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Abstract

This online appendix provides (i) the formal assumptions that underlie all of our the-

oretical results, (ii) some theoretical results that are not in the main paper, (iii) the proofs

of the asymptotic results provided in Section 3 of the same paper, and (iv) a Monte Carlo

study.

A Assumptions

Here and throughout this appendix, tr A, rank A and ‖A‖ =
√

tr (A′A) denote the trace, the

rank, and the Frobenius (Euclidean) norm of the matrix A, respectively. The symbols→d and

→p signify convergence in distribution and convergence in probability, respectively.

Assumption A.1. εi and Vi are independently distributed across i and with zero mean, and

finite fourth-order cumulants.

Assumption A.2. βi = β + νi, where νi is independently distributed across i and with zero

mean, and finite fourth-order cumulants.

Assumption A.3. F, εi, Vj and νn are mutually independent for all i, j and n. Also, γi and Γi

are non-random.
*Corresponding author: Department of Economics, Lund University, Box 7082, 220 07 Lund, Sweden. Tele-

phone: +46 46 222 8997. Fax: +46 46 222 4613. E-mail address: joakim.westerlund@nek.lu.se.
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Assumption A.4. m0 ≤ k + 1 < T.

Before we take the next assumption, Assumption A.5, it is useful first combine equations

(1) and (2) of the main paper. This leads to the following static factor model for Zi = [yi, Xi];

Zi = FCi + Ui, (A.1)

where Ci = [γi + Γiβi, Γi] is m0 × (k + 1), and Ui = [εi + Viβi, Vi] is T × (k + 1). Assumption

A.5 places restrictions on C, the average Ci.

Assumption A.5. rank C = m0 for all N. Also, there is an unique index set M0 with |M0| = m0

such that rank(CSM0) = m0.

Assumption A.6. rank F = m0.

Assumption A.7. N−1 ∑N
i=1 X′iMF̂M

Xi →p Φ as N → ∞ for all M, where Φ is positive definite.

The required independence of εi,t and vi,t over i in Assumption A.1 is not necessary, and

can be relaxed at the expense of additional “high-level” moment conditions.

Assumption A.2 is largely the same as Assumption 4 in Pesaran (2006). It relaxes the other-

wise so common equal slope condition (see, for example, Bai, 2009). The slopes are not required

to be different, though, as the covariance matrix of νi need not be positive definite. This means

that researchers are spared the problem of having to test the homogeneity restriction.

We only consider non-random loadings (Assumption A.3), which represent a more general

consideration than random loadings.

The condition that C has full row rank m0 (Assumption A.5) is the same as condition (21) in

Pesaran (2006) and is standard in the CCE literature. Together with m0 ≤ k + 1 (Assumption

A.4), it ensures that the space spanned by F can be consistently estimated using (a subset of) Z.

This condition can be relaxed by assuming that some of the factors are observed and appending

those factors to F̂M, as explained in the empirical illustration.

Assumption A.5 defines the correct index set M0. This set has the property that SM0 uniquely

selects the averages in Z that are rotationally consistent for F. The uniqueness condition here is

analogous to the literature on moment selection (see, for example, Andrews and Lu, 2001). In
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general, however, depending on C, uniqueness may or may not hold. Whether M0 is unique or

not does not affect the properties of the proposed test; however, it may affect the interpretation

of the test outcome. Note in particular that if M0 is not unique then we are no longer looking

for a unique set of averages that span the space of F but rather we may end up with multiple

such sets.

B Additional results

The TM test is useful when the researcher has a preferred set of averages M in mind that he

or she wants to test. However, sometimes there is no natural choice of M and there might be

several candidates that seem equally reasonable. Fortunately, there is an easy way out of this

dilemma. If one of the sets of averages under consideration includes M0, then its TM statistic

has an asymptotic distribution and the statistics based on the other sets diverge. If, instead, M0

is not included in any of the sets considered, then all statistics will diverge. Thus, only the set

with the smallest |TM| statistic can possibly include M0 and we can reject H0 when the smallest

|TM| is large. This discussion motivates the following test statistic:

MT = min
j=1,...,n

|TMj |, (B.2)

where TMj = T(F̂Mj) with M1, ..., Mn being the sets of averages considered. The MT test is an

instance of an intersection-union test (see Berger, 1982). An important feature of this type of

test is that there is no need to size correct for the multiplicity of tests used, as is made clear in

the following proposition.

Proposition B.1. Suppose that Assumptions A.1–A.7 are met. Then,

lim
N→∞

P(MT > zα/2) = α. (B.3)

Proof: The proof of this proposition is a direct consequence of Theorem 1 of Berger (1982). It is

therefore omitted. �

According to Proposition B.1, the appropriate critical value to use with MT is the same as

for each of the individual |TM| tests making up MT, and yet the overall significance level is still

α.
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C Proofs

Proof of Theorem 1.

We start with (a). Since H0 holds in this part of the theorem, we have M ⊇ M0. This means

that rank (CSM) = m0. We may without loss of generality partition SM as SM = [S1, S2,M],

where S1 and S2,M are (k + 1)×m0 and (k + 1)× (m−m0) matrices, respectively, that selects

the full and reduced rank submatrices of C. Here Mc
0 = M \ M0 is the complement of M0,

|M0| = m0 and |Mc
0| = m − m0. Note also that because M0 is unique, unlike S2,M, S1 is

independent of M. Thus, CSM = [CS1, CS2,M] = [C1, C2,M] = CM, where C1 is an m0 × m0

full rank matrix and C2,M is m0 × (m−m0). The T ×m matrix USM is partitioned similarly as

USM = [U1, U2,M] = UM, where U1 is T ×m0 and U2,M is T × (m−m0). In this notation,

F̂M = FCM + UM = [FC1, FC2,M] + [U1, U2,M]. (C.4)

Define

BM =

[
C−1

1 −C−1
1 C2,M

0(m−m0)×m0
Im−m0

]
= [B1,M, B2,M], (C.5)

with obvious definitions of B1,M and B2,M. Note that while B1,M is m× m0, B2,M is m× (m−

m0), which means that BM is m × m. The matrix BM is also full rank, because rank BM =

rank C−1
1 + rank Im−m0 = m (see Abadir and Magnus, 2005, Exercise 5.43), and can therefore be

inverted. This is very important, as will soon become clear. Another very useful property of

BM is that CMBM = [Im0 , 0m0×(m−m0)], which we can use to establish the following:

F̂MBM = FCMBM + UMBM = [F, 0T×(m−m0)] + [UMB1,M, UMB2,M]. (C.6)

Because ‖U‖ = Op(N−1/2) for a fixed T under general conditions, the last m − m0 columns

of F̂MBM converge to zero and are in this sense degenerate. Also, since BM is invertible,

we have PF̂M
= PF̂MBM

. The degeneracy in F̂MBM therefore causes an asymptotic singu-

larity in PF̂MBM
. In order to address this issue, we introduce m × m normalization matrix

DM = diag(Im0 ,
√

NIm−m0), which is such that if we let F̂0
M = F̂MBMDM, F0

M = FCMBMDM =

[F, 0T×(m−m0)] and U0
M = UMBMDM = [USMB1,M,

√
NUSMB2,M] = [U0

1,M, U0
2,M], then

F̂0
M = F0

M + U0
M = [F, 0T×(m−m0)] + [U0

1,M, U0
2,M]. (C.7)
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It is important to realize that since now ‖U0
1,M‖ = Op(N−1/2) and ‖U0

2,M‖ = Op(1), letting

F+
M = [F, U0

2,M], we have

F̂0
M = [F, U0

2,M] + Op(N−1/2) = F+
M + Op(N−1/2), (C.8)

which means that in contrast to F̂MBM, all the columns of F̂0
M are non-degenerate. This is

therefore the appropriate estimator to consider in the asymptotic analysis. Moreover, since

MF̂M
= MF̂0

M
, having F̂M is just as good as having F̂0

M, although in practice the latter estimator

is of course unobservable.

The above notation can be extended to cover also the case when M = M0. Note in particular

that if we define CM = CSM = CS1 = C1, BM = B1,M = C−1
1 and DM = D1,M = Im0 , we have

F̂0
M = F̂0

1,M = F̂1,MB1,MD1,M = F̂1,MC−1
1 , F0

M = F0
1,M = FCS1B1,MD1,M = FC1C−1

1 = F and

U0
M = U0

1,M = US1B1,MD1,M = US1C−1
1 = U0

M0,1, and hence

F̂0
M = F̂0

1,M = F̂1,MC−1
1 = F0

1,M + U0
1,M = F + U0

M0,1 = F + Op(N−1/2). (C.9)

We now make use of the above consistency results to evaluate F̂Mĝi,M. Letting ĝ0
i,M =

(DNB′M)−1′ĝi,M = (BMDN)
−1ĝi,M and γ0

i = (CSMBMDN)
+γi = DNB′MC′γi = [γ′i, 01×(m−m0)]

′,

F̂Mĝi,M − Fγi = F̂MBMDN(BMDN)
−1ĝi,M − FCMBMDN(CMBMDN)

+γi

= F̂0
Mĝ0

i,M − F0
Mγ0

i

= (F̂0
M − F0

M)γ0
i + F̂0

M(ĝ0
i,M − γ0

i ). (C.10)

Clearly, (F̂0
M − F0

M)γ0
i = U0

1,Mγi. Consider the second term on the right-hand side. By using

CMB1,M = Im0 and defining gi,M = B1,Mγi, the model for yi can be written as

yi = Xiβi + F̂MB1,Mγi − (F̂M − FCM)B1,Mγi + εi

= Xiβ + Xiνi + F̂Mgi,M −U0
1,Mγi + εi. (C.11)

By inserting this into the above expression for ĝi,M,

ĝi,M = (F̂′MF̂M)+F̂′M(yi − Xi β̂M)

= (F̂′MF̂M)+F̂′M(Xiβ + Xiνi + F̂Mgi −U0
1,Mγi + εi − Xi β̂M)

= gi,M + (F̂′MF̂M)+F̂′M[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)], (C.12)
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implying

ĝ0
i,M = (BMDN)

−1ĝi,M

= (BMDN)
−1gi,M + (BMDN)

−1(F̂′MF̂M)+F̂′M[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

= (BMDN)
−1gi,M + (DNB′MF̂′MF̂MBMDN)

−1DNB′MF̂′[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

= (BMDN)
−1gi,M + (F̂0′

MF̂0
M)+F̂0′

M[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]. (C.13)

Consider the first term on the right-hand side. A direct calculation using the rules for the

inverse of a partitioned matrix (see, for example, Abadir and Magnus, 2005, Exercise 5.16)

reveals that

(DNBM)−1 =

[
C1 C2,M

0(m−m0)×m0
N−1/2Im−m0

]
, (C.14)

so that

(BMDN)
−1B1,M =

[
C1 C2,M

0(m−m0)×m0
N−1/2Im−m0

] [
C−1

1
0(m−m0)×m0

]

=

[
I1,M

0(m−m0)×m0

]
. (C.15)

This implies

(BMDN)
−1gi,M =

[
γi

0(m−m0)×1

]
= γ0

i , (C.16)

leading to the following expression for ĝ0
i,M − γ0

i :

ĝ0
i,M − γ0

i = (F̂0′
MF̂0

M)+F̂0′
M[Xiνi −U0

1,Mγi + εi − Xi(β̂M − β)]. (C.17)

It follows that

F̂0
M(ĝ0

i,M − γ0
i ) = F̂0

M(F̂0′
MF̂0

M)+F̂0′
M[Xiνi −U0

1,Mγi + εi − Xi(β̂M − β)]. (C.18)

We have already shown that F̂0
M = F+

M +Op(N−1/2). By using this and the results provided

in the proof of Lemma A.1 in Westerlund et al. (2019), we have that ‖F̂0′
MF̂0

M − F+′
M F+

M‖ =

Op(N−1/2) and, more importantly,

‖(F̂0′
MF̂0

M)+ − (F+′
M F+

M)+‖ = Op(N−1/2), (C.19)
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By using this last result and F̂0
M = F+

M + Op(N−1/2), we can show that

F̂0
M(F̂0′

MF̂0
M)+F̂0′

M = F̂0
M[(F̂0′

MF̂0
M)+ − (F+′

M F+
M)+]M̂0′

M + F̂0
M(F+′

M F+
M)+F̂0′

M

= F̂0
M(F+′

M F+
M)+F̂0′

M + Op(N−1/2)

= F+
M(F+′

M F+
M)+F+′ + Op(N−1/2), (C.20)

where

F+
M(F+′

M F+
M)+F+′

M = [F, U0
2,M]

[
(F′F)−1 + (F′F)−1F′U0

2,M(U0′
2,MMFU0

2,M)−1U0′
2,MF(F′F)−1

−(U0′
2,MMFU0

2,M)−1U0′
2,MF(F′F)−1

−(F′F)−1F′U0
2,M(U0′

2,MMFU0
2,M)−1

(U0′
2,MMFU0

2,M)−1

] [
F′

U0′
2,M

]
= F(F′F)−1F′ − F(F′F)−1F′U0

2,M(U0′
2,MMFU0

2,M)−1U0′
2,MMF

+ U0
2,M(U0′

2,MMFU0
2,M)−1U0′

2,MMF

= PF + MFU0
2,M(U0′

2,MMFU0
2,M)−1U0′

2,MMF

= PF + P
MFU0

2,M
. (C.21)

Insertion into F̂0(ĝ0
i,M − γ0

i ) gives

F̂0
M(ĝ0

i,M − γ0
i ) = F̂0

M(F̂0′
MF̂0

M)+F̂0′
M[Xiνi −U0

1,Mγi + εi − Xi(β̂M − β)]

= F+
M(F+′

M F+
M)+F+′

M [Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)] + Op(N−1/2)

= (PF + P
MFU0

2,M
)[Xiνi −U0

1,Mγi + εi − Xi(β̂M − β)] + Op(N−1/2), (C.22)

which in turn implies

F̂Mĝi,M − Fγi

= (F̂0
M − F0

M)γ0
i + F̂0

M(ĝ0
i,M − γ0

i )

= U0
1,Mγi + (PF + P

MFU0
2,M

)[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)] + Op(N−1/2). (C.23)

The above result holds for any M ⊇ M0, including M = M. Hence,

F̂Mĝi,M − Fγi = U0
1,Mγi + (PF + P

MFU0
2,M

)[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

+ Op(N−1/2), (C.24)
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leading to the following expression for ∆M:

∆i,M = F̂Mĝi,M − F̂Mĝi,M

= U0
1,Mγi + (PF + P

MFU0
2,M

)[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

−U0
1,Mγi − (PF + P

MFU0
2,M

)[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)] + Op(N−1/2)

= MF(U
0
1,M −U0

1,M)γi − PFXi(β̂M − β̂M)

+ P
MFU0

2,M
[Viνi −U0

1,Mγi + εi −Vi(β̂M − β)]

− P
MFU0

2,M
[Viνi −U0

1,Mγi + εi −Vi(β̂M − β)] + Op(N−1/2)

= Ei,M + Op(N−1/2), (C.25)

where Ei,M is implicitly defined and the second equality holds because P
MFU0

2,M
F = 0T×m0 .

It is important to note that the order of the reminder in the above expression for F̂Mĝi,M −

F̂Mĝi,M, which incurred when replacing F̂0
M(F̂0′

MF̂0
M)+F̂0′

M with F+
M(F+′

M F+
M)+F+′

M , is the same

even after averaging over i and multiplying by
√

N. In order to appreciate this, we make use

of the fact that
√

N(β̂M − β) is asymptotically mixed normal by Theorem 1 of Westerlund and

Kaddoura (2022), and hence ‖
√

N(β̂M − β)‖ = Op(1). Moreover, ‖
√

NU0
1,M‖ = Op(1), and

since Xi and νi are independent with νi mean zero and independent also across i, we also have

‖N−1/2
g ∑N

i=1 Xiνi‖ = Op(1). It follows that∥∥∥∥∥ 1√
N

N

∑
i=1

[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

Xiνi

∥∥∥∥∥+ ‖√NU0
1,M‖

∥∥∥∥∥ 1
N

N

∑
i=1

γi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

εi

∥∥∥∥∥
+

∥∥∥∥∥ 1
N ∑

i=1
Xi

∥∥∥∥∥ ‖√N(β̂M − β)‖ = Op(1). (C.26)

We can therefore show that∥∥∥∥∥ 1√
N

N

∑
i=1

[F+
M(F+′

M F+
M)+F+′

M − F̂0
M(F̂0′

MF̂0
M)+F̂0′

M][Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

∥∥∥∥∥
≤ ‖F+

M(F+′
M F+

M)+F+′
M − F̂0

M(F̂0′
MF̂0

M)+F̂0′
M‖
∥∥∥∥∥ 1√

N

N

∑
i=1

[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

∥∥∥∥∥
= Op(N−1/2). (C.27)

8



Note in addition how

√
NEM = MF

√
N(U0

1,M −U0
1,M)γ− PFX

√
N(β̂M − β̂M)

+ P
MFU0

2,M

(
1√
N

N

∑
i=1

Viνi −
√

NU0
1,Mγ +

√
Nε−

√
NV(β̂M − β)

)

− P
MFU0

2,M

(
1√
N

N

∑
i=1

Viνi −
√

NU0
1,Mγ +

√
Nε−

√
NV(β̂M − β)

)
= MF

√
N(U0

1,M −U0
1,M)γ− PFFΓ

√
N(β̂M − β̂M)

+ P
MFU0

2,M

(
1√
N

N

∑
i=1

Viνi −
√

NU0
1,Mγ +

√
Nε

)

− P
MFU0

2,M

(
1√
N

N

∑
i=1

Viνi −
√

NU0
1,Mγ +

√
Nε

)
+ Op(N−1/2)

= MF
√

N(U0
1,M −U0

1,M)γ− FΓ
√

N(β̂M − β̂M)

+ (P
MFU0

2,M
− P

MFU0
2,M

)

(
1√
N

N

∑
i=1

Viνi +
√

Nε

)
− P

MFU0
2,M

√
NU0

1,Mγ + P
MFU0

2,M

√
NU0

1,Mγ + Op(N−1/2), (C.28)

where

U0
1,M = USMB1,M = U[S1, S2,M]

[
C−1

1
0(m−m0)×m0

]
= US1C−1

1 . (C.29)

This last result holds for any M including M. Hence, letting

E0
M = −FΓi(β̂M − β̂M) + (P

MFU0
2,M
− P

MFU0
2,M

)(Viνi + εi −US1C−1
1 γi), (C.30)

we have

√
NEM = −FΓ

√
N(β̂M − β̂M)

+ (P
MFU0

2,M
− P

MFU0
2,M

)

(
1√
N

N

∑
i=1

Viνi +
√

Nε−
√

NUS1C−1
1 γ

)
+ Op(N−1/2)

=
√

NE0
M + Op(N−1/2), (C.31)

which in turn implies

√
N∆M =

1√
N

N

∑
i=1

(F̂Mĝi,M − F̂Mĝi,M) =
1√
N

N

∑
i=1

Ei,M + Op(N−1/2)

=
√

NEM + Op(N−1/2) =
√

NE0
M + Op(N−1/2). (C.32)
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Both terms that make up E0
i,M are mean zero and conditionally independent across i. They are

therefore asymptotically mixed normal by a central limit law for conditionally independent

variables. However, they are not uncorrelated with each other, which complicates the calcula-

tion of the asymptotic variance. Let us therefore define ΣM = NE(E0
ME0′

M|C), where C is the

sigma-field generated by F and (the limit of) U0
2,M. It follows that

√
NE0

M →d MN(0T×1, ΣM) (C.33)

as N → ∞, where MN(·, ·) signifies a mixed normal distribution that is normal conditionally

on C. We can therefore show that

√
N∆M =

√
NE0

M + Op(N−1/2)→d MN(0T×1, ΣM) (C.34)

as N → ∞. Hence,

√
N1′T×1∆M =

√
N1′T×1E0

M + Op(N−1/2)→d MN(0, 1′T×1ΣM1T×1), (C.35)

and so
√

N1′T×1∆M√
1′T×1ΣM1T×1

→d N(0, 1). (C.36)

Let us now consider Σ̂M. Since ∆i,M is again conditionally independent across i, by a law of

large numbers for conditionally independent variables,

Σ̂M =
1

N − 1

N

∑
i=1

(∆i,M − ∆M)(∆i,M − ∆M)′ →p ΣM (C.37)

as N → ∞. The required result under M ⊇ M0 is implies by this.

We now move on to part (b) of the theorem. Since H1 holds here, we have M ⊂ M0.

However, regardless of whether M ⊇ M0 or M ⊂ M0,

F̂M = FCM + UM = FCM + Op(N−1/2). (C.38)

Hence, consistency in this sense is not impaired by under-specification of the number of aver-

ages. However, because m < m0, we have rank (CM) = m. Hence, in contrast to before, now

CM has full column rank, which means that many of the results that held under H0 cannot
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be used anymore. Note in particular how C+
M = (C′MCM)−1C′M such that C+

MCM = Im (see,

for example, Abadir and Magnus, 2005, Exercise 10.31), which means that F and γi cannot be

rotated in the same way as before. However, we still have yi = Xiβ + Xiνi + Fγi + εi, which

means that

ĝi,M = (F̂′MF̂M)+F̂′M(yi − Xi β̂M)

= (F̂′MF̂M)+F̂′M(Xiβ + Xiνi + Fγi + εi − Xi β̂M)

= (F̂′MF̂M)+F̂′M[Xiνi + Fγi + εi − Xi(β̂M − β)]. (C.39)

Here,

F̂′MF̂M = C′MF′FCM + Op(N−1/2), (C.40)

where the rank of F̂′MF̂M is equal to m, which is also the rank of C′MF′FCM. The fact that the

rank does not change as the limit is taken implies that

(F̂′MF̂M)+ = (C′MF′FCM)+ + Op(N−1/2) (C.41)

(see Karabiyik et al., 2017). Insertion into the above expression for ĝi,M yields

ĝi,M = (C′MF′FCM)+C′MF′[Xiνi + Fγi + εi − Xi(β̂M − β)] + Op(N−1/2), (C.42)

which in turn implies

F̂Mĝi,M = FCM(C′MF′FCM)+C′MF′[Xiνi + Fγi + εi − Xi(β̂M − β)] + Op(N−1/2)

= PFCM
[Xiνi + Fγi + εi − Xi(β̂M − β)] + Op(N−1/2). (C.43)

Consider β̂M − β. Since MF̂M
X = 0T×k, we have ∑N

i=1 MF̂M
Xi = NMF̂M

X = 0T×k. By using
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this, yi = Xiβ + Xiνi + Fγi + εi, F̂M = FCM + Op(N−1/2) and the independence of νi and εi,

β̂M =

(
N

∑
i=1

X′iMF̂M
Xi

)−1 N

∑
i=1

X′iMF̂M
yi

= β +

(
1
N

N

∑
i=1

X′iMF̂M
Xi

)−1
1
N

N

∑
i=1

X′iMF̂M
(Xiνi + Fγi + εi)

= β +

(
1
N

N

∑
i=1

X′iMF̂M
Xi

)−1
1
N

N

∑
i=1

X′iMF̂M
[Xiνi + F(γi − γ) + εi]

= β +

(
1
N

N

∑
i=1

X′iMFCM
Xi

)−1
1
N

N

∑
i=1

X′iMFCM
[Xiνi + F(γi − γ) + εi] + Op(N−1/2)

= β +

(
1
N

N

∑
i=1

X′iMFCM
Xi

)−1
1
N

N

∑
i=1

X′iMFCM
F(γi − γ) + Op(N−1/2). (C.44)

The second term on the right-hand side here is Op(1). One exception is if one in addition to the

conditions of this paper assumes that γi = γ + ηi, where ηi is mean zero, independent across i

and also independent of all other random elements of the model. In this case, the second term

above is Op(N−1/2). However, we do not require loadings to be random, and therefore

β̂M − β = Op(1). (C.45)

It follows that

1
N

N

∑
i=1

F̂Mĝi,M = PFCM

1
N

N

∑
i=1

[Xiνi + Fγi + εi − Xi(β̂M − β)] + Op(N−1/2)

= PFCM

1
N

N

∑
i=1

[Fγi − Xi(β̂M − β)] + Op(N−1/2)

= PFCM
[Fγ− X(β̂M − β)] + Op(N−1/2), (C.46)

where the first term on the right is Op(1). Together with the asymptotic expansion of F̂Mĝi,M

12



provided in the proof of (a), this last result implies

∆M =
1
N

N

∑
i=1

(F̂Mĝi,M − F̂Mĝi,M)

= Fγ + U0
1,Mγ + (PF + P

MFU0
2,M

)
1
N

N

∑
i=1

[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

− PFCM
[Fγ− X(β̂M − β)] + Op(N−1/2)

= Fγ− PFCM
[Fγ− X(β̂M − β)] + Op(N−1/2)

= MFCM
Fγ + PFCM

FΓ(β̂M − β) + Op(N−1/2) = Op(1). (C.47)

The sought result is implied by this. This establishes (b) and hence the proof of the theorem is

complete. �

Proof of Theorem 2.

This proof is similar to that of Theorem 1 in Fujikoshi and Sakurai (2019), or the same theorem

in Fujikoshi (2022). We begin by observing that

P(M̂ = M0) = P

 ⋂
j∈M0

|TMj | > cN

⋂
 ⋂

j/∈M0

|TMj | < cN




= 1−P

 ⋃
j∈M0

|TMj | ≤ cN

⋃
 ⋃

j/∈M0

|TMj | ≥ cN




≥ 1− ∑
j∈M0

P(|TMj | ≤ cN)− ∑
j/∈M0

P(|TMj | ≥ cN). (C.48)

The second term on the right is the probability that the test does not reject even when truly im-

portant averages are kicked out. This probability goes to zero as |TMj | = Op(
√

N) by Theorem

1 (b) and cN/
√

N → 0 by assumption. The third and last term in (C.48) is the probability that

the test rejects when redundant averages are kicked out. Here we use in sequence Chebyshev’s

inequality and Theorem 1 (b), giving

P(|TMj | ≥ cN) ≤ c−2
N var(TMj) = c−2

N + o(c−2
N ) = O(c−2

N )→ 0, (C.49)

as cN → ∞. Hence, since the two last terms in (C.48) tend to zero,

P(M̂ = M0)→ 1, (C.50)
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as required. �

Proof of Theorem 3.

The proof of (a) follows from simple manipulations of that of Theorem 1 (a). We begin by

observing that H0 can be formulated as G = FH, where rank H = m0 ≤ m. Since H has full

row rank, we have H+ = H′(HH′)−1, a m × m0 matrix, which is such that HH+ = Im0 (see

Abadir and Magnus, 2005, Exercise 10.31). It follows that Fγi = FHH+γi = Ggi,G, where we

define gi,G = H+γi analogously to gi,M in the Proof of Theorem 1. Therefore,

yi = Xiβ + Xiνi + Ggi,G + εi, (C.51)

from which we deduce that

ĝi,G = (G′G)+G′(yi − Xi β̂G)

= (G′G)+G′(Xiβ + Xiνi + Ggi + εi − Xi β̂G)

= gi,G + (G′G)+G′[Xiνi + εi − Xi(β̂G − β)]. (C.52)

where β̂G is β̂M with G in place of F̂M. If A has full column rank and B has full row rank,

then (AB)+ = B+A+ (see Abadir and Magnus, 2005, Exercise 10.36). Applying this twice to

(G′G)+ = (H′F′FH)+ yields (F′FH)+H′+ = H+(F′F)−1H′+. By putting these results together,

Gĝi,G − Fγi = G(ĝi,G − gi,G)

= G(G′G)+G′[Xiνi + εi − Xi(β̂G − β)]

= F(F′F)−1F′[Xiνi + εi − Xi(β̂G − β)]

= PF[Xiνi + εi − Xi(β̂G − β)], (C.53)
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which in turn implies

∆i,G = F̂Mĝi,M −Gĝi,G

= U0
1,Mγi + (PF + P

MFU0
2,M

)[Xiνi −U0
1,Mγi + εi − Xi(β̂M − β)]

− PF[Xiνi + εi − Xi(β̂M − β)] + Op(N−1/2)

= MFU0
1,Mγi − PFXi(β̂M − β̂M)

+ P
MFU0

2,M
[Viνi −U0

1,Mγi + εi −Vi(β̂M − β)] + Op(N−1/2)

= Ei,G + Op(N−1/2), (C.54)

where we again use notation that is analogous to that in Proof of Theorem 1. While not the

same, Ei,G has the same properties as Ei,M in that proof. Asymptotic normality therefore follows

by the same arguments. The proof of part (b) is almost identical to that of Theorem 1 (b) and is

therefore omitted. �

D Monte Carlo study

In this section we report the results of a small-scale Monte Carlo study into the small-sample

accuracy of our theoretical results. The data generating process used for this purpose is given

by a highly simplified version of the one given in equations (1) and (2) of the main paper, and

sets m0 = 2, β = 0k×1 and νi ∼ N(0k×1, ω2Ik). Two values of ω2 are considered, 0 (slope

homogeneity) and 0.04 (slope heterogeneity), as in Pesaran (2006). We further set k = 3, so that

the maximum number of cross-sectional averages is given by k + 1 = 4. Similarly to Bai and

Ng (2002), the elements of εi are allowed to be weakly serially correlated through the following

autoregressive specification:

εi,t = ρεi,t−1 + ui,t, (D.55)

where ε1,0 = ... = εN,0 = 0, ρ ∈ {0, 0.5} and ui,t ∼ N(0, 1). The elements of Vi and F are

independently drawn from N(0, 1). For the loadings, we generate

γi =

[
1

0.5

]
+ ξi, (D.56)

Γi =

[
0.5 01×(k+1−m0)

1 01×(k+1−m0)

]
+ ξi11×k, (D.57)
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where ξi ∼ N(0, 1). This way we ensure not only that γi and Γi are correlated but also that

E(Ci) = E([γi + Γiβi, Γi]) = E([γi, Γi]) =

[
1 0.5 01×(k+1−m0)

0.5 1 01×(k+1−m0)

]
, (D.58)

which means that asymptotically only the first m0 = 2 columns of Z load on F, that is, M0 =

{1, 2}. These are therefore the averages we want to single out from the rest.

We begin by considering the results reported in Table 1, which contains empirical rejection

frequencies for the TM test at the 5% significance level. When M = M0, these represent size. An

important aspect when it comes to power is the direction at which power is evaluated, which

is apparent from the proof of Theorem 1 (b). Intuitively, since the test is based on the estimated

model for yi, the TM test will have relatively high (low) power in the direction of erroneously

excluding y (X). In Table 1, we therefore consider both the case when M = {1}, in which the

first column of X is erroneously excluded, and M = {2}, in which y is erroneously excluded.

Hence, in both these cases the reported rejection frequencies represent power. All results are

based on 1,000 replications.

We begin by noting that size accuracy is generally quite good, which is just as expected

given Theorem 1 (a). Of course, accuracy is not perfect, and there are some distortions. Most

of these are, however, not larger than that they can be attributed to simulation uncertainty. As

expected given the above discussion, power depends on the direction in which it is evaluated,

and it is highest when evaluated in the direction of erroneously excluding y. Unreported results

confirm that power is even higher if both y and the first column of X are excluded.

We now move on to the sequential procedure to determine M0. We have argued that in

order to eliminate the risk of over-specification asymptotically the critical value, cN, should be

allowed to increase with N. Of course, in practice N and T are always fixed, and hence so is

cN. In the structural break literature it is therefore common to employ fixed critical values even

if theory requires that they grow with T (see, for example, Bai, 1999). The fact that in practice

N and T are always fixed is one reason for not allowing cN to grow with N. Another reason

is that we have seen that the TM test has poor power in the direction of erroneously excluding

X. This will cause the sequential procedure to underestimate M0, as averages associated with

small values of TM are dropped. For these reasons, in this section the sequential procedure is
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Table 1: Size and power of the TM test at the 5% significance level.

ω2 = ρ = 0 ω2 = 0.04, ρ = 0.5
N T M M0 {1} {2} M0 {1} {2}
50 10 5.0 8.2 77.1 4.4 5.7 73.8
100 10 5.1 15.8 80.9 6.4 12.7 76.8
200 10 4.9 32.3 87.1 5.3 28.0 84.9
400 10 7.4 49.4 90.0 6.2 42.2 89.7
50 20 3.7 8.0 80.9 3.7 6.3 77.6
100 20 3.0 16.3 82.9 2.0 13.4 82.3
200 20 2.4 32.2 87.4 2.9 29.0 86.3
400 20 2.6 54.4 91.0 2.6 51.2 90.3

Notes: ρ and ω2 are parameters that measure the degree of error serial correlation and coef-
ficient heterogeneity, respectively. The correct index set is given by M0 = {1, 2}. The results
for the case when M = M0 represent size, while those for M = {1} and M = {k + 1}
represent power.

implemented using the same normal critical value as in the TM test.

Table 2 report some results on the correct selection frequency for M̂ and m̂, and the average

m̂ across the 1,000 replications. As expected given the discussion of the last paragraph, we

see that the average m̂ approaches m0 from below. The procedure therefore has a tendency to

under-specify the model in small samples. This is reflected in the correct selection frequencies,

which can be quite low. However, we also see that accuracy increases quite quickly as N grows,

which is presumably a reflection of Theorem 2 and the consistency of M̂.

Table 2: Correct selection frequency for M̂ and m̂, and average m̂.

ω2 = ρ = 0 ω2 = 0.04, ρ = 0.5
N T Corr M̂ Corr m̂ Mean m̂ Corr M̂ Corr m̂ Mean m̂
50 10 0.206 0.110 1.340 0.177 0.085 1.296

100 10 0.285 0.194 1.473 0.253 0.165 1.438
200 10 0.366 0.299 1.637 0.350 0.263 1.641
400 10 0.438 0.384 1.776 0.421 0.359 1.766
50 20 0.205 0.146 1.281 0.191 0.118 1.258

100 20 0.289 0.235 1.391 0.268 0.211 1.359
200 20 0.378 0.319 1.567 0.372 0.305 1.538
400 20 0.521 0.482 1.772 0.507 0.454 1.723

Notes: ρ and ω2 are parameters that measure the degree of error serial correlation and co-
efficient heterogeneity, respectively. The correct index set is given by M0 = {1, 2}. “Corr
M̂” and “Corr m̂” refer to the frequency with which M0 and m0 are correctly selected, while
“Mean m̂” refers to the average m̂ across replications.

17



References

Abadir, K. M., and J. R. Magnus (2005). Matrix algebra, Econometric exercises 1. Cambridge

University Press, New York.

Andrews, D. W. K., and B. Lu (2001). Consistent model and moment selection procedures for

GMM estimation with application to dynamic panel data models. Journal of Econometrics

101, 123–164.

Bai, J. (1999). Likelihood ratio tests for multiple structural changes. Journal of Econometrics 91,

299–323.

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229–1279.

Bai, J., and S. Ng (2002). Determining the number of factors in approximate factor models.

Econometrica 70, 191–221.

Berger, R. L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technomet-

rics 24, 295–300.

Fujikoshi, Y. (2022). High-dimensional consistencies of KOO methods in multivariate regres-

sion model and discriminant analysis. Journal of Multivariate Analysis 188, 104860.

Fujikoshi, Y., and T. Sakurai (2019). Consistency of test-based method for selection of variables

in high-dimensional two-group discriminant analysis. Japanese Journal of Statistics and

Data Science 2, 155–171.

Karabiyik, H., S. Reese and J. Westerlund (2017). On the role of the rank condition in CCE

estimation of factor-augmented panel regressions. Journal of Econometrics 197, 60–64.

Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multi-

factor error structure. Econometrica 74, 967–1012.

Westerlund, J., and Y. Kaddoura (2022). CCE in heterogenous fixed-T panels. Econometrics

Journal 25, 719–738.

18



Westerlund, J., Y. Petrova and M. Norkute (2019). CCE in fixed-T panels. Journal of Applied

Econometrics 34, 746–761.

19


