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Abstract

We consider the properties of three estimation methods for integrated volatility, i.e.

realized volatility, the Fourier estimator, and the wavelet estimator, when a typical sample

of high-frequency data is observed. We employ several different generating mechanisms

for the instantaneous volatility process, e.g. Ornstein-Uhlenbeck, long memory, and jump

processes. The possibility of market microstructure contamination is also entertained using

a model with bid-ask bounce in which case alternative estimators with theoretical justifi-

cation under market microstructure noise are also examined. The estimation methods are

compared in a simulation study which reveals a general robustness towards persistence or

jumps in the latent stochastic volatility process. However, bid-ask bounce effects render

realized volatility and especially the wavelet estimator less useful in practice, whereas the

Fourier method remains useful and is superior to the other two estimators in that case.

More strikingly, even compared to bias correction methods for microstructure noise, the

Fourier method is superior with respect to RMSE while having only slightly higher bias.
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1 Introduction

The definition and analysis of realized volatility in financial return series has attracted con-

siderable interest in the literature starting with French, Schwert & Stambaugh (1987), see e.g.

Andersen, Bollerslev & Diebold (2004) and the references therein for a review. Essentially,

integrated instantaneous volatility is estimated consistently by its sample analogue based on

high-frequency return observations. This approach allows gathering much more detailed infor-

mation on the properties of financial market volatility than previously. However, recently two

rival approaches for the estimation of integrated volatility have been introduced. Malliavin &

Mancino (2002) suggest estimating integrated volatility by a Fourier transform based method

and Høg & Lunde (2003) suggest employing a method based on the wavelet transform. The

properties of the three estimation methods for integrated volatility, i.e. realized volatility, the

Fourier estimator, and the wavelet estimator, when only a finite sample of the price process

(albeit at a high frequency) is observed, have been examined only briefly in the literature.

Previously, Barucci & Reno (2002a, 2002b) have compared the Fourier method to realized

volatility in a Monte Carlo study using the Cox, Ingersoll & Ross (1985) model to generate

the latent instantaneous volatility process, and their simulations show that the Fourier method

compares favorably with realized volatility. However, Barucci & Reno (2002a, 2002b) typically

contrast a 5 minute realized volatility estimator to a Fourier estimator using all observations

(which are measured as often as every 14 seconds on average) creating a very uneven base

for comparison, and furthermore they use interpolation between observations rather than the

imputation scheme that the literature has settled upon. Within the same framework, i.e. using

a Cox et al. (1985) model for the latent instantaneous volatility process, simulations by Høg &

Lunde (2003) show that the wavelet method and the Fourier method are virtually indistinguish-

able with respect to bias and variance, although the wavelet method is computationally much

faster than the Fourier method. However, a major drawback of both these studies is that they

consider only one generating mechanism for the unobserved instantaneous volatility process,

and in particular, their generating mechanism does not allow for any of the recently popular-

ized features of integrated volatility, such as long memory, jumps, and market microstructure
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effects.

In this paper, we examine all three estimators mentioned above and compare them within

the same model setup. Unlike the previous studies, we try to even the playing field compared

to Barucci & Reno (2002a, 2002b) by using the same number of implied intra-daily returns

for each estimator. Furthermore, we follow the literature and use imputation rather than

interpolation, and we employ several different generating mechanisms for the instantaneous

integrated volatility. In particular, we consider logarithmic Ornstein-Uhlenbeck processes, long

memory processes (e.g. Comte & Renault (1996, 1998)), and jump processes (e.g. Andersen,

Benzoni & Lund (2002), Eraker, Johannes & Polson (2003), and Eraker (2004)). The possibility

of market microstructure effects contaminating the data is also entertained in a model that

allows for a bid-ask bounce in the spirit of Roll (1984). In the latter case we also consider

alternative estimators by Barndorff-Nielsen & Shephard (2003a, 2004) and Hansen & Lunde

(2004a, 2004b) with theoretical justification under market microstructure noise.

The estimation methods are compared in a Monte Carlo study which reveals that the

theoretical robustness of the estimators towards persistence or jumps in the stochastic process

governing the latent volatility carries over to practice. On the other hand, irregularities such

as bid-ask bounce effects, which the methods have no theoretical robustness against, in general

render the wavelet estimator, and to a lesser degree realized volatility, less useful in practice.

However, we find the Fourier method to be superior compared to the other two estimators in

the case of market microstructure noise, and indeed this estimator remains very useful even

in that case. More strikingly, even when compared to the bias correction methods designed

specifically to handle market microstructure effects, the Fourier method is superior with respect

to RMSE while having only slightly higher bias.

The remainder of the paper is organized as follows. In the next section we present a typical

model for asset returns and integrated volatility, which is the focus of the estimation. Section

3 presents the three estimation methods, realized volatility, the Fourier estimator, and the

wavelet estimator. In sections 4 and 5 we describe the setup of the Monte Carlo study for the

models without market microstructure (bid-ask bounce) effects and the model including the

bid-ask bounce, respectively. Section 5 also introduces three alternative estimators designed for
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the case with market microstructure contamination. Section 6 presents the simulation results

in terms of the finite sample biases and RMSEs of the estimators in sections 3 and 5, and

section 7 offers some concluding remarks.

2 Integrated Volatility and Quadratic Variation

Suppose the log-price of an asset, p (t), follows a stochastic volatility model, where the basic

Brownian motion is generalized to allow the volatility to vary over time, see e.g. Ghysels,

Harvey & Renault (1996) or Barndorff-Nielsen & Shephard (2001) and the references therein

for overviews of the vast literature on this topic. In particular, we assume p (t) follows the

general stochastic differential equation model

dp (t) = µ (t) dt+ σ (t) dw (t) , t ≥ 0, (1)

where the mean process µ (·) and the instantaneous volatility process σ (·) > 0 are assumed

to be independent of the Brownian motion w (·). Allowing the instantaneous volatility to be
random and possibly exhibit serial correlation (which we shall do below, see the examples in

section 4), the model (1) will generate returns with unconditional distributions that are fat-

tailed and have volatility clustering. This replicates more closely actually observed processes

than constant volatility, and e.g. allows the model to overcome some of the shortcomings of

the basic Black & Scholes (1973) option pricing model, see Hull & White (1987).

An important feature of the model (1) is that

p (t)|
Z t

0
µ (s) ds, σ2∗ (t) ∼ N

µZ t

0
µ (s) ds, σ2∗ (t)

¶
, (2)

where

σ2∗ (t) =
Z t

0
σ2 (s) ds (3)

is called the integrated volatility (or integrated variance) and is the object of interest. For

pricing options, this is the relevant volatility measure, see Hull & White (1987), and for the

econometrician this is the object to be estimated, see also Andersen & Bollerslev (1998). Thus,

it is also the focal point of this paper.
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Another important object is the quadratic variation of the process p (t), denoted [p] (t),

which is defined for any semimartingale (see e.g. Protter (1990)) by

[p] (t) = p2 (t)− 2
Z t

0
p (s−) dp (s) (4)

or equivalently

[p] (t) = p lim
MX
j=1

(p (sj)− p (sj−1))2 , (5)

where 0 = s0 < s1 < ... < sM = t and the limit is taken for maxj |sj − sj−1|→ 0 as M →∞.
Under some very general regularity conditions, which allow the instantaneous volatility

process to exhibit many irregularities, e.g. jumps, long memory, or even nonstationarity, it was

shown by Andersen & Bollerslev (1998) and Barndorff-Nielsen & Shephard (2001) that

[p] (t) = σ2∗ (t) (6)

for the model (1). For the purpose of this paper we note that this implies that the object of

interest, σ2∗ (t), can be estimated either directly via a parametric model or nonparametrically

via the quadratic variation. The latter has been a very popular approach recently.

3 Estimation of Integrated Volatility

We next review briefly three different methods of estimation for the integrated volatility based

on a sample of high-frequency return observations. First, we describe the very popular realized

volatility approach which utilizes the connection to quadratic variation, and subsequently we

describe the Fourier and wavelet estimators which estimate σ2∗ (t) via the Fourier and wavelet

transforms, respectively.

To lighten the notation, we make some simplifying assumptions. We assume that only one

day (or month or year) of observations is available and denote the intra-daily (or intra-monthly

or intra-yearly) observations on the log-price of the asset by pj . In principle, the time period

could be any arbitrary period, but most often in empirical work either intra-daily or intra-

monthly observations are considered in order to estimate integrated volatility on a daily or

monthly basis. For instance, to obtain estimates of σ2∗ (t), where t = 1, ..., T denotes days, the
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econometrician employs intra-daily observations on the price process. For the purpose of this

section we normalize by setting T = 1 and consider the estimation of integrated volatility over

one time period.

The intra-daily data may be of the tick-by-tick type, where the price is observed at every

trade or quote (tick), or of the fixed interval type, where the price is observed at fixed intervals,

e.g. at 5 minute intervals. Both these types of data, commonly denoted high-frequency data,

are widely available on many types of assets. For applications to stock return data, see e.g.

French et al. (1987), Andersen, Bollerslev, Diebold & Ebens (2001), Eraker et al. (2003), or

Eraker (2004), and for introductions to some of the very commonly used Olsen and Associates

high-frequency exchange rate data sets, see e.g. Guillaume, Dacorogna, Davé, Müller, Olsen

& Pictet (1997), Andersen & Bollerslev (1998), Andersen, Bollerslev, Diebold & Labys (2001),

Dacorogna, Gencay, Müller, Pictet & Olsen (2001), or Barndorff-Nielsen & Shephard (2001,

2002).

3.1 Realized Volatility

Suppose n intra-daily observations are available. It is often desirable to have observations that

are evenly spaced in time. Suppose M evenly spaced observations are desired based on the n

intra-daily and possibly irregularly spaced observations. To avoid the problem of irregularly

spaced data in high-frequency data sets, it is common to use the imputation scheme (in contrast

to an interpolation scheme, see e.g. Dacorogna et al. (2001) or Barucci & Reno (2002a)), i.e.

for each of the M evenly spaced observations to use the last observed price. In this way a data

set ofM evenly spaced intra-daily price observations can be constructed based on an irregularly

spaced high-frequency data set (preferably with n much higher thanM to avoid using the same

observation more than once).

Using these M evenly spaced price observations we denote the continuously compounded

intra-daily returns by

rj = pj − pj−1, j = 1, ...,M. (7)
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Using (5), quadratic variation can be estimated by

σ̂2∗RV,M =
MX
j=1

r2j , (8)

which is denoted the realized volatility of the process p (·). If several days of intra-daily ob-
servations on p (·) (or r (·)) were observed, a time series of daily observations on the realized
volatility could be obtained, but that is not the issue here so we retain the assumption that

only one day of observations is available. Some authors refer to the quantity (8) as the realized

variance and reserve the name realized volatility for the square root of (8), but we shall use

the more conventional name realized volatility.

Andersen & Bollerslev (1998) and Andersen, Bollerslev, Diebold & Labys (2001) noted

that by definition σ̂2∗RV,M in (8) is a consistent (in probability) estimator of integrated volatil-

ity (3), using (5) and (6). The consistency result does not require the observations to be

evenly spaced, only that the maximum distance between observations goes to zero in the limit.

Barndorff-Nielsen & Shephard (2002) strengthened the consistency result and showed that

σ̂2∗RV,M converges to σ2∗ in probability at rate
√
M , and furthermore that σ̂2∗RV,M satisfies

σ̂2∗RV,M − σ2∗q
2
3

PM
j=1 r

4
j

→d N (0, 1) as M →∞. (9)

This is a mixed Gaussian asymptotic distribution theory since the denominator is itself random,

and hence σ̂2∗RV,M has fatter tails than the normal distribution. For some simulation evidence

on the accuracy of the asymptotic distribution (9), see Barndorff-Nielsen & Shephard (2002)

and Barndorff-Nielsen & Shephard (2003b).

If there are many intra-daily observations available, the coarseness of the realized volatility

estimator is governed by the choice of M . For example, if trading occurs 24 hours per day

as in the foreign exchange markets, choosing 5 minute returns in (7) and (8) corresponds to

M = 288, 15 minute returns corresponds toM = 96, and hourly returns corresponds toM = 24.

Choosing a higher number of intra-daily returns improves the precision of the estimator but

at the same time makes it more sensitive towards microstructure effects in the market, e.g.

measurement errors, bid-ask bounces, etc., see section 5.

7



3.2 Fourier Estimator

This estimator was suggested by Malliavin & Mancino (2002) and subsequently applied by

Barucci & Reno (2002a, 2002b). The Fourier method only requires that the quadratic variation

(4) or (5) is bounded. The method is based on the Fourier transform,Z 2π

0
σ2 (s) ds = 2πa0

¡
σ2
¢
, (10)

where

a0
¡
σ2
¢
= lim

S→∞
π

2S

SX
s=1

¡
a2s (dp) + b2s (dp)

¢
(11)

and the Fourier coefficients are given by

as (dp) =
1

π

Z 2π

0
cos (st) dp (t) , s ≥ 1, (12)

bs (dp) =
1

π

Z 2π

0
sin (st) dp (t) , s ≥ 1. (13)

Hence, the n intra-daily and possibly irregularly spaced observations at times t1, ..., tn, i.e.

on the interval [t1, tn], needs to be normalized into the interval [0, 2π], and we denote the

renormalized time points by τ j = 2π (tj − t1) / (tn − t1) , j = 1, ..., n. The formal justification

for using (10) and (11) is given by Malliavin & Mancino (2002). Barucci & Reno (2002b) derived

the following approximations that we use to compute estimates of the Fourier coefficients

(as (dp) , bs (dp)) in (12) and (13),

âs (dp) =
p (τn)− p (τ1)

π
− 1

π

nX
j=2

p (τ j−1) (cos (sτ j)− cos (sτ j−1)) , s ≥ 1, (14)

b̂s (dp) =
1

π

nX
j=2

p (τ j−1) (sin (sτ j)− sin (sτ j−1)) , s ≥ 1. (15)

To obtain the Fourier estimator of integrated volatility, we thus plug (14) and (15) into (11)

and use (10),

σ̂2∗F,S =
π2

S

SX
s=1

³
â2s (dp) + b̂2s (dp)

´
. (16)

The coarseness of the estimator is controlled by the user-chosen number S, i.e. the number of

Fourier coefficients to include in the estimation, which is related toM for realized volatility by
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S =M/2. Higher S thus corresponds to choosing a finer grid (higherM) for realized volatility,

e.g. choosing 5 minute returns instead of 15 minute returns. Note that by including only the

lowest S frequencies in the Fourier estimator (16), high-frequency noise or short-run noise is

ignored by the estimator. Hence, by choosing a smaller number of (low) frequency ordinates to

be used for estimation, i.e. by choosing S small, it is in principle possible to render the Fourier

estimator invariant to short-run noise introduced by e.g. market microstructure effects.

3.3 Wavelet Estimator

Høg & Lunde (2003) suggest an alternative estimator which is based on the wavelet transform

of dp (·), instead of the Fourier transform based estimator above.

A function y (j) ∈ L2 with j = 0, 1, . . . , 2K − 1, where K ∈ N and L2 is the space of square
integrable functions, can be expanded into a wavelet series,

y (t) =
∞X

j=−∞

∞X
k=−∞

wj,kψj,k (t) , (17)

with wavelet coefficients

wj,k = 2
j/2

Z
y (t)ψj,k(t)dt, (18)

where ψj,k (t) ≡ 2−j/2ψ
¡
2−jt− k

¢
for j, k ∈ N, is the collection of dilations (scales), j, and

translations, k, of the wavelet function ψ (t).

By design the wavelets strength rests in its ability to simultaneously localize a process in

time and scale. At high scales, the wavelet has a small centralized time support enabling it

to focus in on short lived time phenomena like a singularity point. At low scales, the wavelet

has a large time support allowing it to identify long periodic behavior. By moving from low

to high scales, the wavelet zooms in on the behavior of a process at a particular point in time,

identifying singularities, jumps, and cusps. Alternatively, the wavelet can zoom out to reveal

the long, smooth features of a series. In our implementation we use the Haar wavelet as in Høg

& Lunde (2003).

As was the case with the Fourier estimator, the time interval [t1, tn] needs to be renor-

malized. For the wavelet estimator we renormalize into the interval [0, 1], and we denote the
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renormalized time points by τ j = (tj − t1) / (tn − t1) , j = 1, ..., n. It is shown by Høg & Lunde

(2003) that defining K (n) = int (log2 (n)) the wavelet estimator can be based onZ 1

0
σ2 (s) ds = lim

n→∞ 2
−K(n)

2K(n)−1X
k=0

w2K(n),k (dp) , (19)

where K (n) is the highest power of two below or equal to n.

Given a time series of n possibly irregularly sampled observations (tj , p (tj)) , j = 1, ..., n,

we construct the Haar wavelet coefficients

wj,k (dp) = 2
j/2
£
2p
¡
2−j (k + 1/2)

¢− p
¡
2−jk

¢− p
¡
2−j (k + 1)

¢¤
. (20)

To obtain the wavelet estimator we plug (20) into (19),

σ̂2∗W,K =
2K−1X
k=0

£
2p
¡
2−K (k + 1/2)

¢− p
¡
2−Kk

¢− p
¡
2−K (k + 1)

¢¤2
. (21)

The coarseness of the wavelet estimator is controlled by the user-chosen number K, i.e. the

number of dilations (scales) to include in the estimation, which is related to M by 2K =M or

K = log2(M). Choosing K high is similar to choosing a high S for the Fourier estimator and

a high M for realized volatility.

4 Monte Carlo Setup

In this section we describe the simulation setup used to investigate the biases and root mean

squared errors (RMSEs) of the three estimation methods described above. The objective of the

simulation exercise is to shed light on which method most accurately estimates the integrated

volatility in practical application with realistic sample sizes.

For the Monte Carlo study we let the log-price p (t) be generated by

dp (t) = σ (t) dW1 (t) , (22)

and assume the instantaneous volatility process σ (t) follows

Model A : d lnσ2 (t) = α
¡
β − lnσ2 (t)¢ dt+ νdW2d (t) (23)
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or

Model B : dσ2 (t) = α
¡
β − σ2 (t)

¢
dt+ σ (t) νdW2 (t) + κ (t) dq (t) , (24)

where W1 (·) and W2 (·) are independent standard Brownian motions. Both volatility models
ensure, under regularity conditions, that volatility cannot become negative.

In Model A, W2d (·) is a fractional Brownian motion of order d independent of W1 (·). It
may be represented by the Holmgren-Riemann-Liouville fractional integral

W2d (t) =

Z t

0

(t− s)2

Γ (d+ 1)
dW (s) , t > 0, (25)

where W (·) is a standard Brownian motion, see e.g. Comte & Renault (1996) and Marinucci

& Robinson (1999). Sometimes (25) is denoted a type II fractional Brownian motion, see

Marinucci & Robinson (1999) for details on the generation and simulation of this process.

The generating mechanism for the instantaneous volatility process in Model A, i.e. (23), is

a logarithmic Ornstein-Uhlenbeck process, driven by a possibly fractional Brownian motion.

Thus, Model A allows the stochastic process driving volatility to exhibit long memory, which is

also empirically well founded, see e.g. Andersen, Bollerslev, Diebold & Ebens (2001), Andersen,

Bollerslev, Diebold & Labys (2001, 2003), Andersen et al. (2004), and the references therein.

Note that when d = 0, (23) is a standard (logarithmic) Ornstein-Uhlenbeck process. For a

detailed discussion of the implications of using d 6= 0 in Model A, see Comte & Renault (1998).
In Model B the allowance for long memory has been substituted with allowance for jumps,

represented by the jump process dq (t). In particular, the process (24) is a Cox et al. (1985)

(or CIR), square-root model for the volatility process with the addition of a (positive) jump

process. The arrival of jumps is assumed to follow a Poisson process with intensity given by

λ0 + λ1σ
2 (t), i.e. the arrival of jumps is assumed to depend on the volatility through the

parameter λ1. The magnitude of the jumps κ (t) is assumed to be exponentially distributed

with mean µ. This setup of the jump process follows that in Andersen et al. (2002) (although

they have the jump process in the mean and assume κ (t) to be log-normally distributed),

Eraker et al. (2003), and Eraker (2004). Note that when κ (t) = 0, i.e. in the absence of jumps,

(24) is a standard CIR model.

For each Monte Carlo DGP we simulate (through simple Euler discretization) artificial time
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series of second-by-second intra-daily data points for (p (t) , σ (t)) , t = 1, ..., T , assuming 24 hour

trading, i.e. a total of T = 86, 400 seconds. Then we sample from this log-price "process" by

assuming that the time difference between successive observations is exponentially distributed

with mean τ . We choose the value τ = 14 (also used by Barucci & Reno (2002a)) corresponding

to approximately 6171 observations per day and to the mean time between observations in the

DEM-USD exchange rate time series analyzed by e.g. Andersen & Bollerslev (1998). This

procedure is repeated for L = 10, 000 days (replications), which then each have a different

number (n) of irregularly spaced observations.

To evaluate the performance of the estimation methods, we calculate, for each method and

for each day l, the relative error statistic

πl =
σ̂2∗l −

PT
t=1 (pl (t)− pl−1 (t))2PT

t=1 (pl (t)− pl−1 (t))2
, l = 1, ..., L, (26)

where σ̂2∗l denotes any of the estimators above and
PT

t=1 (pl (t)− pl−1 (t))2 is the "true" inte-

grated volatility on day l. In the following we focus on the mean and RMSE of πl, which can

be given natural interpretations as (relative) bias and RMSE of the estimators, respectively.

We define them in the usual way as

Bias = π̄ =
1

L

LX
l=1

πl (27)

and

RMSE =

Ã
1

L

LX
l=1

π2l

!1/2
=
p
π̄2 + s2π, (28)

where s2π = L−1
PL

l=1 (πl − π̄)2 is the sample variance of πl. Note that, since we divide by the

"true" integrated volatility in (26), the bias π̄ in (27) is a relative bias and not an absolute

bias.

5 Microstructure Effects in Volatility

Finally, to expand further on our Monte Carlo study and perhaps introduce more empirical

realism, this section applies the estimation methods on data contaminated by market mi-

crostructure effects. Inspired by Roll (1984), we introduce a bid-ask bounce effect, see also
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Campbell, Lo & MacKinlay (1997, pp. 100-101). Intuitively, as random buys and sells arrive

at the market, prices can bounce back and forth between the ask and the bid prices, thus

creating spurious volatility and serial correlation in returns, even if the fundamental value of

the asset remains unchanged.

As before, let p (t) denote the simulated log-price at time t when no microstructure effects

are present and introduce the order-driven indicator variable I (t), indicating whether, at time

t, the observed price is an ask (buyer-initiated, I(t) = 1) or a bid (seller-initiated, I(t) = −1)
price. The new contaminated price p∗ (t) becomes

p∗ (t) = p (t) +
ξ

2
I (t) (29)

so that

dp∗ (t) = dp (t) +
ξ

2
(I (t)− I (t− 1))

= dp (t) +
ξ

2
dI (t) , (30)

where ξ is the percentage spread and the I (t) are independently (across t and from p) and

identically distributed with Pr (I (t) = 1) = Pr (I (t) = −1) = 1/2.
Since dp (t) and dI (t) are independent, at least theoretically, the (instantaneous) variance,

covariance, and first-order autocorrelation (the setup does not introduce any higher-order serial

correlation) of the contaminated asset return can be easily calculated from (30) and are given

as

V ar (dp∗ (t)) = σ2 (t) +
ξ2

2
(31)

Cov(dp∗ (t) , dp∗ (t− 1)) = −ξ
2

4
(32)

Corr(dp∗ (t) , dp∗ (t− 1)) = − ξ2/4

σ2 (t) + ξ2/2
≤ 0. (33)

Hence, we notice that dp∗ (t) exhibits spurious volatility and negative serial correlation as a

result of the bid-ask bounce, and a larger spread, ξ, implies a higher spurious volatility.

Roll (1984) estimates the effective spreads of NYSE and AMEX stocks using returns data

from 1963 to 1982, and finds the average effective spread to be 0.298% using daily returns
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and 1.74% using weekly returns. This corresponds roughly to ξ = 0.003 and ξ = 0.017 in

(29). To ensure that these somewhat outdated estimates are still relevant, we have estimated

the effective spreads of six highly traded stocks and three common stock indices using daily

returns following the estimation method of Roll (1984). The results are presented in Table 1

for the two periods 1.1.1995—6.30.2004 and 1.1.2001—6.30.2004. The former period is typical for

recent empirical applications, where roughly a decade of high-frequency data is employed, and

the latter period is after the so-called "decimalization" in 2000 which would presumably have

lowered the effective spread. However, it is clear from Table 1 that effective bid-ask spreads

are only slightly lower than the earlier results by Roll (1984), and in particular our estimated

values correspond to ξ ∈ (0.0019, 0.0108).

Table 1 about here

It is well known that sampling at the highest possible frequency induces bias due to market

microstructure effects, see e.g. Andreou & Ghysels (2002) and Oomen (2002), because intra-

day returns become (spuriously) autocorrelated. In applications it is common to use lower-

frequency intra-day returns to alleviate the problem, see e.g. Andersen & Bollerslev (1997) and

Andersen, Bollerslev, Diebold & Labys (2000), since the (spurious) autocorrelation only lives

for a short period of time (Hansen & Lunde (2004b)). However, it is only recently that a formal

justification for this approach has been established by Bandi & Russell (2003a). Unfortunately,

the use of lower-frequency observations inevitably implies a loss of information in the sense

that fewer data points are applied, resulting in an inefficient measure of volatility. Several

bias reduction methods have been suggested in the literature, e.g. the (moving average or

autoregressive) filtering techniques by Andersen, Bollerslev, Diebold & Ebens (2001) and Bollen

& Inder (2002), the subsampling techniques by Zhang, Mykland & Ait-Sahalia (2003), and the

simple autocorrelation correction methods by Hansen & Lunde (2004a, 2004b).

In the present setup with market microstructure contamination, we extend the investigation

of the three above-mentioned estimators to include also the Newey-West correction applied by

e.g. French et al. (1987) and Zhou (1996) and the related bias correction procedure suggested
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by Hansen & Lunde (2004a, 2004b)1. Furthermore, since recent literature concerning jump

detection in financial markets has focused on bipower variation, see e.g. Andersen, Bollerslev

& Diebold (2003), Barndorff-Nielsen & Shephard (2003a, 2004) and Huang & Tauchen (2003),

we also briefly explore the performance of (2nd lag) realized bipower variation under market

microstructure contamination.

Under the process (29), realized volatility is no longer consistent for integrated volatility,

but instead bσ2∗RV,M (t)→p [p
∗] (t) = σ2∗ (t) +

ξ2

4

MX
j=1

(dI (j))2 , (34)

which diverges as M →∞. Thus, bσ2∗RV,M (t) estimates the sum of the "true" latent integrated

volatility and the summing of an infinite number of (squared) microstructure contributions,

i.e. the "true" latent integrated volatility is stochastically dominated by the microstructure

component.

As emphasized by Barndorff-Nielsen & Shephard (2003a, 2004), who consider both jump

processes and market microstructure noise processes, if the noise (or jump) component is of

finite activity, separate non-parametric identification of the two components in (34) is possible

using bipower variation measures. In our setup with first order serial correlation, the 2nd lag

realized bipower variation measure,

bσ2∗BV,M (t) = π

2

M

M − 2
MX
j=3

|rt,j | |rt,j−2| , (35)

would, in the finite activity case, converge in probability (as M → ∞) to σ2∗ (t). Hence,

the microstructure noise component (or jump component) could be identified as bσ2∗RV,M −bσ2∗BV,M , see Barndorff-Nielsen & Shephard (2003a, 2004), but the identification of jump or

noise components is not the focus of the present study. Instead, we wish to examine the impact

of the market microstructure effects on the performance of bσ2∗BV,M , since Barndorff-Nielsen &
Shephard (2003a, p. 29) conjecture that "[i]t does not mean that market microstructure effects

have no impact on [2nd lag] BPV. Rather, we take this as meaning that it should be more

1Note that if the price observations are not contaminated with noise, applying the bias correction would not

be efficient relative to standard (uncorrected) realized volatility.
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robust to market microstructure effects than realised variance." To what extent this is true

under our particular noise process (29) will be examined in the simulations below.

Hansen & Lunde (2004b) consider the estimator

bσ2∗HL,M (t) =
MX
j=1

r2t,j + 2
M

M − 1
MX
j=2

rt,jrt,j−1, (36)

which is robust to first order serial correlation. More general estimators robust to higher order

serial correlation are also considered by Hansen & Lunde (2004b), but they argue that the

first order correction in (36) is sufficient, at least for the sampling frequencies considered here.

Furthermore, Hansen & Lunde (2004b) show that bσ2∗HL,M (t) is an unbiased estimator of the

"true" integrated volatility σ2∗ (t).

A similar bias correction method is based on the Bartlett kernel, well known from the Newey

& West (1987) covariance estimator. The implementation by French et al. (1987) and Zhou

(1996) in the context of integrated volatility estimation was

bσ2∗NW,M (t) =
MX
j=1

r2t,j + 2

qMX
h=1

µ
1− h

qM + 1

¶ MX
j=h+1

rt,jrt,j−h (37)

using qM = 1. In our implementation we use qM = int
¡
4(M/100)2/9

¢
, which is typical in the

time series literature, e.g. Andrews & Monahan (1992). As mentioned in Hansen & Lunde

(2004b), this estimator may not be unbiased like bσ2∗HL,M but it may have a smaller asymptotic

MSE. Of course, given the nature of the noise that we assume, the Hansen & Lunde (2004b)

estimator is presumably superior to the Newey & West (1987) correction, which is robust to a

more general noise structure - that may or may not be relevant in practice depending on the

specific market - involving higher order AR or MA terms.

6 Simulation Results

To introduce as much empirical realism as possible, the parameter values chosen for the simu-

lations of the volatility processes are based on the estimation results of Roll (1984), Andersen

et al. (2002), and Eraker (2004).
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The parameter values used for the simulations of Model A in (23) are inspired by the analy-

sis of the S&P 500 stock index in Andersen et al. (2002, Table III, p. 1256), who found the

estimated parameter values (α̂, β̂, ν̂) = (0.0062,−1, 0.0374) (in our notation) for their model
without jumps. In particular, we use the parameter values α ∈ {0, 0.0062, 0.0124}, β = −1, and
ν ∈ {0.0374, 0.1122} in our simulations. Furthermore, since it is empirically well founded that
financial volatility time series exhibit long memory (see e.g. Andersen, Bollerslev, Diebold &

Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001, 2003), Andersen et al. (2004), and

the references therein), we let the process (23) be governed by a stationary fractional Brown-

ian motion with long memory parameter d ∈ {0, 0.15, 0.30, 0.45}. The studies by Andersen,
Bollerslev, Diebold & Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001, 2003), and

Andersen et al. (2004) find long memory in volatility with a parameter around 0.3− 0.45. The
starting values for Model A were chosen as p (0) = ln (100) and σ (0) = eβ. This makes for easy

comparisons across days.

In Model B, the square-root jump model (24), we follow the results on jumps in the volatility

of the S&P 500 stock index returns by Eraker (2004, Table III, p. 49), who found the estimated

parameter estimates (α̂, β̂, ν̂) = (0.023, 0.943, 0.137) which we also employ in our simulations of

(24). For the jump process, Eraker (2004) found the estimates (µ̂, λ̂0, λ̂1) = (1.530, 0.002, 1.298),

so we simulate our process using the parameter values µ ∈ {0.7515, 1.530}, λ0 ∈ {0.002, 0.01},
and λ1 ∈ {0, 1.298, 2.596}. The starting values for Model B were chosen as p (0) = ln (100) and
σ (0) = β.

For the model in (29) including market microstructure distortions, we let the parameter

choice be inspired by Roll (1984, Table I, p. 1132-1133) and our own estimates of the more

recent effective spreads of some highly traded stocks and stock indices in Table 1. Roll (1984)

finds the average effective spread of NYSE and AMEX stocks, using returns data from 1963

to 1982, to be 0.298% and 1.74% for daily and weekly returns, respectively. As shown in

Table 1 we estimate effective spreads between 0.19% and 1.08% for six highly traded stocks

and three common stock indices using daily returns data and the two sample periods 1.1.1995-

6.30.2004 and 1.1.2001-6.30.2004. The former period is typical for recent applications where

roughly a decade of high-frequency data is employed and the latter period is after the so-called
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"decimalization" in 2000 which would presumably have lowered the effective spread. However,

according to our results in Table 1, the effective bid-ask spreads are slightly lower than (but still

comparable to) the older results by Roll (1984), and in particular we use ξ ∈ {0.003, 0.005, 0.01}
in simulating (29). Hence, our simulation is a little conservative compared to Roll (1984), and

probably more in line with the current average microstructure frictions such as bid-ask spreads,

especially since the so-called "decimalization" in 2000. We simulate with α = 0.0124, β = −1,
and d = 0 in model (23), and to measure the effect of the bid-ask bounce for different values of

the volatility of volatility, we simulate using ν ∈ {0.05, 0.5}. The starting values were chosen
as in Model A.

We implement realized volatility using 1 minute returns (M = 1440), 5 minute returns

(M = 288), and 15 minute returns (M = 96). The first two values are close to the optimal

sampling frequency, in the presence of market microstructure noise, of 1.5 minutes found by

Bandi & Russell (2003a), which is shorter than the 5 minute frequency used in most empirical

work on the subject, see e.g. Andersen, Bollerslev, Diebold & Ebens (2001) and the above

references. Previously, Andersen et al. (2000) conjectured that optimal sampling should be

based on 15-20 minute returns, corresponding to our third implementation of realized volatility.

Note that the results by Bandi & Russell (2003a) depend crucially on the very high liquidity

of the simulated stocks. Consequently, Bandi & Russell (2003b) find that less liquid stocks

require lower sampling frequencies leading to optimal sampling schemes that are close to the

standard 5 minute frequency. For related (theoretical) results on optimal sampling schemes for

maximum likelihood estimation of diffusions in the presence of market microstructure noise,

see Ait-Sahalia, Mykland & Zhang (2003).

The Fourier method is implemented using S = 720 corresponding to 1 minute returns,

S = 144 corresponding to 5 minute returns, and S = 48 corresponding to 15 minute returns.

Finally, the wavelet estimator is implemented using slightly different values since it is limited to

powers of 2. In particular, we useK = 10 corresponding toM = 210 = 1024, which is a little less

than for realized volatility and the Fourier estimator, K = 8 corresponding to M = 28 = 256,

which is again a little less, and K = 7 corresponding to M = 27 = 128, which is a little more

than for realized volatility and the Fourier estimator. That is, our implementations of realized
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volatility and of the Fourier estimator match with respect to the coarseness of the estimators,

whereas the implementation of the wavelet estimator is a little off compared to the other two.

The reason for this is two-fold. First, the wavelet estimator must be implemented using a power

of 2 which limits the possible choices of coarseness. Second, realized volatility is by far the

most applied estimator in empirical studies, the 5 minute estimator being particularly popular,

and we thus wish to include that particular implementation here. Hence, when reading our

results below, one should take into account this slight discrepancy in the implementation of the

wavelet estimator.

In particular, we thus even the playing field between the realized volatility estimator and the

Fourier estimator by matching the implied number of intra-daily returns used in the estimation.

The Monte Carlo analysis in Barucci & Reno (2002a, 2002b) typically contrast a 5 minute

realized volatility estimator to a Fourier estimator using all observations. Also, again in contrast

to Barucci & Reno (2002a, 2002b) we use the imputation rather than interpolation technique,

see also Dacorogna et al. (2001), as this is what the literature has settled upon.

In Tables 2-11 the results of our Monte Carlo study are presented in terms of the relative

biases (27) (multiplied by 1,000) and the RMSEs (28) of the estimators. All calculations were

made using the computer language Gauss v5.0.

Tables 2-5 display the results for the estimators when instantaneous volatility is governed

by a logarithmic fractional Ornstein-Uhlenbeck process, Model A. Tables 6 and 7 display the

results for the square-root jump process, Model B, and Tables 8-11 display the results when

bid-ask bounce effects are introduced into the price process and the true latent instantaneous

volatility is governed by a simple logarithmic Ornstein-Uhlenbeck process, i.e. by Model A

with d = 0.

We consider first the Monte Carlo results for the three estimation methods in Model A,

where the underlying instantaneous volatility follows a logarithmic Ornstein-Uhlenbeck process

possible governed by a fractional Brownian motion.

The relative biases are generally very low (less than 1%) as evident from Tables 2 and 4,

and seem to be lower for higher sampling frequencies which was to be expected. Intuitively,

one could anticipate that the performance of the estimators would be poor when the simulated
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series exhibit a high degree of persistence in the form of long memory or even non-stationarity,

even though all three estimation methods are robust to such persistence in theory. However, the

tables reveal that the methods are very robust towards such persistence even in finite samples.

When α and d are zero the simulated process is very persistent since the integrated volatility

is then governed by a continuous-time random walk. This persistence becomes even more

pronounced when d is greater than zero (and α = 0), as the order of integration then becomes

1 + d, but we still do not find any indications that contradict the theoretical robustness.

However, we do find the highest relative biases when the series exhibit slow mean reversion

(α ≤ 0.062) and long memory (d = 0.45). In perspective, this is interesting since many empirical
studies have concluded that integrated volatility time series exhibit long memory of roughly

this magnitude. Furthermore, Table 4 indicates that when increasing the volatility of volatility

(ν = 0.1122) we generally encounter slightly higher relative biases.

Tables 2-5 about here

Increasing the volatility of volatility has a very interesting but expected impact on the

variability of the estimators. Tables 3 and 5 show a clear pattern when the series exhibit

relatively strong long memory (d ≥ 0.3), where the RMSE (mainly variance since biases are very
small) of all the estimators increases noticeably, which is also in accordance with the distribution

theory in (9) for realized volatility. On the other hand, when the integrated volatility series are

simulated with relatively weak long memory (d ≤ 0.15), the higher variability of the volatility
does not imply less accuracy (higher RMSE), i.e. the RMSEs in Table 5 are nearly identical

to those in Table 3 when d is small. Overall, the RMSEs are higher if smaller sampling

frequencies are used. Hence, if possible, one should in empirical investigations use a relatively

high sampling frequency even if the latent integrated volatility series exhibits long memory or

non-stationarity.

However, an important caveat here is the risk of contamination from market microstructure

effects which would lead to the selection of a lower sampling frequency. This is discussed in

detail below, where indeed our simulations support this important point.

Focusing more explicitly on the three individual estimators, we do not find any noticeable
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differences between them. However, independent of the size of the mean reversion, α, and the

size of the volatility of the volatility, ν, it seems that the Fourier method provides the lowest

relative bias and RMSE when looking at the empirically interesting scenario of high d and high

sampling frequency, although only marginally so.

An interesting irregularity that has turned up in empirical studies, e.g. Eraker et al. (2003)

and Eraker (2004), is the possible presence of jumps in the instantaneous volatility process.

Tables 6 and 7 present the results for the square-root jump process, Model B. Since the bi-

ases are very low, we again find support of the theoretical robustness mentioned in section 2.

Nonetheless, there is a tendency that a larger magnitude of the jump, µ, weakens the perfor-

mance of the estimators as the (absolute sizes of the) relative biases and RMSEs increase when

µ increases. This is generally also the case when increasing the intensity of the arrival of jumps,

but only for the part of the intensity that is directly linked to the volatility. That is, there is

no clear relationship between the size of the minimum intensity, λ0, and the performance of

the estimators. On the contrary, increasing λ1 such that the arrival intensity is more sensitive

towards the size of the volatility generally implies an increase in the relative biases and as

expected an even more pronounced impact is found on the variability of the estimators (the

RMSEs). Here we find a noticeable increase when intensity increases.

Tables 6-7 about here

As under the persistence scenario in Tables 2-5, it is recommendable in Model B to use

a higher sampling frequency as the relative biases and especially the RMSEs become smaller.

Increasing the sampling frequency also seems to imply that the RMSEs of the estimators become

relatively insensitive towards the magnitude of the jumps as the RMSEs are almost identical

for high frequencies (across µ and λ0). Again we find that the Fourier method seems to provide

better relative bias and RMSE compared to the other estimators, although only marginally so.

Ultimately, the conclusions of the above scenarios are that the estimators, in general, are

robust towards irregularities such as long memory, non-stationarity, and jumps. The perfor-

mance of the estimators depends on the characteristics of the irregularity and especially on the

sampling frequency.
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We next consider the model in section 5, i.e. Model A with a bid-ask bounce effect. When

introducing this market microstructure effect, and thereby introducing spurious volatility and

serial correlation, we do not expect the estimators to remain as well behaved as above. This

fact is reflected in Tables 8 and 9. Almost all biases are positive, revealing that the methods

overestimate the true latent integrated volatility. That is, the bid-ask effect introduces spuri-

ous volatility and negative serial correlation which causes the estimators to overestimate the

underlying integrated volatility. For example, the relative bias of the wavelet estimator (with

K = 10) is approximately 0.4 with a 1% spread, see Table 8, meaning that it overestimates the

true integrated volatility by as much as 40% in this case.

Tables 8-9 about here

As expected, we generally find that the performance of the estimators declines rapidly as

the sampling frequency increases. This is in agreement with the literature where it is widely

accepted that increasing the sampling frequency worsens the impact from market microstruc-

ture effects. This tendency becomes even more distinct when the spread (in percentage of the

underlying asset price) increases. Hence, in general, when conducting an empirical analysis

of financial time series contaminated by bid-ask bounce effects (and in general by market mi-

crostructure effects), where the spread is known to be significant (even if it is as small as 0.3%),

it is extremely important not to use too high sampling frequency. Indeed, the lowest biases in

our simulations in Table 8 are found for the very lowest sampling frequencies. Furthermore,

the RMSEs in Table 9 indicate the usual trade-off between bias and variance in this model.

In the two scenarios of persistence and jumps in the integrated volatility process, i.e. Mod-

els A and B in Tables 2-7, our Monte Carlo study did not reveal any apparent differences

between the three estimators. Now, when introducing an irregularity that the methods are not

theoretically equipped to handle, we can really unveil the strengths of the three estimators.

The wavelet estimator of integrated volatility generally provides the highest biases and RMSEs

for all sizes of the spread and for any frequency, thus rendering the wavelet estimator less useful

in case of bid-ask bounce effects. The realized volatility estimator is also heavily biased in the

presence of the bid-ask bounce, but not quite as badly as the wavelet estimator.
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Probably the most striking finding is that the Fourier method is vastly superior in this

scenario with market microstructure effects. The Fourier estimator is practically unaffected

with respect to both bias and RMSE except in the case with the highest sampling frequency.

Even then the bias and RMSE are vastly superior to those of the other methods. The superi-

ority of the Fourier estimator in the presence of market microstructure contamination can be

attributed to the decomposition of the integrated variance into components of varying frequen-

cies by the Fourier transform. That is, including only the lowest S frequencies in the Fourier

estimator (16) implies that high-frequency noise or short-run noise is ignored by the estimator.

Hence, by choosing a smaller number of (low) frequency ordinates to be used for estimation,

i.e. by choosing S small, it is in principle possible to render the Fourier estimator invariant to

short-run noise introduced by market microstructure effects.

Tables 10-11 about here

In Tables 10-11 we present the relative biases and RMSEs of the three alternative integrated

volatility estimators from section 5, i.e. the 2nd lag realized bipower variation (35), the Hansen

& Lunde (2004b) estimator (36), and the Newey & West (1987) estimator (37). The tables

show that the 2nd lag realized bipower variation estimator is greatly affected by the spurious

volatility and the negative serial correlation introduced by the bid-ask bounce effect. For small

ξ and high M the negative serial correlation causes the 2nd lag realized bipower variation

estimator to underestimate the true latent integrated volatility, whereas for higher ξ the 2nd

lag realized bipower variation is nearly as biased as realized volatility. Thus, the 2nd lag

realized bipower variation seems to be slightly more robust to market microstructure effects,

as conjectured by Barndorff-Nielsen & Shephard (2003a, pp. 28-29), only in the case of a large

spread and high sampling frequency.

Tables 10-11 also demonstrate that the bias correction suggested by Hansen & Lunde

(2004b) works very well, and in particular outperforms the Newey & West (1987) correction

since (at least for higher frequencies) bσ2∗HL,M compares favorably to bσ2∗NW,M both in terms of

bias and RMSE. Of course, given the nature of the noise that we assume, the Hansen & Lunde

(2004b) estimator is presumably superior to the Newey & West (1987) correction, which is ro-
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bust to a more general noise structure - that may or may not be relevant in practice depending

on the specific market - involving higher order AR or MA terms.

More interestingly, the autocorrelation bias correction methods are only noticeably superior

to the Fourier method for the very highest sampling frequency (M = 1440 and S = 720). In

fact, the RMSEs for bσ2∗HL,M are generally much higher than the RMSEs for the Fourier method

except for the combination of highest sampling frequency and highest spread. This implies that

the Fourier method remains a very attractive estimator in the presence of market microstructure

effects even in comparison with methods specifically designed to handle such contamination.

However, if one wishes to incorporate the full information available in ultra high-frequency data

the need for bias correction methods remains.

7 Concluding Remarks

We have considered the properties of three estimation methods for integrated volatility, i.e.

realized volatility, the Fourier estimator, and the wavelet estimator, when only a finite (high-

frequency) sample of the price process is observed. We considered several different generating

mechanisms for the instantaneous integrated volatility: Ornstein-Uhlenbeck, long memory, and

jump processes, and the possibility of market microstructure effects contaminating the data is

also entertained in a model that allows for a bid-ask bounce effect. In the latter case we also

considered alternative estimators with theoretical justification under market microstructure

noise.

Our simulation study reveals that the theoretical robustness of the estimators towards

persistence or jumps in the stochastic process governing the latent volatility carries over to

practice. On the other hand, irregularities such as bid-ask bounce effects, which the methods

have no theoretical robustness against, in general render the wavelet estimator, and to a lesser

degree realized volatility, less useful in practice. However, we find the Fourier method to be

superior compared to the other two estimators in the case of market microstructure noise, and

indeed this estimator remains very useful in that case. Even more strikingly, when compared

to the bias correction methods designed specifically to handle market microstructure effects,
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the Fourier method is superior with respect to RMSE while having only slightly higher bias.
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Table 1: Estimates of the Bid-Ask Spread
Sample period AA GE IBM IP JNJ JPM DJIA S&P100 S&P 500

1.1.1995-6.30.2004 0.62% 0.66% 1.08% 0.56% 0.68% 0.53% 0.19% 0.50% 0.27%

1.1.2001-6.30.2004 0.94% 0.38% 0.36% 0.41% 0.50% 0.80% 0.47% 0.49% 0.41%

Note: The estimated percentage spreads are 2
p−Cov(dp∗ (t) , dp∗ (t− 1)) following Roll (1984).

Table 2: Simulation Results for Model A I: Relative bias (x1,000)

Realized Volatility Fourier Wavelet

α d 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.0000 0.00 -0.7055 -0.5915 -0.4304 -1.0062 -0.8192 -0.6201 0.4496 -1.7567 -0.4530

0.15 0.4583 0.0927 0.2498 1.4775 -0.1334 -0.5432 -0.0119 -0.9714 -0.1007

0.30 0.4863 -1.3222 -0.8911 -0.6410 -0.9654 -0.7419 -0.1815 -1.4819 -0.7038

0.45 -2.7630 -3.0976 -1.4876 -3.6948 -2.3962 -1.0222 -2.3314 -2.7952 -1.0631

0.0062 0.00 0.0755 0.5924 -0.1730 -1.6686 -0.8413 -0.2669 -0.6830 -0.6474 -0.5130

0.15 2.0025 0.4435 0.1936 1.4967 0.1044 -0.2624 1.5461 -1.5653 0.0488

0.30 0.4254 1.3451 -0.1448 2.1558 0.7306 -0.3160 -1.9598 -0.9732 -0.1840

0.45 -5.3383 -3.3919 -2.0422 -4.7310 -2.9846 -1.8246 -1.2312 -1.9397 -2.7308

0.0124 0.00 -1.7707 -1.4212 -0.2095 -2.2512 -1.1830 -0.4279 -0.1238 -0.2991 -0.4353

0.15 -0.8734 -0.5482 -0.9901 -0.8381 -1.0543 -1.0814 1.4513 -2.6114 -0.8863

0.30 -0.6384 -0.0582 -0.3482 0.7188 0.1207 -0.2306 -0.3850 0.1175 -0.2032

0.45 0.1016 -0.6692 -0.3883 -1.6604 -0.8492 -0.3214 -1.6346 -0.1256 -1.6033
Note: β = −1, ν = 0.0374.
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Table 3: Simulation Results for Model A I: RMSE

Realized Volatility Fourier Wavelet

α d 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.0000 0.00 0.1435 0.0829 0.0394 0.1436 0.0829 0.0395 0.1261 0.0876 0.0454

0.15 0.1449 0.0835 0.0395 0.1451 0.0841 0.0394 0.1266 0.0883 0.0454

0.30 0.1522 0.0875 0.0417 0.1511 0.0881 0.0414 0.1316 0.0930 0.0481

0.45 0.2366 0.1344 0.0635 0.2299 0.1328 0.0630 0.2004 0.1420 0.0740

0.0062 0.00 0.1443 0.0831 0.0394 0.1453 0.0825 0.0390 0.1259 0.0880 0.0455

0.15 0.1451 0.0834 0.0394 0.1447 0.0841 0.0392 0.1267 0.0889 0.0457

0.30 0.1540 0.0880 0.0407 0.1539 0.0885 0.0405 0.1323 0.0939 0.0471

0.45 0.2324 0.1348 0.0625 0.2283 0.1332 0.0619 0.2010 0.1430 0.0733

0.0124 0.00 0.1444 0.0831 0.0391 0.1444 0.0821 0.0389 0.1253 0.0878 0.0447

0.15 0.1454 0.0831 0.0392 0.1458 0.0833 0.0391 0.1250 0.0882 0.0453

0.30 0.1524 0.0880 0.0417 0.1521 0.0880 0.0413 0.1329 0.0928 0.0482

0.45 0.2332 0.1368 0.0638 0.2284 0.1339 0.0625 0.2040 0.1430 0.0747
Note: β = −1, ν = 0.0374.
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Table 4: Simulation Results for Model A II: Relative bias (x1,000)

Realized Volatility Fourier Wavelet

α d 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.0000 0.00 1.2748 -0.3355 -0.7811 0.7110 -0.2561 -0.9026 0.0917 -2.0880 -0.7733

0.15 -1.4604 -1.1342 -1.0978 -1.5769 -0.9251 -0.6643 0.8388 -1.9007 -0.3863

0.30 -0.5957 -1.6722 -0.3615 -1.5510 -1.3847 -0.7577 -0.7989 -1.1150 -0.6636

0.45 3.6261 -2.4180 -2.0503 1.3231 -0.9371 -1.1779 -2.8642 -2.8783 -1.8356

0.0062 0.00 0.2415 0.3961 -0.9228 -1.3742 -1.1969 -0.8255 -1.8643 -1.3787 -0.4259

0.15 -0.7589 -0.4210 0.5303 -2.2068 -0.3985 0.2660 -0.7397 0.1676 0.3289

0.30 -2.2294 -2.1213 -0.7497 -1.0979 -0.8559 -0.7321 -0.7992 -2.6153 -1.1359

0.45 4.0332 -2.5570 -2.8106 0.5308 -2.0275 -0.7129 -8.6316 4.1822 -2.0436

0.0124 0.00 0.8175 1.0354 -0.3810 1.5470 -0.2110 -0.6553 -0.4869 -1.4444 -0.4940

0.15 -0.1336 -1.0675 -0.9770 -1.4175 -1.4680 -0.9212 -2.2219 -1.4821 -1.0009

0.30 -0.6238 -2.9059 -1.3050 -3.4262 -2.0246 -1.2529 -0.3346 -0.1858 -2.0064

0.45 0.0824 -2.5836 -1.8345 0.8803 -1.9273 -0.9515 -3.0580 1.5135 -3.1962
Note: β = −1, ν = 0.1122.
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Table 5: Simulation Results for Model A II: RMSE

Realized Volatility Fourier Wavelet

α d 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.0000 0.00 0.1444 0.0834 0.0392 0.1441 0.0843 0.0391 0.1252 0.0878 0.0454

0.15 0.1475 0.0853 0.0399 0.1470 0.0844 0.0399 0.1270 0.0901 0.0464

0.30 0.1928 0.1126 0.0529 0.1876 0.1108 0.0523 0.1687 0.1193 0.0604

0.45 0.3972 0.2241 0.1080 0.3802 0.2201 0.1060 0.3331 0.2425 0.1244

0.0062 0.00 0.1427 0.0830 0.0392 0.1444 0.0823 0.0391 0.1260 0.0889 0.0452

0.15 0.1473 0.0850 0.0403 0.1476 0.0847 0.0400 0.1289 0.0904 0.0462

0.30 0.1942 0.1106 0.0518 0.1906 0.1112 0.0515 0.1666 0.1187 0.0611

0.45 0.4040 0.2298 0.1073 0.3801 0.2268 0.1059 0.3363 0.2437 0.1229

0.0124 0.00 0.1447 0.0823 0.0392 0.1453 0.0832 0.0388 0.1244 0.0865 0.0454

0.15 0.1463 0.0849 0.0401 0.1474 0.0847 0.0404 0.1266 0.0893 0.0460

0.30 0.1929 0.1106 0.0525 0.1910 0.1103 0.0519 0.1679 0.1199 0.0607

0.45 0.3852 0.2204 0.1065 0.3707 0.2172 0.1055 0.3291 0.2399 0.1237
Note: β = −1, ν = 0.1122.
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Table 6: Simulation Results for Model B: Relative bias (x1,000)

Realized Volatility Fourier Wavelet

µ λ0 λ1 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.7515 0.0002 0.000 -0.4096 -0.1961 -0.0101 -0.1788 -1.0763 -0.5357 -0.7135 -1.7050 -0.5489

1.298 0.7465 0.1119 -0.5220 -0.1551 0.2411 -0.3065 0.3924 -0.6000 -0.1430

2.596 0.0689 0.1546 -1.1297 0.7316 -0.0242 -0.9588 -0.0525 -2.1016 -1.4776

0.0100 0.000 0.7938 -0.6632 -0.0514 -0.3697 -1.1959 -0.5438 -2.0806 -0.6514 -1.1300

1.298 -1.2241 0.5597 0.1855 -1.5922 -0.0911 0.0822 -0.2367 0.7899 -0.0018

2.596 -0.8487 -0.6688 -0.0896 0.0389 -0.1353 -0.2071 0.4876 -0.8325 0.2767

1.5300 0.0002 0.000 -0.8915 0.1760 0.2460 -0.1027 -0.2596 -0.1420 -1.8248 0.9044 -0.2842

1.298 -0.1182 -1.6774 -1.6449 -0.8492 -1.3033 -2.0398 -2.6302 -3.7401 -2.2957

2.596 -2.8403 -2.2980 -1.0465 -0.5911 -2.1993 -0.6012 -2.9168 -2.5319 -0.9122

0.0100 0.000 -0.3969 -1.0942 -0.0919 -0.5675 -0.7069 -0.2713 0.6571 -1.5714 -0.1078

1.298 -1.3928 -1.3416 -0.7572 -1.1821 -0.5097 -0.7751 -3.0634 -1.8643 -0.3814

2.596 -3.3209 -2.2607 -1.1896 -2.2697 -1.2317 -1.2272 -3.1931 -2.2495 -1.2734
Note: α = 0.023, β = 0.943, ν = 0.137.
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Table 7: Simulation Results for Model B: RMSE

Realized Volatility Fourier Wavelet

µ λ0 λ1 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.7515 0.0002 0.000 0.1451 0.0838 0.0395 0.1456 0.0843 0.0396 0.1245 0.0891 0.0462

1.298 0.1546 0.0888 0.0410 0.1509 0.0876 0.0413 0.1312 0.0941 0.0479

2.596 0.1624 0.0933 0.0445 0.1597 0.0931 0.0439 0.1410 0.0995 0.0511

0.0100 0.000 0.1453 0.0832 0.0392 0.1450 0.0839 0.0394 0.1255 0.0893 0.0456

1.298 0.1531 0.0890 0.0412 0.1527 0.0887 0.0413 0.1315 0.0936 0.0480

2.596 0.1628 0.0944 0.0442 0.1620 0.0942 0.0438 0.1415 0.0996 0.0505

1.5300 0.0002 0.000 0.1449 0.0826 0.0394 0.1450 0.0830 0.0392 0.1255 0.0873 0.0457

1.298 0.1609 0.0936 0.0440 0.1606 0.0947 0.0440 0.1409 0.0976 0.0512

2.596 0.1893 0.1105 0.0518 0.1904 0.1096 0.0514 0.1661 0.1169 0.0600

0.0100 0.000 0.1460 0.0836 0.0396 0.1453 0.0841 0.0392 0.1275 0.0899 0.0455

1.298 0.1627 0.0931 0.0437 0.1610 0.0937 0.0434 0.1405 0.0985 0.0509

2.596 0.1885 0.1096 0.0512 0.1877 0.1087 0.0509 0.1631 0.1164 0.0600
Note: α = 0.023, β = 0.943, ν = 0.137.
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Table 8: Simulation Results for Model A with Bid-Ask Bounce I: Relative bias (x1,000)

Realized Volatility Fourier Wavelet

ξ ν 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.003 0.05 0.3586 2.0200 16.7259 -0.5529 -0.8312 9.7284 2.8724 9.7648 34.9593

0.50 -1.2278 3.6067 17.5627 -0.7294 0.3012 10.7018 7.5200 9.8177 35.4649

0.005 0.05 3.8316 10.1418 48.0333 0.6336 1.6777 28.3677 12.7942 25.2158 97.3825

0.50 1.7986 8.5590 48.8193 -1.3183 0.0210 28.9011 13.5345 25.8629 99.6641

0.01 0.05 12.2471 40.2888 192.4841 0.4416 6.6724 114.7427 52.6355 103.6826 390.1397

0.50 14.0446 39.6586 195.3937 1.1314 6.1340 116.5520 52.9863 104.7563 396.4723
Note: α = 0.0124, β = −1, d = 0.

Table 9: Simulation Results for Model A with Bid-Ask Bounce I: RMSE

Realized Volatility Fourier Wavelet

ξ ν 15 min 5 min 1 min S = 48 S = 144 S = 720 K = 7 K = 8 K = 10

0.003 0.05 0.1438 0.0842 0.0434 0.1435 0.0837 0.0409 0.1272 0.0904 0.0586

0.50 0.1462 0.0854 0.0444 0.1467 0.0851 0.0419 0.1292 0.0902 0.0599

0.005 0.05 0.1458 0.0850 0.0629 0.1454 0.0837 0.0491 0.1272 0.0941 0.1094

0.50 0.1466 0.0862 0.0659 0.1465 0.0853 0.0507 0.1305 0.0960 0.1153

0.01 0.05 0.1458 0.0962 0.1981 0.1445 0.0841 0.1229 0.1413 0.1421 0.3951

0.50 0.1492 0.0974 0.2084 0.1470 0.0852 0.1290 0.1448 0.1479 0.4173
Note: α = 0.0124, β = −1, d = 0.
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Table 10: Simulation Results for Model A with Bid-Ask Bounce II: Relative bias (x1,000)

2nd Lag Realized Bipower Variation Realized Volatility HL Realized Volatility NW

ξ ν 15 min 5 min 1 min 15 min 5 min 1 min 15 min 5 min 1 min

0.003 0.05 0.6040 1.4069 -21.1331 -3.8274 -1.3772 -1.0926 -4.0726 -2.0171 0.7270

0.50 -2.0761 2.6984 -20.5927 -2.9800 -1.6996 -0.3671 -3.0280 -1.5966 1.2103

0.005 0.05 3.9707 9.5815 11.1772 -0.3028 1.5037 0.3467 -1.1657 1.3116 6.7039

0.50 0.0750 7.6059 11.7717 -3.6051 -1.8898 -0.4615 -1.6500 -0.7138 4.7324

0.01 0.05 12.9514 40.3629 159.7021 -1.5864 -0.0097 2.9440 1.4349 5.7893 24.9240

0.50 14.6658 38.6138 162.7062 -0.7714 1.3298 2.3916 4.0392 7.3932 25.1500
Note: α = 0.0124, β = −1, d = 0.

Table 11: Simulation Results for Model A with Bid-Ask Bounce II: RMSE

2nd Lag Realized Bipower Variation Realized Volatility HL Realized Volatility NW

ξ ν 15 min 5 min 1 min 15 min 5 min 1 min 15 min 5 min 1 min

0.003 0.05 0.1653 0.0971 0.0480 0.2466 0.1432 0.0657 0.2357 0.1665 0.0859

0.50 0.1685 0.0979 0.0488 0.2488 0.1474 0.0656 0.2381 0.1688 0.0882

0.005 0.05 0.1662 0.0967 0.0453 0.2496 0.1452 0.0660 0.2389 0.1686 0.0871

0.50 0.1679 0.0983 0.0495 0.2521 0.1472 0.0668 0.2417 0.1702 0.0884

0.01 0.05 0.1675 0.1070 0.1677 0.2490 0.1460 0.0694 0.2381 0.1679 0.0904

0.50 0.1711 0.1077 0.1803 0.2527 0.1489 0.0703 0.2420 0.1699 0.0920
Note: α = 0.0124, β = −1, d = 0.
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