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Abstract 

 This paper provides a set of tool box measures for flexibly describing distributional 

changes and empirically implementing several dominance criteria for social welfare comparisons 

and broad income inequality comparisons. Dominance criteria are expressed in terms of vectors 

of quantile statistics based on income shares and quantile means. Asymptotic variances and 

covariances of these sample ordinates are established from a Quantile Function Approach that 

provides a framework for direct statistical inference on these vectors. And practical empirical 

criteria are forwarded for using formal statistical inference tests to reach conclusions about 

ranking social welfare and inequality between distributions. Examples include rank dominance, 

Lorenz dominance, generalized Lorenz dominance, income polarization, and distributional 

distance dominance between income groups. 
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1.   Introduction 

Since about 1980 to the early twenty-first century, income inequality in many developed 

economies rose dramatically to historic levels (Guvenen et al., 2022). Media attention has 

focused on issues of “equitable growth” (Drummond, 2021), “fairness in growth” (Lohr, 2022), 

and “common prosperity” (The Economist, 2021a,b). Over the same while, the theoretical 

economics literature has been examining the distributional incidence of growth and its social 

welfare implications (Palmisano and Peragine, 2015) and its related implications for equality of 

opportunity in a growing economy (Peragine, 2004; Bosmans and Ozturk, 2021). Empirically 

implementing such concerns has been reviewed, for example, in Cowell (2011) and Duclos and 

Araar (2006). Meanwhile, recent world events such as the covid pandemic and war in Ukraine 

have elicited major economic adjustments as supply chains are reworked and much basic and 

high-tech manufacturing is becoming reshored, and as income support programs burgeon (at 

least temporarily) and labour markets dramatically tighten – resulting in notable improvements in 

lower incomes and a new “unstuck middle” (The Economist, 2023). In both Canada and the 

United States, federal governments have also been focusing policies to better target low-incomes 

and middle-class families. All these developments call for an empirically implementable set of 

criteria and procedures for better evaluating if people are indeed better (or worse) off, income 

inequality has been reduced, or economic opportunities have been improved. This paper offers 

an empirical approach to evaluate such changes in an easily implementable framework of 

statistical inference based on well-known disaggregative distributional statistics. The paper is 

thus written in the spirit of providing a tool box of useful measures for effective analysis of 

income distributions and their changes (Skuterud et al., 2004; Bellu et al., 2005). 
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The paper has three objectives. The first is descriptive. It seeks to offer a tool box set of 

standard intuitive measures for the empirical analysis of income distributions (and how they may 

show differences between population groups and changes over time). Since the measures are 

disaggregative (e.g., based on deciles or vigantiles), they can flexibly highlight different patterns 

for various regions of the distribution (e.g., low incomes, middle incomes and high incomes). 

Conveniently, these different patterns can often be graphically illustrated in terms of simple 

curves. 

The second objective is inferential. The paper seeks to provide an easily implementable 

framework of statistical inference for formal statistical testing and evaluation of various forms of 

distributional dominance or comparison, for example in terms of normative social welfare and 

general economic well-being, in terms of income inequality variously measured, and in terms of 

distributional distance between income groups. 

The third objective is simplification by showing that such analyses can be carried out in 

straightforward distribution-free fashion that involves direct variance-covariance estimation (as 

in Beach, 2023) for the above tool box measures. The paper thus seeks to simplify and unify 

distributional analysis in a common framework that involves explicit variance-covariance 

formulas (for distribution-free standard errors) that can be directly estimated without 

burdensome computational procedures. 

The paper makes three main contributions. First, it provides a unified framework in the 

form of the Quantile Function Approach (QFA) for establishing statistical inference for a set of 

tool box measures of disaggregative income inequality statistics such as decile income shares or 

quantile means. This allows one to derive explicit formulas for the (asymptotic) variances and 

covariances of these measures. Second, it turns out that the (asymptotic) variances and 
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covariances of these quantile-based measures are distribution-free in the sense that they can be 

directly and consistently estimated from conventional statistics readily calculated from available 

microdata files without having to know the specific underlying income distribution function 

itself and thus avoiding computationally burdensome resampling procedures or kernel estimation 

approaches. In the process of this derivation, the paper corrects or adjusts for previous faulty 

specifications in the published statistics literature. Third, the paper follows Beach (2022) in 

providing an empirically implementable set of rules or a practical empirical criterion (PEC) for 

empirically testing hypotheses of distributional dominance and establishing whether such 

distributional comparisons are indeed statistically significant. Such comparisons include rules for 

social welfare dominance, general income inequality comparisons, and changes over time of 

income polarization or distributional distance (as an aspect of inequality of opportunity). Clearly, 

this general empirical approach relates to a wide range of topics that are touched upon as the 

analytical development proceeds below. 

The paper is organized as follows. The next section sets out the Quantile Function 

Approach (QFA) developed in previous work by the author (Beach, 2021) that serves as the basis 

for the statistical inference framework of the present analysis. Asymptotic variances and standard 

error results are presented for quantile-based estimates of sets of quantile means – such as 

provided for income deciles by Statistics Canada or the United States Bureau of the Census – 

used to distributionally characterize a distribution of income. Section 3 extends the analysis to 

present the basic analytical results from this approach for quantile-based income shares – such as 

income deciles also provided by Statistics Canada and the U.S. Bureau of the Census again used 

to basically characterize a distribution of income. Section 4 outlines the normative perspective to 

evaluating changes in social welfare and income inequality. Then Section 5 applies the above 
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QFA framework to testing for rank dominance between distributions. Since each distribution is 

characterized by a vector of disaggregative distributional statistics (such as decile means), the 

comparison of two vectors involves setting out a practical empirical criterion (or PEC) for the 

statistical ranking of vectors of statistics such as decile means. Sections 6 and 7 then apply this 

empirical framework to Lorenz dominance and generalized Lorenz dominances between income 

distributions with appropriate PECs forwarded for each. Section 8 shows how one can 

decompose (empirically estimated) social welfare into efficiency and equity contribution 

components, and develops a PEC for the equity component itself. Sections 9 and 10 consider 

how to address inequality dominance when the Lorenz curves of two distributions cross one or 

more times. Section 11 develops distributional distance functions and income polarization curves 

and applies the PEC procedure to compare vectors of distributional distance and income 

polarization for two income distributions. Section 12 concludes with some implications of the 

paper’s analysis. 

 

 

2. The Quantile Function Approach and Quantile Means 

 Empirical measures of economic well-being and income inequality are built up from 

disaggregative statistics on percentile mean income levels and percentile income shares. 

Percentile statistics are those that are expressed in terms of given percentage groups of the 

ranked or ordered observations in a microdata sample. In the case of income distribution 

statistics, the data observations in a sample are ordered by income from the lowest income 

observation to the highest income observation. The ordered observations are then divided into 

non-overlapping income groups, say, in terms of ten deciles or twenty vigintiles (or generically 
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referred to as quantile income groups or simply quantiles). So the first decile group consists of 

those observations with the 10 percent lowest income levels, the second decile group consists of 

the next 10 percent lowest income recipients, and so on to the top or tenth decile income group 

which includes those 10 percent of income recipients with the highest income levels in the 

sample. The standard Lorenz curve of (cumulated) income shares, for example, is based around 

such percentile groups, and quantile mean income levels can also be calculated for each of the 

percentile groups. 

 The key feature of such percentile statistics is that the relative sizes of the percentile 

groups are given percentages of the sample or distribution. This turns out to simplify quite 

dramatically the sampling properties of quantile-based sample statistics. (Contrast this with, say, 

median-based income groups where the middle-income group consists of those with incomes 

lying between 50 percent and 150 percent of the median income level – a common designation of 

the so-called Middle Class. In this case, the size of the group is not given, but a consequence of 

random sampling. As a results, the sampling properties of median-based statistics are not at all 

convenient to deal with (Beach, 2021).) 

Note also that quantile means and quantile income shares are two examples of what can 

be referred to as tool box measures (Beach, 2021) for characterizing the disaggregative structure 

of an income distribution. Both Statistics Canada and the U.S. Bureau of the Census publish 

annual series on both decile (and quintile) income shares and mean income levels. Such a 

disaggregative characterization is very flexible and especially useful for highlighting the quite 

different patterns of distributional change that have occurred since around 1980 in many 

developed economies (including Canada and the United States) where middle incomes have 

slipped quite markedly while higher incomes have dramatically risen. Such a disaggregative 
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approach is also useful for comparing different regional income distributions or income 

distributions between different demographic groups. 

To formalize the Quantile Function approach (QFA) taken in this paper, consider first 

some formal concepts and notation.  Suppose the distribution of income Y is divided into K 

ordered income groups, so that K=10 in the case of deciles and K=5 for quintiles.  Let the 

dividing proportions of recipients be p1 < pz < … < pK-1 (with po = 0 and pK = 1.0)1.  Then in 

terms of the underlying (population) density of income recipients, the mean income of the i’th 

quantile is given by  

 

   µ𝑖𝑖 =   ∫ 𝑦𝑦 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦  ⁄𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1  ∫ 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1    for i = 1, …, K   (1) 

 

where 𝑓𝑓(∙) is the underlying (population) density function and the ξi’s are the cut-off income 

levels corresponding to the proportions p1, p2, …, pK-1 (with ξo = 0 where incomes are assumed 

positive and ξK = ∞).2  Similarly, the income share of the i’th income group can be expressed as 

 𝐼𝐼𝐼𝐼𝑖𝑖 =  ∫ �1
µ
�𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1 𝑦𝑦𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦    for i = 1, …, K    (2) 

 

and µ  is the mean of the overall population distribution of income. 

 The integral expressions – what we’ll refer to as quantile functions – link the quantile 

means µ i and quantile income shares ISi to the quantile income cut-offs ξi, ξi-1 and the overall 

mean µ.  A broad theorem by C.R. Rao (1965) says that, if one knows the asymptotic distribution 

of the sample estimates of ξi, ξi-1, and µ as joint normal and if, in the population, functions of ξi, 

ξi-1, and µ are continuous and differentiable in these parameters, then sample estimates of these 

functions will also be asymptotically normally distributed with asymptotic means and variances 

                                                           

1
 We assume in what follows that the data samples used are random samples.  If the survey records are 

indeed weighted (as in the case of stratified samples, for example), the formulas can be readily adjusted 
by replacing sums of observations by sums of the sample weighted observations. 
 
2 If some incomes do take negative values (such as with capital gains losses in a year or net self-
employment income that is negative in a year where illness has prevented the recipient working for a 
time), then simply define po to be the lowest income value in the sample. 
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(and covariances) that can be calculated in a straightforward fashion.  We refer to this as Rao’s 

linkage theorem.  From both (1) and (2), it can be seen that one can use this theorem to thus 

establish the asymptotic distributions of sample estimates of both µ i and ISi. 

 In the case of quantile means, as a simple illustration of the quantile function approach, it 

has long been established that the sample cut-offs 𝜉𝜉i’s are indeed asymptotically normally 

distributed.  More specifically, let 𝜉𝜉 =  �𝜉𝜉1,  𝜉𝜉�2 , … 𝜉𝜉𝐾𝐾−1�′ be a vector of K-1 sample quantile cut-

offs3 from a random sample of size N drawn from a continuous population density 𝑓𝑓(•) such that 

the 𝜉𝜉𝑖𝑖’s are uniquely defined and 𝑓𝑓𝑖𝑖  ≡ 𝑓𝑓(𝜉𝜉𝑖𝑖)  > 0 for all i = 1, …, K-1. Then it can be shown 

(see, for example, Wilks (1962), p. 273, or Kendall and Stuart, 1969, pp. 237-239) that the vector √𝑁𝑁 (𝜉𝜉 −  𝜉𝜉) converges in distribution to a (K-1)-variate normal distribution with mean zero and 

variance-covariance matrix 𝚲𝚲 where  

 

𝛬𝛬 =  ⎣⎢⎢⎢
⎡ 𝑝𝑝1(1−𝑝𝑝1)𝑓𝑓12 ⋯ 𝑝𝑝1(1−𝑝𝑝𝐾𝐾−1)𝑓𝑓1𝑓𝑓𝐾𝐾−1⋮ ⋮𝑝𝑝1(1−𝑝𝑝𝐾𝐾−1)𝑓𝑓1𝑓𝑓𝐾𝐾−1 ⋯ 𝑝𝑝𝐾𝐾−1(1−𝑝𝑝𝐾𝐾−1)𝑓𝑓𝐾𝐾−12 ⎦⎥⎥⎥

⎤
 .  

 

Note how the (asymptotic) variances and covariances of the 𝜉𝜉𝑖𝑖’s depend on the specific 

functional form of  𝑓𝑓(•) in the denominators and hence are not distribution-free. 

 Then applying a multivariate version of Rao’s linkage theorem (Rao, 1965, p. 388), 

consider the full set of K sample quantile means 𝑚𝑚� =  (µ�1, µ�2, … , µ�𝐾𝐾)′ corresponding to the 

vector of population quantile means 𝑚𝑚 =  (µ1, µ2 , … , µ𝐾𝐾)′ where µ𝑖𝑖 is defined in eq. (1). Then 

according to Rao’s theorem for continuous differentiable functions, the vector  𝑚𝑚�  is 

                                                           

3 To estimate the sample quantile cut-offs, order the sample of N observations by income level. Then, in 

the case of deciles, say, 𝜉𝜉𝑖𝑖 is that income level such that 𝑝𝑝𝑖𝑖N observations lie below it and the rest at or 
above. If there is no single observation meeting this condition, simply take the average of the two 
adjacent observations (below and above) that are closest. 
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asymptotically joint normally distributed in that √𝑁𝑁(𝑚𝑚� −𝑚𝑚) converges in distribution to a joint 

normal with KxK (asymptotic) variance-covariance matrix V where 

 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑚𝑚�) ≡ 𝑉𝑉 = 𝐺𝐺 𝛬𝛬 𝐺𝐺′         (3) 

 

and the K x (K-1) matrix G is 

  𝐺𝐺 = �𝑔𝑔11 ⋯ 𝑔𝑔1,𝐾𝐾−1⋮ ⋮𝑔𝑔𝐾𝐾,1 ⋯ 𝑔𝑔𝐾𝐾,𝐾𝐾−1� 
     =  �𝜕𝜕µ𝑖𝑖𝜕𝜕𝜉𝜉𝑗𝑗� with i = 1, …, K rows 

   and j = 1, …, K-1 columns.      (4) 

 

For convenience, rewrite eq. (1) as 

 µ𝑖𝑖 = � 1𝐷𝐷𝑖𝑖�  •  𝑁𝑁𝑖𝑖(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖−1) for i = 1, …, K , 

where  𝑁𝑁𝑖𝑖 is an explicit function of 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖−1 in the numerator of  (1) and  𝐷𝐷𝑖𝑖 =  ∫ 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 = 𝑝𝑝𝑖𝑖𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1 −  𝑝𝑝𝑖𝑖−1   

is given.  

To illustrate the calculation of the gradients 
𝜕𝜕µ𝑖𝑖𝜕𝜕𝜉𝜉𝑗𝑗 , make use of Leibnitz’s Rule and 

consider the case of decile income groups (i.e., K = 10 and 𝐷𝐷𝑖𝑖 = .10):  

 𝑔𝑔11 =  
𝜕𝜕µ1𝜕𝜕𝜉𝜉1 = 10

𝜕𝜕𝑁𝑁1𝜕𝜕𝜉𝜉1  = 10 𝜉𝜉1  •  𝑓𝑓(𝜉𝜉1)   

  𝑔𝑔1𝑗𝑗 =  
𝜕𝜕µ1𝜕𝜕𝜉𝜉𝑗𝑗 = 10

𝜕𝜕𝑁𝑁1𝜕𝜕𝜉𝜉𝑗𝑗  = 0  for j = 2, …, K-1 . 

 𝑔𝑔21 =  
𝜕𝜕µ2𝜕𝜕𝜉𝜉1 = 10

𝜕𝜕𝑁𝑁2𝜕𝜕𝜉𝜉1  = 10 (−𝜉𝜉1)  •  𝑓𝑓(𝜉𝜉1)   
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 𝑔𝑔22 =  
𝜕𝜕µ2𝜕𝜕𝜉𝜉2 = 10

𝜕𝜕𝑁𝑁2𝜕𝜕𝜉𝜉2  = 10 𝜉𝜉2  •  𝑓𝑓(𝜉𝜉2)   

𝑔𝑔2𝑗𝑗 =  
𝜕𝜕µ2𝜕𝜕𝜉𝜉𝑗𝑗 = 10

𝜕𝜕𝑁𝑁2𝜕𝜕𝜉𝜉𝑗𝑗  = 0  for j =3, …, K-1 . 

and so on up to 

 𝑔𝑔𝐾𝐾𝑗𝑗 =  
𝜕𝜕µ𝐾𝐾𝜕𝜕𝜉𝜉𝑗𝑗 = 10

𝜕𝜕𝑁𝑁𝐾𝐾𝜕𝜕𝜉𝜉𝑗𝑗  = 0  for j = 1, …, K-2 . 

 𝑔𝑔𝐾𝐾,𝐾𝐾−1 =  
𝜕𝜕µ𝐾𝐾𝜕𝜕𝜉𝜉𝐾𝐾−1 = 10

𝜕𝜕𝑁𝑁𝐾𝐾𝜕𝜕𝜉𝜉𝐾𝐾−1  = 10 (−𝜉𝜉𝐾𝐾−1)  •  𝑓𝑓(𝜉𝜉𝐾𝐾−1).  

 

As a result, the G matrix is the banded diagonal-type matrix: 

 𝐺𝐺 = [

10 𝜉𝜉1 • 𝑓𝑓(𝜉𝜉1) 0 0 0 ⋯−10 𝜉𝜉1 • 𝑓𝑓(𝜉𝜉1) 10 𝜉𝜉2 • 𝑓𝑓(𝜉𝜉2) 0 0 ⋯
 0 −10 𝜉𝜉2 • 𝑓𝑓(𝜉𝜉2) 10 𝜉𝜉3 • 𝑓𝑓(𝜉𝜉3) 0 ⋯⋮ 0 −10 𝜉𝜉3 • 𝑓𝑓(𝜉𝜉3) 10 𝜉𝜉4 • 𝑓𝑓(𝜉𝜉4) ⋯⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯

 

   

⋯ 0 0⋯ 0 0⋮ ⋮⋯ 0 0⋯ −10 𝜉𝜉8 • 𝑓𝑓(𝜉𝜉8) 10 𝜉𝜉9 • 𝑓𝑓(𝜉𝜉9)⋯ 0 −10 𝜉𝜉9 • 𝑓𝑓(𝜉𝜉9)

] .     (5) 

 

 The (asymptotic) variances, then, are gotten by multiplying the corresponding row of G 

and column of 𝐺𝐺′ (i.e., row of G) by the appropriate diagonal element of the variance-covariance 

matrix. So 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�1) = 𝐺𝐺(𝑣𝑣𝑟𝑟𝑟𝑟 1) • Λ •  𝐺𝐺(𝑣𝑣𝑟𝑟𝑟𝑟 1)′ 
   =  (10)2 𝜉𝜉12  • 𝑓𝑓(𝜉𝜉1)2  •  �𝑝𝑝1(1−𝑝𝑝1)𝑓𝑓(𝜉𝜉1)2 �  
   =  (10)2 𝑝𝑝1(1− 𝑝𝑝1) 𝜉𝜉12  .      (6a) 

Similarly, 
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  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�10) = 𝐺𝐺(𝑣𝑣𝑟𝑟𝑟𝑟 10) • 𝛬𝛬 •  𝐺𝐺(𝑣𝑣𝑟𝑟𝑟𝑟 10)′ 
   =  (10)2 𝜉𝜉92  • 𝑓𝑓(𝜉𝜉9)2  •  �𝑝𝑝9(1−𝑝𝑝9)𝑓𝑓(𝜉𝜉9)2 �  
   =  (10)2 𝑝𝑝9(1− 𝑝𝑝9) 𝜉𝜉92  .      (6b) 

And for i = 2, …, 9 , 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�𝑖𝑖) = 𝐺𝐺(𝑣𝑣𝑟𝑟𝑟𝑟 𝑖𝑖) • 𝛬𝛬 •  𝐺𝐺(𝑣𝑣𝑟𝑟𝑟𝑟 𝑖𝑖)′ 
   =  (10)2 [𝑝𝑝𝑖𝑖−1(1− 𝑝𝑝𝑖𝑖−1)𝜉𝜉𝑖𝑖−12 + 𝑝𝑝𝑖𝑖(1− 𝑝𝑝𝑖𝑖) 𝜉𝜉𝑖𝑖2         

     − 2 𝑝𝑝𝑖𝑖−1(1− 𝑝𝑝𝑖𝑖)𝜉𝜉𝑖𝑖−1 𝜉𝜉𝑖𝑖]  .    (6c) 

More generally, then,  

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�1) =  � 1𝐷𝐷1�2  𝑝𝑝1(1− 𝑝𝑝1) 𝜉𝜉12 ,       (7a) 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�𝐾𝐾) =  � 1𝐷𝐷𝐾𝐾�2  𝑝𝑝𝐾𝐾−1(1− 𝑝𝑝𝐾𝐾−1) 𝜉𝜉𝐾𝐾−12  ;      (7b) 

and for i = 2, …, K-1 , 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�𝑖𝑖) =  � 1𝐷𝐷𝑖𝑖−1�2  𝑝𝑝𝑖𝑖−1(1− 𝑝𝑝𝑖𝑖−1)𝜉𝜉𝑖𝑖−12 + � 1𝐷𝐷𝑖𝑖�2  𝑝𝑝𝑖𝑖(1− 𝑝𝑝𝑖𝑖)𝜉𝜉𝑖𝑖2  

− 2 � 1𝐷𝐷𝑖𝑖−1� � 1𝐷𝐷𝑖𝑖� 𝑝𝑝𝑖𝑖−1(1− 𝑝𝑝𝑖𝑖)𝜉𝜉𝑖𝑖−1 𝜉𝜉𝑖𝑖 .    (7c) 

 

 These results on the (asymptotic) variances, then, are sufficient to determine the standard 

errors of the quantile mean estimates. Since the formulas in eqs. (6)-(7) involve unknown 

population parameters, one obtains estimated (asymptotic) variances by replacing all the 

unknown parameters by their consistent estimates. So, for example, in (6a), 

 𝐴𝐴𝐴𝐴𝑦𝑦. ̂ 𝑣𝑣𝑣𝑣𝑣𝑣(µ�1) = (10)2 𝑝𝑝1(1− 𝑝𝑝1) 𝜉𝜉12  
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where 𝜉𝜉1 is replaced by its standard sample estimate. Rao (1965, p. 355) has also shown that if 𝑓𝑓(•) is strictly positive, then the 𝜉𝜉𝑖𝑖′s are indeed (strongly) consistent. The estimated standard 

error for µ�𝑖𝑖 is then gotten by adjusting for the sample size of the estimation sample: 

 𝐼𝐼.𝐸𝐸. (µ�𝑖𝑖) =  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣(µ�𝑖𝑖)𝑁𝑁 �1/2
         (8) 

for all i = 1, …, K . 

 Testing for the statistical significance of µ�𝑖𝑖 can then be undertaken by calculating the 

conventional “t-ratio” 

 𝑡𝑡 = µ�𝑖𝑖 / 𝐼𝐼.𝐸𝐸. (µ�𝑖𝑖) 

and comparing it to appropriate critical values on the standard normal table (at a given level of 

significance or confidence). 

 Note that the asymptotic variances and standard errors of the quantile means for given 

percentile groups are distribution-free. While the elements of matrices 𝐺𝐺 and 𝛬𝛬 do indeed 

depend on the terms 𝑓𝑓𝑖𝑖 = 𝑓𝑓(𝜉𝜉𝑖𝑖) and hence are distribution-dependent, when the calculations in 

eq. (3) are carried out, all the𝑓𝑓𝑖𝑖 terms cancel out. The calculations in eqs. (7) and (8) are thus very 

straightforward and easy to calculate directly. This dramatic simplification follows from the 

definition of income groups in (exogenously designated) percentile terms. Contrast this, for 

example, with the case of median-based conditional means. If the proportion of the population of 

income recipients with incomes between 50 percent and 150 percent of the median is taken as a 

measure of the size of the so-called Middle Class, then it turns out that the mean income of this 

middle class income group can be calculated, but its (asymptotic) variance is a complicated 

function of the terms  𝑓𝑓(0.5 𝜉𝜉𝑚𝑚) and 𝑓𝑓(1.5 𝜉𝜉𝑚𝑚) when 𝜉𝜉𝑚𝑚 is the median of the underlying income 

distribution (Beach, 2021) and hence is distribution-dependent. Its standard error thus involves 

having to empirically evaluate the density function 𝑓𝑓(•) at different points. Taking a quantile 
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function approach based on percentile income groups thus allows one to avoid having to estimate 

assumed underlying population density function forms (such as the lognormal in Beach, 2021), 

or undertake burdensome computer-based estimation techniques for density ordinate evaluation 

such as bootstrapping procedures (as in Davidson, 2018) or kernel estimation methods (as in 

Cowell, 2011). It is in this sense that the current approach is said to provide direct (asymptotic) 

variance-covariance estimates. 

 Note also the flexibility of the quantile function approach applied to percentile income 

groups. The latter groups do not have to be of uniform size. Depending on the empirical analysis 

being undertaken, one may wish to have narrower groups (eg., deciles or vigintiles) towards the 

two ends of the distribution and wider groups (eg., quintile) over the middle range of the 

distribution. One can also choose how fine a breakdown of percentile groups one wishes. While 

official statistical agencies publish results for deciles and quintiles, one could – depending on 

how large microdata sets are available – also examine, say, vigintile income groups as well, 

again at the two ends of the distribution (Beach, 2023). 

 Note further that one can apply the above results to look at differences in individual 

quantile means between different population groups – such as quantile mean earnings differences 

between male and female workers in the labour market – and at changes in separate quantile 

means between time periods. So long as the estimates being compared are from independent 

samples, the variance of the difference in sample estimates is simply the sum of the separate 

variances, and the standard error of the difference is given by 

 𝐼𝐼.𝐸𝐸. �µ�𝑖𝑖𝑏𝑏 −  µ�𝑖𝑖𝑣𝑣� =  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣�µ�𝑖𝑖𝑏𝑏�𝑁𝑁𝑏𝑏 + 
𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣�µ�𝑖𝑖𝑎𝑎�𝑁𝑁𝑎𝑎 �1/2

      (9) 

where superscripts a and b refer to the two separate sample estimates. A quantile analysis thus 

allows for potentially quite detailed disaggregative examination of differences between 
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distributions. And the range of toolbox measures available furthers the perspective and flexibility 

of such examinations. 

 Indeed, one could express these differences in relative or percentage terms – or what The 

Economist (2021c, p. 24) refers to as Piketty lines of different growth rates of quantile means 

across the different regions of the income distribution. In this case, it is shown in Beach (2021) 

that, if 

 𝑞𝑞�𝑖𝑖 =   �µ�𝑖𝑖𝑏𝑏 −  µ�𝑖𝑖𝑣𝑣�/ µ�𝑖𝑖𝑣𝑣 =   �µ�𝑖𝑖𝑏𝑏
µ�𝑖𝑖𝑎𝑎� − 1 , 

then approximately 

 𝑉𝑉𝑣𝑣�𝑣𝑣(𝑞𝑞�𝑖𝑖) =  � −µ�𝑖𝑖𝑏𝑏�µ�𝑖𝑖𝑎𝑎�2�2 •   𝑉𝑉𝑣𝑣�𝑣𝑣(µ�𝑖𝑖𝑣𝑣) + � 1
µ�𝑖𝑖𝑎𝑎�2  •  𝑉𝑉𝑣𝑣�𝑣𝑣�µ�𝑖𝑖𝑏𝑏�  

     =  � −µ�𝑖𝑖𝑏𝑏�µ�𝑖𝑖𝑎𝑎�2�2  •  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣�µ�𝑖𝑖𝑎𝑎�𝑁𝑁𝑎𝑎 � + � 1
µ�𝑖𝑖𝑎𝑎�2  •  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣�µ�𝑖𝑖𝑏𝑏�𝑁𝑁𝑏𝑏 �    

and again 

 𝐼𝐼.𝐸𝐸. (𝑞𝑞�𝑖𝑖) =  [𝑉𝑉𝑣𝑣�𝑣𝑣(𝑞𝑞�𝑖𝑖)]1/2. 

Again, the standard error estimates are distribution-free. 

It would thus be helpful to users of official decile and quintile mean statistics from 

government statistical agencies if these agencies provided the actual sample sizes (i.e., the N in 

the denominator of (8)) that their survey estimates are based on, and not just the overall survey 

sample size (i.e., the estimation sample size as well as the survey sample size). 

 

 

3. Application of the QFA to Incomes Shares 

 The income share of the i’th income group can be expressed as 
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 𝐼𝐼𝐼𝐼𝑖𝑖  ≡  ∫ �1
µ
�𝑅𝑅𝑖𝑖  𝑦𝑦𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦   for i = 1, …, K,     (10a) 

with integration over the region 𝑅𝑅𝑖𝑖 running from 𝜉𝜉𝑖𝑖−1 to 𝜉𝜉𝑖𝑖 , and µ is the mean of the overall 

(population) distribution of income. The integral in (10a) can, for future notational convenience, 

be written as 

 𝐼𝐼𝐼𝐼𝑖𝑖 =  𝑁𝑁𝑖𝑖(𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖, µ) =   ∫ �1
µ
� 𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1  𝑦𝑦𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 .      (10b) 

It can be seen that estimates of 𝐼𝐼𝐼𝐼𝑖𝑖 or 𝑁𝑁𝑖𝑖 involve estimates of two sets of parameters – the range 

of integration cut-offs 𝜉𝜉𝑖𝑖−1 and 𝜉𝜉𝑖𝑖 and the overall population mean µ . To take account of this, we 

make use of a useful paper by Lin, Wu and Ahmad (1980) (henceforth LWA). LWA establish 

that, under general regularity conditions, 𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖, and µ� are asymptotically joint normally 

distributed with (asymptotic) variance-covariance matrix 

 

 Ʃ =  �𝜎𝜎𝑖𝑖𝑗𝑗�           (11) 

 

where 𝜎𝜎11 =  
𝑝𝑝𝑖𝑖−1(1−𝑝𝑝𝑖𝑖−1)

[𝑓𝑓(𝜉𝜉𝑖𝑖−1)]2  ,      𝜎𝜎22 =  
𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)
[𝑓𝑓(𝜉𝜉𝑖𝑖)]2  , 𝜎𝜎33 =  𝜎𝜎2 

 𝜎𝜎12 =  
𝑝𝑝𝑖𝑖−1(1−𝑝𝑝𝑖𝑖)𝑓𝑓(𝜉𝜉𝑖𝑖−1)𝑓𝑓(𝜉𝜉𝑖𝑖) =  𝜎𝜎21          

 𝜎𝜎13 =  
𝜒𝜒𝑖𝑖−1− µ(1−𝑝𝑝𝑖𝑖−1)𝑓𝑓(𝜉𝜉𝑖𝑖−1)

 

and 𝜎𝜎23 =  
𝜒𝜒𝑖𝑖− µ(1−𝑝𝑝𝑖𝑖)𝑓𝑓(𝜉𝜉𝑖𝑖)  , 

 

where 𝜎𝜎2 is the variance of the overall (population) distribution of income, and 

 

 𝜒𝜒𝑖𝑖−1 =  ∫ 𝑦𝑦𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 ∞𝜉𝜉𝑖𝑖−1     𝜒𝜒𝑖𝑖 =  ∫ 𝑦𝑦𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 ∞𝜉𝜉𝑖𝑖   . 
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(Note that the published journal version of LWA has some serious typos in the statement of their 

theorem 2.1, but their earlier discussion paper-version presents the theorem correctly. To keep 

the correct version clear, I have adopted slightly different notation from LWA. I have also 

translated the statement of their theorem into the context of the current analysis.) 

 The last two terms can be stated more conveniently for our purposes. Note that 

 𝜇𝜇 =  ∫ 𝑦𝑦𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 ∞0   

     =  ∫ 𝑦𝑦𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 + 𝜒𝜒𝑖𝑖  𝜉𝜉𝑖𝑖0  

      =  𝑝𝑝𝑖𝑖�̅�𝜇𝑖𝑖  + 𝜒𝜒𝑖𝑖 
where �̅�𝜇𝑖𝑖 is the mean income for incomes below  𝜉𝜉𝑖𝑖. So 

 𝜒𝜒𝑖𝑖 =  𝜇𝜇 − 𝑝𝑝𝑖𝑖�̅�𝜇𝑖𝑖 
and hence 

 𝜎𝜎23 = 𝑝𝑝𝑖𝑖(𝜇𝜇 − �̅�𝜇𝑖𝑖) / 𝑓𝑓(𝜉𝜉𝑖𝑖)         (12a) 

 

which, interestingly, is strictly positive. Similarly, 

 𝜒𝜒𝑖𝑖−1 =  𝜇𝜇 − 𝑝𝑝𝑖𝑖−1�̅�𝜇𝑖𝑖−1      and     𝜎𝜎13 = 𝑝𝑝𝑖𝑖−1(𝜇𝜇 − �̅�𝜇𝑖𝑖−1) / 𝑓𝑓(𝜉𝜉𝑖𝑖−1)    (12b) 

 

which, again, is also strictly positive.4 

 One can now combine this set of LWA results with Rao’s linkage theorem. So, if  𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖 
and µ� are asymptotically joint normal with (asymptotic) variance-covariance matrix Ʃ above, 

                                                           

4
 While the numerators of  𝜎𝜎13 and  𝜎𝜎23 can’t be ranked, for percentiles above the mode of the income 

distribution the denominators can be. So one would generally expect 𝑐𝑐𝑟𝑟𝑣𝑣(𝜉𝜉𝑖𝑖, �̂�𝜇) to be stronger for higher 
percentile levels. 



18 

 

then 𝐼𝐼𝐼𝐼� 𝑖𝑖 is also asymptotically normally distributed with the (asymptotic) variance of 𝐼𝐼𝐼𝐼� 𝑖𝑖 is given 

by 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝐼𝐼𝐼𝐼� 𝑖𝑖� =  𝐺𝐺′ Ʃ 𝐺𝐺        (13a) 

where  

 𝐺𝐺 =  � 𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖−1 ,
𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 ,

𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕µ
�′ =  [𝑔𝑔1,𝑔𝑔2,𝑔𝑔3]′ .       (13b) 

 

So in the case of i = 1: 

 𝑔𝑔1 = 0 

 𝑔𝑔2 =  �1
µ
�  𝜉𝜉1 • 𝑓𝑓(𝜉𝜉1) 

  𝑔𝑔3 =
−𝑁𝑁1

µ
=  

−𝐼𝐼𝐼𝐼1
µ

 , 

and   

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝐼𝐼�̂�𝐼1� = 𝑔𝑔22 𝜎𝜎22 +  𝑔𝑔32 𝜎𝜎33 + 2𝑔𝑔2𝑔𝑔3𝜎𝜎23    

  =  �𝜉𝜉1
µ
�2 𝑝𝑝1(1− 𝑝𝑝1) +  �𝐼𝐼𝐼𝐼1

µ
�2  𝜎𝜎2 − 2 �𝜉𝜉1

µ
� �𝐼𝐼𝐼𝐼1

µ
� 𝑝𝑝1(𝜇𝜇 −  �̅�𝜇1) .  (14a) 

 

In the decile case of i = 10: 

 𝑔𝑔1 = −�1
µ
�  𝜉𝜉9  • 𝑓𝑓(𝜉𝜉9) 

 𝑔𝑔2 =  0 

  𝑔𝑔3 =
−𝑁𝑁10

µ
=  

−𝐼𝐼𝐼𝐼10
µ

 , 

so 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝐼𝐼�̂�𝐼10� = 𝑔𝑔12 𝜎𝜎11 + 𝑔𝑔32 𝜎𝜎33 + 2𝑔𝑔1𝑔𝑔3𝜎𝜎13  

  =  �𝜉𝜉9
µ
�2 𝑝𝑝9(1− 𝑝𝑝9) +  �𝐼𝐼𝐼𝐼10

µ
�2  𝜎𝜎2 + 2 �𝜉𝜉9

µ
� �𝐼𝐼𝐼𝐼10

µ
�𝑝𝑝9(𝜇𝜇 −  �̅�𝜇9) .  (14b) 
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And in the decile case of i = 2, …, 9: 

 𝑔𝑔1 = −�1
µ
�  𝜉𝜉𝑖𝑖−1  • 𝑓𝑓(𝜉𝜉𝑖𝑖−1) 

 𝑔𝑔2 =  �1
µ
�  𝜉𝜉𝑖𝑖  • 𝑓𝑓(𝜉𝜉𝑖𝑖) 

and  𝑔𝑔3 = −�1
µ
�  𝐼𝐼𝐼𝐼𝑖𝑖 . 

Therefore, 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝐼𝐼�̂�𝐼𝑖𝑖� =  𝐺𝐺′ Ʃ 𝐺𝐺 

        = �𝜉𝜉𝑖𝑖−1
µ
�2  𝑝𝑝𝑖𝑖−1(1− 𝑝𝑝𝑖𝑖−1) +  �𝜉𝜉𝑖𝑖

µ
�2  𝑝𝑝𝑖𝑖(1− 𝑝𝑝𝑖𝑖) + �𝐼𝐼𝐼𝐼𝑖𝑖

µ
�2 𝜎𝜎2 

  − 2 �𝜉𝜉𝑖𝑖−1
µ
� �𝜉𝜉𝑖𝑖

µ
�  𝑝𝑝𝑖𝑖−1(1− 𝑝𝑝𝑖𝑖)  

+ 2 �𝜉𝜉𝑖𝑖−1
µ
� �𝐼𝐼𝐼𝐼𝑖𝑖

µ
�  𝑝𝑝𝑖𝑖−1(𝜇𝜇 −  �̅�𝜇𝑖𝑖−1)      (14c) 

 − 2 �𝜉𝜉𝑖𝑖
µ
� �𝐼𝐼𝐼𝐼𝑖𝑖

µ
� 𝑝𝑝𝑖𝑖(𝜇𝜇 −  �̅�𝜇𝑖𝑖) . 

 

The standard error of the i’th quantile income share is thus given by 

 𝐼𝐼.𝐸𝐸. �𝐼𝐼𝐼𝐼� 𝑖𝑖� =  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣(𝐼𝐼𝐼𝐼� 𝑖𝑖)𝑁𝑁 �1/2
 . 

Note, incidentally, that just as 𝐼𝐼𝐼𝐼𝑖𝑖 is a ratio and hence units-free, so also is each term of its 

(asymptotic) variance and hence its standard error. The effect of randomness corresponding to µ� 
operates through the third term of eq. (14c) (corresponding to the simple variance of µ�) and 

through the last two terms (corresponding to µ�’s covariance with 𝜉𝜉𝑖𝑖−1 and 𝜉𝜉𝑖𝑖 , respectively). 

 Once again, the asymptotic variances and standard error formulas for income shares are 

also distribution-free because of the way that the 𝑓𝑓(𝜉𝜉𝑖𝑖−1) and 𝑓𝑓(𝜉𝜉𝑖𝑖) terms in the 𝐺𝐺 and Ʃ 
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components cancel each other out. So, again, conventional statistical inference can be undertaken 

in straightforward fashion. 

 Note further that the formulas in eq. (14) include 𝜎𝜎2, so that implementation of these 

formulas requires an estimate of the variance (or standard deviation) for the estimation sample 

used to calculate the terms in (14). So again it would be helpful to users of quantile income share 

statistics from official statistical agencies if these agencies’ documentation provided the 

estimated standard deviations for the actual samples that the reported estimates are based on, and 

not just the estimated sample means. 

 Researchers using public use survey microdata sets from statistical agencies to undertake 

their empirical analysis can view their analysis as occurring in two distinct stages. Stage 1 

involves calculating estimates of the underlying parameters 𝜉𝜉𝑖𝑖, 𝜇𝜇𝑖𝑖 , 𝐼𝐼𝐼𝐼𝑖𝑖, 𝜇𝜇 and 𝜎𝜎 (as well as N) 

directly from the microdata file for a specified estimation sample. Then Stage 2 involves 

calculating the estimated variances and standard errors of the µ�𝑖𝑖’s and 𝐼𝐼𝐼𝐼� 𝑖𝑖’s from above formulas 

(7) and (14), perhaps in a separate purpose-built computer program. 

The quantile means and income shares serve as the basis for operationally implementing 

the evaluation of changes in social welfare and income inequality in the next several sections of 

this paper. 

 

 

4. A Normative Perspective for Evaluating Changes in Social Welfare and 

Inequality 

 The traditional way of measuring income inequality in an income distribution is in terms 

of some summary or aggregate measure of inequality such as the Gini coefficient (G), coefficient 
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of variation (C), relative mean (absolute) deviation (M), or the standard deviation of the logs of 

income (L). But such measures are subject to two basic criticisms. First is the aggregation 

problem: various summary measures aggregate income differences in different ways, so that 

different measures can give different results when comparing two distributions. One way 

(partially) to address this is to identify several desirable properties we may want such summary 

measures to satisfy. These could include, for example: 

 

i)   Symmetry (or Anonymity) – An inequality measure depends only on incomes in a 

distribution and not on who has which incomes; 

 ii)  Mean Independence – An inequality measure is invariant to proportional changes (e.g., 

doubling) of all incomes (i.e., it is a relative measure of inequality); 

 iii)  Population Homogeneity – An inequality measure is invariant to replication of the 

population (e.g., doubling the number of persons in the distribution while keeping the shape of 

the distribution the same); 

iv)  Principle of Transfers – Any transfer of $x from a richer person to a poorer person so that 𝑦𝑦𝑖𝑖 + 𝑥𝑥 < 𝑦𝑦𝑗𝑗 − 𝑥𝑥 if initially 𝑦𝑦𝑖𝑖 < 𝑦𝑦𝑗𝑗 should reduce inequality; 

v)  Transfer Sensitivity – A transfer of $x such as envisioned in (iv) should reduce inequality 

more if it occurs among a lower-income pair of individuals than if it occurs among a higher-

income pair of individuals. This is obviously a stronger form of the Principle of Transfers. 

 

It turns out that, (i), (ii) and (iii) are satisfied by all the above four inequality measures, but (iv) is 

satisfied only by C and G, and (v) is not satisfied by any of them. 
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 Alternatively, another way to address the aggregation problem is to rely on a 

disaggregative measure of inequality or a set of multiple values linked up graphically such as a 

Lorenz curve. A problem here, though, is that two empirical Lorenz curves being compared 

often, if not typically, cross, so a clear comparison is not straightforward. 

 The second basic criticism of conventional summary measures of inequality is the 

implicit value judgement problem. That is, any summary inequality measure involves implicit 

value judgements or weightings of different persons’ incomes (or economic well-being), and 

thus contains embedded in it an implicit social welfare function (SWF). For example, different 

inequality measures differently emphasize income differences at the bottom, middle, or upper 

end of the distribution. Consequently, it can be argued, it would be better to choose desirable 

SWF properties explicitly and then derive the implied inequality measure from the desired SWF. 

To do so is to take a normative approach to measuring inequality (originated by Atkinson, 1970) 

rather than the traditional descriptive approach. This is the approach followed in the current 

paper. 

 To implement such a normative approach, one first needs to define a social welfare 

function and its basic properties. For a much more expansive discussion of the normative 

approach, see, for example, Boadway and Bruce (1984), Blackorby et al. (1990), Lambert (2001) 

or Cowell (2011). Specifically, a social welfare function 𝑊𝑊(•) is any function 

 𝑊𝑊 = 𝑓𝑓(𝑈𝑈1, … ,  𝑈𝑈𝑁𝑁)  

that has as arguments 𝑈𝑈𝑖𝑖 individual (or household) utility functions and that incorporates social 

values used to aggregate economic well-being across the population. The 𝑈𝑈𝑖𝑖(•) can thus be 

viewed as a “social income valuation function”. To do this, we require that: 
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• the 𝑈𝑈𝑖𝑖’s must be at least cardinal scale measurable in order to be aggregated across 

persons; 

• the 𝑈𝑈𝑖𝑖’s must have at least some degree of comparability across persons in the 

population (i.e., if utilities are cardinally measured for each individual, the units of 

measurement must be the same across individuals); and 

• for technical convenience, each 𝑈𝑈𝑖𝑖 depends only on incomes and indeed only on 

individual i’s income (i.e., 𝑈𝑈𝑖𝑖 =  𝑈𝑈𝑖𝑖(𝑌𝑌𝑖𝑖), so there is no envy or altruism).  

One can then identify several possible desirable properties for such a social welfare 

function: 

i)  (Strong) Pareto Principle – State X is socially preferred to state Y if at least one person strictly 

prefers X to Y and no one prefers state Y to X  (i.e.,  𝜕𝜕𝑈𝑈𝑖𝑖 / 𝜕𝜕𝑌𝑌𝑖𝑖  > 0 and social indifference curves 

in 𝑌𝑌𝑖𝑖,𝑌𝑌𝑗𝑗 space have negative slopes); 

ii)  Symmetry or Anonymity – Everyone’s incomes are evaluated by using the same 𝑈𝑈(•) 

function (i.e., 𝑈𝑈𝑖𝑖(•) =  𝑈𝑈(•) for all i = 1, …, N); 

 iii)  Population Invariance – If the population is replicated K times, then social welfare increases 

K-fold (i.e., 𝑊𝑊(𝑌𝑌1, … ,𝑌𝑌𝐾𝐾𝑁𝑁  ) = 𝐾𝐾 • 𝑊𝑊(𝑌𝑌1, … ,𝑌𝑌𝑁𝑁)) ; 

iv)  Strict Concavity of the SWF or the Principle of Transfers – A strictly concave SWF is such 

that 𝜕𝜕2𝑈𝑈𝑖𝑖  / 𝜕𝜕𝑌𝑌𝑖𝑖2  < 0 for all i (this implies that social indifference curves are strictly convex to 

the origin).5 This is sometimes referred to as an “egalitarian SWF”; 

v)  Transfer Sensitivity or the Principle of Diminishing Transfers – A transfer-sensitive SWF is 

such that 

                                                           

5
 Actually, strict concavity is sufficient for the Principle of Transfers to hold. A weaker necessary and 

sufficient property for the Principle of Transfers is referred to as Schur concavity. See general discussion 
in Lambert (2001). 
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𝜕𝜕3𝑈𝑈𝑖𝑖𝜕𝜕𝑌𝑌𝑖𝑖3  > 0 . 

Again, this is a stronger version of the Principle of Transfers. 

 Atkinson (1970) uses this normative approach to show that, under properties (i)-(iv), an 

empirical proxy of social welfare or economic well-being �𝐼𝐼𝑊𝑊𝑝𝑝� can be expressed as 

 𝐼𝐼𝑊𝑊𝑝𝑝 =  𝑌𝑌�  • (1−  𝐼𝐼𝐴𝐴) 

         =  𝑌𝑌�  • E  

where 𝑌𝑌� is the mean income level of a distribution and 𝐼𝐼𝐴𝐴 is a measure of inequality based on the 

above four properties and where it turns out that 0 ≤ 𝐼𝐼𝐴𝐴  ≤ 1 where higher values indicate 

greater levels of inequality in the distribution. That is, 𝐼𝐼𝑊𝑊𝑝𝑝 can be decomposed into two 

(multiplicative) components – an efficiency dimension (𝑌𝑌�) or average per capita income and an 

equity dimension (E) where 𝐸𝐸 = 1 − 𝐼𝐼𝐴𝐴 . 

 If one further assumes a specific functional form for 𝑈𝑈(•) – in the convenient form of an 

iso-elastic social welfare function – Atkinson (1970) then derives a specific formula for the 

calculation of 𝐼𝐼𝐴𝐴 . An iso-elastic SWF is general and flexible enough to incorporate a wide range 

of social attitudes to income inequality from the Benthanite utilitarian SWF to Rawls’ maxi-min 

SWF. 

 But 𝐼𝐼𝐴𝐴 is still a summary or aggregate measure of income inequality. What the social 

choice literature since Atkinson’s (1970) paper has tried to do is to extend or apply Atkinson’s 

normative perspective to develop a set of disaggregative criteria for comparing different income 

distributions based on the above properties, so that both criticisms of traditional inequality 

measures are addressed. The rest of this paper examines several such disaggregative criteria from 

the theoretical social choice literature and proposes ways to operationalize or empirically 

implement these criteria in terms of vectors of quantile means and income shares and related 
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disaggregative distributional statistics. The paper also develops inference procedures to allow for 

formal statistical testing for these criteria. This development is applied to six such criteria in the 

following sections. 

 

 

5.  Application to Rank Dominance and a Practical Empirical Criterion 

 One early example of a disaggregative normative ranking criterion for distributions 

comes from Saposnik (1981) and involves what may be called the quantile curve (Duclos and 

Araar, 2006, p. 45) which is essentially the inverse of the cumulative distribution function of the 

distribution. Saposnik’s rank dominance theorem says that, for any social welfare function 

satisfying the properties of symmetry, population invariance and the Pareto principle (i.e., social 

welfare conditions (i) – (iii)), distribution A is socially preferred to distribution B if the quantile 

curve for A is everywhere higher than that for B. Note that there is no egalitarianism built into 

this criterion. It essentially says that, if everyone has higher incomes in A than in B, then they 

must be better off. This is useful in comparing distributions many years apart, say, for example, 

the Canadian income distributions for 1961 versus 2021. But in most practical cases faced by 

empirical researchers, this situation doesn’t apply. 

 Nonetheless, it is useful to begin our application of dominance criteria with this relatively 

simple criterion. To empirically implement it, one represents the two distributions or quantile 

curves being compared by their respective vectors of sample quantile means, µ�𝑖𝑖 , for i = 1, …, K 

quantiles. The actual decision rule for determining the outcome of the comparison of vectors 

requires some practical empirical criterion (henceforth a PEC) based on the principles of 

statistical inference. 
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5.1 A Practical Empirical Criterion for Quantile Means 

  Following Beach, Davidson and Slotsve (1994) and Davidson and Duclos (2000), one 

can set out a two-step test procedure for the PEC. It is assumed that the data samples for the two 

distributions being compared are independent and hence do not overlap. Examples are, say, two 

different years of data (with non-overlapping samples) being compared or two different (non-

overlapping) population groups such as age, racial, or sex groups. 

Step 1 – Test the joint null hypothesis of equality of the two (population) quantile mean 

vectors versus the alternative hypothesis of non-equality. This can be done by a standard (but 

asymptotic) chi-square test with K degrees of freedom, where K is the number of quantiles. For a 

meaningful disaggregative analysis, it makes sense to let K = 10 or 20, say, rather than a small 

number such as 5. If the null hypothesis is not rejected, then the two sets of quantile means can 

be said to be not statistically significantly different, and further comparison is not pursued. This 

is taken as an empirical proxy for comparison of the two underlying quantile curves. 

 Step 2 – If, however, the null hypothesis in Step 1 is rejected – which is the typical case 

when using large microdata sets for the sample distributions – then proceed to calculate separate 

t-statistics for differences for each of the individual quantile means. These K individual t-

statistics, however, are correlated, and hence comparing each test statistic to the critical value on 

an (asymptotic) normal distribution would not be appropriate. One has to recognize that this Step 

2 involves correlated multiple comparisons. Following the work of Beach and Richmond (1985) 

and Bishop, Formby and Thistle (1989, 1992) on multiple comparison testing, one should 

compare the K separate t-statistics (for differences in quantile means) to critical values on the 

Studentized Maximum Modules (or SMM) distribution. If at least one of the quantile mean 

differences t-statistics has the appropriate sign and is statistically significant (based on the SMM 
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distribution) and none of the t-statistics of the remaining quantile mean differences has the wrong 

sign and is significant, then conclude that the quantile curve with the higher sample quantile 

means rank dominates (or is socially preferred to) that with the lower quantile means. If not, then 

one can say only the two quantile curves are statistically significantly different and not reach a 

preferred or dominance conclusion. Note that this is an asymptotic test and critical values from 

the SMM distribution correspond to K and infinite degrees of freedom. Typical usefully critical 

values from the SMM distribution are: 

    ∝ = .01 ∝ = .05 ∝ = .10 

  K = 5 –   3.289  2.800  2.560 

  K = 10 –  3.691  3.254  3.043 

  K = 20 –  4.043  3.643  3.453 

Source: Stoline and Ury (1979), Tables 1-3. 

 

5.2 Full Variance-Covariance Matrix for Quantile Means 

 The first step in the above practical empirical criterion (PEC) involves a joint test of the 

difference between two vectors or sets of estimated quantile means. If the two quantile curves 

being compared are designated A and B, then the vectors of quantile means can be represented as 

 µ�𝑣𝑣 =  (µ�1𝑣𝑣, … , µ�𝐾𝐾𝑣𝑣 )′ ,    µ𝑣𝑣 =  (µ1𝑣𝑣, … , µ𝐾𝐾𝑣𝑣 )′ 
and  µ�𝑏𝑏 =  �µ�1𝑏𝑏 , … , µ�𝐾𝐾𝑏𝑏 �′ ,    µ𝑏𝑏 =  �µ1𝑏𝑏 , … , µ𝐾𝐾𝑏𝑏 �′ . 
A standard result from statistics, then, shows that if the random vector µ�𝑣𝑣 is normally distributed 

with mean µ𝑣𝑣 and variance-covariance matrix 𝑉𝑉𝑣𝑣, µ�𝑏𝑏 is normally distributed with mean µ𝑏𝑏 and 

variance-covariance matrix 𝑉𝑉𝑏𝑏, and µ�𝑣𝑣 and µ�𝑏𝑏 are statistically independent, then µ�𝑏𝑏 − µ�𝑣𝑣 is also 

normally distributed with mean µ𝑏𝑏 −  µ𝑣𝑣 and variance-covariance matrix 𝑉𝑉𝑣𝑣 +  𝑉𝑉𝑏𝑏 . Under the 
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null hypothesis that the two vectors µ𝑣𝑣 and µ𝑏𝑏 are the same (i.e., µ𝑏𝑏 −  µ𝑣𝑣 = 0), then the 

quadratic form 

 (µ�𝑏𝑏 − µ�𝑣𝑣)′[𝑉𝑉𝑣𝑣 +  𝑉𝑉𝑏𝑏]−1(µ�𝑏𝑏 − µ�𝑣𝑣) 

is distributed as a chi-squared random variable with K degrees of freedom. If 𝑉𝑉𝑣𝑣 and 𝑉𝑉𝑏𝑏 are 

estimated consistently, then the test statistics for step 1 of the PEC,  

 (µ�𝑏𝑏 − µ�𝑣𝑣)′�𝑉𝑉�𝑣𝑣 +  𝑉𝑉�𝑏𝑏�−1(µ�𝑏𝑏 − µ�𝑣𝑣)       (15) 

is asymptotically distributed as a chi-square variate again with K degrees of freedom. 

 In order to implement the chi-square test in (15), however, one needs to know how to 

estimate the full variance-covariance matrices 𝑉𝑉�𝑣𝑣 and 𝑉𝑉�𝑏𝑏 of µ�𝑣𝑣 and µ�𝑏𝑏, respectively. The 

development in Section 2 above showed how to obtain the estimated variances (the square of the 

estimated standard errors of the various individual quantile means). But, in order to perform the 

joint chi-square test in Step 1, one also needs estimates for all the covariances in 𝑉𝑉�𝑣𝑣 and 𝑉𝑉�𝑏𝑏 as 

well. The approach followed to obtain them, however, is the same as for the variances. 

 Argumentation is expressed in terms of asymptotic variances and covariances. Again, let 𝑚𝑚� =  (µ�1, … , µ�𝐾𝐾)′ generically represent the vector of sample quantile mean estimates for a given 

income distribution, so it has been shown that 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑚𝑚�) ≡  𝑉𝑉𝐼𝐼 = 𝐺𝐺 𝛬𝛬 𝐺𝐺′        (16) 

where 𝛬𝛬 is the asymptotic variance-covariance matrix of the sample quantile cut-off levels, the 𝜉𝜉𝑖𝑖’s, and 𝐺𝐺 is a K x (K-1) matrix of partial derivatives 

 𝐺𝐺 =  �𝑔𝑔𝑖𝑖𝑗𝑗�   where 𝑔𝑔𝑖𝑖𝑗𝑗 =  
𝜕𝜕µ𝑖𝑖𝜕𝜕𝜉𝜉𝑗𝑗      (17a) 

for i = 1, …, K rows and j = 1, …, K-1 columns. 

 Note that, in this development, the asymptotic variance-covariance matrix of 𝑚𝑚�  is 𝑉𝑉𝐼𝐼 with 

a subscript S (for asymptotic) to distinguish it from matrix 𝑉𝑉�  which refers to the estimated 
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variance-covariance matrix of 𝑚𝑚�  which is gotten by rescaling the estimated asymptotic variance-

covariance matrix by the inverse of the sample size. We also use a slightly more general notation 

than before with 

 

 µ𝑖𝑖 =  � 1𝐷𝐷𝑖𝑖�  •  ∫ 𝑦𝑦 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1  

      =  � 1𝐷𝐷𝑖𝑖�  •  𝑁𝑁𝑖𝑖(𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖)  for i = 1, …, K 

 

where 𝐷𝐷𝑖𝑖 =  𝑝𝑝𝑖𝑖 −  𝑝𝑝𝑖𝑖−1 and 𝜉𝜉0 = 0. Then 

 𝑔𝑔𝑖𝑖𝑗𝑗 = � 1𝐷𝐷𝑖𝑖�  •   
𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑗𝑗  .         (17b) 

The i,j’th element of 𝑉𝑉𝐼𝐼, then, is obtained by premultiplying the matrix 𝛬𝛬 by the i’th row of G 

treated as a row vector and postmultiplying by the j’th row of G (written as a column vector): 

 

 𝑣𝑣𝐴𝐴(𝑖𝑖, 𝑗𝑗) = (𝑖𝑖′th row of 𝐺𝐺) •  𝛬𝛬 • (𝑗𝑗′th row of 𝐺𝐺)′ .     (18) 

 

 In the case of variances i = j, the calculations lead to  

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�1)  ≡  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑚𝑚�1)  

   =  𝑝𝑝1(1−  𝑝𝑝1) �𝜉𝜉1𝐷𝐷1�2        (19a) 

and 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�𝐾𝐾)  ≡  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑚𝑚�𝐾𝐾)  

   =  𝑝𝑝𝐾𝐾−1(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉𝐾𝐾−1𝐷𝐷𝐾𝐾 �2  .     (19b) 

For i = 2, …, K-1: 
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 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(µ�𝑖𝑖) =  𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝑖𝑖−1) �𝜉𝜉𝑖𝑖−1𝐷𝐷𝑖𝑖 �2 + 𝑝𝑝𝑖𝑖(1−  𝑝𝑝𝑖𝑖) �𝜉𝜉𝑖𝑖𝐷𝐷𝑖𝑖�2  

    − 2𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝑖𝑖) �𝜉𝜉𝑖𝑖−1𝜉𝜉𝑖𝑖𝐷𝐷𝑖𝑖2 �  .     (19c) 

 

Equations (19a)-(19c) determine the elements on the principal diagonal of 𝑉𝑉𝐼𝐼 already presented 

in eqs. (6) and (7). 

 Now consider the off-diagonal elements in the first row of 𝑉𝑉𝐼𝐼 . For 1 < 𝑗𝑗 < 𝐾𝐾 : 

 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣�µ�1, µ�𝑗𝑗� =  −𝑝𝑝1�1−  𝑝𝑝𝑗𝑗−1�  �𝜉𝜉1𝐷𝐷1� �𝜉𝜉𝑗𝑗−1𝐷𝐷𝑗𝑗 �+ 𝑝𝑝1�1−  𝑝𝑝𝑗𝑗� �𝜉𝜉1𝐷𝐷1� �𝜉𝜉𝑗𝑗𝐷𝐷𝑗𝑗� .  (19d) 

 

For elements along the last column of 𝑉𝑉𝐼𝐼 , i.e., for 1 < 𝑖𝑖 < 𝐾𝐾 : 

 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(µ�𝑖𝑖, µ�𝐾𝐾) =  𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉𝑖𝑖−1𝐷𝐷𝑖𝑖 � �𝜉𝜉𝐾𝐾−1𝐷𝐷𝐾𝐾 �+ 𝑝𝑝𝑖𝑖(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉𝑖𝑖𝐷𝐷𝑖𝑖� �𝜉𝜉𝐾𝐾−1𝐷𝐷𝐾𝐾 �. (19e) 

 

For the top right-hand corner element, 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(µ�1, µ�𝐾𝐾) =  −𝑝𝑝1(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉1𝐷𝐷1� �𝜉𝜉𝐾𝐾−1𝐷𝐷𝐾𝐾 � .     (19f) 

 

For all remaining above-diagonal elements of 𝑉𝑉𝐼𝐼 ; i.e., for 1 < 𝑖𝑖 < 𝑗𝑗 < 𝐾𝐾 : 

 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣�µ�𝑖𝑖 , µ�𝑗𝑗� =  𝑝𝑝𝑖𝑖−1�1−  𝑝𝑝𝑗𝑗−1�  �𝜉𝜉𝑖𝑖−1𝐷𝐷𝑖𝑖 � �𝜉𝜉𝑗𝑗−1𝐷𝐷𝑗𝑗 � − 𝑝𝑝𝑖𝑖−1�1−  𝑝𝑝𝑗𝑗� �𝜉𝜉𝑗𝑗−1𝐷𝐷𝑖𝑖 � �𝜉𝜉𝑗𝑗𝐷𝐷𝑗𝑗� 
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  − 𝑝𝑝𝑖𝑖�1−  𝑝𝑝𝑗𝑗−1�  �𝜉𝜉𝑖𝑖𝐷𝐷𝑖𝑖� �𝜉𝜉𝑗𝑗−1𝐷𝐷𝑗𝑗 �+ 𝑝𝑝𝑖𝑖�1 −  𝑝𝑝𝑗𝑗� �𝜉𝜉𝑖𝑖𝐷𝐷𝑖𝑖� �𝜉𝜉𝑗𝑗𝐷𝐷𝑗𝑗� .   (19g) 

 Since a variance-covariance matrix is symmetric about its principal diagonal, all below-

diagonal elements can be obtained as 

 

 𝑣𝑣𝐼𝐼(𝑖𝑖, 𝑗𝑗) =  𝑣𝑣𝐼𝐼(𝑗𝑗, 𝑖𝑖)  for  𝑖𝑖 > 𝑗𝑗 .      (19h) 

 

Note also that all terms in the 𝑉𝑉𝐼𝐼 matrix – both (asymptotic) variances and covariances – are also 

distribution-free in that they do not depend on 𝑓𝑓(•) evaluations, and thus can all be readily 

estimated consistently and directly. Thus consistent estimates of the actual variances and 

covariances of the µ𝑖𝑖’s can be obtained as  

 𝑣𝑣�(𝑖𝑖, 𝑗𝑗) =  𝑣𝑣�𝐼𝐼(𝑖𝑖, 𝑗𝑗) / 𝑁𝑁         (20) 

where N is the size of the estimation sample. 

 In order to perform Step 1 of the PEC for comparing the two quantile mean vectors µ�𝑣𝑣 

and µ�𝑏𝑏 , then, calculate estimates of all asymptotic variances and covariances (𝑉𝑉�𝐼𝐼𝑣𝑣 and 𝑉𝑉�𝐼𝐼𝑏𝑏) for the 

two samples using the formulas in equations (19a)-(19h) by replacing population parameters by 

their consistent sample estimates, rescale the (asymptotic) variance-covariance estimates to the 

actual variance-covariance estimates 𝑉𝑉�𝑣𝑣 and  𝑉𝑉�𝑏𝑏 as in (20), and then calculate the joint chi-

square test statistic in (15). 

 To perform the individual tests in Step 2 of the PEC, compute the standard “t-statistic” 

ratio for the difference between two independent random variables (µ�𝑖𝑖𝑣𝑣 and µ�𝑖𝑖𝑏𝑏) as  

 𝑡𝑡𝑖𝑖 =  
µ�𝑖𝑖𝑏𝑏− µ�𝑖𝑖𝑎𝑎  �𝑣𝑣�𝑎𝑎(𝑖𝑖,𝑖𝑖)+ 𝑣𝑣�𝑏𝑏(𝑖𝑖,𝑖𝑖)�1/2  

and compare this to the appropriate critical value on the SMM distribution. 
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 Note that, in the above test procedure, the quantile income curve is approximated or 

represented by a vector of quantile means (µ�𝑖𝑖’s) and not by a vector of quantile cut-off levels 

(𝜉𝜉𝑖𝑖’s). This is because the latter have a variance-covariance structure that is distribution-

dependent (i.e., involving  f(•)’s), while the variance-covariance structure of the former has been 

shown to be distribution-free. So the use of quantile means is convenient and sensible. 

 It could also be argued that the test reliance on a set of quantile points is arbitrary and 

doesn’t provide adequate coverage of the income distribution as a whole. But such a choice of 

quantiles is quite conventional and even standard in the income distribution literature – as 

witness by published official distribution statistics in terms of deciles and quintiles. This is in 

contrast, say, to the ranking of investment opportunities on financial portfolios where all 

alternatives need to be examined. The availability of large microdata files nowadays also allows 

considerable disaggregative detail (such as vigintiles, say, or even percentiles in large census or 

administrative files) as well as a flexible differentiated focus (such as vigintiles in the tails of the 

distribution and quintiles or deciles over the mid-range of the distribution). 

 

 

6.  Application to Lorenz Dominance 

 The same approach can be applied to an inequality-based dominance criterion (for more 

extensive discussions of Lorenz curve comparisons, see Maasoumi, 1998; Lambert, 2001; and 

Aaberge, 2000, 2001.) Atkinson, in his famous 1970 paper, forwarded what has come to be 

known as the Lorenz dominance theorem. For any (summary) inequality measure satisfying 

symmetry, mean independence, population homogeneity and the principle of transfers (i.e., 

essentially inequality criteria (i)-(iv) above), if the Lorenz curve for distribution A lies 
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everywhere above the Lorenz curve for distribution B, then all inequality measures satisfying 

these properties will indicate that (summary) inequality in A is less than in B. Note that this 

theorem does not say anything about social welfare; it refers only to inequality. It also does not 

say anything if the two Lorenz curves cross. Interestingly, comparing quantile curves and Lorenz 

curves can also serve as the basis for the measurement of first- and second-order earnings 

discrimination, such as between men and women (Le Breton et al., 2012). 

 To empirically implement this dominance criterion, one can again represent a Lorenz 

curve or cumulative income-shares by a vector of its estimated ordinates. Testing between 

Lorenz curves then amounts to tests of differences between the estimated ordinate vectors. 

Again, if the two distributions whose inequality is being compared are designated A and B, then 

the vectors of Lorenz curve ordinates can be represented by 

 𝑙𝑙𝑣𝑣 =  �𝑙𝑙1𝑣𝑣, … , 𝑙𝑙𝐾𝐾−1𝑣𝑣 �′ ,    𝑙𝑙𝑣𝑣 =  (𝑙𝑙1𝑣𝑣, … , 𝑙𝑙𝐾𝐾−1𝑣𝑣 )′ 
and  𝑙𝑙𝑏𝑏 =  �𝑙𝑙1𝑏𝑏, … , 𝑙𝑙𝐾𝐾−1𝑏𝑏 �′ ,    𝑙𝑙𝑏𝑏 =  �𝑙𝑙1𝑏𝑏 , … , 𝑙𝑙𝐾𝐾−1𝑏𝑏 �′ , 
and their respective variance-covariance matrices by 𝛷𝛷𝑣𝑣 and 𝛷𝛷𝑏𝑏 . The ordinates 𝑙𝑙1, … , 𝑙𝑙𝐾𝐾−1 

correspond to the given (cumulative) proportions 𝑝𝑝1, … ,𝑝𝑝𝐾𝐾−1 . Since the two end points on a 

Lorenz curve are fixed at 𝑝𝑝0 = 0 and 𝑝𝑝𝐾𝐾 = 1 , only K-1 ordinates are random variables. 

 The actual decision rule or PEC for comparing the vectors of Lorenz curve ordinates 

again involves two steps. And again it is assumed that the two sets of ordinate estimates are 

statistically independent and based on two quite separate samples. 

Step 1 – Test the joint null hypothesis of equality of the two ordinate vectors (i.e., 𝑙𝑙𝑏𝑏 −
 𝑙𝑙𝑣𝑣 = 0) versus the alternative hypothesis of non-equality. In this case, the test statistic is  

(𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑣𝑣)′�𝛷𝛷�𝑣𝑣 +  𝛷𝛷�𝑏𝑏�−1(𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑣𝑣)      (21) 
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which is distributed asymptotically as a chi-square random variable with K-1 degrees of freedom. 

If the null hypothesis is not rejected, then the two estimated Lorenz curves can be said to be not 

statistically significantly different, and further comparison is not pursued. 

 Step 2 – If, however, the null hypothesis in Step 1 is rejected, then undertake separate “t-

statistic” calculations for differences on each of the individual estimated Lorenz curve ordinates. 

If at least one of the t-statistics has the appropriate sign and is statistically significant compared 

to critical values on the SMM distribution with K-1 and infinite degrees of freedom and none of 

the t-statistics (if any) that has the wrong sign is statistically significant (again based on the 

SMM distribution), then one can conclude that one set of estimated ordinates statistically 

dominates the other. If statistical dominance is found, this implies dominance for all summary 

inequality measures satisfying inequality properties (i)-(iv). Again, typical useful SMM critical 

values are: 

    ∝ = .01 ∝ = .05 ∝ = .10 

  K-1 = 4   3.430  2.631  2.378 

  K-1 = 9  3.634  3.190  2.976 

  K-1 = 19  4.018  3.615  3.425 

Source: Stoline and Ury (1979), Tables 1-3. 

 This leaves two problems to be resolved: (i) how does one determine the statistical 

properties of the estimated Lorenz curve ordinates in order to make statistical inference 

decisions, and (ii) how to establish the full variance-covariance matrix of the vector of estimated 

ordinates. These are addressed in the next two subsections. 
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6.1 Inference for Lorenz Curve Ordinates 

 Recall that Lorenz curve ordinates are simply cumulative income shares (which have 

already been considered in Section 3 above). Let the K-vector of individual income share 

statistics be 

 𝑛𝑛� =  (𝑛𝑛�`, … ,𝑛𝑛�𝐾𝐾)′ 
with corresponding population shares 𝑛𝑛 = (𝑛𝑛1, … ,𝑛𝑛𝐾𝐾)′. Then it can be seen that 

 𝑙𝑙 = 𝑈𝑈 •  𝑛𝑛�           (22) 

where U is a (𝐾𝐾 − 1) 𝑥𝑥 𝐾𝐾 matrix with ones on its principal diagonal and below, and zeros above 

the diagonal. U is given and non-random. Since (22) is a linear transformation, if 𝑛𝑛� is 

(asymptotically) joint normally distributed with mean vector 𝑛𝑛 and variance-covariance matrix 𝑊𝑊𝐼𝐼, then 𝑙𝑙 is also (asymptotically) joint normally distributed with mean 𝑙𝑙 = 𝑈𝑈 • 𝑛𝑛 and 

asymptotic variance-covariance matrix 

 𝛷𝛷𝐼𝐼 = 𝑈𝑈 •  𝑊𝑊𝐼𝐼  •  𝑈𝑈′   and hence  𝛷𝛷 = 𝑈𝑈 •  𝑊𝑊 •  𝑈𝑈′ .   (23) 

 

So if W, the actual variance-covariance matrix of the estimated income shares can be established, 

so also can that of the vector of implied Lorenz curve ordinates. 

 

6.2 Full Variance-Covariance Matrix for Income Shares 

 In order to obtain estimates of variance-covariance matrix elements for sample income 

shares, it is again useful to work out asymptotic variances and covariances for 𝑛𝑛� . It has been 

established in Section 3 that 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛�𝑖𝑖) =  𝐺𝐺𝑖𝑖′ Ʃ𝑖𝑖 𝐺𝐺𝑖𝑖  



36 

 

where  Ʃ𝑖𝑖 is the asymptotic variance-covariance matrix of the triplet 𝜉𝜉𝑖𝑖−1 , 𝜉𝜉𝑖𝑖 , and µ� and 

 

 𝐺𝐺𝑖𝑖 =  � 𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖−1 ,
𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 ,

𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕µ
�′ 

where income share 𝑛𝑛𝑖𝑖  ≡  𝐼𝐼𝐼𝐼𝑖𝑖 =  ∫ �1
µ
�  𝑦𝑦 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 ≡  𝑁𝑁𝑖𝑖𝑅𝑅𝑖𝑖 (𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖, µ) . More generally, one 

can use a multivariate version of the Rao linkage theorem to establish that 

 

  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛�) ≡  𝑊𝑊𝐼𝐼 =  [𝑟𝑟𝐼𝐼(𝑖𝑖, 𝑗𝑗)] =  𝐺𝐺′ Ʃ 𝐺𝐺       (24) 

 

where now Ʃ is the KxK asymptotic variance-covariance matrix of the full set of sample quantile 

cut-offs, the  𝜉𝜉𝑖𝑖’s, and the overall sample mean, µ� . Ʃ thus consists of 𝚲𝚲 in the upper-left K-1 

rows and columns, the (asymptotic) covariances of the 𝜉𝜉𝑖𝑖 and µ� along the bottom row and right-

hand column, and the (asymptotic) variance of µ�  (=  𝜎𝜎2) in the bottom right-hand corner. The 

KxK matrix G of partial derivatives then has as its i’th row all zeros except for the three elements 

𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖−1 , 𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖  , 𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕µ
 . Thus it is more convenient to work out the terms of 𝑊𝑊𝐼𝐼 element by element 

where 𝑟𝑟𝐼𝐼(𝑖𝑖, 𝑗𝑗) = (𝑖𝑖’th row of 𝐺𝐺)  • Ʃ • (𝑗𝑗′th row of 𝐺𝐺)′ .     (25) 

 In the case of variances, i=j, which works out to the results: 

 

  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝐼𝐼𝐼𝐼� 1�  ≡ 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛�1) =  𝑟𝑟𝐼𝐼(1,1) 

  =  𝑝𝑝1(1−  𝑝𝑝1) �𝜉𝜉1
µ
�2 +  �𝐼𝐼𝐼𝐼1

µ
�2  𝜎𝜎2      (26a) 

   −2 �𝜉𝜉1
µ
� �𝐼𝐼𝐼𝐼1

µ
� 𝑝𝑝1(𝜇𝜇 −  �̅�𝜇1) , 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝐼𝐼𝐼𝐼�𝐾𝐾�  ≡ 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛�𝐾𝐾) =  𝑟𝑟𝐼𝐼(𝐾𝐾,𝐾𝐾) 



37 

 

  =  𝑝𝑝𝐾𝐾−1(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉𝐾𝐾−1
µ
�2 +  �𝐼𝐼𝐼𝐼𝐾𝐾

µ
�2  𝜎𝜎2     (26b) 

   +2 �𝜉𝜉𝐾𝐾−1
µ
� �𝐼𝐼𝐼𝐼𝐾𝐾

µ
� 𝑝𝑝𝐾𝐾−1(𝜇𝜇 −  �̅�𝜇𝐾𝐾−1) .  

And for i = j = 2, …, K-1: 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝐼𝐼𝐼𝐼� 𝑖𝑖�  ≡ 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛�𝑖𝑖) =  𝑟𝑟𝐼𝐼(𝑖𝑖, 𝑖𝑖) 

  =  𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝑖𝑖−1) �𝜉𝜉𝑖𝑖−1
µ
�2 +  𝑝𝑝𝑖𝑖(1 −  𝑝𝑝𝑖𝑖) �𝜉𝜉𝑖𝑖µ�2 +  �𝐼𝐼𝐼𝐼𝑖𝑖

µ
�2  𝜎𝜎2   

   −2  𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝑖𝑖) �𝜉𝜉𝑖𝑖−1µ
� �𝜉𝜉𝑖𝑖

µ
�      (26c) 

+2 �𝜉𝜉𝑖𝑖−1
µ
� �𝐼𝐼𝐼𝐼𝑖𝑖

µ
�  𝑝𝑝𝑖𝑖−1(𝜇𝜇 −  �̅�𝜇𝑖𝑖−1)   

−2 �𝜉𝜉𝑖𝑖
µ
� �𝐼𝐼𝐼𝐼𝑖𝑖

µ
� 𝑝𝑝𝑖𝑖(𝜇𝜇 −  �̅�𝜇𝑖𝑖) . 

 

Now address the (asymptotic) covariances in the first row of 𝑊𝑊𝐼𝐼 . For 1 < 𝑗𝑗 < 𝐾𝐾 : 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣�𝐼𝐼𝐼𝐼� 1, 𝐼𝐼𝐼𝐼�𝑗𝑗� =  𝑟𝑟𝐼𝐼(1, 𝑗𝑗) 

  =  −𝑝𝑝1�1−  𝑝𝑝𝑗𝑗−1� �𝜉𝜉1µ � �𝜉𝜉𝑗𝑗−1µ
� +  𝑝𝑝1�1−  𝑝𝑝𝑗𝑗� �𝜉𝜉1µ � �𝜉𝜉𝑗𝑗µ � + �𝐼𝐼𝐼𝐼1

µ
� �𝐼𝐼𝐼𝐼𝑗𝑗

µ
�  𝜎𝜎2   

   −  �𝜉𝜉1
µ
� �𝐼𝐼𝐼𝐼𝑗𝑗

µ
�  𝑝𝑝1(𝜇𝜇 −  �̅�𝜇1)        (26d) 

+ �𝜉𝜉𝑗𝑗−1
µ
� �𝐼𝐼𝐼𝐼1

µ
�  𝑝𝑝𝑗𝑗−1(𝜇𝜇 −  �̅�𝜇𝑗𝑗−1)     

−�𝜉𝜉𝑗𝑗
µ
� �𝐼𝐼𝐼𝐼1

µ
�  𝑝𝑝𝑗𝑗(𝜇𝜇 −  �̅�𝜇𝑗𝑗) . 

 

For elements down the last column of 𝑊𝑊𝐼𝐼 ; i.e., for 1 < 𝑖𝑖 < 𝐾𝐾 : 

  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣�𝐼𝐼𝐼𝐼� 𝑖𝑖, 𝐼𝐼𝐼𝐼�𝐾𝐾� =  𝑟𝑟𝐼𝐼(𝑖𝑖,𝐾𝐾) 

  =  𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉𝑖𝑖−1
µ
� �𝜉𝜉𝐾𝐾−1

µ
� −  𝑝𝑝𝑖𝑖(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉𝑖𝑖

µ
� �𝜉𝜉𝐾𝐾−1

µ
� + �𝐼𝐼𝐼𝐼𝑖𝑖

µ
� �𝐼𝐼𝐼𝐼𝐾𝐾

µ
�  𝜎𝜎2  
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   + �𝜉𝜉𝑖𝑖−1
µ
� �𝐼𝐼𝐼𝐼𝐾𝐾

µ
�  𝑝𝑝𝑖𝑖−1(𝜇𝜇 −  �̅�𝜇𝑖𝑖−1)     (26e) 

−�𝜉𝜉𝑖𝑖
µ
� �𝐼𝐼𝐼𝐼𝐾𝐾

µ
�  𝑝𝑝𝑖𝑖(𝜇𝜇 −  �̅�𝜇𝑖𝑖) .    

+ �𝜉𝜉𝐾𝐾−1
µ
� �𝐼𝐼𝐼𝐼𝑖𝑖

µ
�  𝑝𝑝𝐾𝐾−1(𝜇𝜇 −  �̅�𝜇𝐾𝐾−1) . 

For the top right-hand corner element of 𝑊𝑊𝐼𝐼, 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣�𝐼𝐼𝐼𝐼� 1, 𝐼𝐼𝐼𝐼�𝐾𝐾� =  𝑟𝑟𝐼𝐼(1,𝐾𝐾) 

  =  −𝑝𝑝1(1−  𝑝𝑝𝐾𝐾−1) �𝜉𝜉1
µ
� �𝜉𝜉𝐾𝐾−1

µ
� +  �𝐼𝐼𝐼𝐼1

µ
� �𝐼𝐼𝐼𝐼𝐾𝐾

µ
�  𝜎𝜎2  

   −  �𝜉𝜉1
µ
� �𝐼𝐼𝐼𝐼𝐾𝐾

µ
�  𝑝𝑝1(𝜇𝜇 −  �̅�𝜇1)       (26f) 

+ �𝜉𝜉𝐾𝐾−1
µ
� �𝐼𝐼𝐼𝐼1

µ
�  𝑝𝑝𝐾𝐾−1(𝜇𝜇 −  �̅�𝜇𝐾𝐾−1). 

 

Finally, for all remaining above-diagonal elements of 𝑊𝑊𝐼𝐼 ; i.e., for 1 < 𝑖𝑖  < 𝑗𝑗 < 𝐾𝐾 : 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣�𝐼𝐼𝐼𝐼� 𝑖𝑖, 𝐼𝐼𝐼𝐼�𝑗𝑗� =  𝑟𝑟𝐼𝐼(𝑖𝑖, 𝑗𝑗) 

  =  𝑝𝑝𝑖𝑖−1�1 −  𝑝𝑝𝑗𝑗−1� �𝜉𝜉𝑖𝑖−1µ
� �𝜉𝜉𝑗𝑗−1

µ
� −  𝑝𝑝𝑖𝑖−1�1 −  𝑝𝑝𝑗𝑗� �𝜉𝜉𝑖𝑖−1µ

� �𝜉𝜉𝑗𝑗
µ
� + �𝐼𝐼𝐼𝐼𝑖𝑖

µ
� �𝐼𝐼𝐼𝐼𝑗𝑗

µ
�  𝜎𝜎2  

 − 𝑝𝑝𝑖𝑖�1−  𝑝𝑝𝑗𝑗−1� �𝜉𝜉𝑖𝑖µ� �𝜉𝜉𝑗𝑗−1µ
� +  𝑝𝑝𝑖𝑖�1−  𝑝𝑝𝑗𝑗� �𝜉𝜉𝑖𝑖µ� �𝜉𝜉𝑗𝑗µ � 

   + �𝜉𝜉𝑖𝑖−1
µ
� �𝐼𝐼𝐼𝐼𝑗𝑗

µ
�  𝑝𝑝𝑖𝑖−1(𝜇𝜇 −  �̅�𝜇𝑖𝑖−1)      (26g) 

−  �𝜉𝜉𝑖𝑖
µ
� �𝐼𝐼𝐼𝐼𝑗𝑗

µ
�  𝑝𝑝𝑖𝑖(𝜇𝜇 −  �̅�𝜇𝑖𝑖)   

+ �𝜉𝜉𝑗𝑗−1
µ
� �𝐼𝐼𝐼𝐼𝑖𝑖

µ
� 𝑝𝑝𝑗𝑗−1(𝜇𝜇 −  �̅�𝜇𝑗𝑗−1)      

−�𝜉𝜉𝑗𝑗
µ
� �𝐼𝐼𝐼𝐼𝑖𝑖

µ
�  𝑝𝑝𝑗𝑗(𝜇𝜇 −  �̅�𝜇𝑗𝑗) . 
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In the above expressions, recall that �̅�𝜇𝑖𝑖 is the cumulative mean up to 𝜉𝜉𝑖𝑖 . That is, �̅�𝜇𝑖𝑖 = 𝑑𝑑𝑖𝑖′ 𝜇𝜇 where 𝑑𝑑𝑖𝑖 is a vector whose first i elements are 𝐷𝐷1/ 𝑝𝑝𝑖𝑖, … ,𝐷𝐷𝑖𝑖 / 𝑝𝑝𝑖𝑖 and zeros elsewhere, and 𝜇𝜇 =

 (𝜇𝜇1, … , 𝜇𝜇𝐾𝐾)′. 
Again, since a variance-covariance matrix is symmetric about its principal diagonal, all 

below-diagonal covariance terms can be obtained as 

 𝑟𝑟𝐼𝐼(𝑖𝑖, 𝑗𝑗) =  𝑟𝑟𝐼𝐼(𝑗𝑗, 𝑖𝑖)   for  𝑖𝑖 > 𝑗𝑗 .      (26h) 

 

Note also that all terms in 𝑊𝑊𝐼𝐼 are distribution-free, and thus can be readily estimated consistently 

and directly. More specifically, consistent estimates of the actual variances and covariances of 

the 𝐼𝐼𝐼𝐼� 𝑖𝑖 can thus be obtained as 

 

 𝑟𝑟�(𝑖𝑖, 𝑗𝑗) =  𝑟𝑟�𝐼𝐼(𝑖𝑖, 𝑗𝑗) / 𝑁𝑁          (27) 

 

where N is the estimation sample size. 

 Once again to perform Step 1 of the PEC for comparing the two vectors of estimated 

Lorenz curve ordinates 𝑙𝑙𝑣𝑣 and 𝑙𝑙𝑏𝑏 , first calculate estimates of all the asymptotic variances and 

covariances (𝑊𝑊�𝐼𝐼𝑣𝑣 and 𝑊𝑊�𝐼𝐼𝑏𝑏) for the two estimation samples from equations (26a)-(26h) by 

replacing population parameters by their consistent sample estimates, rescale the (asymptotic) 

variance and covariance estimates to the actual variance and covariance estimates (𝑊𝑊� 𝑣𝑣 and  𝑊𝑊� 𝑏𝑏) 

as in equation (27), calculate the Lorenz curve ordinates by 𝑙𝑙 = 𝑈𝑈 •  𝑛𝑛� from equation (22) and 

Lorenz curve ordinate estimated variances and covariances from 𝛷𝛷� = 𝑈𝑈 •  𝑊𝑊�  •  𝑈𝑈′ 
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following equation (23), and then finally calculate the joint chi-square test statistic in equation 

(21). 

 To perform the individual tests in Step 2 of the PEC, again use the standard “t-statistic” 

ratio for the difference between two independent random variates (𝑙𝑙𝑖𝑖𝑣𝑣 and 𝑙𝑙𝑖𝑖𝑏𝑏) as  

 𝑡𝑡𝑖𝑖 =  
𝑙𝑙𝑖𝑖𝑏𝑏− 𝑙𝑙𝑖𝑖𝑎𝑎  �𝑤𝑤�𝑎𝑎(𝑖𝑖,𝑖𝑖)+ 𝑤𝑤�𝑏𝑏(𝑖𝑖,𝑖𝑖)�1/2  

and compare this to the relevant critical value on the SMM tables. 

 As an aside, it can be noted that the Gini coefficient of overall income inequality can be 

approximated by (twice) the area between the estimated Lorenz curve ordinate segments and the 

45 degree equality diagonal. If one represents each of these segments as a quadrilateral, one can 

calculate 

 𝐺𝐺� =  ∑ (1/ 𝐾𝐾) 𝐾𝐾𝑖𝑖=1 ��(𝑖𝑖/𝐾𝐾) −  𝑙𝑙𝑖𝑖� +  �(𝑖𝑖 − 1/𝐾𝐾)−  𝑙𝑙𝑖𝑖−1� � . 
Since this is a linear function of the ordinates 𝑙𝑙𝑖𝑖, one can calculate the asymptotic variance of 𝐺𝐺� 
as a simple quadratic form in the (asymptotic) variance-covariance matrix 𝑊𝑊𝐴𝐴 of the estimated 

Lorenz curve ordinates. Once again, the standard error of 𝐺𝐺� is the square root of the rescaled 

estimated (asymptotic) variance of 𝐺𝐺�, and once again the standard error is distribution-free. 

 

 

7.  Application to Generalized Lorenz Dominance 

 A blending of the first two dominance criteria is provided in a third application of 

empirically implementing curve-based dominance criteria. Shorrocks (1983) uses a transformed 

Lorenz curve as the basis for social welfare inferences, not just inequality conclusions. The 

generalized Lorenz dominance theorem of Shorrocks (1983) says that, for any additively 
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separable social welfare function essentially satisfying social welfare conditions (i)-(iv) 

including the principle of transfers, distribution A is socially preferred to distribution B if the 

generalized Lorenz curve for A lies everywhere above the generalized Lorenz curve for B. The 

generalized Lorenz curve ordinates for an income distribution are obtained by scaling up the 

Lorenz curve ordinates of the distribution by the distribution’s overall mean income level: 

 

 𝑔𝑔𝑖𝑖 =  µ •  𝑙𝑙𝑖𝑖  and 𝑔𝑔�𝑖𝑖 =  µ� •  𝑙𝑙𝑖𝑖 .       (28) 

 

Essentially, the argument is that, if the mean income of the distribution A is sufficiently higher 

than that in distribution B, this can compensate for some greater degree of inequality in A than in 

B, so that social welfare will still be greater in distribution A than in B. It turns out that this rule 

is very convenient for ranking social welfare among quite disparate countries, or for ranking 

income distributions in a given country (or group) over long periods of time (e.g., the Canadian 

income distribution across the decades of 1950, 1960, 1970 and 1980). This use of generalized 

Lorenz curves for dominance comparisons has also been applied to earnings discrimination 

analysis over an entire distribution (Jenkins, 1994; del Rio et al., 2011; and Salas et al., 2018). 

 To implement this dominance criterion, one can again represent a generalized Lorenz 

curve by a vector of its estimated ordinates: 

 𝑔𝑔 =  (𝑔𝑔1, … , 𝑔𝑔𝐾𝐾−1)′   and 𝑔𝑔� =  (𝑔𝑔�1, … , 𝑔𝑔�𝐾𝐾−1)′ . 
Testing between generalized Lorenz curves then amounts to tests of differences between the 

estimated ordinate vectors 𝑔𝑔�𝑣𝑣 and 𝑔𝑔�𝑏𝑏 . The respective generalized Lorenz curve ordinate 

variance-covariance matrices may be labelled 𝛹𝛹𝑣𝑣 and 𝛹𝛹𝑏𝑏 . 
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 The corresponding decision rule or PEC for comparing vectors 𝑔𝑔�𝑣𝑣 and 𝑔𝑔�𝑏𝑏 once again 

involves two steps (where, as above) the estimation samples are statistically independent. 

 Step 1 – Test the joint null hypothesis of equality of two estimated generalized Lorenz 

curve ordinate vectors (i.e., 𝑔𝑔𝑏𝑏 −  𝑔𝑔𝑣𝑣 = 0) versus the alternative hypothesis of non-equality. In 

this case, the test statistics is 

 (𝑔𝑔�𝑏𝑏 −  𝑔𝑔�𝑣𝑣)′ �𝛹𝛹�𝑣𝑣 + 𝛹𝛹�𝑏𝑏�−1 (𝑔𝑔�𝑏𝑏 −  𝑔𝑔�𝑣𝑣)        (29) 

which, under the null hypothesis, is asymptotically distributed as a chi-square random variable 

with K-1 degrees of freedom. If the null hypothesis is not rejected, then the two generalized 

Lorenz curves can be said to be not statistically significantly different, and further comparison is 

not warranted. 

  Step 2 – If, however, the null hypothesis in Step 1 is rejected, then proceed to compute 

separate “t-statistics” for differences on each of the individual generalized Lorenz curve 

ordinates. If at least one of the t-statistics has the appropriate sign and is statistically significant 

compared to critical values on the SMM distribution with K-1 and infinite degrees of freedom 

and none of the t-statistics (if any) that have the wrong sign is statistically significant (again on 

the SMM critical values), then one can conclude that the distribution with the higher sample 

generalized Lorenz curve ordinates rank dominates (or is socially preferred to) the distribution 

with the corresponding lower ordinates. If not, then one can say only that the social welfare of 

the two distributions are statistically significantly different, but not reach a preferred or 

dominance conclusion. 
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7.1 Variance-Covariance Structure of Generalized Lorenz Curve Ordinates 

 Since Lorenz curve ordinates are calculated from income shares, it makes sense to 

consider the relationship of generalized Lorenz curve ordinates to these underlying income 

shares as well. To go back to first principles, consider µ •  𝐼𝐼𝐼𝐼𝑖𝑖 as the dollar contribution of the 

i’th income group to the overall mean income of the distribution. So we can represent it by the 

“contribution” 

 

 𝑐𝑐𝑖𝑖 =  µ •  𝐼𝐼𝐼𝐼𝑖𝑖          (30a) 

       = µ •  ∫ �1
µ
�  𝑦𝑦 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 𝑅𝑅𝑖𝑖  

       = ∫  𝑦𝑦 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦                             ≡   𝑁𝑁𝑖𝑖𝑅𝑅𝑖𝑖 (𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖) 

      =  𝐷𝐷𝑖𝑖  •  � 1𝐷𝐷𝑖𝑖�𝑁𝑁𝑖𝑖(𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖) 

      =  𝐷𝐷𝑖𝑖  •  µ𝑖𝑖          (30b) 

 

where  µ𝑖𝑖 is the quantile mean of the i’th income group and 𝐷𝐷𝑖𝑖 =  𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖−1 . So 𝑐𝑐𝑖𝑖 is simply a 

scalar transform of the quantile mean µ𝑖𝑖 . Consequently, �̂�𝑐𝑖𝑖 = 𝐷𝐷𝑖𝑖  •  µ�𝑖𝑖 , and the elements of the 

variance-covariance matrix of the vector of sample contributions �̂�𝑐 =  (�̂�𝑐1, … , �̂�𝑐𝐾𝐾)′ are simply 

scalar transforms of the corresponding elements of the variance-covariance matrix of the vector 

of quantile means µ� =  (µ�1, … , µ�𝐾𝐾)′ . More specifically, all the 𝐷𝐷𝑖𝑖 terms in equations (19a)-

(19h) for the asymptotic variances and covariances drop out. Alternatively viewed, since 𝑐𝑐𝑖𝑖 =

 𝑁𝑁𝑖𝑖(𝜉𝜉𝑖𝑖−1, 𝜉𝜉𝑖𝑖) , all the partial derivatives in equations (17a) and (17b) now involve simply 
𝜕𝜕𝑁𝑁𝑖𝑖𝜕𝜕𝜉𝜉𝑗𝑗  

without the term 
1𝐷𝐷𝑖𝑖 . For ease of reference, these may be set out explicitly for the asymptotic 

variance-covariance matrix  𝛤𝛤𝐼𝐼 of �̂�𝑐 : 
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 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝑐1) = 𝑝𝑝1(1−  𝑝𝑝1)𝜉𝜉12        (31a) 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝑐𝐾𝐾) = 𝑝𝑝𝐾𝐾−1(1−  𝑝𝑝𝐾𝐾−1)𝜉𝜉𝐾𝐾−12       (31b) 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝑐𝑖𝑖) = 𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝑖𝑖−1)𝜉𝜉𝑖𝑖−12 + 𝑝𝑝𝑖𝑖(1−  𝑝𝑝𝑖𝑖)𝜉𝜉𝑖𝑖2    (31c) 

    − 2 𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝑖𝑖)𝜉𝜉𝑖𝑖−1𝜉𝜉𝑖𝑖  for i = 2, …, K-1 . 

 

For 1 < 𝑗𝑗 < 𝐾𝐾 : 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣��̂�𝑐1, �̂�𝑐𝑗𝑗� = − 𝑝𝑝1�1−  𝑝𝑝𝑗𝑗−1�𝜉𝜉1𝜉𝜉𝑗𝑗−1 +   𝑝𝑝1�1−  𝑝𝑝𝑗𝑗�𝜉𝜉1𝜉𝜉𝑗𝑗 .   (31d) 

 

For 1 < 𝑖𝑖 < 𝐾𝐾 : 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝑐𝑖𝑖, �̂�𝑐𝐾𝐾) =  𝑝𝑝𝑖𝑖−1(1−  𝑝𝑝𝐾𝐾−1)𝜉𝜉𝑖𝑖−1𝜉𝜉𝐾𝐾−1 −   𝑝𝑝𝑖𝑖(1 −  𝑝𝑝𝐾𝐾−1)𝜉𝜉𝑖𝑖𝜉𝜉𝐾𝐾−1 .  (31e) 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝑐1, �̂�𝑐𝐾𝐾) = − 𝑝𝑝1(1−  𝑝𝑝𝐾𝐾−1)𝜉𝜉1𝜉𝜉𝐾𝐾−1 .     (31f) 

 

For 1 < 𝑖𝑖 < 𝑗𝑗 < 𝐾𝐾 : 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣��̂�𝑐𝑖𝑖, �̂�𝑐𝑗𝑗� =  𝑝𝑝𝑖𝑖−1�1−  𝑝𝑝𝑗𝑗−1�𝜉𝜉𝑖𝑖−1𝜉𝜉𝑗𝑗−1 −   𝑝𝑝𝑖𝑖−1�1−  𝑝𝑝𝑗𝑗�𝜉𝜉𝑖𝑖−1𝜉𝜉𝑗𝑗   (31g) 

      − 𝑝𝑝𝑖𝑖�1−  𝑝𝑝𝑗𝑗−1�𝜉𝜉𝑖𝑖𝜉𝜉𝑗𝑗−1 +   𝑝𝑝𝑖𝑖�1−  𝑝𝑝𝑗𝑗�𝜉𝜉𝑖𝑖𝜉𝜉𝑗𝑗 .     

 

And for all below-diagonal elements of 𝛤𝛤𝐼𝐼 = [𝛾𝛾𝐼𝐼(𝑖𝑖, 𝑗𝑗)] , 

 𝛾𝛾𝐼𝐼(𝑖𝑖, 𝑗𝑗) = 𝛾𝛾𝐼𝐼(𝑗𝑗, 𝑖𝑖)   for  𝑖𝑖 > 𝑗𝑗 .      (31h) 

 

Thus consistent estimates of the actual variances and covariances of the �̂�𝑐𝑖𝑖’s can be obtained as 

 𝛾𝛾�(𝑖𝑖, 𝑗𝑗) = 𝛾𝛾�𝐼𝐼(𝑖𝑖, 𝑗𝑗) / 𝑁𝑁          (32) 

where here N is the estimation sample size. 
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 The ordinates of the generalized Lorenz curve can be readily obtained from the  �̂�𝑐𝑖𝑖 by 

straightforward cumulation: 

 𝑔𝑔�𝑖𝑖 =  ∑ �̂�𝑐𝑗𝑗𝑖𝑖𝑗𝑗=1      and 𝑔𝑔𝑖𝑖 =  ∑ 𝑐𝑐𝑗𝑗𝑖𝑖𝑗𝑗=1   

or more generally, 

   𝑔𝑔� = 𝑈𝑈 • �̂�𝑐   and  𝑔𝑔 = 𝑈𝑈 • 𝑐𝑐      (33) 

where again U is a (K-1)xK non-random matrix with ones on the principal diagonal and below, 

and zeros above the diagonal. 

 Since the �̂�𝑐𝑖𝑖’s are proportional functions of the µ�𝑖𝑖’s , and the µ�𝑖𝑖’s are asymptotically joint 

normal, then �̂�𝑐𝑖𝑖’s are also asymptotically joint normal with means 𝑐𝑐𝑖𝑖’s and full (asymptotic) 

variance-covariance matrix 𝛤𝛤𝐼𝐼 given by equations (31a)-(31h) and estimated actual variance-

covariance matrix 𝛤𝛤� . Similarly, since the 𝑔𝑔�𝑖𝑖’s are linear functions of the �̂�𝑐𝑖𝑖’s , the 𝑔𝑔�𝑖𝑖’s are also 

asymptotically joint normally distributed with means 𝑔𝑔𝑖𝑖’s and full (asymptotic) variance-

covariance matrix  𝛹𝛹𝐼𝐼 = 𝑈𝑈 •  𝛤𝛤𝐼𝐼  •  𝑈𝑈′         (34) 

and estimated actual variance-covariance matrix 

 𝛹𝛹� = 𝑈𝑈 •  𝛤𝛤�  • 𝑈𝑈′         (35) 

where the elements in 𝛤𝛤� are given by equation (32). Once again, all terms in 𝛤𝛤𝐼𝐼 are distribution-

free, and thus can be readily estimated consistently and directly. 

 To perform Step 1 of the PEC for comparing the two vectors of generalized Lorenz curve 

ordinates 𝑔𝑔�𝑣𝑣 and 𝑔𝑔�𝑏𝑏 , first calculate estimates of all the asymptotic variances and covariances 

(𝛤𝛤�𝐼𝐼𝑣𝑣 and 𝛤𝛤�𝐼𝐼𝑏𝑏) for the two estimation samples from equations (31a)-(31h) by replacing population 

parameters by their consistent sample estimates, rescale the (asymptotic) variance and covariance 

estimates to actual variance and covariance estimates (𝛤𝛤�𝑣𝑣 and 𝛤𝛤�𝑏𝑏) as in equation (32), calculate 
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the generalized Lorenz curve ordinates by 𝑔𝑔� = 𝑈𝑈 • �̂�𝑐 from equation (33) and the generalized 

Lorenz curve ordinate estimated variances and covariances from equation (35), and then finally 

calculate the joint chi-square test statistic in equation (29). 

 To perform the individual tests in Step 2 of the PEC, again use the standard “t-statistic” 

ratio for the difference between two independent variates (𝑔𝑔�𝑖𝑖𝑣𝑣 and 𝑔𝑔�𝑖𝑖𝑏𝑏) as 

 𝑡𝑡𝑖𝑖 =  
𝑔𝑔�𝑖𝑖𝑏𝑏− 𝑔𝑔�𝑖𝑖𝑎𝑎  �𝛾𝛾�𝑎𝑎(𝑖𝑖,𝑖𝑖)+ 𝛾𝛾�𝑏𝑏(𝑖𝑖,𝑖𝑖)�1/2  

and compare this to the relevant critical value on the SMM distribution. 

  

 

8. Decomposition of Generalized Lorenz Curve Ordinates into Efficiency and 

Equity Components 

 As stated in Section 4 above, an Atkinson-type inequality index, 𝐼𝐼𝐴𝐴 , has the property – 

under various conditions – that an empirical proxy for social welfare can be decomposed into the 

product of an efficiency measure and an equity indicator: 

 𝐼𝐼𝑊𝑊� =  µ�  • (1− 𝐼𝐼𝐴𝐴) . 

A similar decomposition appears in Jorgenson (1990) as well. Can such an intuitively appealing 

decomposition also be applied more generally to entire dominance condition curves? The answer 

is yes. If the µ�𝑖𝑖’s can be viewed as a disaggregative indicator of economic well-being or social 

welfare, then  

 µ�𝑖𝑖 =  µ�  •  �µ�𝑖𝑖
µ� �  or alternatively   =  µ�  �1−  �µ�− µ�𝑖𝑖

µ� ��    (36) 
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where µ� is again a measure of overall efficiency and �µ�𝑖𝑖
µ� � can be viewed as an indicator of 

disaggregative equity for income group i. The term � µ𝑖𝑖
µ
� may be referred to as the relative-mean 

income gap for quantile group i and a vector of such terms as the relative-mean income curve for 

an income distribution (see Beach, 2021, for further discussion and interpretation of this curve). 

 When comparing two income distributions, say A and B, it is obviously of interest to 

look at their differences in overall means, µ�𝑣𝑣 and µ�𝑏𝑏 . But it is also of interest to consider the 

relative-mean income gaps across the various quantile groups and how these differ between the 

distributions. That is, consider the differences in the gaps, say, 
µ�𝑖𝑖𝑏𝑏
µ�𝑏𝑏 − µ�𝑖𝑖𝑎𝑎

µ�𝑎𝑎 , across all of the 

individual quantile groups as a reflection of the disaggregative equity differences between the 

two distributions. 

 Indeed, it turns out that performing formal statistical tests of these relative-mean income 

gaps is quite straightforward using the above development. For convenience, designate the 

relative-mean income gap for quantile group i by 𝑣𝑣𝑖𝑖 . Then, from first principles, 

 𝑣𝑣𝑖𝑖  =  � µ𝑖𝑖
µ
� 

       = 𝐷𝐷𝑖𝑖−1  •  ∫  𝑦𝑦 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 /  µ𝑅𝑅𝑖𝑖  

       = 𝐷𝐷𝑖𝑖−1  •  ∫  �𝐴𝐴
µ
� 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 𝑅𝑅𝑖𝑖  

      =  � 1𝐷𝐷𝑖𝑖� • 𝐼𝐼𝐼𝐼𝑖𝑖 =  � 1𝐷𝐷𝑖𝑖� • 𝑛𝑛𝑖𝑖        (37) 

 

where, as before,  𝐷𝐷𝑖𝑖 =  𝑝𝑝𝑖𝑖 −  𝑝𝑝𝑖𝑖 and 𝑅𝑅𝑖𝑖  is the appropriate range of integration. That is, 𝑣𝑣𝑖𝑖  is 

simply a scalar transform of quantile i’s income share. And similarly, 
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 �̂�𝑣𝑖𝑖  =  � µ�𝑖𝑖
µ� � =  � 1𝐷𝐷𝑖𝑖� • 𝐼𝐼𝐼𝐼� 𝑖𝑖 =  � 1𝐷𝐷𝑖𝑖� • 𝑛𝑛�𝑖𝑖 . 

 

Thus the vector 𝑣𝑣 = (𝑣𝑣1, … , 𝑣𝑣𝐾𝐾)  is such that 

 𝑣𝑣 =  𝐷𝐷−1  • 𝑛𝑛  and similarly �̂�𝑣 =  𝐷𝐷−1  • 𝑛𝑛�     (38) 

where 𝐷𝐷−1 is a KxK matrix with elements 𝐷𝐷𝑖𝑖−1 along its principal diagonal and zeros elsewhere. 

Thus, since �̂�𝑣 is a linear transform of 𝑛𝑛� and 𝑛𝑛� is asymptotically joint normally distributed, so also 

is �̂�𝑣 with mean 𝑣𝑣 and asymptotic variance-covariance matrix 

 𝑅𝑅𝐼𝐼 = 𝐷𝐷−1  •  𝑊𝑊𝐼𝐼  •  𝐷𝐷−1        (39) 

where 𝑊𝑊𝐼𝐼 is the asymptotic variance-covariance matrix of the estimated income share vector 𝑛𝑛� . 
Thus the asymptotic variance of �̂�𝑣𝑖𝑖 (for i=2, …, K-1), for example, is given by equation (26c) 

where each term is divided by 𝐷𝐷𝑖𝑖2 . A consistent estimate of the actual variance-covariance 

matrix of �̂�𝑣 is then given by 

 𝑅𝑅� = 𝐷𝐷−1  •  𝑊𝑊�  •  𝐷𝐷−1 = [�̂�𝑣(𝑖𝑖, 𝑗𝑗)]        (40) 

and the elements of 𝑊𝑊�  are given by equation (27). 

 An asymptotic test of the difference in relative-mean income gaps for quantile group i 

between two independent distributions A and B, then, is done with the standard “t-statistic” 

 𝑡𝑡𝑖𝑖 =  
�̂�𝑣𝑖𝑖𝑏𝑏− �̂�𝑣𝑖𝑖𝑎𝑎  ��̂�𝑣𝑎𝑎(𝑖𝑖,𝑖𝑖)+ �̂�𝑣𝑏𝑏(𝑖𝑖,𝑖𝑖)�1/2  

and this statistic is then compared to a critical value on the standard normal distribution. Note 

that the SMM distribution critical values are not used here since this test is not part of a PEC 

joint test criterion. 
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9. Inequality Dominance with a Single Lorenz Curve Crossing 

 What can one infer if Lorenz curves cross? More often than not this is the empirical 

situation when comparing two estimated Lorenz curves, and the Lorenz dominance criterion 

above is of no help in such situations. However, Shorrocks and Foster (1987) have come up with 

an extension of the latter criterion to cover just such situations. What may be called the transfer 

sensitivity dominance theorem states that, if the Lorenz curve for distribution A crosses the 

Lorenz curve for distribution B once from above, then all inequality measures satisfying the 

inequality properties (i)-(iv) plus property (v) – transfer sensitivity – will indicate that (summary) 

inequality in A is less than in B if the coefficient of variation for distribution A is lower than that 

for distribution B. The coefficient of variation for a distribution is the ratio of the standard 

deviation of the distribution to the mean, i.e.: 𝜎𝜎� / µ� in the estimation sample. Thus, by adding the 

one further property of transfer sensitivity, one can get a stronger practical result that helps rank 

aggregate income inequality across distributions even when their Lorenz curves cross (once). 

Again, this provides a ranking of overall income inequality between distributions, and not of 

social welfare more generally. 

 Implementing this stronger dominance rule is indeed feasible in light of the above 

development in this paper. All it requires is some revision of the Lorenz dominance PEC of 

Section 6. 

 The practical empirical criterion (PEC) for inequality dominance can now be revised as 

follows: 

Step 1 – Same as before. Test the joint null hypothesis of equality of the two Lorenz 

curve ordinate vectors (i.e., 𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑣𝑣 = 0) versus the alternative hypothesis of non-equality. In 

this case, the test statistic is, as before,  
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(𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑣𝑣)′�𝛷𝛷�𝑣𝑣 +  𝛷𝛷�𝑏𝑏�−1(𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑣𝑣) . 

If the null hypothesis is not rejected, the two Lorenz curves can be said to be not statistically 

significantly different, and further comparison is not pursued. 

 Step 2 – If the null hypothesis in Step 1 is rejected and there is a single crossing of 

Lorenz curve ordinates, then undertake separate “t-statistic” calculations for differences on each 

of the individual estimated Lorenz curve ordinates. If at least one of the t-statistics has the 

appropriate sign and is statistically significant compared to critical values on the SMM 

distribution with K-1 and infinite degrees of freedom and none of the t-statistics (if any) that has 

the wrong sign is statistically significant (again based on the SMM distribution), then proceed to 

Step 3. Otherwise, do not draw any dominance inference. 

 Step 3 – Compare the estimated coefficients of variation for the two distributions. If the 

coefficient of variation for the distribution with the initially higher Lorenz curve ordinates (�̂�𝐶𝑣𝑣 , 

corresponding to distribution A, say) is smaller than the coefficient of variation for the other 

distribution (�̂�𝐶𝑏𝑏)6, then one can conclude that inequality in distribution A statistically dominates 

inequality in distribution B. This implies dominance for all summary inequality measures – that 

is, they are smaller in distribution A than in distribution B – satisfying inequality properties (i)-

(v). 

 Note that in this version of the PEC for inequality dominance, comparison of the 

coefficients of variation is done simply by inspection. A stronger version of Step 3 (and hence of 

the PEC) could involve a formal statistical test on �̂�𝐶𝑏𝑏 − �̂�𝐶𝑣𝑣 . Since the standard error of the 

sample coefficient of variation has been found to be 

                                                           

6
 Note that the capital letter C for coefficient of variation here is quite different from the lower case 𝑐𝑐𝑖𝑖 for 

mean income contribution in Section 7 above. 
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 𝐼𝐼.𝐸𝐸. ��̂�𝐶� = 100𝐶𝐶 �1+2𝐶𝐶22𝑁𝑁 �1/2
        (41) 

where �̂�𝐶 is expressed as a proportion (Ahn and Fessler, 2003), the estimated variance of �̂�𝐶𝑏𝑏 − �̂�𝐶𝑣𝑣 

for independent samples is 

 𝑉𝑉𝑣𝑣�𝑣𝑣(�̂�𝐶𝑏𝑏 − �̂�𝐶𝑣𝑣) = 𝐼𝐼.𝐸𝐸. ��̂�𝐶𝑣𝑣�2 +  𝐼𝐼.𝐸𝐸. ��̂�𝐶𝑏𝑏�2 . 

Since �̂�𝐶 is asymptotically normally distributed (Ahn and Fessler, 2003), one can do an 

(asymptotic) normal test on the “t-ratio” test statistic 

 𝑡𝑡 =  
�̂�𝐶𝑏𝑏−�̂�𝐶𝑎𝑎�𝑉𝑉𝑣𝑣�𝑣𝑣(�̂�𝐶𝑏𝑏−�̂�𝐶𝑎𝑎)�1/2 .         (42) 

And given that one is interested in a one-sided alternative test hypothesis, it makes sense to 

perform a one-tailed test on the standard normal where 𝐻𝐻1 ∶  𝐶𝐶𝑏𝑏 −  𝐶𝐶𝑣𝑣  > 0 (i.e., distribution A 

has a smaller coefficient of variation). 

 

 

10.  Inequality Dominance with Multiple Lorenz Curve Crossings 

 But what if we have a situation where two Lorenz curves cross more than once? The 

Shorrocks and Foster (1987) approach has indeed been extended by Davies and Hoy (1994) to 

handle just this situation and can be viewed as a generalization of the former. In this case, instead 

of a single crossing and single coefficient of variation test, Davies and Hoy (1994) allow for 

possibly multiple Lorenz curve crossings – in the current author’s experience two crossings is the 

most ever seen and the typical number of crossings is one – and posit a coefficient of variation 

condition for each cross-over point (including the top right-hand (1,1) point on the Lorenz 

curves). 
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 More specifically, where two distributions A and B are being compared, Davies and Hoy 

(1994 and 1995) argue that the following statements are essentially equivalent: 

1) For all summary measures of inequality, I, satisfying inequality properties (i)-(v) – i..e., 

including transfer sensitivity –  𝐼𝐼𝑣𝑣  <  𝐼𝐼𝑏𝑏 ; and 

2) For all cross-over points k = 1, 2 …, of the Lorenz curves for two distributions, the 

cumulative coefficients of variation at point k are smaller in distribution A than B.7  

We will refer to this as transfer sensitivity dominance. 

To empirically implement this, again represent the two Lorenz curves being compared by 

vectors of their (sample) ordinates. Consider also what we will call cumulative or conditional 

coefficients of variation corresponding to each of the quantile cut-offs, 𝜉𝜉1, … , 𝜉𝜉𝐾𝐾−1 , and for the 

full sample as well. In terms of notation, let the cumulative coefficients of variation be 𝐶𝐶𝑐𝑐𝑖𝑖 , 
where 𝐶𝐶𝑐𝑐𝑖𝑖2 = 𝐸𝐸((𝑌𝑌 −  µ𝑐𝑐𝑖𝑖)2 ǀ 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) /  [𝐸𝐸(𝑌𝑌 ǀ 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖)]2 , 

µ𝑐𝑐𝑖𝑖 = 𝐸𝐸(𝑌𝑌 ǀ 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) is the cumulative mean (up to 𝜉𝜉𝑖𝑖), 
and 𝜎𝜎𝑐𝑐𝑖𝑖2 = 𝐸𝐸((𝑌𝑌 −  µ𝑐𝑐𝑖𝑖)2 ǀ 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖)  is the cumulative variance. 

So 𝐶𝐶𝑐𝑐𝑖𝑖 =  𝜎𝜎𝑐𝑐𝑖𝑖 / µ𝑐𝑐𝑖𝑖 . The unconditional coefficient of variation for the full set of observations 

can be viewed as the case of i=K (i.e., 𝐶𝐶𝑐𝑐𝐾𝐾 = 𝐶𝐶). Then a PEC for the Davies-Hoy situation can 

be stated as follows. 

 Step 1 – Same as before. Test the joint null hypothesis of equality of the two Lorenz 

curve ordinate vectors (i.e.,  𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑐𝑐 = 0) versus the alternative hypothesis of non-equality. In 

this case, the test statistic is again 

                                                           

7
 Actually the statement 2 is only sufficient for statement 1 to hold. More precise explication of the 

necessary and sufficient conditions can be found in Chiu (2007) and Davies, Hoy and Lin (2022). 
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(𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑣𝑣)′�𝛷𝛷�𝑣𝑣 +  𝛷𝛷�𝑏𝑏�−1(𝑙𝑙𝑏𝑏 −  𝑙𝑙𝑣𝑣) . 

If the null hypothesis is not rejected, the two Lorenz curves can be said to be not statistically 

significantly different, and further comparison is not pursued. 

Step 2 – Essentially the same as for the single-crossing case. If the null hypothesis in Step 

1 is rejected and there are one or more crossings of Lorenz curve ordinates, then undertake 

separate “t-statistic” calculations for differences on each of the individual estimated Lorenz 

curve ordinates. If at least one of the t-statistics has the appropriate sign and is statistically 

significant compared to critical values on the SMM distribution with K-1 and infinite degrees of 

freedom and none of the t-statistics (if any) that has the wrong sign is statistically significant 

(again based on the SMM distribution), then proceed to Step 3. Otherwise, do not draw any 

inequality dominance inference. 

  Step 3 – Compare the cumulative coefficients of variation for the two distributions. As 

for Step 2, undertake separate “t-statistic” calculations for differences on each of the individual 

estimated cumulative coefficients of variation (as well as the estimated standard coefficient of 

variation). If at least one of the t-statistics has the appropriate sign and is statistically significant 

compared once again to critical values on the SMM distribution with K and infinite degrees of 

freedom and none of the t-statistics (if any) that have the wrong sign is statistically significant 

(again based on the SMM distribution), then one can conclude that inequality in the distribution 

with the initially higher Lorenz curve ordinates (distribution A, say) statistically dominates 

inequality in distribution B. Once again, this implies dominance for all summary inequality 

measures – that is, they are smaller in distribution A than in distribution B – satisfying inequality 

properties (i)-(v). 
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 To implement this PEC, then, involves doing statistical inference on the �̂�𝐶𝑐𝑐𝑖𝑖’s and 

specifically establishing the variance structure of the set of cumulative coefficients of variation. 

 

10.1 Variance Structure of the Cumulative Coefficients of Variation 

 Since the coefficient of variation is the ratio of first and second moments, it makes sense 

that its (cumulative) sample estimates would be asymptotically normally distributed. And since 

we are interested only in “t-ratios” of differences, we need focus just on the variance structure of 

the (cumulative) sample estimates rather than the full variance-covariance structure. 

 We begin by recognizing that the (cumulative) coefficients of variation are continuous 

differentiable function of the 𝜉𝜉𝑖𝑖’s and we know the (asymptotic) distribution of the sample 

quantile cut-off estimates, 𝜉𝜉𝑖𝑖 , 𝑖𝑖 = 1, … ,𝐾𝐾 − 1. Since 𝜉𝜉𝑖𝑖, … , 𝜉𝜉𝐾𝐾−1 are asymptotically joint normal 

and the 𝐶𝐶𝑐𝑐𝑖𝑖’s are continuous differentiable functions of the 𝜉𝜉𝑖𝑖’s, then Rao’s linkage theorem says 

that the set of  �̂�𝐶𝑐𝑐𝑖𝑖’s are also asymptotically joint normally distributed. Indeed, since each 𝐶𝐶𝑐𝑐𝑖𝑖 is 

a function of only a single 𝜉𝜉𝑖𝑖, the (asymptotic) variance of �̂�𝐶𝑐𝑐𝑖𝑖 is given by simply the single 

derivative 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣��̂�𝐶𝑐𝑐𝑖𝑖� =  �𝜕𝜕𝐶𝐶𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 �2  • 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝜉𝜉𝑖𝑖)  for i = 1, …, K-1 ,  (43) 

 

where we have already seen that 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣�𝜉𝜉𝑖𝑖� =  
𝑝𝑝𝑖𝑖(1− 𝑝𝑝𝑖𝑖)
[𝑓𝑓(𝜉𝜉𝑖𝑖)]2  

 

where 𝑓𝑓(•) is the underlying population density function of incomes from which the estimation 

sample is drawn. 
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 To establish the derivative �𝜕𝜕𝐶𝐶𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 � , it is convenient to express the (cumulative) variance as  

 𝜎𝜎𝑐𝑐𝑖𝑖2 = 𝐸𝐸(𝑌𝑌2 ǀ 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) −  µ𝑐𝑐𝑖𝑖2  

and consider the derivative of 𝐶𝐶𝑐𝑐𝑖𝑖2 : 

 

 
𝜕𝜕𝐶𝐶𝑐𝑐𝑖𝑖2𝜕𝜕𝜉𝜉𝑖𝑖 =  

𝜕𝜕(𝜎𝜎𝑐𝑐𝑖𝑖2 / µ𝑐𝑐𝑖𝑖2) 𝜕𝜕𝜉𝜉𝑖𝑖   

         =  � 1
µ𝑐𝑐𝑖𝑖2�  •  �𝜕𝜕𝜎𝜎𝑐𝑐𝑖𝑖2 𝜕𝜕𝜉𝜉𝑖𝑖 �+  𝜎𝜎𝑐𝑐𝑖𝑖2  •   �𝜕𝜕µ𝑐𝑐𝑖𝑖−2𝜕𝜕𝜉𝜉𝑖𝑖 � 

i.e., 2𝐶𝐶𝑐𝑐𝑖𝑖  •  �𝜕𝜕𝐶𝐶𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 � =  � 1
µ𝑐𝑐𝑖𝑖2�  •  �𝜕𝜕𝜎𝜎𝑐𝑐𝑖𝑖2 𝜕𝜕𝜉𝜉𝑖𝑖 � − 2 �𝜎𝜎𝑐𝑐𝑖𝑖2 

µ𝑐𝑐𝑖𝑖2 � � 1
µ𝑐𝑐𝑖𝑖� •  �𝜕𝜕µ𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 � . 

So,  

 
𝜕𝜕𝐶𝐶𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 =  �12�  � 1𝜎𝜎𝑐𝑐𝑖𝑖•µ𝑐𝑐𝑖𝑖� •  �𝜕𝜕𝜎𝜎𝑐𝑐𝑖𝑖2 𝜕𝜕𝜉𝜉𝑖𝑖 � −  �𝐶𝐶𝑐𝑐𝑖𝑖

µ𝑐𝑐𝑖𝑖� •  �𝜕𝜕µ𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 � .     (44) 

 

 By Leibritz’s rule, the two component derivatives are then, if µ𝑐𝑐𝑖𝑖 =  � 1𝑝𝑝𝑖𝑖�  ∫  𝑦𝑦 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 
𝜉𝜉𝑖𝑖0 , 

 
𝜕𝜕µ𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 = � 1𝑝𝑝𝑖𝑖�  𝜉𝜉𝑖𝑖  • 𝑓𝑓(𝜉𝜉𝑖𝑖),        (45) 

 

and if   𝜎𝜎𝑐𝑐𝑖𝑖2 =  𝐸𝐸(𝑌𝑌2 ǀ 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) −  µ𝑐𝑐𝑖𝑖2  

          = � 1𝑝𝑝𝑖𝑖�  ∫  𝑦𝑦2 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 − µ𝑐𝑐𝑖𝑖2 
𝜉𝜉𝑖𝑖0 ,  

 
𝜕𝜕𝜎𝜎𝑐𝑐𝑖𝑖2 𝜕𝜕𝜉𝜉𝑖𝑖 =  � 1𝑝𝑝𝑖𝑖�  𝜉𝜉𝑖𝑖2  •  𝑓𝑓(𝜉𝜉𝑖𝑖) −  2µ𝑐𝑐𝑖𝑖 • �� 1𝑝𝑝𝑗𝑗�  𝜉𝜉𝑖𝑖  • 𝑓𝑓(𝜉𝜉𝑖𝑖)�  

         =  � 1𝑝𝑝𝑖𝑖�  𝜉𝜉𝑖𝑖  • 𝑓𝑓(𝜉𝜉𝑖𝑖) • [𝜉𝜉𝑖𝑖 −  2µ𝑐𝑐𝑖𝑖] .      (46) 

 

Substituting (45) and (46) into (44) leads to 
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𝜕𝜕𝐶𝐶𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 = �12�  � 1𝜎𝜎𝑐𝑐𝑖𝑖•µ𝑐𝑐𝑖𝑖� •  �� 1𝑝𝑝𝑖𝑖�  𝜉𝜉𝑖𝑖  • 𝑓𝑓(𝜉𝜉𝑖𝑖)(𝜉𝜉𝑖𝑖 −  2µ𝑐𝑐𝑖𝑖)� 

   −  �𝐶𝐶𝑐𝑐𝑖𝑖
µ𝑐𝑐𝑖𝑖�  •  �� 1𝑝𝑝𝑖𝑖�  𝜉𝜉𝑖𝑖  • 𝑓𝑓(𝜉𝜉𝑖𝑖)� 

       = � 1𝑝𝑝𝑖𝑖�  𝜉𝜉𝑖𝑖  • 𝑓𝑓(𝜉𝜉𝑖𝑖) • ��12� (𝜉𝜉𝑖𝑖− 2µ𝑐𝑐𝑖𝑖)𝜎𝜎𝑐𝑐𝑖𝑖•µ𝑐𝑐𝑖𝑖 −  �𝐶𝐶𝑐𝑐𝑖𝑖
µ𝑐𝑐𝑖𝑖�� . 

Thus, 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣��̂�𝐶𝑐𝑐𝑖𝑖� =  �𝜕𝜕𝐶𝐶𝑐𝑐𝑖𝑖𝜕𝜕𝜉𝜉𝑖𝑖 �2  •  
𝑝𝑝𝑖𝑖(1− 𝑝𝑝𝑖𝑖)
[𝑓𝑓(𝜉𝜉𝑖𝑖)]2   

               = �1− 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 � � 𝜉𝜉𝑖𝑖µ𝑐𝑐𝑖𝑖�2 •  ��12� (𝜉𝜉𝑖𝑖− 2µ𝑐𝑐𝑖𝑖)𝜎𝜎𝑐𝑐𝑖𝑖 −  𝐶𝐶𝑐𝑐𝑖𝑖�2 

 = �1− 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 � � 𝜉𝜉𝑖𝑖µ𝑐𝑐𝑖𝑖�2 •  ��12� � 1𝐶𝐶𝑐𝑐𝑖𝑖� • �� 𝜉𝜉𝑖𝑖µ𝑐𝑐𝑖𝑖� − 2� −  𝐶𝐶𝑐𝑐𝑖𝑖�2.   (47) 

 

Note that, once again, the (asymptotic) variance is distribution-free, and each term in (47) can be 

consistently estimated directly from the available sample. 

 The standard error of the sample �̂�𝐶𝑐𝑐𝑖𝑖 , then, is gotten as 

 𝐼𝐼.𝐸𝐸. ��̂�𝐶𝑐𝑐𝑖𝑖� =  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣(�̂�𝐶𝑐𝑐𝑖𝑖)𝑁𝑁 �1/2
  

where, as usual, N is the size of the estimation sample. The estimated variance of the difference 

in (cumulative) coefficients of variation for independent samples from distribution A and B is 

then 

 𝑉𝑉𝑣𝑣�𝑣𝑣(�̂�𝐶𝑐𝑐𝑖𝑖𝑏𝑏 − �̂�𝐶𝑐𝑐𝑖𝑖𝑣𝑣) = 𝐼𝐼.𝐸𝐸. ��̂�𝐶𝑐𝑐𝑖𝑖𝑣𝑣�2 +  𝐼𝐼.𝐸𝐸. ��̂�𝐶𝑐𝑐𝑖𝑖𝑏𝑏�2 

and the t-ratio statistic of the difference is 

𝑡𝑡 =  
�̂�𝐶𝑐𝑐𝑖𝑖𝑏𝑏 − �̂�𝐶𝑐𝑐𝑖𝑖𝑣𝑣�𝑉𝑉𝑣𝑣�𝑣𝑣(�̂�𝐶𝑐𝑐𝑖𝑖𝑏𝑏 − �̂�𝐶𝑐𝑐𝑖𝑖𝑣𝑣)�1/2 

that is used in Step 3 of the PEC test criterion. 
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 Again, it would be helpful to practitioners using official published statistics on income 

shares if the official statistical agencies also provided quantile standard deviations along with 

their quantile means, so users can undertake statistical inference on crossing Lorenz curves if 

they wish. 

 It should be noted that the Stage 3 tests take place over the pre-specified quantile 

intervals (eg., over each decile group) and not at estimated cross-over points. This is done for 

convenience, based on current knowledge, because of the known and distribution-free 

(asymptotic) variance-covariance structure of the quantile �̂�𝐶𝑐𝑐𝑖𝑖 statistics. The (asymptotic) 

variance-covariance structure of �̂�𝐶𝑐𝑐’s at estimated cross-over points is not known and is likely 

quite messy. In the experience of this researcher, one cross-over point is quite common and even 

typical two such points have been observed on rare occasions, but more than two have never 

been encountered when using decile intervals. I would thus argue that, for the purpose of 

inequality ranking for income distributions as a whole, decile breakdowns are quite sufficient to 

pick up relevant Lorenz curve cross-overs. 

 Note that quantile dominance, Lorenz curve dominance, and transfer sensitivity 

dominance essentially correspond to first-order, second-order, and third-order stochastic 

dominance of one distribution by another. This analytical framework has generated a huge 

literature, especially in the finance field where testing for stochastic dominance efficiency is 

applied over a class of portfolios based on portfolio returns and investor preference toward risk 

(Post, 2003; Scaillet and Topaloglou, 2010; and Linton et al., 2014). These test procedures 

typically involve heavy computational techniques such as computer programming optimization 

and (block) bootstrapping methods. Application of the stochastic dominance framework to 

income distributions and income inequality comparisons are found in Anderson (1996) based on 
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Pearson goodness-of-fit tests and in Maasoumi and Heshmati (2000), Barrett and Donald (2003), 

and Linton et al. (2005) based on forms of Kolmogorov-Smirnov goodness-of-fit tests and on 

resampling/simulation procedures and bootstrapping methods. The stochastic dominance 

approach also underlies Davidson and Duclos’ (2000) application of statistical inference to 

poverty rankings along with welfare and inequality comparisons in a unified analytical 

framework. While they rely on bootstrapping for inference results, they note that use of 

(asymptotic) variance information as pivot points is known to improve inference results (i.e., 

make tests more powerful). Applications of their test procedures are found in Duclos and Araar 

(2006).  

 

 

11.  Distributional Distance Dominance and Income Polarization 

 One aspect of concern about rising income inequality is the implied growing economic 

and social distance between income groups, economic inclusion, and the potential political 

fracturing this may bring about. The literature and media have focussed on the widening gap 

between top incomes and the rest of the distribution and the increasing difficulty of lower-

income workers to pull ahead into stable middle-income status – the sense of belonging to the 

Middle Class may be weakening. So this raises the question of whether there is a way to 

measure, in general fashion, the growing economic distances between different income groups 

across a distribution? 

 The analysis of this paper suggests just such a measure – a “distributional distance 

function”. It can perhaps be most conveniently pictured as a graph with deciles or percentiles 

measured along the base or horizontal axis (e.g., i = 1, 2, …, K) and incremental quantile mean 
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income gaps (µ�𝑖𝑖 − µ�𝑖𝑖−1) measured along the vertical or left-hand axis. This relationship or curve 

may be referred to as the distributional distance function for a given income distribution.  

Its ordinates show the distance or income gap between adjacent quantile groups in a 

distribution. So for some distributions, the gaps may be relatively wide between lower and 

middle-class quantile groups, suggesting it is more difficult to move up to middle-income status. 

Obviously, gaps could be combined to show the distance between, say, bottom and middle 

income groups. While for other situations – such as over recent decades in the Canadian and U.S. 

economies – the widening gaps have been most dramatic at the upper end of the distributions.8 

Indeed, one can compare such curves between two income distributions and argue that 

the uniformly lower curve is said to distance dominate or show distributional distance dominance 

over the higher such curve. Comparing such curves would also allow one to identify which 

regions of a distribution are showing widening income distance gaps over time. Such 

comparisons can be easily done from decile mean income figures published annually by official 

statistical agencies such as Statistics Canada and the U.S. Bureau of the Census. 

 Employing the analytical machinery of the present paper also allows one to extend formal 

statistical inference and hypothesis testing to such a comparison. The key is to represent each 

(sample) distributional distance function by the vector9 

 �̂�𝑑 = (µ�1,  µ�2 − µ�1, … ,  µ�𝐾𝐾 − µ�𝐾𝐾−1 )′  

                                                           

8
 Distributional distances could also be expressed in proportion terms – such as (µ�𝑖𝑖 − µ�𝑖𝑖−1) / µ�𝑖𝑖−1 – and 

application of Rao’s linkage theorem would still carry through. But for intuitive appeal and convenience 
of linear analysis, we’ll express distributional distances in dollar or level terms (though see the Appendix 
on income polarization proportional gaps). 
    
9
 This is to be distinguished from the 𝑑𝑑𝑖𝑖 vectors in Section 6.2. 
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where the first element can be thought of as  µ�1 − µ�0 where  µ�0 = 0 . Testing and inference then 

depend on the statistical properties of these quantile mean differences. One can also develop a 

formal PEC rule for comparing income distributions in terms of overall distance dominance. 

 

11.1 Statistical Inference for the Distributional Distance Function 

 The sample vector �̂�𝑑 is a linear function of µ� , the vector of quantile means: 

 �̂�𝑑 =  𝐷𝐷 • µ�  and 𝑑𝑑 = 𝐷𝐷 • µ 

where, for purposes of this section,10 

 𝐷𝐷 = � 1 0−1 1⋱ ⋱
0 −1 1

�        (48) 

is a KxK non-random banded matrix with ones along the principal diagonal, minus ones just 

below the principal diagonal, and zeros elsewhere. As has already been seen, µ� is asymptotically 

joint normally distributed with mean vector µ and (asymptotic) variance-covariance matrix 𝑉𝑉𝐼𝐼 . It 

then follows from Rao’s linkage theorem that �̂�𝑑 is also asymptotically joint normally distributed 

with mean 𝑑𝑑 and (asymptotic) variance-covariance matrix 

 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣��̂�𝑑� =  ∆𝐼𝐼 =  𝐷𝐷 •  𝑉𝑉𝐼𝐼  •  𝐷𝐷′ = [𝛿𝛿𝐼𝐼(𝑖𝑖, 𝑗𝑗)] ,     (49) 

 

where the elements of 𝑉𝑉𝐼𝐼 are worked out in section 5.2 above. Thus, for example, for i = 2, …, K, 

 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣��̂�𝑑𝑖𝑖� =  𝑣𝑣𝐼𝐼(𝑖𝑖 − 1, 𝑖𝑖 − 1) +  𝑣𝑣𝐼𝐼(𝑖𝑖, 𝑖𝑖) − 2𝑣𝑣𝐼𝐼(𝑖𝑖 − 1, 𝑖𝑖) , 

                                                           

10
 This is to be distinguished from the D matrix in Section 8. 
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where 𝑣𝑣𝐼𝐼(𝑖𝑖, 𝑗𝑗) is the i,j’th element of 𝑉𝑉𝐼𝐼 . Thus, the standard error of �̂�𝑑𝑖𝑖 is 

 𝐼𝐼.𝐸𝐸. ��̂�𝑑𝑖𝑖� =  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣�𝑑𝑑�𝑖𝑖�𝑁𝑁 �1/2
         (50) 

for estimation sample size N. One can then use (50) to formally test for the statistical 

significance of any individual quantile difference based on an (asymptotic) standard normal test. 

 

11.2 A PEC for Distributional Distance Dominance 

 To rank overall distance dominance between two (independent) income distributions, one 

can adopt a practical empirical criterion similar to that for establishing rank dominance. 

 Step 1 – Test the joint null hypothesis of equality of the two distributional distance 

vectors, 𝑑𝑑𝑣𝑣 and 𝑑𝑑𝑏𝑏 (corresponding to distributions A and B), versus the alternative hypothesis of 

non-equality. This can be done with the test statistic 

 (�̂�𝑑𝑏𝑏 −  �̂�𝑑𝑣𝑣)′ �∆�𝑣𝑣 +  ∆�𝑏𝑏�−1(�̂�𝑑𝑏𝑏 −  �̂�𝑑𝑣𝑣)        (51) 

 

where ∆�𝑣𝑣=  �𝛿𝛿𝑣𝑣(𝑖𝑖, 𝑗𝑗)� ,   ∆�𝑏𝑏=  ��̂�𝛿𝑏𝑏(𝑖𝑖, 𝑗𝑗)� , 
 𝛿𝛿𝑣𝑣(𝑖𝑖, 𝑗𝑗) =  𝛿𝛿𝐼𝐼𝑣𝑣(𝑖𝑖, 𝑗𝑗) / 𝑁𝑁𝑣𝑣 , 

and 𝛿𝛿𝑏𝑏(𝑖𝑖, 𝑗𝑗) =  𝛿𝛿𝐼𝐼𝑏𝑏(𝑖𝑖, 𝑗𝑗) / 𝑁𝑁𝑏𝑏 .  

 ∆�𝑣𝑣 and ∆�𝑏𝑏 are thus the estimated variance-covariance matrices of �̂�𝑑𝑣𝑣 and �̂�𝑑𝑏𝑏 , respectively, and 

are obtained by (i) rescaling the elements of the asymptotic variance-covariance matrices ∆𝐼𝐼𝑣𝑣 and ∆𝐼𝐼𝑏𝑏 by their respective sample sizes and (ii) replacing all unknown population terms by their 

consistent sample estimates. Under the null hypothesis of equality of the two distance vectors, 

statistic (51) is asymptotically chi-square with K degrees of freedom. If the null hypothesis is not  
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rejected, then the two distributions can be said to have distributional distance functions that are 

not statistically significantly different, and further comparison is not pursued. 

 Step 2 – If, however, the null hypothesis in Step 1 is rejected, then proceed to calculate 

separate “t-statistics” for differences on each of the individual quantile distance elements: 

𝑡𝑡𝑖𝑖 =  
𝑑𝑑�𝑖𝑖𝑏𝑏−𝑑𝑑�𝑖𝑖𝑎𝑎�𝛿𝛿�𝑎𝑎(𝑖𝑖,𝑖𝑖)+ 𝛿𝛿�𝑏𝑏(𝑖𝑖,𝑖𝑖)�1/2  ,  i = 1, … K ,       (52) 

where 𝛿𝛿(𝑖𝑖, 𝑖𝑖) =  �𝐼𝐼.𝐸𝐸. (�̂�𝑑𝑖𝑖)�2 is the estimated variance of  �̂�𝑑𝑖𝑖 – disregarding the superscripts a 

and b for convenience. Then compare these individual t-statistics to critical values on the SMM 

distribution with K and infinite degrees of freedom. If at least one of these individual “t-tests” is 

statistically significant of one sign and none of the other individual t-statistics are statistically 

significant of the other sign, then one can conclude that the distributional distance function with 

the lower �̂�𝑑𝑖𝑖’s – say distribution A – dominates that of the other distribution (i.e., B). If not, one 

can say that the two distributional distance functions are statistically significantly different, but 

not reach a conclusion as to whether one distance dominates the other overall. 

 

 

 

11.3  Income Polarization 

 An alternative way of looking at distributional distance is in terms of the gap separating 

lower or higher incomes from middle incomes. This better highlights income distances at the two 

ends of the distribution from middle class incomes and hence the magnitude of economic 

exclusion. This could also serve as a measure of the degree of polarization or pulling apart in an 

income distribution. 
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 In general, the intuitive concept of polarization in an income distribution can be viewed 

as having two quite distinct dimensions or aspects. One is the size dimension or the relative 

concentration of income recipients at the two ends of the distribution. This could be labelled tail 

frequency polarization. This could be captured, for example, by the proportion of recipients in 

lower or higher income groups (Wolfson, 1994), perhaps as captured by the proportions of 

recipients below 50 percent or above 200 percent of the median income level. The other is the 

distance dimension or the size of the income gap separating top and middle-class incomes or 

bottom and mid-range incomes. This may be referred to as income polarization and could be 

captured, say, by the gaps 𝜇𝜇𝐾𝐾 −  𝜇𝜇𝑀𝑀 and  𝜇𝜇𝑀𝑀 −  𝜇𝜇1 where 𝜇𝜇𝑀𝑀 is some measure of mean middle 

incomes. These two dimensions correspond exactly to the size of the Middle Class within a 

distribution and the mean middle-class income level (Beach, 2016). Both provide useful insights 

to understanding what has been happening to the so-called Middle Class in many countries since 

about 1980. 

 However, the statistical properties of these two sets of measures of polarization are quite 

different. Tail frequency statistics, we have already seen, have (asymptotic) variances and 

covariances which are distribution-dependent (Beach, 2021). While quantile-based mean income 

statistics turn out to have (asymptotic) variances and covariances which are distribution-free and 

hence are easy to estimate directly. For this reason, we focus in this section on income 

polarization measures that are based on quantile means. 

 It is useful, then, to consider what may be called an income polarization curve |𝜇𝜇𝑖𝑖 −  𝜇𝜇𝑀𝑀| 

over different quantile values of i and where 𝜇𝜇𝑀𝑀 is the mean of middle quantile-group incomes. 

More specifically, in the case of deciles, say, let 𝜇𝜇𝑀𝑀 = (.5)(𝜇𝜇5 + 𝜇𝜇6) and define a Kx1 income 

polarization ordinate vector to be  
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 𝑞𝑞 =  (𝜇𝜇𝑀𝑀 −  𝜇𝜇1, … 𝜇𝜇𝑀𝑀 −  𝜇𝜇4;  0, 0;  𝜇𝜇7 −  𝜇𝜇𝑀𝑀, … 𝜇𝜇10 −  𝜇𝜇𝑀𝑀)′ .   (52) 

For vigintiles, use  𝜇𝜇𝑀𝑀 = (.5)(𝜇𝜇10 +  𝜇𝜇11) and the vector q has 18 non-zero elements. The vector 

q thus be seen11 as a linear transform of the quantile mean vector (representing the quantile curve 

of Section 5): 

 𝑞𝑞 =  𝑄𝑄𝜇𝜇  

where 𝑄𝑄 is a (KxK) matrix with (in the case of deciles) – 𝐼𝐼4 in its top left portion, 𝐼𝐼4 in the bottom 

right portion, 0.5 elements in rows 1-4 and columns 5 and 6, -0.5 elements in rows 7-10 and 

columns 5 and 6, and zeros elsewhere (where 𝐼𝐼4 is a 4x4 identity matrix).12 The income 

polarization curve thus has two separate arms – one showing the degree of income polarization 

over the lower portion of the distribution and the other illustrating polarization over the upper 

portion of the distribution. Since the latter is unbounded, it is likely to be much higher or more 

extreme than the former. For various purposes, one may wish to focus on just one arm or the 

other of the curve. 

 This formulation has clear similarities to the Foster and Wolfson’s (1992) concept of a 

polarization curve presented in Kovacevic and Binder (1997, p. 50): 

 𝐵𝐵(𝑝𝑝) =  
�𝜉𝜉𝑝𝑝− 𝜉𝜉50�𝜉𝜉50          (53) 

 

where 𝜉𝜉50 is the median income level and 𝜉𝜉𝑝𝑝 is the p’th percentile income cut-off level. But, 

while the intuition is similar between (52) and (53), the latter has an (asymptotic) variance-

                                                           

11
 See the 𝑞𝑞𝑖𝑖  terms at the end of Section 2. 

 
12

 The income polarization curve could obviously also be expressed in proportional terms by dividing 
each term in (52) by 𝜇𝜇𝑀𝑀 . But to keep the analysis as simple as possible, we will work here only with the 
curve expressed in level or dollar terms. Asymptotic variances and standard errors for vector elements in 
terms of relative gaps are provided in the Appendix of the paper. 
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covariance structure that is again distribution-dependent. The corresponding structure of (52) is 

known and distribution-free. 

 Indeed, since 𝑞𝑞� = 𝑄𝑄�̂�𝜇 is a linear transform of �̂�𝜇, it can be seen that 𝑞𝑞� is also 

asymptotically normally distributed with mean 𝑞𝑞 and (asymptotic) variance-covariance matrix 

 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑞𝑞�) = 𝐻𝐻 = [𝜂𝜂𝐴𝐴(𝑖𝑖, 𝑗𝑗)] = 𝑄𝑄 𝑉𝑉𝐴𝐴 𝑄𝑄′ .      (54a) 

 

Actually, the (asymptotic) variances can be shown to be  

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑞𝑞�𝑖𝑖) = 𝑣𝑣𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(|�̂�𝜇𝑖𝑖 −  �̂�𝜇𝑀𝑀|) =  𝜂𝜂𝐴𝐴(𝑖𝑖, 𝑗𝑗)     for i = 1, …, 4; 7, …, 10 

      =  𝑣𝑣𝐴𝐴(𝑖𝑖, 𝑖𝑖) + (. 25)𝑣𝑣𝐴𝐴(5,5) + (. 25)𝑣𝑣𝐴𝐴(6,6)     (54b) 

           + (. 5)𝑣𝑣𝐴𝐴(5,6)−  𝑣𝑣𝐴𝐴(𝑖𝑖, 5) −  𝑣𝑣𝐴𝐴(𝑖𝑖, 6). 

 

Thus, the standard error for each (non-random) curve ordinate is  

 𝐼𝐼.𝐸𝐸. (𝑞𝑞�𝑖𝑖) =  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣(𝑞𝑞�𝑖𝑖𝑁𝑁 �1/2
        (55) 

for estimation sample size N, and formal tests on these individual income polarization curve 

ordinates can be based on (55). 

 

 

11.4 A PEC for Income Polarization Curve Dominance 

 A formal PEC procedure for comparing and ranking income polarization dominance can 

be undertaken along the same 2-step approach as in Section 11.2 for distributional distance 

dominance. However, quite different factors may be operating over the lower and higher regions 

of the distribution, resulting in different patterns of change over the two tail regions of the 
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distribution. It thus probably makes more sense to focus income polarization curve dominance 

tests on only one tail or one arm of the income polarization curve, or on both curves separately. 

If so, the above 2-step PEC procedure can be applied to only one arm of the curve at a time. The 

only things that change in the test procedure are the appropriate degrees of freedom for each arm 

and the relevant variance-covariance matrix used in the calculations. In the case of deciles, the 

degrees of freedom in Step 2 are (10-2)/2 = 4 and infinite, or more generally (for even numbers 

of quantile groups) (K-2)/2 and infinite degrees of freedom on the SMM test distribution. 

 In the case of relevant variance-covariance matrix to use in the calculations, Step 1 of the 

above procedure involves elements of 

 𝐻𝐻 = 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑞𝑞�) = 𝑄𝑄 𝑉𝑉𝐴𝐴 𝑄𝑄′ . 
For one-arm application of the PEC procedure, one uses only the top portion of H or the bottom 

portion of H. In either case, it can be shown that  

 

 𝜂𝜂𝐴𝐴(𝑖𝑖, 𝑗𝑗) =  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣�𝑞𝑞�𝑖𝑖, 𝑞𝑞�𝑗𝑗�  
      =  𝑣𝑣𝐴𝐴(𝑖𝑖, 𝑗𝑗) − [(. 5)𝑣𝑣𝐴𝐴(𝑖𝑖, 5) + (. 5)𝑣𝑣𝐴𝐴(𝑖𝑖, 6)]      

                          −[(. 5)𝑣𝑣𝐴𝐴(𝑗𝑗, 5) + (. 5)𝑣𝑣𝐴𝐴(𝑗𝑗, 6)]      (56) 

                         +[(. 25)𝑣𝑣𝐴𝐴(5,5) + (. 25)𝑣𝑣𝐴𝐴(6,6) + (. 5)𝑣𝑣𝐴𝐴(5,6)] . 

 

It can be readily seen that, if i = j, eq. (56) reduces to eq. (54) as one would expect. 

 

 

 

 



67 

 

12. Review and Conclusions 

 The theoretical literature on social choice and economic welfare evaluation has offered 

several dominance criteria for ranking key aspects of income distributions – such as rank 

dominance, Lorenz dominance or generalized Lorenz dominance across different distributions – 

and based on comparing curves such as quantile mean curves or Lorenz curves. This paper 

provides the statistical tools and procedures for actually implementing these dominance criteria 

empirically with microdata sets that can be readily obtained from statistical agencies such as 

Statistics Canada and the U.S. Bureau of the Census. The approach followed thus advances the 

statistical inference framework for a tool box of disaggregative income inequality measures 

(such as quantile means and income shares) published by these agencies. 

 More specifically, the analysis of this paper suggests a statistical tool box of five set of 

disaggregative inequality measures that have either simple descriptive value or use in the 

inferential procedures developed in this paper: 

• summary parameters: �̂�𝜇,𝜎𝜎�, and 𝜎𝜎� / �̂�𝜇  

• basic quantile statistics: 𝜉𝜉𝑖𝑖, �̂�𝜇𝑖𝑖, and 𝐼𝐼𝐼𝐼� 𝑖𝑖 (Section 2) 

• Lorenz curve-related statistics: 𝑙𝑙𝑖𝑖,𝑔𝑔�𝑖𝑖, and �̂�𝑣𝑖𝑖 (Sections 4-8) 

• crossing Lorenz curve statistics: 𝜇𝜇𝑐𝑐�𝑖𝑖,𝜎𝜎𝑐𝑐�𝑖𝑖, and 𝐶𝐶𝑐𝑐�𝑖𝑖 (Sections 9-10) 

• income polarization statistics: �̂�𝑑𝑖𝑖 , 𝑞𝑞�𝑖𝑖, and 𝑞𝑞𝑣𝑣�𝑖𝑖 (Section 11 and Appendix). 

The second group consists of quantile means and variances (and the cut-off income levels 

separating these). The third group includes the Lorenz curve ordinates (or cumulative shares), 

relative mean incomes  �̂�𝑣𝑖𝑖 = �̂�𝜇𝑖𝑖 / �̂�𝜇 , and ordinates of the generalized Lorenz curve. The 

cumulative coefficient of variation statistics useful for comparing crossing Lorenz curves are 

listed in the fourth group. And the distributional distance and income polarization curve statistics 
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are featured in the fifth group of tool box disaggregative statistics. These statistics provide the 

basis for possible computer programs to usefully describe and assess the statistical reliability of 

distributional change (Jenkins, 1999; and Jann, 2016) or differences between population groups. 

 The process for implementing the developments in this paper involves three stages. The 

first stage consists of representing a dominance curve by a vector of the curve’s estimated 

ordinates for a set of specified quantile points (such as deciles or percentiles). This transforms a 

theoretical problem into a statistical one. The second stage involves establishing the statistical 

properties of this vector of sample ordinates through use of recent developments on quantile-

based inferences that are distribution-free and thus very straightforward to implement directly. 

This transforms the statistical problem into an inferential one by providing a framework for 

basing comparisons on formal statistical inference and testing. The third stage of implementing 

dominance comparisons involves proposing specific practical empirical criteria (or PECs) – one 

can think of these as a type of decision tree – for using formal statistical inference tests to reach 

empirical conclusions about the ranking of the key aspects of income distributions between 

different distributions based on the theoretical dominance criteria. This converts a series of 

statistical test outcomes to conclusions with respect to the possible ranking of these key features 

of income distributions being compared. 

 This approach is applied to several dominance rules for ranking social welfare or income 

inequality between distributions: 

• rank dominance for comparing social welfare (Section 5) 

• Lorenz dominance for comparing income inequality (Section 6) 

• generalized Lorenz dominance for comparing social welfare (Section 7) 

• Lorenz dominance for comparing income inequality when Lorenz curves cross (Sections 
9, 10) 
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• distributional distance dominance and income polarization for comparing distances 

between income groups (Section 11 and Appendix). 

These dominance criteria can all be expressed in terms of income shares and quantile means, and 

hence their statistical properties can be easily established. Since statistical inference for quantile-

based income shares and quantile means has been shown to be distribution-free (in the sense of 

not depending on any specific underlying income distribution function), so also is statistical 

inference for these above statistics, and hence test statistics for these can be readily obtained as 

well. 

 The analytical results in the paper have several implications. First, they show that quite 

broad inferences can be drawn as to social welfare and inequality comparisons that do not rely on 

single aggregate or summary measures and can be much more general. Thus there should be a 

shift in focus from specific summary measures of inequality to whole sets of disaggregative 

measures that are readily available in official statistical sources. Since these disaggregative 

measures are all quantile-based, the analysis thus highlights this disaggregative quantile-based 

approach to characterizing and measuring income inequality. 

 Second, the analysis of the paper shows that these disaggregative income inequality 

statistics can – when used jointly – provide not just descriptive information on changing patterns 

of inequality, but also (under fairly broad and reasonable conditions) normative insights and 

inferences as well. The paper also shows how these readily available disaggregative measures of 

income inequality – with only a bit more information – can also provide the basis for formal 

statistical inference and standard statistical testing protocols. 

 Third, this paper presents a simple and straightforward test procedure for statistical 

dominance in situations where ordering of observations into quantile groups makes sense and 
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interest focuses on only first-, second-, and third-order dominance. This is the situation, for 

example, in the empirical analysis of distributions of income, earnings, or wealth. 

 Fourth, the disaggregative statistics used in this paper provide a useful complement to 

what government statistical agencies such as Statistics Canada and the U.S. Bureau of the Census 

already provide. Along with their income shares, quantile means and quantile cut-off values the 

agencies publish annually, they should also include information on (i) the sample sizes of the 

estimation samples the above statistics are based on, as well as (ii) cumulative means and 

standard deviations by quantile group (including for the full samples). This would allow 

empirical users to calculate relevant test statistics for formal statistical inference on the above 

published statistics as part of their empirical analysis. 
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Appendix 

Standard Errors of Relative Income Polarization Curve Ordinates 

 

 Consider the relative income polarization curve ordinates 

 𝑞𝑞𝑣𝑣�𝑖𝑖 = |�̂�𝜇𝑖𝑖 −  �̂�𝜇𝑀𝑀| / �̂�𝜇𝑀𝑀 

 

for, in the case of deciles, i =1, …, 4; 7, …, 10, and the middle group mean income is �̂�𝜇𝑀𝑀 =

(�̂�𝜇5 +  �̂�𝜇6) / 2 . 

 Then, by the application of Rao’s linkage theorem, it can be shown that 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑞𝑞𝑣𝑣�𝑖𝑖) =  � 1𝜇𝜇𝑀𝑀�2  • 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇𝑖𝑖) + � 𝜇𝜇𝑖𝑖𝜇𝜇𝑀𝑀2 �2  • 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇𝑀𝑀) 

  − 2 � 1𝜇𝜇𝑀𝑀� � 𝜇𝜇𝑖𝑖𝜇𝜇𝑀𝑀2 �  • 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇𝑖𝑖, �̂�𝜇𝑀𝑀 )      (A1) 

where 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇𝑀𝑀) = (. 25)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇5) +  (. 25)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇6) + (. 5)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇5,  �̂�𝜇6) 

and 

 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇𝑖𝑖,  �̂�𝜇𝑀𝑀) = (. 5)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇𝑖𝑖,  �̂�𝜇5) + (. 5)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇𝑖𝑖,  �̂�𝜇6) . 

Therefore, 

𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑞𝑞𝑣𝑣�𝑖𝑖) =  � 1𝜇𝜇𝑀𝑀�2  • 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇𝑖𝑖) 

−� 1𝜇𝜇𝑀𝑀� � 𝜇𝜇𝑖𝑖𝜇𝜇𝑀𝑀2 � [𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇𝑖𝑖,  �̂�𝜇5) + 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇𝑖𝑖,  �̂�𝜇6)]  (A2a) 

+� 𝜇𝜇𝑖𝑖𝜇𝜇𝑀𝑀2 �2 [(. 25)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇5) + (. 25)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜇6) + (. 5)𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑟𝑟𝑣𝑣(�̂�𝜇5,  �̂�𝜇6)] 

=  � 1𝜇𝜇𝑀𝑀�2 𝑣𝑣𝐼𝐼(𝑖𝑖, 𝑖𝑖) − � 1𝜇𝜇𝑀𝑀� � 𝜇𝜇𝑖𝑖𝜇𝜇𝑀𝑀2 � [𝑣𝑣𝐼𝐼(𝑖𝑖, 5) + 𝑣𝑣𝐼𝐼(𝑖𝑖, 6)]    (A2b) 
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+ � 𝜇𝜇𝑖𝑖𝜇𝜇𝑀𝑀2 �2 [(.25)𝑣𝑣𝐼𝐼(5,5) + (. 25)𝑣𝑣𝐼𝐼(6,6) + (. 5)𝑣𝑣𝐼𝐼(5,6)].  

 It then follows that 

 𝐼𝐼.𝐸𝐸. (𝑞𝑞𝑣𝑣�𝑖𝑖) =  �𝐴𝐴𝐴𝐴𝐴𝐴.�̂�𝑣𝑣𝑣𝑣𝑣(𝑞𝑞𝑣𝑣� 𝑖𝑖𝑁𝑁 �1/2
.        (A3) 

These formulas hold for both i = 1, …, 4 as well as for i = 7, …, 10; i.e. for both arms of the 

relative income polarization curve ordinates. 

 


