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Abstract

High-dimensional models that include a few covariates of interest and many
control covariates which might potentially affect an outcome are increasingly
common. The least absolute shrinkage and selection operator (lasso) is fre-
quently used in this context. Belloni et al. (2016b) derived lasso-based partialing-
out (PO) estimators for the coefficients of interest in high-dimensional gener-
alized linear models (GLMs). The tuning parameters of the lasso must be
selected to implement these PO estimators, but Belloni et al. (2016b) only
presented a method of selecting the lasso tuning parameters for the high-
dimensional logit model. This paper extends the Belloni et al. (2012) plug-in
algorithm for choosing the lasso tuning parameters to high-dimensional GLMs.
This paper presents simulation evidence that a PO Poisson estimator that
uses this plug-in algorithm performs well. The simulations also show that a
PO Poisson estimator that uses cross-validation (CV) or the adaptive lasso
(AL) to select the lasso tuning parameters can require a much larger sample
size to perform as well. The simulations also show that a PO Poisson esti-
mator that selects the lasso tuning parameters by minimizing the Bayesian
information criterion (BIC) performs almost as well as the plug-in based esti-
mator. Finally, the paper explains these simulation results by discussing the
covariate-selection tendencies of the Poisson lasso when the tuning parameters
are selected by the plug-in method, by CV, by AL, and by the BIC.

∗We thank Enrique Pinzon and Joerg Luedicke for discussions and for their work in running
previous simulations. We also thank Fang Wang for speeding up the coordinate-descent algorithm
that does the numerical optimization.
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1 Introduction

High-dimensional models that include many covariates which might potentially affect an
outcome are increasingly common. One approach to high-dimensional models makes a
sparsity assumption which requires that the number of potential covariates that must
be included in the model is small relative to the sample size.1 This sparse approach to
high-dimensional models uses lasso-based covariate selection and moment conditions that
are robust to the covariate selection to produce reliable inference for some of the model
parameters. We call this sparse approach the partialing-out (PO) approach, because
it extends the classic partialing-out technique for obtaining some regression coefficients
after removing the impact of other covariates. The PO approach was derived in Belloni
et al. (2012), Belloni et al. (2014), and Belloni et al. (2016b).

Belloni et al. (2012) derived a plug-in method for selecting the lasso tuning parameters
for linear-model lassos. Belloni et al. (2012) also presented an algorithm for implementing
their plug-in method for linear models. Belloni et al. (2016b) derived PO estimators for
generalized linear models (GLMs), but they did not extend their method and algorithm
for implementing the plug-in method for selecting the tuning parameters to the GLM
model.2 This paper extends their plug-in method and their algorithm to the GLM model.
The paper also presents simulation evidence that this extension produces a version of
the Belloni et al. (2016b) PO Poisson that performs well in finite samples.

Cross-validation (CV), the adaptive lasso (AL), and minimizing the Bayesian infor-
mation criterion (BIC) are also commonly used to select the lasso tuning parameters in
GLM lassos.3 This paper presents simulation evidence that the BIC-based PO Poisson
estimator can perform almost as well as the plug-in-based PO estimator. This simulation
evidence also shows that the CV-based PO Poisson estimator and the AL-based PO Pois-
son estimator can require a much larger-sample to perform as well as the plug-in-based
PO Poisson estimator. For the designs used in this paper, the problem is that CV-based
lasso and the AL-based lasso tend to include many covariates whose coefficients are zero
in the true model.

The PO estimators were explicitly designed to provide valid inference when some of
the coefficients in the model are small in magnitude. Leeb and Pötscher (2008) show that
naive estimators that use the covariates selected by a lasso as if they were the covariates
in the best approximating model do not have an asymptotic normal distribution and can

1Another approach removes the many-covariate bias and uses many-covariate robust methods to
estimate the asymptotic variance of the bias corrected estimator. See Cattaneo et al. (2018b) and
Cattaneo et al. (2018a) for this approach.

2Belloni et al. (2016b) derived values for the lasso tuning parameters for the logit model. For the
logit case, they did not need to use their algorithm, because they were able show that a specific value
binds the lasso penalty loadings.

3For examples and introductions, see Hastie et al. (2015), Zou (2006), Bühlmann and Van de Geer
(2011), and Zhang et al. (2010)
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perform poorly in finite samples. The simulation designs used in this paper replicate
their results. The naive estimators that use any the discussed methods to select the
lasso tuning parameters perform poorly on the designs used in this paper. That all naive
estimators fail on these designs is evidence that these designs are, to some extent, a good
test for the PO estimators.

Here is an outline for the remainder of the paper. Section 2.1 introduces high-
dimensional models. Section 2.2 introduces the lasso. Section 2.3 extends the Belloni
et al. (2012) to the GLM case. Section 2.4 discusses other methods for selecting the lasso
tuning parameters. Section 3 discusses our simulation results.

2 Lasso for inference in high-dimensional models

2.1 High-dimensional models

A cross-sectional high-dimensional GLM can be written as

E[yi|di,xi] = G(diα
′
0 + xiβ

′
0)

where y is the outcome, di are the covariates of interest, xi are the control covariates that
potentially need to be included in the model, α0 are the coefficients on di, and β0 are
the coefficients on xi. G() maps the linear index diα

′
0 + xiβ

′
0 to the conditional mean.

Although there are many other possibilities, three common models are when G() is the
identity function for linear models, when G() is the standard logistic distribution for logit
models, or when G() is the exponential function for Poisson or exponential conditional
mean models.

The number of potential covariates in xi (px) can be larger than the sample size n.
We are interested in the case in which px is too large for a GLM regression of y on d and
x to produce reliable results for α, but the number of covariates in x that belong in the
model (sx) is not too large. Belloni et al. (2012) and Belloni et al. (2016b) derive rates
that must bind sx as a function of n px.

The goal is to obtain reliable estimation and inference for α0. The number of covari-
ates in di is assumed to be fixed and small relative to n.

The PO approach uses lasso-based covariate selection to determine which of the
covariates in x should be included in the model.4 The PO approach does not estimate
β0. Not estimating β0 can be viewed as the cost of using covariate-selection methods to
determine which of the potential covariates in xi should be included in the model. We
use a version of the PO estimator in Belloni et al. (2016b). The details of this estimator
are given in appendix B.

4Other covariate-selection techniques could be used, but they are outside the realm of this paper.
See Chernozhukov et al. (2018) and Kozbur (2019) for results and discussions.
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2.2 The lasso

The lasso is a widely used technique for covariate selection. Mechanically, the cross-
sectional GLM lasso with given penalty parameter λ and given penalty loadings κj
j ∈ {1, . . . , p} solves

δ̂ = arg min
δ

{
1

n

n∑
i=1

Q(yi,wiδ
′) + λ

p∑
j=1

κj|δj|

}
(1)

where δ = (α,β), wi = (di,xi), and Q(yi,wiδ
′) is the negative of the contribution of the

i(th) observation to the GLM quasi-maximum-likelihood (QML) function. See Hastie
et al. (2015), Friedman et al. (2007), and Friedman et al. (2010) for descriptions of the
coordinate-descent algorithm used to perform the minimization. The formulas for Q()
are given in appendix C.

The first term in the objective function in equation (1) is the usual QML objective
function. The second term penalizes the objective function for allowing a coefficient to
differ from zero. The kink in the absolute value function in the penalty term causes some
elements of δ̂ to be exactly zero at the minimum, while others are not zero; see Hastie
et al. (2015) for details.

That some elements of δ̂ are exactly zero at the minimum, while others are not zero
is the basis of the lasso as a covariate selection technique. The j(th) covariate in w is

included, if the j(th) element in δ̂ is not zero. Analogously, the j(th) covariate in w is

excluded, if the j(th) element in δ̂ is zero.
The penalty parameter λ and the penalty loadings κj j ∈ {1, . . . , p} are known as the

lasso tuning parameters. One must choose the lasso tuning parameters before using the
lasso for covariate selection. The values of λ and the κj determine which covariates will
have estimated coefficients that are not zero and which covariates will have estimated
coefficients that are zero. Thus, the properties of the lasso-covariate-selection method
depend on the method used to choose the tuning parameters.

The most widely used methods for selecting the tuning parameters are CV, plug-in
methods, AL, and minimizing an information criterion. We want a method that finds
the important covariates, but does not include too many extra covariates.

Belloni, Chen, Chernozhukov, and Hansen (2012), Belloni, Chernozhukov, and Hansen
(2014), Belloni, Chernozhukov, and Wei (2016b), and Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, Newey, and Robins (2018) derive PO estimators that are robust to the
mistakes that the lasso makes in excluding covariates with small coefficients. Belloni,
Chen, Chernozhukov, and Hansen (2012),Belloni, Chernozhukov, and Hansen (2014),
and Belloni, Chernozhukov, and Wei (2016b), rigorously show that some of these robust
methods will perform well when the tuning parameters are selected using their plug-in
method. Belloni, Chen, Chernozhukov, and Hansen (2012) derives a plug-in method for
a linear model and provides an algorithm to implement it. Belloni et al. (2016b) derives
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PO estimators for GLMs, but it does not provide a plug-in method or an algorithm for
Poisson models.5

2.3 Plug-in for generalized linear models

The penalty-loadings play an essential role in defining the penalty level λ that provides
a good lasso estimator. Following Belloni, Chernozhukov, and Wei (2016b), and Bickel,
Ritov, and Tsybakov (2009), the GLM lasso will have good selection properties if

P

(
λ ≥ c max

1≤j≤p

∣∣∣∣∣ 1n(1/κj)
n∑
i=1

hj(yi,wiδ
′
0)

∣∣∣∣∣
)
→n 1 (2)

where we have the following definitions.

• c is a constant greater than 1.

• hj(yi,wiδ
′
0) is the contribution of the i(th) observation to the score for the unpe-

nalized QML estimator for the j(th) parameter evaluated at β0.

• Each penalty loading has its ideal value

κj =

√√√√ 1

n

n∑
i=1

[
hj(yi,wiδ

0′)
]2

To be more specific about the scores, the vector of scores for the unpenalized QML
estimator is

∂Q(yi,wiδ
′)

∂δ
= h(yi,wiδ

′)

and the contribution of the i(th) observation to the j(th) score is hj(yi,wiδ
′), which is

the j(th) element of h.
Note that equation (2) can be written as

P

λ ≥ c max
1≤j≤p

∣∣∣∣∣∣
1
n

∑n
i=1 hj(yi,wiδ

′
0)√

1
n

∑n
i=1 [hj(yi,wiδ

′
0)]

2

∣∣∣∣∣∣
→n 1 (3)

5Belloni et al. (2016b) derives a plug-in method for the tuning parameters of logit models, but this
method uses a fixed bound. Belloni et al. (2016b) does not extend the algorithm in Belloni et al. (2012)
to the GLM case.
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In a series of analogous cases, Belloni, Chen, Chernozhukov, and Hansen (2012),
Belloni, Chernozhukov, and Hansen (2014), and Belloni, Chernozhukov, and Wei (2016b)
use the self-normalized moderate deviation theory developed by Jing, Shao, and Wang
(2003) and Peña, Lai, and Shao (2009) to show that

P

(
√
nmax

∣∣∣∣∣ 1n(1/κj)
n∑
i=1

hj(yiwiδ
′

0)

∣∣∣∣∣ ≤ Φ−1(1− γ/(2p))

)
≥ 1− γ + o(1) (4)

under reasonable conditions.
Using equations (2) and (4), Belloni, Chen, Chernozhukov, and Hansen (2012), Bel-

loni, Chernozhukov, and Hansen (2014), and Belloni, Chernozhukov, and Wei (2016b)
define the ideal value for λ in equation (1) to be

λ =
c√
n

Φ−1 [1− γ/(2p)] (5)

in a series of analogous cases.

2.3.1 What is the logic behind equation 4

Getting a handle on where equation (4) comes from is essential to understanding the
extension in this paper. Belloni, Chen, Chernozhukov, and Hansen (2012) use theorem
7.4 in Peña et al. (2009) to show that

P

(
max
1≤j≤p

|Sj| > Φ−1(1− γ/(2p))
)
≤ γ

(
1 + A/`3n

)
where

Sj =

∑n
i=1 Uij√∑n
i=1 U

2
ij

each Uij is an independent realization of a mean zero random variable.
For small γ, this can be shown to imply that

P

(
max
1≤j≤p

|Sj| ≤ Φ−1(1− γ/(2p))
)
≈ 1− γ (6)

Note that the definition of Sj in equation (6) uses sums over i that are not multiplied
by 1/n but that the sums over i in equation (3) are multiplied by 1/n. Extending Belloni,
Chen, Chernozhukov, and Hansen (2012) to the GLM case, we let

Ui,j = hj(yi,wiδ
′
0)
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Conceptually, we have

√
n(1/κj)1/n

n∑
i=1

[hj(yi,wiδ
′
0)] (7)

=
√
n

1/n
∑n

i=1 [hj(yi,wiδ
′
0)]√

1/n
∑n

i=1 [hj(yi,wiδ
′
0)]

2
(8)

=
√
n

1/n
∑n

i=1 [Ui,j]√
1/n

∑n
i=1 [Ui,j]

2
(9)

= Sj (10)

Substituting the expression in (7) in for Sj in equation (6) yields equation (4).

2.3.2 Algorithm for the penalty loadings

We use an extension of the algorithm derived by Belloni, Chen, Chernozhukov, and
Hansen (2012) to estimate plug-in values of λ and κ1, . . . , κp that can be used to solve
the lasso in equation (1).
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Algorithm 1: Plug-in method for Poisson lasso tuning parameters

This algorithm assumes that each xj has been normalized to have mean 0 and
variance 1.
On exit, λ contains the penalty value and the penalty loadings are in
(κ̃1, . . . , κ̃p).

1. Set γ = 0.1/ ln(max(p, n)) and set c = 1.1.

2. Set λ = c√
n
Φ−1 [1− γ/(2p)].

3. Find the five covariates that have the highest correlations with y. Denote the
vector of them by x̃0 and let x̃0,i be the i(th) observation of this vector of
variables.

4. Estimate the coefficients β̃0 on x̃0 by unpenalized GLM QML.

5. For each j ∈ {1, . . . , p}, set

κ̃0,j =

√√√√ 1

n

n∑
i=1

[
hj(yi, x̃0,iβ̃

′
0)
]2

6. Set k = 1 and do the following loop. (It will be executed at most 15 times.)

(a) Using λ and loadings {κ̃k−1,1, . . . , κ̃k−1,p} to solve (1) which produces

estimates ˜̃βk.

(b) Let x̃k be the covariates with nonzero coefficients in ˜̃βk.

(c) Estimate the coefficients β̃k on x̃k by unpenalized GLM QML.

(d) For each j ∈ {1, . . . , p}, set

κ̃k,j =

√√√√ 1

n

n∑
i=1

[
hj(yi, x̃k,iβ̃

′
k)
]2

where x̃k,i is the i(th) observation on x̃k.

(e) Set k = k + 1

(f) If k > 15 or the variables in x̃k are the same as those in x̃k−1 set each
κ̃j = κ̃k,j and exit; else go to step 6a.
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2.4 Other methods for selecting the tuning parameters

2.4.1 CV

CV sets the κj = 1 and finds the value of λ that minimizes an estimate of the out-of-
sample mean squared error (MSE) of the predictions. This standard method is discussed
in many places, including Hastie et al. (2015).

2.4.2 AL

CV is known to include many extra covariates whose coefficients are zero in the model
that best approximates the data; see for example Bühlmann and Van de Geer (2011).
AL uses multiple steps of CV to reduce this over-selection problem.

The first step is CV. The second step does CV among the covariates selected in
the first step. In the second step, the penalty loadings are set to the inverse of the
absolute value of the first-step coefficient estimates. Covariates with larger-in-magnitude
coefficients are more likely to be included in the second step. Covariates with smaller-in-
magnitude coefficients are more likely to be excluded in the second step. See Zou (2006)
and Bühlmann and Van de Geer (2011) for details.

2.4.3 Minimizing the BIC

Following Zhang et al. (2010), we define the degrees of freedom in the BIC to be the
number of nonzero coefficient estimates in the GLM lasso for a particular value of λ. Our
implementation finds the λq in the grid of candidate values Λ that produces the smallest
value of

BIC = −2
n∑
i=1

Q(yi, w̃iδ̃) + sλq ln(n)

where the notation in this equation is as follows.

• w̃i is the i(th) observation on the vector of covariates that have nonzero coefficients
in the GLM lasso in equation (1), when λ is set to λq and κj = 1.

• sλq is the number of covariates in w̃i.

•
∑n

i=1Q(yi, w̃iδ̃) is the value of the unpenalized GLM log likelihood function that
includes only the covariates in w̃i

• δ̃ are the coefficients on w̃i that maximize the unpenalized log likelihood function.
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3 Simulations

For each design, the simulations estimate the coverage rate of the PO Poisson estimator
for three coefficients when the lasso tuning parameters are selected by the plug-in method,
by CV, by AL, by and minimizing the BIC. The plug-in-based PO estimator and the BIC-
based PO estimator produce either nominal 5% coverage or close to nominal coverage
for all sample sizes and designs. The plug-in-based PO estimator performs better than
the BIC-based PO estimator in the smaller sample size of 1,000. The CV-based PO
estimator and the AL-based PO estimator produce coverage rates that far exceeded the
nominal 5% level for the smaller sample size. Their coverage rates for the larger sample
size of 3,000 were closer to nominal but still higher than 5% for many of the designs.
The details are in tables 1-4.

The first coefficient is a large-in-magnitude coefficient, the second is a small-in-
magnitude coefficient, and the third is zero coefficient. For each design, the values of the
large-in-magnitude and small-in-magnitude coefficients are set relative to their standard
errors, when they are estimated by Poisson QML in an oracle model that only includes
the covariates with nonzero coefficients. In each design, the large-in-magnitude coeffi-
cient has a value of about four times its oracle-model standard error. In each design, the
small-in-magnitude coefficient has a value of about its oracle-model standard error.

For each design, the simulations also estimate quantiles that describe the selection
tendencies of the lasso when the tuning parameters are selected by the plug-in method,
by CV, by AL, and by minimizing the BIC. Knowing these selection tendencies can help
researchers better use lasso-based methods. In summary, the plug-in has the highest
risk of not including a covariate that has a large coefficient. The BIC has some risk
of not including a covariate that has a large coefficient. CV and AL have almost no
risk of not including a covariate that has a large coefficient. The plug-in includes the
fewest covariates with zero coefficients. The BIC includes a few more covariates with zero
coefficients than the plug-in. CV and AL include many covariates with zero coefficients.

These results explain why the CV-based and AL-based estimators have problems in
smaller samples. The CV-based estimators and AL-based estimators have problems in
smaller samples because of the large number covariates with zero coefficients that they
include. Estimating the coefficients on these covariates slows the rate of convergence of
the CV-based PO estimator and the AL-based PO estimator.

Tables 5-8 contain the simulation results that describe the selection tendencies.
For each design, the simulations also estimate the coverage rates of the naive two-step

Poisson estimator for three coefficients when the lasso tuning parameters are selected by
the plug-in method, by CV, by AL, and by minimizing the BIC. The first step in the
naive two-step Poisson estimator is to use a lasso to select which covariates should be
included in a subsequent QML Poisson model. The covariates of interest of interest
are always included in the lasso. In the second step, the coefficients on the covariates
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of interest and the selected covariates are estimated by QML. As mentioned, Leeb and
Pötscher (2008) show that naive estimators like this do not have an asymptotic normal
distribution when there are small coefficients in the model. For each design, the naive
estimators using each tuning-parameter selection technique produce coverage rates that
far exceed the nominal 5% level. The detailed results are in tables 9-12.

We note two other aspects of the simulation designs. First, they include many co-
variates with zero coefficients. Second, the number of covariates with large nonzero
coefficients varies from an easy-to-handle number to a number that borders on being not
sparse. All the details of the how the data for each design were generated are discussed
in section A.

4 Tables

The simulation results are in the tables in this section. All the simulation results are
based on 1,200 repetitions.

There are three subsections. The first contains the coverage results for the PO esti-
mators. The second describes the selection tendencies of the lasso. The third contains
results for the coverage results of the naive estimators. The same designs were used for
the coverage results and tendency results. Here we discuss aspects of the tables that are
common to the tables in each subsection.

For each design, p is the total number covariates in the model and n is the sample size.
The “No. of large” column contains the number of covariates with large-in-magnitude
coefficients in the design. The “No. of small” column contains the number of covariates
with small-in-magnitude coefficients in the design.

4.1 PO estimators

The tables in this section contain the estimated coverage rates of the plug-in-based
PO Poisson estimator, the CV-based PO Poisson estimator, the AL-based PO Poisson
estimator, and the BIC-based PO Poisson estimator. Nominal coverage is 5%, which
would be 0.05 in the tables.

In each table, the results for “Large RP” are the rejection proportions of a Wald
test against the null hypothesis that the first large-in-magnitude coefficient in the model
equals its true value. The rejection proportion for each PO estimator is presented along
side the rejection proportion of the same test produced by the QML estimator in the
oracle model.

In each table, the results for “Small RP” are the rejection proportions of a Wald
test against the null hypothesis that the first small-in-magnitude coefficient in the model
equals its true value. The rejection proportion for each PO estimator is presented along
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side the rejection proportion of the same test produced by the QML estimator in the
oracle model.

In each table, the results for “Zero RP” are the rejection proportions of a Wald test
against the null hypothesis that the first zero coefficient in the model coefficient equals
zero. The oracle model does not estimate coefficients on covariates with coefficients of
zero, so there are no oracle results.

Table 1: plug-in PO

No. of No. of Large RP Small RP Zero RP
p n large small oracle plug-in PO oracle plug-in PO plug-in PO
500 1000 10 3 0.052 0.056 0.048 0.050 0.062
500 3000 10 3 0.058 0.052 0.050 0.052 0.049
1000 1000 10 3 0.040 0.052 0.049 0.048 0.054
1000 3000 10 3 0.052 0.058 0.049 0.053 0.048
2000 1000 10 3 0.056 0.058 0.044 0.048 0.042
2000 3000 10 3 0.052 0.048 0.058 0.062 0.059
500 1000 15 3 0.052 0.061 0.055 0.045 0.066
500 3000 15 3 0.050 0.048 0.049 0.052 0.057
1000 1000 15 3 0.052 0.053 0.052 0.053 0.053
1000 3000 15 3 0.040 0.048 0.054 0.062 0.052
2000 1000 15 3 0.051 0.057 0.048 0.041 0.061
2000 3000 15 3 0.057 0.061 0.058 0.052 0.041
500 1000 20 4 0.046 0.050 0.051 0.063 0.057
500 3000 20 4 0.056 0.052 0.052 0.052 0.052
1000 1000 20 4 0.054 0.067 0.050 0.060 0.060
1000 3000 20 4 0.041 0.043 0.046 0.056 0.052
2000 1000 20 4 0.062 0.065 0.048 0.058 0.048
2000 3000 20 4 0.058 0.044 0.052 0.062 0.049
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Table 2: CV PO

No. of No. of Large RP Small RP Zero RP
p n large small oracle CV PO oracle CV PO CV PO
500 1000 10 3 0.052 0.118 0.048 0.088 0.068
500 3000 10 3 0.058 0.072 0.050 0.059 0.055
1000 1000 10 3 0.040 0.113 0.049 0.087 0.066
1000 3000 10 3 0.052 0.077 0.049 0.070 0.056
2000 1000 10 3 0.056 0.128 0.044 0.103 0.066
2000 3000 10 3 0.052 0.077 0.058 0.073 0.062
500 1000 15 3 0.052 0.132 0.055 0.069 0.083
500 3000 15 3 0.050 0.085 0.049 0.057 0.058
1000 1000 15 3 0.052 0.129 0.052 0.107 0.076
1000 3000 15 3 0.040 0.080 0.054 0.076 0.052
2000 1000 15 3 0.051 0.142 0.048 0.120 0.072
2000 3000 15 3 0.057 0.086 0.058 0.079 0.056
500 1000 20 4 0.046 0.147 0.051 0.117 0.093
500 3000 20 4 0.056 0.100 0.052 0.083 0.067
1000 1000 20 4 0.054 0.157 0.050 0.128 0.077
1000 3000 20 4 0.041 0.083 0.046 0.081 0.067
2000 1000 20 4 0.062 0.158 0.048 0.128 0.076
2000 3000 20 4 0.058 0.103 0.052 0.105 0.049
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Table 3: AL PO

No. of No. of Large RP Small RP Zero RP
p n large small oracle AL PO oracle AL PO AL PO
500 1000 10 3 0.052 0.115 0.048 0.083 0.068
500 3000 10 3 0.058 0.062 0.050 0.058 0.052
1000 1000 10 3 0.040 0.104 0.049 0.085 0.066
1000 3000 10 3 0.052 0.072 0.049 0.071 0.056
2000 1000 10 3 0.056 0.127 0.044 0.101 0.054
2000 3000 10 3 0.052 0.069 0.058 0.077 0.063
500 1000 15 3 0.052 0.119 0.055 0.072 0.083
500 3000 15 3 0.050 0.068 0.049 0.057 0.056
1000 1000 15 3 0.052 0.111 0.052 0.108 0.076
1000 3000 15 3 0.040 0.072 0.054 0.075 0.055
2000 1000 15 3 0.051 0.128 0.048 0.105 0.074
2000 3000 15 3 0.057 0.079 0.058 0.066 0.056
500 1000 20 4 0.046 0.129 0.051 0.117 0.083
500 3000 20 4 0.056 0.087 0.052 0.078 0.062
1000 1000 20 4 0.054 0.143 0.050 0.107 0.085
1000 3000 20 4 0.041 0.074 0.046 0.076 0.062
2000 1000 20 4 0.062 0.142 0.048 0.134 0.070
2000 3000 20 4 0.058 0.092 0.052 0.083 0.052
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Table 4: BIC PO

No. of No. of Large RP Small RP Zero RP
p n large small oracle BIC PO oracle BIC PO BIC PO
500 1000 10 3 0.052 0.070 0.048 0.052 0.058
500 3000 10 3 0.058 0.062 0.050 0.052 0.049
1000 1000 10 3 0.040 0.049 0.049 0.052 0.057
1000 3000 10 3 0.052 0.057 0.049 0.049 0.048
2000 1000 10 3 0.056 0.064 0.044 0.049 0.051
2000 3000 10 3 0.052 0.052 0.058 0.064 0.062
500 1000 15 3 0.052 0.076 0.055 0.047 0.065
500 3000 15 3 0.050 0.044 0.049 0.051 0.058
1000 1000 15 3 0.052 0.070 0.052 0.061 0.058
1000 3000 15 3 0.040 0.056 0.054 0.062 0.058
2000 1000 15 3 0.051 0.058 0.048 0.056 0.063
2000 3000 15 3 0.057 0.055 0.058 0.058 0.042
500 1000 20 4 0.046 0.066 0.051 0.077 0.065
500 3000 20 4 0.056 0.062 0.052 0.058 0.055
1000 1000 20 4 0.054 0.075 0.050 0.080 0.065
1000 3000 20 4 0.041 0.047 0.046 0.054 0.051
2000 1000 20 4 0.062 0.084 0.048 0.068 0.057
2000 3000 20 4 0.058 0.051 0.052 0.066 0.048

4.2 Selected covariate counts

The tables in this section summarize the selection tendencies of the lasso when the tuning
parameters are selected by the plug-in method, by CV, by AL, and by minimizing the
BIC.

Each table presents results for a lasso of the dependent variable on all the potential
covariates when the tuning parameters were selected using the specified method.

The “Miss large” columns contain the 50(th), 90(th), 95(th), and 99(th) quantiles
of the distribution of the number of covariates with large-in-magnitude coefficients that
were not found by the lassos.

The “Miss small” columns contain the 50(th), 90(th), 95(th), and 99(th) quantiles
of the distribution of the number of covariates with small-in-magnitude coefficients that
were not found by the lassos.

The “Found zeros” columns contain the 50(th), 90(th), 95(th), and 99(th) quantiles
of the distribution of the number of covariates with zero coefficients that were included
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by the lassos.

Table 5: Selection counts using Plugin

No. of No. of Miss large Miss small Found zeros
p n large small p50 p90 p95 p99 p50 p90 p95 p99 p50 p90 p95 p99
500 1000 10 3 0 1 2 3 2 2 2 2 0 0 0 1
500 3000 10 3 0 0 0 0 2 2 2 2 0 0 0 0
1000 1000 10 3 0 1 2 3 2 2 2 2 0 0 1 1
1000 3000 10 3 0 0 0 0 2 2 2 2 0 0 0 0
2000 1000 10 3 0 2 2 4 2 2 2 2 0 0 1 2
2000 3000 10 3 0 0 0 1 2 2 2 2 0 0 0 0
500 1000 15 3 1 2 3 6 2 2 2 2 0 0 1 1
500 3000 15 3 0 0 0 1 2 2 2 2 0 0 0 1
1000 1000 15 3 1 2 4 7 2 2 2 2 0 0 1 1
1000 3000 15 3 0 0 0 1 2 2 2 2 0 0 0 1
2000 1000 15 3 1 3 4 9 2 2 2 2 0 0 1 2
2000 3000 15 3 0 0 0 1 2 2 2 2 0 0 0 1
500 1000 20 4 1 4 6 12 3 3 3 3 0 1 1 2
500 3000 20 4 0 0 0 5.5 3 3 3 3 0 0 0 1
1000 1000 20 4 1 5 7.5 13 3 3 3 3 0 1 1 3
1000 3000 20 4 0 0 1 6.5 3 3 3 3 0 0 1 1
2000 1000 20 4 1 6 8 14 3 3 3 3 0 1 1.5 3
2000 3000 20 4 0 0 1 7 3 3 3 3 0 0 1 2
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Table 6: Selection counts using CV

No. of No. of Miss large Miss small Found zeros
p n large small p50 p90 p95 p99 p50 p90 p95 p99 p50 p90 p95 p99
500 1000 10 3 0 0 0 0 1 2 2 2 19 42.5 52 72
500 3000 10 3 0 0 0 0 1 2 2 2 17 39 47 67
1000 1000 10 3 0 0 0 0 1 2 2 2 20 47 63 85.5
1000 3000 10 3 0 0 0 0 1 2 2 2 18 46 57.5 78
2000 1000 10 3 0 0 0 0 1 2 2 2 24 58 71 97.5
2000 3000 10 3 0 0 0 0 1 2 2 2 20 49 64 86.5
500 1000 15 3 0 0 0 0 1 2 2 2 21 45 52 66.5
500 3000 15 3 0 0 0 0 1 2 2 2 21 42 50 64
1000 1000 15 3 0 0 0 1 1 2 2 2 27 56 66 90
1000 3000 15 3 0 0 0 0 1 2 2 2 23 50 60 78
2000 1000 15 3 0 0 0 1 1 2 2 2 31 63 75 109.5
2000 3000 15 3 0 0 0 1 1 2 2 2 25 59 72.5 93
500 1000 20 4 0 0 0 .5 0 1 2 2 29 52 60 78
500 3000 20 4 0 0 0 0 1 2 2 2 26 48 57 73
1000 1000 20 4 0 0 0 1 1 1 2 2 33 62 73 95
1000 3000 20 4 0 0 0 1 1 2 2 2 30 58 66.5 95
2000 1000 20 4 0 0 0 1 1 2 2 3 37 67 82 110
2000 3000 20 4 0 0 0 1 1 2 2 3 33 66 81 110
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Table 7: Selection counts using Adapt

No. of No. of Miss large Miss small Found zeros
p n large small p50 p90 p95 p99 p50 p90 p95 p99 p50 p90 p95 p99
500 1000 10 3 0 0 0 0 1 2 2 2 14 33.5 40.5 54
500 3000 10 3 0 0 0 0 1 2 2 2 12 29 35 50.5
1000 1000 10 3 0 0 0 0 1 2 2 2 16 37 47 66.5
1000 3000 10 3 0 0 0 0 1 2 2 2 14 34 42 57.5
2000 1000 10 3 0 0 0 0 1 2 2 2 18 43 53 72
2000 3000 10 3 0 0 0 0 1 2 2 2 15 37 48 62.5
500 1000 15 3 0 0 0 0 1 2 2 2 17 34 40 50
500 3000 15 3 0 0 0 0 1 2 2 2 13 27 32.5 43
1000 1000 15 3 0 0 0 1 1 2 2 2 21 42 50 67
1000 3000 15 3 0 0 0 0 1 2 2 2 14 32 38.5 51
2000 1000 15 3 0 0 0 1 1 2 2 2 24 47 55 77
2000 3000 15 3 0 0 0 1 1 2 2 2 16 37 46 61.5
500 1000 20 4 0 0 0 1 1 2 2 2 21 38 44 59
500 3000 20 4 0 0 0 0 1 2 2 3 13 25 30 40.5
1000 1000 20 4 0 0 0 1 1 2 2 3 24 44 52 64
1000 3000 20 4 0 0 0 1 1 2 3 3 14 30 35 48
2000 1000 20 4 0 0 0 1 1 2 2 3 26 48 56 78
2000 3000 20 4 0 0 0 1 1 2 3 3 16 34 42 58
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Table 8: Selection counts using BIC

No. of No. of Miss large Miss small Found zeros
p n large small p50 p90 p95 p99 p50 p90 p95 p99 p50 p90 p95 p99
500 1000 10 3 0 0 0 0 1 2 2 2 1 4 4 6
500 3000 10 3 0 0 0 0 2 2 2 2 1 2 3 5
1000 1000 10 3 0 0 0 0 2 2 2 2 1 3 4 6
1000 3000 10 3 0 0 0 0 2 2 2 2 1 2 3 4.5
2000 1000 10 3 0 0 0 1 2 2 2 2 1 4 5 7.5
2000 3000 10 3 0 0 0 0 2 2 2 2 1 2 3 4
500 1000 15 3 0 0 0 1 1 2 2 2 2 5 6 8
500 3000 15 3 0 0 0 0 2 2 2 2 1 3 4 5
1000 1000 15 3 0 0 1 1 2 2 2 2 2 5 6 8
1000 3000 15 3 0 0 0 0 2 2 2 2 1 3 4 5
2000 1000 15 3 0 0 1 1 2 2 2 2 2 5 6 8
2000 3000 15 3 0 0 0 1 2 2 2 2 1 3 4 6
500 1000 20 4 0 0 1 1 1 2 3 3 3 6 8 10
500 3000 20 4 0 0 0 0 1 3 3 3 1 4 5 7
1000 1000 20 4 0 0 1 1 1 2 3 3 3 6 8 11
1000 3000 20 4 0 0 0 1 2 3 3 3 2 4 5 7
2000 1000 20 4 0 1 1 1 2 3 3 3 3 7 8 12
2000 3000 20 4 0 0 0 1 2 3 3 3 2 5 5 7

4.3 Naive estimators

The tables in this section contain the estimated coverage rates of the plug-in-based naive
Poisson estimator, the CV-based naive Poisson estimator, the AL-based naive Poisson
estimator, and the BIC-based naive Poisson estimator. Nominal coverage is 5%, which
would be 0.05 in the tables.

In each table, the results for “Large RP” are the rejection proportions of a Wald
test against the null hypothesis that the first large-in-magnitude coefficient in the model
equals its true value. The rejection proportion for each naive estimator is presented
along side the rejection proportion of the same test produced by the QML estimator in
the oracle model.

In each table, the results for “Small RP” are the rejection proportions of a Wald
test against the null hypothesis that the first small-in-magnitude coefficient in the model
equals its true value. The rejection proportion for each naive estimator is presented
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along side the rejection proportion of the same test produced by the QML estimator in
the oracle model.

In each table, the results for “Zero RP” are the rejection proportions of a Wald test
against the null hypothesis that the first zero coefficient in the model coefficient equals
zero. The oracle model does not estimate coefficients on covariates with coefficients of
zero, so there are no oracle results.

Table 9: plug-in Naive

No. of No. of Large RP Small RP Zero RP
p n large small oracle plug-in Naive oracle plug-in Naive plug-in Naive
500 1000 10 3 0.052 0.198 0.048 0.278 0.347
500 3000 10 3 0.058 0.058 0.050 0.183 0.265
1000 1000 10 3 0.040 0.205 0.049 0.316 0.347
1000 3000 10 3 0.052 0.052 0.049 0.173 0.256
2000 1000 10 3 0.056 0.242 0.044 0.346 0.338
2000 3000 10 3 0.052 0.055 0.058 0.189 0.278
500 1000 15 3 0.052 0.268 0.055 0.389 0.344
500 3000 15 3 0.050 0.062 0.049 0.204 0.270
1000 1000 15 3 0.052 0.296 0.052 0.411 0.360
1000 3000 15 3 0.040 0.049 0.054 0.205 0.259
2000 1000 15 3 0.051 0.345 0.048 0.437 0.343
2000 3000 15 3 0.057 0.071 0.058 0.209 0.258
500 1000 20 4 0.046 0.332 0.051 0.470 0.438
500 3000 20 4 0.056 0.092 0.052 0.268 0.351
1000 1000 20 4 0.054 0.392 0.050 0.517 0.491
1000 3000 20 4 0.041 0.082 0.046 0.255 0.378
2000 1000 20 4 0.062 0.412 0.048 0.583 0.546
2000 3000 20 4 0.058 0.102 0.052 0.268 0.388
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Table 10: CV Naive

No. of No. of Large RP Small RP Zero RP
p n large small oracle CV Naive oracle CV Naive CV Naive
500 1000 10 3 0.052 0.095 0.048 0.101 0.122
500 3000 10 3 0.058 0.056 0.050 0.083 0.091
1000 1000 10 3 0.040 0.090 0.049 0.138 0.155
1000 3000 10 3 0.052 0.065 0.049 0.101 0.107
2000 1000 10 3 0.056 0.115 0.044 0.181 0.155
2000 3000 10 3 0.052 0.069 0.058 0.133 0.140
500 1000 15 3 0.052 0.082 0.055 0.102 0.114
500 3000 15 3 0.050 0.072 0.049 0.092 0.093
1000 1000 15 3 0.052 0.103 0.052 0.133 0.129
1000 3000 15 3 0.040 0.072 0.054 0.107 0.106
2000 1000 15 3 0.051 0.128 0.048 0.163 0.158
2000 3000 15 3 0.057 0.094 0.058 0.135 0.132
500 1000 20 4 0.046 0.102 0.051 0.108 0.088
500 3000 20 4 0.056 0.080 0.052 0.089 0.087
1000 1000 20 4 0.054 0.111 0.050 0.120 0.112
1000 3000 20 4 0.041 0.059 0.046 0.096 0.107
2000 1000 20 4 0.062 0.126 0.048 0.192 0.165
2000 3000 20 4 0.058 0.102 0.052 0.134 0.117
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Table 11: AL Naive

No. of No. of Large RP Small RP Zero RP
p n large small oracle AL Naive oracle AL Naive AL Naive
500 1000 10 3 0.052 0.083 0.048 0.107 0.124
500 3000 10 3 0.058 0.055 0.050 0.095 0.099
1000 1000 10 3 0.040 0.085 0.049 0.139 0.163
1000 3000 10 3 0.052 0.060 0.049 0.107 0.115
2000 1000 10 3 0.056 0.108 0.044 0.168 0.158
2000 3000 10 3 0.052 0.063 0.058 0.134 0.156
500 1000 15 3 0.052 0.077 0.055 0.107 0.120
500 3000 15 3 0.050 0.064 0.049 0.096 0.097
1000 1000 15 3 0.052 0.101 0.052 0.137 0.139
1000 3000 15 3 0.040 0.068 0.054 0.120 0.124
2000 1000 15 3 0.051 0.124 0.048 0.177 0.158
2000 3000 15 3 0.057 0.076 0.058 0.145 0.136
500 1000 20 4 0.046 0.093 0.051 0.117 0.097
500 3000 20 4 0.056 0.072 0.052 0.093 0.102
1000 1000 20 4 0.054 0.108 0.050 0.120 0.130
1000 3000 20 4 0.041 0.057 0.046 0.098 0.147
2000 1000 20 4 0.062 0.127 0.048 0.188 0.168
2000 3000 20 4 0.058 0.086 0.052 0.129 0.133
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Table 12: BIC Naive

No. of No. of Large RP Small RP Zero RP
p n large small oracle BIC Naive oracle BIC Naive BIC Naive
500 1000 10 3 0.052 0.061 0.048 0.128 0.212
500 3000 10 3 0.058 0.055 0.050 0.142 0.191
1000 1000 10 3 0.040 0.046 0.049 0.172 0.228
1000 3000 10 3 0.052 0.052 0.049 0.153 0.189
2000 1000 10 3 0.056 0.070 0.044 0.186 0.224
2000 3000 10 3 0.052 0.051 0.058 0.165 0.228
500 1000 15 3 0.052 0.067 0.055 0.151 0.181
500 3000 15 3 0.050 0.055 0.049 0.151 0.173
1000 1000 15 3 0.052 0.077 0.052 0.163 0.225
1000 3000 15 3 0.040 0.048 0.054 0.142 0.187
2000 1000 15 3 0.051 0.079 0.048 0.195 0.212
2000 3000 15 3 0.057 0.063 0.058 0.174 0.184
500 1000 20 4 0.046 0.071 0.051 0.124 0.125
500 3000 20 4 0.056 0.063 0.052 0.115 0.139
1000 1000 20 4 0.054 0.087 0.050 0.133 0.167
1000 3000 20 4 0.041 0.046 0.046 0.116 0.182
2000 1000 20 4 0.062 0.095 0.048 0.174 0.206
2000 3000 20 4 0.058 0.058 0.052 0.147 0.177

5 Conclusion and future research

This paper extended the Belloni et al. (2012) plug-in algorithm for choosing the lasso
tuning parameters to high-dimensional GLMs. It presented simulation evidence that that
a PO Poisson estimator that uses this plug-in algorithm performs well. The simulations
also show that a PO Poisson estimator that uses CV or AL to select the lasso tuning
parameters can require a much larger sample size to perform as well. The simulations
also show that a PO Poisson estimator that selects the lasso tuning parameters by
minimizing the BIC performs almost as well as the plug-in based estimator. Finally, the
paper explains these simulation results by discussing the covariate-selection tendencies
of the Poisson lasso when the tuning parameters are selected by the plug-in method, by
CV, by AL, and by the BIC.

We are currently extending the plug-in method and algorithm discussed in Belloni
et al. (2012) and Belloni et al. (2016a) to case of unbalanced panels for GLMs.
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A Simulation Designs

The designs vary by sample size, the number of potential covariates, and the specification
for the nonzero coefficients. There are 2 sample sizes, 3 values for the number of potential
covariates, and 3 specifications for the nonzero covariates. Thus, there are 18 (= 2∗3∗3)
designs in total. The 2 sample sizes are 1000, and 3000. The 3 values for the number
of potential covariates are 500, 1000, and 2000. The 3 specifications for the nonzero
coefficients are

1. 10 covariates with large coefficients and 3 covariates with small coefficients,

2. 15 covariates with large coefficients and 3 covariates with small coefficients, and

3. 20 covariates with large coefficients and 4 covariates with small coefficients.

The i(th) observation of the dependent variable yi was generated from a Poisson
distribution with mean exp(xiβ

′
c), where the variables in xi come from the skewed,

asymmetric distribution described below and βc the vector of coefficients for case c ∈
{1, 2, . . . , 18}. In each case, βc contains some large coefficients, some small coefficients,
and many zero coefficients. Table 13 gives the values of the coefficients for each design.
In each design, each small coefficient was set to a value close to twice its standard error
in the Poisson regression model that includes only the covariates with large and small
coefficients. (This model is sometimes called the “oracle” model in the literature.) In
each design, each large coefficient was set to be about twice the value of a small coefficient
in that design.

In each design, there are p covariates in x. For each design, a Toeplitz covariance
matrix V is constructed from the p×1 vector r, where the j(th) element of r is j(−1.1).
And we let the Cholesky factor of this be L.

For each repetition in each design, p variables (w) of sample size n are drawn from
χ-squared distribution with 15 degrees of freedom. Each of these variables in w is then
normalized by removing it’s mean of 15 and dividing it by it’s standard deviation of

√
30.

For each draw, x = wL′.
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Table 13: Coefficients by design
No of No of Value of Value of

p n big small big small
500 1000 10 3 .16 .06
500 3000 10 3 .13 .035
1000 1000 10 3 .16 .06
1000 3000 10 3 .13 .035
2000 1000 10 3 .16 .06
2000 3000 10 3 .13 .035

500 1000 15 3 .13 .06
500 3000 15 3 .13 .032
1000 1000 15 3 .13 .06
1000 3000 15 3 .13 .032
2000 1000 15 3 .13 .06
2000 3000 15 3 .13 .032

500 1000 20 4 .12 .06
500 3000 20 4 .13 .03
1000 1000 20 4 .12 .06
1000 3000 20 4 .13 .03
2000 1000 20 4 .12 .06
2000 3000 20 4 .13 .03

B Details of PO estimator

Belloni et al. (2016b) derived PO estimators for GLM model. Algorithm 2 specifies the
version of the Belloni et al. (2016b) PO estimator we use.
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Algorithm 2: PO Poisson estimation

1. Run a Poisson lasso of y on d and x, and let x̃ be the subset of the x covariates
that have nonzero estimated coefficients.

• Our results for the plug-in PO Poisson estimator use our version of the
plug-in method to select the lasso tuning parameters in this lasso. Similarly,
our results for the CV PO Poisson estimator, the AL PO Poisson estimator,
and BIC PO Poisson estimator respectively use CV, AL, or minimizing the
BIC to select the lasso tuning parameters.

2. Use the unpenalized quasi maximum likelihood Poisson regression estimator to
estimate the coefficients α̃ and β̃ in a Poisson model of y on d and x̃.

3. Let s̃i = x̃iβ̃
′
be the ith observation of the predicted value of the linear index xβ′.

4. Let ωi = G′(diα̃
′ + s̃i) be the ith observation of the predicted value of the

derivative of G(·).

5. For each j ∈ {1, . . . , J}, run a linear lasso of the jth variable in d on x using
observation-level weights ωi, and let x̌j be the selected covariates.

• Our results for the plug-in PO Poisson estimator use the heteroskedastic
plug-in method of Belloni et al. (2012) to select the lasso tuning parameters
in this lasso. Similarly, our results for the CV PO Poisson estimator, the AL
PO Poisson estimator, and BIC PO Poisson estimator respectively use CV,
AL, or minimizing the BIC to select the lasso tuning parameters.

6. For each j ∈ {1, . . . , J}, run a linear, ordinary least squares regression of the jth

variable in d on x̌j with observation-level weights ωi. Let d̃j be the unweighted

residuals from this regression and let d̃j,i be the ith observation on d̃j.

7. Create the vector instrumental variables z = (d̃1, . . . , d̃J) and zi be the ith
observation on this vector of instrumental variables. Note that
zi = (z1,i, . . . , zJ,i) = (d̃1,i, . . . , d̃J,i).

8. Compute α̂ by solving the J sample-moment equations

1

n

n∑
i=1

[yi −G(diα
′ + s̃i] zi = 0

We use the standard robust estimator for the asymptotic variance of a
method-of-moments estimator.
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C Formulas for Q()

Here are the formulas for Q()

• For linear models,
Q(yi,wiδ

′) = (yi −wiδ
′)
2

• For Poisson models

Q(yi,wiδ
′) = −[yiwi,tδ

′ − exp(wiδ
′)− ln(yi!)]

• For logit models

Q(yi,wiδ
′) = ln[1 + exp(wiδ

′)]− yi(wiδ)
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