = 0.3 reveals that ϕ takes a lower value than its current realization

30% percent of the time for each realization of θ. In the continuous case, qϕ = Fϕ(ϕ ∣ θ) is
uniformly distributed, and thus is independent of θ. The randomization in qϕ ensures that

this property generalizes to discontinuous Fϕ, as stated below.

Lemma 3. The ϕ-quantile signal qϕ is privacy-preserving.

The signal qϕ allows one to identify the realization of ϕ if θ is known. While qϕ may

not be conditionally revealing in general, whenever ϕ is invertible, with its inverse ϕ−1 being

measurable,10 the signal qϕ is conditionally revealing, since ω = ϕ−1(F −1ϕ (qϕ ∣ θ)).

Reordered Quantile Signals A measurable function M ∶ [0,1] → [0,1] is a (Lebesgue)

measure-preserving transformation if ∫
1

0 1{M(z) ≤ x}dz = x for all x ∈ [0,1]. Two signals

s, s′ are said to be Blackwell equivalent, denoted by s ∼ s′, if s ⪯ s′ and s′ ⪯ s.

Definition 5 (Reordered Quantile Signal). For any random variable ϕ ∶ Ω → R, signal s is

a reordered ϕ-quantile signal if there exists a family of measure-preserving transformations

{Mθ̂}θ̂∈Θ such that Mθ(s) ∼ qϕ.
9Formally, for any CDF F , F −(z) ∶= limε↘0 F (z − ε), for all z ∈ R, while F −1(q) ∶= inf{z ∈ R∶F (z) ≥ q}, for

all q ∈ [0,1].
10Such a function always exists, since (Ω,F) is a standard Borel space and there is isomorphic to a subset

of R with the Borel σ-algebra (see von Neumann 1932; Rokhlin 1952).

10



For every ϕ-quantile signal qϕ and every family {Mθ̂}θ̂∈Θ of measure-preserving transfor-

mations, there exists (up to Blackwell equivalence) a unique reordering of qϕ, which can be ex-

plicitly constructed.11 By definition, every reordered ϕ-quantile signal is privacy-preserving.

Furthermore, as knowing θ and s reveals qϕ ∼Mθ(s), it follows that s is conditionally revealing
whenever qϕ is conditionally revealing (e.g., when ϕ is invertible).

We now present our main result, which characterizes the set of privacy-preserving signals.

Theorem 1 (Characterization of Privacy-Preserving Signals). Fix any conditionally revealing

quantile signal q⋆.

(i) A signal is privacy-preserving if and only if it is Blackwell dominated by some reordering

of q⋆.

(ii) Every reordering of q⋆ is Blackwell undominated among privacy-preserving signals.

Part (i) of Theorem 1 establishes that the set of all privacy-preserving signals can be gen-

erated from a single conditionally revealing quantile signal q⋆, via reordering and garbling.12

In particular, it is without loss to optimize only over reorderings of q⋆ instead of all privacy-

preserving signals, as one can always ignore additional information. As we discuss in §4,
this is a drastic simplification as it reduces the problem of optimizing over privacy-preserving

signals to an optimization problem over measure-preserving transformations. Part (ii) es-
tablishes that every reordering of q⋆ is undominated. Thus, without imposing structures on

the decision problem, no further restriction of the set of privacy-preserving signals is without

loss.

Example 1 (The Single-Dimensional Case). Suppose that Ω = X × Θ, where x ∈ X ⊆ R

denotes an economic outcome (e.g. insurance risk, income, etc), suppose that the privacy

sets P equal the σ-algebra generated by the projection (x, θ) ↦ θ, and suppose that the

distribution F (⋅ ∣ θ) of x conditional on θ is continuous. Then, the quantile signal

q = F (x ∣ θ)
11More details for the construction can be found in the Online Appendix.
12Although some quantile signals are conditionally revealing, not all conditionally revealing privacy-

preserving signals are equivalent to a quantile signal (e.g., the signal described by Figure 3b in § 5.4 is
conditionally revealing but is not equivalent to a ϕ-quantile signal for any ϕ). Nonetheless, part (i) of Theo-
rem 1 ensures that any conditionally revealing privacy-preserving signal is a reordering of some conditionally
revealing quantile signal q⋆. Intuitively, this is because a statistic ϕ does not allow for randomization but a
reordering does (see the Online Appendix for more details about this randomization).
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θ = 0

θ = 1

x = 0 x = 1

x = 0 x = 1

1/4

3/4

(a) Signal 1: M0(s) =M1(s) = s

θ = 0

θ = 1

x = 0 x = 1

x = 1 x = 0

1/4

1/4

(b) Signal 2: M0(s) = s;M1(s) = 1 − s

Figure 1: Two examples of reordered quantile signals. The signal realizations are uniformly
distributed over [0,1] and correspond to different points on the line. The color indicates
which state is revealed by a given signal realization conditional on θ.

is conditionally revealing, as it reveals (x, θ) to an outside observer who knows θ. By Theo-

rem 1, every privacy-preserving signal is thus Blackwell dominated by a reordering of q.

Example 2 (Undominated Privacy-Preserving Signals). We next present an example illus-

trating that a privacy-preserving signal might seem to reveal little information but is in fact

undominated. Suppose that Ω =X ×Θ = {0,1}2 and the signal cannot reveal any information

about θ.13 Suppose that P[θ = 1] = 1/2 and that P[x = 1 ∣ θ = 0] = 3/4 and P[x = 1 ∣ θ = 1] = 1/4.
Let ϕ⋆(x, θ) = x. The ϕ⋆-quantile signal can be represented by assigning to each point

in the unit interval the value of x they reveal given θ, see Figure 1a. For example, a signal

realization of 0.5 reveals that x = 1 if θ = 0 and that x = 0 if θ = 1. This signal thus perfectly
reveals that x = 0 for realizations ŝ ≤ 1/4, and that x = 1 for realizations ŝ ≥ 3/4, while

the posterior over X remains uniform and assigns equal probability to x = 1 and x = 0 for

realizations ŝ ∈ (1/4, 3/4).
Meanwhile, the reordered ϕ⋆-quantile signal defined by the measure-preserving transfor-

mations M0(s) = s and M1(s) = 1− s can be represented by Figure 1b. This signal induces a

uniform posterior assigning equal probability to x = 1 and x = 0 for any realization of s.

According to Theorem 1, these two signals are both Blackwell undominated among all

privacy-preserving signals. In particular, even though the reordered quantile signal given

by Figure 1b does not reveal any information about x or θ separately, it is still Blackwell

undominated, as it perfectly reveals the correlation between x and θ, so that a decision maker

who cares only about whether x = θ can have their payoff maximized by observing this signal.

13That is the privacy sets are given by P = {{(1,1), (0,1)},{(1,0), (0,0)}}
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3.1 Privacy-Preserving Signals for an Arbitrary Statistic

Theorem 1 follows from a more general result, as stated below. Consider any one-dimensional

statistic ϕ ∶ Ω → R of the state ω. Say that a signal s is a signal for (ϕ, θ) if s is measurable

with respect to (ϕ, θ, r). Intuitively, a signal for (ϕ, θ) only reveals information about (ϕ, θ)
and nothing else.

Among all signals for (ϕ, θ), we may analogously define the Blackwell order. For any pair

of signals s, s̃ for (ϕ, θ), s is said to be Blackwell dominated by s̃ in terms of (ϕ, θ) if for any
action set A and any function u ∶ Ω ×A→ R that is measurable with respect to (ϕ, θ),

E [sup
a∈A

E[u(ω, a) ∣ s]] ≤ E [sup
a∈A

E[u(ω, s) ∣ s̃]] .

In other words, the Blackwell order can be restricted to signals for (ϕ, θ) by comparing the

information about (ϕ, θ) given by these signals.

Theorem 2. Consider any random variable ϕ ∶ Ω→ R.

(i) A signal for (ϕ, θ) is privacy-preserving if and only if it is Blackwell dominated in terms

of (ϕ, θ) by some reordered ϕ-quantile signal .

(ii) Every reordered ϕ-quantile signal is Blackwell undominated in terms of (ϕ, θ) among

signals for (ϕ, θ) that are privacy-preserving.

Note that, for any statistic ϕ ∶ Ω → R such that the ϕ-quantile signal is conditionally

revealing, the state ω can be recovered by the realization of (ϕ, θ). Therefore, every signal

s is Blackwell equivalent to a signal for (ϕ, θ), and signal s̃ Blackwell dominates signal s in

terms of (ϕ, θ) if and only if s̃ Blackwell dominates s. As a result, Theorem 1 follows from

Theorem 2 by taking ϕ to be an invertible statistic whose inverse ϕ−1 is measurable.

3.2 Distributions of Posterior Means

While Theorem 1 established that privacy-preserving signals do not have a single Black-

well maximum, and Example 2 illustrates that undominated privacy-preserving signals could

reveal no information about each component of the state, the characterization of privacy-

preserving signals can be further sharpened if only the posterior mean of a statistic

ϕ ∶ Ω→ R
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is payoff relevant. This assumption is natural in many economic settings. For example, in

the context of a bank loan discussed in §1, it corresponds to the assumption that the bank’s

preference depends only on the default probability, but not the race or gender of an applicant.

It is well-known that a CDF G is a distribution of posterior means E[ϕ ∣ s] under some

signal s if and only if G is a mean-preserving contraction of the prior distribution Fϕ(z) ∶=
P[ϕ(ω) ≤ z] (see e.g., Hardy, Littlewood and Pólya 1929; Strassen 1965). However, not

every mean-preserving contraction of Fϕ can be the distribution of posterior mean under a

privacy-preserving signal. For example, if ϕ and θ are correlated, then Fϕ could never be the

distribution of posterior means.

Let F ϕ be of posterior means E[ϕ ∣ qϕ] induced by the ϕ-quantile signal qϕ. Namely,

F ϕ(z) ∶= inf {y ∈ [0,1] ∶ E [F −1ϕ (y ∣ θ)] ≥ z} ,

for all z ∈ R, where the expectation is taken over θ.

Theorem 3 (Distributions of Posterior Means). For any statistic ϕ ∶ Ω→ R, a CDF G is the

distribution of posterior means E[ϕ ∣ s] induced by some privacy-preserving signal s if and

only if G is a mean-preserving contraction of F ϕ.

According to Theorem 3, for any privacy-preserving signal s, E[ϕ ∣ s] must be less dis-

persed than E[ϕ ∣ qϕ] under the convex order. Consequently, in decision problems where

only posterior means of ϕ are relevant (e.g., when a decision maker’s payoff is affine in some

statistic ϕ), the ϕ-quantile signal gives the highest expected payoff.

Theorem 3 reduces the set of privacy-preserving signals to mean-preserving contrac-

tions of F ϕ in settings where only posterior means of a statistic ϕ are relevant. In par-

ticular, the privacy constraints, however complex they are, are entirely summarized by the

mean-preserving-contraction upper bound F ϕ. Moreover, the mean-preserving contraction

structure, together with recent results in Kleiner, Moldovanu and Strack (2021) and Arieli,

Babichenko, Smorodinsky and Yamashita (2023), who characterize the extreme points of this

set, allows one to focus on signals that either fully reveal the qϕ-quantile signal, or pool its

realizations into at most two mass points on an interval.

Remark 2 (Conditionally Privacy-Preserving Signals). In many economic applications, a

signal is only required to be privacy-preserving conditional on certain information. For
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example, if some signal y ∶ Ω × [0,1] → Y is already publicly available, then it would be

natural to only restrict signals to not reveal additional information. This can be captured

by defining a signal to be conditionally privacy-preserving, if for all privacy set P ∈ P, a.s.,

P[ω ∈ P ∣ s, y] = P[ω ∈ P ∣ y] .

Mathematically, Theorem 1 and Theorem 3 immediately extend to this case by simply ap-

plying them for each realization of y (see the online Appendix).

4 Optimizing over Privacy-Preserving Signals

4.1 Decision Problems

In this section, we apply Theorem 1 through Theorem 3 to characterize optimal privacy-

preserving signals for a decision-maker who takes an action after observing the signal. Proofs

for this section and the next section can be found in the Online Appendix. For the ease

of exposition, we assume finitely many privacy sets so that θ takes finitely many values:

Θ = {1, . . . , J}. Consider a Bayesian decision problem (u,A): After observing the signal s,

the decision-maker chooses an action a ∈ A to maximize expected payoff

E [u(ω, a) ∣ s]

where u(ω, a) denotes the decision-maker’s ex-post payoff when the state is ω and the action

is a. From Theorem 1 and Blackwell’s theorem, it follows that there always exists an optimal

privacy-preserving signal that is a reordering of some conditionally revealing quantile signal.

For any reordering of a conditionally revealing quantile signal s, denote by

ω̃(s) ∶= (ω̃1(s), . . . , ω̃J(s))

the vector of states revealed by the signal s, i.e., ω̃j(ŝ) is the state revealed by signal re-

alization ŝ if θ = j. The marginals of ω̃ are fixed by ω̃j ∼ P [⋅ ∣ θ = j]. Let D be the set of

joint distributions ρ on ΩJ such that the marginal of the j-th coordinate is given by P[⋅ ∣ θj].
Thus, any such signal corresponds to a coupling of states for different realizations of θ:
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Lemma 4. A distribution ρ ∈∆(ΩJ) is the joint distribution of ω̃(s) for some reordering of

a conditionally revealing quantile signal s if and only if ρ ∈ D.

With Lemma 4, we can now characterize the optimal privacy-preserving signals for the

decision-maker. Let V ∶ ΩJ → R be defined as

V (ω1, . . . , ωJ) ∶= sup
a∈A
(
J

∑
j=1

u(ωj, a)P[θ = j]) , (3)

for all (ωj)Jj=1 ∈ ΩJ . The value of V (ω1, . . . , ωJ) can be interpreted as the decision-maker’s

indirect utility after learning that the state equals ωj when θ = θj, without any further

information about θ. We then have the following characterization:

Proposition 2 (Optimal Privacy-Preserving Signal). The decision-maker’s optimal value

among all privacy-preserving signals is given by

sup
s∶s⊥θ

E [sup
a∈A

E[u(ω, a) ∣ s]] = sup
ρ∈D
∫
ΩJ
V (ω1, . . . , ωJ)dρ , (4)

Moreover, fix any conditionally revealing quantile signal q⋆, every optimal privacy-preserving

signal must be Blackwell-equivalent to a reordering s of q⋆ such that the distribution of ω̃(s)
is a solution of (4).

The optimization problem (4) is a multi-marginal optimal transport problem. The exis-

tence of solutions can be guaranteed if Ω is compact and if V is upper-semicontinuous, which

we assume henceforth. While the optimal transport problem (4) may still be complex, the

structure of this problem leads to explicit characterizations of optimal privacy-preserving sig-

nals for a wide range of economically relevant decision problems. Indeed, as we show below,

a closed form solution can be obtained within a certain class of decision problems.

Supermodular Payoffs Many applications naturally admit supermodularity, which means

that the objective depends on the state only through a single dimensional statistic ϕ and

higher (or lower) actions are optimal for higher values of the statistic. For example, if ϕ(ω)
measures the probability of a borrower repaying a loan and a is the interest rate a bank

requires from a borrower, then it would be natural to assume that the bank wants to charge

a lower interest rate to those borrowers who are more likely to repay.
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Proposition 3 (Supermodular Payoffs). Suppose that A is a totally ordered set, and that

there exists a statistic ϕ ∶ Ω→ R such that for all ω ∈ Ω and for all a ∈ A,

u(ω, a) = h(ϕ(ω), θ(ω), a)

for some measurable h ∶ R ×Θ ×A → R that is supermodular in (ϕ, a). Then the ϕ-quantile

signal is optimal.

According to Proposition 3, for any decision-maker who chooses an action a to maximize a

payoff h(ϕ, θ, a) that is supermodular in (ϕ, a), the ϕ-quantile signal is optimal. For example,

for any prior, statistic ϕ, and collection of privacy sets P, the loss ∣ϕ(ω) − a∣p for p > 1 is

minimized by revealing the ϕ-quantile signal.14

Binary Actions Another important special case is when the decision is only between two

actions, e.g., a bank decides whether to extend a loan at an exogenously fixed interest rate.

Proposition 4 (Binary Actions). Suppose that A = {0,1}, then, the ϕ-quantile signal is

optimal, where ϕ(ω) = u(ω,1) − u(ω,0) .

Proposition 4 follows immediately from Proposition 3, since the ϕ-quantile signal is op-

timal as u(ω, a) = ϕ(ω)a + u(ω,0) is supermodular in (ϕ, a). Proposition 4 thus completely

solves the decision problem for binary actions, arbitrary payoffs and arbitrary privacy sets.

Separable Problems and Binary States In the meantime, Theorem 3 also implies that

for a specific class of “separable” decision problems, the quantile signal is optimal.

Proposition 5 (Separable Problems and Binary States). Suppose there exists ϕ ∶ Ω→ R and

functions f ∶ R ×A→ R, g ∶ A→ R, h ∶ A ×Θ→ R such that

(i) u(ω, a) = ϕ(ω)g(a) + h(a, θ(ω)) for all ω ∈ Ω, or
(ii) u(ω, a) = f(ϕ(ω), a) and ϕ(ω) ∈ {0,1} for all ω ∈ Ω.
Then the ϕ-quantile signal is optimal.

Part (ii) of Proposition 5 was previously obtained by He et al. (2023). Both part (i)
and (ii) of Proposition 5 follow immediately from Theorem 3, which establishes that the

14The optimal action a ∶ [0,1]→ R in this case is given as the solution to E [(ϕ(ω) − a(z))p−1 ∣ qϕ = z] = 0.
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quantile signal is the signal that induces the most dispersion in the posterior means. The

assumption that u(ω, a) = ϕ(ω)g(a)+h(a, θ) is satisfied in many applications. In particular,

a payoff function u that is constant in θ and affine in ϕ satisfies this condition. For instance,

in the bank loan example, this corresponds to assuming that the bank’s preference depends

only on the expected amount repaid by the borrower, but not the race, gender, age, etc

of the borrower. Meanwhile, since posterior distributions over ϕ is one-dimensional when

ϕ(ω) ∈ {0,1} for all ω ∈ Ω, the second part of the corollary follows.

4.2 Information Design

Consider the Bayesian persuasion setting where a sender discloses information about ω ∈ Ω
to a receiver who chooses an action a ∈ A, and suppose that the sender is restricted to choose

only signals that are privacy-preserving.15 Let the sender’s payoff be uS ∶ Ω ×A→ R and the

receiver’s payoff be uR ∶ Ω ×A → R. Let V ⋆S be the sender’s value from choosing the optimal

privacy-preserving signal. For simplicity, suppose again that ∣Θ∣ = J < ∞ and write Θ as

{1, . . . , J}. Let VR ∶ ΩJ ×A→ R be defined as

VR(ω1, . . . , ωJ , a) ∶=
J

∑
j=1

uR(ωj, a)P[θ = j] ,

for any (ωj)Jj=1 ∈ ΩJ . Moreover, for any ρ ∈∆(ΩJ), let

VS(ρ) ∶= Eρ [
J

∑
j=1

uS(ωj, a⋆(ρ))P[θ = j]] ,

where a⋆(ρ) is the (sender-preferred) optimal action of the receiver that maximizes VR when

the posterior over (ωj)Jj=1 is ρ. To ensure the existence of optimal signals, we assume that

Ω is compact and that VS is upper-semicontinuous. The next proposition characterizes the

sender’s value V ⋆S .

15For example, the sender might be the prosecutor as in Kamenica and Gentzkow (2011), trying to convince
the judge that the defendant should not be released on bail, but is restricted to not using any information
related to the race of the defendant even though such information might be predictive about the probability
of reoffense.
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Proposition 6 (Value of Persuasion). Let V S be the concave closure of VS, the sender’s

value V ⋆S is given by

V ⋆S =max
ρ∈D

V S(ρ) ,

Proposition 6 states that the sender’s value can be found by a two-step procedure: First,

fix a joint distribution ρ and find the optimal garbling of it by computing V S(ρ). Then,

optimize across ρ ∈ D. Just as in standard persuasion problems, the characterization of

Proposition 6 requires computing the concave closure of the function VS, which is typically

computationally demanding. Nonetheless, when payoffs are such that the sender’s indirect

utility is measurable with respect to the posterior mean of some statistic ϕ, Theorem 3

provides a much more tractable way to characterize optimal signals. Specifically, suppose

that there exist a statistic ϕ ∶ Ω→ R such that the sender’s indirect utility is a function only

of the posterior mean E[ϕ ∣ s], which we denote by US ∶ R→ R. Then the sender’s payoff given

a signal can be written as ∫RUS(x)dG, where G is the CDF of posterior means induced by

the signal. Theorem 3 implies the following characterization:

Proposition 7 (Value of Mean-Measurable Persuasion). Suppose that the sender’s indirect

utility is measurable with respect to posterior means and is denoted by US ∶ R → R. The

sender’s value V ⋆S is given by

V ⋆S = sup
G⪯MPSFϕ

∫
R
US(x)dG, (5)

The characterization given by Theorem 3 and Proposition 7 is particularly convenient for

introducing privacy concerns to mean-measurable persuasion problems since the structure

of the feasible privacy-preserving signals perfectly aligns with that of all feasible signals.

In other words, the privacy constraints, however complex they are, are all summarized by

the mean-preserving-spread upper bound F ϕ. We further demonstrate the value of this

characterization in §5.

5 Economic Applications

To illustrate the relevance of privacy-preserving signals and to demonstrate the implications

of our main results, we discuss several economic examples.
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5.1 Statistical Discrimination and Algorithmic Fairness

Statistical discrimination refers to discriminatory outcomes that arise simply because some

protected characteristics are statistically correlated with the payoff-relevant variables—and

thus are used in decision-making. Legal studies and the literature on algorithmic fairness

in computer science aim to explore optimal ways to discipline statistical discrimination that

arise from (algorithmic-assisted) decision-making.

Informational Environment We first introduce a general environment that can be used

to study discrimination. There is an underlying outcome γ ∈ Γ. A decision-maker observes

covariates (θ, y, z) ∈ Θ × Y × Z that are correlated with the outcome γ, and has to take an

action a ∈ A. Among the observable covariates (θ, y, z), θ denotes the “protected charac-

teristics” (e.g., race and gender), y denotes the “materially relevant characteristics” and are

deemed acceptable to be used despite their correlations with θ, (e.g., credit history or criminal

history), and z denotes all other observable covariates (e.g., zipcode). The decision-maker’s

payoff equals û(γ, a) ∈ R when the outcome is γ and when the action is a.

A statistical model (or an algorithm) takes the inputs (θ, y, z) and outputs a predic-

tion s ∈ S for the outcome γ. The decision-maker then chooses an action a to maximize

E[û(γ, a) ∣ s]. As protected characteristics θ might be correlated with outcome γ, so might

the prediction s be. Therefore, the resulting outcome might exhibit statistical discrimination

in the sense that a might be correlated with θ, even if û does not depend on θ. A common

regulatory approach is to discipline the degree of disparate impact—a legal term that refers

to correlations between a and θ, regardless of whether the decision is made explicitly based

on θ.16 This approach requires the action taken by the decision-maker to be independent of

the protected characteristics θ, conditional on materially relevant characteristics y.17 This

approach also coincides with a commonly adopted notion of fairness in computer science,

16For instance, in the case of Griggs v. Duke Power Company, the U.S. Supreme Court held that requiring
a high school degree and an aptitude test for jobs transfers to certain departments creates disparate impacts
for Black employees due to the history of segregation (i.e., transfer decision a is correlated with race θ).
The court thus found such a policy in violation of Title VII of the Civil Rights Act, even though these
requirements do not explicitly refer to race.

17In practice, an essential argument employers use in defense of disparate impact claims is the “business
necessity” criterion. Namely, the inputs upon which the alleged discriminatory policies or rules are essential
for the success of the defendant’s business. These necessities can be interpreted as the materially relevant
characteristics y.
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which is referred to as demographic parity.18

For example, suppose that a bank, who faces many loan applicants with observable char-

acteristics (θ, y, z), needs to make loan decisions a. The relevant outcome is whether an

applicant will default in the future, denoted by γ ∈ {0,1}. The Equal Credit Opportunity

Act (15 U.S.C. 1691 et seq.)“prohibits creditors from discriminating against credit applicants

on the basis of race, color, religion, national origin, sex, marital status, age [..].” A concrete

(although stringent) interpretation of this requirement taken in the literature is that the

information about each individual’s default probability the bank uses to make loan decisions

must be independent of an individual’s protected characteristics (potentially conditional on

materially relevant information, such as income). This requirement avoids the problem that

even when restricting the bank to not condition on race directly it might still do so indirectly

through the use of covariates such as zip code, which is a well-known issue highlighted in the

actuarial sciences and legal studies, for example Wiggins (2020) states:19

“[...] race has become so highly correlated with other social statistics that actuar-

ial science in general has developed a baked-in racial bias. Racial discrimination

by proxy (e.g., zip code standing in for race) can be glimpsed in the disparate im-

pact of data-driven decision-making in housing, healthcare, policing, sentencing,

and more. Simply leaving out racial data in statistically aided decision-making

distances institutions from claims of intentional discrimination, but a disparate,

discriminatory impact lingers when other factors correlated with race power ac-

18See, e.g., Darlington (1971); Calders et al. (2009); Dwork, Hardt, Pitassi, Reingold and Zemel (2012);
Calders and Verwer (2010); Kamishima, Akaho and Sakuma (2011); Corbett-Davies et al. (2017); Gillis,
McLaughlin and Spiess (2021). Two other commonly adopted criteria are (i) separation, which requires
balanced type-I and type-II errors (see, e.g., Hardt et al. 2016), or more generally, independence between a
and θ conditional on the true outcome γ; and (ii) sufficiency, which requires the action a to be a sufficient
statistics for γ, so that the outcome γ is independent of θ conditional on a. It is well-known that none of
any pairs of these three common fairness criteria can be satisfied at the same time, and hence the choice of
a fairness criteria is necessary (see Barocas, Hardt and Narayanan (2019) and Carey and Wu (2023) for a
comprehensive review of these criteria). With appropriate projections, our results can also be applied when
the notion of separation, instead of independence, is adopted. See the Online Appendix for more details.

19Former Attorney Eric Holder also made a similar remark in the context of sentencing: “[...] basing
sentencing decisions on static factors and immutable characteristics—like the defendant’s education level,
socioeconomic background, or neighborhood—they may exacerbate unwarranted and unjust disparities that
are already far too common in our criminal justice system and in our society.” See https://www.justice.

gov/opa/speech/attorney-general-eric-holder-speaks-national-association-criminal-defense

-lawyers-57th.
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tuarial analyses.”

Existing results in the fairness literature (see, e.g., Calders et al. 2009; Hardt et al. 2016;

Corbett-Davies et al. 2017) take the “recommendation approach” (i.e., by taking S = A so

that the prediction s is a recommended action) and solve for the optimal recommendation

subject to the constraint that a has to be statistically independent of θ. This approach is

convenient as it reduces the statistical problem of finding the optimal prediction s to a linear

program, which is particularly tractable when the available actions are simple. The literature

thus characterizes optimal algorithms in simple settings when the decision-maker’s choice is

binary, e.g., when the bank only decides whether to grant a loan, and when the payoff is

given by û(γ, a) = a ⋅ (1 − γ − c) for some c ∈ (0,1).20
However, in many applications, the decision-maker may need to make more than a binary

choice. For example, a bank typically needs to decide—in addition to whether to grant the

loan—how much to grant, what the interest rate should be, the amount of down payment,

and the form of the collateral. Moreover, in regulatory contexts, a regulator typically faces a

wide-range of decision problems that are very different in their natures. For these problems,

using the recommendation approach might not be as fruitful, since the approach relies on

the specific payoff structure and benefits the most from the simplicity of the action space.21

A General Solution Theorem 1 and Theorem 3 lead to characterizations of optimal algo-

rithms for arbitrary decision problems. To apply our results while incorporating the fact that

only the covariates (θ, y, z) are observable, one may define the state as ω = (x, θ) ∈ X ×Θ =
∆(Γ) ×Θ, where x corresponds to the distribution of outcomes γ conditional on (θ, y, z).22
The expected payoff is then given by

u(x, θ, a) ∶= ∫
Γ
û(γ, a)dx(γ) .

By Proposition 2, the optimal algorithms can be characterized by solving the optimal trans-

20The optimal algorithms adopt different thresholds for different groups θ (conditional on materially rel-
evant characteristics), and chooses action a = 1, e.g., grants the loan to an applicant, if and only if the
conditional expectation E[γ ∣ θ, y, z], e.g., expected default probability, is below their group-specific thresh-
olds.

21In fact, we are not aware of any paper that explicitly solves a model with more than two actions, or that
solves for an optimal algorithm across many decision problems.

22Formally, x ∶ Θ × Y ×Z →∆(Γ) with x(θ, y, z) = P [γ ∈ ⋅ ∣ θ, y, z].
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port problem (4). Moreover, Proposition 3, 4, and 5 lead to explicit characterizations of an

optimal fair algorithm under a wide class of economically relevant environments.

Perfectly Informative Covariates Suppose that Γ ⊆ R and that the covariates (θ, y, z)
are perfectly informative, so that γ is a function of (θ, y, z). In this case, X can be equivalently

defined as Γ. If û is supermodular in (γ, a), then by Proposition 3, the quantile signal is

optimal. If û is separable so that û(γ, a) = f(γ)g(a)+h(a), for some real-valued measurable

functions f, g, h, then, according to Proposition 5, the ϕ̂-quantile signal is optimal, where

ϕ̂(γ, θ) ∶= f(γ). For instance, a large corporate decides whether to hire a worker, and if

so, which position to assign the worker to. Workers differ in their skill levels γ ∈ [0,1] and
positions a ∈ [0,1] differ in their difficulties, with a = 0 being not hiring the worker. The

employer’s payoff is given by v(γ, a) −w(a), where v is a supermodular production function

and w is the market wage schedule for different positions.

Binary Outcomes Suppose that Γ = {0,1}. Then, X = ∆(Γ) = [0,1], with x being the

probability that γ = 1. Moreover,

u(x, θ, a) = xû(1, a) + (1 − x)û(0, a)

is affine in x. Proposition 5 (i) then implies that the quantile signal, which can simply be

constructed by computing the quantile of the predicted score x ∈ [0,1] conditional on each

protected characteristic, is optimal.23 This set of assumptions is common in many relevant

economic settings, such as loan decisions and bail decisions. For example, a lender makes loan

decisions regarding an applicant. The applicant may either default (γ = 0) in the future or

not (γ = 1). The actions of the bank could be highly complex, including deciding whether to

give the loan, deciding interest rates, design payment schedules, and the choice of collaterals.

The Orthogonalization Procedure In the environments above, the quantile signals are

optimal. In fact, the quantile signal can be generated by the following concrete and detail-free

procedure that does not depend on the underlying decision making problems:

23This result generalizes the characterization of algorithmically fair optimal decisions obtained in Theorem
2 of He et al. (2023), which assumes the outcome γ to be binary, and the covariates to be perfectly informative
about the outcome.
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1. Use the most efficient algorithm and all covariates to generate a (one-dimensional)

prediction score ϕ for the relevant outcome γ.

2. Adopt a “post-processing step” after generating the raw prediction and orthogonalize

these predictions, by computing the quantile signal qϕ of the predicted scores for each

group of protected characteristic, conditional on the materially relevant characteristics.

3. Decision-makers take an action based on the quantiles and the materially relevant

characteristics.

If either the covariates are perfectly informative about a one-dimensional outcome γ ∈ R,

or the outcome γ is binary, as shown above, the quantile signal—and hence the output of the

orthogonalization procedure—is always optimal. It is noteworthy that this procedure does

not require any further details about the underlying decision problems. In particular, in the

bank loan example, however complex a lender’s decision problem is, and regardless of how

many different decision-maker a regulator faces, adopting the orthogonalization procedure

always leads to an optimal outcome.

This is of practical importance as it allows the reuse of existing econometric and statistical

tools. The first step of the procedure can be carried out by an econometrician without

any consideration for discrimination. The second step ensures that whatever procedure the

econometrician uses, the final outcome will be non-discriminatory. While one might expect

that such a procedure would lead to suboptimal decision rules, our result identifies conditions

under which this two-step procedure will be optimal if the econometrician uses the best

possible predictor of γ in the first step.24

This procedure also suggests a concrete approach to ensuring fairness. A regulator could

legally require every decision maker to adopt a post-processing step and compute the quantiles

after generating raw prediction scores, and enforce this requirement by audits or subpoena in

legal proceedings.25 This “output regulation” is distinct from the commonly adopted “input

24Kamiran, Žilobaitė and Calders (2013) and Feldman, Friedler, Moeller, Scheidegger and Venkatasub-
ramanian (2015) propose a similar procedure to “repair” unfair algorithms. See also, Calders and Verwer
(2010) and Kamishima et al. (2011), for earlier work on repairing and regularizing unfair algorithms. This
literature focuses on transforming any (potentially unfair) algorithm into a fair one. Our results imply that,
not only does a similar procedure lead to a fair algorithm, it is in fact the optimal way to transform any
algorithm into a fair one.

25If the regulator requires the decision maker to store the prediction scores, they can at any point in time
use these to check whether the procedure was applied correctly and apply appropriate penalties in case it
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regulation” approach which limits the data available to the decision maker (which is often

inefficient due to covariates that are correlate with protected characteristics). Nevertheless,

the implementation and enforcement can be fulfilled by similar regulatory tools.

5.2 Optimal Privacy-Preserving Disclosure in Auctions

A publisher runs a second-price auction to sell targeted audiences to N ≥ 1 advertisers

with private values {vi}Ni=1 ∈ RN+ that are independently drawn from F . As in Bergemann

et al. (2022) we assume that F is absolutely continuous. The publisher has control over

how much information about the audience to give to the advertisers. Specifically, each

advertiser observes a (conditionally independent) signal about their own value. Bergemann

et al. (2022) study this problem and characterize the optimal symmetric signal to disclose

to the advertisers. That is, they characterize the symmetric and independent signal s ∶
R+ × [0,1] → R that maximizes the publisher’s revenue, where each advertiser i observes

a signal si = s(vi, ri), with {ri}ni=1 being the independent randomization device that are

uniformly distributed on [0,1]. They characterize the optimal signal as follows:

Proposition 8 (Bergemann et al. 2022, Theorem 1). Any optimal symmetric information

structure is equivalent, in terms of bidders’ expected values E[vi ∣ si], to a partitional signal

s ∶ R+ × [0,1]→ R

s(vi, ri) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

vi if F (vi) < q∗N
E [vi ∣ F (vi) ≥ q∗N] if F (vi) ≥ q∗N

,

where q∗N is the unique root in (0,1) of a N-degree polynomial and does not depend on F .

In many economically relevant situations, disclosing some type of information about the

audience is controversial. For example, Target was widely criticised for using pregnancy

information in advertising.26 Google and other advertising companies have been criticized

for disclosing highly sensitive information to advertisers including religious beliefs, ethnicities,

diseases, disabilities, sexual orientation, and whether a user informed themselves online about

incest and sexual abuse.27

was not.
26see https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-tee

n-girl-was-pregnant-before-her-father-did/?sh=412314036668.
27See https://mashable.com/article/google-iab-gdpr-complaint.
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To model such a situation within our framework, suppose that there is some protected

information that should not be disclosed to advertisers. Such information is correlated with

each advertiser’s values vi and is summarized by θ ∈ Θ. Assume that {vi}Ni=1 is independent

and identically distributed conditional on θ.28 Let F (⋅ ∣ θ̂) be the distribution of vi conditional

on the realization θ̂ of θ. As before, we assume that F (⋅ ∣ θ̂) is absolutely continuous for all

θ̂ ∈ Θ.

The publisher is not allowed to disclose any information about θ and thus can only

disclose a privacy-preserving signal to each advertiser. A symmetric privacy-preserving signal

s ∶ R+ ×Θ× [0,1]→ R discloses s(v̂i, θ̂, r̂i) to advertiser i when their value is v̂i ∈ R+, protected

characteristic is θ̂ ∈ Θ, and the randomization device is r̂i. A symmetric signal s is privacy-

preserving if s(vi, θ, ri) is independent of θ for all i.

As the advertisers’ preferences only depend on their expected value E [vi ∣ si] after ob-

serving a signal si, we can apply Theorem 3 to conclude that for any symmetric signal s, the

distribution of E [vi ∣ s] must be a be a mean-preserving contraction of E [vi ∣ qi], where qi is
the quantile signal

qi ∶= F (vi ∣ θ) ,

whose distribution is given by F (z) ∶= inf{y ∈ [0,1] ∶ E[F −1(y ∣ θ)] ≥ z} . Moreover, for any

symmetric privacy-preserving signal, advertisers’ conditional expected values are indepen-

dently and identically distributed.29 Together with the result from Bergemann et al. (2022),

we obtain a complete characterization of optimal information disclosure in auctions subject

to privacy constraints.

Proposition 9. Any optimal symmetric information structure that does not reveal any in-

formation about θ is equivalent, in terms of bidder’s expected values E[vi ∣ si], to a partitional

28For instance, if θ denotes gender, then the values of each advertiser to target a female or a male audience
are assumed independently and identically distributed due to, say, heterogeneity among advertisers—just as
they were assumed to be independent and identically without conditioning in Bergemann et al. (2022).

29To see this, consider any symmetric privacy-preserving signal s. Let si ∶= s(vi, θ, ri) for all i. Since
{vi}

n
i=1 is independent conditional on θ, P[s1 ≤ z1, . . . , sN ≤ zN ] = E[P[s1 ≤ z1, . . . , sN ≤ zN ] ∣ θ] = E[P[s1 ≤

z1 ∣ θ]⋯P[sN ≤ zN ∣ θ]]. Moreover, since s is privacy-preserving, we have E[P[s1 ≤ z1 ∣ θ]⋯P[sN ≤ zN ∣ θ]] =
E[P[s1 ≤ z1]⋯P[sN ≤ zN ]] = P[s1 ≤ z1]⋯P[sN ≤ zN ].
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signal s ∶ R+ ×Θ × [0,1]→ R+

s(vi, θ, ri) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

E [vi ∣ F (vi ∣ θ)] if F (vi ∣ θ) < q∗N
E [vi ∣ F (vi ∣ θ)) ≥ q∗N] if F (vi ∣ θ) ≥ q∗N

,

where q∗N is the same as in Proposition 8.

Example 3. Suppose that the willingness to pay for a good or service is higher among

people with certain sexual orientation, ethnic group, or among people with a specific disease.

The auctioneer does not want to reveal any information about this sensitive information

encoded in θ. For concreteness, suppose that the values are drawn from an exponential

distribution conditional on protected information θ. Simple algebra shows that the optimal

privacy-preserving signal is given as

s(vi, θ, ri) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

vi × E[vi]
E[vi∣θ]

if F (vi ∣ θ) < q∗N
E [vi ∣ F (vi) ≥ q∗N] ×

E[vi]
E[vi∣θ]

if F (vi ∣ θ) ≥ q∗N

This signal pools agents from different groups with different values in a way not present in

the optimal signal without privacy concerns (given in Proposition 8): Values of agents from

a group θ with a higher expected valuation E [vi ∣ θ] are multiplicatively scaled down, while

values of agents from a group with an ex-ante lower valuation are multiplicatively scaled up.

5.3 Buyer Information with an Informed Seller

A monopolist sells a product to a buyer with unit demand and quasi-linear preference. The

buyer’s value is v ∈ [0,1] and follows a distribution F . The seller observes a private signal θ ∈
Θ that is correlated with the buyer’s value v. The buyer also observes a private signal s that

reveals information about v and θ. Given a joint distribution of (v, θ), we model the buyer’s

signal by considering a probability space where the outcomes (v, θ, r) consists of the buyer’s

value v, the seller’s signal θ, as well as an independently uniformly distributed randomization

device r, and define the buyer’s signal as a random variable s on this probability space. The

timing of the game is as follows:

1. The monopolist commits to a mechanism for selling the good, that specifies a probability
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of receiving the good x(θ,m) and a payment made by the buyer t(θ,m).
2. The monopolist privately observes θ and the buyer privately observes s.

3. The buyer sends a message m to the mechanism, which determines together with the

realization of θ, the probability of trade x and the transfer t.

Importantly, the seller commits to how his signal θ and the report of the buyer will be used

in the mechanism. Given the distribution of (v, θ), which signal s maximizes the buyer’s

expected surplus? Roesler and Szentes (2017) studies a special case of this problem when θ

is completely uninformative. They fully characterizes the buyer’s optimal signal in terms of

the distribution of posterior means, as well as the feasible welfare outcomes.

5.3.1 Signals that Maximize Buyer Surplus

When θ is informative about the buyer’s value, the buyer’s signal s might be correlated with

θ. In this case, if the buyer’s beliefs about the seller’s signal θ (i.e., P [θ ∈ ⋅ ∣ s]), are linearly

independent across all realizations of s, and the posterior expected value E [v ∣ s] is a sufficient

statistic for the buyer’s belief (i.e, P [θ ∈ ⋅ ∣ s] = P [θ ∈ ⋅ ∣ E [v ∣ s]]), then the monopolist can

(almost) fully extract the buyer’s surplus (Crémer and McLean 1988; McAfee and Reny

1992). Clearly, any signal satisfying these conditions can not be optimal for the buyer as it

leaves them with zero surplus.

While such (almost) full surplus extraction can be avoided if the posterior expected value

E [v ∣ s] is not a sufficient statistic for the buyer’s belief about θ (e.g., when the buyer is

fully informed about the seller’s signal), the seller is still able to price discriminate, which

sometimes would also leave the buyer with little information rent. One way to avoid both

surplus extraction and price discrimination is to have a buyer signal s that is independent of

the seller’s signal θ. Using Theorem 3 and arguments from majorization theory, we prove in

Strack and Yang (2024) that, perhaps surprisingly, having a signal that is independent of θ

is always optimal for the buyer.

Proposition 10 (Strack and Yang 2024, Theorem 1). For any buyer signal s̃, there exists

a buyer signal s that is independent of θ under which the buyer’s expected surplus is weakly

higher.

According to Proposition 10, it is without loss to solve for the optimal privacy-preserving

signal. Under any privacy-preserving signal s, the seller’s private signal θ is not informative
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about the buyers expected value E [v ∣ s], and the optimal mechanism is a uniform posted

price.30 As only the expected value of the buyer matters for their purchase decision in

posted price mechanism, Theorem 3 implies that the buyer’s optimal signal is given by a

distribution G that maximizes the buyer’s surplus under the optimal posted price among all

mean-preserving contractions of

F (z) ∶= inf {y ∈ [0,1] ∶ E [F −1(y ∣ θ)] ≥ z} .

Therefore, the problem where the seller observes a private signal θ is equivalent to the the

problem where the distribution of values F is replaced by its mean preserving contraction F .

Intuitively, the fact that the seller has some private information limits the amount of private

information the buyer can learn without creating correlation to the sellers information (which

would lead to surplus extraction). We can thus adopt the arguments of Roesler and Szentes

(2017), to obtain the following result:

Proposition 11 (Strack and Yang 2024, Proposition 1). Consider any privacy-preserving

signal s under which the distribution of the buyer’s posterior expected value E [v ∣ s] is

Gb⋆

π⋆(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if z < π∗

1 − π∗

z , if z ∈ [π∗, b∗)
1, if z > b∗

,

where π∗ is the smallest π such that Gb
π ⪯MPS F for some b ≥ π, and b⋆ is the unique b for

which Gb
π⋆ ⪯MPS F . The signal s maximizes the buyer’s surplus. Moreover, under this signal,

the monopolist’s optimal price equals π⋆, and trade occurs with probability 1.

5.3.2 Feasible Welfare Outcome

Proposition 10 and Proposition 11 further lead to a characterization of welfare outcomes that

can be induced by buyer’s signal s, for any given seller signal θ, which is stated below.

Proposition 12 (Strack and Yang 2024, Proposition 2). For any (σ,π) ∈ [0,1]2, there exists

a signal s such that the buyer’s surplus is σ and the seller’s profit is π if and only if π ≥ π⋆
30See Lemma 1 of Strack and Yang (2024).
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and σ + π ≤ E[v].

Example 4. Suppose that the buyer’s value v is uniformly distributed on [0,1], and that

the seller’s signal θ equals the buyers value with probability p, and equals a random variable

independently drawn from F with probability 1 − p. It then follows that F is given by

F (z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − p)(1 −
√
1 − 2z), if z ∈ [0, 1/2)

p + (1 − p)
√
2z − 1, if z ∈ [1/2,1]

,

if p > 1/2, and

F (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p)(1 −
√
1 − 2z), if z ∈ [0, 12 (1 −

(1−2p)2

(1−p)2 ))
(1−p)2z− 1

2
p2

1−2p , if z ∈ [12 (1 −
(1−2p)2

(1−p)2 ) , 12 (1 +
(1−2p)2

(1−p)2 ))

p + (1 − p)
√
2z − 1, if z ∈ [12 (1 +

(1−2p)2

(1−p)2 ) ,1]

,

if p < 1/2. If p = 1, the seller knows the buyer’s value and F is a Dirac measure at E [v] = 1/2
and thus the buyer can only observe an uninformative signal; while if p = 0, then the seller’s

signal θ is completely uninformative and any mean-preserving contraction of F is feasible for

the buyer, as in Roesler and Szentes (2017).

Figure 2a plots the seller’s profit and the buyer’s surplus as a function of p. As p → 1,

the seller’s profit converges to E[v] = 1/2 and the buyer’s surplus converges to zero; while as

p → 0, the seller’s profit is approximately 0.2 and the buyer’s surplus is approximately 0.3,

as in Roesler and Szentes (2017). Figure 2b depicts the sets of possible welfare outcomes for

different values of p. When p = 0, the feasible welfare outcomes coincide with that in Roesler

and Szentes (2017), when p = 1, the seller fully extracting the surplus is the only possible

welfare outcome. Welfare outcomes for p = 0.6, p = 0.8 are as shown in Figure 2b.

5.4 Price Discrimination

Our results can also be applied to settings of price discrimination in the spirit of Bergemann

et al. (2015). Consider a monopolist who uses consumer data to price-discriminate con-

sumers. The monopolist sells a single product to a unit mass of consumers. Each consumer
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Figure 2: Panel (a) plots the seller’s profit and the buyer’s surplus under the buyer-optimal
signal as a function of p. Panel (b) plots the feasible welfare outcomes for p ∈ {0,0.6,0.8}.

demands a single unit and has value x ∈ X ∶= [x,x] ⊂ R+ for the product. Moreover, each

consumer belongs to one of the protected groups θ ∈ Θ = {θ1, . . . , θJ}. These characteristics

are correlated with consumers’ values. For each j ∈ {1, . . . , J}, let F (⋅ ∣ θj) be the distribution
of values of consumers with characteristic θ = θj. With different combinations of consumer

data, the monopolist is able to charge different prices to different groups of consumers and

engage in third-degree price discrimination.

While consumer data enables the monopolist to engage in price discrimination, it is often

required by law or regulations that consumers cannot be price-discriminated based upon their

protected characteristics. For example, a recent legislation (AB1287) in California specifically

prohibits businesses from price-discriminating based on gender. Given such legal constraints,

it is natural to ask: What market segmentations allow the monopolist to price-discriminate,

but are not based on protected characteristics?

Clearly, the market segmentation that fully segments consumers by their values allows the

monopolist to extract all the surplus. This, however, would typically lead to price discrimina-

tion based on protected characteristics, in the sense that consumer of different characteristics

would face a different distribution of prices. Moreover, simply prohibiting the monopolist

from using protected characteristics to segment consumers would not be privacy-preserving

either, since the monopolist may have access to close proxies of these characteristics. For

example, as noted by The White House (2015):

“Big data naturally raises concerns among groups that have historically been

victims of discrimination. Given hundreds of variables to choose from, it is easy
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to imagine that statistical models could be used to hide more explicit forms of

discrimination by generating customer segments that are closely correlated with

race, gender, ethnicity, or religion [...], even if the profit motive is different from,

and in many cases fundamentally inconsistent with, the sort of prejudice that our

antidiscrimination laws seek to prohibit.”

Our results lead to a characterization of all market segmentations that prohibit the mo-

nopolist from price-discriminating consumers based on their protected characteristics, in the

sense that consumers of different protected characteristics face the same distribution of prices.

Seller-Optimal Segmentations A natural question is what non-discriminatory market

segmentation maximizes the seller’s profit. Proposition 2 shows that this question reduces to

a multi-marginal optimal transport problem. Specifically, let the state space be Ω ∶= X ×Θ,

and suppose that no information about θ can be revealed. For any vector of of consumer

values (x1, . . . , xJ) ∈ XJ , let V (x1, . . . , xJ) be the maximal profit of the monopolist when

knowing that characteristic θj has value xj, without knowing the characteristics:

V (x1, . . . , xn) =max
p≥0

J

∑
j=1

p1{xj ≥ p}P[θ = θj] = max
j∈{1,...,J}

{
J

∑
i=j

P[θ = θ(j)]x(j)} ,

where x(j) is the j-th smallest element of (x1, . . . , xn), and (j) is the index of the j-the

smallest element x(j).

Proposition 2 implies that the profit-maximizing market segmentation can be identified

by finding the joint distribution ρ of (x1, . . . , xJ) that solves the optimal transport problem

sup
ρ∈D
∫
XJ
V (x1, . . . , xJ)dρ . (6)

Suppose that F (x ∣ θ1) ≥ ⋯ ≥ F (x ∣ θJ), so that {F (⋅ ∣ θj)}Jj=1 are ranked by first-order

stochastic dominance, and suppose that (1 −P[θ = θ1]) ⋅ x ≤ x so that there are enough mass

of the “lowest-type” consumers. Under this sufficient condition, we can obtain a closed-

form solution of the transport problem (6), which in turn leads to a characterization of a

seller-optimal segmentation.
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Proposition 13. Let q be the quantile signal. That is,

q ∶= rF (x ∣ θ) + (1 − r)F −(x ∣ θ) .

The market segmentation corresponding to quantile signal q maximizes the seller’s revenue.

Moreover, under any optimal market segmentation:

(i) The outcome is efficient and every consumer purchases the good.

(ii) Consumers with characteristic θ1 always retain zero surplus, while consumers with char-

acteristic θj ≠ θ1 retain positive surplus whenever F (x ∣ θj) > F (x ∣ θ1) for some x ∈X.

(iii) The seller’s profit equals E[x ∣ θ1]. In particular, increases in consumers’ values with

characteristics θ ≠ θ1 in the sense of FOSD do not affect the seller’s profit, while any

increase in consumers’ values with characteristic θ1 in the sense of FOSD is completely

captured by the seller.

Under the seller-optimal segmentation, consumers with different characteristics are pooled

assortatively into the same segment. Since consumers’ values are FOSD-ranked based on

their characteristics, the lowest value in each segment must be of characteristic θ = θ1. The

assumption that (1 − P[θ = θ1]) ⋅ x ≤ x then ensures that it is optimal for the seller to sell to

every consumers in each segment by charging a price that equals the lowest value. Note that,

however, the price distribution faced by each consumer characteristic θ is the same, which

equals F (⋅ ∣ θ1).
This observation may serve as a cautionary tale, as in practice the legislation imposing

privacy constraints typically mention explicitly that they are meant to protect groups that

plausibly have lower willingness to pay. However, according to Proposition 13, this could

mean that the group of consumers who statistically have lower willingness to pay would have

their surplus extracted, while groups of consumers with higher willingness to pay would enjoy

lower prices. In fact, when compared to uniform pricing (i.e., banning any forms of price

discrimination), the group of consumers with the lowest willingness to pay must be worse-off

compared to uniform pricing, while other groups of consumers might be better-off.31

When the assumptions in Proposition 13 are violated, the quantile signal may not be

optimal. In this case, non-trivial reorderings of the quantile signal would be necessary for

optimality, as shown in the next example.

31See the Online Appendix for a concrete numerical example.
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Figure 3: Panel (a) depicts the quantile signal that pools two groups of consumers assorta-
tively. Panel (b) depicts the optimal signal, which pools as many consumers with the same
values as possible, and then pools the remaining consumers negatively assortatively.

Example 5. Suppose that X = {1,2,3}, and Θ = {θ1, θ2}, with P[θ = θ1] = 1/2. Suppose

that the conditional distribution of x given θ = θ1 is (1/2, 1/3, 1/6); while the conditional distri-
bution of x given θ = θ2 equals (1/6, 1/3, 1/2). One can show that the solution to the optimal

transport problem (6) is given by the joint distribution ρ⋆, where ρ∗(1,1) = ρ∗(3,3) = 1/6,
ρ∗(2,2) = ρ∗(1,3) = 1/3,32 corresponds to the reordered quantile signal generated by the

measure-preserving transformations:

Mθ1(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s, if s ∈ [0, 1/6] ∪ (5/6,1]
1/2 + (s − 1/6), if s ∈ (1/6, 1/2]
1/6 + (s − 1/2), if s ∈ (1/2, 5/6]

; Mθ2(s) = s .

The quantile signal and the optimal reordered quantile signal can be represented in the same

way as in Example 2 by Figure 3.

6 Discussion

6.1 Relation to “Private Private Information”

He et al. (2023) study what information about a state taking finitely many values can be

revealed to a group of n agents if their signals s1, . . . , sn are restricted to be independent,

in which case the information structure is called private private. The concept of private

32See the Online Appendix for detailed arguments.
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private information structure relates to privacy-preserving signals as an information structure

s = (s1, . . . sn) is private private if and only if si is privacy-preserving with respect to the σ-

algebra generated by s−i for all i. An important difference between the concepts is that the

information which needs to be kept private is exogenous in our model while it is endogenous

in the case of private private information.

Section 4 of He et al. discusses how the results they obtain for private private information

structures can be used to gain insights into privacy-preserving signals. In our notation,

consider a state space Ω = X × Θ an associated probability measure P. By treating θ as

the signal received by a dummy agent, a signal s is privacy-prserving if and only if (s, θ) is
private private. They then establish the following result: For any (sufficiently nice) decision

problem (u,A), where u ∶X ×A→ R depends only on x,

Theorem (Theorem 2 in He et al. 2023). Whenever X = {0,1} is binary, there exists an

optimal privacy-preserving signal s⋆. The optimal signal is unique up to equivalence: the

distribution of P [x = 1 ∣ s⋆] is F x.33 Furthermore, every privacy-preserving signal s reveals

less information about x than s⋆.

Our Proposition 5 (ii) reproduces this insight. Our other results differ from Theorem 2

in He et al. along two dimensions:

(i) We do not restrict attention to binary states. In fact, our Theorem 3 generalizes The-

orem 2 of He et al. from binary states to an arbitrary one-dimensional state space X

for u affine in x.

(ii) Theorem 2 of He et al. considers decision problems in which the payoff does not depend

on θ. Most of our results do not impose this restriction on the decision problem.34 This

restriction has meaningful implications, as (even when restricting to binary states) there

does not exist a signal that is optimal for all decision problems (see Example 2) and

thus Theorem 2 in He et al. does not apply for the wider class of decision problem

we study.35 In other words, the notion of Blackwell dominance is different since the

underlying state spaces (X ×Θ versus X) are different.

33Note that F
−1

x (q) ∶= E[F −1(x ∣ θ)] = E[1{P[x = 1 ∣ θ] > 1 − q}] for all q ∈ [0,1], and hence F x is exactly
the conjugate of the distribution of the random variable x̄(θ) = P[x = 1 ∣ θ].

34Theorem 1, and Proposition 2,3,4,5 (i) all allow for the utility to depend on θ. As the approach in He
et al. is based on a characterization of feasible posterior beliefs about x, it is not clear how it can be adapted
to this wider class of decision problems where these beliefs are no longer a sufficient statistic for payoffs.

35In Appendix C, He et al. demonstrate that even when the utility does not depend on θ, the uniqueness
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Finally, He et al. (2023) and the present paper use quite different mathematical methodolo-

gies, while He et al. use tools from tomography, our proofs are based upon majorization

theory and optimal transport.

6.2 Relation to Differential Privacy

While we define privacy-preserving signals through an abstract collection of privacy sets,

another notion of privacy is differential privacy, proposed by Dwork, McSherry, Nissim and

Smith (2006).36 Specifically, suppose that Ω is a finite product set Ω1 ×⋯ ×Ωn, where each

dimension Ωi represents characteristics of a different agent. A signal s satisfies ε-differential

privacy for ε > 0 if for any ω,ω′ that differ only in the characteristic of a single agent i (i.e.,

ω−i = ω′−i), a.s.,

∣log P[ω ∣ s]
Pπ[ω′ ∣ s]

− log P[ω]
P[ω′]∣ ≤ ε .

Intuitively, the log-likelihood induced by the signal cannot be influenced by more than ε by

each individual agent. Our notion of privacy considers signals only depends on the charac-

teristics of a single individual, and are restricted to not not reveal certain information. In

contrast, differential privacy considers signals which depend on a whole population of agents,

but who are only influenced to a limited extent by each individual agent. Mathematically,

these notions are unrelated and aim to capture different aspects of privacy.

7 Conclusion

We provide a characterization of signals which do not reveal certain information, and among

others presented application to statistical discrimination, product information, auction, and

price discrimination. An interesting avenue for future research is to use the mathematical

characterization presented in this paper to understand the consequences of different notion

of privacy and fairness.

is a only feature for binary states, by showing that there is a continuum of privacy-preserving signals that
can be optimal for some decision problem in an example with three states and binary θ.

36Relatedly, Schmutte and Yoder (2022) characterizes the distribution of posteriors that can be induced
by signals satisfying ε-differential privacy and studies an information design problem subject to differential
privacy.
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Appendix

Lemma A.1. A signal s is privacy-preserving with respect to P ⊆ F if and only if it is

privacy-preserving with respect to the σ-algebra generated by P.

Proof. Fix any nonempty collection P ⊆ F that is closed under finite intersections. Consider

any signal s that is privacy-preserving with respect to the σ-algebra generated by P, denoted
by σ(P). Since P ⊆ σ(P), s is privacy-preserving with respect to P. Conversely, consider any
signal s that is privacy-preserving with respect to P. Let Ps ⊆ F be the collection of events

for which (1) holds. Clearly, Ps is nonempty since s is privacy-preserving with respect to P.
Moreover, from the fact that P and P[⋅ ∣ ŝ] is a probability measure for all realization ŝ of s,

it follows that Ps is a λ-system. Therefore, by Dynkin’s π −λ theorem, since the π-system P
is contained in the λ-system Ps, the σ-algebra σ(P) generated by P must also be contained

in Ps. Therefore, s is privacy-preserving with respect to σ(P).

Proof of Lemma 1. By Lemma A.1, it is without loss to assume that P is a σ-algebra.

Since (Ω,F) is standard Borel and since P ⊆ F , P is countably generated. This completes

the proof, as any countably generated σ-algebra can be generated by a random variable (see,

e.g., Preston 2008, Proposition 3.2).

Proof of Lemma 3. Fix any θ̂ ∈ Θ, we will show that P[qϕ ≤ z ∣ θ̂] = z for all z ∈ [0,1]. To
see this, first note that since Fϕ(⋅ ∣ θ̂) has at most countably many jumps, enumerated by

{xn} ⊆ R, Fϕ(⋅ ∣ θ̂) can be written as

Fϕ(x ∣ θ̂) =H(x) +
∞

∑
n=1

1{xn ≤ x}(Fϕ(xn ∣ θ̂) − F −ϕ (xn ∣ θ̂)) ,

for all x ∈ R, where H is a nondecreasing and continuous function. For any z ∈ [0,1] and for

any x ∈ R, let

Γz(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if z < F −ϕ (x ∣ θ̂)
z−F−ϕ (x∣θ̂)

Fϕ(x∣θ̂)−F
−

ϕ
(x∣θ̂)

, if z ∈ [F −ϕ (x ∣ θ̂), Fϕ(x ∣ θ̂))

1, if z ≥ Fϕ(x ∣ θ̂)

,
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and note that

∫
R
Γz(x)dFϕ(x ∣ θ̂) =∫

R
Γz(x)dH(x) +

∞

∑
n=1

Γz(xn)(Fϕ(xn ∣ θ̂) − F −ϕ (xn ∣ θ̂))

=∫
R
1{x ≤ F −1ϕ (z ∣ θ̂)}dH(x) +

∞

∑
n=1

Γz(xn)(Fϕ(xn ∣ θ̂) − F −ϕ (xn ∣ θ̂))

=H(F −1ϕ (z ∣ θ̂)) +
∞

∑
n=1

Γz(xn)(Fϕ(xn ∣ θ̂) − F −ϕ (xn ∣ θ̂)).

Therefore, if Fϕ(⋅ ∣ θ̂) is continuous at F −1ϕ (z ∣ θ̂), then Fϕ(F −1ϕ (z ∣ θ̂) ∣ θ̂ = z and Γz(xn) =
1{z ≥ Fϕ(xn ∣ θ̂)}, and hence ∫R Γz(x)dFϕ(x ∣ θ̂) = z. Meanwhile, if Fϕ(⋅ ∣ θ̂) is discontinuous
at F −1ϕ (z ∣ θ̂), then z = Fϕ(xk ∣ θ̂) for some k ∈ N, Fϕ(F −1ϕ (z ∣ θ̂) ∣ θ̂) = Fϕ(xk ∣ θ̂), and
Γz(xk) = (z −F −ϕ (xk ∣ θ̂))/(Fϕ(xk ∣ θ̂)−F −ϕ (xk ∣ θ̂)) while Γz(xn) = 1{z ≥ Fϕ(xn ∣ θ̂)} for n ≠ k.
Therefore,

∫
R
Γz(x)dFϕ(x ∣ θ̂) =Fϕ(F −1ϕ (z ∣ θ̂) ∣ θ̂) + z − F −ϕ (xk ∣ θ̂)

+
∞

∑
n≠k

1{xn ≤ F −1ϕ (z ∣ θ̂)}(Fϕ(xn ∣ θ̂) − F −(xn ∣ θ̂)) −
∞

∑
n=1

1{z ≥ Fϕ(xn ∣ θ̂)}

=Fϕ(xk ∣ θ̂) + z − F −ϕ (xk ∣ θ̂) − (Fϕ(xk ∣ θ̂) − F −ϕ (xk ∣ θ̂)) = z .

Consequently, for any z ∈ [0,1],

P[qϕ ≤ z ∣ θ̂] =P[rFϕ(ϕ ∣ θ̂) + (1 − r)F −ϕ (ϕ ∣ θ̂) ∣ θ̂] = ∫
R
Γz(x)dFϕ(x ∣ θ̂) = z ,

as desired. Therefore, qϕ is independent of θ and thus, by Lemma 1, is privacy-preserving.

Definition A.1. For any statistic ϕ ∶ Ω→ R. A signal s for (ϕ, θ) conditionally reveals ϕ if

for all (Borel) measurable A ⊆ R, P[ϕ ∈ A ∣ s, θ] ∈ {0,1} a.s..

Lemma A.2. A signal for (ϕ, θ) is privacy-preserving if and only if it is Blackwell dominated

in terms of (ϕ, θ) by a privacy-preserving signal that conditionally reveals ϕ.

Proof. Sufficiency follows from the same arguments that prove Lemma 2, with ω replaced

by (ϕ, θ). For necessity, consider any privacy-preserving signal s̃ for (ϕ, θ). Let ξ, ζ ∶ [0,1]→
[0,1] be two independently and uniformly distributed random variables. Then there exists
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another privacy-preserving signal s ∼ s̃ that is measurable with respect to (ω, ξ) and is

independent of (ζ, θ). Let Fϕ(⋅ ∣ θ, s) be the conditional distribution of ϕ given θ and s,

and let t ∶= ζFϕ(ϕ ∣ θ, s) + (1 − ζ)F −ϕ (ϕ ∣ θ, s). Then, since s and θ are independent of ζ, by

the same arguments as the proof of Lemma 3, t is uniformly distributed conditional on θ

and s. Therefore, the signal (t, s) is privacy-preserving. Moreover, by construction, (t, s) is
measurable with respect to (ϕ, θ, r) and thus is a signal for (ϕ, θ). Meanwhile, since (t, s)
reveals more information than s, s̃ ∼ s ⪯ (t, s). Lastly, by construction F −1ϕ (t ∣ θ, s) = ϕ almost

surely. Thus, (t, s) conditionally reveals ϕ. This completes the proof.

Lemma A.3. Any privacy-preserving signal for (ϕ, θ) that conditionally reveals ϕ is Black-

well undominated in terms of (ϕ, θ) among all privacy-preserving signals for (ϕ, θ).

Proof. Let Γ be the set of probability measures whose marginal over Θ equals ν(⋅) ∶= P[θ ∈ ⋅]
(i.e., for all µ ∈ Γ, µ(R×B) = P[θ ∈ B] =∶ ν(B)). Then for any µ ∈ Γ, since R is standard-Borel,

there exists a transition probability T [µ] ∶ R×Θ→∆(R×Θ) (see, e.g., Çinlar 2010, Theorem
2.18, pp. 154),37 such that

µ((−∞, x] ×B) = ∫
B
T [µ](x ∣ θ)dν(θ),

for all x ∈ R and for all measurable B ⊆ Θ.

Note that for any privacy-preserving signal s for (ϕ, θ), let λs be the induced distribution

of posterior beliefs. Then λs(Γ) = 1. If, furthermore, s conditionally reveals ϕ, then for

λs-almost all µ ∈∆(R×Θ), T [µ](⋅ ∣ θ) is a step function with two steps for ν-almost all θ ∈ Θ.

Suppose now that a privacy-preserving signal s for (ϕ, θ) which conditionally reveals ϕ is

Blackwell dominated by a privacy-preserving signal s̃ for (ϕ, θ). Suppose also that s is not

Blackwell equivalent to s̃. Then, by Theorem 2 of Strassen (1965), there exists a dilation

K ∶ ∆(R ×Θ) → ∆∆(R ×Θ) such that λs̃(E) = ∫∆(R×Θ)K(E ∣ µ)dλs(µ) , for all measurable

E ⊆ ∆(R × Θ). Since s is not Blackwell equivalent to s̃, there exists a measurable set

E0 ⊆∆(R ×Θ) with positive λs-measure, such that for all µ ∈ E0, K(⋅ ∣ µ) is not degenerate.
37By the proof of Lemma 1, the measurable Θ can be taken as a subset of R. Therefore, ∆(R ×Θ) can be

endowed with the weak-* topology and the associated Borel σ-algebra, which makes ∆(R×Θ) a Polish space
and hence is standard Borel. Therefore, T [⋅] can be regarded as a measurable function from ∆(R ×Θ) to
GΘ, where G is the space of CDFs on R, with the Borel σ-algebra generated by the weak-* topology, and the
σ-algebra over GΘ is the product σ-algebra. Moreover, since T [µ] is a transition probability, for all µ, µ̃ ∈ Γ,
µ ≠ µ̃ implies T [µ] ≠ T [µ̃].
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Moreover, since s̃ is privacy-preserving, λs̃(Γ) = 1, and hence K(Γ ∣ µ) = 1 for λs-almost all

µ ∈∆∆(R×Θ). Lastly, since K is a dilation, for any µ ∈ E0, ∫∆(R×Θ) µ̃(A)dK(µ̃ ∣ µ) = µ(A) ,
for all A ⊆ R ×Θ.

As a result, for any µ ∈ E0, for all x ∈ R and for all measurable B ⊆ Θ,

∫
B
T [µ](x ∣ θ)dν(θ) = µ((−∞, x] ×B) =∫

∆(R×Θ)
µ̃((−∞,B)dK(µ̃ ∣ µ)

=∫
∆(R×Θ)

(∫
B
T [µ̃](x ∣ θ)dν(θ))dK(µ̃ ∣ µ)

=∫
B
(∫

∆(R×Θ)
T [µ̃](x ∣ θ)dK(µ̃ ∣ µ))dν(θ) ,

and hence for ν-almost all θ ∈ Θ,

T [µ](x ∣ θ) = ∫
∆(R×Θ)

T [µ̃](x ∣ θ)dK(µ̃ ∣ µ) ,

a contradiction, since for ν-almost all θ, T [µ](⋅ ∣ θ) is a step function with two steps and

hence cannot be written as a mixture of distinct CDFs. Therefore, s cannot be Blackwell

dominated by s̃.

Lemma A.4. For any signal s̃, there exists a signal s ∶ Ω× [0,1]→ [0,1] such that s ∼ s̃ and

that P[s ≤ x] = x for all x ∈ [0,1].

Proof. Consider any signal s̃ ∶ Ω→ R. Let ξ, ζ ∶ [0,1]→ [0,1] be two independently and uni-

formly distributed random variables. Then there exists another signal s̄ ∼ s̃ that is measurable

with respect to (ω, ξ) and is independent of ζ. Define another signal s′ ∶ Ω × [0,1] → ∆(Ω)
as s′(ω, r) ∶= P[ω ∈ ⋅ ∣ s](ω, r). Since ∆(Ω), with the Borel-σ algebra induced by the weak-*

topology, is standard Borel, there exists an isomorphism ψ ∶ ∆(Ω) → [0,1]. Since ψ is in-

vertible, ψ(s′) ∼ s̄. Let Fψ be the distribution of ψ(s′), so that Fψ(z) ∶= P[ψ(s′) ≤ z] for all
z ∈ [0,1]. Then, let s ∶= ζFψ(ψ(s′)) + (1 − ζ)F −ψ (ψ(s′)). By the same arguments as the proof

of Lemma 3, s is uniformly distributed. Moreover, since F −1ψ (s) = ψ(s′) a.e., s ∼ ψ(s′) ∼ s̄ ∼ s̃.
This completes the proof.

Lemma A.5. Every privacy-preserving signal for (ϕ, θ) that conditionally reveals ϕ is Black-

well equivalent to some reordered ϕ-quantile signal.
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Proof. Consider any privacy-preserving signal s ∶ Ω × [0,1] → S for ϕ that conditionally

reveals ϕ. By Lemma A.4, it is without loss to assume that S = [0,1] and that the marginal

distribution of s is uniform. Since s conditionally reveals ϕ, there exists a measurable function

η ∶ [0,1] ×Θ→ R such that ϕ = η(s, θ) almost surely. Therefore, for any θ̂ ∈ Θ,

P[η(s, θ) ≤ x ∣ θ̂] = P[ϕ ≤ x ∣ θ̂] = Fϕ(x ∣ θ̂) ,

and hence, for any θ̂ ∈ Θ, the nondecreasing rearrangement of η(⋅, θ̂) is F −1ϕ (⋅ ∣ θ̂). Thus, by

Proposition 3 of Ryff (1970), there exists a family {Mθ̂}θ̂∈Θ of measure-preserving transfor-

mations such that

η(s, θ̂) = F −1ϕ (Mθ̂(s) ∣ θ̂) ,

for all θ̂ ∈ Θ. Meanwhile, let t be the M -reordered ϕ-quantile signal, the posterior belief

conditional on realization t̂ and on θ̂ is F −1ϕ (Mθ̂(t̂) ∣ θ̂). Together, s ∼ t, as desired.

Proof of Proposition 1. Take ϕ ∶ Ω → R to be an invertible statistic with ϕ−1 being mea-

surable. Then any signal is a signal for (ϕ, θ) and signal s̃ Blackwell dominates signal s if and

only if s̃ Blackwell dominates s in terms of (ϕ, θ). Proposition 1 then follows from Lemma 2

and Lemma A.2.

Proof of Theorem 2. (i) follows from Lemma 2, Lemma A.2, and Lemma A.5. (ii) follows
from Lemma A.3 and Lemma A.5.

Proof of Theorem 1. For any statistic ϕ such that the ϕ-quantile signal qϕ is conditionally

revealing, the σ-algebra generated by (ϕ, θ) must be F . Therefore, every signal s is a signal

for (ϕ, θ). Since Ω is a standard Borel space, there exists an invertible ϕ ∶ Ω → R such that

ϕ−1 is measurable, and hence there exists a conditionally revealing ϕ-quantile signal. As a

result, Theorem 1 follows from Theorem 2.

Proof of Theorem 3. For sufficiency, since F ϕ is induced by the ϕ-quantile signal qϕ, every

mean-preserving contraction G of F ϕ can be induced by a signal for (ϕ, θ) that is Blackwell
dominated by qϕ by Strassen’s theorem (Strassen 1965). Together with Theorem 2, G can

be induced by a privacy-preserving signal. To prove necessity, by Theorem 2, it suffices to

show that the distribution G of posterior means induced by any reordered ϕ-quantile signal

is a mean-preserving contraction of F ϕ. To see this, observe that for any family {Mθ̂}θ̂∈Θ, the
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posterior mean conditional on a realization ŝ of the M -reordered ϕ-quantile signal s is given

by

E[F −1ϕ (Mθ(ŝ) ∣ θ)] . (A.7)

Let G be the distribution of the random variable E[F −1ϕ (Mθ(s) ∣ θ)], where the expectation is

taken over θ. Since s is uniformly distributed, the quantile function G−1 is the nodecreasing

arrangement of the function ŝ ↦ E[F −1ϕ (Mθ(ŝ) ∣ θ)]. Thus, by Proposition 3 of Ryff (1970),

there exists a Lebesgue measure-preserving transformation ψ ∶ [0,1] → [0,1] such that for

almost all ŝ ∈ [0,1],
G−1(ψ(ŝ)) = E[F −1ϕ (Mθ(ŝ) ∣ θ)] .

As ψ andMθ̂ are Lebesgue measure-preserving transformations for all θ̂ ∈ Θ, we have that

for all t ∈ [0,1],

∫
1

t
G−1(y)dy = ∫

1

0
1{ψ(z) ≥ t}G−1(ψ(z))dz =∫

1

0
1{ψ(z) ≥ t}E[F −1ϕ (Mθ(z) ∣ θ)]dz

≤∫
1

0
1{z ≥ t}E[F −1ϕ (z ∣ θ)]dz

=∫
1

t
F
−1

ϕ (z)dz ,

where the first equality follows since ψ is Lebesgue measure-preserving, and the inequality

follows from Fubini’s theorem and the Hardy-Littlewood-Polya inequality (see, e.g., Hardy

et al. 1929 and Puccetti and Wang 2015, Theorem 2.1). Thus, G−1 is majorized by F
−1

ϕ , which

implies that G is a mean-preserving contraction of F ϕ (see, e.g., Shaked and Shanthikumar

(2007), Section 3.A).
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Online Appendix

Proof of Lemma 4

We prove Lemma 4 by proving a more general result, as stated below.

Lemma OA.1. Consider any statistic ϕ ∶ Ω → R. Let Dϕ be the collection of distributions

ρ ∈ ∆(RJ) such that the marginal of the j-th component equals Fϕ(⋅ ∣ θj). Then, ρ ∈ ∆(RJ)
is the joint distribution of (F −1ϕ (Mθj(s)) ∣ θj)Jj=1 for the M-reordered ϕ-quantile signal if and

only if ρ ∈ Dϕ.

Proof. Consider any family M = {Mθj}Jj=1 of measure-preserving transformations. Since s

is uniformly distributed, the distribution of F −1(Mθj(s) ∣ θj) is F (⋅ ∣ θj) for all j ∈ {1, . . . , J}.
Therefore, the joint distribution ρ of (F −1(Mθj(s) ∣ θj))Jj=1 is in Dϕ.

Conversely, consider any ρ ∈ D. Since ΩJ is standard Borel, there exists measurable

functions {ηj}Jj=1 such that the joint distribution of (ηj(s))Jj=1 is ρ, where s is a uniform

random variable on [0,1]. Since for all j ∈ {1, . . . , J}, ηj(s) and F −1(s ∣ θj) have the same

distribution, there exists a measure-preserving transformation Mθj ∶ [0,1] → [0,1] such that

ηj(ŝ) = F −1(Φθj(ŝ) ∣ θj) for all ŝ ∈ [0,1] and for all j ∈ {1, . . . , J} by Proposition 3 of Ryff

(1970), as desired.

With Lemma OA.1, Lemma 4 follows immediately by taking ϕ to be a Borel isomorphism.

Proof of Proposition 2

We prove Proposition 2 by proving a more general result, stated as follows.

Proposition OA.1. For any statistic ϕ ∶ Ω → R, and for any decision problem (u,A) with
u(ω, a) = h(ϕ(ω), θ(ω), a), let

Ṽ (x1, . . . , xJ) ∶= sup
a∈A
(
J

∑
j=1

h(xj, θj, a)P[θ = θj]) , (A.8)

for all (xj)Jj=1 ∈ RJ . Then, the decision-maker’s optimal value V ⋆ among all privacy-preserving
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signals for (ϕ, θ) is given by

V ⋆ = sup
ρ∈Dϕ

∫
RJ
Ṽ (x1, . . . , xJ)dρ . (A.9)

Moreover, any optimal privacy-preserving signal must be Blackwell-equivalent to some M-

reordered ϕ-quantile signal such that the distribution of (F −1ϕ (Mθj(s) ∣ θj))Jj=1 is a solution of

(A.9).

Proof. By Theorem 2 and Blackwell’s theorem, any privacy-preserving signal for (ϕ, θ) yields
a (weakly) lower payoff to the decision-maker than some reordered ϕ-quantile signal. Together

with Lemma OA.1, it then follows that

V ⋆ = sup
ρ∈Dϕ

∫
RJ
Ṽ (x1, . . . , xJ)dρ .

Moreover, by Theorem 2, any privacy-preserving for (ϕ, θ) that yields V ⋆ must be the M -

reordered ϕ-quantile signal s, for some family M = {Mθj}Jj=1 of measure-preserving transfor-

mations. Thus, by Lemma OA.1, the joint distribution of (F −1ϕ (Mθj(s), θj))Jj=1 must be a

solution of (A.9).

With Proposition OA.1, Proposition 2 follows immediately by taking ϕ as a Borel isomo-

riphism.

Proof of Proposition 3

Let V̂ ∶ RJ ×A→ R be defined as

V̂ (x1, . . . , xJ , a) ∶=
J

∑
j=1

h(xj, θj, a)P[θ = θj].

We first show that V̂ has increasing difference in (x1, . . . , xJ) and a, and is supermodular in

(x1, . . . , xJ). Indeed, for any a, a′ ∈ A and x = (xj)Jj=1,x′ = (x′j)Jj=1 ∈ ΩJ such that a ≥ a′ and
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xj ≥ x′j for all j,

V̂ (x, a) − V̂ (x, a′) =
J

∑
j=1

[h(xj, θj, a) − h(x′j, θj, a′)]P[θ = θj]

≥
J

∑
j=1

[h(x′j, θj, a) − h(x′j, θj, a′)]P[θ = θj]

=V̂ (x′, a) − V̂ (x′, a′) ,

where the inequality follows from the supermodularity of h. Furthermore, for any x =
(xj)Jj=1,x′ = (x′j)Jj=1 ∈ ΩJ and for all a ∈ A,

V̂ (x ∨ x′, a) + V̂ (x ∧ x′, a) =
J

∑
j=1

[h(max{xj, x′j}, θj, a) + h(min{xj, x′j}, θj, a)]P[θ = θj]

=
J

∑
j=1

[h(xj, θj, a) + u(x′j, θj, a)]P[θ = θj] = V̂ (x, a) + V̂ (x′, a) ,

We next show that Ṽ ∶ ΩJ → R defined in (A.8) is supermodular. Since argmaxa∈A V̂ (x, a)
is nonempty for all x ∈ ΩJ , for any a⋆(x) ∈ argmaxa∈A V̂ (x, a) and for any x = (xj)Jj=1 ∈ RJ ,

Ṽ (x) = V̂ (x, a⋆(x)). Therefore, it suffices to show that

V̂ (x ∨ x′, a⋆(x ∨ x′)) + V̂ (x ∧ x′, a⋆(x ∧ x′)) ≥ V̂ (x, a⋆(x)) + V̂ (x′, a⋆(x′)) ,

for all x,x′ ∈ ΩJ , and for any selection a⋆(⋅) for the argmax correspondence. To see this,

consider any x,x′ ∈ RJ and any selection a⋆(⋅). Since A is totally ordered, it is without loss
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to assume that a⋆(x) ≥ a⋆(x′). As a result,

V̂ (x ∨ x′, a⋆(x ∨ x′)) + V̂ (x ∧ x′, a⋆(x ∧ x′)))
=V̂ (x ∨ x′, a⋆(x)) + V̂ (x ∧ x′, a⋆(x))
+ [V̂ (x ∨ x′, a⋆(x ∨ x′)) − V̂ (x ∨ x′, a⋆(x))] + [V̂ (x ∧ x′, a⋆(x ∧ x′)) − V̂ (x ∧ x′, a⋆(x))]
≥V̂ (x, a⋆(x)) + V̂ (x′, a⋆(x))
+ [V̂ (x ∨ x′, a⋆(x ∨ x′)) − V̂ (x ∨ x′, a⋆(x))] + [V̂ (x ∧ x′, a⋆(x ∧ x′)) − V̂ (x ∧ x′, a⋆(x))]
=V̂ (x, a⋆(x)) + V̂ (x′, a⋆(x′)) + V̂ (x′, a⋆(x)) − V̂ (x′, a⋆(x′))
+ [V̂ (x ∨ x′, a⋆(x ∨ x′)) − V̂ (x ∨ x′, a⋆(x))] + [V̂ (x ∧ x′, a⋆(x ∧ x′)) − V̂ (x ∧ x′, a⋆(x))]
≥V̂ (x, a⋆(x)) + V̂ (x′, a⋆(x′)) + V̂ (x ∧ x′, a⋆(x)) − V̂ (x ∧ x′, a⋆(x′))
+ [V̂ (x ∨ x′, a⋆(x ∨ x′)) − V̂ (x ∨ x′, a⋆(x))] + [V̂ (x ∧ x′, a⋆(x ∧ x′)) − V̂ (x ∧ x′, a⋆(x))]
=V̂ (x, a⋆(x)) + V̂ (x′, a⋆(x′))
+ [V̂ (x ∨ x′, a⋆(x ∨ x′)) − V̂ (x ∨ x′, a⋆(x))] + [V̂ (x ∧ x′, a⋆(x ∧ x′)) − V̂ (x ∧ x′, a⋆(x′))]
≥V̂ (x, a⋆(x)) + V̂ (x′, a⋆(x′)) ,

where the first inequality follows from supermodularity of V̂ , the second inequality follows

from the increasing difference property of V̂ and from a⋆(x) ≥ a⋆(x′), and the third inequality

follows from optimality of a⋆.

Now let

Ṽ (x) ∶= sup
a∈A

V̂ (x, a) = sup
a∈A

J

∑
j=1

h(xj, θj, a)P[θ = θj] ,

for all x ∈ RJ . Note that by Lemma OA.1, (A.9) is equivalent to choosing a family {Mj}Jj=1
of measure-preserving transformations to maximize

∫
1

0
Ṽ (F −1ϕ (M1(q) ∣ θ1), . . . , F −1ϕ (MJ(q) ∣ θJ))dq .

Since Ṽ is supermodular, Theorem 5 of Tchen (1980) (see also, Theorem 2.1 of Puccetti and

Wang 2015) implies that

∫
1

0
Ṽ (F −1ϕ (M1(q) ∣ θ1), . . . , F −1ϕ (MJ(q) ∣ θJ))dq ≤ ∫

1

0
Ṽ (F −1ϕ (q ∣ θ1), . . . F −1ϕ (q ∣ θJ))dq
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for any family {Mj}Jj=1 of measure-preserving transformations. Together with Proposition OA.1,

V ⋆ is attained by the ϕ-quantile signal, as desired.

Proof of Proposition 6

For any ρ ∈ D, Lemma 4 implies that there exists a familyM = {Mθ̂}θ̂∈Θ of measure-preserving

transformations such that the joint distribution of (ω̃Mj )Jj=1 is ρ. Consider the problem where

the sender is restricted to choose garblings of the M -reordered ϕ-quantile signal, for some

conditionally revealing ϕ-quantile signal. Standard arguments (Kamenica and Gentzkow

2011) implies that the sender’s value in this restricted problem is V S(ρ). By Theorem 1,

since every privacy-preserving signal is a garbling of some reordered ϕ-quantile signal, the

sender’s value V ⋆S in the original problem must be given by

max
ρ∈D

V S(ρ) .

Proof of Proposition 13

Consider the market segmentation that corresponds to the quantile signal q. Under this

segmentation, there is a continuum of segments q̂ ∈ [0,1], and in each segment q̂ ∈ [0,1],
there are J possible consumer values {F −1(q̂ ∣ θj)}Jj=1. Let ρ⋆ ∈ D be the joint distribution of

{F −1(q ∣ θj)}Jj=1.
We now show that ρ⋆ solves the optimal transport problem (6). To this end, we construct

the Lagrange multipliers such that weak duality holds under ρ⋆. Let K1(x1) ∶= x1, and let

Kj(xj) ∶= 0 for all j ∈ {2, . . . , J}. Then, since F (⋅ ∣ θ1) ≥ . . . ≥ F (⋅ ∣ θJ), x1 ≤ . . . , xJ for

all (xj)Jj=1 ∈ supp(ρ⋆). Moreover, since (1 − P[θ = θ1]) ⋅ x ≤ x, V (x1, . . . , xn) = x1 for all

(xj)Jj=1 ∈ supp(ρ⋆). Therefore,

J

∑
j=1

Kj(xj) = x1 = V (x1, . . . , xJ) ,

for all (xj)Jj=1 ∈ supp(ρ⋆).
Meanwhile, for any (xj)Jj=1 ∈ [x,x]J , if x1 = min{xj}Jj=1, then V (x1, . . . , xJ) = x1. If

x1 > min{xj}Jj=1, let x(j) denotes the (j)-th smallest element of (xj)Jj=1 ∈ [x,x]J and let
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(j) ∈ {1, . . . , J} be the index of that element. Then,

x1 ≥ x ≥ (1 − P[θ = θ1])x ≥
J

∑
j=i

P[θ = θ(j)]x ≥
J

∑
j=i

P[θ = θ(j)]x(j) ,

for all i ∈ {2, . . . , J}. Thus,

J

∑
j=1

Kj(xj) = x1 ≥ max
i∈{1,...,J}

J

∑
j=i

P[θ = θ(j)]x(j) = V (x1, . . . , xJ) .

As a result, {Kj}Jj=1 are the Lagrange multipliers that warrant ρ⋆ as a solution. This proves

(i). (ii) through (iv) then follows immediately from the fact that F −1(q̂ ∣ θ1) ≤ F −1(q̂ ∣ θj)
for all q̂ ∈ [0,1] and for all j ∈ {1, . . . , J}. This completes the proof.

Constructing a Reordered Quantile Signal

Consider any ϕ-quantile signal qϕ. Let {Mθ̂}θ̂∈Θ be a family of measure-preserving transfor-

mations such that θ̂ ↦ Mθ̂(s) is measurable, for all s ∈ [0,1]. We now construct explicitly

the M -reordered ϕ-quantile signal.

Let ξ, ζ ∶ [0,1] → [0,1] be two independent random variables that are uniformly dis-

tributed. Let

q ∶= ξFϕ(ϕ ∣ θ) + (1 − ξ)F −ϕ (ϕ ∣ θ) .

Then q is independent of ζ and is Blackwell equivalent to qϕ. Fix any θ̂ ∈ Θ, and let Cθ̂ be

the joint distribution of (ζ,Mθ̂(ζ)), i.e.,

Cθ̂(u, v) ∶= P[ζ ≤ u,Mθ̂(ζ) ≤ v] ,

for all u, v ∈ [0,1]. Note that by definition Cθ̂ assigns probability one to the set {(u, v) ∈
[0,1]2 ∶ u =Mθ̂(v)}

Let Kθ̂ ∶ [0,1] → [0,1] be the disintegration (see, e.g., Çinlar 2010, Theorem 2.18, pp.

154) of Cθ̂ with respect to the Lebesgue measure, so that

Cθ̂(u, v) ∶= ∫
u

0
Kθ̂(v ∣ z)dz .
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Thus, for any random variable s that is distributed according to Kθ̂(⋅ ∣ q̂) conditional on θ̂
and q̂,

P[Mθ̂(s) = q̂ ∣ θ̂, q̂] = 1 .

Thus, let

s ∶=K−1θ (ζ ∣ q) .

The distribution of s conditional on θ̂ and q̂ is then Kθ̂(⋅ ∣ q̂). Therefore, almost surely,

Mθ(s) = q ,

which in turns imply that Mθ(s) ∼ qϕ, as desired.
Furthermore, note that for any s such that Mθ(s) ∼ qϕ, s must be Blackwell equivalent

to a signal s̃ that is distributed according to Kθ̂(⋅ ∣ q̂) conditional on θ̂ and q̂, for almost

all θ̂ and q̂. Since the disintegration of Cθ̂ is essentially unique, it follows that a reordered

ϕ-quantile signal is unique up to Blackwell equivalence.

Belief-Based Characterization of Privacy-Preserving Signals

For completeness, we provide a characterization of privacy-preserving signals in terms of

distributions over posterior beliefs that is equivalent to Theorem 1. Denote by p0(A) ∶=
P[ω ∈ A] the probability of event A ∈ F under the prior.

Suppose that there are only finitely many states ∣Ω∣ < ∞ and (without loss) that the

privacy sets are disjoint: P ∩ P ′ = ∅ for all P,P ′ ∈ P. From Blackwell’s theorem (Blackwell

1953), a signal s can be equivalently represented by a random variable p ∶ Ω → ∆(Ω) such
that E[p] = p0. Therefore, a signal p is privacy-preserving if and only if

E [p] = p0

P [∑
ω∈P

p(ω) = ∑
ω∈P

p0(ω)] = 1 ∀P ∈ P .
(A.10)

Our results shows that the Blackwell frontier of the set of privacy-preserving signals is given
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by those privacy-preserving signals which in addition satisfy

P [∣supp (p) ∩ P ∣ = 1] = 1 ∀P ∈ P . (A.11)

In other words, (A.10) holds if and only if p is a mean-preserving contraction of some p̃ which

satisfies (A.10) and (A.11). For a general state space Ω, the characterization is similar.

Relaxing the Independence Criterion

An immediate implication of Remark 2 is a relaxation of the definition of privacy-preserving

signals. While we define privacy-preserving signals by the notion of independence, condition-

ally privacy-preserving signals relaxes the independence requirement by allowing for correla-

tions with the component y. In particular, one may consider a signal y that is independent of

a statistic ϕ ∶ Ω→ R, but is not privacy-preserving.38 Conditionally privacy-preserving signals

in this environment can then be regarded as privacy-preserving signals with a less stringent

requirement for posterior beliefs, as changes in posterior beliefs on privacy sets conditional

on realizations of s would be allowed as long as it is through y.

Another Notion of Algorithmic Fairness

In §5.1, we show how our results can be applied to the literature of algorithmic fairness

and demonstrate how privacy-preserving signals are related to the notion of fairness called

independence. In the literature on algorithmic fairness, there are other notions of fairness

that do not require statistical independence, as discussed in §5.1. One of the most commonly

used alternatives to statistical independence is called separation. Separation requires the

decisions to be independent of protected characteristics conditional on the true state.

Our results can also be applied to this setting. To see this, suppose that the underlying

outcome, γ, is binary and takes values 0 or 1. Let x be the expected probability of the

underlying state being γ = 1, conditional on all the observable covariates (including protected

characteristics θ). A signal would satisfy the requirement of separation if its realization is

independent of θ conditional on γ. Consider any conditionally privacy-preserving signal s. By

38In fact, we can fully characterize these signals, as they are equivalent to privacy-preserving signals for θ
that are independent of ϕ.
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definition, such a signal would be independent of θ conditional on γ. Moreover, a conditionally

privacy-preserving signal is Blackwell-undominated if and only if it takes the form of (s, γ),
where s̃ is some reordered quantile signal conditional on γ. Although the signal that reveals

(s̃, γ) may not be feasible, as the outcome γ is typically unknown, one can project this signal

by computing the conditional expectation of (s̃, γ) given x. This conditional expectation

is thus, by construction, a garbling of x, and is conditionally independent of θ given γ.

Furthermore, since taking the conditional expectation preserves the Blackwell order, this

signal must remain Blackwell-undominated among all feasible signals.

Privacy-Preserving Segmentation and Uniform Pricing

Consider the following example demonstrating that high value consumers might be better-

off under the seller-optimal privacy-preserving segmentation than under uniform pricing.

Suppose that X = [1/3,1], F (x ∣ θ1) = 3/2(x − 1/3), F (x ∣ θ2) = 2(x − 1/2)+ for all x ∈ X, and

P[θ = θ1] = 1/3, P[θ = θ2] = 2/3. The optimal uniform price is 4/5, and the surplus of θ2

consumers is 1/25. Under the seller-optimal privacy-preserving segmentation, the surplus of

θ2 consumers is 1/12 > 1/25.

Verifying the Optimality of ρ⋆

In Section 5.4, we claim that the joint distribution ρ⋆ is optimal in our example. To see

this, recall that a joint distribution ρ ∈ D is a solution of the associated optimal transport

problem if and only if there exists Lagrange multipliers K1,K2 ∶ {1,2,3}→ R that satisfy the

complementary slackness condition: K1(x1) +K2(x2) ≥ V (x1, x2), for all (x1, x2) ∈ {1,2,3}2,
with equality on the support of ρ. It can then be verified that the complementary slack-

ness condition is satisfied under the Lagrange multipliers (K1(x))x∈{1,2,3} = (1,2, 5/2) and

(K2(x))x∈{1,2,3} = (0,0, 1/2), and hence ρ⋆ is indeed a solution.
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