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Abstract

Many markets feature sequentially mixed search (SMS), which has directed search

for an offer distribution followed by noisy matching with multiple offers. I construct a

tractable model of SMS, establish existence of a unique equilibrium, and analyze the

novel implications of the equilibrium on quantities and price dispersion. Moreover, I

show that an increase in the meeting efficiency widens price dispersion. An extension

endogenizing search effort shows that the equilibrium is constrained inefficient, where

visitors’ search effort is inefficiently high and can be a strategic complement. Under

a mild condition, policies that restore efficiency should lean against the wind by

increasing the tax on the joint value of trade in an economic boom and reducing this

tax in a recession.
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1. Introduction

A real estate agent often asks a house buyer what price range and neighborhood the buyer

is searching for. The agent gives a list of houses on the market that fit into the buyer’s

description and the buyer can visit more than one house on the list before making an offer.

Similarly, when searching for a job, a worker has a desired range of wages and restricts the

applications to such wages. The worker may be interviewed for several jobs that fit into

the desired range before choosing whether to accept one of them. In the market for goods

and services, a consumer narrows down search to a specific range of prices and conditions

and, after getting a number of quotes in the range, chooses whether to trade. An example

is online booking of airline tickets or hotel rooms.

The common feature of all these markets is sequentially mixed search (SMS) — directed

search for a price distribution followed by noisy matching with multiple offers. In the

meeting stage, individuals choose a price distribution to search, with the expectation that

the meeting rate and the price distribution are related. For example, searching in a distri-

bution that has a higher maximum house price increases the probability of finding such a

house. In this stage, searchers cannot target any particular offer because they do not know

who offers what in the targeted distribution. The second stage — noisy matching — is as in

Burdett and Judd (1983, henceforth BJ). A searcher can receive multiple meetings drawn

from the targeted distribution and chooses which one to accept.

Given the ubiquitous nature of SMS, it is surprising that most papers in the literature

have, instead, modelled search to be either purely directed or purely undirected.1 Purely

directed search assumes that searchers know what is offered by each individual on the other

side of the market. This requirement on the information is too strong to be realistic in most

markets and often makes the offer distribution degenerate in the equilibrium. For example,

even though a large fraction of workers “have a pretty good idea” about what a firm offers

before being interviewed (Hall and Krueger, 2012), this information should be interpreted

1The literature on undirected search goes back at least to Diamond (1971). For directed search models,

well-known examples are Peters (1991), Montgomery (1991), Moen (1997), Julien et al. (2000), Burdett

et al. (2001), and Shi (2001). See additional references later in this Introduction.
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as a narrow range of wages. On the other extreme, purely noisy matching assumes that

search is undirected. This assumption prevents searchers from making the tradeoff between

prices and the meeting rate, and results in generic inefficiency in the equilibrium (Hosios,

1990). Moreover, it is questionable whether price dispersion under purely noisy matching,

such as in BJ, can sustain some extent of directed search.

I construct a tractable model of SMS to study the positive and normative implications.

The positive analysis will examine how directed search in the first stage regulates price

dispersion and search effort, and how the equilibrium responds to changes in the meeting

efficiency. The normative analysis will investigate when the equilibrium is socially inef-

ficient, what policies can correct the inefficiency, and how these efficient policies should

respond to economic conditions.

Section 2 constructs the baseline model of SMS. There is a unit measure of homogeneous

visitors, each wanting to consume one indivisible unit of a good. Homogeneous stayers enter

the market competitively under a fixed cost of entry and commit to posted prices to sell

the good.2 Trade takes place in submarkets, each of which is described by a visitor’s

meeting rate, , and a distribution of posted prices,  (|). Stayers and visitors choose
the submarkets to participate, with rational expectations that a submarket with a higher

 will have higher prices. Once in submarket (  (|)), a stayer chooses a price in the
support of  (|) to post. In each submarket, a meeting function with constant returns
to scale determines the amount of meetings. Meetings are rivalrous in the sense that the

meeting rates on both sides of a submarket vary with the tightness. A visitor receives

meetings, potentially multiple ones, at the rate  according to the Poisson distribution.

For simplicity, I assume that a stayer receives at most one meeting in the period, and so

the meeting process is one-to-many. At the end of a period, each visitor chooses the lowest

price among the received meetings to trade.

In the meeting stage, visitors cannot direct search toward any particular stayer because

they do not observe which stayer posts what price. Instead, visitors direct search to a

2Some SMS markets, such as the housing market, may have bargaining or bidding in the second stage.

I abstract from bargaining or bidding in order to focus on the role of posted prices in directing search.
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submarket with a distribution of posted prices. They can choose a submarket with a

degenerate distribution of prices if doing so is optimal. The upper bound on the support of

the price distribution in a submarket,  , plays a special role. As explained at the end of

section 2.1, commitment to not posting prices higher than  is necessary for a meaningful

tradeoff in directed search. In section 2.1, I use the labor market to illustrate realism of

SMS and, especially, of the commitment to not posting prices higher than  .

The sequentially mixed search equilibrium (SMSE) exists, is unique and has one ac-

tive submarket. In the SMSE, offers are distributed continuously in a connected interval.

Choosing a submarket with no price dispersion is feasible, but not optimal for the tradeoff

between the meeting rate and the price distribution. The SMSE also differs importantly

from purely noisy matching, as detailed in section 3. First, the choice of the submarket

regulates the price distribution. Second, the reserve surpluses on both sides are strictly

positive. In particular,  is lower than the monopoly price  that sets a visitor’s reserve

surplus to zero, in contrast to  =  in BJ. Both directed search and rivalrous meetings

are necessary for   . Third, the SMSE is constrained efficient in the baseline model,

despite the existence of noisy matching in SMS.

An increase in the meeting efficiency widens price dispersion in the SMSE (see section

4). This effect arises because visitors respond to the higher meeting efficiency by choosing

a submarket that has a higher meeting rate . By increasing the expected number of

meetings for each visitor, a higher  reduces the probability of trade for all stayers. This

reduction is more severe at high prices than at low prices, because a stayer posting a high

price is more likely to lose a visitor to a competitor. Since all prices must yield the same

expected surplus to a stayer, prices fall by less at high levels than at low levels, resulting

in wider dispersion. This result helps explain the empirical puzzle that the Internet has

not reduced price dispersion, e.g., Baye et al. (2004), Ellison and Ellison (2005).

Section 5 endogenizes search effort by letting each visitor choose search effort after

entering a submarket. In most models, visitors’ search effort is a strategic substitute,

because one’s high search effort increases congestion and reduces the return on search to
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other visitors. In the current model, visitors’ search effort can be a strategic complement

because of the effect of  on price dispersion. When visitors increase search effort, their

meeting rate  increases. This widens price dispersion, which increases the return on

search to other visitors. Despite the possible complementarity in search effort, the SMSE

is unique, because the usual congestion from high search effort makes search effort a weak

complement. In the SMSE, a reduction in the search cost widens price dispersion, similar

to an increase in the meeting efficiency.

The SMSE with endogenous search effort is socially inefficient. Relative to the con-

strained social optimum, the SMSE has excessive search effort, an inefficiently high meeting

rate for a visitor, a deficient meeting rate per search effort for a visitor, and excessive ag-

gregate output. Also, the SMSE has inefficiently wide dispersion in prices, although price

levels are lower in the SMSE than in the social optimum. The government can restore

social efficiency of the equilibrium by a proportional tax on the joint value of a trade and a

proportional subsidy on stayers’ entry cost, with a lump-sum rebate to visitors to balance

the budget. Under a mild condition, the corrective policies should lean against the wind by

increasing the tax on the joint value of trade in an economic boom and decreasing the tax

in a recession. Note that this policy recommendation has nothing to do with increasing re-

turns to scale in the matching function that Diamond (1982) emphasized. Price dispersion

is necessary for the inefficiency in the equilibrium, because the desire to find lower prices

is the cause of inefficiently high search effort.

This paper makes several contributions to the literature. First, it constructs a tractable

framework for modeling an important phenomenon, SMS. The framework can serve as a

basis for incorporating features such as heterogeneity, private information, and many-to-

many meetings (see section 6).3 Second, the paper explains the puzzling effect of the

meeting efficiency on price dispersion. Third, the paper shows that visitors’ search effort

can be a strategic complement, proves social inefficiency of the SMSE with endogenous

3Bethune et al. (2018) introduce noisy search into the directed search submarket, but they take the

meeting rate as exogenous instead of modeling it as part of the choice of directed search. Kennes et al.

(2018) examine three directed search models, one of which (buyer posting) has the flavor of SMS. However,

they do not focus on SMS and they abstract from visitors’ rivalry in meetings (see section 3.2).
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search effort, and prescribes corrective policies.

Despite the simplicity, the model overcomes a major difficulty in integrating directed

search with noisy matching. Simply grafting directed search onto the BJ model of noisy

matching would not work. In BJ, stayers’ indifference among posted prices generates

 =  and pins down all aspects of the price distribution. There is nothing left for

directing search!4 What then makes SMS possible in this paper? It is the rivalry in

meetings derived from a general meeting function. Because stayers’ meetings are rivalrous,

a visitor is able to obtain a strictly positive surplus even at the highest price, as explained

in section 3.2. In turn, the interior value of    enables the price distribution to vary

across submarkets to direct search.5

The result −  0 leads to a general insight on the importance of rivalrous meetings

in all models where directed search is followed by competition ex post (i.e., after meetings).

For individuals who do not face ex post competition, such as visitors in the current model,

their reserve surplus in the equilibrium is positive if and only if meetings are rivalrous for

individuals on the other side who face ex post competition (see section 3.2). This insight

clarifies the role of the reserve price in competing auctions. Peters and Severinov (1997)

construct a model of competing auctions in which sellers (auctioneers) set the reserve price

above their outside option to direct bidders’ search. Albrecht et al. (2012) show that the

reserve price does not direct search because an auctioneer’s reserve surplus must be zero

in the equilibrium. This is consistent with the general insight here, since auctioneers do

not face ex post competition and bidders’ meetings are non-rivalrous. The reserve price

can serve the role of directing search if bidders face rivalrous meetings.

The label SMS brings up two strands of the literature. One is on mixed search, e.g.,

Lester (2011), Godoy and Moen (2013), and Delacroix and Shi (2013). In these papers,

the mixing is simultaneous across markets rather than sequential in the same market.

4In addition, grafting directed search onto BJ would face an intractable integer choice problem because

the number of meetings is the primary characteristic there. I model the choice as the continuous variable

, which also enables me to incorporate a general meeting function.
5Some papers distinguish meetings from matching, e.g., Lester et al. (2015) and Cai et al. (2017), but

they do not analyze the importance of this distinction for directing search in SMS.
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That is, some markets are open for purely directed search while other markets for random

search simultaneously, but no searcher uses both modes of search in any market or receives

multiple offers. There is no dispersion in the offers in the directed search market.

The other strand of the literature is purely directed search with a two-stage process.

The first stage is purely directed search and the second stage is a selection process. This

literature includes competing auctions (e.g., Peters and Severinov, 1997, Julien et al., 2000,

Albrecht et al., 2012), auctions with cheap talk (Kim and Kircher, 2015), directed search

with vague messages followed by bargaining (Menzio, 2007), list prices with bargaining

(Stacey, 2015) or with sequential inspection (Lester et al., 2017). Search in these models

is purely directed because visitors know exactly the pricing mechanism each stayer offers.

Visitors can target a particular stayer. As an implication, all stayers offers the same

mechanism in the equilibrium when individuals are homogeneous on each side of the market,

which contrasts to the non-degenerate distribution of offers in the SMSE.

The above literature with a two-stage process caps the number of a visitor’s meetings

by one. By increasing this cap to be more than one, some papers have examined purely

directed search with multiple applications, e.g., Albrecht et al. (2006) and Galenianos and

Kircher (2009). In both papers, each worker can apply to more than one firm and receive

more than one offer. Albrecht et al. (2006) assume that firms are able to bid for the

received applicants, and so their model is essentially a model of competing auctions where

each visitor can participate in multiple auctions. Galenianos and Kircher (2009) assume

that firms must commit to the posted wage. This creates an interesting portfolio choice;

that is, a worker chooses a portfolio of wages to apply to. Again, search in the model is

purely directed, because a worker knows the tradeoff between each firm’s wage offer and

the meeting probability. The number of equilibrium wages is discrete and cannot exceed

the maximum number of applications a worker can make. In contrast, posted prices in the

SMSE lie in a connected interval even though each visitor receives a discrete number of

meetings. Moreover, the equilibrium in Galenianos and Kircher (2009) is not constrained

efficient, but the SMSE is constrained efficient in the baseline model here. Inefficiency of

the SMSE arises, instead, in the extension with endogenous search effort.
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2. Baseline Model

2.1. The model environment

Consider a one-period economy with a continuum of homogeneous individuals on each

side of the market. On one side are stayers whose measure is elastically determined by

competitive entry with the entry cost   0. The cost of producing a good is normalized

to 0. On the other side are visitors whose measure is relatively inelastic and, for simplicity,

fixed at unity. A visitor wants to consume one unit of an indivisible good and a stayer can

produce one unit. Stayers post prices and visitors search. In a trade, the joint value is ,

the stayer obtains a surplus , and the visitor gets ( − ), where  is the posted price. If

an individual fails to trade, the value is 0.6

The trading process is sequentially mixed search (SMS). In the first stage, stayers and

visitors choose a submarket to enter, and each stayer chooses a price to post. There is a

continuum of potential submarkets differentiated by a visitor’s Poisson meeting rate, , and

the distribution of posted prices,  (|). Search is directed in the sense that individuals
take into account the dependence of  (|) on  but, in contrast to purely directed search,
visitors do not observe the price posted by any particular stayer before a meeting. By

entering submarket (  (|)), a stayer can only post a price in the support of  (|) and
must commit to the posted price. The second stage is noisy matching. Given the densities

of stayers and visitors in a submarket, a meeting function, described below, generates

meetings. A visitor receives meetings according to the Poisson distribution at the rate 

and, at the end of the period, chooses to trade at the lowest price among the received

meetings. An accepted meeting is called a match. For simplicity, I focus on one-to-many

meetings by assuming that a stayer receives at most one meeting in the period. See section

6 for a discussion on many-to-many meetings.

6In a directed search environment, Shi and Delacroix (2018) address the question which side should

incur the cost to organize trade in order to maximize social welfare in an economy with search frictions.

In the current model, the entry cost  is the elastic side’s participation cost in the market, while the

participation cost of the inelastic side and the cost of creating a trading post are zero. Under these

assumptions, the analysis in Shi and Delacroix (2018) implies that social welfare is the same regardless of

whether the elastic side or the inelastic side posts prices to organize trade.
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In submarket (  (|)), let  be the density of stayers and  the density of visitors.
If there is a mass of individuals in the submarket, then these symbols denote the measures

of individuals there. The meeting function is ( ) ( ), which has constant returns

to scale. For a visitor, the probability of receiving a number  of meetings in the period

is −
!
, and so the expected number of meetings is . Since  and  ( ) are both

equal to the amount of meetings, the equality yields:

 =
 ( )


= ( 1)  (2.1)

where  ≡ 

is the tightness of the submarket. For any given , define  () as the solution

for  to (2.1).7 This is the tightness needed to deliver the meeting rate  for each visitor

in the submarket. A stayer receives at most one meeting in the period and the meeting

probability is  () ≡ ()


= 

()
.

Two features are worth noting. First, there are rivalries in meetings. Assumption 1

later will capture the rivalries by assuming that  increases in  and  decreases in . The

rivalries make the tradeoff between  and  (|) non-trivial. Second, a visitor chooses a
trade at the end of the period, rather than whenever a meeting arrives. Thus, as in BJ,

matching is noisy rather than sequential. By creating the possibility of multiple meetings

for a visitor, noisy matching generates competition among stayers ex post (after meetings).

Noisy matching may reflect a fixed cost of deciding on an offer or simply the inability to

decide on an offer on the spot. In reality, there may also be a cost of waiting for offers.

The validity of noisy matching is likely to depend on the length of a period. The shorter

is a period, the lower is the waiting cost relative to the fixed cost of deciding on an offer,

and the more reasonable is the assumption of noisy matching.8

To illustrate realism of SMS, consider the labor market. A submarket is a group of

job openings that lie in a range of wages, together with workers applying to these jobs.

7The case where  ( 1) is constant over  is uninteresting because it does not generate a tradeoff for

visitors between the meeting rate and prices.
8Menzio and Trachter (2015) construct a model to generate equilibrium price dispersion with sequential

matching instead of noisy matching. The important ingredient of their model is the existence of a large

player who has positive mass and receives meetings at a different rate from all other stayers who have zero

mass and lie in a continuum.
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For example, jobs may be listed in different sections of a job search site according to the

offers, and different sections are expected to have different meeting rates. Choosing a

submarket is nothing more than choosing a section of the job site to search or to post a

job. Commitment to posting wages in the specified range is guaranteed by the design of

the job site. If the posted wage does not lie in the specified range, the job will not be

placed in the corresponding section and, hence, it will not show up to workers who search

for jobs in that range. The jobs in the specified range appear in a random order for each

worker’s search. A worker may apply to some of these jobs. The proper interpretation of

a meeting is that an applicant is interviewed by a firm. Meetings are rivalrous for workers

because, if more workers apply to the jobs in the same range, a particular applicant will be

less likely to be interviewed. Similarly, meetings are rivalrous for firms as the probability

of receiving an application decreases when more firms post jobs in the same range. As a

worker may receive more than one interview, matching is noisy.

Consider a stayer  who posts a price  in submarket (  (|)). The following lemma
is useful for computing the trading probabilities:

Lemma 2.1. If 1 is Poisson with the rate  and 2| (1 = ) is binomial with ( ),

then 2 is Poisson with the rate  (see Haight, 1967, p.46). This implies that, conditional

on having a meeting, the trading probability for stayer  is − (|). For a visitor, the

probability of trading at a price no higher than  is
£
1− − (|)

¤
.

Let me explain the lemma briefly. Suppose that stayer  meets a visitor  . Let  be

the number of visitor  ’s meetings with stayers other than , and  the number of such

meetings with prices no higher than . Because meetings arrive to  independently from

different stayers,  is Poisson distributed with the rate . In each of those meetings, the

price is not higher than  with the probability  (|). Conditional on ,  is binomial

with (  (|)), and so Pr( = 0|) = [1−  (|)]. Unconditional on , stayer  expects
visitor  to accept the match with the following probability:

Pr( = 0) =
X∞

=0

−

!
[1−  (|)] = − (|)
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This verifies the result for stayer  in Lemma 2.1.9 Similarly, for a visitor, conditional

on the number of meetings, , the number  of meetings with prices no higher than  is

binomial with (  (|)). Unconditional on ,  is Poisson with the rate  (|). Hence,
the visitor trades at a price no higher than  with the probability Pr ( ≥ 1) = 1−− (|).10

Conditional on having a meeting, a stayer’s expected surplus is

Π ( ) ≡ − (|) (2.2)

Let  be the lower bound on the support of  (|) and  the upper bound. These

bounds depend on  but the dependence is suppressed. Denote the maximum of a stayer’s

expected surplus in a meeting as

 () = max
≤

Π ( )  (2.3)

A stayer’s expected profit of entering submarket (  (|)) is  () ()−, where  is the
stayer’s meeting probability in the period and  the entry cost. For a visitor, the expected

surplus in the submarket is:

 () ≡
Z 



( − ) d
£
1− − (|)

¤
 (2.4)

where  is with respect to .  () has incorporated the dependence of  (|) on .

The trading process endogenously generates a matching function and a distribution of

transaction prices. A visitor trades with the probability 1− −. The amount of matches

in the submarket is  (1− −). This endogenous matching function has constant returns

9If a visitor receives two or more identical prices that are the lowest among the received offers, the

visitor chooses one of them with equal probability. It will become clear later that the offer distribution

contains no mass point. Thus, the probability that stayer  faces a competitor who offers the same price

and has met the same visitor is zero.
10Generally, for any 0 ∈ {0 1 }, the probability of  = 0 is

X∞
=0

−

!


0 [ (|)]

0
[1−  (|)]−0 = [ (|)]0 − (|)

(0)!


That is,  is Poisson distributed with the rate  (|). The expected value of , which is equal to  (|),
is a sufficient statistic for the distribution of . Lester et al. (2015) and Cai et al. (2017) refer to this

property of the meeting technology as invariance.
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to scale. Conditional on having at least one meeting, a visitor in the submarket succeeds

in trading at a price no higher than  with the probability:

 (|) ≡ 1− − (|)

1− −
 (2.5)

This is the cumulative distribution of transaction prices in the submarket. It is clear that

 (|) ≥  (|) for all , with strict inequality if      . Search enables visitors

to obtain prices lower than posted prices in the first-order stochastic dominance.

Denote  = max  () () as a stayer’s market value. The maximum of a stayer’s

expected profit of entering the market is  − . Let  denote the set of active submarkets,

defined as the submarkets that receive positive densities of visitors.11

Definition 2.2. A sequentially mixed search equilibrium (SMSE) consists of a stayer’s

market value,  , the beliefs on all submarkets (  (|)), stayers’ choices of the submarket
to enter and the price to post, visitors’ choice of the submarket to enter, and a set  of

active submarkets, (  (|))∈ , that satisfy (i)-(iv) below:

(i) Optimality of stayers’ entry and pricing decisions: Given  (|) and  , a stayer chooses
a submarket to enter to maximize expected profit of entry. For each  ∈ , a stayer in

submarket  optimally chooses the price  to post to maximize Π ( ) under the constraint

 ≤ . All posted prices generate  () as the maximized Π and they together constitute

the distribution  (|).
(ii) Optimality of visitors’ search: Given  (|), a visitor chooses the submarket to enter
to maximize  (). The submarkets with positive densities of visitors constitute .

(iii) The beliefs on all submarkets (  (|)): (a)  ()  () =  for all submarkets with

 () ≥  , and  () = 0 for all submarkets with  ()   ; (b) In every submarket with

 () ≥  , the support of  (|) is such that Π ( ) =  () for all  ∈supp( (|)), and
Π ( )   () for all  ∈supp( (|)) with  ≤  .

(iv) Competitive entry of stayers:  = .

11This definition allows for the possibility that  has a positive measure in the space of , although the

possibility does not materialize in the equilibrium (see Proposition 2.4 later).
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Requirements (i) and (ii) are for submarkets active in the SMSE, but requirement (iii)

is for all submarkets as explained below. Requirement (iv) determines a stayer’s market

value  . I separate (iv) from (iii) to facilitate the comparison with BJ where the measures

of individuals are fixed on both sides of the market (see section 3.1).

Requirement (iii) restricts the beliefs on both active and inactive submarkets. Part (a) is

common in the literature (see Menzio and Shi, 2010, and Guerrieri, et al., 2010). For every

submarket that satisfies  () ≥  , regardless of whether it is active,  and  (|) must
be such that a stayer’s expected surplus is equal to the market value. For every submarket

that satisfies  ()   , the tightness is zero. By entering such a submarket, a stayer

makes negative profit even if the stayer is certain to meet a visitor. This requirement

“completes” the submarkets by eliminating the case where a submarket is inactive just

because individuals expect no one to enter on the other side of the submarket. It defines

the dependence of  (|) on  across submarkets.

Part (b) of requirement (iii) completes the support of  (|) in every submarket with
 () ≥  . The requirement is omitted for submarkets with  ()   , because a stayer

makes less than  by entering such submarkets. In every submarket with  () ≥  , a

stayer’s expected surplus conditional on having a meeting is equal to  () =  (). All

prices in the support of  (|) must yield the same expected surplus to a stayer as  ().
Conversely, all prices no higher than  that yield  () to a stayer must be in the support

of  (|). This requirement eliminates the case where a price  ≤  is not in the support

of  (|) just because no stayer tries to post it.

Part (b) of requirement (iii) is not imposed for    , which indicates a special role

of  . Commitment to only posting  ≤  is necessary for directing search. To see this,

suppose that the commitment is not required and consider any submarket with    and

 ()   . A stayer can profit by deviating to + slightly higher than  after entering the

submarket. A stayer’s meeting probability in the submarket is independent of the posted

price. Moreover, at + and  , a stayer has the same probability to trade conditional

on having a meeting, which occurs when the visitor in the meeting has no other meeting.
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Since a trade at + yields higher profit to a stayer than at  , expected profit is higher

at + . Precisely, Π1
¡
+  

¢
 0 if   . Thus, if stayers are not required to commit to

only posting  ≤  , then  =  and  () = − in all submarkets where  () ≥  .

In this case, there is only one value of  that satisfies  ()  () =  , and so part (a) of

requirement (iii) fails to generate the variations in  (|) across submarkets. In contrast
to  , there is no need to commit to posting  ≥ . Relative to , all prices lower than

 have the same probability of trade but yield lower profit to a stayer in a trade.

2.2. Optimal choices and the SMSE

To characterize optimal decisions, define ̄ ≤ ∞ by  (̄) =∞ as the natural upper bound

on  and restrict the domain of  to [0 ̄]. Define the elasticity of  as  () ≡ 0()
()

.

Assumption 1. The meeting function is such that 0 ≤  () ≤ 1, 0 () ≥ 0, and 00 () ≥
0 for all  ∈ [0 ̄], where all of the inequalities are strict if  ∈ (0 ̄). Also,  (0) = 0,

0 (0)  0, and 0 (̄) =∞. Moreover, 0 ()  0 and  ()  1 for all   0;  (̄) = 0, and

0 (0)   .

Since I have restricted the number of meetings received by a stayer to be either zero or

one,  is the probability that a stayer receives one meeting. The above assumption requires

 ()  1 for all interior values of . However,  = 1 can occur at the lower bound  = 0, as

illustrated in Example 2.3 below. The assumptions on  (), including the properties on the

boundaries of the domain [0 ̄], are equivalent to the standard properties:  is strictly

increasing and concave in each of the two arguments,  (0 1) = 0, 1 (0 1)  ∞ and

1 (∞ 1) = 0.12 The assumption 00 ()  0 and the properties of  () on the boundaries

imply 0 ()  0 for all   0. In turn, 0 ()  0 implies  ()  1, because  = 1 − 0.

Also, 0 (̄) = ∞ implies  (̄) = 0. These implied properties of ( 0 ) are listed above

for references. The assumption 0 (0)    requires the joint surplus of a trade to exceed

the cost of a stayer’s entry when the density of stayers in a submarket is arbitrarily small.

12Because  ( ) =  ( 1), then 2 ( ) =  − 1 ( 1). The property 2 ( )  0

and the fact 1 ( 1) = 1
0 () imply  ()  1.
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If this assumption is violated, it is socially efficient to shut down the market. The following

well-known meeting functions satisfy Assumption 1 with   :

Example 2.3. The Dagum (1975) function is  ( 1) =  (− + 1)−1 with  ∈ (0∞)
and  ∈ (0 1]. This function yields  () = [() − 1]−1 and  () = [1− ()]−1.
Another function is the urn-ball function  ( 1) = 

¡
1− −1

¢
with  ∈ (0 1].13 This

function yields  () = 1()−1
1()−1− 1

()

. With both functions,  (0) = ̄ = ,  (̄) = 0,

0 (0) = 1,  (0) = 1, and 0 ()  0.

The assumptions on the function  () capture the rivalry in meetings on the two sides

of the market, as introduced by Eeckhout and Kircher (2010) and used by Lester et al.

(2015). The rivalry refers to the feature that  increases, and  decreases, in the market

tightness . That is, an increase in  alleviates congestion of visitors but exacerbates

congestion of stayers in the meeting stage. It is important to emphasize that the defining

feature of rivalrous meetings is that the meeting rates vary with the market tightness, not

that the meeting probabilities are less than one. To see this, consider the following two

examples where meetings are non-rivalrous on at least one side of the market. In both

examples, the constant   0 can be less than one. In the first example,  = min{ 1}
and  = min{1 1


}. Individuals on the short side of the market do not face the rivalry

in meetings, because their meeting rate is equal to the constant . The second example is

 ( ) = . Because  () =  is a constant, meetings are non-rivalrous for stayers.

Consider first a stayer, who chooses which submarket to enter and what price to post.

Suppose that the stayer has already chosen to enter submarket (  (|)). Without loss
of generality, suppose that this submarket has  () ≥  . By part (a) of requirement (iii)

in Definition 2.2, a stayer’s expected surplus in the submarket is equal to  , i.e.,

 () =


 ()
 (2.6)

In submarket (  (|)), the stayer is required to only post prices no higher than  . The
posted price maximizes the expected surplus in a meeting, Π ( ). Since all prices in the

13The urn-ball function often represents the number of matches in an urn-ball process, see Peters (1991)

and Burdett et al. (2001). I use this term for the number of meetings, instead.

14



support of  (|) must yield the same expected surplus as  (), then

Π ( ) =  () for all  ∈ supp ( (|)) 

Conversely, if any  ≤  satisfies the above equation, it must be in the support of  (|),
as required by part (b) of requirement (iii) in Definition 2.2. Because Π ( ) is continuous

in , the values of  ≤  that satisfy the above equation form an interval [  ]. This

is the support of  (|). The above equation determines:

 (|) = 1


ln

µ


 ()

¶
for all  ∈ [  ]  (2.7)

It is convenient to invert  (|) as

 =  ()  (||) for all  ∈ [  ]  (2.8)

Because the bounds on the support must satisfy  (|) = 0 and  ( |) = 1, then

 =  () ,  =  ()  (2.9)

Equation (2.7) is the relationship between  (|) and  that directs search. Note that

 ≥  () is needed for  (|) ≥ 0. Also,  () is intuitively a decreasing function of ,
and so 0 ()  0 by (2.6). Then, (2.7) shows that  (|) is a decreasing function of 
for any given  ≥  (). That is, a submarket with a higher meeting rate for a visitor

has higher posted prices in the first-order stochastic dominance in  (|). Note from (2.9)
that the submarket with no price dispersion has either  = 0 or  () = 0.

Now consider a visitor. If the visitor participates in submarket (  (|)), the expected
surplus is  () given by (2.4). The visitor chooses  to maximize  (). Substituting 

from (2.8) into (2.4), changing the integration variable from  to  (|) and then substi-
tuting  from (2.6), I have:

 () = 
¡
1− −

¢−  () (2.10)

Because  () is a strictly convex function, () is strictly concave and, hence, is maximized

at a unique . Denote the unique maximizer as ∗. The function 0 ()  is increasing in
15



. Recall that ̄ is defined by  (̄) =∞. It is easy to verify 0 (̄)  0 so that ∗  ̄.14

The maintained assumption   0 (0)  and the equilibrium requirement  =  imply

0 (0)  0, and so ∗  0. This shows that ∗ is in the interior of (0 ̄) and is the unique

solution to the first-order condition:

0 (∗) 
∗
=




 (2.11)

In the equilibrium,  = . The above analysis has established the following proposition:

Proposition 2.4. A unique SMSE exists and has only one active submarket (∗  (|∗)),
where ∗ ∈ (0 ̄) solves (2.11) with  =  and  (|∗) is given by (2.7) with  = ∗. The

distribution  (|∗) is continuous on the support [  ], where  and  are given by

(2.9) with  = ∗. Transaction prices are distributed according to  in (2.5).

To explain the above Proposition, let me examine the benefit and cost of a higher 

to a visitor. A submarket with a higher  generates a higher trading probability for a

visitor, 1 − −. The benefit is a higher expected value of trade,  (1− −). The cost

to a visitor is a higher expected payment to a stayer, given by the term  () in (2.10).

This term can be explained by simple accounting. Because the sum of payments received

by all stayers in the submarket is  , the expected payment made by each visitor in the

submarket is , which is equal to  () . Intuitively, submarket (  (|)) requires
 () stayers per visitor to deliver the meeting rate  for a visitor, and each stayer needs to

be compensated with an expected value  in the market. The expected payment increases

in . The higher is , the more should each visitor pay to stayers to incentivize stayers to

enter the submarket to deliver the higher .

There is a unique submarket that features the optimal tradeoff for a visitor between

the price distribution and the meeting rate.15 The uniqueness is similar to that in models

of purely directed search, e.g., Peters (1991) and Burdett et al. (2001). Specifically, a

14Because  ()  1 for all   0 by Assumption 1, then 0 (̄) ̄   (̄) ̄̄   (̄) =∞  

.

15The uniqueness of the active submarket in the SMSE is subject to the usual qualification arising from

constant returns to scale in the meeting function. Dividing visitors into many submarkets that have the

same (∗  ∗) but different scales does not change the equilibrium. Similarly, the Supplementary Appendix
F describes a way to divide all visitors’ effort into two submarkets without affecting the equilibrium.
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unique ∗ equates the marginal benefit of  to a visitor, −, and the marginal cost,

0 () . The marginal benefit is diminishing in  since a visitor only needs one meeting

to trade. The marginal cost of  is increasing since the marginal productivity of stayers

in the meeting function is diminishing. As  continues to increase, the tightness must

increase progressively to deliver it, and so the visitor’s expected payment should increase

progressively to incentivize more stayers to enter the submarket.

For future references, it is useful to note that  () =  () and that a visitor’s

expected number of meetings is equal to . Although a visitor chooses one of the received

meetings to trade and pays only the stayer in such a meeting, the expected payment is

 (), as if a visitor pays the amount  () to every stayer he/she meets. Stayers “price

in” the risk of losing a visitor in a meeting to a competitor. The higher is a visitor’s

meeting rate, the more likely will a stayer in a meeting lose the visitor to a competitor,

and the higher is the price that a stayer charges in order to earn the market value  .

3. Equilibrium Properties, Efficiency and Interpretations

3.1. Directed search, noisy matching and price dispersion

In purely directed search, a visitor knows what each stayer offers before a meeting. The

offer can be a posted price, as in Peters (1991) and Burdett et al. (2001), or a pricing

mechanism, as in Peters and Severinov (1997) and Julien et al. (2000). With homogeneous

individuals on each side of the market, the equilibrium generates no dispersion in the

posted price or mechanism. In contrast, in SMS, a visitor only knows the distribution

of prices in each submarket and cannot target any particular stayer. The equilibrium

generates a continuum of posted prices. Similar to BJ, noisy matching with multiple offers

is responsible for such dispersion in posted prices. A visitor receives two or more meetings

with a probability  ∈ (0 1). In BJ,  is assumed to be exogenous. In the current model,

 is endogenous and equal to  = 1− (1 + ∗) −
∗
. Because ∗ ∈ (0 ̄), then  ∈ (0 1).

As in BJ, the intuition for why  ∈ (0 1) induces price dispersion is as follows. With
 ∈ (0 1), stayers face competition ex post. A stayer who meets a visitor may lose
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the visitor to a competitor with a positive probability. This competition implies that

the price distribution cannot have a mass point anywhere above the lowest price . To

see this, note first that   0. If  = 0, then posting a price    would yield a

higher (positive) expected profit than posting . Next, if there were a mass point at

a price 1 ≥ , posting a price slightly lower 1 would increase a visitor’s acceptance

probability by a discrete amount and, hence, would increase the stayer’s expected surplus.

In the equilibrium, prices are continuously distributed. In addition, the support of the

price distribution must be a connected interval. If there were a “hole” in the support, a

stayer posting a price inside the hole could increase the ex post gain without reducing the

acceptance probability, relative to posting the price at the lower boundary of the hole.

The price distribution becomes degenerate when  reaches the bounds, 0 or 1. If

 = 0, every visitor in a meeting has no other meeting. Anticipating this absence of ex

post competition, all stayers will post the “monopoly” price  = . That is,  =  = .

If  = 1, every visitor in a meeting has at least one other meeting. Anticipating this

certainty of ex post competition, all stayers will post the “monopsony” price  = 0. In the

current model, → 0 if and only if ∗ → 0, which occurs when the entry cost of stayers 

reaches the upper bound 

0(0) . On the other hand,  → 1 if and only if ∗ → ̄, where ̄

is defined by  (̄) =∞. This case occurs in the limit as  → 0, which implies  (∗)→ 0.

The current model differs from BJ primarily in the presence of directed search in SMS.

To emphasize this difference, I use Appendix C to eliminate another difference between the

two models: The measure of stayers is endogenous in the model here but fixed in BJ. When

the measure of stayers is fixed, the tightness in the equilibrium submarket is fixed, say, at

0, which fixes the meeting rate for a visitor as 0 =  (0 1). In lieu of the competitive

entry requirement (iv) in Definition 2.2, the equilibrium requires that stayers over all

active submarkets should sum up to the fixed measure. This new requirement determines

a stayer’s market value  . Despite the exogenous 0, directed search continues to exert

its force because individuals can explore other submarkets outside of the equilibrium. A

visitor’s optimal choice of search must be consistent with 0. That is, the optimality

condition, (2.11), must be satisfied by ∗ = 0, which is achieved in the equilibrium by the
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adjustment in  . Such a condition epitomizes the tradeoff under directed search between

the price distribution in a submarket and the meeting rate. The tradeoff regulates the

entire distribution of prices in the equilibrium. A particular implication is   , which

contrasts to  =  in BJ (see section 3.2).

Let me return to the current model with competitive entry of stayers and examine

price dispersion in the equilibrium. Denote the price spread as ∆ ≡  −  and the

coefficient of variation in posted prices as  ≡ [ ]
12

E
, where E is the mean and 

the variance of posted prices under a distribution  (|). The coefficient of variation in
transaction prices is , where the distribution  (|) in (2.5) is used instead of  (|).
Computation yields:

 () =

∙
 ( + 1)

2 ( − 1) − 1
¸ 1
2

  () =

"

µ
1− −



¶2
− 1
#12

 (3.1)

These coefficients of variation are functions of only , with no parameters. Any change in

a parameter of the model can change  and  only if it affects . For this reason, it

is useful to examine this effect of  on price dispersion, even though  is endogenous. The

proof of the following corollary is straightforward and omitted:

Corollary 3.1. An increase in  increases posted and transaction prices in the first-order

stochastic dominance in  and . Also, an increase in  increases the bounds ( ),

the price spread ∆, and the coefficients of variation (  ).

For a stayer, an increase in  reduces both the meeting probability and the matching

probability, leading to lower expected profit. To compensate for a stayer’s entry cost, posted

and transaction prices must be higher in the sense of first-order stochastic dominance.

However, for  to affect price dispersion, it must affect stayers differently depending on

their posted prices. This non-uniform effect arises from the effect of  on a stayer’s matching

instead of meeting probability. Conditional on having a meeting, a stayer posting a high

price has a lower probability of trade than a stayer posting a low price. An increase in

 widens this difference in the trading probability by increasing the probability that a
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visitor to a stayer has other meetings. That is, an increase in  reduces a stayer’s trading

probability by more if the stayer posts a higher price. To yield the same expected surplus

conditional on having a meeting, , the price must increase by more if the price is initially

higher. This is why an increase in  increases the price bounds, the price spread and the

coefficient of variation in prices.

3.2. Rivalrous meetings and reserve surpluses in the equilibrium

In the equilibrium, the lowest surplus for a visitor is ( − ) and the lowest surplus for a

stayer’s entry is ( − ). These are the reserve surpluses for the two sides of the market.

The following Corollary describes the reserve surpluses:

Corollary 3.2.    and   , and so the reserve surpluses are strictly positive in

the equilibrium for both sides of the market. If  () is constant for all , then  = .

Proof. The bounds on equilibrium prices are given by (2.9). Since competitive entry

of stayers yields  (∗) = 
(∗) , then  =


(∗) and  = 

∗

(∗) . Because 
∗  0, then

 (∗)  1 and   . In addition, a visitor’s optimal choice ∗ obeys −
∗
= 0 (∗)

(see (2.11) with  = ). Dividing the expression for  by this condition for ∗ and

substituting  (∗) = ∗ (∗), one gets 

= 1

(∗) . Since  ()  1 for all   0 by

Assumption 1 and the SMSE has ∗  0, then   . Moreover,  () = 1− 0 ()   1

if and only if 0 (∗)  0. That is,    if and only 0 (∗)  0. QED

The result    is easy to explain. A stayer gets zero net profit from entering the

market at every equilibrium price. Because a stayer’s meeting probability is less than one,

the lowest price must exceed the entry cost  for a stayer’s expected surplus in a meeting to

cover the cost . For the result   , directed search in the first stage of SMS is crucial,

as shown by the use of a visitor’s optimal choice of  in the above proof. If a submarket

has  = , prices are too high to be optimal for a visitor’s tradeoff between the trading

probability and the trade surplus. Catering to this tradeoff, stayers optimally set   .

In contrast, when search is purely noisy as in BJ, this tradeoff does not exist, which creates

the profitable deviation to  =  (see the end of section 2.1). Although directed search is
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necessary for   , it is not sufficient. The above proof shows that    if and only

if  (∗)  1 or, equivalently, 0 (∗)  0. That is, a visitor’s reserve surplus is positive if

and only if meetings are rivalrous for stayers.

For a general insight on the result   , let  () denote the inverse of the function

 () and note that 0 ()  0 is equivalent to
0()
()

 1. Stayers face potential ex post

competition but visitors do not. Since a visitor gains from competing offers, he/she has

an incentive to choose a submarket with a high density of stayers. To incentivize stayers’

entry, a visitor can reduce his/her reserve surplus. How low should this reserve surplus

be depends on how much a visitor benefits from stayers’ entry into the market. If stayers

are rivalrous in meetings, an increase in stayers’ entry into the market increases a visitor’s

meeting rate by less than one for one, as captured by
0()
()

 1. In this case, a visitor is

not willing to reduce his/her reserve surplus to zero. In contrast, if stayers’ meetings are

non-rivalrous, a visitor should reduce his/her reserve surplus to zero to increase stayers’

participation. Let me summarize:

An insight: For the side of the market that does not face ex post competition, the

reserve surplus is strictly positive if and only if meetings are rivalrous on the other

side that faces ex post competition.

This insight is also valid for competing auctions. In Julien et al. (2000), workers post

auctions to direct firms’ search. In one of the models in Kennes et al. (2018), firms post

auctions to direct workers’ search. Trading follows the urn-ball process: each ball (bidder)

is thrown randomly at an urn (auctioneer), and then each urn selects one ball from the

received ones. Since the number of meetings (not matches) is equal to the number of

bidders, bidders’ meetings are non-rivalrous. Note carefully that bidders face ex post

competition, and so they behave like stayers in the current model. Auctioneers do not

face ex post competition. Because bidders’ meetings are non-rivalrous, the above insight

suggests that an auctioneer should set the reserve surplus to zero in order to increase

bidders’ participation in the auction. This is indeed the case: a worker’s reserve wage is

zero in Julien et al. (2000) and a firm’s reserve profit is zero in Kennes et al. (2018).16

16In the baseline setup in Julien et al. (2000), the market is finite. As a result, the matching function

has decreasing returns to scale, and an auctioneer’s surplus at the reserve price is positive. This surplus
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Interestingly, in one of the first models of competing auctions with directed search, Peters

and Severinov (1997) state that an auctioneer’s reserve surplus is strictly positive in the

equilibrium so that the reserve price can direct search. Albrecht et al. (2012) prove that

this is a mistake. The above insight indicates that for the reserve price to serve the role of

directing search in competing auctions, bidders must face rivalrous meetings.

3.3. Social efficiency of the SMSE

Another main difference of the SMSE from an equilibrium with purely noisy search is

constrained social efficiency. To analyze efficiency, consider a social planner who maximizes

social welfare measured by the sum of expected surpluses in the economy. The planner

chooses the measure of stayers to enter the market, but is constrained by the meeting

frictions embodied in the meeting function  . Because the measure of visitors is fixed at

1, choosing the measure of stayers is equivalent to choosing the market tightness and to

choosing a visitor’s meeting rate . Anticipating the result that only one active submarket

will be active, the choice  requires the measure of stayers entering the submarket to be

 (). If a visitor receives multiple meetings, the planner randomly chooses one of them

for the visitor to trade. Total cost of stayers’ entry is  ()  and the measure of trades is

(1− −). Since a trade generates the joint surplus , social welfare is:


¡
1− −

¢−  () 

This welfare measure is the same as a visitor’s expected surplus in the equilibrium, given

by  () in (2.10) after substituting  = . Thus, the planner’s choice of  is identical to

a visitor’s choice in the SMSE. This proves the following proposition:

Proposition 3.3. The SMSE is constrained efficient.

Directed search in the first stage of SMS and competitive entry of stayers are important

for the equilibrium to be socially efficient, as emphasized in the directed search literature

(e.g., Moen, 1997, Shi, 2001). The two ingredients ensure the social marginal benefit of a

declines to 0 when the market becomes infinitely large.
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higher  to be the same as the private marginal benefit, which is to increase the trading

probability (1− −). They also ensure the social marginal cost of a higher  to be the

same as the private marginal cost, which is the marginal cost to induce stayers to enter

the market, 0 () . The above proposition adds to the literature by showing that the

equilibrium is efficient even if the search process has noisy matching in the second stage.

In contrast, if search is purely noisy, then the equilibrium is socially inefficient. In this

case,  = , which is inefficiently higher and induces excessive entry of stayers.

4. Effects of the Meeting Efficiency

The Internet has increased the convenience of trading, but it has not reduced price disper-

sion significantly. Baye et al. (2004) compared the online market with the offline market

for consumer electronics and found similar price dispersion in the two markets. Ellison

and Ellison (2005) found a similar puzzle in other online markets. To resolve this puzzle,

I model the increasing use of the Internet as an increase in the meeting efficiency. Section

5.1 will re-examine the issue as a reduction in the search cost.

Let the meeting function be  ( ) where  is the meeting efficiency. Denote

 = 

. The definition of  implies  =  ( 1), which solves  as (). The elasticity of

 () is  () =
0()
()

. The meeting probability for a stayer is  () = 
()
. Except the change

from  to  in the argument of (  ), the SMSE is characterized as before. Similar to

(2.11), the first-order condition for the optimal ∗ is:

1


0(

∗


)

∗
=




 (4.1)

Define 0 ∈ (0∞) as the unique solution to:


0
0(

1

0
) =




 (4.2)

Then, ∗  1 if and only if   0. The following proposition is proven in the Supple-

mentary Appendix D:

Proposition 4.1. (i) d∗
d

 0 and d
d
 ()  0 for  = . (ii) d

d
 0 iff   0.

(iii) d
d
≤ 0 iff (0 −) 0  0; If 0 ≥ 0 then d

d
 0 and d∆

d
 0. (iv) If 0 ≥ 0 and
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  0, an increase in  reduces posted and transaction prices in the first-order stochastic

dominance.

An increase in the meeting efficiency unambiguously widens price dispersion measured

by the coefficient of variation, although price levels may change ambiguously. By increasing

stayers’ meeting rate, an increase in  has direct effects of increasing entry of stayers and

depressing price levels. However, an increase in  also increases a visitor’s meeting rate

, which increases prices and widens price dispersion (see Corollary 3.1). Specifically,

an increase in  reduces a stayer’s matching probability by more at high prices than at

low prices. To keep a stayer indifferent between posting different prices, a stayer’s match

surplus conditional on having a trade must fall by less at high prices than at low prices. If

prices fall after the increase in , they must fall by less at high levels than at low levels. If

prices rise after the increase in , they must rise by more at high levels than at low levels.

In both cases, price dispersion widens.

In the empirical evidence cited above, the increased use of the Internet did not widen

price dispersion significantly, although it did not compress price dispersion either. To

reconcile with this evidence, one may note that the market concentration has also increased

in many sectors, which can be captured by an increase in . It is easy to verify that an

increase in  reduces  and compresses price dispersion. Thus, the combined effect of an

increase in  and an increase in  may leave price dispersion unchanged.

Proposition 4.1 contains additional information about the effects of an increase in .

First, an increase in  may increase or decrease the market tightness. For any given , an

increase in  increases the meeting rate for stayers, which induces more stayers to enter the

market to increase the market tightness. However, an increases in  also induces visitors

to choose a submarket with a higher , which reduces the matching rate for a stayer and,

hence, reduces stayers’ entry. The direct effect of  on a stayer’s matching rate dominates

if   1, which is equivalent to   0. In this case, an increase in  increases stayers’

entry to increase the market tightness.

Second, an increase in  reduces the lowest price and widens the price spread if and
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only if 0 ≥ 0. Because  () = 0()
()

is the elasticity of , the derivative 0 measures the

sensitivity of the market tightness to . The condition 0 ≥ 0 is satisfied by well-known
meeting functions in Example 2.3. If 0 ≥ 0, then an increase in  causes the market

tightness to increase sharply as more stayers enter the market, which depresses prices.

This negative effect on prices is stronger at low prices than at high prices, as explained

for Corollary 3.1 and repeated above. Thus, if 0 ≥ 0, the lowest price falls and the price
spread widens. The highest price also falls if the market tightness indeed increases, i.e.,

if   0. Conversely, if 
0 is sufficiently negative, the market tightness is insensitive to

changes in . In this case, prices must rise in order to induce more stayers to enter the

market to deliver the increase in , and the price spread narrows.

Third, when   0 and 
0 ≥ 0, an increase in the meeting efficiency reduces all prices

according to the distribution. This is the case where the market tightness increases in 

and is sensitive to . In this case, an increase in  induces a large increase in stayers’

entry into the market and, hence, reduces prices. Despite lower prices, the increase in 

compensates stayers’ entry into the market by increasing a stayer’s meeting probability.

One may relate and contrast the effects of  to those of of  in BJ, where  is the

probability that a visitor receives two or more meetings (see section 3.1). In BJ, price

dispersion has a hump-shaped dependence on . At  = 0, there is no price dispersion,

as all stayers post the monopoly price  = . At  = 1, there is no price dispersion

either, as all stayers post the monopsony price. At all  ∈ (0 1), prices are continuously
distributed in an interval. Thus, when  increases from 0 to 1, price dispersion first widens

and eventually narrows. For two related reasons, this hump-shaped dependence does not

arise here for the effects of . First, the meeting efficiency is not the same as an increase in

, although the two are related by ∗ as  = 1− (1 + ∗) −
∗
. An increase in  increases

not only a visitor’s meeting rate ∗, but also a stayer’s meeting probability which affects

stayers’ entry decisions. Second, with directed search in SMS, visitors make the optimal

tradeoff between the meeting rate ∗ and price dispersion. When an increase in  makes

a higher ∗ optimal, visitors need to tolerate wider dispersion in prices in order to induce
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stayers to enter the market to deliver the higher ∗.

5. Endogenous Search Effort and Efficient Policies

This section endogenizes visitors’ search effort. I show that price dispersion can induce

visitors’ search effort to be a strategic complement and the equilibrium to be socially

inefficient. I analyze the effects of a reduction in the search cost and examine policies for

efficiently managing aggregate activities.

5.1. Equilibrium with endogenous search effort

A visitor chooses search effort, ̃, after entering a submarket. Let  (̃) be the cost of

search effort, with 0  0 and 00  0 for all ̃  0, 0 (0) = 0 and 0 (∞) = ∞. In
a submarket, let  be the average search effort per visitor and  the meeting rate per

search effort. The meeting rate for a visitor with search effort ̃ is ̃ = (̃+ 0) . The

constant 0  0 is arbitrarily small and is used to rule out the uninteresting case where

the equilibrium can be stuck at  =  = 0.17 Denote  = (+ 0) . The total amount

of visitors’ search effort in a submarket is (+ 0), and the amount of meetings in the

submarket is  ( (+ 0)). Since the total amount of meetings in the submarket is

also equal to , then

 =
 ( (+ 0))

(+ 0)
= ( 1) 

where  = 
(+0)

is the effective tightness of the submarket. The above equation solves

 =  (), which is a function of  instead of . The meeting probability for a stayer in

a period is  () = 
()
. Define ̄ ≤ ∞ by  (̄) = ∞. Submarkets are now described by

(  (|)) instead of (  (|)). As a result, competitive entry of stayers into the market
yields a stayer’s expected surplus conditional on having a meeting as  () = 

() , which is

a function of  instead of .

17If 0 = 0, a visitor’s meeting rate is , in which case the marginal gain to increasing  is zero if

 = 0 and the marginal gain to increasing  is also zero if  = 0. Even a small 0  0 can prevent this

uninteresting case from happening in the equilibrium.
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For stayers, the formulas in the baseline model remain valid after replacing  () by

 () and  (|) by  (|). In a meeting, a stayer posting  succeeds in trade with the
probability − (|). The stayer’s expected surplus in the meeting is − (|). Equating

this expected surplus to  () for all prices on the support of  (|) yields:

 (|) = 1


ln



 ()
for all  ∈ [  ]  (5.1)

The inverse of this distribution function is:

 =  ()  (|) for all  ∈ [  ]  (5.2)

The bounds on the support of  (|) are:

 =  () ,  =  ()  (5.3)

For a deviating visitor who searches with effort ̃ in submarket (  (|)), the meeting
rate is ̃ = (̃+ 0) , and the probability of trading at a price no higher than  is 1 −
−̃ (|). This visitor’s expected surplus in the submarket is:

 ( ̃) ≡ − (̃) +
Z 



( − ) d
£
1− −̃ (|)

¤
 (5.4)

The dependence of on the average search effort  through  is suppressed. (5.4) modifies

(2.4) by subtracting the search cost and changing the meeting rate to ̃. Note that stayers

make their decisions based on the expectation that the average search effort of visitors is

. That is,  is given by (5.2) where search effort is  instead of ̃. Substituting such ,

integrating, substituting  from (2.6) and substituting  = , I have:

 ( ̃) = − (̃) + 
£
1− −̃

¤−  () (̃+ 0) ((̃− ) )  (5.5)

where ̃ = (̃+ 0)  and

 () ≡ 1− −


for all || ∞ (5.6)

The visitor chooses ( ̃) to maximize  ( ̃).

The term − ((̃− ) ) captures the visitor’s incentive to search more intensively than

others in the submarket in order to find a lower price. To see this, note that the last

27



term in (5.5) is equal to ̃, which is the visitor’s expected payment. Similar to the

explanation at the end of section 2.2, the expected payment is so as if the visitor pays 

to every stayer he/she meets even though the visitor trades in only one of the meetings. If

the visitor chooses the same search effort as the average effort, the expected payment per

meeting is  (0)  = . However,  6= 1 if ̃ 6= . The following lemma lists the properties

of  (see the Supplementary Appendix D for a proof):

Lemma 5.1.  () has the following properties: (i)  (0) = 1, 0 (0) = −1
2
, 00 (0) = 1

3
,

and  (∞) = 0 (∞) = lim→∞0 ()  = 0; (ii)  ()  0, 0 ()  0, 00 ()  0 for for all

|| ∞; (iii) + 0  0, and 1

(+ 20) = − (0 + 00)  0 for all || ∞.

The properties 0 ()  0 and 00 ()  0 are the most important ones. The property

0  0 is equivalent to 
̃
(−)  0, which captures the benefit of higher search effort

in reducing a visitor’s expected payment. If a visitor searches more intensively than the

average effort, the visitor expects to be more likely to encounter a meeting with a lower

price and, hence, to pay less than  to a stayer in a meeting. Conversely, if the visitor

searches less intensively than the average effort, the visitor expects to pay more than  to

a stayer in a meeting. The property 00  0 is equivalent to 2

̃
(−)  0, which is the

supermodularity of − in (̃ ). The intuition is that a visitor’s expected payment depends
on the difference between the visitor’s effort and the average effort in the submarket. When

other visitors search with higher effort, a deviating visitor faces a higher risk of not being

able to trade at relatively low prices. In this case, the cost savings are greater for the

visitor to increase search effort to find a low price. Note that the strict inequalities 0  0

and 00  0 hold even when ̃ is equal to .

An SMSE can be defined similarly to that in section 2.1 by adding search effort ̃ to

a visitor’s choice. As shown in the proof of Proposition 5.2 below, the optimal ( ̃) are

interior and satisfy the first-order conditions:

0 = −̃ − [0 ()+ (̃− ) 0]  (5.7)

0 = −0 (̃) + −̃ −  () [+ ̃0]  (5.8)
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The argument in  and 0 is (̃− ) . For any given ( ), denote  ( ) as the solution

for ̃ to (5.8), which is a visitor’s best response to the average search effort , given .

Optimal search effort is symmetric in the equilibrium if, for every optimal ,  ( ) is

single valued. Denote the optimal choice of  as ∗ and denote ∗ = (+ 0) 
∗. The

following proposition holds (see Appendix A for a proof):

Proposition 5.2. The optimal choices of ( ̃) are interior and satisfy (5.7)-(5.8). A

unique SMSE exists, is symmetric, and solves:

0 (∗) = 


−

∗


0 (∗) =
£
 (∗)− 1 + ∗

2

¤
 (∗) 

(5.9)

1 ( 
∗) |̃=  0 iff ∗  3

2
. Also, 1 ( 

∗) |̃=  1. In the SMSE, an exogenous reduction
in 0 reduces , increases ( ), and increases (  ). If 0 ≥ 0, this reduction in the
search cost reduces posted and transaction prices in the first-order stochastic dominance.

For any given ,  ( ) is the best response of a visitor to other visitors’ choice .

The equilibrium can feature 1 ( 
∗) |̃=  0. That is, visitors’ search effort can be

a “strategic complement” in and near the equilibrium. Specifically, by widening price

dispersion, higher search effort by other visitors can increase the return on search to an

individual visitor. This feature may sound puzzling at first glance. Why does not higher

search effort of other visitors compress price dispersion, instead? The answer lies again

in the effect of  on price dispersion. For any given , other visitors’ higher search effort

increases their meeting rates, , and pushes prices down. This negative effect on prices

is stronger at high prices than at low prices, as explained for Corollary 3.1. To keep the

expected surplus to be equal at all posted prices, prices fall by less at high levels than at

low levels. Thus, price dispersion widens, which motivates an individual visitor to increase

search effort in order to find lower prices. The countering force comes from the fact that

prices are lower everywhere than before, which reduces visitors’ incentive to search. The

effect of price dispersion dominates if and only if prices are sufficiently dispersed. This

occurs when search effort is higher than a threshold (32).18

18This condition can be expressed as a restriction on the parameters. Since ∗ is an increasing function
of , ∗ is above the threshold 32 if  is above some threshold.
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To support the above explanation, note that the interaction between a deviating visi-

tor’s search effort and other visitors’ effort appears in the visitor’s expected surplus through

the term − (̃+ 0) (̃− ). The multiplier (̃+ 0) captures the effect on the “extensive

margin” that a visitor’s high search effort increases the expected payment by increasing

the number of meetings. As explained after Lemma 5.1, (−) is supermodular in (̃ ).
The supermodularity creates the possibility that visitors’ search effort can be a strategic

complement. However, the term − (̃+ 0) (̃− ) is not necessarily supermodular in

(̃ ), because of the effect of ̃ on the extensive margin. As a result, the condition ∗  3
2

is needed for the supermodularity of (−) to be the dominating effect.

Although visitors’ search effort can be a strategic complement, the complementarity is

not sufficiently strong to generate multiple equilibria. Precisely, 1 ( 
∗) |̃=  1, which

leads to the uniqueness of the equilibrium. Complementarity is weak because search creates

rivalries in meetings. When other visitors search with higher effort, the aggregate amount

of search effort increases, which reduces a visitor’s meeting rate per search effort, . The

reduction in  reduces a visitor’s meeting rate for any given search effort ̃ and, hence,

weakens the response of ̃ to other visitors’ search effort.

The equilibrium is depicted in Figure 1. Given any ,  () is the solution for  to the

first equation in (5.9) and  () the solution for  to the second equation. Figure 1 depicts

 () and two possibilities of  (). The SMSE is unique, which is depicted as points E1

and E2, respectively, for the two possibilities of  ().

Proposition 5.2 shows that a reduction in the search cost has similar effects on price

dispersion as an increase in the meeting efficiency studied by Corollary 4.1. Figure 1

illustrates these effects of an exogenous reduction in 0. Before the reduction in the search

cost, let  () be the solid curve in Figure 1. A reduction in the search cost shifts the

curve  () to the dashed curve, which results in a higher  and a lower . It is intuitive

that a reduction is the search cost induces a visitor to search with higher effort and leads

to a higher meeting rate for a visitor. As the matching probability for a stayer falls, a

smaller measure of stayers enter the market, resulting in a fall in . Because  increases,
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dispersion widens in both posted and transaction prices. Under the mild condition 0 ≥ 0,
posted and transaction prices fall in the first-order stochastic dominance.19

   z za(s)

      E 1

       E 2     z b(s)

  an o th er zb(s)

   0    s
Figure 1. The unique equilibrium with endogenous search effort

5.2. Social inefficiency and corrective policies

The possible complementarity in search effort raises the question whether the SMSE is

socially efficient. To address this question, I incorporate visitors’ search effort into the

social planner’s problem in section 3.3. Since the total measure of visitors is 1, the total

measure of stayers is (+ 0)  (), and the sum of stayers’ entry costs is (+ 0)  () .

Social welfare is measured by the following sum of surpluses in the economy:

− () + 
¡
1− −

¢− (+ 0)  () 

Maximizing social welfare, the planner’s choices ( ) satisfy the first-order conditions:

0 () =



− 0 () = [ ()− 1]  ()  (5.10)

Compare these conditions with the counterparts in the SMSE, (5.9). The first condition is

the same as in the SMSE. The second condition, which characterizes the socially efficient

, differs from that in the SMSE in the absence of the term 
2
on the right-hand side. This

difference implies the following proposition (see Appendix A for a proof):

19In a different model, Bethune et al. (2018) show that a reduction in the cost of becoming informed of

prices can increase price dispersion.
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Proposition 5.3. Relative to the social optimum, the SMSE has excessive search effort

, a deficient , and an excessive meeting rate for a visitor, .

The inefficiency arises from an externality created by visitors’ search effort. There is a

private benefit for a visitor to increase search effort ̃ above other visitors’. At ̃ = , this

private benefit is: −0 (0) = 2. But if all visitors increase search effort, visitors face

stronger rivalry in meetings, which is a negative externality. In the SMSE, search effort

and the meeting rate for a visitor are inefficiently high. To maintain the optimal tradeoff

between the meeting rate and the surplus of a trade, visitors choose an inefficiently low .

This low  mitigates, but does not correct completely, the excessive .

Two elements are important for the inefficiency — the inability to commit to search

effort and the presence of noisy matching. To see the importance, first suppose that visitors

can commit to search effort before entering the market and so submarkets are indexed by

(   (| )) instead of only (  (|)). In this case, the optimal tradeoff between search
effort and the trading probability will internalize the externality by “pricing” search effort

correctly. Next, if search is purely directed, as in Burdett et al. (2001), endogenizing search

effort does not generate inefficiency. This should be true more generally if search is directed

by mechanisms instead of posted prices. The purpose for a visitor to increase search effort

is to find a better mechanism. If there is no ex ante dispersion among mechanisms in the

equilibrium, then endogenizing visitors’ search effort should not lead to inefficiency even

though there is ex post dispersion in transaction prices within a mechanism.

To restore efficiency and maintain a balanced budget, the government can consider

the following policies: a subsidy rate  on the entry cost, a proportional tax rate  on

the joint value of a trade, and a lump-sum rebate  to a visitor’s participation in the

market.20 With the subsidy , competitive entry of stayers into the submarket pushes a

stayer’s expected surplus conditional on having a meeting to:

 () =
(1− ) 

 ()
 (5.11)

20A tax on visitors’ search effort can also restore efficiency, but it requires the tax authority to have the

unrealistic ability of observing visitors’ search effort.
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With this modified formula of  (), the inverse of the distribution of posted prices is still

given by (5.2). A visitor’s expected surplus in the market is given by (5.4), with  being

replaced by (1− )  and  by  − . This expected surplus is:

 ( ̃) = − (̃) +  + [(1− ) ]
£
1− −̃

¤
− (1− ) (̃+ 0) ((̃− ) )  () 

In the symmetric SMSE, the first-order conditions of ( ̃) become:

0 () = (1−)
(1−)

−
0 () = (1− )

£
 ()− 1 + 

2

¤
 () 

(5.12)

Comparing these conditions with (5.10) for the social optimum, it is easy to verify that

the two sets of conditions coincide if and only if

 =  =

∙
2 [ ()− 1]


+ 1

¸−1
, (5.13)

where ( ) are the quantities in the social optimum. Because the measure of matches is

1−−, total tax revenue on the joint output across matches is  [1− −]. Total subsidy

to the entry of stayers is  (+ 0) . The difference between the two is the lump-sum

rebate to visitors that balances the government budget. That is,

 =  [(
 − 1) − ]




 (5.14)

With (  ) above, one can verify that  in the SMSE is equal to social welfare. The

following proposition holds (see Appendix B for a proof):

Proposition 5.4. Let (  ) satisfy (5.13)-(5.14). (i) The policies induce the equi-

librium to be socially efficient and maintain a balanced budget. (ii) The efficient policies

increase  and reduce , , aggregate output  =  [1− −], and (  ). (iii) If

0 () ≥ 0, the efficient policies reduce  (), reduce (  ∆), and reduce prices in the

first-order stochastic dominance in  (|) and  (|).

The policies ( ) restore social efficiency of the equilibrium while the rebate 

balances the government budget. With the subsidy to a stayer’s entry, , a stayer can

break-even on entry with a smaller expected payment from a visitor in a meeting. A
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visitor’s incentive to search weakens, which improves efficiency. However,  distorts a

visitor’s tradeoff between the match surplus and the meeting rate by inducing a visitor to

enter a submarket with an inefficiently high . A tax on the joint output in a match, ,

eliminates this distortion by increasing the importance of the match surplus in a visitor’s

tradeoff relative to the meeting rate. The two policies ( ) generate a budget surplus

that is rebated to visitors through .

The corrective policies also affect price levels and price dispersion. In the absence

of the policies, search effort is excessive and price dispersion is inefficiently wide. The

policies tame search effort by reducing price dispersion. Price levels respond to the policies

ambiguously in general. However, if 0 ≥ 0, then posted and transaction prices fall in

the first-order stochastic dominance. The derivative 0 measures the sensitivity of 0, as

discussed for Proposition 4.1, and the condition 0 ≥ 0 is satisfied by well-known meeting
functions (see Example 2.3). When 0 ≥ 0, the responses of  and  () to the policies are

relatively weak. In this case, the policies affect a stayer’s expected surplus conditional on

having a meeting,  (), primarily through the effective cost of entry, (1− ) . Because

 reduces this effective cost, it reduces the level of  needed for a stayer to break-even on

entry. The fall in  is delivered by lower prices.

5.3. Management of aggregate activities

I focus on how the corrective policies depend on . A higher  is a better economic

condition, arising from aggregate supply (e.g., an increase in the quality of a good) or

demand (e.g., an increase in the valuation of a good). In Figure 1, an increase in  shifts

up the curve  () and leaves the curve  () intact. Equilibrium  increases. Equilibrium

 increases if the SMSE is one like point E1, but decreases if the SMSE is one like point

E2. The following proposition states how the SMSE and the corrective policies respond to

 (see the Supplementary Appendix E for a proof):

Proposition 5.5. Without the corrective policies, an increase in  has the following effects

on the SMSE: d
d

 0, d
d

 0, d
d

 0, d∆

d
 0, d

d
  0, and d

d
  0. If 000  0,
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then d
d

 0. If 000  0, then there exists  ∈ (0∞] such that d
d

 0 iff   .

With the efficient policies in (5.13), a sufficient condition for d
d

 0 and
d
d

 0 is

0 () ≤ (− 1) .

An increase in  increases the market tightness, increases the meeting rate for a visitor,

increases the two bounds on prices and shifts the price distributions to higher prices. These

effects are intuitive. When the joint value of a trade increases, more stayers enter the

market, which increases the market tightness. Equilibrium prices increase to be consistent

with the optimal choices of both sides of the market. For visitors, the benefit of a higher

 induces them to enter a submarket that has a higher meeting rate, which necessarily

comes with higher prices. For stayers, the meeting probability falls because of the higher

entry of stayers. However, the expected surplus for a stayer in the market (unconditional

on a meeting) must remain the same as the fixed cost of entry. This implies that a

stayer’s expected surplus conditional on a meeting must rise. For this to happen despite

the decrease in the stayer’s trading probability, prices must increase to raise the stayer’s

surplus conditional on a trade. Moreover, as explained for Corollary 3.1, the increase in a

visitor’s meeting rate  widens price dispersion by reducing the trading probability for a

stayer by more at high prices than at low prices.21

Without the corrective policies, an improvement in the economic condition results in

an over-heated economy. Search effort and a visitor’s meeting rate increase by an excessive

amount, resulting in inflated prices and inefficiently wide dispersion in prices. The policies

described by Proposition 5.4 are automatic stabilizers for the economy even if the policies

do not respond to the increase in . These policies tame visitors’ search effort, moderate

the increase in aggregate output and prevent price dispersion from widening excessively.

Moreover, Proposition 5.5 shows that if 0 ≤ (− 1) , the tax on the joint value of a
trade should increase in an economic boom and decrease in a recession. To accompany this

procyclical tax, the subsidy to stayers’ entry should also be procyclical.

21The variable  responds to a higher  ambiguously. Because a higher  induces search effort to increase,

the surplus that a visitor expects to concede to a stayer in a meeting increases. To restrict the increase

in this concession, a visitor may reduce . This happens when search effort is high. When search effort is

low, the direct effect of  on  dominates, in which case  increases.
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The corrective policies contrast with those in Diamond (1982), who assumes the match-

ing function to have increasing returns to scale. In the current model, the meeting and the

matching functions have constant returns to scale. Instead, the inefficiency arises from an

externality in visitors’ choice of search effort. Also, in contrast to Diamond’s recommen-

dation to manage aggregate demand, the corrective policies in Proposition 5.5 call for a

policy mix that manages both aggregate demand and supply.

6. Conclusion

This paper constructs a tractable model of sequentially mixed search, which has directed

search for a price distribution followed by noisy matching with multiple offers. I establish

existence of a unique equilibrium and analyze the novel implications of the equilibrium

on quantities and price dispersion. Moreover, I show that an increase in the meeting

efficiency widens price dispersion. An extension endogenizing search effort shows that

the equilibrium is constrained inefficient, where visitors’ search effort is inefficiently high

and can be a strategic complement. Under a mild condition, policies that restore efficiency

should lean against the wind by increasing the tax on the joint value of trade in an economic

boom and reducing this tax in a recession.

The simple framework of SMS allows for several extensions. One is to introduce hetero-

geneity among visitors, say, in their valuation of the good . This valuation can be either

public or private information. In both cases, the modifications to the SMSE are straight-

forward. Visitors of different types will self-select into different submarkets. For each type

, the optimal ∗ obeys (2.11) and, hence, is increasing in . That is, higher-valuation

visitors choose to participate in a submarket with a higher meeting rate for them and a

distribution of higher prices. As in this paper, the SMSE is constrained efficient when

search effort is exogenous and inefficient when search effort is endogenous.

A more substantial extension is to allow for many-to-many meetings. That is, each

stayer and each visitor can both have multiple meetings. This extension needs to specify

a procedure by which individuals select trading partners from the received meetings. In a
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sequel (Shi, 2018), I have studied many-to-many meetings with two selection mechanisms.

In one, stayers select among received visitors, where stayers posting lower prices select

earlier. In the other, visitors selected among received stayers according to a predetermined

order of visitors. Both selection mechanisms lead to the same expected payoffs to the

market participants and constrained efficiency of the equilibrium.

The third extension is to incorporate trading relationships and business cycles. In

the goods market, past trades create customer relationships, as analyzed in Gourio and

Rudanko (2014) and Shi (2016). In the labor market, employment is a lasting relationship

between a firm and a worker, as analyzed by Burdett and Mortensen (1998). In both

markets, individuals in a relationship can continue to search. By embedding search on the

relationship into a business cycle model, the analysis can shed light on how the turnover

of relationships and the price distribution fluctuate in the business cycle. Directed search

in the first stage of SMS will be important for such an analysis to be tractable by making

the SMSE block recursive, as formulated by Shi (2009) and Menzio and Shi (2010).
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Appendix

A. Proofs for Propositions 5.2 and 5.3

Proof of Proposition 5.2

First, I prove that a visitor’s optimal choices ( ̃) are interior and satisfy the first-order

conditions, (5.7) and (5.8). A visitor’s objective function is  ( ̃) given by (5.5). The

derivative 1 ( ̃) is equal to the right-hand side of (5.7) multiplied by (̃+ 0). That is,

1 ( ̃) = (̃+ 0)
©
−̃ − [0 ()+ (̃− ) 0] 

ª


Since  (0) = 0,   0 (0)  (see Assumption 1),  (0) = 1 and 0 (0) = −1
2
, then

1 (0 ̃) = (̃+ 0) [ − 0 (0) ]  0 for all ̃ ≥ 0

This implies that the optimal  is strictly positive. Also, 1 (∞ ̃)  0, and so the optimal

 is finite. Thus, the optimal  is interior. Since interior optima satisfy the first-order

condition, then the optimal  satisfies (5.7). Similarly, for the choice ̃, the derivative

2 ( ̃) is given by the right-hand side of (5.8), i.e.,

2 ( ̃) = −0 (̃) + −̃ −  () [+ ̃0]  (A.1)

where the argument in  and 0 is (̃− ) . Substituting −̃ from (5.7) yields:

2 (
∗ ̃) = −0 (̃) + [(∗0 − )− (+ 0) 

∗0]  (A.2)

Since  (∞) = 0 (∞) = lim→∞0 ()  = 0, then 2 (
∗∞)  0, and so the optimal ̃ is

finite. Because 0  ,   0 and 0  0 (see Lemma 5.1), then 2 (
∗ 0)  −0 (0) = 0,

which implies that the optimal ̃ is strictly positive. Thus, the optimal ̃ is interior and

satisfies the first-order condition (5.8).

Second, I prove that all equilibria are symmetric. Recall that  ( ) denotes the

solution for ̃ to (5.8), which is a visitor’s best response to the average search effort ,

given . I show that  ( ∗) is single-valued for each , given the optimal ∗, and so all

visitors choose the same search effort in the equilibrium. Use (A.1) to compute:

22 ( ̃) = −00 (̃)− 2−̃ − [20 + ̃00] 
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Substitute −̃ from (5.7) and use the fact + 20 = − (0 + 00) (see Lemma 5.1):

22 (
∗ ̃) = −00 (̃)− [(∗0 − )+ ∗ (+ 0) 

00] ∗ (A.3)

The use of ∗ in (A.3) emphasizes that I have substituted −̃ from (5.7). Because 00  0,

0   and 00  0, then 22 (
∗ ̃)  0. This implies that the first-order condition for

̃, 2 (
∗ ̃) = 0, has at most one solution for ̃ if  is optimal. Thus, all visitors in the

submarket with an optimal  search with the same effort ̃ =  in the equilibrium.

Third, I prove that a unique SMSE exists and solves (5.9). Setting ̃ =  in (5.7) yields

the first equation in (5.9). The second equation in (5.9) comes from setting ̃ =  in (A.2)

and then setting 2 = 0. The equilibrium is unique if the solution to (5.9) is unique. Given

any ,  () denotes the solution for  to the first equation in (5.9) and  () the solution

to the second equation. The equilibrium  solves  () −  () = 0. The assumption

  0 (0) implies  (0)  0. Also,  (∞) = 0. Since 0 (0) = 0 and  (0) = 0, then

 (0) = 0   (0) and  (∞)  0 =  (∞). Thus, the equation  () =  () has at least

one solution in (0∞). To prove that the solution is unique, compute:

0 () =
−

00
0 + + 0

 0, 0 () =
00 − 2


£
(+ 1) +0

2
+ 00

¤ 
Here I substituted 0 = 00


− (−1)


. The difference [0 (0)− 0 (0)] has the same sign asµ

00

0
+ + 0

¶
00 + 

∙
00

0

µ
− 1

2

¶
+ 



2

¸


Since this is positive, then 0 ()  0 () for all  ≥ 0. Thus, the solution to  () =  ()

is unique, as multiple solutions necessarily have alternating signs of [0 ()− 0 ()].

Fourth, I verify 1 ( 
∗) |̃=  1 and find the condition for 1 ( ∗) |̃=  0.  ( )

is the solution for ̃ to 2 ( ̃) = 0, where 2 is given by (A.1). Computing 1 from this

equation and then setting  = ∗, one obtains:

1 ( 
∗) =

∗
[−22 (∗ ̃)]

[0 + (̃+ 0) 
∗00] 

where 22 (
∗ ̃)  0 is given by (A.3). Since  (0) = 1, 0 (0) = −1

2
and 00 (0) = 1

3
, then

1 ( 
∗) |̃=  0 if and only if ∗ = (+ 0) 

∗  3
2
. Also, 1 ( 

∗)  1 if and only if

00 + ∗ {∗0+ [1 + ∗ (̃− )] 0}  0
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Because [∗0+ [1 + ∗ (̃− )] 0]̃= = ∗0 − 
2
 0, then 1 ( 

∗) |̃=  1.

Finally, I establish the effects of the search cost. Suppose  () = 0̂ () for some

constant 0  0 and a function ̂ (). An increase in 0 is an exogenous increase in the

marginal cost of search effort. A reduction in 0 is an exogenous reduction in the marginal

cost of search effort. Differentiating (5.9) with respect to 0 shows
d
d0

 0, d
d0

 0,

and d
d0

 0. Since 0 ()  0 and 0 ()  0 by Corollary 3.1, then d
d0

  0 and

d
d0

  0. Similar to the proof of the effects of  later in Proposition 5.4, the increase

in  and the fall in  imply that, if 0 ≥ 0, then d
d0

 0 and d
d0

 0. That is, an increase

in 0 increase prices in the first-order stochastic dominance in  and . QED

Proof of Proposition 5.3

The first equation in (5.10) is identical to the first equation in (5.9). For any given ,

the common solution for  to the two equations is  (). Let 

 () denote the solution for

the equilibrium  to the second equation in (5.9), and  () the solution for the socially

optimal  to the second equation in (5.10). Denote ∆ () =  ()−  () and ∆ () =

 () −  (). Then, the equilibrium  solves ∆ () = 0, and the socially optimal 

solves ∆ () = 0. As shown in the proof of Proposition 5.2, ∆ 0 ()  0. Similarly,

∆ 0 ()  0. For any  ≥ 0 and   0, the right-hand side of the second condition in

(5.9) is strictly greater than that of the second condition in (5.10). For any given  ≥ 0,
a smaller  is required to satisfy the second equation in (5.9) than to satisfy the second

equation in (5.10). That is,  ()   () for all  ≥ 0. This implies ∆ ()  ∆ ()

for all  ≥ 0. Since ∆ 0 ()  0 and ∆ 0 ()  0, the solution for  to ∆ () = 0 must

be strictly larger than the solution for  to ∆ () = 0. Because  satisfies the common

equation  =  () in the SMSE and the social optimum, and because 
0
 ()  0, then 

is lower in the equilibrium  than in the social optimum. Backing out  from the common

equation for  () in the SMSE and in the social optimum, I conclude that  is higher in

the SMSE than in the social optimum. This completes the proof of Proposition 5.3. QED
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B. Proof of Proposition 5.4

(i) The text preceding the proposition has established the result that the policies (  )

induce the SMSE to be socially efficient.

(ii) By Proposition 5.3, the SMSE without the policies has an excessive , a deficient

 and an excessive , relative to the social optimum. Because the efficient policies restore

the social optimum, they reduce , increase  and reduce .

(iii) I analyze the effects of the policies on prices in three steps. First, I reduce the

dimension of the policies and variables. To do so, let  depend on  as in (5.13). Then,

for all , the first equation in (5.12) is the same as the first equation in (5.9), and the

common solution for  to the two equations is  =  (). For any given ,  () does not

depend on the policies directly. Also, 0 ()  0, as shown in the proof of Proposition 5.2.

Substituting  =  () into the second equation of (5.12), I get:

0 () = (1− )  () 
h
 ()− 1 + 

2

i
=()

 (B.1)

Second, I compute the effects of  on ( ),  and (  ), taking into account

the dependence of  on  in (5.13). In this computation,  is arbitrary instead of the

efficient one. However, if the derivative of a variable with respect to  is positive, then

the variable increases under the efficient policies, because the efficient policies have   0.

Differentiating (B.1) with respect to , I get:

d

d
=
−0
1− 

∙
00 +

(2− 1) 00 + 0
00 + (+ 0) 0

1− 

2


¸−1
 0.

This implies d
d
= 0 ()

d
d

 0 and

d

d
=

00

00 + (+ 0) 0
d

d
 0

Since aggregate output is  =  [1− −], it is clear that d
d

 0. The coefficients

of variation in prices,  () and  (), are given by (3.1). Since 0 ()  0 and

0 ()  0 by Corollary 3.1, and since
d
d

 0, then d
d

  0 and d
d

  0.

Third, I compute the effects of  on  () and prices, again taking into account the

dependence of  on . With the policies,  () =
(1−)
()

. Substituting d
d

and d
d
, I
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compute:

−


©
[00 + (+ 0) 

0]00 + [(2− 1) 00 + 0] 1−
2


ª
d()

d

= [(2− 1) 00 + 0] 1−
2

 − (− 1) 00 + [00 + (+ 0) 
0]00

For the right-hand side to be strictly positive, a sufficient condition is that the difference

between the first two terms is non-negative. Substituting 0 from (B.1) and substituting

00 = 0 + (− 1) 0, I rewrite this difference as:

1− 

2
 {(2− 1) 0 + [− 1 + ] 0} 

Since   1, a sufficient condition for the above expression to be strictly positive is 0 ≥ 0.
Thus, 0 ≥ 0 is sufficient for d()

d
 0.

Assume 0 ≥ 0. For any given , (5.1) implies:


d

d
= − d

d
− d ()

d
 0

Thus, the policies reduce posted prices in the first-order stochastic dominance. Similar to

(2.5), the distribution of transaction prices is:

 (|) ≡ 1− − (|)

1− −
=
1− ()



1− −


where the second equality comes from substituting  (|) from (5.1). Because  reduces
 () and , then d

d
 0 for any given . That is, the policies reduce transaction prices

in the first-order stochastic dominance. Moreover, (5.2) implies:

d

d
=
d ()

d
 0,

d

d
= 

∙
d ()

d
+  ()

d

d

¸
 0

The policies affect the price spread, ∆ =  − , as follows:

d∆

d
=
¡
 − 1¢ d ()

d
+  ()

d

d
 0

This completes the proof of Proposition 5.4. QED
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C. The Model with a Fixed Measure of Stayers

Consider an economy where the measure of stayers is fixed at 0 ∈ (0∞). If the equilibrium
yields only one active submarket, then a visitor’s meeting rate in the submarket is 0 =

 (0 1), i.e., 0 =  (0). However, individuals can still direct search in the first stage of

SMS by exploring other submarkets outside of the equilibrium. Requirements (i) -(iii) in

Definition 2.2 continue to hold. Requirement (iv) on the equilibrium, which sets  = , is

no longer valid. Rather, a stayer’s market value  adjusts endogenously for the optimal

 to be equal to 0. Recall that (  (|))∈ denotes the active submarkets in the
equilibrium. Let  be the distribution of visitors across submarkets. Requirement (iv) is

replaced by:

(iv’) A stayer’s market value  is such thatZ
∈

 () d = 0

The equilibrium can be determined as follows. As in section 2.2, a visitor’s optimal

choice of the submarket maximizes the expected surplus  () given by (2.10). Because

 () is strictly concave on the domain [0 ̄], the optimal choice of  is unique. This implies

that at most one submarket is active in the equilibrium. In this case, the equilibrium

requirement (iv’) requires the tightness in the active submarket to be equal to 0. The

optimal choice of  must be equal to 0 =  (0 1). For any given 0 ∈ (0∞), 0 =
 (0 1) lies in the interior of (0 ̄). Because an interior optimal  must satisfy the first-

order condition, (2.11), the condition determines  = 

0(0)0
. Clearly,  lies in (0 

0(0)),

and the probability  = [1− (1 + 0) 
−0] lies in (0 1). Moreover, since  (0) = 

(0)
,

then  =
0

(0)
= 

(0)
 . I have proven the following proposition:

Proposition C.1. Suppose that the measures of individuals on both sides of the market

are fixed, with a tightness 0 ∈ (0∞). There exists a unique SMSE, where  = 

0(0)0

and 0 =  (0 1) ∈ (0 ̄). The probability that a visitor receives two or more meetings
is equal to  = [1− (1 + 0) 

−0], which lies in (0 1). Moreover,  =


(0)
 .
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D. Proofs of Proposition 4.1 and Lemma 5.1

Proof of Proposition 4.1:

I prove the following proposition that includes the effects of , in addition to the effects

of  stated in Proposition 4.1:

Proposition D.1. (i) d∗
d

 0, d
d

 0, d
d

 0, d
d

 0, d∆

d
 0, and prices increase

in  in the first-order stochastic dominance in  and . (ii) d∗
d

 0, d
d
 ()  0 and

d
d
 ()  0 for  = . (iii) d

d
 0 iff   0, where 0 is defined by (4.2). (iv)

d
d
≤ 0 iff (0 −) 0  0; If 0 ≥ 0 then d

d
 0 and d∆

d
 0. (v) If 0 ≥ 0 and

  0, an increase in  reduces posted and transaction prices in the first-order stochastic

dominance.

Proof. Suppress the asterisk on . Differentiating (4.1) yields:µ
00

0
+ 

¶
d


=
d


+

µ
00

0
+ 1

¶
d


 (D.1)

where the argument of  is  = . Since 0  0 and 00  0, then d
d

 0 and d
d

 0.

The coefficients of variation given by (3.1) are only functions of  and do not depend on

() directly. Moreover, 0 ()  0 and 0 ()  0 (see Corollary 3.1). Because
d
d

 0

and d
d

 0, then d
d
 ()  0 and

d
d
 ()  0 for  = .

Differentiating  () and substituting (d) yields:µ
00

0
+ 

¶
d

0
=
d


+ (1− )

d




Clearly, d
d

 0. The definition of 0 in (4.2) implies that   1 is equivalent to   0.

Then, d
d

 0 iff   1 and, hence, iff   0. Substituting  from (2.6) and  =  into

1



(2.9) and differentiating, I get:





µ
00

0
+ 

¶
d =

− 1

d −

µ


0
0 + 

¶
d


(D.2)

−



µ
00

0
+ 

¶
d =

− 1 + 


d − 0

0
(1− )

d


(D.3)

−


¡
00
0 + 

¢
d∆ =

(1−−)(−1)+


d

+
£
(− 1 + −) 

0 
0 + −

¤
d


(D.4)

I have used 0 () = 1

[00 − (− 1) 0], where the argument of  and  is  = . Because

  1, the above equations show that d
d

 0, d
d

 0 and d∆

d
 0. The effects of  on

(  ∆) depend on 0. Clearly, d
d
≤ 0 iff (1− ) 0  0 and, hence, iff (0 −) 0  0.

Note that − 1 + −  0 for all   0. If 0 ≥ 0, then d
d

 0 and d∆

d
 0.

The cumulative distribution function of posted prices is  (|) given by (2.7) and the
cumulative distribution function of transaction prices is  (|) given by (2.5). For any
given , differentiating these functions with respect to () yields:



µ
00

0
+ 

¶
d = −− 1 + 


d +

∙
(1−  )



0
0 +  (1−  )

¸
d


(D.5)


¡
00
0 + 

¢
d

= − ¡ −1

−1 +


−1
¢
d



+
£
0
0
¡

1
−1 − 

−1
¢
+ 

¡
1

−1 − 1
−1

¢¤
d



(D.6)

Because   1, the coefficients of (d) in both equations are strictly negative. Thus,

an increase in  increases both posted and transaction prices in the first-order stochastic

dominance. Note that  ≤ . If 0 ≥ 0 and   0 (i.e.,   1), then the coefficients

of (d) in (D.5) and (D.6) are strictly positive for all interior . Thus, an increase in 

reduces both posted and transaction prices. QED

Proof of Lemma 5.1:

It is easy to verify that  () defined by (5.6) satisfies  (∞) = 0 (∞) = lim→∞ 0 ()  =

0. Using L’Hopital’s rule, one can confirm the values of  (0), 0 (0) and 00 (0) stated in

2



(i) of Lemma 5.1. To verify  ()  0 in (ii) of Lemma 5.1, note that 1  − if and only if

  0. Thus,  ()  0 for all  6= 0. In addition,  (0) = 1  0. To prove 0 ()  0 for all
, it suffices to prove 0 ()  0 for all  6= 0, since 0 (0) = −1

2
 0 by (i). Compute

0 () =
−

2

£
+ 1− 

¤


Examine the expression in [] on the right-hand side for  6= 0. The expression is strictly
concave in . The unique maximum is achieved at  = 0, and it is equal to 0. Thus, the

expression is negative for all  6= 0, which implies 0 ()  0. Similarly, compute:

00 () =
−

3

£
2 − ¡2 + 2+ 2¢¤ 

Since 00 (0) = 1
3
 0, as proven above, focus on  6= 0. Of the expression in [] on the right-

hand side of 00, the third-order derivative is 2, which is strictly positive. This implies

that the first-order derivative, which is equal to 2 ( − − 1), has a unique minimum.
This minimum occurs at  = 0 and is equal to 0. That is, [2 − (2 + 2+ 2)] is strictly
increasing for all  6= 0. Since this expression is equal to 0 at  = 0, it is strictly positive if
and only if   0. Clearly, 3  0 if and only if   0. Then 00 ()  0 for all  6= 0. For
(iii) of Lemma 5.1, compute:

+ 0 = 1
2
[− 1 + −]

1

(+ 20) = − (0 + 00) = 1

3
[− 2 + (2 + ) −] 

Using the same method of proving 0  0 and 00  0 above, one can prove +0  0 and
1

(+ 20)  0 for all || ∞. QED

E. Proof of Proposition 5.5

Comparative statics with respect to  without the policies: In the absence of the

policies, the SMSE is characterized by (5.9). For any given , the solution for  is  ()

to the first equation in (5.9) and  () to the second equation. To prove
d
d

 0, note that

()


 0 and

()


= 0, where the partial derivatives are taken for any given . Since

0 ()  0 () with the optimal , then

d

d
=

 () 

0 ()− 0 ()
 0

3



Because
()


= 0, then

d

d
= 0 ()

d

d


Therefore, the sign of d
d
is the same as 0 (), which is ambiguous and examined below.

Similarly, using the notation  = (+ 0)  to express  =


− 0, I can use the two

equations in (5.9) to solve for  =  () and  =  (). Then,

0 () =
−0
00
, 

0 () =
00 − 

2



£
00 + 

2
0
¤
+ 00 





Again, it can be verified that 0 ()  0 (). Thus, there is a unique solution  to  () =

 (), and the solution satisfies
d
d

 0. Furthermore,
d()

d
 0, and so d

d
 0. If

d
d
≤ 0, then d

d
≤ 0 and d∆

d
 0. If d

d
 0, then d

d
 0 and

d∆

d
= ( − 1) d

d
+ 

d

d
 0

In all cases, d∆

d
 0. Since 0 ()  0 and 0 ()  0, the result d

d
 0 implies

d
d
  0 and d

d
  0.

Finally, I establish the sign of 0 (). Return to the use of  instead of  as the variable.

Denote  () as the solution to  ()  = 200(). Then, 0 ()  0 if and only if

   (). Because 
00  0, then  (0)  0. Consider the following cases:

Case (i): 000  0. In this case, 0 ()  0 for all . I prove that 0 ()  0 for all

 ≥ 0, which implies
d
d

 0 by the above proof. A sufficient condition for this result

is  ()   () for all  ≥ 0. To prove that this sufficient condition holds, suppose, to
the contrary, that  () =  () for some  ∈ [0∞). Clearly,   0 and 0 () = 0.

Without loss of generality, let  be the smallest solution to  () =  (). Because

 ()   () for all   , and  () =  (), then 0 () ≥ 0 ()  0. This

contradicts the fact that 0 () = 0. Thus,   0 does not exist, and so  ()   () for

all   0. In this case, the SMSE is depicted by point E1 in Figure 1.

Case (ii): 000  0, but  ()   () for all . As in case (i), this case has 
0
 ()  0

for all , and so d
d

 0.

Case (iii): 000  0, and there exists   0 such that  () =  (). Let  be the

smallest solution to  () =  (). I prove that  is the only solution to  () =  ().
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Suppose, to the contrary, that there is another solution 1 ( ) to  () =  (). Without

loss of generality, let 1 be the smallest solution among all   . Then  (1 − ) 

 (1 − ) for sufficiently small   0. This fact implies 0 (1) ≤ 0 (1)  0. This

contradicts the fact 0 (1) = 0. Thus, 1 does not exist; i.e.,  ()   () for all   .

Therefore, 0 ()  0 if and only if   . That is,
d
d

 0 if and only if the optimal 

satisfies   . In this case, the SMSE is depicted by point E2 in Figure 1.

Case (iv): 000 = 0. In this case,  () is constant over . If  ()   () for all   0,

the case is qualitatively the same as case (i). If there is a solution   0 to  () =  (),

then  () =  () for all   . In this case,
d
d

 0 if   , and
d
d
= 0 if   .

The effect of  on the efficient policies: Under the efficient policies in (5.13), the

equilibrium allocation coincides with the social optimum given by (5.10). Differentiating

(5.10) with respect to , I get:

d

d
=

−


h
(+ 0) 0 +

³
20
00 + 1

´
00
i  0 d

d
=

00

00
d

d
 0

I have substituted 0 = 1

[00 − (− 1) 0]. All variables in the above expressions, as in the

remainder of this proof, are the ones in the social optimum. Differentiating the expression

for  in (5.13) with respect to , I have:

d

d
=

µ
2d

d

¶
2


∙
(− 1) 
+ 0

00

00
+

− 1

− 0

¸


A sufficient condition for d
d

 0 is 0 ≤ −1

. The expression for  in (5.13) shows that

this condition is also sufficient for
d
d

 0. QED

F. Splitting the Participation in Two Submarkets

The baseline model assumes that a visitor chooses one submarket to participate and estab-

lishes the result that only one submarket is active in the equilibrium (see Proposition 2.4).

Because the meeting function has constant returns to scale, dividing visitors into many

miniatures of this equilibrium submarket does not change the equilibrium.

In this appendix I examine another way to split visitors’ participation into different

submarkets. Suppose that each visitor has one unit of effort and can divide the effort

5



between two optimally chosen submarkets. In order to compare the results with those in

the baseline model, let me assume that the division of effort is exogenous. (An endogenous

division of effort will generate the externality analyzed in section 5, which makes the

latter section the proper reference to compare, instead.) In submarket  ∈ {1 2}, let 

be the amount of effort per visitor,  the density of visitors,  the density of stayers,

and  =



the effective tightness. By assumption, 1 + 2 = 1 and  ∈ (0 1). In
submarket , the amount of meetings is  ( ), and the meeting rate per search

effort is  =  ( 1), which solves  =  (). In submarket , a visitor’s meeting rate

is  = , the meeting probability for a stayer is  () =


()
, and the distribution

of posted prices is  (|). Let  be the lower bound and  the upper bound on the

support of  (|). Refer to a submarket by (  (|)) instead of (  (|)).
In the baseline equilibrium in Proposition 2.4, the active submarket is (∗  (|∗)),

the tightness of the submarket is ∗ =  (∗), and the support of  (|∗) is [∗ ∗ ].
The following proposition states the equivalence between the equilibrium with two active

submarkets and the baseline equilibrium:

Proposition F.1. Let 1 be an arbitrary number in (
∗
 

∗
 ] and maintain  = . The

two submarkets (1  (|1)) and (2  (|2)) form an equilibrium if and only if the fol-

lowing conditions are met: (1) 1 = 2 = ∗; (2)  (|1) and  (|2) are continuous,
with the support [∗ 1] and [

∗
 

∗
 ], respectively; (3) Σ=12 (|) =  (|∗) for all

 ∈ [∗ ∗ ]. This equilibrium with the two active submarkets and the baseline equilib-

rium deliver the same probabilities of meeting and matching for a visitor, the same market

tightness, and the same overall distribution of prices in the economy.

The two active submarkets have the same tightness which is equal to the tightness in

the active submarket in the baseline equilibrium. As a result, the meeting rate per effort in

the two submarkets is the same as in the baseline equilibrium. The distributions of posted

prices in the two submarkets are indeterminate. However, the weighted sum of the two

distributions is determinate and equal to the distribution in the baseline equilibrium, as

stated in condition (3) above. Because a visitor receives meetings from both submarkets,

6



it is the weighted sum of the two distributions that matters for trade. Viewing the two

submarkets together, a visitor faces the same distribution of posted prices in the economy

as in the baseline equilibrium.

There is a clarification on the “only if” statement in Proposition F.1: The upper bounds

on the supports of  (|1) and  (|2) can be switched. Because of the assumption that
stayers who enter submarket  must commit to not posting prices higher than , it may

be possible that   ∗ for one value of . However, one of the upper bounds must be

equal to ∗ . I set 2 = ∗ above. If 1 = ∗ , instead, then 2 ≤ ∗ is possible.

Proof of Proposition F.1:

Consider a stayer in submarket 1 and let  be the price posted by the stayer. Suppose

that the stayer has a meeting. The visitor in the meeting can receive other meetings in

submarket  ∈ {1 2} at the rate , and the price in such a meeting is no higher than 

with the probability  (|). The rate at which the visitor receives a competing meeting
with a price no higher than  is Σ=12 (|). The stayer’s expected surplus is:

Π1 ( 1 2) = −Σ=12 (|)

Denote  = max≤
Π ( 1 2). For submarket  to have  ()  0, it must have

 ≥  . Then, part (a) of requirement (iii) in Definition 2.2 requires  () =  . All

prices in the support of  (|1) make the same expected surplus to the stayer, which is
equal to 1 =


(1)

. Thus,

 =


 (1)
Σ=12 (|) for all  ∈ supp ( (|1))  (F.1)

Similarly,

 =


 (2)
Σ=12 (|) for all  ∈ supp ( (|2))  (F.2)

Now examine a visitor. Since the visitor’s meeting rate in submarket  is  = ,

the visitor’s probability of trading at a price no higher than  is 1− −Σ=12 (|). The

visitor’s expected surplus in the market is:

 =

Z
( − ) d

£
1− −Σ=12 (|)

¤
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The integration is over the union of the supports of  (|1) and  (|2), which is suppressed
as in all integrals below. Separating the parts with  and , I have:

 = 
£
1− −Σ=12

¤− Z −Σ=12 (|)Σ=12 [d (|)] 

Substitute  from (F.1) for the integration with respect to  (|1) and from (F.2) for the
integration with respect to  (|2). Since  () = 

()
, I can compute:

 = 
£
1− −Σ=12

¤− Σ=12 () 

The visitor chooses (1 2) to maximize . Under Assumption 1,  is strictly concave in

(1 2), and the optimal choices are interior. Thus, the optimal  is uniquely given by the

first-order condition:

−Σ=12 = 0 () ,  = 1 2

The solution to this equation is independent of  and is equal to ∗, where ∗ is defined

by (2.11). That is, 1 = 2 = ∗. This result implies  (1) =  (2) =  (∗) and

1 = 2 = ∗ ≡ 
(∗) , where 

∗ and ∗ are the values in the baseline equilibrium. Moreover,

(F.1) and (F.2) become the same except possibly the supports of the two distributions.

Part (b) of requirement (iii) in Definition 2.2 requiresΠ ( 1 2) = ∗ for all  ∈supp( (|))
and Π ( 1 2)  ∗ for all  ∈supp( (|)) with  ≤ . This requirement implies that

the supports of  (|1) and  (|2) have the features (a)-(d) below:
(a) The support of  (|) is an interval [ ]. If there were any hole in the support,

say, ( ), with  and  in the support of  (|), then posting a price in the hole would
yield a higher expected surplus to a stayer than posting .

(b)  (|) is continuous in  on [ ]. If there were a mass point at any  in the

support, posting a price slightly lower than  would increase expected surplus.

(c) The union of the two supports is connected, and so min{1 2} ≥ max{1 2}.
This is similar to (a) but the proof compares the two submarkets. Suppose 1  2,

on the contrary. (A similar proof applies if 2  1.) Compare a stayer posting  ∈
(1 2) in submarket 2 and a stayer posting 1 in submarket 1. The two stayers have

the same meeting probability. They also have the same probability to trade, which occurs
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when the visitor in the meeting has no other meeting with stayers in submarket 1. However,

posting  in submarket 2 yields higher profit in a trade than posting 1 in submarket 1

and, hence, higher than ∗. This contradicts the requirement that all prices outside the

support of  (|2) should yield an expected surplus strictly lower than ∗.

(d) 1 = 2 = ∗ and max{1 2} = ∗ , where [
∗
 

∗
 ] is the support of  (|∗).

It is clear that min{1 2} = ∗ = ∗ and max{1 2} = ∗
∗
= ∗ . To prove

1 = 2, suppose 1  2, on the contrary. Posting any  ∈ [1 2) in submarket 1
yields the expected surplus ∗ to a stayer. If a stayer posts  in submarket 2, the stayer

has the same probability of trade and same profit in a trade as posting  in submarket 1.

Thus, posting  in submarket 2 yields the expected surplus 
∗. This contradicts part (b)

of requirement (iii) in Definition 2.2 that all such prices yielding ∗ and not exceeding 2

should be posted by some stayers in submarket 2.

I assume 1 ≤ ∗ , without loss of generality. Then, result (4) above implies 2 = ∗ .

With 1 = 2 = ∗, (F.1) and (F.2) yield:

 = ∗−
∗Σ=12 (|) for all  ∈ [∗ ∗ ] .

Comparing this equation with (2.7) in the baseline equilibrium yields Σ=12 (|) =
 (|∗) for all  ∈ [∗ ∗ ]. Thus, if the two submarkets constitute an equilibrium, they
must satisfy conditions (1)-(3) in Proposition F.1.

Conversely, if the two submarkets satisfy conditions (1)-(3) in Proposition F.1, they

satisfy all requirements (i)-(iii) in Definition 2.2. With the maintained condition  = ,

the two submarkets constitute an equilibrium.

By the construction above, it is evident that the equilibrium with two active submarkets

is equivalent to the baseline equilibrium in the sense that the two equilibria deliver the same

probabilities of meeting and matching for a visitor, the same market tightness, and the

same overall distribution of prices in the economy. QED
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