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Abstract

Empirical evidence from time series methods which assume the usual I(0)/I(1) paradigm suggests
that the effi cient market hypothesis, stating that spot and futures prices of a commodity should co-
integrate with a unit slope on futures prices, does not hold. However, these statistical methods are
known to be unreliable if the data are fractionally integrated. Moreover, spot and futures price data
tend to display clear patterns of time-varying volatility which also has the potential to invalidate
the use of these methods. Using new tests constructed within a more general heteroskedastic
fractionally integrated model we are able to find a body of evidence in support of the effi cient
market hypothesis for a number of commodities. Our new tests are bootstrap implementations of
score-based tests for the order of integration of a fractionally integrated time series. These tests are
designed to be robust to both conditional and unconditional heteroskedasticity of a quite general
and unknown form in the shocks. We show that neither the asymptotic tests nor the analogues of
these which obtain from using a standard i.i.d. bootstrap admit pivotal asymptotic null distributions
in the presence of heteroskedasticity, but that the corresponding tests based on the wild bootstrap
principle do. A Monte Carlo simulation study demonstrates that very significant improvements in
finite sample behaviour can be obtained by the bootstrap vis-à-vis the corresponding asymptotic
tests in both heteroskedastic and homoskedastic environments.

Keywords: Bootstrap; effi cient market hypothesis; fractional integration; score tests; spot and
futures commodity prices; time-varying volatility

J.E.L. Classifications: C12, C22, C58, G13, G14.

1 Introduction

A large body of empirical literature has developed aimed at assessing to what extent futures commodity
markets are effi cient. Suppose we let st denote the (log) spot price of a particular commodity at time
t, and let f (k)

t denote the (log) price of the corresponding k-period futures contract at time t, with
k a positive constant. Then, in its simplest form, the Effi cient Market Hypothesis (EMH, hereafter)
states that in a frictionless market f (k)

t is an unbiased predictor of st+k; that is,

f
(k)
t = E (st+k|It) , (1.1)
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Aude | DFF Advanced Grant (Grant nr: 12-124980) for financial support.
Correspondence to: Robert Taylor, Essex Business School, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ,
United Kingdom. Email: rtaylor@essex.ac.uk

1



where It denotes the available information set; that is, the sigma-algebra generated by current and
past values of xt := (st, ft)

′. Equivalently, letting u(k)
t := f

(k)
t−k − st denote the so-called forward

premium, the relation (1.1) can be reformulated as

E(u
(k)
t+k|It) = 0, (1.2)

which asserts that the expected forward risk premium is zero. Under the standard assumption of (log)
spot prices being well approximated by (possibly heteroskedastic) I(1) processes, the relations in (1.1)
and (1.2) imply that: (i) f (k)

t is I(1); (ii) st+k and f
(k)
t are co-integrated; (iii) the co-integrating vector

has the form β = (1,−1)′; (iv) the co-integrating residuals (or spread), st − f (k)
t−k, form a (possibly

heteroskedastic) martingale difference sequence. Weaker forms of the EMH require that, due to time
varying risk premia, interest rates and storage costs, in equilibrium, the right-hand side of (1.2) is
equal to some arbitrary (possibly nonzero) constant (see, e.g., Luo, 1998), and that in place of (iv)
we have the weaker condition (iv’) u(k)

t can be described as a mean reverting, stationary (aside from
possible heteroskedasticity) process. Observe that this need not therefore be an I(0) process, as, for
example, any fractionally integrated I(d) process with d < 1/2 satisfies condition (iv’).

Despite the fairly widespread acceptance of the EMH in theory, the long-run one-for-one relation-
ship between spot and futures prices that it postulates has proven very diffi cult to verify empirically;
see, for example Baillie and Bollerslev (1994) and Figuerola-Ferretti and Gonzalo (2010) for detailed
discussions of early and more recent empirical evidence, respectively. Although the presence of unit
roots in both spot and futures prices tends to be supported for most commodities when data are ana-
lyzed by means of standard stationarity and unit root tests, most of the early empirical evidence based
on the usual I(0)/I(1) paradigm rejected the hypothesis of any co-integration between spot and future
prices; see the discussion in Westerlund and Narayan (2013) and the references therein. While more
recent approaches, although still based on the standard I(0)/I(1) paradigm, do often find some form
of co-integration for most commodities they still, however, tend to reject the (1,−1)′ co-integrating
vector in (iii); see inter alia Figuerola-Ferretti (2010) and Westerlund and Narayan (2013) and the
references therein.

Most of the empirical evidence is based on the following two assumptions: (a) the data are well
described by I(d) processes with d = 0 or d = 1; and (b) the degree of possible (conditional and
unconditional) heteroskedasticity in the series is small enough to guarantee that standard statistical
procedures for integrated and co-integrated conditionally i.i.d. data apply. Both assumptions, however,
would appear to be at odds with the empirical features of price series in both spot and futures markets,
and indeed in financial data more generally.1 Regarding (a), researchers have reasonably claimed
that data seem to be better characterised by fractional integration, i.e. by a general I(d) process, in
particular where the forward premium u

(k)
t is concerned; see, for example, Baillie and Bollerslev (1994,

2000). Consequently, inference methods which do not allow for the possibility of fractional integration
in the data will be biased where it is present, in the sense that they will tend to reject (1,−1)′ co-
integration between spot and forward prices; see Maynard and Phillips (2001). Regarding (b), it is
now a well established fact that the existence of time-varying conditional and unconditional volatility
can seriously affect standard inference procedures for unit root and co-integration tests (Cavaliere
and Taylor, 2007, 2008a, 2009, and Cavaliere, Rahbek and Taylor, 2014). Hence, existing evidence
against co-integration and/or a (1,−1)′ co-integration relation between spot and futures prices is likely
to be affected by time-varying conditional and/or unconditional volatility in the data. Moreover, as
we show in this paper, inference on the fractional integration order is very likely to be affected by
time-varying behaviour in the volatility process; that is, existing evidence of fractional integration in
futures markets may also be driven by non-stationarity in the second-order moments.

In response to these issues we focus on the problem of conducting inference on the fractional in-
tegration (long memory) parameter, based around the score or Lagrange multiplier [LM] principle, in
univariate autoregressive fractionally integrated moving average [ARFIMA] time series which display

1For example, Sensier and van Dijk (2004) report that over 80% of the real and price variables in the Stock and
Watson (1999) data-set reject the null of constant innovation variance, while Loretan and Phillips (1994) report evidence
against the constancy of unconditional variances in stock market returns and exchange-rate data.
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time-variation in the volatility process of the driving shocks. We allow for both unconditional hetero-
skedasticity (often referred to as non-stationary volatility in the literature) and conditional heteroske-
dasticity in our analysis. The score test for fractional integration was pioneered by Robinson (1991,
1994) and has been applied in early empirical work by, e.g., Gil-Alana and Robinson (1997), among
numerous other studies. The classical likelihood-based tests, and in particular the score-based tests,
for inference on the long memory parameter have been derived under the assumption of conditionally
(and, hence, unconditionally) homoskedastic shocks; see, among others, Robinson (1994), Agiakloglou
and Newbold (1994), Tanaka (1999), Nielsen (2004), Lobato and Velasco (2007), and Johansen and
Nielsen (2010). Very few contributions in the fractional integration literature investigate the impact of
time-varying volatility on inference in long memory series. A small number of papers have considered
the case where the shocks can display certain forms of conditional heteroskedasticity (but maintaining
the assumption of unconditional homoskedasticity); see, for example, Robinson (1991), Baillie, Chung,
Tieslau (1996), Ling and Li (1997), Ling (2003), Demetrescu, Kuzin and Hassler (2008) and Hassler,
Rodrigues and Rubia (2009). To the best of our knowledge, the only paper in this literature which
allows for non-stationary volatility is Kew and Harris (2009) who propose heteroskedasticity-robust
versions, based around the use of White (1980)-type standard errors, of the recently proposed frac-
tional Dickey-Fuller-type regression-based test of Dolado, Gonzalo and Mayoral (2002) and Lobato
and Velasco (2006).

This paper aims to make two distinct contributions to the literature. Our first contribution is to
the theoretical econometrics literature. Here we first examine the impact of time-varying conditional
and/or unconditional volatility on standard score-based tests for the long memory parameter. Our
analysis is based on a new framework which includes the general form of non-stationary volatility con-
sidered in Cavaliere and Taylor (2005, 2008a) as a special case and also includes a set of conditional
heteroskedasticity conditions which are similar to those employed in Robinson (1991), Demetrescu,
Kuzin and Hassler (2008) and Hassler, Rodrigues and Rubia (2009), among others. Neither of these
conditions involve specifying a parametric model for the volatility process. We show, in the context
of the resulting conditionally and unconditionally heteroskedastic ARFIMA model, that the limiting
distributions of the score test statistics under both the null and local alternatives are non-pivotal
with their functional form depending on nuisance parameters which derive from the heteroskedasticity
present in the shocks. Consequently inference based on conventional asymptotic critical values leads
to tests which are not in general asymptotically correctly sized under the null when heteroskedasticity
is present. In response to this we then propose bootstrap implementations of the aforementioned score
tests. We examine both standard (or i.i.d.) bootstrap and wild bootstrap based implementations of
the tests. We show that the i.i.d. bootstrap correctly replicates the asymptotic null distribution of
the standard test statistics only under constant volatility so that inference will again not be pivotal
under unconditional or conditional heteroskedasticity. However, the wild bootstrap implementations
are shown to correctly replicate the limiting null distributions of the test statistics. As a consequence,
asymptotically valid bootstrap inference can be performed in the presence of time-varying volatility
using the wild bootstrap versions of these tests. Simulation evidence is reported which clearly demon-
strates the superior finite sample properties of our proposed bootstrap tests over their asymptotic
counterparts in both homoskedastic and heteroskedastic environments.

Our second contribution is to employ our newly developed tests to re-analyse the sample of daily
data covering the period 2005—2011 for four commodities — gold, silver, platinum and crude oil —
recently analysed in Westerlund and Narayan (2013). As Narayan, Huson and Narayan (2012) point
out, these four commodities together constitute 76% of total commodities trading, with crude oil
the most commonly traded commodity. Westerlund and Narayan (2013) find strong evidence of
conditional heteroskedasticity in both the spot and futures prices of each of these commodities and,
as a result, recommend using weighted least squares, based on the assumption that volatility follows
a finite-order ARCH process, to estimate the co-integrating relationship between the spot and futures
prices, again within an I(0)/I(1) paradigm. In recognition of the financial crisis, and the associated
increase in the unconditional volatility apparent in all of these series, they also consider splitting
the sample at September 2008. The methods which we develop in this paper allow us to control
for a wide class of conditionally heteroskedastic processes without the need to specify a parametric
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model, unlike Westerlund and Narayan (2013) who need to, and simultaneously to allow for changes
in the unconditional volatility of the process, including any which might be associated with the recent
financial crisis. At the same time our methods allow us to move beyond the strictures of the pure
I(0)/I(1) paradigm, thereby permitting valid testing on condition (iv’) in cases where the spread is
stationary but not I(0). We find significant evidence of conditional heteroskedasticity in all of the series
and of unconditional heteroskedasticity in all but the silver series. The results from our bootstrap tests
suggest that the EMH holds within a standard I(1) to I(0) co-integrated relationship for silver and
platinum. For gold the EMH is accepted but within a stationary fractionally co-integrated relationship.
For oil, our results suggests that the spread is fractionally co-integrated but non-stationary. A rolling
sub-sample analysis of the data is also reported and this does not appear to uncover any major
within-sample departures from these conclusions based on the full-sample.

The remainder of the paper is organised as follows. Section 2 outlines our heteroskedastic, frac-
tionally integrated ARFIMA model. Section 3 analyses the effects of time-varying volatility on the
large sample behaviour of the standard (asymptotic) score-based tests for hypotheses on the fractional
integration parameter. The bootstrap algorithms and related bootstrap score-based tests are outlined
in section 4, and the large sample properties of the bootstrap procedures are established. The results
of a Monte Carlo study are given in section 5. Section 6 contains the empirical analysis of the effi cient
market hypothesis for futures markets, and section 7 concludes. Mathematical proofs are contained
in the appendix.

In the following, w→ denotes weak convergence,
p→ convergence in probability, Lr→ convergence in

Lr-norm, and
w→p weak convergence in probability, in each case as T → ∞; for any space A, int(A)

denotes the interior of A; I(·) denotes the indicator function; x := y indicates that x is defined by y;
for any square matrix, A, ‖A‖ is used to denote the norm ‖A‖2 := tr {A′A}; for any vector, x, ‖x‖
denotes the usual Euclidean norm, ‖x‖ := (x′x)1/2; for any matrix, A, (A)m,n denotes its (m,n)’th
element and for any vector, x, (x)m denotes its m’th element; for any real number, x, bxc denotes the
integer part of x. Throughout, we use the notation K for a generic, finite constant.

2 The Heteroskedastic ARFIMA Model

Suppose we observe the real-valued, fractionally integrated stochastic process {yt, t = 1, 2, ..., T} gen-
erated by the linear model

∆d
+yt = ut, (2.1)

where the operator ∆d
+ is given by ∆d

+zt := ∆dztI (t ≥ 1) =
∑t−1

i=0 πi (−d) zt−i with

πi (v) :=
Γ (v + i)

Γ (v) Γ (1 + i)
=
v(v + 1) . . . (v + i− 1)

i!
(2.2)

denoting the coeffi cients in the usual binomial expansion of (1− z)−v. The unobserved error process
{ut} is assumed to have the following ARMA(p, q) generating mechanism

c (L,ψ)ut = εt, (2.3)

where c (z, ψ) := a (z, ψ) /b (z, ψ) and a (z, ψ) and b (z, ψ) are polynomial functions (of orders p and q,
respectively) in the complex variate z, depending on the k × 1 parameter vector ψ. The polynomials
are assumed to satisfy the following standard conditions,

Assumption R The parameter space for ψ is Ψ, which is convex, compact, and such that, for all
ψ ∈ Ψ, the polynomial functions a (z, ψ) and b (z, ψ) of the complex variate z have no common roots
and all their roots lie strictly outside the unit circle.

As is standard in this literature, the orders p and q are assumed known, although in practice they
could be determined by general-to-specific testing or by an information criterion such as the usual BIC,
the latter being valid under both homoskedasticity and non-stationary volatility. The parameters of
the model are collected in the vector γ := (d, ψ′)′ with true value denoted by γ0 := (d0, ψ

′
0)′.
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The innovation process {εt} is taken to satisfy the following assumption which embodies both
unconditional heteroskedasticity (part (a)) and conditional heteroskedasticity (part (b)):

Assumption V The innovations {εt} are such that εt = σtzt, where {σt} and {zt} satisfy the
conditions in parts (a) and (b), respectively, below:

(a) {σt} is non-stochastic and satisfies σt := σ (t/T ) > 0 for all t = 1, ..., T , where σ (·) ∈ D[0, 1],
the space of càdlàg functions on [0, 1].

(b) {zt} is a martingale difference sequence with respect to the natural filtration Ft, the sigma-field
generated by {zs}s≤t, such that Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., and satisfies

(i) E(z2
t ) = 1,

(ii) τr,s := E(z2
t zt−rzt−s) is uniformly bounded for all t ≥ 1, r ≥ 0, s ≥ 0, where also τr,r > 0

for all r ≥ 0,

(iii) For all integers q such that 3 ≤ q ≤ 8 and for all integers r1, ..., rq−2 ≥ 1, the q’th order cu-
mulants κq(t, t, t−r1, . . . , t−rq−2) of (zt, zt, zt−r1 , . . . , zt−rq−2) satisfy supt

∑∞
r1,...,rq−2=1 |κq(t, t, t−

r1, . . . , t− rq−2)| <∞.

A special case of Assumption V, where σ (·) is constant and {zt} is conditionally homoskedastic,
is, in addition to a higher-order moment condition, the following classical assumption.

Assumption H The innovations {εt} form a martingale difference sequence with respect to the
filtration Ft, where, almost surely, E

(
ε2
t |Ft−1

)
= σ2.

Assumption H is a conditional homoskedasticity requirement for martingale differences, which
goes back to, at least, Hannan (1973), and has become rather standard in the time series literature.
Conversely, Assumption V allows for both conditional and unconditional heteroskedasticity of very
general forms.

The conditions in part (a) of Assumption V, see Cavaliere and Taylor (2008a), imply that the
unconditional innovation variance σ2

t is only required to be bounded and to display at most a countable
number of jumps, therefore allowing for an extremely wide class of potential models for the behaviour
of the unconditional variance of εt. Models of single or multiple variance shifts, satisfy part (a) of
Assumption V with σ (·) piecewise constant. For instance, the case of a single break at time bTτc
obtains for σ (u) := σ0 +(σ1−σ0)I (u > τ). If σ (·) is an affi ne function, then σt displays a linear trend.
Piecewise affi ne functions are also permitted, thereby allowing for variances which follow a broken
trend, as are smooth transition variance shifts. The requirement within part (a) of Assumption V
that σ (·) is non-stochastic is made in order to simplify the analysis, but can be generalised to allow
for cases where σ (·) is stochastic and independent of zt; see Cavaliere and Taylor (2009) for further
details.

Part (b) of Assumption V allows for conditional heteroskedasticity in {zt}. We do not assume
a parametric model of the generalized autoregressive conditional heteroskedasticity form as in, e.g.,
Baillie et al. (1996), Ling and Li (1997) and Ling (2003). Instead, the conditions in Assumption V(b)
allow for conditional heteroskedasticity of unknown and very general form and are typical of those used
in this literature; see, for example, Robinson (1991), Demetrescu, Kuzin and Hassler (2008), Hassler,
Rodrigues and Rubia (2009) and Kew and Harris (2009). However, we note that the conditions
given in part (b) of Assumption V are somewhat weaker than required by these authors. First of all,
they impose the assumption that, for any integer q, 2 ≤ q ≤ 8, and for q non-negative integers si,
E(
∏q
i=1 z

si
ti

) = 0 when at least one si is exactly one and
∑q

i=1 si ≤ 8, see, e.g., Assumption E(e) of
Kew and Harris (2009). This implies, in particular, that τr,s = 0 for r 6= s, which rules out a large
class of asymmetric conditionally heteroskedastic processes. We are not aware of any other work in
the fractional integration literature that allows for τr,s 6= 0. Secondly, these authors assume strict
stationarity of zt, which we do not.
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Remark 2.1 Observe that the moment condition suptE|zt|8 < ∞, imposed by a number of other
authors, is necessary for part (b)(iii) with q = 8 to hold and therefore is not stated explicitly. Moreover,
notice that the boundedness assumption in (b)(ii) does in fact follow from the conditions imposed in
(b)(iii). Finally, notice also that the assumption that zt is a martingale difference sequence implies
that for any κq(·), q ≥ 2, if the highest argument in the cumulant appears only once, then the cumulant
is zero. This result is stated and formally proved in Lemma A.1 in the appendix. For this reason, our
stated assumptions deal only with cumulants where the first two (the highest) arguments coincide.

Remark 2.2 Since σt depends on (t/T ), a time series generated according to Assumption V form-
ally constitutes a triangular array of the type {εT,t : 0 ≤ t ≤ T, T ≥ 1}, where εT,t = σT,tzt and
σT,t = σ(t/T ). Because the triangular array notation is not essential, for simplicity the subscript T is
suppressed in the sequel.

Remark 2.3 Deterministic terms such as unknown mean, trend, and/or seasonal dummies can also
be added to the model by assuming that the observed process is β′xt+yt, where yt is generated by (2.1),
xt is the deterministic term, and the coeffi cient β is estimated by maximum likelihood jointly with the
other parameters. Under very weak conditions, not even requiring the usual Grenander-Rosenblatt
assumptions, estimated deterministic terms would not alter the form of the asymptotic distributions
given in this paper due to the block-diagonality of the Hessian matrix; see, for example, Robinson
(1994) and Nielsen (2004). However, we leave out deterministic terms to simplify the notation and
discussion.

Remark 2.4 Our model (2.1) is fractionally integrated of type II, where the fractional differencing
filter is truncated, i.e. the ∆+ operator. Alternatively, a fractional model of type I would apply integer
differencing until the fractional integration order of yt is in the interval (−1/2, 1/2), and then apply
the untruncated fractional differencing operator. The type II model applied in this paper has the
advantage that it is applicable for any value of d and without any prior knowledge of the integration
order. �

3 Score-based Tests on d

In this section we first derive one-sided and two-sided (quasi-) score tests under the assumption of
homoskedastic Gaussian innovations. We then establish the large sample properties of the standard
(asymptotic) test statistics based on comparing these statistics with standard (homoskedastic) critical
values when the innovations in fact display unconditional and/or conditional heteroskedasticity of an
unknown form as given in Assumption V.

The main focus in this paper is thus to test the null hypothesis

H0 : d = d̄ (3.1)

in the context of (2.1). We will test this hypothesis by using score tests in the time domain. The
score tests may be performed against either a one-sided or a two-sided alternative. An example of
the former is H1 : d < d̄, in which case d > d̄ is implicitly part of the null, or vice versa. On the
other hand, the more traditional two-sided score test is performed against the two-sided alternative,
H1 : d 6= d̄. The one-sided score test is often referred to as Rao’s score test; see Lehmann and Romano
(2005, pp. 512, 566) for further details. In what follows we will refer to the one-sided score test simply
as the score test, and the two-sided score test as the LM test.

To derive the test statistics, first define ε̂t (γ) := ε̂t (d, ψ) := c (L,ψ) ∆d
+yt. Then the (Gaus-

sian) log-likelihood function, conditionally on the initial values and under the assumption of constant
variance, σ (·) = σ, is given, up to a constant term, by

L
(
d, ψ, σ2

)
:= −T

2
log
(
σ2
)
− 1

2σ2

T∑
t=1

ε̂t (d, ψ)2 .

Concentrating out the nuisance parameter σ2 yields, aside from a constant, the concentrated likelihood

` (d, ψ) := −T
2

log
(
σ̂2 (d, ψ)

)
, (3.2)
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where

σ̂2 (d, ψ) :=
1

T

T∑
t=1

ε̂t (d, ψ)2 . (3.3)

The unrestricted conditional quasi-maximum likelihood [QML] estimator is then given as the maxim-
izer of (3.2), which is equivalent to the conditional sum-of-squares estimator given as the minimizer of
(3.3). To calculate the score and LM test statistics, estimation is carried out under the null hypothesis.
To that end, let a tilde (~) denote an estimator obtained under the restrictions of the null, i.e. while
fixing d = d̄. Specifically,

ψ̃ := arg max
ψ∈Ψ

`
(
d̄, ψ

)
= arg min

ψ∈Ψ
σ̂2
(
d̄, ψ

)
, (3.4)

and the estimator of the full parameter vector γ under the null is then given by γ̃ = (d̄, ψ̃′)′.
Let DT (γ) := ∂` (γ) /∂γ and HT (γ) := ∂2` (γ) /∂γ∂γ′ denote the score vector and Hessian matrix,

respectively, of the likelihood. We will consider the following one-sided score statistic,2

S1T := DT (γ̃)1

√
−H−1

T (γ̃)11, (3.5)

as well as its square, which is the more traditional LM test statistic,

S2T := −DT (γ̃)′H−1
T (γ̃)DT (γ̃). (3.6)

Under the null hypothesis (3.1) and homoskedasticity, as in AssumptionH, the tests statistics (3.5) and
(3.6) are asymptotically N(0, 1) and χ2

1 distributed, respectively; see, for example, Robinson (1994),
Tanaka (1999), or Nielsen (2004). The former result motivates the use of (3.5) as a test of (3.1)
against one-sided alternatives, where the null would be rejected in favor of the right-tailed alternative
if S1T > Z1−α, where Z1−α is such that P (Z > Z1−α) = α when Z ∼ N(0, 1), and vice versa for the
left-tailed test; see Robinson (1994, p. 1424) for details. This allows the testing of interesting one-sided
hypotheses such as testing d = 1/2 against either d < 1/2 or against d > 1/2, or testing the unit root
d = 1 against d < 1, or even d = 2 against d < 2 to check whether yt is I(2). Of course one-sided tests
will be more powerful than two-sided tests (in the correct tail).

We now turn to detailing the asymptotic behaviour of the statistics (3.5) and (3.6) under un-
conditional and/or conditional homoskedasticity of the form given in Assumption V. To do so, we
introduce the parameter ω2 which derives from the weak dependence present in the shocks. In the
simplest case, where p = q = 0, ω2 = (π2/6)−1. In order to obtain a general expression for cases where
(p, q) 6= (0, 0), first define ξ (z, γ) := ∂ log

(
(1− z)dc (z, ψ)

)
/∂γ and ξ (z) := ξ (z, γ0) =:

∑∞
j=1 ξjz

j .
Observe in this expression that ξj = (−j−1, c′j)

′, where cj is defined as the coeffi cient on zj in the
expansion of ∂ log c (z, ψ) /∂ψ|ψ=ψ0

in powers of z. Under Assumption R, it holds that cj decays
exponentially. Further define

Ξ :=

∞∑
j=1

ξjξ
′
j =

[
π2/6 κ′

κ Φ

]
(3.7)

with κ := −
∑∞

j=1 j
−1cj and Φ :=

∑∞
j=1 cjc

′
j ; notice that, under Assumption R, the matrix Ξ is finite

and positive definite. With these definitions, ω2 := (Ξ−1)1,1 = (π2/6− κ′Φ−1κ)−1. It is easily shown
that Φ is the Fisher information for ψ; for example, if {ut} is an AR(1) process with coeffi cient a then
cj = −aj−1 and Φ = (1− a2)−1.

Where conditional heteroskedasticity is present in {zt} we also need to define the quantity3

Υ :=
∞∑

j,k=1

ξjξ
′
kτj,k,

where the τj,k coeffi cients derive from the higher-order dependence in the shocks induced by the
conditional heteroskedasticity; see part (b) of Assumption V. In such cases, the relevant quantity is

2Note that −H−1T (γ̃)11 is not guaranteed to be positive in finite samples. To circumvent this issue, −HT (γ̃) could be
replaced by a positive definite estimator of its asymptotic limit Ξ0 given in (3.7), although we prefer the computationally
simpler version given here.

3Note that Assumptions R and V imply that Υ is finite. This follows because ||ξj || ≤ Kj−1 under Assumption R,
and using condition (b)(iii) of Assumption V we thus find ||Υ|| ≤

∑∞
j,k=1 ||ξj ||||ξk|||τj,k| ≤ K

∑∞
j,k=1 j

−1k−1|τj,k| <∞.
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now given by $2 := (Ξ−1ΥΞ−1)1,1. If {zt} is conditionally homoskedastic, then τj,k = I(j = k) such
that Υ =

∑∞
j=1 ξjξ

′
j = Ξ, and, hence, $2 = ω2.

In order to investigate the impact of heteroskedasticity on both the asymptotic size and local power
of the tests we will derive asymptotic distributions under the relevant (local) Pitman drift alternative;
that is,

H1,T : d0 = d0T := d̄+ δ/
√
T , (3.8)

where δ is a fixed scalar. Notice that for δ = 0, H1,T reduces to H0 of (3.1).

Theorem 1 Let Assumptions R and V be satisfied and assume that ψ0 ∈ int(Ψ). Then, under H1,T

of (3.8), it holds that

S1T
w→ (λ

$2

ω2
)1/2N(δ$−1λ−1/2, 1) (3.9)

S2T
w→ (λ

$2

ω2
)χ2

1

(
δ2$−2λ−1

)
, (3.10)

where λ := (
∫ 1

0 σ
4(s)ds)/(

∫ 1
0 σ

2(s)ds)2.

Corollary 1 Let the conditions of Theorem 1 be satisfied. Under H0 of (3.1),

S1T
w→ (λ

$2

ω2
)1/2N(0, 1), (3.11)

S2T
w→ (λ

$2

ω2
)χ2

1. (3.12)

We next discuss the results in Theorem 1 and Corollary 1.

Remark 3.1 Suppose that there is no conditional heteroskedasticity present in {zt}, such that
$2 = ω2. Here the right members of (3.9) and (3.10) simplify to N(δ$−1, λ) and λχ2

1

(
δ2ω−2λ−1

)
,

respectively. These limits depend on the scalar parameter λ, which is then a measure of the degree of
unconditional heteroskedasticity present in the process {εt}. For a homoskedastic process, where σ(·)
is constant, λ = 1, whereas when σ(·) is non-constant λ > 1 by the Cauchy-Schwarz inequality. For
the single break in volatility example discussed in Remark 2.1 with σ0 = 1 and σ1 = 3 (σ1 = 1/3) then:
for τ = 0.25 we find λ = 1.245 (2.333); for τ = 0.75, λ = 2.333 (1.245), and for τ = 0.5, λ = 1.640
in both cases. On the other hand, under constant unconditional volatility, λ = 1, the right members
of (3.9) and (3.10) simplify to ($

2

ω2
)1/2N(δ$−1, 1) and ($

2

ω2
)χ2

1

(
δ2$−2

)
, respectively, so that both the

asymptotic size and local power functions of S1T and S2T depend on both ω2 and $2. �
Theorem 1 and Corollary 1 contain three key results. For concreteness, this discussion is based on

the two-sided LM test, but similar remarks can be made about the one-sided score test.

1. If the errors are (conditionally) homoskedastic then λ = 1 and $2

ω2
= 1 and the standard results

are special cases of the representations in (3.9) and (3.10). Specifically, under (3.8) and Assump-
tion H it follows from Robinson (1994) that the S2T test statistic is asymptotically non-central
χ2

1 distributed with non-centrality parameter δ
2ω−2; that is, S2T

w→ χ2
1(δ2ω−2).

2. Under the null, δ = 0, the asymptotic distribution of S2T is (λ$
2

ω2
)χ2

1, see (3.12). When the

factor λ$
2

ω2
> 1, for example if λ > 1 and $2

ω2
= 1, it therefore follows that the LM test will

over-reject asymptotically. Notice also therefore that a necessary (but not suffi cient) condition
for under-rejection to occur in the limit is for conditional heteroskedasticity to be present in {zt}.
Specifically, the LM test rejects if S2T > χ2

1,1−α, where χ
2
1,1−α is such that P (χ2

1 > χ2
1,1−α) = α.

Thus, rejection occurs with probability converging to

P ((λ
$2

ω2
)χ2

1 > χ2
1,1−α) = P (χ2

1 > χ2
1,1−α/(λ

$2

ω2
)) = 1− F1(χ2

1,1−α/(λ
$2

ω2
)), (3.13)

where F1(·) denotes the cumulative density function [cdf] of the (central) χ2
1 distribution. To

illustrate this phenomenon, the asymptotic size of the LM test under heteroskedasticity is shown
in Figure 1 as a function of the factor λ$

2

ω2
.
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Figure 1. Asymptotic size of S2T under heteroskedasticity at 5% nominal level
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3. Under local alternatives the non-centrality parameter is scaled by (λ$
2

ω2
)−1, compared to the

homoskedastic case, and the entire asymptotic distribution of S2T is scaled by λ$
2

ω2
. The size-

corrected LM test rejects when S2T > (λ$
2

ω2
)χ2

1,1−α such that size-corrected asymptotic local
power is given by

P (χ2
1(δ2$−2λ−1) > χ2

1,1−α) = 1−F1(χ2
1,1−α, δ

2$−2λ−1) = 1−F1(χ2
1,1−α, δ

2ω−2/(λ
$2

ω2
)), (3.14)

where F1(·, c) is the cdf of the non-central χ2
1 distribution with non-centrality parameter c. An

implication of this is that the size-corrected asymptotic local power function of the S2T test will
be monotonically decreasing in λ$

2

ω2
for a given value of δ. The size-corrected asymptotic local

power of S2T for various choices of λ$
2

ω2
and/or δ are illustrated in Figures 2 and 3 (the figures

are displayed with ω2 = (π2/6)−1).

The results in Theorem 1 and Corollary 1 therefore establish that the standard tests (obtained
under the assumption of homoskedasticity) are not asymptotically correctly sized under heteroske-
dasticity of the form given in Assumption V and that these tests will also have asymptotic local power
properties that depend on the degree of heteroskedasticity present in the process even when size-
corrected. The finite sample effects of a variety of shock processes which display a one-time change
in variance and/or a GARCH-type structure on the size and power properties of the LM test will be
quantified by Monte Carlo simulation methods in section 5.

Remark 3.2 In the Gaussian homoskedastic single-parameter model the one-sided test based on
(3.5) is asymptotically uniformly most powerful (UMP), and the two-sided test based on (3.6) is
asymptotically UMP unbiased, see Tanaka (1999) and Nielsen (2004) for the fractional model or
Lehmann and Romano (2005) for a general treatment. �
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Figure 2. Size-corrected asymptotic local power of S2T under heteroskedasticity
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4 Bootstrap Inference

In this section we outline bootstrap-based analogues of the score and LM tests from section 3. We
will first consider tests based on the wild bootstrap principle in section 4.1 and will subsequently also
discuss in section 4.2 the corresponding tests based on the i.i.d. bootstrap. We will demonstrate that
the wild bootstrap implementations of these tests are asymptotically valid under heteroskedasticity of
unknown form since they correctly replicate the large sample distributions of the test statistics. This
is shown not to hold for the i.i.d. bootstrap tests.

4.1 The Wild Bootstrap Algorithm

We first outline our proposed algorithm which draws on the wild bootstrap literature; see, inter alia,
Wu (1986), Liu (1988) and Mammen (1993).

Algorithm 1 (wild bootstrap):

(i) Estimate model (2.1)-(2.3) under the null hypothesis (3.1) using Gaussian QML yielding the
estimates (d̄, ψ̃), see (3.4), together with the corresponding residuals, ε̃t :=ε̂t(d̄, ψ̃).

(ii) Compute the re-centered residuals ε̃c,t := ε̃t − T−1
∑T

i=1 ε̃i and construct the bootstrap errors
ε∗t := ε̃c,twt, where wt, t= 1, ..., T , is an i.i.d. sequence with E(wt) = 0, E(w2

t ) = 1 and E(w4
t ) <

∞.

(iii) Construct the bootstrap sample {y∗t } from

y∗t = ∆−d̄+ u∗t , u
∗
t = c(L, ψ̃)−1ε∗t , t = 1, ..., T, (4.1)

with the T bootstrap errors ε∗t generated in step (ii) and with ε
∗
t = 0 for t ≤ 0.
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Figure 3. Size-corrected asymptotic local power of S2T under heteroskedasticity
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(iv) Using the bootstrap sample, {y∗t }, compute the bootstrap test statistic S∗iT , denoting either the
score statistic (i = 1) or the LM statistic (i = 2), as detailed in section 3. If S∗iT is the score test
statistic for a left-tailed test, define the corresponding p-value as P ∗T := G∗iT (SiT ), and if S∗iT is
the score test statistic for a right-tailed test or the LM test statistic, define the corresponding
p-value as P ∗T := 1 − G∗iT (SiT ). In either case, G∗iT (·) denotes the conditional (on the original
data) cdf of S∗iT .

(v) The wild bootstrap test of H0 against H1 (defined in accordance with the test statistic) at level
α rejects if P ∗T ≤ α.

Remark 4.1 In the context of stationary data, it is often seen in the wild bootstrap literature
(for a review, see Davidson and Flachaire, 2008) that improved bootstrap accuracy can be achieved
by generating the pseudo-data according to an asymmetric distribution with E(wt) = 0, E(w2

t ) = 1
and E(w3

t ) = 1 (Liu, 1988). A well-known example of this is the Mammen (1993) distribution:
P (wt = −0.5(

√
5 − 1)) = 0.5(

√
5 + 1)/

√
5 =: π, P (wt = 0.5(

√
5 + 1)) = 1− π. Two other commonly

used distributions are the simple two-point distribution P (wt = −1) = P (wt = 1) = 0.5 and an i.i.d.
N(0, 1) sequence. The large sample properties of the resulting bootstrap tests are not affected by this
choice, since all that is required in Algorithm 1(iii) is E(wt) = 0, E(w2

t ) = 1 and E(w4
t ) < ∞. In

simulations we found that, of these three distributions, the simple two-point distribution gave slightly
better small sample performance than the other two, and so the results presented in section 5 relate
to the use of the simple two-point distribution for wt.

Remark 4.2 In step (i) of Algorithm 1 the parameters characterizing (2.1), which are then used
in constructing the bootstrap sample data in steps (ii) and (iii), are estimated under the restriction
of the null hypothesis, H0 of (3.1). It is also possible to estimate these parameters unrestrictedly
and subsequently calculate a bootstrap test statistic for the hypothesis that d = d̂, where d̂ is the
unrestricted estimate of d obtained from the original sample data. A finite sample comparison of
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these two possible approaches is conducted in section 5, where it is shown that the bootstrap based
on restricted estimates is preferred.

Remark 4.3 In practice, the cdf G∗T (·) required in step (iv) of Algorithm 1 will be unknown, but
can be approximated in the usual way through numerical simulation. This is achieved by generating
B (conditionally) independent bootstrap statistics, S∗iT :b, i = 1, 2, for b = 1, ..., B, computed as in
Algorithm 1 above. The simulated bootstrap p-value for S2T , for example, is then computed as
P̃ ∗T := B−1

∑B
b=1 I(S∗2T :b > S2T ), and is such that P̃ ∗T

a.s.→ P ∗T as B →∞. The choice of B is discussed
by, inter alia, Andrews and Buchinsky (2000) and Davidson and MacKinnon (2000). �

In Theorem 2 and Corollary 2, we now provide results which establish the asymptotic validity of our
proposed wild bootstrap fractional integration tests. For these results to hold we need to strengthen
part (ii) of Assumption V(b) as follows:

Assumption V ′ Assumption V holds with (ii) replaced by:

(ii’) τr,s := E(z2
t zt−rzt−s) is uniformly bounded for all t ≥ 1, r ≥ 0, s ≥ 0, where τr,r > 0 for all

r ≥ 0 and τr,s = 0 for r 6= s.

Remark 4.4 Assumption V ′ imposes the additional condition that τr,s = 0 for r 6= s. However,
Assumption V ′ is still slightly weaker than the corresponding conditions imposed in Robinson (1991),
Demetrescu, Kuzin and Hassler (2008), Hassler, Rodrigues and Rubia (2009) and Kew and Harris
(2009), see the remarks after Assumption V. �

Theorem 2 Let Assumptions R and V ′ hold. Then under (3.8) it holds that

S∗1T
w→p (λ

$2

ω2
)1/2N(0, 1),

S∗2T
w→p (λ

$2

ω2
)χ2

1.

Theorem 2 has the following corollary, where P ∗T denotes the (wild bootstrap) p-value associated
with any of the test statistics considered.

Corollary 2 Let the conditions of Theorem 2 be satisfied. Under the null hypothesis (3.1), P ∗T
w→

U [0, 1], i.e. a uniform distribution on [0, 1].

An immediate implication of the result in Corollary 2 is that the wild bootstrap implementations
of the one-sided score and two-sided LM tests will have correct asymptotic size in the presence of both
unconditional and conditional heteroskedasticity of the form given in Assumption V ′. Notice that
these results are trivially also seen to be true under conditional homoskedasticity since that special
case is contained within both Assumptions V and V ′. Moreover, the results in Theorem 2 also imply
immediately that, under Assumption V ′, the wild bootstrap tests will attain the same asymptotic local
power function as the size-adjusted asymptotic tests; cf. Theorem 1.

4.2 The i.i.d. Bootstrap Algorithm

We next lay out the i.i.d. bootstrap analogue of Algorithm 1. This yields i.i.d. bootstrap variants of
the wild bootstrap tests from section 4.1.

Algorithm 2 (i.i.d. bootstrap):

(i) As in Algorithm 1.

(ii) Compute the re-centered residuals ε̃c,t := ε̃t − T−1
∑T

i=1 ε̃i and construct the bootstrap errors
ε∗∗t := ε̃c,Ut , where U t, t = 1, ..., T is an i.i.d. sequence of discrete random variables from the
uniform distribution on {1, 2, ..., T}.
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(iii) Construct the bootstrap sample {y∗∗t } from (4.1) using the T bootstrap errors ε∗∗t generated in
step (ii) and ε∗∗t = 0 for t ≤ 0.

(iv) Using the bootstrap sample, {y∗∗t }, compute the bootstrap test statistic S∗∗iT , denoting either the
score statistic (i = 1) or the LM statistic (i = 2), as detailed in section 3. If S∗∗iT is the score test
statistic for a left-tailed test, define the corresponding p-value as P ∗∗T := G∗∗iT (SiT ), and if S∗∗iT is
the score test statistic for a right-tailed test or the LM test statistic, define the corresponding
p-value as P ∗∗T := 1 − G∗∗iT (SiT ). In either case, G∗∗iT (·) denotes the conditional (on the original
data) cdf of S∗iT .

(v) The i.i.d. bootstrap test of H0 against H1 at level α rejects if P ∗∗T ≤ α.

In Theorem 3, we now detail the large sample properties of the resulting i.i.d. bootstrap tests from
Algorithm 2. Note that this theorem is valid under Assumption V, without the need to strengthen
this with the stronger moment condition in Assumption V ′ .

Theorem 3 Let Assumptions R and V be satisfied. Then, under (3.8), it holds that

S∗∗1T
w→p N(0, 1),

S∗∗2T
w→p χ

2
1.

The result in Theorem 3 demonstrates that the i.i.d. bootstrap statistics, S∗∗iT , correctly replicate
the asymptotic null distribution of the corresponding original statistic, SiT , only when λ$

2

ω2
= 1, as

holds in the homoskedastic case.

Corollary 3 Let the conditions of Theorem 3 be satisfied and suppose in addition that the homoske-
dastic Assumption H holds. Then, under the null hypothesis (3.1), the i.i.d. bootstrap p-value for SiT ,
i = 1, 2, satisfies P ∗∗T

w→ U [0, 1].

The result in Corollary 3 establishes that the i.i.d. bootstrap implementations of the score and LM
tests are asymptotically correctly sized only in the homoskedastic case.

5 Monte Carlo Simulations

In this section we use Monte Carlo simulation methods to compare the finite sample size and power
properties of the asymptotic tests and their bootstrap implementations described above, for both
homoskedastic and heteroskedastic errors. To conserve space in the tables, we present results only for
the two-sided LM statistic (results for the one-sided score test statistics are qualitatively similar).

5.1 Monte Carlo Setup

The Monte Carlo data are simulated from the model (2.1) with errors

(1− aL)ut = (1 + bL)εt,

where εt = σtzt and σt, zt are defined in the subsections below.
We report results for sample sizes T = 100 and T = 250, and under T = ∞ we also report

the asymptotic size (for δ = 0) or size corrected local power (for δ 6= 0) calculated from (3.13) and
(3.14). Note that the simulated finite sample power of the asymptotic test has been size corrected,
while the reported power values for its bootstrap implementations have not been size corrected. All
tests were computed at 5% nominal size. The LM test statistic in (3.6) was implemented using
numerical derivatives. For the bootstrap implementations, we used 499 bootstrap replications and
the i.i.d. sequence wt for the wild bootstrap was chosen as P (wt = −1) = P (wt = 1) = 0.5. All
simulation results were done in Ox version 6.3, see Doornik (2007), and are based on 10, 000 Monte
Carlo replications.
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Table 1. Simulated size and power: one-time shift in unconditional volatility

size power
BS null BS alt. BS null BS alt.

τ θ T λ asy i.i.d. wild i.i.d. wild asy i.i.d. wild i.i.d. wild
1 100 1 5.87 5.02 4.95 5.02 5.09 40.58 40.22 39.62 40.33 41.41
1 250 1 5.16 4.78 4.73 4.81 4.93 44.97 44.01 43.85 44.11 44.31
1 ∞ 1 5.00 5.00 5.00 5.00 5.00 48.56 48.56 48.56 48.56 48.56

1/4 1/3 100 2.333 17.78 16.42 5.28 16.46 6.73 19.46 40.82 21.06 40.69 23.29
1/4 1/3 250 2.333 18.71 18.31 4.60 18.39 5.32 22.85 44.26 21.66 44.30 22.67
1/4 1/3 ∞ 2.333 19.95 19.95 5.00 19.95 5.00 24.24 24.24 24.24 24.24 24.24
1/4 3 100 1.245 9.37 8.20 5.38 8.25 5.74 30.63 39.32 31.69 39.17 32.68
1/4 3 250 1.245 8.17 7.61 5.03 7.62 5.17 36.36 44.48 36.34 44.34 36.92
1/4 3 ∞ 1.245 7.90 7.90 5.00 7.90 5.00 40.69 40.69 40.69 40.69 40.69
3/4 1/3 100 1.245 8.36 7.41 5.21 7.37 5.66 33.50 40.82 32.98 40.76 34.33
3/4 1/3 250 1.245 8.43 7.82 5.24 7.78 5.42 34.41 43.27 35.18 43.37 35.70
3/4 1/3 ∞ 1.245 7.90 7.90 5.00 7.90 5.00 40.69 40.69 40.69 40.69 40.69
3/4 3 100 2.333 19.78 18.51 5.55 18.43 6.91 16.92 39.35 18.14 39.41 20.45
3/4 3 250 2.333 19.02 18.59 5.24 18.46 5.86 19.41 43.08 19.60 42.91 20.97
3/4 3 ∞ 2.333 19.95 19.95 5.00 19.95 5.00 24.24 24.24 24.24 24.24 24.24
Notes: Entries for finite T are simulated rejection frequencies of the tests. Entries for T =∞ are calculated from (3.13)

and (3.14). Power is measured at δ = 1.5 and is size corrected for the asymptotic test, but not size corrected for the

bootstrap tests. The bootstrap procedures are based on B = 499 bootstrap replications and all entries are based on

10, 000 Monte Carlo replications.

5.2 Results With Unconditionally Heteroskedastic, Uncorrelated Errors

We shall first consider the case where the shocks do not display weak dependence (i.e., a = b = 0) and
analyse the impact of unconditional heteroskedasticity on the tests, uncontaminated by the influence
of weak dependence. Suppose {zt} is conditionally homoskedastic. Specifically, we simulate it as an
i.i.d. N(0, 1) sequence.

The unconditional variance profile is generated according to the following one-shift volatility pro-
cess,

σ2
t = σ2

0 + (σ2
1 − σ2

0)I(t ≥ τT ),

that is, there is an abrupt single shift in the variance from σ2
0 to σ

2
1 at time τT , for some τ ∈ (0, 1).

Without loss of generality we normalize σ2
0 = 1. We let the break date vary among τ ∈ {1/4, 3/4}

and vary the ratio θ := σ1/σ0 among θ ∈ {1/3, 1, 3}. Note that θ = 1 corresponds to homoskedastic
errors, in which case τ is irrelevant. These values of τ and θ are motivated by the so-called “great
moderation”and the recent financial crisis, as mentioned in the introduction, suggesting a decline in
the volatility early in the sample and an increase in the volatility late in the sample, respectively.

The results for the case with conditionally homoskedastic {zt} are given in Table 1. Even in the
homoskedastic case (the rows relating to θ = 1 in Table 1), a comparison between the results for
the asymptotic LM test and the corresponding results for the i.i.d. bootstrap test (Algorithm 2) and
wild bootstrap test (Algorithm 1) shows that the bootstrap can deliver some improvement over the
empirical size of the asymptotic LM test. For example, for T = 100 the empirical rejection frequency
of the S2T test is 5.87% while that of the corresponding wild bootstrap test is 4.95%.

It is where heteroskedasticity is present in the shocks (the rows where θ 6= 1) that the wild bootstrap
based tests clearly display their superiority over the other available tests. From the results in Table 1
we see that the asymptotic LM test can be severely over-sized with this phenomenon persisting as the
sample size is increased, as predicted by the asymptotic distribution theory in Theorem 1. Again as
predicted by Theorem 1 the degree of over-sizing seen in the asymptotic test worsens as λ increases.
For example, in the two cases where λ = 2.333 (see Remark 3.1 and column 4 in Table 1) we see
that the empirical rejection frequency of these tests is about 19% regardless of the sample size. The
i.i.d. bootstrap analogue of the LM test in displays much the same patterns of size distortions as the
asymptotic test, as predicted by Theorem 3. The wild bootstrap test is clearly the best performing
test in Table 1 and displays excellent size control throughout; the largest entry relating to size for
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the wild bootstrap test calculated under the null is a rejection frequency of 5.55% which occurs for
T = 100 with τ = 0.75 and θ = 3. A comparison of the size results for bootstrap tests calculated
under the null and under the alternative in Table 1 suggests that finite sample size control is superior
for the bootstrap tests which impose the null in estimating the parameters of (2.1), as in step (i) of
Algorithm 1, rather than those which use unrestricted estimates, as discussed in Remark 4.2.

Turning to the power of the tests, we see again from the results in Table 1 that the predictions
from the asymptotic theory are strongly reflected in finite samples with the size-corrected empirical
power of the asymptotic tests being lower the larger the value of λ, and that, as with the size results,
these effects do not vanish as the sample size is increased. Indeed, the size-adjusted power of the
tests can be significantly lower; for example, when λ = 1 all of the tests display an empirical rejection
frequency of 40-50% but for λ = 2.333 (size-corrected) power is roughly half this level. Interestingly
it appears that the i.i.d. bootstrap test achieves higher power than the other tests. However, this is
purely an artefact of the corresponding size results which show that the i.i.d. bootstrap test is not
size-controlled under heteroskedasticity. In contrast, a notable feature of the power results for the
wild bootstrap test calculated under the null is how close these results are to the size-adjusted power
results for the asymptotic test. This is of course predicted by the large sample distribution theory
in sections 3 and 4, but it is interesting to see how closely the finite sample results adhere to this
prediction. Interestingly, even though, as noted above, the unrestricted wild bootstrap yields a test
with, in general, more liberal finite sample size properties than the corresponding test obtained from
the restricted wild bootstrap, it is seen from Table 1 that the power of the tests from the restricted
and unrestricted bootstraps differ only very slightly, suggesting that the improved finite sample size
control of the restricted bootstrap does not come at the cost of reduced power. Overall, the restricted
wild bootstrap test is clearly the best performing test with excellent size control and hardly any loss
of empirical power in finite samples.

5.3 Results With Conditionally Heteroskedastic, Uncorrelated Errors

Next, we consider models where {zt} is conditionally heteroskedastic. Specifically, we assume one of
the following models for {zt}, in each case with {et} forming an i.i.d. sequence.

Model A : εt = zt = h
1/2
t et, ht = 0.1 + 0.5z2

t−1, et ∼ N(0, 1).

Model B : εt = zt = h
1/2
t et, ht = 0.1 + 0.5z2

t−1, et ∼ (3/5)1/2t5.

Model C : εt = zt = h
1/2
t et, ht = 0.1 + 0.2z2

t−1 + 0.79ht−1, et ∼ N(0, 1).

Model D : εt = zt = h
1/2
t et, ht = 0.1 + 0.2z2

t−1 + 0.79ht−1, et ∼ (3/5)1/2t5.

Model E : εt = zt = h
1/2
t et, log ht = −0.23 + 0.9 log ht−1 + 0.25

(
|e2
t−1| − 0.3et−1

)
, et ∼ N(0, 1).

Model F : εt = zt = h
1/2
t et, ht = 0.0216 + 0.6896ht−1 + 0.3174 (zt−1 − 0.1108)2 , et ∼ N(0, 1).

Model G : εt = zt = h
1/2
t et, ht = 0.005 + 0.7ht−1 + 0.28 (|zt−1| − 0.23zt−1)2 , et ∼ N(0, 1).

Model H : εt = zt = et exp(ht), ht = 0.936ht−1 + 0.5vt, (vt, et) ∼ N(0,diag(σ2
v , 1)), σv = 0.424.

Model I : εt = σtzt, σt = 1 + 2I(t ≥ 3

4
T ), zt = h

1/2
t et, ht = 0.1 + 0.5z2

t−1, et ∼ N(0, 1).

The conditionally heteroskedastic configurations for {zt} specified in Models A-H are a subset of those
used in Section 4 of Gonçalves and Kilian (2004), to which the reader is referred for further discussion.
Models A-D are standard stationary GARCH(1, 1) models driven by either Gaussian or t-distributed
shocks with unit variance, while Model E is the is the exponential GARCH(1, 1) [EGARCH(1, 1)] model
of Nelson (1991). Model F is the asymmetric GARCH(1, 1) [AGARCH(1, 1)] model of Engle (1990),
Model G is the GJR-GARCH(1, 1) model of Glosten, Jaganathan and Runkle (1993), and Model
H is a first-order autoregressive stochastic volatility model. Finally, Model I combines conditional
heteroskedasticity in {zt}, of the form specified by Model A, together with the one-time change model
for the unconditional variance considered in the previous subsection (for the particular case of θ = 3
and τ = 0.75). The results relating to Models A-I are presented in Table 2.
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Table 2. Simulated size and power: conditionally heteroskedastic Models A-I

size power
BS null BS alt. BS null BS alt.

T asy i.i.d. wild i.i.d. wild asy i.i.d. wild i.i.d. wild
Model A 100 15.77 14.34 5.30 14.19 6.75 20.81 42.75 26.47 42.70 27.74

250 17.33 16.83 5.35 16.93 6.38 21.09 44.33 25.20 44.30 25.96
Model B 100 17.87 16.76 5.17 16.78 7.40 17.50 42.30 24.20 42.33 26.74

250 22.03 21.58 5.14 21.64 7.01 13.68 45.42 22.02 45.29 24.04
Model C 100 11.31 10.09 4.93 10.33 5.59 26.85 40.89 29.43 41.03 30.64

250 15.68 15.23 4.87 15.11 5.53 21.27 43.66 25.38 43.64 26.31
Model D 100 13.51 12.42 5.18 12.40 6.35 24.22 41.35 28.33 41.25 30.09

250 17.89 17.51 4.99 17.52 5.70 18.02 44.12 24.45 44.38 25.88
Model E 100 16.93 15.66 5.39 15.53 6.78 18.64 40.85 22.96 40.87 24.31

250 21.55 21.12 5.35 21.19 6.57 15.71 43.82 20.75 43.91 22.07
Model F 100 15.85 14.52 4.96 14.46 6.06 20.41 40.53 23.69 40.35 24.72

250 22.92 22.52 5.10 22.36 6.19 14.49 45.33 19.58 45.32 20.67
Model G 100 15.12 14.00 4.88 13.76 5.89 19.59 38.97 22.88 38.71 24.07

250 21.33 20.87 5.05 20.94 5.96 13.30 42.63 18.99 42.64 20.09
Model H 100 28.41 27.61 5.14 27.66 7.71 9.54 44.30 15.27 44.42 19.16

250 38.90 38.83 5.01 38.94 7.78 6.63 50.69 11.19 50.64 14.66
Model I 100 28.06 26.68 5.52 26.71 7.88 11.39 41.89 15.34 41.77 17.63

250 31.91 31.54 5.36 31.68 7.22 10.44 45.71 14.06 45.53 15.93
Notes: Entries are simulated rejection frequencies of the tests. Power is measured at δ = 1.5 and is size corrected for

the asymptotic test, but not size corrected for the bootstrap tests. The bootstrap procedures are based on B = 499

bootstrap replications and all entries are based on 10, 000 Monte Carlo replications.

Consider first the results in Table 2 for the empirical size of the asymptotic test. Here we see
that for these commonly encountered models of conditional heteroskedasticity the asymptotic test can
be very badly over-sized; indeed, the degree of over-sizing is, if anything, more pronounced than was
observed in this test for the models of unconditional heteroskedasticity in Table 1. While it was seen
in Table 1 that the degree of size distortions under the single break model depends on both the change-
point location and the magnitude of the break (with these distortions being relatively moderate for
increases in variance early in the sample and decreases late in the sample), there are no entries for size
of the asymptotic test in Table 2 that lie below 11%. Models H and I clearly effect the greatest degree
of over-sizing, with the empirical size under Model H approaching 40% for T = 250. Consistent with
the results in Theorem 1, it is observed that these size distortions do not disappear as the sample size
is increased; indeed, the opposite phenomenon occurs. Turning to the results for the i.i.d. bootstrap
analogue of the LM test we see, as in Table 1, that the i.i.d. bootstrap test has very similar size
properties to the asymptotic test and offers no improvements. In contrast, looking at the results for
the wild bootstrap test in Table 2 we see, as with the case of unconditional heteroskedasticity in Table
1, that the wild bootstrap again does an excellent job in controlling size under all of Models A-I. The
best performance is again achieved with the restricted wild bootstrap (using step (i) of Algorithm
1); no empirical sizes are observed for the restricted wild bootstrap in Table 2 which are in excess of
5.39% or below 4.87%.

Consider next the power results for the tests. As with the results in Table 1, we again see from
the results in Table 2 that the size-corrected empirical power of the asymptotic test is very strongly
affected by the presence of conditional heteroskedasticity in each of Models A-I, which is expected
from Theorem 1. In line with the empirical size results reported in the table we again see that this is
most pronounced for Models H and I and that these effects do not vanish (indeed they again become
more pronounced) as the sample size is increased. Again it is seen that the size-adjusted power of
the test can be significantly lower than in the homoskedastic case; for example, under Model H the
size-corrected power is barely above the nominal level. The power results for the i.i.d. bootstrap
implementation of the LM test in Table 2 should again be discounted because they are not size-
controlled. The empirical power of the restricted wild bootstrap test now lies above the size-adjusted
power results for the asymptotic test. Again there are only very slight differences between the power of
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Table 3. Simulated size: weakly dependent errors

homoskedastic case τ = 1/4 and θ = 1/3 τ = 3/4 and θ = 3
BS null BS alt. BS null BS alt. BS null BS alt.

a/b T asy i.i.d. wild i.i.d. wild asy i.i.d. wild i.i.d. wild asy i.i.d. wild i.i.d. wild
Panel A: moving average errors (a = 0)
-0.80 100 8.44 4.90 5.05 6.28 6.63 15.83 10.45 5.61 12.27 7.33 17.85 12.01 5.62 14.37 8.08
-0.80 250 6.83 4.99 5.00 5.15 5.26 18.13 15.05 5.51 14.63 6.35 19.88 16.33 5.28 15.79 6.51
-0.80 ∞ 5.00 5.00 5.00 5.00 5.00 19.95 19.95 5.00 19.95 5.00 19.95 19.95 5.00 19.95 5.00
0.80 100 8.71 5.22 5.38 6.34 6.63 15.05 10.01 5.44 11.82 6.99 17.88 12.53 5.72 14.73 8.13
0.80 250 6.89 5.06 5.24 5.34 5.49 18.34 14.80 5.13 14.44 6.07 20.67 17.28 5.02 16.62 6.35
0.80 ∞ 5.00 5.00 5.00 5.00 5.00 19.95 19.95 5.00 19.95 5.00 19.95 19.95 5.00 19.95 5.00
Panel B: autoregressive errors (b = 0)
-0.80 100 6.67 5.25 5.08 5.31 5.39 18.53 16.37 5.43 16.22 6.74 19.80 17.63 5.41 17.74 6.52
-0.80 250 6.03 5.38 5.37 5.41 5.50 20.07 19.14 5.36 19.11 5.84 19.53 18.64 5.08 18.62 5.75
-0.80 ∞ 5.00 5.00 5.00 5.00 5.00 19.95 19.95 5.00 19.95 5.00 19.95 19.95 5.00 19.95 5.00
0.80 100 4.28 4.84 4.76 3.98 4.15 6.73 7.43 4.91 6.92 5.03 6.84 7.55 4.50 6.77 4.69
0.80 250 6.28 4.71 4.95 4.81 4.91 11.07 7.98 4.94 7.72 4.67 10.82 8.40 4.78 7.86 4.06
0.80 ∞ 5.00 5.00 5.00 5.00 5.00 19.95 19.95 5.00 19.95 5.00 19.95 19.95 5.00 19.95 5.00
Notes: Entries for finite T are simulated rejection frequencies of the tests. Entries for T =∞ are calculated from (3.13)

and (3.14). The bootstrap procedures are based on B = 499 bootstrap replications and all entries are based on 10, 000

Monte Carlo replications.

the restricted and unrestricted wild bootstrap tests, and we note the poorer size control of the latter.

5.4 Results With Weakly Dependent Errors

We finally turn our attention to the results presented in Table 3 which investigate the finite sample
size properties of the asymptotic and bootstrap tests for processes driven by shocks which can display
both weak dependence and unconditional heteroskedasticity of the type considered also in Table 1.
Consider first the results for the homoskedastic case, λ = 1, presented in the first block of columns in
Table 3. These results demonstrate that the asymptotic test has the potential for really quite poor
finite sample size control in the presence of weak dependence; most notably, over-sizing when an MA
component is present. For example, for b = 0.8 and T = 100 the asymptotic LM test has empirical
rejection frequency of 8.71%. In contrast both the i.i.d. and wild bootstrap based analogues display
very good size control throughout, particularly so where the restricted bootstrap is used; in the above
example the corresponding restricted wild and i.i.d. bootstrap LM tests display rejection frequencies
of 5.22% and 5.38%, respectively.

Turning to the results for the two heteroskedastic cases reported in Table 3, the patterns of size
distortions seen in the asymptotic test and its i.i.d. bootstrap equivalent are very similar to those
seen for these two cases in Table 1, with empirical sizes generally around 15-20%. This suggests that
even in relatively small samples the impact of any heteroskedasticity in the shocks largely dominates
the impact of any weak dependence present, at least for the two heteroskedastic cases reported here.
In contrast, the wild bootstrap tests reported in Table 3 do an excellent job for all the reported
combinations of heteroskedasticity and weak dependence; most of the empirical sizes reported for the
restricted wild bootstrap test lie very close to the nominal level, with no entry in excess of 5.72% or
below 4.50%. Slightly higher distortions on average are again seen with the unrestricted wild bootstrap
test, confirming our previous recommendation to use the restricted version of the bootstrap.

Based on the simulation results reported in this section, coupled with the large sample properties
of the LM test detailed in sections 3 and 4, we unambiguously recommend the use of the restricted
wild bootstrap implementation of the test in practice.
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Figure 4. Graphics for gold

2006 2008 2010 2012

0.0

0.1
Time series: ∆st

0.0 0.5 1.0

0.5

1.0
Res. var. profile: ∆st

0.0 0.5 1.0

0

1

Res. cusum squares: ∆st

2006 2008 2010 2012

-0.05

0.00

0.05

0.10 Time series: ∆ft

0.0 0.5 1.0

0.5

1.0
Res. var. profile: ∆ft

0.0 0.5 1.0

0

1

Res. cusum squares: ∆ft

2006 2008 2010 2012

0.0

0.1
Time series: st  − ft−1

0.0 0.5 1.0

0.5

1.0
Res. var. profile: st  − ft−1

0.0 0.5 1.0

0

1

Res. cusum squares: st  − ft−1

Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, and right panels show the residual cusum of squares process with 95% confidence bands.

6 Empirical Analysis

In this section we employ the asymptotic score-based tests and their bootstrap counterparts from
sections 3 and 4 to re-assess the degree of support provided for the EMH in a number of commodity
markets. By adopting the heteroskedastic ARFIMA model of section 2, along with the novel (wild
bootstrap) testing procedures outlined in section 4, we simultaneously allow for the possibility of both
fractional integration and time-varying conditional and unconditional volatility in the data. This allows
us to analyse the empirical validity or otherwise of the EMH in a more general and empirically well-
grounded model framework than those which have previously been employed in the extant empirical
literature.

Our analysis is based on the data-set recently considered in Westerlund and Narayan (2013). This
consists of (logged) spot prices (st) and corresponding one-period futures contract prices (ft := f

(1)
t )

of four commodities, namely, gold, silver, platinum and crude oil. Prices are recorded at the daily
frequency (five observations per week) and cover the period July 5, 2005, to November 22, 2011. The
number of available observations is T = 1665. All data were obtained from Bloomberg; see Westerlund
and Narayan (2013) for full details and data definitions. Plots of st, ft (both in first differences) and
of (minus) the forward premium (the spread) st− ft−1 are reported in the left-hand panels of Figures
4-7.

To investigate for the possible presence of heteroskedasticity in the series, we first report in the
top panel of Table 4 results for the LM test of the null hypothesis of conditional homoskedasticity
against the alternative of ARCH(k) dynamics. These tests are based on the squared residuals4 of an

4Comparable results are obtained when the test statistics are computed on the original series rather than on the
residuals.
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Figure 5. Graphics for silver
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Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, and right panels show the residual cusum of squares process with 95% confidence bands.

ARFIMA(p, d, q) model fitted to each series (∆st, ∆ft and st − ft−1) individually.5 The AR and MA
orders p and q for the ARFIMA model are selected using the BIC, while the number of ARCH lags k
used for the LM test regression is set to either 5 (weekly frequency) or 21 (monthly frequency). For
all commodities, conditional homoskedasticity is easily rejected at any conventional significance level
for spot and futures prices and for the spread, st − ft−1.

To visualise the possible presence of non-stationary volatility (unconditional heteroskedasticity)
in the data, we plot in the central panels of Figures 4-7 the sample variance profiles corresponding
to the residuals, say ε̂t, of the fitted ARFIMA models. The sample variance profiles, see Cavaliere
and Taylor (2007), are plots of η̂ (u) := V̂T (u)/V̂T (1) against u ∈ [0, 1], where V̂T (u) := T−1

∑bTuc
t=1 ε̂2

t

denotes the cumulated squared residuals. In large samples, η̂ (u) ≈ (
∫ 1

0 σ (s) ds)−1
∫ u

0 σ (s) ds =: η (u),
which equals u when the unconditional volatility is constant; that is, when there is no unconditional
heteroskedasticity. Consequently, under conditional homoskedasticity or —more generally — under
stationary conditional heteroskedasticity, V̂T (u) should be close to the diagonal (45 degree) line, and
significant deviations of this function from the 45 degree line point to the presence of persistent changes
in volatility.

These deviations, along with the corresponding 95% confidence bands6, are reported in the right-
hand panels of Figures 4-7. Correspondingly, in the lower panel of Table 4 we also report the associated
stationary volatility tests of Cavaliere and Taylor (2008b, pp. 311—312). With the exception of silver,

5 In all estimations and tests here and in the remainder of the empirical analysis, we allowed for a constant term in
the model; see Remark 2.3, and in particular Robinson (1994) and Nielsen (2004). For all of the series considered, an
additional linear trend term was found to be statistically insignificant at all conventional levels.

6The confidence bands are obtained as suggested by Cavaliere and Taylor (2008b) and Cheng and Phillips (2012).
This requires estimation of the long-run variance of u2t under the null hypothesis, which is done here using a sums-of-
covariances estimator with the Bartlett Kernel and a lag truncation of five.
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Figure 6. Graphics for platinum
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Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, and right panels show the residual cusum of squares process with 95% confidence bands.

there is strong evidence of unconditional heteroskedasticity (non-stationary volatility) in all of the
commodities. This evidence is manifested, and to similar extents, in both the spot and futures prices,
as well as in the associated forward premium. Notice also that clear changes in the variance profile
with associated significant values of the cumulated sum of squared residuals are apparent (even to some
extent for silver) at around the time of the financial crisis, as might be expected. Given the strength of
these rejections it is therefore quite striking that most empirical studies (including that of Westerlund
and Narayan, 2013) are based on the maintained assumption of (un)conditional homoskedasticity.

We now turn to testing the main implications of the EMH; that is, conditions (i)—(iii) and (iv’)
discussed in section 1. As stated in condition (i), under the assumption that spot prices are I(1),
futures prices should also be I(1). We test both claims in the first two columns of Table 5, where
we present results for the LM test of the null hypothesis H0 : d = 0 for ∆st and ∆ft, respectively
(note this is equivalent to testing H0 : d = 1 in the levels). For each series, we report the (QML)
estimate of the fractional parameter d, the two-sided LM test statistic S2T of H0 : d = 0 , along with
the corresponding asymptotic p-values together with the wild bootstrap and i.i.d. bootstrap p-values,
computed as in Algorithms 1 and 2, respectively, in each case using B = 9999 bootstrap replications.

For gold, silver and crude oil, the null hypothesis, H0 : d = 0, cannot be rejected at any conventional
significance level using any of the tests, with p-values all above 20% (30% using the wild bootstrap),
leading us to conclude that the spot and future prices are indeed both I(1); moreover, the lag lengths
selected by the BIC then suggests that these series both follow random walks. On the other hand, for
the data on platinum the tests lead to quite different conclusions. When using either the asymptotic
or i.i.d. bootstrap tests, the null hypothesis is rejected at the 1% level for both spot and futures
prices. However, based on the results from Table 4 where the hypothesis of constant (un)conditional
variance is strongly rejected for the platinum spot and futures prices, our Monte Carlo results in
section 5 would suggest that both the asymptotic and i.i.d. bootstrap tests for d = 0 are likely to
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Figure 7. Graphics for crude oil
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Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, and right panels show the residual cusum of squares process with 95% confidence bands.

be unreliable. This standpoint is supported by the corresponding results for the wild bootstrap test.
Specifically, when the wild bootstrap is employed, the null hypothesis is now not rejected at the 5%
level for both the spot and futures prices (p-values are 7.9% and 5.4%, respectively). Hence, the
strong heteroskedasticity characterising both spot and futures prices for platinum might explain why
the asymptotic and i.i.d. bootstrap tests lead to the rejection of the I(1) hypothesis for spot and
futures prices. However, by using a test which is robust to heteroskedasticity we are able to accept
the hypotheses that both the spot and futures prices for platinum are I(1).

Overall, at least when the heteroskedasticity-robust wild bootstrap tests are employed, requirement
(i) of the EMH is seen to be consistent with the data. We now analyse the spreads, st− ft−1, for each
of the four commodities considered. For gold, the hypothesis d = 0 is easily rejected with p-values
less than 1% for the asymptotic and i.i.d. bootstrap tests. Using the wild bootstrap test the evidence
against the null is not as strong but it can still be rejected at the 5% level. Importantly, however,
these are left-tail rejections meaning that the I(0) null is being rejected not because of the presence
of long memory7 but because of ‘anti-persistence’in the data; observe that the estimated value of d
is negative. Anti-persistent series are less persistent even than I(0) series and so these results show
that for gold while fractional dynamics appear to exist in the forward premium, there is nonetheless
significant evidence of (fractional) co-integration.

The results for the silver and platinum forward premia are qualitatively similar to one another.
For both of these commodities the estimate of d is relatively close to zero (slightly negative for silver
and slightly positive for platinum), and all reported tests do not reject the null hypothesis, H0 : d = 0,
at any conventional significance level. Again, this supports the hypothesis that spot and futures

7One-sided tests against the alternative of long memory, that is H0 : d ≤ 0 against H1 : d > 0, were also computed
and yielded p-values in excess of 98% for all of the tests.
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Table 4. Conditional and unconditional heteroskedasticity tests

Gold Silver
st ft st − ft−1 st ft st − ft−1

ARCH(5) 48.576a 84.805a 57.507a 72.408a 72.752a 81.799a

ARCH(21) 193.896a 150.103a 142.410a 161.138a 99.837a 168.663a

HKS 1.469b 1.345c 1.384b 0.850 1.206 1.042
HK 2.197a 2.239a 2.170a 1.337 1.402 1.455

HCvM 0.432c 0.380c 0.376c 0.173 0.327 0.241
HAD 2.837b 2.452c 2.423 0.995 1.847 1.364

Platinum Crude oil
st ft st − ft−1 st ft st − ft−1

ARCH(5) 232.795a 233.656a 228.694a 294.233a 307.836a 257.533a

ARCH(21) 322.834a 338.595a 341.414a 441.169a 454.992a 440.536a

HKS 1.633b 1.871a 1.809a 1.767a 1.965a 2.037a

HK 2.897a 3.046a 3.010a 3.031a 3.292a 3.278a

HCvM 0.837a 0.931a 0.910a 0.972a 1.135a 1.090a

HAD 5.357a 5.981a 5.826a 6.445a 7.560a 7.350a

Notes: ARCH(k) denotes the LM test for ARCH(k) based on a AR(k) regression fitted to the squared residuals, and

HKS , HK , HCvM and HAD denote the stationary volatility tests proposed in Cavaliere and Taylor (2008b, pp. 311—312).
The superscripts a,b and c denote significance at the 1%, 5% and 10% nominal (asymptotic) levels, respectively.

prices are co-integrated with co-integrating vector (1,−1)′. Unlike gold, however, the results for these
two series suggest that the spread is a standard (non-fractional) I(0) process. As a result, using our
heteroskedastic fractionally integrated model we are able to conclude that all of the requirements in
(i)—(iii), as well as (iv’), of the EMH are consistent with the price data for the gold, silver and platinum
markets. Our results also highlight that fractional behaviour and/or heteroskedasticity are present in
these data which may help to explain why some previous studies have struggled to find support for
the EMH in these commodities.

The picture is, however, somewhat different for the forward premium for crude oil. The point
estimate of d is 0.78 which is clearly much higher than the estimates of d obtained for the other three
commodities. Consequently, we do not present results for the hypothesis d = 0 (it is overwhelmingly
rejected in any case) and instead present results for one-sided tests of H0 : d ≤ 1/2 and H0 : d ≥ 1.
The former is a test of the null of stationarity of the spreads and the latter is a test of the null of no
(fractional) co-integration with co-integrating vector (1,−1)′. Firstly, the null hypothesis H0 : d ≥ 1
is very easily rejected by all of the tests. This result provides evidence in favour of the existence of
the (1,−1)′ co-integrating relationship between spot and futures prices. Secondly, the spread does not
appear to be I(0), as noted above, but rather the spread appears to be fractionally integrated. Indeed,
stationarity of the spread, H0 : d ≤ 1/2, is strongly rejected by the asymptotic test and by both
bootstrap tests. As a result, the statistical evidence for oil suggests the existence of co-integration
in the spread, but that the associated linear combination (1,−1)′, does not decrease the order of
integration suffi ciently to render the spread stationary. That is, the EMH, even in its weaker form
(iv’), does not appear to hold in the case of the crude oil market. This result is not at odds with recent
empirical evidence that underlines the ineffi ciency of the futures crude oil market, see, for example,
the discussions on this point in Narayan, Huson and Narayan (2012) and Westerlund and Narayan
(2013). However, it is worth noting that these authors, using the more restrictive I(0)/I(1) paradigm,
reject the hypothesis that the oil spread constitutes a co-integrated relationship.

We complete our empirical analysis by considering a brief examination of the time (in)stability
of the results obtained for the four spreads. This is mainly motivated by the recent financial crisis.
Westerlund and Narayan (2013) also investigate the stability of their results across the crisis by
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Table 5. Application to unbiasedness hypothesis in commodity futures markets

∆st ∆ft st − ft−1
Panel A: gold
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d −0.025 −0.004 −0.084
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d = 0
Test statistic S2T = 1.523 S2T = 0.033 S2T = 8.897
p-value, asymptotic 21.7% 85.6% 0.3%
p-value, i.i.d. bootstrap 22.1% 85.8% 0.6%
p-value, wild bootstrap 30.1% 89.1% 2.4%
Panel B: silver
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d −0.018 −0.005 −0.017
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d = 0
Test statistic S2T = 0.858 S2T = 0.071 S2T = 0.338
p-value, asymptotic 35.4% 79.0% 56.1%
p-value, i.i.d. bootstrap 35.7% 80.1% 57.0%
p-value, wild bootstrap 56.3% 86.0% 68.8%
Panel C: platinum
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d 0.054 0.057 0.038
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d = 0
Test statistic S2T = 7.786 S2T = 8.281 S2T = 2.248
p-value, asymptotic 0.5% 0.4% 13.4%
p-value, i.i.d. bootstrap 0.7% 0.5% 14.3%
p-value, wild bootstrap 7.9% 5.4% 28.7%
Panel D: crude oil
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d −0.014 −0.029 0.780
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d ≤ 1/2 H0 : d ≥ 1
Test statistic S2T = 0.645 S2T = 2.466 S1T = 6.361 S1T = −16.05
p-value, asymptotic 42.2% 11.6% 0.0% 0.0%
p-value, i.i.d. bootstrap 43.1% 12.5% 0.0% 0.0%
p-value, wild bootstrap 56.0% 32.2% 0.0% 0.1%
Notes: The table shows point estimates of d, LM test statistics, and corresponding asymptotic and bootstrap p-values.

For each of the four commodities we analyze: (i) spot returns, ∆st, (ii) futures returns, ∆ft, (iii) spread, st − ft−1. The
ARMA orders are chosen based on the BIC. Bootstrap p-values are based on B = 9999 bootstrap replications.

splitting the sample into two sub-samples at September 12, 2008. Rather than split the data at an
arbitrary time point in this way, we choose instead to repeat our full sample anaysis reported above
across rolling subsamples of the data. To that end, in Figure 8 we report rolling subsample estimates
of d for the four spreads. These are obtained using a rolling window of length approximately equal to
one year (each estimate is based on 260 consecutive observations), where estimates are updated on a
weekly basis (every five observations). The AR and MA orders of the baseline ARFIMA models are
those obtained by BIC on the full sample, see Table 5. Overall, the estimates of d are seen to be fairly
stable over the selected period. These fluctuate around 0 for gold, silver and platinum, and around 0.8
for crude oil. For the latter, the estimate of d increases slightly when the rolling window starts after
the third quarter of 2009, which may be a reflection of some instability due to the financial crisis.

In Figure 9 we report the associated rolling subsample p-values for the tests of H0 : d = 0 against
H1 : d 6= 0. Again, the results are pretty much in line with what was reported for the full sample
above. The wild bootstrap p-values associated with the subsample tests for silver and platinum almost
never fall below 5%, while for gold, the subsample wild bootstrap p-values for d = 0 fall below 5%
for a significant fraction of the rolling windows considered (but as with the full sample results this
is due to anti-persistence in the gold spread, see the first panel of Figure 8). Finally, the p-values
for the sub-sample rolling tests on the crude oil spread lie well below 5% throughout the sample. To
summarise, the rolling sample results suggest firstly that the acceptance of the EMH for gold, silver
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Figure 8. Rolling window estimates of d for spreads
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Note: The figure shows estimates of d for rolling windows of length 260.

and platinum prices is robust as to whether the data sample used includes the recent financial crisis
period or not, and secondly that the failure to accept the EMH for the case of crude oil cannot simply
be attributed to the financial crisis.

7 Conclusions

In this paper we have proposed bootstrap implementations of the asymptotic score (one-sided) and
Lagrange multiplier (two-sided) tests for the order of integration of a fractionally integrated time series.
Two bootstrap resampling methods were discussed, namely the wild bootstrap and the i.i.d. bootstrap.
The former was shown to yield tests which are robust to both conditional and unconditional hetero-
skedasticity of quite general and unknown forms in the shocks. This property was shown not to be
shared by the asymptotic tests or by the i.i.d. bootstrap versions thereof.

A simulation study highlighted both the potential for severe size distortions with the standard
asymptotic LM test in the presence of heteroskedastic shocks and the excellent job done by the wild
bootstrap test in controlling finite sample sizes in these cases. Moreover, the bootstrap tests were also
shown to deliver considerably more reliable finite sample inference than the asymptotic LM test in the
homoskedastic case, particularly so where weak dependence was present in the shocks. The simulation
study also compared the finite sample properties of using a bootstrap algorithm where the bootstrap
sample data were generated using model estimates obtained under the null hypothesis (restricted)
with one where they were estimated unrestrictedly. Based on these results we firmly recommend the
use of the wild bootstrap algorithm based on restricted estimates.

Finally we applied our new bootstrap tests to investigate the price dynamics in four commodity
spot and futures markets: namely, gold, silver, platinum and crude oil. Using daily trading data for the
period 2005—2011, we found that when fractional integration together with conditional and/or uncon-
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Figure 9. Rolling window tests of H0 : d = 0 for spreads
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Notes: The figure shows asymptotic, i.i.d. bootstrap, and wild bootstrap p-values of two-tailed tests of
H0 : d = 0 for rolling windows of length 260. The bootstrap tests are based on B = 999 replications.

ditional heteroskedasticity of very general forms are allowed, the evidence in favour of co-integration in
the spread between spot and futures prices for these commodities is markedly stronger, with, moreover,
the effi cient market hypothesis being accepted for all but oil, than had been found in previous work
based on more restrictive (usually) homoskedastic I(0)/I(1) models; see Figuera-Ferretti and Gonzalo
(2010) and Westerlund and Narayan (2013) and reference therein. Our results were also seen to be
little altered by whether the data samples used included the recent financial crisis or not, further
illustrating the robustness of our proposed tests to large volatility breaks in the data.

A Appendix

Recall that ξj = (−j−1, c′j)
′, where cj decays exponentially under Assumption R. This implies the

bound ||ξj || ≤ Kj−1 for some K < ∞, which will be used throughout the proofs without special
reference.

A.1 Preliminary Lemmas

The first lemma derives an important consequence of the martingale difference property of zt on the
higher-order moments and cumulants of zt. For the special case with q = 2 we obtain the well-known
result that a martingale difference sequence is uncorrelated.

Lemma A.1 Let zt be a martingale difference sequence with respect to the natural filtration Ft, the
sigma-field generated by {zs}s≤t, and suppose E|zt|q <∞ for some integer q ≥ 2. Then the q’th order
moments and cumulants satisfy

E(ztzt−r1 · · · zt−rq−1) = 0 and κq(t, t− r1, . . . , t− rq−1) = 0
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for all integers rk ≥ 1, k = 1, . . . , q − 1.

Proof. The result for moments follows from the law of iterated expectations because

E(ztzt−r1 · · · zt−rq−1) = E(E(zt|Ft−1)zt−r1 · · · zt−rq−1) = 0

by the martingale difference property of zt. To show the result for cumulants, we start with q = 2. Then
κ2(t, t − r) = E(ztzt−r) = 0 because r ≥ 1. When q = 3, κ3(t, t − r1, t − r2) = E(ztzt−r1zt−r2) = 0
by the result for moments. For q = 4 we find κ4(t, t − r1, t − r2, t − r3) = E(ztzt−r1zt−r2zt−r3) −
E(ztzt−r1)E(zt−r2zt−r3) − E(ztzt−r2)E(zt−r1zt−r3) − E(ztzt−r3)E(zt−r2zt−r1). Again, because rk ≥ 1
for k = 1, 2, 3, the cumulant is zero by the result for the second and fourth moments. For q = 5 we
have κ5(t, t− r1, . . . t− r4) for rk ≥ 1 and find that it contains the fifth moment, which is zero by the
result for moments, and it contains ten products of pairs and corresponding triplets. In each of these
there will be either a pair with E(ztzt−rk) = 0 or there will be a triplet with E(ztzt−rkzt−rj ) = 0 as
above. The same argument also applies to the higher-order cumulants and moments.

Lemma A.2 Let zt be a martingale difference sequence with respect to the natural filtration Ft,
the sigma-field generated by {zs}s≤t, and suppose the fourth-order cumulants κ4(t, t, t − r, t − s) of
(zt, zt, zt−r, zt−s) satisfy supt

∑∞
r,s=1 |κ4(t, t, t − r, t − s)| < ∞. Let ξ0,j , j ≥ 1, be vector-valued coeffi -

cients that satisfy ||ξ0,j || ≤ Kj−1, K < ∞, uniformly in j ≥ 1, and let σt satisfy Assumption V(a).
Then

T−1
T∑
t=1

σ2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kE(z2

t zt−jzt−k) = T−1
T∑
t=1

σ4
t

t−1∑
j,k=1

ξ0,jξ
′
0,kE(z2

t zt−jzt−k) + o (1) .

Proof. First notice that∥∥∥∥∥∥T−1
T∑
t=1

σ2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kE(z2

t zt−jzt−k)− T−1
T∑
t=1

σ4
t

t−1∑
j,k=1

ξ0,jξ
′
0,kE(z2

t zt−jzt−k)

∥∥∥∥∥∥
=

∥∥∥∥∥∥T−1
T∑
t=1

σ2
t

t−1∑
j,k=1

ξ0,jξ
′
0,k(σt−jσt−k − σ2

t )E(z2
t zt−jzt−k)

∥∥∥∥∥∥
≤ KT−1

T∑
t=1

t−1∑
j=1

t−1∑
k=j

j−1k−1|σt−jσt−k − σ2
t ||E(z2

t zt−jzt−k)| = K(Q1T +Q2T ),

where the inequality follows because ||ξ0,j || ≤ Kj−1, by Assumption V(a) and by symmetry in j and
k, and where we defined

Q1T :=

qT∑
j=1

qT∑
k=j

j−1k−1 sup
t
|E(z2

t zt−jzt−k)|T−1
T∑

t=k+1

|σt−jσt−k − σ2
t |,

Q2T :=

T−1∑
j=1

T−1∑
k=max(j,qT+1)

j−1k−1 sup
t
|E(z2

t zt−jzt−k)|T−1
T∑

t=k+1

|σt−jσt−k − σ2
t |.

Let qT := bTκc for κ ∈ (0, 1) and let M := supu∈[0,1] σ (u), which is finite because σ(u) ∈ D[0, 1].
Then ∣∣σt−jσt−k − σ2

t

∣∣ ≤ σt |σt−j − σt|+ σt−j |σt−k − σt| ≤M (|σt−j − σt|+ |σt−k − σt|)
such that, for k ≥ j ≥ 1,

T∑
t=k+1

∣∣σt−jσt−k − σ2
t

∣∣ ≤M T∑
t=k+1

(|σt−j − σt|+ |σt−k − σt|) ≤ 2M

T∑
t=k+1

|σt−k − σt| .
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Hence, using the fact that σt = σ (t/T ) ∈ D[0, 1],

sup
j,k=1,...,qT

T−1
T∑

t=k+1

|σt−jσt−k − σ2
t | ≤ 2M sup

k=1,...,qT

T−1
T∑

t=k+1

|σt−k − σt| → 0 as T →∞ (A.1)

by Lemma A.1 in Cavaliere and Taylor (2009).
The convergence in (A.1) allows us to show that Q1T converges to zero as T diverges. Note that

Q1T ≤
(

sup
j,k=1,...,qT

T−1
T∑

t=k+1

|σt−jσt−k − σ2
t |
)
Q11T

with Q11T := supt
∑qT

j=1

∑qT
k=j j

−1k−1|E(z2
t zt−jzt−k)|. The first factor in Q1T converges to zero as T →

∞ by (A.1) and Q11T ≤ supt
∑∞

j,k=1 j
−1k−1|E(z2

t zt−jzt−k)|. Since E(z2
t zt−jzt−k) = κ4(t, t, t−j, t−k)+

κ2(t, t)κ2(t−j, t−k) for j, k ≥ 1, it follows that Q11T <∞ because supt
∑∞

j,k=1 j
−1k−1|κ4(t, t, t−j, t−

k)| <∞ by assumption and supt
∑∞

j,k=1 j
−1k−1|κ2(t, t)κ2(t−j, t−k)| ≤ (supt κ2(t, t)) supt

∑∞
j=1 j

−2|κ2(t−
j, t− j)| ≤ (π2/6) (supt κ2(t, t))2 <∞, which shows that Q1T → 0 as T →∞.

The term Q2T is bounded as, by another application of Assumption V(a),

Q2T ≤ 4M2
T−1∑
j=1

T−1∑
k=max(j,qT+1)

j−1k−1| sup
t
E(z2

t zt−jzt−k)| = 4M2(Q21T +Q22T ),

withQ21T :=
∑qT

j=1

∑T−1
k=qT+1 j

−1k−1| suptE(z2
t zt−jzt−k)| ≤

∑T−1
k=qT+1

∑k
j=1 j

−1k−1| suptE(z2
t zt−jzt−k)|,

Q22T :=
∑T−1

j=qT+1

∑T−1
k=j j

−1k−1| suptE(z2
t zt−jzt−k)|, and M defined above. Rearranging the summa-

tions in Q21T and Q22T we find that Q2T ≤ K
∑∞

k=qT+1

∑∞
j=1 j

−1k−1| suptE(z2
t zt−jzt−k)| → 0 as

T →∞ because it is a tail sum (qT →∞) of the convergent sum supt
∑∞

j,k=1 j
−1k−1|E(z2

t zt−jzt−k)|.
This completes the proof.

Remark A.1 The results obtained in Lemma A.2 hold without requiring that τr,s does not depend
on t, i.e. without requiring fourth-order stationarity as in Assumption V(b)(ii). Clearly, Assumption
V(b) is suffi cient for the conditions imposed on zt, but it is much stronger than necessary. However,
if it were imposed, Lemma A.2 and its proof would be simplified. �

Lemma A.3 Let Zit =
∑∞

n=0 ζin(ψ)εt−n, i = 1, 2, where εt satisfies Assumption V and the coeffi cients
ζin(ψ) satisfy

∑∞
n=0 |ζin(ψ)| < ∞, i = 1, 2, uniformly in ψ ∈ Ψ, which is the parameter set defined in

Assumption R. Define the product moment

QT (u1, u2, ψ) = T−1
T∑
t=1

∂k

∂uk1
(∆u1

+ Z1t)
∂l

∂ul2
(∆u2

+ Z2t)

for k, l ≥ 0 and the set Θ = {(u1, u2, ψ) : min(u1 + 1, u2 + 1, u1 + u2 + 1) ≥ a, ψ ∈ Ψ} for a > 0. Then

sup
(u1,u2,ψ)∈Θ

|QT (u1, u2, ψ)| = OP (1).

Proof. First note the bound | ∂m∂umπj(u)| ≤ K(1 + log j)mju−1 for the fractional coeffi cients πj(u)
defined in (2.2), see Lemma B.3 of Johansen and Nielsen (2010) and Lemma A.5 of Johansen and
Nielsen (2012). The proof of the lemma is given only for k, l = 0 since the derivatives just add a
log-factor, which does not change the proof. Rearranging the summations the product moment is

QT (u1, u2, ψ) = T−1
T−1∑
j,k=0

πj(−u1)πk(−u2)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)
T∑

t=max(j,k)+1

εt−j−nεt−k−m

= T−1
T−1∑
j=0

πj(−u1)πj(−u2)

∞∑
n,m=0

ζ1n(ψ)ζ2m(ψ)

T∑
t=j+1

εt−j−nεt−j−m (A.2)

+ 2T−1
T−2∑
j=0

T−1∑
k=j+1

πj(−u1)πk(−u2)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)
T∑

t=k+1

εt−j−nεt−k−m. (A.3)
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Since T−1
∑T

t=j+1 εt−j−nεt−j−m = OP (1) uniformly in j, n,m and
∑∞

n=0 |ζin(ψ)| < ∞, i = 1, 2, uni-
formly in ψ ∈ Ψ, it holds that

sup
(u1,u2,ψ)∈Θ

|(A.2)| = OP

 sup
(u1,u2,ψ)∈Θ

T−1∑
j=0

|πj(−u1)||πj(−u2)|


= OP

 sup
(u1,u2,ψ)∈Θ

T∑
j=1

j−u1−u2−2

 = OP (1)

because −u1 − u2 − 2 ≤ −1− a < −1.
Next, summation by parts yields

T−1∑
k=j+1

πk(−u2)
T∑

t=k+1

εt−j−nεt−k−m = πT−1(−u2)
T−1∑
k=j+1

T∑
t=k+1

εt−j−nεt−k−m

−
T−2∑
k=j+1

(πk+1(−u2)− πk(−u2))
k∑

l=j+1

T∑
t=l+1

εt−j−nεt−l−m.

To show that both double summations appearing on the right-hand side are Op(T ), suppose m ≥
n+ j−k+ 1 (identical arguments are used for the other case). Then

∑T−1
k=j+1

∑T
t=k+1 εt−j−nεt−k−m =∑T−j−n

s=2−n εs
∑s+n−1

k=1 εs+n−k−m =
∑T−j−n

s=2−n ws and ws = σszs
∑s+n−1

k=1 σs+n−k−mzs+n−k−m is a martin-
gale difference sequence with respect to Fs. It follows that

E(w2
s) = σ2

s

s+n−1∑
k,l=1

σs+n−k−mσs+n−l−mE(z2
szs+n−k−mzs+n−l−m)

= σ2
s

s+n−1∑
k=1

σ2
s+n−k−mτk+m−n,k+m−n

+ 2σ2
s

s+n−2∑
k=1

s+n−1∑
l=k+1

σs+n−k−mσs+n−l−mκ4(s, s, s+ n− k −m, s+ n− l −m),

where the first term is O(s+n) and the second is bounded by K
∑∞

k=1

∑∞
l=k+1 |κ4(s, s, s+n−k−m, s+

n − l −m)| < ∞ by Assumptions V(a) and V(b)(ii)-(iii). Then E(
∑T−j−n

s=2−n ws)
2 =

∑T−j−n
s=2−n E(w2

s) =

O(T 2) by uncorrelatedness of ws, such that
∑T−j−n

s=2−n ws = OP (T ) uniformly in 0 ≤ j ≤ T − 2. In

exactly the same way it follows that
∑k

l=j+1

∑T
t=l+1 εt−j−nεt−l−m =

∑T−j−n
s=2−n w̃s = OP (T ) uniformly

in 0 ≤ j ≤ T − 2.
Now, rearranging the summations and applying the summation by parts result, (A.3) is

2T−1
T−2∑
j=0

πj(−u1)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)πT−1(−u2)

T−j−n∑
s=2−n

ws

+ 2T−1
T−2∑
j=0

πj(−u1)

∞∑
n,m=0

ζ1n(ψ)ζ2m(ψ)

T−2∑
k=j+1

(πk+1(−u2)− πk(−u2))

T−j−n∑
s=2−n

w̃s.

Because
∑∞

n=0 |ζin(ψ)| <∞, i = 1, 2, uniformly in ψ ∈ Ψ it thus holds, using the bound on πj(u), that
the supremum over (u1, u2, ψ) ∈ Θ of the first of these terms is

OP

 sup
(u1,u2,ψ)∈Θ

|πT−1(−u2)|
T−2∑
j=0

|πj(−u1)|

 = OP

 sup
(u1,u2,ψ)∈Θ

T−u2−1
T−2∑
j=1

j−u1−1


= OP

(
sup

(u1,u2,ψ)∈Θ
(log T )Tmax(−u1−u2−1,−u2−1)

)
= OP ((log T )T−a)
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and similarly, using the mean value theorem for πk+1(−u2) − πk(−u2), the supremum of the second
term is

OP

 sup
(u1,u2,ψ)∈Θ

T∑
j=1

j−u1−1
T∑

k=j+1

k−u2−2

 = OP

 sup
(u1,u2,ψ)∈Θ

T∑
j=1

j−u1−u2−2

 = OP (1).

A.2 Proof of Theorem 1

We begin with a proof of consistency of the maximum likelihood estimator under the null given in
(3.4). This is somewhat more delicate than usual because of the presence of the parameter d̄, which
is not equal to, but local to, the true value, d0.

Lemma A.4 Let the assumptions of Theorem 1 be satisfied and define

r(ψ) := lim
T→∞

ET−1
T∑
t=1

(c (L,ψ) c (L,ψ0)−1 εt)
2.

Then

sup
ψ∈Ψ

∣∣∣∣∣T−1
T∑
t=1

ε̂t
(
d̄, ψ

)2 − r(ψ)

∣∣∣∣∣ P→ 0 as T →∞, (A.4)

inf
ψ∈Ψ∩{ψ:||ψ−ψ0||≥ε}

r(ψ) > r(ψ0) for all ε > 0. (A.5)

It follows that ψ̃ is consistent, i.e., ψ̃
p→ ψ0 as T →∞.

Proof. Consistency of ψ̃ follows from (A.4) and (A.5) by Theorem 5.7 of van der Vaart (1998).
Let et(ψ) := c (L,ψ) c (L,ψ0)−1 εt =:

∑∞
n=0 ϕn(ψ)εt−n, where ϕ0(ψ) = 1 and ϕn(ψ) decays expo-

nentially for all ψ under Assumption R. We can thus assume, for example, that |ϕn(ψ)| ≤ Kn−1 for
all ψ ∈ Ψ, but also that

∑∞
n=0 |ϕn(ψ)| <∞, and we shall use both in this proof.

To show (A.5) first note that

T−1
T∑
t=1

E(et(ψ)2) = T−1
T∑
t=1

∞∑
n=0

ϕn(ψ)2σ2
t−n

= T−1
T∑
t=1

σ2
t

∞∑
n=0

ϕn(ψ)2 + T−1
T∑
t=1

∞∑
n=0

ϕn(ψ)2(σ2
t−n − σ2

t ).

As in the proof of Lemma A.2, let qT = bTχc for some χ ∈ (0, 1). Then the last term is bounded as

T−1
T∑
t=1

∞∑
n=0

ϕn(θ)2(σ2
t−n − σ2

t ) ≤
qT∑
n=0

ϕn(θ)2T−1
T∑
t=1

|σ2
t−n − σ2

t | (A.6)

+
∞∑

n=qT+1

ϕn(θ)2T−1
T∑
t=1

|σ2
t−n − σ2

t |. (A.7)

Because supn=1,...,qT T
−1
∑T

t=1 |σ2
t−n − σ2

t | → 0 by Lemma A.1 in Cavaliere and Taylor (2009) and∑qT
n=0 ϕn(θ)2 ≤

∑∞
n=0 ϕn(θ)2 <∞ for all ψ ∈ Ψ, it holds that |(A.6)| → 0. Next, by Assumption V(a)

we have supt σ
2
t ≤M <∞ such that supt T

−1
∑T

t=1 |σ2
t−n−σ2

t | ≤ 2M , and by Assumption R we have∑∞
n=qT+1 ϕn(θ)2 → 0 for all ψ ∈ Ψ (because it is the tail of a convergent sum). Therefore |(A.7)| → 0,

showing that T−1
∑T

t=1E(e2
t ) = T−1

∑T
t=1 σ

2
t

∑∞
n=0 ϕn(ψ)2 + o(1). Since T−1

∑T
t=1 σ

2
t →

∫ 1
0 σ(s)2ds

by Assumption V(a) and the continuous mapping theorem, we have r(ψ) =
∫ 1

0 σ(s)2ds
∑∞

n=0 ϕn(ψ)2.
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Under Assumption R, ϕ0(ψ) = 1 for all ψ and
∑∞

n=0 ϕn(ψ)2 = 1 +
∑∞

n=1 ϕn(ψ)2 ≥ 1 with equality if
and only if ψ = ψ0, which proves (A.5).

To show (A.4) note that, by the mean value theorem,

ε̂t
(
d̄, ψ

)
= ∆d̄−d0

+ et(ψ) = et(ψ) +
δ√
T

t−1∑
m=1

m−1et−m(ψ)(1 + op(1)),

where the op(1) term is uniform in t and ignored in the (pointwise) proof of convergence. Thus,

T−1
T∑
t=1

ε̂t
(
d̄, ψ

)2 − T−1
T∑
t=1

E(et(ψ)2) = T−1
T∑
t=1

(
et(ψ)2 − T−1

T∑
s=1

E(es(ψ)2)

)
(A.8)

+ 2T−1
T∑
t=1

et(ψ)2 δ√
T

t−1∑
m=1

m−1et−m(ψ)2 (A.9)

+ T−1
T∑
t=1

δ2

T

t−1∑
m=1

m−1et−m(ψ)2
t−1∑
j=1

j−1et−j(ψ)2. (A.10)

First write (A.9) as
∑∞

n=0 ϕn(ψ) δ√
T

∑T−1
m=1m

−1
∑∞

k=0 ϕk(ψ)T−1
∑T

t=m+1 εt−nεt−m−k and note that

T−1
∑T

t=m+1 εt−nεt−m−k = Op(1) under Assumption V. Then,

(A.9) = Op

( ∞∑
n=0

|ϕn(ψ)|
)2

δ√
T

T−1∑
m=1

m−1

 = Op(T
−1/2(log T ))

since
∑∞

n=0 |ϕn(ψ)| <∞ for all ψ ∈ Ψ under Assumption R. The same argument shows that (A.10) =
Op(T

−1(log T )2).
Next, (A.8) clearly has mean zero. The second moment is

E

(
T−1

T∑
t=1

et(ψ)2 − ET−1
T∑
s=1

es(ψ)2

)2

= T−2
T∑

t,s=1

E(et(ψ)2es(ψ)2)− T−2
T∑

t,s=1

E(et(ψ)2)E(es(ψ)2)

= T−2
T∑

t,s=1

∞∑
n1,n2=0

∞∑
m1,m2=0

(
2∏
i=1

ϕni(ψ)ϕmi(ψ)σt−niσs−mi

)
× (E(zt−n1zt−n2zs−m1zs−m2)− E(zt−n1zt−n2)E(zs−m1zs−m2)) ,

where the expectations are zero unless the two highest subscripts are equal, see Lemma A.1. By
symmetry, we only need to consider three cases.

Case 1) t − n1 = t − n2 = s − m1 = s − m2, in which case the expectations and the σt’s are
uniformly bounded using Assumption V and we find the contribution

KT−2
T∑
t=1

( ∞∑
n=0

ϕn(ψ)2

)2

≤ KT−1 → 0

because |ϕn(ψ)| ≤ Kn−1 for all ψ ∈ Ψ under Assumption R.
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Case 2) t − n1 = t − n2 > s −m1 ≥ s −m2, where the contribution is bounded by (a constant
times)

T−2
T∑

t,s=1

∞∑
n=0

∞∑
m1=max(0,s−t+n+1)

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)|

= T−2
T∑

t≤s=1

∞∑
n=0

∞∑
m1=s−t+n+1

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)| (A.11)

+ T−2
T∑

t>s=1

∞∑
n=t−s

∞∑
m1=s−t+n+1

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)|

(A.12)

+ T−2
T∑

t>s=1

t−s−1∑
n=0

∞∑
m1=0

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)| (A.13)

For (A.11) we note that |ϕm1(ψ)| ≤ Km−1
1 ≤ K(s − t + 1)−1 such that

∑T
s=t |ϕm1(ψ)| ≤ K(log T )

showing that |(A.11)| = O(T−1(log T )) because the summations over m1,m2 of κ4(·) are bounded
using Assumption V(b)(iii) and the summation over n of ϕn(ψ)2 is bounded using Assumption R.
For (A.12) we note that |ϕm1(ψ)| ≤ Km−1

1 ≤ K(s − t + n)−1 such that
∑∞

n=t−s ϕn(ψ)2|ϕm1(ψ)| ≤
K
∑∞

n=1 n
−1(t − s + n)−1 ≤ K(t − s)−1+η for some η ∈ (0, 1). Since the summations over m1,m2 of

κ4(·) are bounded using Assumption V(b)(iii), this shows that |(A.12)| = O(T η−1). Finally, we obtain
the bound

(A.13) ≤ KT−2
T∑

t>s=1

t−s−1∑
n=0

ϕn(ψ)2
∞∑

m1=0

∞∑
m2=m1

|κ4(t− n, t− n, s−m1, s−m2)|

= KT−2
T∑
t=2

√
t∑

s=1

t−s−1∑
n=0

ϕn(ψ)2
∞∑

m1=0

∞∑
m2=m1

|κ4(t− n, t− n, s−m1, s−m2)|

+KT−2
T∑
t=2

t−1∑
s=
√
t+1

t−s−1∑
n=0

ϕn(ψ)2
∞∑

m1=0

∞∑
m2=m1

|κ4(t− n, t− n, s−m1, s−m2)|,

where the first term is O(T−1/2) and the second term is o(1) because
∑∞

m1=0

∑∞
m2=m1

|κ4(t − n, t −
n, s−m1, s−m2)| is the tail of the convergent sum

∑∞
m1=n+s−t

∑∞
m2=m1

|κ4(t−n, t−n, s−m1, s−m2)|
when t− s ≥ t−

√
t− 1→∞, see Assumption V(b)(iii).

Case 3) t− n1 = s−m1 > t− n2 ≥ s−m2, where the contribution is

T−2
T∑

t,s=1

∞∑
n1=max(0,t−s)

∞∑
n2=n1+1

∞∑
m=s−t+n2

ϕn1(ψ)ϕn2(ψ)ϕs−t+n1(ψ)ϕm(ψ)

× σ2
t−n1σt−n2σs−mκ4(t− n1, t− n1, t− n2, s−m)

≤ KT−2
T∑

t,s=1

∞∑
n1=max(0,t−s)

n−1
1 (s− t+ n1)−1

≤ KT−2
T∑

t≤s=1

∞∑
n1=0

n−1+η
1 (s− t+ n1)−1−η +KT−2

T∑
t≥s=1

∞∑
n1=t−s

n−1−η
1 (s− t+ n1)−1+η

≤ KT−2
T∑

t≤s=1

(s− t)−η +KT−2
T∑

t≥s=1

(t− s)−η ≤ KT−η → 0

for some η ∈ (0, 1), where the first inequality is by Assumptions V(a),(b)(iii) and R. This shows that
the convergence in (A.4) holds pointwise for all ψ ∈ Ψ.
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The pointwise convergence in probability thus established can be strengthened to uniform conver-
gence in probability by showing that T−1

∑T
t=1 ε̂t (d, ψ)2 is stochastically equicontinuous (or tight).

From Newey (1991, Corollary 2.2) this holds if the derivative is dominated, uniformly in (d, ψ), by a
random variable BT = OP (1). From Lemma A.3 it holds that BT = sup | ∂∂γT

−1
∑T

t=1 ε̂t (d, ψ)2 | =
OP (1), where the supremum is taken over (d, ψ) ∈ {(d, ψ) : d− d0 ≥ −1/2 + c, ψ ∈ Ψ} for some small
c > 0 such that u1 = u2 = d− d0 ≥ −1/2 + c and a = 2c > 0. This shows that T−1

∑T
t=1 ε̂t (d, ψ)2 is

stochastically equicontinuous (on a fixed set) and hence that the convergence holds uniformly.

Let Υ0, Ξ0 and ξ0,j denote Υ, Ξ and ξj , respectively, evaluated at the true value γ0.

Lemma A.5 Let Assumptions R and V be satisfied. Then,
√
T
∂σ̂2 (d, ψ)

∂γ

∣∣∣∣
γ=γ0

w→ N(0, 4Υ0

∫ 1

0
σ4(s)ds), (A.14)

∂2σ̂2 (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ̌

p→ 2Ξ0

∫ 1

0
σ2(s)ds for any γ̌

p→ γ0. (A.15)

Proof. The first and second derivatives of (3.3) are

√
T
∂σ̂2 (d, ψ)

∂γ
= 2T−1

T∑
t=1

ε̂t (d, ψ)
t−1∑
j=1

ξj ε̂t−j (d, ψ) ,

∂2σ̂2 (d, ψ)

∂γ∂γ′
= 2T−1

T∑
t=1

t−1∑
j=1

ξj ε̂t−j (d, ψ)
t−1∑
k=1

ξ′kε̂t−k (d, ψ)

+ 2T−1
T∑
t=1

ε̂t (d, ψ)

t−2∑
j=1

t−j−1∑
k=1

ξjξ
′
kε̂t−j−k (d, ψ) .

The second derivative is tight (stochastically equicontinuous) by Newey (1991, Corollary 2.2) if its
derivative is dominated uniformly in (d, ψ) by a random variable BT = OP (1). From Lemma A.3 this
is satisfied uniformly in any small neighborhood of (d0, ψ0), see also Nielsen (2013), showing that the
second derivative is tight in this neighborhood. This result, together with γ̌

p→ γ0, implies by Lemma
A.3 of Johansen and Nielsen (2012) that the second derivative can be evaluated at the true value, i.e.,
that

∂2σ̂2 (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ̌

p→ ∂2σ̂2 (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ0

.

The second derivative, evaluated at the true value, is

∂2σ̂2 (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ0

= 2T−1
T∑
t=1

t−1∑
j,k=1

ξ0,jξ
′
0,kεt−jεt−k + 2T−1

T∑
t=1

εt

t−2∑
j=1

t−j−1∑
k=1

ξ0,jξ
′
0,kεt−j−k. (A.16)

The first term on the right-hand side has mean

2T−1
T∑
t=1

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kE(zt−jzt−k) = 2T−1

T∑
t=1

t−1∑
j=1

ξ0,jξ
′
0,jσ

2
t−j → 2Ξ0

∫ 1

0
σ2(s)ds

by Assumption V(b)(i) and Lemma A.2. The variance of the (m,n)’th element is

4T−2
T∑

t,s=1

s−1∑
i,j=1

t−1∑
k,l=1

(ξ0,i)m(ξ0,j)n(ξ0,k)m(ξ0,l)nσs−iσs−jσt−kσt−l

× [E(zs−izs−jzt−kzt−l)− E(zs−izs−j)E(zt−kzt−l)]

≤ KT−2
T∑
t=1

T∑
s=t

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1 |E(zs−izs−jzt−kzt−l)− E(zs−izs−j)E(zt−kzt−l)| ,
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which converges to zero by exactly the argument for (A.8) in the proof of Lemma A.4. Thus, the first
term on the right-hand side of (A.16) converges in L2-norm, and hence in probability, to 2Ξ0

∫ 1
0 σ

2(s)ds.
The second term on the right-hand side of (A.16) is mean zero with variance of the (m,n)’th

element given by

4T−2
T∑
t=1

σ2
tE

z2
t

 t−2∑
j=1

t−j−1∑
k=1

(ξ0,j)m(ξ0,k)nσt−j−kzt−j−k

2
≤ KT−2

T∑
t=1

 t−1∑
j=1

j−1

4

≤ KT−1(log T )4 → 0,

using Assumptions V(a) and V(b)(ii), so that the second term on the right-hand side of (A.16) con-
verges to zero in L2-norm, and hence in probability, which proves (A.15).

The first derivative, evaluated at the true value, is

√
T
∂σ̂2 (d, ψ)

∂γ

∣∣∣∣
γ=γ0

=
2√
T

T∑
t=1

εt

t−1∑
j=1

ξ0,jεt−j =

T∑
t=1

xTt,

where xTt := 2T−1/2εt
∑t−1

j=1 ξ0,jεt−j = 2T−1/2σtzt
∑t−1

j=1 ξ0,jσt−jzt−j is a martingale difference se-
quence with respect to the natural filtration Ft, the sigma-field generated by {zs}s≤t, see Assumption
V(b). To apply the central limit theorem, we first verify the Lindeberg condition via Lyapunov’s
suffi cient condition that

∑T
t=1E||xTt||2+ε → 0 for some ε > 0. Thus,

E||xTt||2+ε = E

(2T−1/2)2+ε|σtzt|2+ε||
t−1∑
j=1

ξ0,jσt−jzt−j ||2+ε

 ≤ KT−1−ε/2E

|zt|2+ε(

t−1∑
j=1

j−1|zt−j |)2+ε


by AssumptionsR and V(a). FromMinkowski’s inequality we find E(

∑t−1
j=1 |zt|j−1|zt−j |)2+ε ≤ (

∑t−1
j=1(E(|zt|j−1|zt−j |)2+ε)1/(2+ε))2+ε

such that

E||xTt||2+ε ≤ KT−1−ε/2

 t−1∑
j=1

(
E(|zt|j−1|zt−j |)2+ε

)1/(2+ε)

2+ε

≤ KT−1−ε/2

 t−1∑
j=1

j−1

2+ε

≤ KT−1−ε/2(log T )2+ε

where the second inequality is due to Assumption V(b)(iii) provided ε is chosen such that 2ε+ 4 ≤ 8.
Therefore,

T∑
t=1

E||xTt||2+ε ≤ KT−ε/2(log T )2+ε → 0. (A.17)

The sum of squares of xTt is equal to

4T−1
T∑
t=1

σ2
t z

2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kzt−jzt−k

= 4T−1
T∑
t=1

σ2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kE(z2

t zt−jzt−k) (A.18)

+ 4T−1
T∑
t=1

σ2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−k(z

2
t zt−jzt−k − E(z2

t zt−jzt−k)). (A.19)
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By Lemma A.2, (A.18) is

4T−1
T∑
t=1

σ4
t

t−1∑
j,k=1

ξ0,jξ
′
0,kτjk(1 + o(1))

= 4T−1
T∑
t=1

σ4
t

T−1∑
j,k=1

ξ0,jξ
′
0,kτjk(1 + o(1))− 4T−1

T∑
t=1

σ4
t

T−1∑
j,k=t

ξ0,jξ
′
0,kτjk(1 + o(1)),

where the first term converges to 4Υ0

∫ 1
0 σ

4(s)ds. The second term is bounded by

KT−1
T∑
t=1

T−1∑
j,k=t

j−1k−1τjk ≤ KT−1
T∑
t=1

t−2
T−1∑
j,k=t

τjk,

which converges to zero by Assumption V(b)(iii).
The second moment of the (m,n)’th element of (A.19) is

16T−2
T∑

t,s=1

σ2
t σ

2
s

s−1∑
i,j=1

t−1∑
k,l=1

(ξ0,i)m(ξ0,j)n(ξ0,k)m(ξ0,l)nσs−iσs−jσt−kσt−lCov(z2
t zt−kzt−l, z

2
szs−izs−j)

≤ KT−2
T∑

t,s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|Cov(z2
t zt−kzt−l, z

2
szs−izs−j)|

= KT−2
T∑
t=1

t−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|Cov(z2
t zt−izt−j , z

2
t zt−kzt−l)| (A.20)

+KT−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|Cov(z2
t zt−kzt−l, z

2
szs−izs−j)|. (A.21)

For (A.20) we find the simple bound

KT−2
T∑
t=1

(
t−1∑
k=1

k−1

)4

≤ KT−1(log T )4 → 0

because zt has finite eighth order moments by Assumption V(b)(iii). The covariance in (A.21) is a
combination of the cumulants of zt up to order eight. For the eighth order cumulant we find

T−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|κ8(t, t, t− k, t− l, s, s, s− i, s− j)| ≤ KT−1 → 0

by Assumption V(b)(iii). There are no seventh order cumulants in (A.21) because they would be
multiplied by a first order cumulant, which is zero. For products of sixth and second order cumulants
we find, for example,

T−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1κ2(t− k, t− l)|κ6(t, t, s, s, s− i, s− j)|

= T−2
T∑
t=2

 t−1∑
s=1

s−1∑
i,j=1

i−1j−1|κ6(t, t, s, s, s− i, s− j)|

( t−1∑
k=1

k−2κ2(t− k, t− k)

)
≤ KT−1 → 0
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by Assumption V(b)(iii). Another example is

T−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

≤ KT−2
T∑
t=2

t−1∑
s=1

∑
1≤j≤i≤s−1

∑
1≤l≤k≤t−1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

≤ KT−2
T∑
t=2

t−1∑
s=1

∑
1≤j≤i≤s−1

∑
t−s≤l≤k≤t−1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

+KT−2
T∑
t=2

∑
1≤l≤k≤t−1

t−l−1∑
s=1

∑
1≤j≤i≤s−1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

≤ KT−2
T−1∑
s=1

T∑
t=s+1

∑
1≤j≤i≤s−1

∑
t−s≤l≤k≤t−1

i−1j−1k−1l−1|κ6(s, s, t− k, t− l, s− i, s− j)|

+KT−2
T∑
t=2

t−1∑
k=1

t−l−1∑
s=1

∑
1≤j≤i≤s−1

i−1j−1k−2|κ6(t− k, t− k, s, s, s− i, s− j)|

using Lemma A.1. Here, the second term is clearly O(T−1) by Assumption V(b)(iii) and the first term
is

T−2
T−1∑
s=1

T∑
t=s+1

∑
1≤j≤i≤s−1

∑
t−s≤l≤k≤t−1

i−1j−1k−1l−1|κ6(s, s, t− k, t− l, s− i, s− j)|

= T−2
T−1∑
s=1

T∑
t=s+1

∑
1≤j≤i≤s−1

∑
0≤u≤v≤s−1

i−1j−1(v − s+ t)−1(u− s+ t)−1|κ6(s, s, s− v, s− u, s− i, s− j)|

≤ T−2
T−1∑
s=1

∑
1≤j≤i≤s−1

∑
0≤u≤v≤s−1

i−1j−1|κ6(s, s, s− v, s− u, s− i, s− j)|
(

T∑
t=s+1

(t− s)−2

)
,

which is also O(T−1) using Assumption V(b)(iii). The remaining products of sixth and second order
cumulants, as well as products of lower order cumulants, are treated similarly.

It follows that the sum of squares of xTt satisfies

4T−1
T∑
t=1

σ2
t z

2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kzt−jzt−k

p→ 4Υ0

∫ 1

0
σ4(s)ds. (A.22)

Now (A.14) follows by the martingale central limit theorem of McLeish (1974), see his Theorem 2.3
and the comments in the two paragraphs following it.

By consistency of the estimator of γ under the null, i.e., the estimator γ̃ = (d̄, ψ̃′)′, see Lemma
A.4, we have the following expansion of the likelihood (with subscripts denoting the relevant blocks
of the derivatives),

DTd(γ̃) = DTd(γ0) +HTdψ(γ̌)(ψ̃ − ψ0) +HTdd(γ̌)(d̄− d0),

0 = DTψ(γ̃) = DTψ(γ0) +HTψψ(γ̌)(ψ̃ − ψ0) +HTψd(γ̌)(d̄− d0),

where γ̌ denotes an intermediate point between γ̃ and γ0 (which can be different for each row of the
Hessian, although this is not important for the subsequent analysis). Using (3.8), this implies, in
particular, that

ψ̃ − ψ0 = −HTψψ(γ̌)−1DTψ(γ0)−HTψψ(γ̌)−1HTψd(γ̌)δT−1/2 (A.23)

and thus

T−1/2DTd(γ̃) = [1,−HTdψ(γ̌)HTψψ(γ̌)−1]T−1/2DT (γ0)

+ T−1
(
HTdd(γ̌)−HTdψ(γ̌)HTψψ(γ̌)−1HTψd(γ̌)

)
δ. (A.24)
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Here we note that, by Lemma A.5 combined with σ̂2 (d0, ψ0) = T−1
∑T

t=1 ε
2
t

p→
∫ 1

0 σ(s)2ds,

T−1/2DT (γ0)
w→N(0,Υ0λ),

T−1HT (γ̌)
p→− Ξ0,

as T →∞. Thus, by the partitioned matrix inverse formula,

T−1/2DTd(γ̃)
w→ [1,−(Ξ0)dψ(Ξ0)−1

ψψ]N(0,Υ0λ)− (Ξ−1
0 )−1

dd δ

and

S1T =T−1/2DTd(γ̃)
√
−TH−1

T (γ̃)11

w→
√

(Ξ−1
0 )dd[1,−(Ξ0)dψ(Ξ0)−1

ψψ]N(0,Υ0λ)− (Ξ−1
0 )
−1/2
dd δ,

which shows (3.9) because

(Ξ−1
0 )dd[1,−(Ξ0)dψ(Ξ0)−1

ψψ]Υ0[1,−(Ξ0)dψ(Ξ0)−1
ψψ]′ = (Ξ−1

0 Υ0Ξ−1
0 )dd(Ξ

−1
0 )−1

dd =
$2

ω2

by another application of the partitioned matrix inverse formula. The result (3.10) follows immediately.

A.3 Proof of Theorem 2

Throughout the proof, we use P ∗ and E∗, respectively, to denote the probability and expectation
conditional on the realization of the original sample. Moreover, for a given sequence X∗T computed on

the bootstrap data, with the notations X∗T = o∗p (1), in probability, and X∗T
p∗→ X, in probability, we

mean that P ∗ (|X∗T | > ε) → 0 in probability and P ∗(|X∗T −X|) > ε) → 0 in probability, respectively,
for any ε > 0 as T →∞.

We first present a lemma with the asymptotic distribution of the restricted estimator.

Lemma A.6 Let Assumptions R and V be satisfied and let ψ̃ denote the restricted estimator (3.4)
obtained under (3.1). Then

√
T (ψ̃ − ψ0)

w→ N(−Φ−1
0 κ0δ, λΦ−1

0 Λ0Φ−1
0 ), where Λ0 corresponds to Λ :=∑∞

j,k=1 cjc
′
kτj,k evaluated at the true value γ0.

Proof. Consistency was shown in Lemma A.4 and the asymptotic distribution follows from (A.23)
combined with Lemma A.5.

The next two lemmas are versions of Lemmas A.4 and A.5 for the bootstrap data. The bootstrap
objective function is σ̂2

∗(d, ψ) := T−1
∑T

t=1 ε̂
∗
t (d, ψ)2, where ε̂∗t (d, ψ) := c(L,ψ)∆d

+y
∗
t and y

∗
t is defined

in (4.1).

Lemma A.7 Let Assumptions R and V be satisfied and let γ∗0 denote the bootstrap true value; i.e.,
γ∗0 := (d̄, ψ̃′)′. Let the estimator of ψ for the bootstrap data be given by ψ̃∗ := arg minψ∈Ψ σ̂

2
∗(d̄, ψ).

Then ψ̃∗
p→ ψ̃, and therefore (d̄, ψ̃∗′)′

p→ γ∗0 .

Proof. First note that ε̂∗t
(
d̄, ψ

)
= c(L,ψ)c(L, ψ̃)−1ε∗t and define

r∗(ψ) := lim
T→∞

ET−1
T∑
t=1

(c (L,ψ) c
(
L, ψ̃

)−1
ε∗t )

2.

Consistency of ψ̃∗ as an estimator of ψ̃ follows if we show the following:

sup
ψ∈Ψ

∣∣∣∣∣T−1
T∑
t=1

ε̂∗t
(
d̄, ψ

)2 − r∗(ψ̃)

∣∣∣∣∣ P→ 0 as T →∞, (A.25)

inf
ψ∈Ψ∩{ψ:||ψ−ψ0||≥ε}

r∗(ψ) > r∗(ψ̃) for all ε > 0. (A.26)
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The proofs of (A.25) and (A.26) are very similar to those of (A.4) and (A.5). In fact, they are slightly
simpler because only the weak dependence parameter ψ is involved (and not d), although of course
the bootstrap errors make the proofs slightly different. Thus, we only outline the differences compared
with the proofs of (A.25) and (A.26).

Since ε∗t = ε̃c,twt is an i.i.d. sequence, see Algorithm 1(ii), ε̂∗t
(
d̄, ψ

)
is a linear process with i.i.d.

innovations and, by Assumption R, exponentially declining coeffi cients. Because the fourth moments
of ε∗t are bounded uniformly in t by Assumption V and the properties of wt, the law of large numbers
implies that (A.25) holds pointwise for each ψ ∈ Ψ. The pointwise convergence can be extended to
uniform convergence by the same argument as in the proof of (A.4).

To show (A.26) let c (z, ψ) c(z, ψ̃)−1 =:
∑∞

n=0 ϕ̃n(ψ)zn, where the coeffi cients ϕ̃n(ψ) are expo-
nentially declining under Assumption R. Because ε∗t is an i.i.d. sequence, it is also uncorrelated, so
that T−1

∑T
t=1E(

∑∞
n=0 ϕ̃n(ψ)ε∗t−n)2 = T−1

∑T
t=1

∑∞
n=0 ϕ̃n(ψ)2E(ε∗2t−n), whose limit can be shown to

be equal to that of T−1
∑T

t=1E(ε∗2t )
∑∞

n=0 ϕ̃n(ψ)2 using the same methods as in the proof of (A.5)
in Lemma A.4. From Assumption R it holds that ϕ̃0(ψ) = 1 for all ψ ∈ Ψ and

∑∞
n=0 ϕ̃n(ψ)2 =

1 +
∑∞

n=1 ϕ̃n(ψ)2 ≥ 1 with equality if and only if ψ = ψ̃.

Lemma A.8 Let Assumptions R and V be satisfied and let γ∗0 denote the bootstrap true value; i.e.,
γ∗0 := (d̄, ψ̃′)′. Then,

√
T
∂σ̂2
∗ (d, ψ)

∂γ

∣∣∣∣
γ=γ∗0

w→p N(0, 4Υ†0

∫ 1

0
σ4(s)ds), (A.27)

∂2σ̂2
∗ (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ̌

p∗→ 2Ξ0

∫ 1

0
σ2(s)ds, in probability, for any γ̌

p→ γ∗0 , (A.28)

where Υ†0 :=
∑∞

j=1 ξ0,jξ
′
0,jτj,j.

Proof. As in Lemma A.5 above it holds that

√
T
∂σ̂2
∗(d, ψ)

∂γ
= 2T−1

T∑
t=1

ε̂∗t (d, ψ)
t−1∑
j=1

ξj ε̂
∗
t−j (d, ψ)

and

∂2σ̂2
∗(d, ψ)

∂γ∂γ′
= 2T−1

T∑
t=1

t−1∑
j=1

ξj ε̂
∗
t−j (d, ψ)

t−1∑
k=1

ξ′kε̂
∗
t−k (d, ψ)+2T−1

T∑
t=1

ε̂∗t (d, ψ)

t−2∑
j=1

t−j−1∑
k=1

ξjξ
′
kε̂
∗
t−j−k (d, ψ) .

We first provide the proof for the weak convergence in (A.27). We have that

√
T
∂σ̂2
∗ (d, ψ)

∂γ

∣∣∣∣
γ=γ∗0

=
2√
T

T∑
t=1

ε∗t

t−1∑
j=1

ξ̃jε
∗
t−j ,

where ξ̃j denotes ξj evaluated at (d̄, ψ̃′)′. Conditional on the original data, x∗Tt := 2T−1/2ε∗t
∑t−1

j=1 ξ̃jε
∗
t−j

is a martingale difference sequence with respect to the filtration F∗t , i.e. the sigma-field generated by
{ε∗t , . . . , ε∗1}. First we find the probability limit of

∑T
t=1 x

∗2
Tt and then we show that the Lindeberg

condition is satisfied.
The sum of squares of x∗Tt is

4T−1
T∑
t=1

ε∗2t

t−1∑
j,k=1

ξ̃j ξ̃
′
kε
∗
t−jε

∗
t−k = 4T−1

T∑
t=1

ε∗2t

t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j (A.29)

+ 4T−1
T∑
t=1

ε∗2t

t−1∑
j=1

t−1∑
k=1,k 6=j

ξ̃j ξ̃
′
kε
∗
t−jε

∗
t−k =: A∗1T +A∗2T ,
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where we now show that A∗1T
p∗→ 4Υ†0

∫ 1
0 σ (s)4 ds and A∗2T

p∗→ 0 in probability, respectively. To see
this, recall that ε∗t := ε̃c,twt such that, under the wild bootstrap probability measure, we have that

E∗
(
ε∗2t
)

= ε̃2
c,t =

(
ε̃t − ε̃T

)2
, where ε̃T := T−1

∑T
t=1 ε̃t and ε̃t := ε̂t(d̄, ψ̃) denotes the restricted

residuals.
Consider A∗1T first. By setting η

∗
t := ε̃2

c,t

(
w2
t − 1

)
we can rearrange A∗1T as

A∗1T = 4T−1
T∑
t=1

ε̃2
c,t

t−1∑
j=1

ξ̃j ξ̃
′
j ε̃

2
c,t−j + 4T−1

T∑
t=1

ε̃2
c,t

t−1∑
j=1

ξ̃j ξ̃
′
jη
∗
t−j + 4T−1

T∑
t=1

η∗t

t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j . (A.30)

We first examine the first term of (A.30). By the mean value theorem,

ε̃t = ε̂t(d̄, ψ̃) = ∆d̄
+c
(
L, ψ̃

)
yt = εt + (γ̃ − γ0)′

t−1∑
m=1

ξ̃mεt−m(1 + op(1)),

where the op(1)-term is uniform in t and ignored in the following. From Lemma A.6 and because
E|εt| <∞ uniformly in t, (γ̃ − γ0)′

∑t−1
m=1 ξ̃mεt−m = Op(T

−1/2(log T )) and ε̃T = Op(T
−1/2) uniformly

in t. Then ε̃t − ε̃T = εt + atT , where atT = Op(T
−1/2(log T )) uniformly in t, and the first term of A∗1T

satisfies

T−1
T∑
t=1

(εt + atT )2
t−1∑
j=1

ξ̃j ξ̃
′
j (εt−j + at−j,T )2 − T−1

T∑
t=1

ε2
t

t−1∑
j=1

ξ̃j ξ̃
′
jε

2
t−j

= T−1
T∑
t=1

ε2
t

t−1∑
j=1

ξ̃j ξ̃
′
j

(
a2
t−j,T + 2εt−jat−j,T

)
+ T−1

T∑
t=1

(
a2
tT + 2εtatT

) t−1∑
j=1

ξ̃j ξ̃
′
jε

2
t−j

+ T−1
T∑
t=1

(
a2
tT + 2εtatT

) t−1∑
j=1

ξ̃j ξ̃
′
j

(
a2
t−j,T + 2εt−jat−j,T

)
,

where each of the three terms on the right-hand side converge to zero in L1-norm. Then, by Lemma
A.6 and the delta method, T−1

∑T
t=1 ε

2
t

∑t−1
j=1 ξ̃j ξ̃

′
jε

2
t−j = T−1

∑T
t=1 ε

2
t

∑t−1
j=1 ξ0,jξ

′
0,jε

2
t−j +op(1), so that

we are left with

4T−1
T∑
t=1

ε2
t

t−1∑
j=1

ξ0,jξ
′
0,jε

2
t−j = 4T−1

T∑
t=1

σ2
t z

2
t

t−1∑
j=1

ξ0,jξ
′
0,jσ

2
t−jz

2
t−j

p→ 4Υ†0

∫ 1

0
σ4(s)ds

following the same arguments as in the proof of (A.22).
Next consider the second term of (A.30). Recalling that η∗t := ε̃2

c,t

(
w2
t − 1

)
, its (m,n)’th element

is

4T−1
T∑
t=1

ε̃2
c,t

t−1∑
j=1

(ξ̃j)m(ξ̃j)nη
∗
t−j = 4T−1

T−1∑
t=1

η∗t

T−t∑
j=1

(ξ̃j)m(ξ̃j)nε̃
2
c,t+j .

Conditional on the original data and with ζ4 := E((w2
t − 1)2), the second moment of this term is

16ζ4T
−2

T−1∑
t=1

ε̃4
c,t

T−t∑
j=1

(ξ̃j)m(ξ̃j)nε̃
2
c,t+j

2

L1→ 0

under the 8th-order moment condition implied by Assumption V(b)(iii). Thus, the second term of
(A.30) is o∗p (1), in probability. Similarly, conditional on the original data, the second moment of the
(m,n)’th element of the third term of (A.30) is

16ζ4T
−2

T∑
t=2

ε̃4
c,t

t−1∑
j,k=1

E(w2
t−jw

2
t−k)(ξ̃j)m(ξ̃j)n(ξ̃k)m(ξ̃k)nε̃

2
c,t−j ε̃

2
c,t−k

L1→ 0
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such that third term of (A.30) is also o∗p (1), in probability, and hence A∗1T
p∗→ 4Υ†0

∫ 1
0 σ (s)4 ds, in

probability
Next, consider A∗2T = 4T−1

∑T−1
t=1

∑T−1
s=1,s 6=twtwsat,s, where at,s :=

∑T
j=max(t,s)+1 ε̃

2
c,j ξ̃j−tξ̃

′
j−sε̃c,tε̃c,s

depends only on the original data. Thus, conditional on the original data, A∗2T is zero mean and the
variance of its (m,n)’th element is

E∗((A∗2T )2
m,n) = 16T−2

T−1∑
t=1

T−1∑
s=1
s 6=t

E(w2
t )E(w2

s)(at,s)
2
m,n = 16T−2

T−1∑
t=1

T−1∑
s=1
s 6=t

(at,s)
2
m,n.

As above, apart from op(1)-terms, at,s =
∑T

j=max(t,s)+1 ε
2
jξ0,j−tξ′0,j−sεtεs, and we therefore examine

T−2
T−1∑
t=1

T−1∑
s=t+1

T∑
j=s+1

T∑
k=s+1

ε2
jε

2
k(ξ0,j−t)m(ξ0,j−s)nε

2
t ε

2
s(ξ0,k−t)m(ξ0,k−s)n

with expected absolute value bounded by

KT−2
T−1∑
t=1

T−1∑
s=t+1

T∑
j=s+1

T∑
k=s+1

(j − t)−1(j − s)−1(k − t)−1(k − s)−1

≤ KT−2
T−1∑
t=1

T−1∑
s=t+1

(log T )2(s− t)−2 ≤ K(log T )2T−1,

using ||ξ0,j || ≤ Kj−1 for all j ≥ 1, so that A∗2T converges to zero in L1-norm, and therefore in
probability.

For the Lindeberg condition we verify Lyapunov’s suffi cient condition. Conditional on the original
data and for any arbitrary conforming vector ν,

T−2
T∑
t=1

E∗

ν ′
ε∗t t−1∑

j=1

ξ̃jε
∗
t−j

4

= T−2
T∑
t=1

E∗
(
ε∗4t
) t−1∑
j,k=1

(
ν ′ξ̃jν

′ξ̃k
)2
E∗
(
ε∗2t−jε

∗2
t−k
)

= E(w4
t )T

−2
T∑
t=1

ε̃4
c,t

t−1∑
j,k=1

E(w2
t−jw

2
t−k)

(
ν ′ξ̃jν

′ξ̃k
)2
ε̃2
c,t−j ε̃

2
c,t−k,

where the first equality is because the ε∗t are independent conditional on the original data. By exactly
the same methods as applied in the analysis of the sum of squares of x∗Tt above, the L1-norm of
the right-hand side is bounded by KT−2

∑T
t=1(

∑t−1
j=1(ν ′ξ̃j)2)2 = O(T−1) under the 8th-order moment

condition in Assumption V(b)(iii), so that the right-hand side converges to zero in probability. Thus,
the Lindeberg condition is satisfied, which completes the proof of (A.27).

We finally show (A.28). By the same argument as in the proof of (A.15) in Lemma A.5, the second
derivative can be evaluated at the bootstrap true value, γ∗0 . Thus,

∂2σ̂2
∗(d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ∗0

= 2T−1
T∑
t=1

t−1∑
j,k=1

ξ̃j ξ̃
′
kε
∗
t−jε

∗
t−k + 2T−1

T∑
t=1

ε∗t

t−2∑
j=1

t−j−1∑
k=1

ξ̃j ξ̃
′
kε
∗
t−j−k =: B∗1T +B∗2T .

First, by the same reasoning used for (A.29), B∗1T
p∗→ 2Ξ0

∫ 1
0 σ

2(s)ds, in probability. Second, also by
the same reasoning as applied above, ε∗t

∑t−2
j=1

∑t−j−1
k=1 ξ̃j ξ̃

′
kε
∗
t−j−k is a martingale difference sequence

with respect to F∗t , and B∗2T is therefore o∗p(1), in probability, because of the normalization by T−1.

In view of Lemmas A.7 and A.8, the proof of the theorem is completed as in the proof of Theorem
1. We note that, under Assumption V ′, Υ0 =

∑∞
j=1 ξ0,jξ

′
0,jτj,j = Υ†0.
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A.4 Proof of Corollary 2

Theorem 2 implies that, uniformly in probability, G∗T (·) → F1

( ·
λ$2ω−2 , 0

)
, with F1 as defined in

section 3. This implies that, under the null hypothesis, P ∗T converges weakly to U [0, 1], see Hansen
(2000, proof of Theorem 5).

A.5 Proof of Theorem 3

The proof is essentially the same as that of Theorem 2, except that now E∗(ε∗2t ) = T−1
∑T

t=1 ε̃
2
c,t does

not depend on t, which simplifies the proof. We only outline the proof that the sum of squares of x∗Tt
from the score now converges to 4Ξ0(

∫ 1
0 σ

2(s)ds)2 in probability, so that the factor λ$
2

ω2
disappears

from the asymptotic distribution of the i.i.d. bootstrap statistics.
The term corresponding to A∗1T in (A.29) is now given by

4T−1
T∑
t=2

ε∗2t

t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j = 4T−1

T∑
t=1

(
ε∗2t − E∗(ε∗2t )

) t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j (A.31)

+ 4

(
T−1

T∑
t=1

ε̃2
c,t

)
T−1

T∑
t=1

t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j .

Since 4T−1
∑T

t=1 ε̃
2
c,t

p→ 4
∫ 1

0 σ
2(s)ds, the result follows by showing that the first term on the right-hand

side is o∗p(1), in probability, and that T−1
∑T

t=1

∑t−1
j=1 ξ̃j ξ̃

′
jε
∗2
t−j − Ξ0

∫ 1
0 σ

2(s)ds = o∗p(1), in probability.
We first show the latter convergence.

Thus, noting that for the i.i.d. bootstrap E∗(ε∗2t ) does not depend on t,

T−1
T∑
t=1

t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j = T−1

T∑
t=1

t−1∑
j=1

ξ̃j ξ̃
′
j

(
ε∗2t−j − E∗(ε∗2t

)
) + E∗(ε∗2t )T−1

T∑
t=1

t−1∑
j=1

ξ̃j ξ̃
′
j ,

where the last term satisfies the required convergence, so we only have to show that the first term is
o∗p(1), in probability. We find, again noting that E∗(ε∗2t ) does not depend on t, that

T−1
T∑
t=1

t−1∑
j=1

ξ̃j ξ̃
′
j

(
ε∗2t−j − E∗(ε∗2t

)
) = T−1

T−1∑
t=1

(
ε∗2t − E∗(ε∗2t

)
)

T−t∑
j=1

ξ̃j ξ̃
′
j ,

which, conditional on the data, is mean zero and the variance of its (m,n)’th element is

T−2
T−1∑
t=1

E∗
(
ε∗2t − E∗(ε∗2t

)
)2

T−t∑
j=1

(ξ̃j)m(ξ̃j)n

2

= E∗
(
ε∗2t − E∗(ε∗2t

)
)2T−2

T−1∑
t=1

T−t∑
j=1

(ξ̃j)m(ξ̃j)n

2

≤

T−1
T∑
t=1

(
ε̃2
c,t − T−1

T∑
t=1

ε̃2
c,t

)2
T−2

T−1∑
t=1

T−t∑
j=1

(ξ̃j)m(ξ̃j)n

2

.

Because εt is assumed to have finite fourth-order moments under Assumption V, the first factor on
the right-hand side converges in L1-norm, and hence in probability, to a finite constant. The second
factor converges in probability to zero, as above.

Finally, conditional on the original data, the first term of (A.31) has mean zero and the variance
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of its (m,n)’th element is

16T−2
T∑
t=1

E∗
(
ε∗2t − E∗(ε∗2t )

)2 t−1∑
j=1

(ξ̃j)m(ξ̃j)n(ξ̃j)m(ξ̃j)nE
∗ (ε∗4t−j)

+ 32T−2
T∑
t=1

E∗
(
ε∗2t − E∗(ε∗2t )

)2 t−1∑
j=1

t−1∑
k=j+1

(ξ̃j)m(ξ̃j)n(ξ̃k)m(ξ̃k)n
(
E∗
(
ε∗2t
))2

≤ 16

T−1
T∑
t=1

(
ε̃2
c,t − T−1

T∑
t=1

ε̃2
c,t

)2
(T−1

T∑
t=1

ε̃4
c,t

)
T−2

T∑
t=1

t−1∑
j=1

(ξ̃j)m(ξ̃j)n(ξ̃j)m(ξ̃j)n

+ 32

T−1
T∑
t=1

(
ε̃2
c,t − T−1

T∑
t=1

ε̃2
c,t

)2
(T−1

T∑
t=1

ε̃2
c,t

)2

T−2
T∑
t=1

t−1∑
j=1

t−1∑
k=j+1

(ξ̃j)m(ξ̃j)n(ξ̃k)m(ξ̃k)n.

As above, the first two factors in each of these terms converge in L1-norm, and hence in probability,
to finite constants due to the moment condition in Assumption V(b)(iii), and the last factors in each
term converge in probability to zero.

A.6 Proof of Corollary 3

The proof follows from Theorem 3 as in the proof of Corollary 2.
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