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Introduction

I We propose a new methodology for estimating cost functions
when data on cost and demand variables is available.

I Our method does not use instruments to deal with the
endogeneity issues arising both on the demand side and the
cost side, unlike in the literature.

I Our method is direct rather than the pseudo-cost-based
method of Byrne et al (2022).

I Industries under (partial) government oversight, such as
banks, hospitals, nursing homes etc. report cost data.

I We conduct several Monte-Carlo experiments to show our
method works well - assuming either Logit or BLP on demand
side and Cobb-Douglas production function on the supply side.
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I We also propose an approach to estimating consistently the
coefficients of the observed characteristics in demand
functions without valid instruments.

I We estimate the price coefficient twice, using cost data, and
(constructed) instruments. If the two estimates are close, then
we obtain information on the validity of the instruments and
use it to estimate the coefficients of the observed product
characteristics. Our idea is similar in spirit to the
Hausman-Wu test (Wu (1973), Hausman (1978)).

I The above idea also allows us to construct valid instrument
from the invalid ones.

I We conduct several Monte-Carlo experiments to show our
method works well.
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Literature

I There has been active research on the measurement of
markup (price minus marginal cost in the
monopolistic/oligopolistic industries. Examples are : Berry
(1994), Berry Levinsohn and Pakes (BLP 1995), DeLoecker
and Warzynski (2012) and the subsequent literature.

I Most of them use instruments (Berry (1994), BLP (1995)
etc.) or similar orthogonality conditions (Olley and Pakes
(1996), Levinsohn and Petrin (2003), Ackerberg, Caves and
Frazer (2015)) for the identification of the key parameters
(price and output coefficients, production function parameters
etc.)

I The number of instruments required grows with the
complexity of the model. However, in most cases, their
validity is unknown.
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Model: Demand Side

I In each market m = 1, . . . ,M, there are Jm products
I Consumer choice set in market m: {0, 1, . . . , Jm}.
I Choice 0: no purchase option (outside option).
I Consumer utility from consuming product j :

uijm = xjmβ − pjmαp + ξjm + εijm.
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Demand side: Berry (1994) logit model

I If εijm has a logit distribution then market share of product j
in market m is given by:

sjm = exp (xjmβ − pjmαp + ξjm)∑Jm
l=0 exp (xlmβ − plmαp + ξlm)

= exp (xjmβ − pjmαp + ξjm)
1 +

∑Jm
l=1 exp (xlmβ − plmαp + ξlm)

(1)

s0m = 1
1 +

∑Jm
l=1 exp (xlmβ − plmαp + ξlm)

(2)

I ξjm: unobserved product characteristics (demand shock).
I s0m: For outside option, we set p0m = 0, x0m = 0, ξ0m = 0.
I
∑Jm

j=0 sjm = 1.
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The cost side

I Output and market size: qjm = Qmsjm.
I Total Cost is given by:

Cjm = C (qjm,wjm, xjm, υjm; θc) ,

I θc is the parameter vector; wjm: L× 1 input price vector; υjm
the unobserved cost shock.

I Log linear form:

logCjm = c0 + (logqjm) cq + (logwjm) cw + xjmcx + υjm.
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Variables in the data

Demand Side:
I pjm: price, sjm: market share, xjm: observed product

characteristics.
Supply Side
I Cjm: total cost, qjm: output, wjm: input price, xjm.
I Ckjm: cost of input l , l = 1, ..., L.

Market
I Qm: market size, qjm = Qmsjm, j = 1, . . . , Jm.
I We only need to observe two out of these three variables in

the data.
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The IV approach

Demand Side
I Dividing Equation (1) by (2), we can eliminate the

denominator.
I Then, taking logs, we derive:

log (sjm)− log (s0m) = xjmβ − pjmαp + ξjm.

I The endogeneity problem: price likely correlated with the
unobserved product characteristics, that is, the error term ξjm.
OLS estimate of αp is biased.

I The IV approach is to use an instrument for price and then
the moment condition E [ξjmzdjm] = 0, zdjm is an Ld × 1
vector of instruments that is correlated with pjm and
uncorrelated with ξjm.
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The Cost side

logCjm = c0 + (logqjm) cq + (logwjm) cw + xjmcx + υjm.

I The endogeneity problem: log output likely correlated with
the cost shock, υjm, leading to biased estimates of cq.

I The IV approach is to use an instrument for output and then
the moment condition E [υjmzcjm] = 0, zcjm is an Lc × 1
vector of instruments that is correlated with logqjm and
uncorrelated with υjm.
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Profit maximization

I Given price and output (market share) of competitor firms,
the oligopolistic firm maximizes profit given by:

πjm = pjmqjm − C (qjm,wjm, xjm, υjm; θc) ,

by choosing price. The resulting first order condition equates
marginal revenue with marginal cost:

MRjm = pjm + sjm

[
∂sj (pm,Xm, ξm; θd )

∂pjm

]−1

,

= MCjm = ∂C (qjm,wjm, xjm, υjm; θc)
∂qjm

.
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Using the FOC

I Suppose we know the marginal cost.
I Then, assuming the logit demand for the sake of simplicity, we

derive
MRjm = pjm −

1
(1− sjm)αp0

= MCjm

We thus identify the true price coefficient as

αp0 = 1
(1− sjm) (pjm −MCjm)

I We usually do not have data on marginal cost, thus, we first
need to estimate the cost function to derive the marginal cost.

I Estimating the cost function runs into the endogeneity
problem, which requires instruments.
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I After estimating the price coefficient using instruments, BLP
(1995) use the FOC to estimate cost parameters without cost
data.

I They assume that the marginal cost function is a log-linear
function of output and input prices. In case of logit demand
and log-linear cost function, the FOC would be

pjm −
1

(1− sjm)αp
= mc0 + (logqjm)mcq + (logwjm) mcw + xjmmcx + υjm.

I They need to use instruments for log output.
I We use the FOC and the cost data and estimate parameters

without instruments.
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Concerns about the IV approach

I Good instruments are difficult to find especially as the
demand models have become increasingly complex requiring
many instruments and their interactions.

I Commonly-used instruments for demand estimation are cost
shifters such as input prices. Firm-level data on wage may
reflect product quality or productivity (high product quality or
productivity requires highly paid workers).

I Similarly, observed characteristics of the competitor firms as
instruments for price may not be valid if they are correlated
with unobserved product characteristics or the cost shock.
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I Similar arguments apply on the cost side.
I Commonly-used instruments for cost estimation are demand

shifters such as income which may not satisfy the exclusion
restrictions.

I Using invalid instruments leads to biased estimates which in
turn misinforms policy analysis.

I Even if instruments are available, our methodology can be
used as a tool to check the validity of the instruments by
comparing estimates.
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Instrument-free joint estimation of the price coefficient in
demand and output coefficient in cost functions

The Cobb-Douglas example.
I The Cobb-Douglas production function

q = [Aexp (xη + υ)]−(αc +βc ) LαcKβc ,

where L and K denote labor and capital respectively and υ is
the unobserved cost shock (inverse of productivity shock).
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The cost functions

I Then, the cost function is

C∗ (q,w , r , x , υ)

= (αc + βc)
( w
αc

)αc/(αc +βc ) ( r
βc

)βc/(αc +βc )

×Aexp (xη + υ) q
1

αc +βc .

I And the marginal cost function is

MC∗ (q,w , r , x , υ)

=
( w
αc

)αc/(αc +βc ) ( r
βc

)βc/(αc +βc )
Aexp (xη + υ) q

1
αc +βc −1

where w and r are the wage rate and rental rate respectively.
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Estimating the cost function: key steps of our method

I First, divide true cost by marginal cost:

C∗ (q,w , r , x , υ)
MC∗ (q,w , r , x , υ) = (αc + βc) q.

I Substitute MR for MC∗ (q,w , r , x , υ) from the FOC:

C∗ (qjm,wjm, rjm, xjm, υ) = (αc + βc) qjmMRj (pm, sm,Xm; θd ) .
(3)

I Define observed cost to be true cost plus an i.i.d.
measurement error:

Cjm = C∗jm +ucjm = (αc + βc) qjmMRj (pm, sm,Xm; θd )+ucjm.

I We use this equation to estimate some of the cost parameters
and the demand parameters.
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I In the logit case,

MRj (pm, sm,Xm; θd ) = pjm −
1

(1− sjm)αp
.

I Substituting in the cost function, we obtain:

Cjm = (αc + βc) qjm

(
pjm −

1
(1− sjm)αp

)
+ ucjm. (4)

That is,

Cjm = qjmpjm (αc + βc)− qjm
(1− sjm)

αc + βc
αp

+ ucjm. (5)

Because the residual ucjm is a measurement error, assumed to be
i.i.d., it is uncorrelated with the RHS variables qjmpjm and
qjm/ (1− sjm), thus, there is no endogeneity issue and thus,
parameters αc + βc and (αc + βc) /αp are estimated without any
bias via simple OLS. Hence, αp is estimated consistently.
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Use of Shephard’s Lemma
I To estimate αc and βc , we can use the Shephard’s lemma if

input cost data is available:

∂lnC∗ (qjm,wjm, xjm, υjm; θc0)
∂lnwkjm

= αc
αc + βc

= wjmLjm
C∗jm

.

where C∗jm = (αc + βc) qjmMRjm as in Equation (3).
I Then denoting the measurement error in the labor cost data

by uLjm, we obtain the estimate of αc from the following:

CLjm = wjmLjm + uLjm = αcqjmMRj (pm, sm,Xm; θd ) + uLjm

CLjm = αcqjm

(
pjm −

1
(1− sjm)αp

)
+ ucjm.

Once again, this is a simple OLS estimation exercise with no
endogeneity issue and thus the estimate of αc is unbiased.
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Monte Carlo Experiments for BLP Demand

I We conducted Monte Carlo experiments for the random
coefficient logit model or BLP where market share function is
as follows:

I

sj (pm,Xm, ξm; θ)

=
∫

αp

∫
β

exp (xjmβ − pjmαp + ξjm)∑Jm
k=0 exp (xkmβ − pkmαp + ξkm)

dFβ (β; θβ) dFαp

(
αp; θαp

)
,

where Fαp

(
.; θαp

)
denotes the distribution function of the

parameter vector θαp and similarly for β.
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Monte Carlo experiments for BLP demand

I Letting µαp to be the mean of αp and µβ the mean of β, the
mean utility is given by:

δjm ≡ xjmµβ − pjmµαp + ξjm.

I The parameter set up is the same as for logit demand except
µαp replaces αp and µβ replaces β and in addition, we need
to estimate the standard deviations of these parameters,
denoted by σαp and σβ respectively.

I We assume four firms in each market so that the sample size,
denoted by T equals 4M, where M denotes the number of
markets.

I We report statistics from 100 Monte Carlo
simulation/estimation exercises.
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Table: Monte Carlo Parameter Values

Parameter Description Value
(a) Demand-side parameters

µαp Price coef. mean 2.0
σαp Price coef. std. dev 0.5
µβ Product characteristic coef. mean 1.0
σβ Product characteristics coef. std. dev. 0.2
µX Product characteristic mean 3.0
σX Product characteristic std. dev. 1.0
δ0 Unobserved product quality mean 2.0
δξ Unobserved product quality std. dev. 0.5
QL Lower bound on market size 5.0
QH Upper bound on market size 10.0
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Table: Supply Side Parameter Values

Parameter Description Value
(b) Supply-side parameters

η coef. on observed product characteristics 0.2
µw log wage mean 1.0
σw log wage std. dev. 0.2
µr log rental rate mean 1.0
σr Rental rate std. dev. 0.2
µv log cost shock mean -5.0
σv log cost shock std. dev. 0.1
J Number of firms in each market 4
B Scaling factor for output in cost function 1.0

σν+ς Measurement error std. dev. 0.4
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Other Parameters

I Correlation Parameters
I Correlation between ξjm and

Own Observed Characteristics ( δx ) = 0.
Other firms’ observed characteristics ( δxo) = wages (δw ) =
Rental Rate (δr ) = Market Size ( δQ) =0.0833.
The cost shock (δv ) = −0.0833

I Correlation between the cost shock and market size (vjm and
Qm) = ζQ = 0.0833

I Cobb-Douglas Production function parameters:
Labor Coefficient (αc) = 0.5
Capital Coefficient (βc) = 0.3
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Table: Parameter estimates based on Shephard’s Lemma

( xjm correlated with ξjm and υjm)
(a) Demand side parameters

µ̂αp σ̂αp

Sample Std. Std.
Markets Size Mean Dev. RMSE Mean Std. RMSE

50 200 2.038 0.1939 0.1967 0.5007 0.1121 0.1115
100 400 1.999 0.1391 0.1384 0.5005 0.0734 0.0730
200 800 2.000 0.1095 0.1090 0.4964 0.0559 0.0558
400 1600 2.006 0.0698 0.0700 0.4981 0.0367 0.0365

True Value 2.0 0.5
(a) Demand side parameters

µ̂β σ̂β

Sample Std. Std.
Markets Size Mean Dev. RMSE Mean Dev. RMSE

50 200 1.192 0.1121 0.2221 0.4185 0.0600 0.0625
100 400 1.173 0.0787 0.1900 0.4036 0.0437 0.0436
200 800 1.175 0.0651 0.1866 0.4013 0.0322 0.0320
400 1600 1.179 0.0421 0.1835 0.4052 0.0221 0.0226

True Value 1.0 0.4
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(b) Production function parameters
α̂c β̂c

Sample Std. Std.
Markets Size Mean Dev. RMSE Mean Dev. RMSE

50 200 0.5025 0.0347 0.0346 0.3023 0.0220 0.0220
100 400 0.5034 0.0230 0.0231 0.3007 0.0130 0.0129
200 800 0.5011 0.0189 0.0189 0.3006 0.0135 0.0134
400 1600 0.4992 0.0115 0.0115 0.2998 0.0081 0.0081

True Value 0.5 0.3
η̂

Sample Std.
Markets Size Mean Dev. RMSE

50 200 0.1613 0.0141 0.0412
100 400 0.1642 0.0096 0.0370
200 800 0.1628 0.0073 0.0379
400 1600 0.1619 0.0045 0.0384

True Value 0.2
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Discussion of results and next step

I In the experiment, observed characteristics are correlated with
the demand shock and the cost shock. Results show that
while µβ and η are biased due to the correlation, all other
parameter estimates continue to be close to the true values.

I To address the consistent estimation of the observed
characteristics coefficient, we next examine the logit case.

I We focus on the following linear regression equation.

log (sjm)− log (s0m) = −pjmαp0 + xjmβ0 + ξjm.

I Currently, we focus on the single characteristic case so that
xjm is a scalar.
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I Petrin Ponder and Seo (2023) use the F.O.C. of optimal
choice of x assuming lagged observed characteristics as
instruments for identification of β.

I However, since firms do not change product characteristcs
each period, they face discrete-continuous dynamic choice
problem, which cannot be estimated simply by F.O.C.

I Furthermore, To properly estimate the oligopoly model based
on optimal choice, the problems of multiple equilibria and
equilibrium selection need to be addressed. (Ciliberto, Murry
and Tamer (2023)).
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IV estimation
I Market share equation is;

log (sjm)− log (s0m) = −pjmαp0 + xjmβ0 + ξjm.

I Taking covariance with IV zjm ∈ {wjm, rjm} results in:

Cov (zjm, lnsjm − lns0m) = −Cov (zjm, pjm)αp0

+Cov (zjm, xjm)β0 + Cov (zjm, ξjm)
(6)

I Using the cost data, we already identified αpC = αp0. Then,
putting what we know on the RHS,

Cov (zjm, lnsjm − lns0m) + Cov (zjm, pjm)αp0

= Cov (zjm, xjm)β0 + Cov (zjm, ξjm) (7)

I If we assume Cov (zjm, ξjm) = 0, then the IV estimation above
identifies β0.
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Identification of the valid instruments for β0

I We allow for the violation of the instrument orthogonality
condition.

E [ξjm|zjm] 6= 0, or , Cov (zjm, ξjm) 6= 0

I Suppose Cov (zjm, xjm) = 0. Then, from Equation (6), we
derive

−αIV = Cov (zjm, lnsjm − lns0m)
Cov (zjm, pjm) = −αp0 + Cov (zjm, ξjm)

Cov (zjm, pjm)

Since αpC = αp0 in the population, αIV = αpC implies
Cov (zjm, ξjm) = 0, and thus, the IV orthogonality condition
holds.
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I We estimate the price coefficient αp twice: α̂pC using the cost
data and α̂pIV using the instruments (This is similar to the
Hausman test).

I Since we can identify the true price coefficient from the cost
data, (αpC = αp0) we check whether αpIV = αpC .

I If yes, then we know Cov (zjm, ξjm) = 0, the orthogonality
condition for valid IV holds.

I That is, instead of the conventional IV orthogonality condition
Cov (zjm, ξjm) = 0, which we cannot verify from the data, we
use the moment condition: αpIV = αpC , which we can verify
from the data.

I However, Cov (zjm, xjm) = 0, thus, the IV relevance condition
is violated. Therefore, zjm cannot be used as an instrument.
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Simple specification of instrument invalidity

I We allow for endogeneity of xjm as well as invalidity of IV
orthogonality condition:
I the following specification for w , r and x :

xjm = x∗jm +δxξξjm, wjm = w∗jm +δwξξjm, rjm = r∗jm +δrξξjm (8)

I ξjm is i.i.d. mean zero with standard deviation σξ.
I
(
x∗jm,w∗jm, r∗jm

)
is a vector of mean zero random variables,

independent to ξjm.
I We focus on the case where δxξ 6= 0, and δwξ 6= 0 or δrξ 6= 0

or both, so that the OLS estimation of β given αp0 is biased
and the input prices are invalid instruments for xjm.
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Bias of the IV identification?

I Suppose the IV orthogonality conditions do not hold. Then,
the price coefficient identifed from the population being
αpIV = αpC = αp0 does not imply βIV = β0.

I Consider the following violation of the IV moment condition:

Cov (wjm, ξjm)
Cov (wjm, xjm) = Cov (rjm, ξjm)

Cov (rjm, xjm) 6= 0. (9)

I Let

βIV = β0 + Cov (wjm, ξjm)
Cov (wjm, xjm) = β0 + Cov (rjm, ξjm)

Cov (rjm, xjm) 6= β0.

Then, (αp0, βIV ) still satisfies Equation (6) without the IV
orthogonality conditions in Equation (7).
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Another way to look at the bias
I We can discuss the non-identification equivalently using the

following potential instrument for price:

zpjm ≡
wjm

Cov (wjm, xjm) −
rjm

Cov (rjm, xjm) .

The above IV satisfies Cov (zpjm, xjm) = 0.
I We can check from the observed variables whether
αpIV = αpC (= αp0), which implies,

−αpIV = Cov (zpjm, ln (sjm)− ln (s0m))
Cov (zpjm, pjm)

= Cov (zpjm,−pjmαp0 + xjmβ0 + ξjm)
Cov (zpjm, pjm)

= −αp0 + Cov (zpjm, ξjm)
Cov (zpjm, pjm) = −αpC = −αp0
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I Hence, αpIV = αpC = αp0 implies

Cov (zpjm, ξjm)
Cov (zpjm, pjm) = 0, (10)

which validates the instrument zpjm. However, that does not
imply validity of wjm, rjm.

I Equation (10) implies

Cov (wjm, ξjm)
Cov (wjm, xjm) = Cov (rjm, ξjm)

Cov (rjm, xjm) (11)

but cannot exclude the possibility of

Cov (wjm, ξjm)
Cov (wjm, xjm) = Cov (rjm, ξjm)

Cov (rjm, xjm) 6= 0.

which is equivalent to Equation (9).
I Thus, αpIV = αpC doesn’t identify the validity of wjm and rjm

as instruments for xjm.
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I That is, the instruments can be constructed even if they identify the
true price coefficient if their biases are the same.

I Instead, we use the conditional expectation to derive the IV
estimates. That is, let Aw ≡ [w ,w ] be a closed intervals of w , and
let Ar = [r , r ] be a closed interval of r . Let

zjm (Aw ,Ar ) ≡ I (wjm ∈ Aw , rjm ∈ Ar )
Pr (wjm ∈ Aw , rjm ∈ Ar )

and let

zpjm ≡
zjm (Aw ,Ar )

E [zjm (Aw ,Ar ) xjm] −
zjm (A′w ,A′r )

E [zjm (A′w ,A′r ) xjm]

Then,
E [zpjmxjm] = 0

and therefore,

E [zpjm (lnsjm − lns0m)] = −E [zpjmpjm]αp0 + E [zpjmξjm] .
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I Then, αpIV = αpC implies

E [zpjmξjm] = 0 ∀
(
Aw ,Ar ,A′w ,A′r

)
which implies
E [ξjm|wjm ∈ Aw , rjm ∈ Ar ]
E [xjm|wjm ∈ Aw , rjm ∈ Ar ] = E [ξjm|wjm ∈ A′w , rjm ∈ A′r ]

E [xjm|wjm ∈ A′w , rjm ∈ A′r ]
∀
(
Aw ,Ar ,A′w ,A′r

)
(12)

I Equation (12) is equivalent to the below equation for a
constant B.

E [ξjm|wjm = w , rjm = r ]
E [xjm|wjm = w , rjm = r ] ≡ B ∀ (w , r) ∈ R2

+.

I Then, we can rewrite the above as:

E [ξjm − Bxjm|wjm = w , rjm = r ] = 0. (13)

for all (w , r) ∈ R2
+.

I Instruments wjm, rjm are valid if B = 0. Next, we prove
validity.
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Outline

I We use the decomposition of wjm, rjm into the component
orthogonal to ξjm and the rest.

I Because of the linear specification of endogeneity, there exists
a linear combination of wjm and rjm that is independent of
ξjm, hence a valid instrument.

I Then, rather than conditioning on wjm and rjm, we can
condition on this linear combination and rjm.

I By integrating out the other component rjm, we obtain a
contradiction to the assumption that the input prices are not
valid - that is, we prove validity of the input prices as
instruments.
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Case 1: assume δrξ 6= 0
I Because xjm = x∗jm + δxξξjm, Equation (15) implies

E
[
(1− Bδxξ) ξjm − Bx∗jm|wjm = w , rjm = r

]
= 0 (14)

I Let
∇ (wjm, rjm,D) ≡ wjm − Drjm.

I Then, for
D0 ≡

δwξ
δrξ

,

ξjm cancels out, i.e.,

∇ (wjm, rjm,D0) = wjm − D0rjm = w∗jm − D0r∗jm

which is independent of ξjm.
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I Then, Equation (16) implies

E
[
− Bx∗jm + (1− Bδxξ) ξjm|rjm = r ,∇ (wjm, rjm,D0) = D

]
= 0

I We take expectation with respect to rjm given
∇ (wjm, rjm,D0) = D and obtain

E
[
− Bx∗jm + (1− Bδxξ) ξjm|∇ (wjm, rjm,D0) = D

]
= 0 (15)

I Note that
E
[
ξjm|∇ (wjm, rjm,D0)

]
= 0

due to independence of ∇ (wjm, rjm,D0) to ξjm. Hence,

(18) : −BE
[
x∗jm|∇ (wjm, rjm,D0) = D

]
= 0 (16)
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I Suppose we know D0. Then as long as there exists D such
that E

[
x∗jm|∇ (wjm, rjm,D0) = D

]
6= 0. Then, Equation (18)

implies B = 0. However, we do not know D0.
I We still can establish B = 0 if we make stronger assumption:

If we assume that for any D, there exists D such that
E
[
xjm|∇ (wjm, rjm,D) = D

]
6= 0, then the same holds for

D = D0 and thus, Equation (18) implies B = 0.
I This is similar to the instrument relevance condition.
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I Then, from Equation (15),
E [ξjm − Bxjm|wjm = w , rjm = r ] = E [ξjm|wjm = w , rjm = r ] = 0

∀ (w , r) ∈ R2
+

and thus, we obtain a contradiction to the assumption that
δrξ 6= 0. Hence δrξ = 0 holds. Thus, we have shown that the
instrument rjm is valid.

Case 2:assume δwξ 6= 0
The same arguments hold if we let

∇ (wjm, rjm,D) ≡ rjm − Dwjm

and then, set
D0 ≡

δrξ
δwξ

,

and follow the same procedure as above. Then we have proved
that δwξ = 0 and thus, w is a valid instrument. Combining the two
cases, it follows that both w and r are valid instruments. Thus,
δrξ = δwξ = 0 hold.
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Constructing valid instruments
I While the above procedure helps verify validity of existing

instruments, it may not be useful if there are’t any valid
instruments.

I Using procedures similar to above, we can construct valid
instruments from invalid ones.

I Define the following two candidates for instruments for xjm.

zwjm = wjm − Dxwxjm, zrjm = rjm − Dxrxjm.

I Let Dxw0 ≡
δwξ

δxξ
, Dxr0 ≡

δrξ

δxξ
. Then, ξjm cancels out:

zw0jm = w∗jm − Dxw0x∗jm, zr0jm = r∗jm − Dxr0x∗jm.

(zw0jm, zr0jm) do not contain unobserved product
characteristics. Hence,

E [ξjm|zw0jm, zr0jm] = 0
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I On the other hand, for (Dxw ,Dxr ) 6= (Dxw0,Dxr0),

zwjm = w∗jm − Dxwx∗jm + (Dxw0 − Dxw ) δxξξjm

zrjm = r∗jm − Dxrx∗jm + (Dxr0 − Dxr ) δxξξjm

contain ξjm. Hence, at least one of the instruments is invalid.
I We cannot simply derive and use zw0jm, zr0jm as instruments

because we do not know the coefficients δwξ, δrξ and δxξ.
I But for every δwξ, δrξ and δxξ, we can construct instruments

(zwjm, zrjm) and check their validity using the method
discussed above.
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That is, valid instruments can be identified by finding Dxr , Dxr in

zjm (Aw ,Ar ) ≡ I (zwjm (Dxw ) ∈ Aw , zrjm (Dxr ) ∈ Ar )
Pr (zwjm (Dxw ) ∈ Aw , zrjm (Dxr ) ∈ Ar )

and let

zpjm ≡
zjm (Aw ,Ar )

E [zjm (Aw ,Ar ) xjm] −
zjm (A′w ,A′r )

E [zjm (A′w ,A′r ) xjm]

that satisfy αpIV = αpC , i.e.,

−αpIV = Cov (zpjm, ln (sjm)− ln (s0m))
Cov (zpjm, pjm)

= −αp0 + Cov (zpjm, ξjm)
Cov (zpjm, pjm) = −αpC = −αp0

for any (zw , zr ) 6= (z ′w , z ′r ).
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Estimation of valid instruments and consistent β
I We have the following market share equation:

lnsjm − lns0m = −pjmα0 + xjmβ0 + ξjm

I Use the indicator function of sets of overlapping rectangles as
instruments.

R (∆zwk ,∆zrl )
≡ {(zwjm, zrjm) : (zwjm, zrjm) ∈ [zwk , zw ,k+∆]× [zrk , zr ,k+∆]}

I Use the sets of overlapping rectangles R (∆zwk ,∆zrl ) that
cover the domain of (zw , zr ), we derive the following
conditional expectations.

E [lnsjm − lns0m| (zwjm (Dxw ) , zrjm (Dxr )) ∈ R (∆zwk ,∆zrl )]
= −E [pjm| (zwjm (Dxw ) , zrjm (Dxr )) ∈ R (∆zwk ,∆zrl )]α0

+E [xjm| (zwjm (Dxw ) , zrjm (Dxr )) ∈ R (∆zwk ,∆zrl )]β0

+E [ξjm| (zwjm (Dxw ) , zrjm (Dxr )) ∈ R (∆zwk ,∆zrl )]
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Furthermore, let

ŷkl (Dxw ,Dxr ) = E
[
lnsjm − lns0m| (zwjm (Dxw ) , zrjm (Dxr )) ∈ R (∆zwk ,∆zrl )

]
p̂kl (Dxw ,Dxr ) = E

[
pjm| (zwjm (Dxw ) , zrjm (Dxr )) ∈ R (∆zwk ,∆zrl )

]
x̂kl (Dxw ,Dxr ) = E

[
xjm| (zwjm (Dxw ) , zrjm (Dxr )) ∈ R (∆zwk ,∆zrl )

]

I If Dxw = Dxw0 and Dxr = Dxr0, then

E [ξjm| (zwjm (Dxw0) , zrjm (Dxr0)) ∈ R (∆zwk ,∆zrl )] = 0

Therefore,
ŷkl = b0 + p̂klbp + x̂klbx .

bp = −αp0, bx = βx .
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I Furthermore, similar arguments as before can be used to show
that bp = −αp0 implies validity of the instruments
I ((zwjm (Dxw0) , zrjm (Dxr0)) ∈ R (∆zwk ,∆zrl )), and thus,
bx = βx0.

I However, in the actual finite sample, the sample analog of the
expectation E is the sample average, and is subject to the
sample error, which we denote to be ukl .
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I We obtain the estimates
(
b̂0, b̂p, b̂x

)
by minimizing the

following loss function:(
b̂0, b̂p, b̂x

)
= argmin(b0,bp ,bx ,Dxw ,Dxr )

(∑
k,l

u2
kl +φ

(∣∣bp − α̂pC
∣∣) )

where ukl is the residual, i.e.

ukl ≡ ykl − ŷkl

and φ () ≥ 0 is the loss function, i.e., φ (v) > 0 if v 6= 0 and
φ (v) = 0 if and only if v = 0. The example of a loss function
is

φ (v) = v2

I Set β̂ = b̂x .
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Monte-Carlo results

(a) Demand side estimates
α̂p β̂

Sample Std. Std.
Markets Size Mean Dev. RMSE Mean Dev. RMSE

50 200 1.9984 0.0628 0.0625 0.7285 0.1246 0.2984
100 400 2.0191 0.0474 0.0508 0.9116 0.0993 0.1326
200 800 2.0016 0.0296 0.0295 0.9799 0.0861 0.0880
400 1600 2.0011 0.0226 0.0225 1.0497 0.0750 0.0897

True Value: 2.0 1.0
(b) OLS estimates
α̂pOLS β̂OLS

Sample Std. Std.
Markets Size Mean Dev. RMSE Mean Dev. RMSE

50 200 1.7255 0.0701 0.2832 0.9272 0.0649 0.0973
100 400 1.7246 0.0491 0.2797 0.9274 0.0453 0.0855
200 800 1.7181 0.0313 0.2836 0.9244 0.0280 0.0806
400 1600 1.7205 0.0216 0.2804 0.9238 0.0218 0.0793

True value: 2.0 1.0
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(c) IV estimates: (wjm, rjm)
α̂pIV β̂IV

Sample Std. Std.
Markets Size Mean Dev. RMSE Mean Dev. RMSE

50 200 2.1180 1.3817 1.3799 1.3051 1.3712 1.3980
100 400 1.9777 0.2132 0.2133 1.1656 0.2115 0.2678
200 800 2.0477 0.2198 0.2237 1.2379 0.2163 0.3209
400 1600 2.0165 0.1128 0.1134 1.2045 0.1106 0.2322

True Value: 2.0 1.0
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(d) Estimates given the price coefficient α̂pC
β̂OLS (α̂pC ) β̂IV (α̂pC )

Sample Std. Std.
Markets Size Mean Dev. RMSE Mean Dev. RMSE

50 200 1.1505 0.0600 1.1619 1.1827 0.0704 0.1960
100 400 1.1683 0.0476 0.1749 1.2052 0.0582 0.2132
200 800 1.1558 0.0267 0.1580 1.1917 0.0318 0.1943
400 1600 1.1533 0.0209 0.1548 1.1894 0.0245 0.1910

True Value 1.0 1.0
Hausman-Wu Sargan

Sample test p- test p-
Markets Size stat. value stat. value

50 200 3.4522 0.2387 1.2913 0.4595
100 400 7.9305 0.0786 0.7833 0.5447
200 800 13.466 0.0224 1.2794 0.4683
400 1600 25.754 0.0001 0.8729 0.4870
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I IV validity parameter setup: δxξ = 0.8, δwξ = δrξ = 0.4:
instruments are invalid, and βIVw ≈ βIVr .

I Our procedure: the price coefficient (α̂p), the coefficient on
the observed characteristics (β̂) are close to the true values.

I OLS and IV estimates of (αp, β): closeness of the IV
estimated price coefficient to cost-based estimate does not
correspond to the validity of the IV for β.
I OLS: α̂pOLS (IV estimate with instruments: pjm and xjm) has

large downward bias, downward bias of β̂OLS is small.
I IV: α̂pIV only has small asymptotic bias, large upward

asymptotic bias in β̂IV
I Estimate β given α̂p: Upward asymptotic bias of βIV larger

than the upward bias of βOLS . On the other hand,
I Sargan test insignificant, IV validity is not rejected.
I Hausman-Wu test: significant: OLS has downward bias.

I Hence, commonly used test results indicate the IVs are valid,
and thus, OLS has downward bias. Our procedure implies that
IVs are not valid and OLS has upward bias because the true
beta is 1, not 1.18 as these tests conclude.
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Identification of demand with multivariate x.

I Both in the logit and the random coefficient aggregate
demand (BLP) model, cost data identifies the marginal
revenue without instruments.

I Logit model: marginal revenue only identifies the price
coefficient αp. Insufficient for the identification of the
coefficient of multivariate x.

I BLP model: marginal revenue identifies the price coefficient
αp and the vector random coefficient parameters σβ: identify
the multivariate x.
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Conclusion

I We show that we can consistently estimate the demand
coefficients and the key coefficients of the cost function of a
differentiated product oligopoly model by using cost data and
without instruments for output and price.

I We develop a way to verify the validity of existing instruments
and constructing valid instruments from invalid ones for
observed product characteristics.

I In our Monte-Carlo experiments, we show that our method
works well even when all the commonly used instruments are
invalid.
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I Benefit for industries with cost data: we can estimate the key
parameters of the cost function and all parameters of the logit
or BLP demand parameters.

I For industries without cost data:information on instruments
that are identified or constructed as valid instruments using
cost data could be useful.
I Researchers can use the validated or constructed instruments.
I Or, such information on instruments can be helpful in

constructing the bounds or prior distributions of the IV
moment conditions, when researchers allow for moment
conditions to not exactly equal to zero (see Conley, Hansen
and Rossi (2012)).
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Thank you for your attention.
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