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Abstract

In the context of stochastic choice, we introduce and behaviorally characterize a

choice theoretic model which admits a notion of interactive influence among individu-

als. The model presumes that individual choice is not only determined by idiosynratic

evaluations of the alternatives but also by the influence from other individuals. We

establish that the model is uniquely identified; hence, the degree of influence can be

inferred from the observable choice behaviors. We also show that the behavior pro-

duced by our model constitutes a stable equilibrium when embedded in a dynamic

environment.
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1 Introduction

It is well-known that individual choices are directly influenced by the choices of others.

Behavioral evidence on whether social interactions alter individual behavior is conclusive

and indisputable. Examples abound. Peer behavior has a significant influence not only on a

student’s school achievement [Calvo-Armengol et al., 2009], but also on social behavior such

as consumption of recreational activities, drinking, smoking, etc. [Sacerdote, 2011]. High

productivity co-workers are found to increase one’s own productivity [Mas and Moretti, 2009].

Involvement in crime [Glaeser et al., 1996], job search [Topa, 2001], adolescent pregnancy

[Case and Katz, 1991], college major choice [De Giorgi et al., 2010] are other prominent

examples in which social interactions are shown to be crucial constituents of individual

behavior. An abundance of empirical evidence corroborates the role of social influence on

individual behavior. We know that it happens. What is less clear is how it happens. How

exactly does influence from others alter one’s behavior? More importantly, viewing behavior

as resulting from an unobservable cognitive process, how can we identify the extent to which

one’s behavior is attributed to influence as opposed to one’s own preferences?

In this paper, we answer these two questions via a microfoundational approach. We

propose and characterize a simple decision making procedure for interacting individuals.

Our main contribution is to provide an intuitive and tractable choice model which affords a

meaningful, and measurable, definition of “influence” as derived from choice behavior alone.

Hence, our work provides the first meaningful behavioral language for discussing influence

in an abstract framework.

Before introducing the setting, we lay out the basic principles of social influence on which

we base our model. First of all, we presume that influence alters the way individuals evaluate

the alternatives. Individuals possess idiosynratic “preferences” as usual. However, influence

from others directly distorts their perception of these alternatives instead of modifying the

choice set.1 This is in line with many findings from the social psychology or experimental

1The traditional assumption of exogenous and fixed individual preferences has also been frequently chal-
lenged by economic theorists over the last couple of decades; see, for instance, Bowles [1998], Bisin and
Verdier [2001], Bar-Gill and Fershtman [2005], Doepke and Zilibotti [2017]. Closer to our perspective is Fehr
and Hoff [2011], who argue that individual preferences are susceptible to social effects via cognitive channels
such as framing, anchoring and identity effects.
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economics literatures. For instance, Kremer and Levy [2008] show that alcohol consumption

by one roommate is more likely to influence the alcohol consumption of another roommate via

a preference change rather than a modification of the choice set. Kenrick and Gutierres [1980]

show that individual evaluations of physical attractiveness of random people are directly

altered by evaluations from peers. According to the notion of (mis)identification in social

psychology, when some alternatives become identified with certain identities, they become

more likely to be preferred by aspiring individuals, whereas despising individuals avoid them

in order not to be misindentified [Berger, 2016].

Second, not everybody is equally influential toward a given individual. Individuals have

different levels of susceptibility to influence from different agents: Aral and Walker [2012]

investigate this heterogeneity over social media networks, Frey and Meier [2004] for prosocial

behavior of university students and Glaeser et al. [1996] for criminal behavior.2

Lastly, we treat influence as a mutual notion in line with the entire literature on social

interactions.3 Not only is one influenced by her peers, but she also possesses the potential

to influence them.

Our model lives in a stochastic set up and, for brevity, takes the classical Luce model

[Luce, 1959] of stochastic choice as a benchmark. In Luce’s model, each alternative is pa-

rameterized by a “weight” reflecting its strength of choice for the decision maker. Choice

probabilities from any given budget are always proportional to the strength of choice. Our

model likewise relies on a weight, reflecting its strength of choice and choice probabilities.

However, the strength of choice in our model not only accommodates an idiosyncratic com-

ponent but also a component incorporating influence. The idiosyncratic strength of choice is

directly modified by a weighted version of the other individuals’ observable choice probabil-

ities from the same budget. Thus there are two parameters in our model. One parameter is

each individual’s idiosyncratic strength of choice (or Luce weights). The other parameter is

each individual’s measure of the degree of influence. The higher is this measure, the more an

2The majority of the literature on social interactions refers to one’s reference group as the main source of
influence. Although we do not model reference groups explicitly, our framework is entirely in line with this
view. Moreover, our identification strategy in the multi-individual setting of Section 3 enables the revelation
of reference groups from observable choice behavior.

3Although the mutuality of influence is acknowledged, for some social interaction models tractability
requires that the individual ignores her own effect on the society. See, for instance, Brock and Durlauf
[2003].
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individual’s behavior conforms with others’ behavior. Absent influence, our model reverts

to Luce’s. On the other hand, with influence our model diverges from Luce’s model.

The main result of our paper is a characterization of the model in terms of observed

stochastic choice alone. The power of our representation theorem lies in its implications for

an outside observer. First, testable properties enable an outside observer to detect interacting

individuals from observable choice frequencies alone. Second and more importantly, owing

to the unique identification granted by the representation, the outside observer can fully

disentangle underlying idiosyncratic motives (preferences) from social motives (influence).

Unique identification of the “hidden” motives is considered crucial for policy and welfare

purposes.4

A secondary result imagines a dynamic adjustment procedure. When two individuals first

interact, in general we have no particular reason to suppose that their behavior conforms to

our model. We show under reasonably general conditions that, through time, as each indi-

vidual responds to the other’s choices via the linear aggregation procedure, the predictions

of our model will be borne out. In other words, if we believe that each individual aggregates

behaviorally according to our procedure, we should expect their behavior to conform to our

model in the long-run. The result also illustrates that our model is stable. If one individual

mistakenly chooses, or one of them misobserves the other’s choices, still their behavior will

revert to the predictions of our model.

Let us provide an example demonstrating the basic idea of our model.

An example: Consider two colleagues, Dan and Bob, who potentially influence each

other the way that they receive their news. There are two different online news sources: BBC

(B) and Daily Mail (D). Their browser histories suggest that Dan uses B approximately

71% of the time whereas this frequency is 78% for Bob, as summarized on the left panel

of the table below. Assume that these browsing frequencies constitute the only information

available to an outside observer, who aims to learn about the underlying preferences as well

4The economics literature on identification of social interactions has developed many econometric tools
and techniques to detect the direct effect of peers on one’s choices, and more importantly to differentiate the
direct behavioral influence from other related effects, such as correlation in tastes (see Blume et al. [2011] for
a comprehensive review). Our paper contributes to this literature by focusing on microfoundations. Studying
how interacting individuals choose allows us to deduce the unobservables from the observables.
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as peer influence over online news sources by means of revealed preference analysis. Absent

any further information, one might be tempted to disregard peer influence and think that

these choice frequencies directly capture the underlying preferences, as in the classical Luce

model. Hence, it is natural to infer that both Dan and Bob prefer B to D. However, when

a new online news source, the Conversation (C) is launched, these frequencies change, as

presented on the right panel:

Dan Bob Dan Bob

BBC 0.71 0.78 0.60 0.70

Conversation - - 0.14 0.11

Daily Mail 0.29 0.22 0.26 0.19

This pair of behaviors are consistent with our model, hence we can reveal the underlying

preferences and the interaction parameters uniquely. Interestingly, our identification implies

that although Dan and Bob’s choice frequencies have the same ranking over the news sources,

their idiosyncratic preferences are not aligned. For Bob, indeed the weight of B is the highest

and D is the lowest, whereas for Dan, the exact opposite holds. However Bob’s behavior has

great influence on Dan. To be precise, the weights of B,C,D for Dan and Bob are 0.1, 0.3, 0.6

and 0.8, 0.08, 0.12, with interaction parameters 5 and 1, respectively. This means for Dan,

Bob’s behavior is five times more important then his own subjective weights, whereas for Bob

they are equivalent. Thus strong conformity motives have resulted in the observed behavior.

�

The example suggests that the presence of other individuals allows us to infer different

information about preferences than we would if we supposed the individual to be alone. A

natural question is whether any individual choice behavior could be rationalized by the pres-

ence of some unobserved individual’s influence. While this question is certainly interesting,

it is beside the point of what we are doing. Our model postulates a given, observable set

of individuals, and tests whether these individuals’ behavior is in line with our predictions.

This is much in the same spirit as the theory of consumer choice. Afriat [1967] characterizes

the empirical content of such choice, but Varian [1988] shows that, in principle, if some

commodities are unobservable, then any behavior can be rationalized. The tradition in this

literature is to test, for a fixed set of assets, whether data can be rationalized. In general,
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the more data one observes, the more restrictive are the predictions on the model.

The special case of our model in which there is no influence coincides with the Luce

model. In the Luce model, the weighting function is invariant to rescaling; its units have

no empirical meaning. In our model, on the other hand, we interpret the weight as the

probability that a given alternative would have been chosen in isolation even though we

never actually observe choice in isolation.

Our baseline model involves two individuals with conformity motives, as in the example

above. An action’s choice probability increases as the action is chosen more frequently by

one’s peer. However our model easily adapts to more individuals. We present a simple exten-

sion, incorporating multi-individual interaction, where an individual have different degrees

of dependence on the behaviors of her peers. Despite it simplicity, our model is versatile

enough to capture a wide range of social phenomena involving interactions. Let us provide

a couple of applications to exemplify this.

Homophily: Homophily refers to the tendency to create social ties with people that are

similar to one’s self [McPherson et al., 2001, Blackwell and Lichter, 2004, Currarini et al.,

2009]. Since both homophily and peer-influence result in behavioral resemblance among

peers, an identification problem arises. For instance, consider a group of high school stu-

dents with a tendency towards delinquent behavior. The interpretation is twofold: It might

be the case that all of these kids have high aspirations towards criminal behavior (and that

is why they hang out together). Or it might as well be the case that conformity motives

with one (or some) influential members have resulted in this group behavior. Diagnosing

the correct interaction dynamic is imperative for effective treatment of the issue. Since our

model allows for unique and full identification of the underlying parameters, it enables the

differentiation of homophily (similar underlying preferences) from peer-influence (high con-

formity parameters), as long as the observed behavior satisfies the characterizing properties

of our model.

Social norms: One of the most fundamental concepts in the study of social influence is

that of social norms. Thanks to the versatility of our model, we can accommodate different

attitudes towards social norms in our framework. We can treat the behavior induced by

social norms as the behavior of an exogenous hypothetical individual. In this case, different
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levels of compliance with social norms can easily be captured by different individual inter-

action parameters. Alternatively, the formation of social norms can also be modelled in our

framework, in the dynamic setting of Subsection 2.1. In that case, we can treat social norms

as a hypothetical individual, but this time with a high level of dependence on the behavior of

the others. The equilibrium then pictures a society with established and stable social norms

and yet different levels of compliance with them.

Economics research on social interactions has mainly utilized econometrics tools and

techniques both for theoretical and empirical works. Most of these studies employ linear

social interaction models [Manski, 1993, Blume et al., 2011, Jackson, 2011, Blume et al.,

2015], where individual utility of an action is defined as a linear additive function with

two components: an individual private utility and a social utility. Social utility depends

on the (expected) behaviors of one’s peers. Linear social interaction models are defined

for continuous choice variables. An alternative to this is developed by incorporating the

linear additive utility function with interaction effects into a discrete choice setting [Blume,

1993, Brock and Durlauf, 2001, 2003]. Binary or multinomial discrete choice models with

social interactions make use of random fields models to study the equilibrium. Three critical

assumptions ensure tractability of the model. First, the assumption of constant strategic

complementarity: the cross-partial of social utility is a positive constant that is the same

for all individuals. Second, rational expectations: the expected average behavior is simply

the objective average behavior. Finally, the error terms follow a relevant extreme value

distribution. This assumptions are sufficient to produce individual choice outcomes that are

consistent with logistic choice with multiple equilibria. The majority of these papers assume

large populations in order to justify the assumption that each individual ignores the effect

of their own choice on the average choice of the society. An exception to this is Soetevent

and Kooreman [2007], where they consider interaction in small groups in which choices of

other individuals is fully observable. Thus, the choice of an individual directly depends on

the observed behavior of the others. Our model also uses this intuition. It is interesting

to note that under certain assumptions the behavior produced by a multinomial discrete

choice model with social interactions coincides with the behavior produced by our model.

We clarify this connection in Subsection 2.2.
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The use of micro-foundational tools to study social interactions is quite recent. As

far as we know the first choice-theoretic work investigating influence across individuals is

Cuhadaroglu [2017]. This work introduces a deterministic model of two-stage optimization

where the first stage involves maximization of own preferences (transitive but not necessarily

complete), and the second stage accommodates social influence to further refine first stage

outcomes. Recently, Borah and Kops [2018] propose a choice procedure in a group setting

that makes use of ‘a consideration set’ approach. According to their model, individuals only

consider those alternatives that are chosen sufficiently enough by the members of their refer-

ence group. Then, in a second stage, they choose their personal best out of those considered.

The main difference of our work from this model is about the channel through which others’

behavior influence the individual. Our model presumes that social influence alters one’s

preferences, whereas Borah and Kops’ model assume a limitation of the choice set due to

social influence.

Fershtman and Segal [2018] also consider a social interaction set up where individual

behavior not only depends on one’s own preferences but also on the behavior of other agents.

Each individual possesses a private vNM utility and a perfectly observable vNM utility. A

social influence function converts the private utility of the agent and the observable utilities

of everyone else to an observable utility for the agent. They study certain properties of social

influence functions and their implications for the equilibrium without proposing an explicit

behavioral model.

Finally, our work is related to the literature discussing the revealed preference implica-

tions of solution concepts in games; for example, Sprumont [2000], Lee [2012]. One interpre-

tation of the mathematics of our model is as formalizing, for each choice set, a game and a

solution concept. Thus, our model provides observable predictions of our concept as strategy

sets vary. The aforementioned papers also study the predictions of game theory as strategy

sets vary.

The organization of the paper is as follows. The next section introduces the baseline

model with two individuals. In subsection 2.1 we discuss the stability properties of the

model in a dynamic set up. Subsection 2.2 is devoted to the link between our model and

the discrete choice models developed in the empirical social interactions literature, whereas

8



subsection 2.3 discusses the connection to Quantal Response Equilibrium. Section 3 presents

an extension of the baseline model to multi-agent settings. All proofs are left to an appendix.

2 The Baseline Model

Let X be a finite set of alternatives. There are two individuals, 1 and 2. A stochastic choice

rule is a map p : 2X \ {∅} →
⋃
E∈X

∆++(E) such that for all E ⊆ X, p(E) ∈ ∆++(E).5

We propose a simple model of influence. Each individual is influenced by the choices of

the other individual. We first consider the extreme case where there is no influence between

individuals. For such cases our model boils down to the classical Luce model [Luce, 1959].

Let us revisit the Luce model. In this model, each alternative has a (subjective) decision

weight w(x), which measures the strength of preferences associated with the alternative x.6

Then the probability of choosing x is written as the relative weight of preference strength

compared to other alternatives in the choice set. Formally,

Definition. A stochastic choice rule p has a Luce representation if there exists a weight

function w : X → (0, 1) with
∑
x∈X

w(x) = 1 such that

p(x, S) =
w(x)∑

y∈S
w(y)

for all x ∈ S, S ∈ 2X \ ∅.

The Luce model has a very simple graphical representation. Consider three alternatives

x, y, and z. The simplex in Figure 1 illustrates a stochastic choice rule represented by a

Luce model. Each vertex of the simplex represents one of three alternatives. To be more

precise, the vertex x ((1, 0, 0)) represents the degenerate distribution on {x, y, z} where x is

chosen with probability one from the choice set {x, y, z}. The points closer to any vertex

represent a relative preference for the corresponding alternative. The solid dot in the interior

of the simplex represents the choice distribution from {x, y, z}, which is a 3-dimensional

5The notation ∆++ refers to the set of probability distributions with full support.
6Bradley and Terry [1952] introduced the same model for binary choices.
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vector: (p(x|{x, y, z}), p(y|{x, y, z}), p(z|{x, y, z})). We abuse the notation and denote this

3-dimensional vector by p(xyz). The little squares on the left, right and bottom sides of the

triangle represent the binary probabilities p(xz), p(yz), and p(xy), respectively. In Figure

1, p(xyz) lines up with p(xy), p(yz), and p(xz) perfectly. These imply a strong relationship

in this model:
p(x, S)

p(y, S)
=
p(x, T )

p(y, T )

for all x, y ∈ S ∩ T . That is, the ratio of the probability of choosing one alternative to the

probability of choosing another should be constant regardless of the context.

p(xyz)

p(xy)

p(xz)

p(yz)

x y

z

Figure 1: Graphical illustration of a Luce Model (No Influence)

Let us now introduce our baseline model for two individuals who are potentially influenced

by each other. The primitive of the model is a pair of stochastic choice rules (p1, p2) where

pi stands for individual i’s choices. We use the notation i, j ∈ {1, 2} with i 6= j for the

individuals in general. Throughout the paper, we focus our attention to the pair of stochastic

choice rules with some variation in the overall behavior, i.e., p1 6= p2.
7

We postulate that the choice behavior of individual j regarding an alternative x ∈ S di-

rectly influences individual i’s evaluation of that alternative for the same choice set. Specif-

ically individual i now assigns wi(x) + αipj(x, S) as the subjective weight of x where αi is

the degree of influence of j on i. We assume that αi ≥ 0, hence αi acts as a conformity

parameter. The higher the probability that j chooses x from S, the higher is i’s evaluation

7This is because one cannot learn much from the data when p1 = p2. Having exactly the same behavior
in any choice set might be due to identical preferences of 1 and 2, i.e, w1 = w2; or it might be because one
of the individuals only cares about imitating the other individual. It is not possible to distinguish between
these cases without any additional information such as their choice behavior in isolation.
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of x in S and hence i chooses x with a higher probability as well. Let us now define our

model formally.

Definition. (p1, p2) has a dual interaction representation if there exist two functions

w1, w2 : X → (0, 1), w2 : X → (0, 1) with
∑
x∈X

w1(x) =
∑
x∈X

w2(x) = 1 and α1, α2 ∈ <+ such

that

pi(x, S) =
wi(x) + αipj(x, S)∑

y∈S
[wi(y) + αipj(y, S)]

for all x ∈ S, S ∈ 2X \ ∅ and i, j ∈ {1, 2} with j 6= i.

When (p1, p2) has a dual interaction representation with parameters (w1, w2, α1, α2), we

say that (w1, w2, α1, α2) represent (p1, p2).

Given parameters of the individual’s preferences {(wi, αi)}i=1,2, each pi is defined implic-

itly by the procedure above. Note that p1 is not explicitly defined: p2 needs to be known in

order to determine p1 and vice versa. However we can obtain an explicit representation by

solving the system of simultaneous equations, to arrive at:

pi(x, S) ≡ λi(S)
wi(x)∑

x∈S
wi(x)

+ (1− λi(S))
wj(x)∑

x∈S
wj(x)

for λi(S) ∈ (0, 1), defined explicitly below. Hence each pi can be expressed as a linear com-

bination of their Luce ratios. This is “as if” each individual knows exactly not only her own

Luce’s weights but also those of the other individual, which are not necessarily observable.

Notice that in our original formulation, each individual utilizes each others’ observable choice

probabilities rather than their unobservable Luce’s weights. We believe influence based on

observed behaviour is more plausible. Nevertheless, this explicit formulation provides more

insight about the model. Here, the weight attached to each individual’s Luce ratio depends

on the budget set. That is,

λi(S) =
wi(S)[wj(S) + αj]

wi(S)wj(S) + αiwj(S) + αjwi(S)

where wi(S) =
∑
x∈S

wi(x). λi(S) is decreasing in αi and increasing in αj. In other words,

the more influenced by the other person the more weight attached to other individual’s Luce
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ratio. In the extreme case, when αi = 0, λi(S) is equal to 1, independent of the budget set.

Notice also that this formulation marks out the uniqueness of the behaviour produced

by the model. In other words for a given (w1, w2, α1, α2), there is a unique pair (p1, p2)

consistent with the dual interaction model.

We illustrate our model in Figure 2. The first panel refers to the case that there is no

interaction between 1 and 2. Hence we are back to the classical Luce model. The little

squares in the interior of the simplex in the second panel correspond to Luce weights for the

individuals, w1 and w2. We denote these vectors by w1 and w2, respectively. Observe that all

w1, w2, p1(xyz) and p2(xyz) are on the same line. This is due to the linear structure of our

model. Since p1(xyz) is between w1 and p2(xyz), and p2(xyz) is between w2 and p1(xyz),

individual 1 is positively influenced by individual 2 and vice versa. Another observation

is that p1(xyz) is the mid-point of w1 and p2(xyz). This implies that individual 1 treats

his own weights and the choices of individual 2 equally. Hence, individual 1’s imitation

parameter is 1 (α1 = 1). On the other hand, p2(xyz) is closer to w2 than p1(xyz), which

indicates that individual 2 puts less weight on individual i’s choices. Since the distance

between p1(xyz) and p2(xyz) twice as much as the distance between p2(xyz) and w2, the

imitation parameter of individual 2 is 0.5. Unlike the Luce model, pi(xyz) does not line up

with pi(xy) for all i.

w1 = p1(xyz)

p2(xyz) = w2

p1(xy) p2(xy)

x y

z

w1
p1(xyz)

w2

p2(xyz)

p1(xy) p2(xy)

2a

2a

ax y

z

α1 = α2 = 0 α1 = 1 and α2 = 0.5

Figure 2: Graphical illustration of Dual Interaction Model

The components wi and αi are not directly observable. We will illustrate how to reveal

each component from the observed behavior. We first try to understand the empirical im-

plications of this model. To do this, define, for each i = 1, 2, for any pair (x, S) with x ∈ S,
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di : (x, S) 7→ <, by

di(x, S) := pi(x, S)− pi(x,X).

The quantity di(x, S) is simply the change in the probability of i’s choosing x as the

set X shrinks to S. In the Luce model, i.e. when each αi = 0, this change is always

nonnegative. In a larger set, there are more alternatives from which to choose. In the dual

interaction model, this change instead is governed by two separate effects. First, there is

a direct effect, corresponding to the effect in the Luce model. A smaller set includes less

alternatives, rendering any given alternative relatively more attractive. In addition, there

is also an “indirect” effect imposed by the direct effect on the other individual’s choice

probability. Since αi > 0, as the set shrinks, the indirect effect contributes to the gain in

choice probability of any given alternative.

Our interaction model enjoys a linear structure. The characterizing axioms highlight this

linearity. All three properties impose conditions on two variables β1(x, y, S) and β2(x, y, S)

that are driven from the choice behaviours, p1, p2 as follows:

Let i 6= j. For any S 6= X, and any x, y ∈ S for which x 6= y, define

βi(x, y, S) ≡
di(x,S)
pi(x,S)

− di(y,S)
pi(y,S)

dj(x,S)

pi(x,S)
− dj(y,S)

pi(y,S)

.

Observe that, for any x, S,
di(x, S)

pi(x, S)
is the percentage change in agent i’s choice probability

of x in expanding S to X. So,
di(x, S)

pi(x, S)
− di(y, S)

pi(y, S)
is a differential in percentage changes.

On the other hand,
dj(x, S)

pi(x, S)
is a bit more subtle. It reflects a differential change in choice

probability of x by agent j, normalized by the choice probabilities of i. Recall that we are

trying to capture a direct effect of i’s choice behavior on j’s behavior. To this end, this

seems to be a relevant quantity, if we believe that individual i’s choice probability enters

linearly into j’s behavior. Thus, in very rough terms, βi(x, y, S) is a measure of differential

cross-elasticity of choice probabilities in expanding the set S to X.

Three independent properties on βi(x, y, S) characterize the dual interaction model. Let

i ∈ {1, 2}:
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Axiom 1 (Independence) βi(x, y, S) is independent of S, x, and y.

Axiom 2 (Uniform Boundedness) βi(x, y, S) < min
z∈X

{
pi(z,X)

pj(z,X)

}
for all S 6= X, and

x, y ∈ S with x 6= y.

Axiom 3 (Non-negativeness) βi(x, y, S) ≥ 0 for all S 6= X, and x, y ∈ S with x 6= y.

Independence is the property that restores the additive linear influence structure among

individuals. Uniform Boundedness guarantees that the idiosynratic evaluations of alterna-

tives, wi are positive. And finally, Non-negativeness restricts the interaction among individ-

uals to conformity behaviour rather than diversification. Now, let us state the representation

theorem for our baseline model:

Theorem 1 Suppose that p1 6= p2. Then (p1, p2) has a dual interaction representation

with nonnegative αi ≥ 0 and wi � 0 for each i if and only if it satisfies Independence, Uni-

form Boundedness, and Non-negativeness. If in addition {(wi, αi)}i=1,2 and {(w′i, α′i)}i=1,2

each represent (p1, p2), then αi = α′i and wi = w′i for all x and i.

Theorem 1 is a strong result. For a pair of stochastic choice behaviours, three properties

are not only necessary and sufficient for consistency with an underlying dual interaction

model but also the unobservable parameters, preferences and levels of influence, are identified

uniquely. The proof constructs the model thanks to the structure granted by Independence

and by the help of restrictions imposed by the remaining two axioms. We take αi(x, y, S) :=

αi =
βi

1− βi
(well-defined by Axioms 1 and 2 and non-negative by Axioms 2 and 3) and

wi(x) := pi(x,X) + αi(pi(x,X) − pj(x,X)) (positive by Axiom 2). We then show that for

any S and x, y ∈ S, Independence builds up to

pi(x, S)

pi(y, S)
=
wi(x) + αipj(x, S)

wi(y) + αipj(y, S)
.

The fact that this holds for each pair of alternatives immediately gives us the dual interaction

model. Uniqueness of {(wi, αi)}i=1,2, on the other hand, follows from the rank of system of

equations.
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w1
p1(xyz)

p1(xy) p2(xy)

b

bx y

z

Figure 3: The dynamic adjustment procedure

2.1 Stability

The dual interaction model involves a dynamic adjustment procedure where an individual’s

evaluation of an alternative is adjusted by each other’s behaviour as well as the level of

susceptibility to influence. Figure 3 illustrates this dynamic procedure. The point w1 reflects

individual 1’s idiosyncratic weights, as usual. Now, suppose individual 1 observes individual

2’s choice behavior from the set {x, y}, p2(xy). Suppose that individual 1 cares about 2’s

behavior as much as her own tastes, e.i., α1 = 1. Then the geometric interpretation of p1(xy)

is as follows: on the line segment connecting w1 and p2(xy), find the midpoint (owing to

the fact that α1 = 1; a different weight would be reflected in a different proportion on the

segment). The point p1(xy) is then the projection from the z-vertex of this midpoint. In

the figure, p1(xyz) is also illustrated, to emphasize the point that it need not project onto

p1(xy).

We now embed this adjustment procedure in a dynamic setting, where individuals start

interaction from possibly unrelated behaviors. Specifically let (pt1, p
t
2) denote the behaviors

of 1 and 2 at period t > 0 and assume that their initial behaviors (p11, p
1
2) are given. One

can think of fresh roommates or teenagers just enrolled in a new school as examples. Below

we show that although these individuals start interacting from possibly unrelated behaviors,

as long as they adjust accordingly, eventually they converge to (p∗1, p
∗
2), the unique pair of

behaviors that the model yields for the given set of parameters. In other words, the behavior

produced by the dual interaction model constitutes a stable equilibrium when embedded in

a dynamic environment.

15



Theorem 2 Take wi � 0, αi ≥ 0, p∗i (S) ∈ ∆++(S) for all S ∈ 2X \ {∅} and for each

i ∈ {1, 2} and let (w1, w2, α1, α2) represent (p∗1, p
∗
2). Further, let (p11, p

1
2) ∈ ∆(S) × ∆(S).

Define for each i ∈ {1, 2} and t ≥ 2, pti(·, S) ∈ ∆(S) via

pti(x, S) ≡
wi(x) + αip

t−1
j (x, S)∑

y∈S wi(y) + αip
t−1
j (y, S)

.

Then for each i ∈ {1, 2}, lim
t→∞

pti = p∗i .

The proof is an application of Contraction Mapping.

2.2 Connection to Empirical Models

As surveyed in the introduction, the standard econometric tools to study social interactions

include discrete choice models [Blume, 1993, Brock and Durlauf, 2001, 2003]. In this sub-

section we show that our model can indeed be reproduced in a discrete choice setting with

peer effects. Specifically, under certain assumptions the behavior produced by a multinomial

discrete choice model applied to social interactions coincides with the behavior described by

our model. This is because both models take logistic choice as the basis. To see this, consider

a specific budget set, i.e., a choice problem and let the deterministic part of individual utility

constitute two components: the idiosyncratic weight (Luce weight) and the social influence

as defined in our model. Now assume a multiplicative form for individual utility as follows:

Ui(x) = Vi(x)εi(x) where Vi(x) = wi(x) + αipj(x)

Under the assumption that the disturbances are i.i.d. with a Log-logistic distribution (i.e.,

log εi follows a Type 1 extreme value distribution) with f(log εi) = e− log εie−e
− log εi , we have

the following:

logUi(x) = log Vi(x) + log εi(x)

pi(x) = Prob (log Vi(x) + log(εi(x)) > log Vi(y) + log(εi(y)), ∀y 6= x)

= Prob

(
log εi(y) < log

(
Vi(x)εi(x)

Vi(y)

)
, ∀y 6= x

)
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Then for a given εi(x), using F (log εi):

Prob (x|εi(x)) =
∏
y 6=x

exp
{
− e− log

(
Vi(x)εi(x)

Vi(y)

)}

which leads to:

pi(x) =

∫
+∞

−∞

(∏
y 6=x

exp
{
− e− log

(
Vi(x)εi(x)

Vi(y)

)})
e− log εi exp{−e− log εi}d log(εi)

pi(x) =

∫
+∞

−∞

(∏
y

exp
{
− e− log

(
Vi(x)εi(x)

Vi(y)

)})
e− log εid log(εi)

The second line above is observed by collecting terms in the exponent of e given that
Vi(x)

Vi(x)
= 1.

pi(x) =

∫
+∞

−∞

exp
{
−
∑
y

e
− log

(
Vi(x)εi(x)

Vi(y)

)}
e− log εid log(εi)

=

∫
+∞

−∞

exp
{
− e− log εi

∑
y

e
− log

(
Vi(x)

Vi(y)

)}
e− log εid log(εi)

Apply a transformation of variables as t = e− log(εi(x)) such that dt = −e− log(εi(x))d log(εi).

Note that as log(εi) approaches infinity, t approaches zero, and as log(εi) approaches negative

infinity, t becomes infinitely large.

pi(x) =

∫
0

∞

− exp
{
− t
∑
y

e
− log

(
Vi(x)

Vi(y)

)}
dt

=

∫
0

∞

− exp
{
− t
∑
y

Vi(y)

Vi(x)

}
dt

=
e
−t

∑
Vi(y)

Vi(x)∑
Vi(y)
Vi(x)

∣∣∣∣∣
0

∞

=
Vi(x)∑
y

Vi(y)
=

wi(x) + αipj(x)∑
y

(wi(y) + αipj(y))
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Thus, two specific assumptions lead to the behavior granted by our model: a logarithmic

transformation of the deterministic individual utility and a relevant extreme value distribu-

tion for the error terms. Clarifying its connection to the widespread econometric models

of social interactions, this observation provides another justification for our choice-theoretic

model of influence.

2.3 Connection to Quantal Response Equilibrium

In a similar fashion to the preceding subsection, our model appears conceptually related to

Quantal Response Equilibrium (QRE), which is a solution concept for normal form games

[McKelvey and Palfrey, 1995]. And indeed, it is possible to reproduce the behavior granted

by our model as a logit QRE. But two caveats must be mentioned: first, QRE is a prediction

for a single game, whereas the testable implications of our model derive their power from the

ability to observe behavior across choice sets. Indeed, QRE affords basically no predictions

on a single-game (much like classical choice theory generates no predictions from a single

budget). See for example, Haile et al. [2008]. Thus, a suitable extension of the notion of

QRE across game forms must be described.8 Second, just as in the preceding subsection,

our model results from a very specific choice of error distribution (one of the parameters

of the QRE model) and a very specific choice of utility (the other main parameter). Put

differently, the behavior produced by our model may be viewed as being rationalized by a

particular choice of game forms and the logit QRE solution concept, suitably extended to

across games. Details are available upon request.

3 Multi-agent Interaction

One of the strenghts of our model is that it is easily generalizable to multi individual settings

with more intricate forms of social interactions. We can easily capture the heterogeneities

that drive different behavioral outcomes in a social context. Not only individuals have

different preferences but they also have different levels of susceptibility to influence. Or

8In particular one must take care to ensure the error distributions across game forms coincide in a natural
way.
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similarly, different people might influence an individual in different ways. The generalization

of our model to multi individual settings allow for these variations.

It is crucial to note that, thanks to our identification strategy, we do not need assume

exogenous network structure. In other words, for identification purposes it is not required to

know the underlying network structure. On the contrary, our representation theorem reveals

the unknown network of social interactions in addition to individual preferences and influence

patterns. Specifically, given the behavior of a group of individuals that is consistent with our

characterizing properties, we can uniquely identify the underlying preferences, represented by

wi, and the interaction patterns, represented by αij, capturing how individual i is influenced

by the behavior of individual j for all pairs of individuals i and j. Note that the interaction

between i and j might be asymmetric, i.e., αij need not be equal to αji.

Let us now formally introduce the generalized model. Let N denote a set of n < +∞

individuals interacting. As before, for each choice problem, S ∈ 2X \ ∅, we observe agent i’s

stochastic choice, pi(x, S). Let p−i(x, S) ∈ Rn−1 denote the vector of pj(x, S) and d−i(x, S) ∈

<n−1 the vector of dj(x, S) for all j 6= i.

Definition. (p1, p2, ..., pn) has a social interaction representation if for each i ∈ N there

exist wi : X → (0, 1) with
∑
x∈X

wi(x) = 1 and ᾱi ∈ Rn−1
+ such that

pi(x, S) =
wi(x) + ᾱi · p−i(x, S)∑
y∈S[wi(y) + ᾱi · p−i(y, S)]

for all x ∈ S and for all S.

The parameter ᾱi captures different levels of susceptibility to influence from different

individuals, i.e., agent i can be influenced differently by different j’s. Let αij denote the

entry of ᾱi relating to the influence of individual j on i. If αij = 0 for all j 6= i, once again

i’s choice behavior reduces down to Luce.

The characterizing properties listed below are immediate generalizations of our baseline

properties to multi-individual environements. First let us define our new β̄i. Let i ∈ N . For

any S 6= X, and any x, y ∈ S for which x 6= y, define β̄i(x, y, S) ∈ Rn−1 such that
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β̄i(x, y, S) ·
(
d−i(x, S)

pi(x, S)
− d−i(y, S)

pi(y, S)

)
=
di(x, S)

pi(x, S)
− di(y, S)

pi(y, S)
.

Axiom 4 (N-Conditional Independence) For all i ∈ N , β̄i(x, y, S) is independent of S,

x, and y.

Axiom 5 (N-Uniform Boundedness) For all z ∈ X, pi(z,X) > β̄i(x, y, S) · p−i(z,X)

for all S 6= X, x, y ∈ S with x 6= y and for all i ∈ N .

Axiom 6 (N-Nonnegativeness) β̄i(x, y, S) ∈ Rn−1
+ for all S 6= X, x, y ∈ S with x 6= y

and for all i ∈ N .

For identification purposes, we focus our attention to linearly independent stochastic

choice behaviors. Specifically, we assume that there does not exist any pi such that for all x

and S, pi(x, S) can be expressed as a convex combination of {pj(x, S)}j 6=i.

Theorem 3 Let {pi}i∈N as defined. Then, {pi}i∈N has a social interaction representation

if and only if N-Conditional Independence, N-Uniform Boundedness and N-Nonnegativeness

hold. Moreover, {wi, ᾱi}i∈N are uniquely identified.

The proof of Theorem 3 closely follows that of Theorem 1. In this case, we take αij =
β̄ij

1−
∑

j 6=i β̄ij
, well-defined and non-negative as guaranteed by the axioms.

4 Concluding Remarks

The identification of social interactions out of observable behaviour is a challenging, yet

relevant question for economists. We believe that the use of microfoundational tools to study

social interactions brings about a new perspective that proves itself useful for identification

of unobservable underlying interaction structures and parameters. We suggest the dual

interaction and social interaction models as simple tools to this purpose. Yet there is much

room for possible extensions and applications.
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One such avenue is the study of negative interactions. Most of the theoretical tools devel-

oped to study social interactions are restricted by strategic complementarity or conformity

type assumptions. However in certain contexts, where individuals especially do not want

to behave similarly, negative interactions are in play.9 In our setting the inclusion of nega-

tive interactions seems rather straightforward, via a possibly negative interaction parameter

αi. Indeed we can show that simple alterations of our axioms would suffice to character-

ize both of our models preserving the unique identification of the underlying parameters.

These results are available upon request. However, in this case we do have an existence

problem. Specifically, when we allow for negative αs, not every combination of {(wi, αi)}

yields a representation. Let us exemplify this for the dual interaction model. The left panel

of Figure 4 represents a dual interaction model with α1 = −.5 and α2 = 1. Since individual

2 is negatively influenced by individual 1, p1 is no longer between w1 and p2, but instead

further away from p2, yet still on the same line, as expected. On the right panel of Figure

4, however, the interaction parameters are chosen such that the resulting behavior cannot

be expressed as a stochastic choice function. One can find the restrictions on the admissible

combinations of parameters that ensure representation. Indeed we have this result available

on request. However these restrictions remain to be unintuitive and technical, pointing out

the need for further study to investigate more convoluted forms of social interactions.

w1

p1(xyz)

w2

p2(xyz)

p1(xy) p2(xy)

x y

z

w1

p1(xyz)

w2

p2(xyz)

p1(xy)

p2(xy) x y

z

α1 = −0.5 and α2 = 1 α1 = −1.5 and α2 = 2

Figure 4: Dual interaction model with negative interactions

9Examples include fashions and fads, where the the choice of a fashion product not only signals which
social group you would like to identify with but also signals who you would like to differentiate from [Pe-
sendorfer, 1995]; deidentification among siblings, the choice of different paths by the siblings for the sake of
differentiating from each other, especially performed by the second-born in order to avoid sibling competition
[Schachter et al., 1976, Sulloway, 2010]; or among criminals due to competition for resources [Glaeser et al.,
1996].
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5 Appendix

Proof of Theorem 1. (⇒) That the axioms are satisfied is straightforward; observe that

if the representation is satisfied, then

βi(x, y, S) =

di(x,S)
pi(x,S)

− di(y,S)
pi(y,S)

dj(x,S)

pi(x,S)
− dj(y,S)

pi(y,S)

=

pi(y,X)
pi(y,S)

− pi(x,X)
pi(x,S)

pj(x,S)

pi(x,S)
− pj(y,S)

pi(y,S)
+

pj(y,X)

pi(y,S)
− pj(x,X)

pi(x,S)

=
αi(

pi(y,X)
pi(y,S)

− pi(x,X)
pi(x,S)

)

wi(x)+αipj(x,S)

pi(x,S)
− wi(y)+αipj(y,S)

pi(y,S)
+

wi(y)+αipj(y,X)

pi(y,S)
− wi(x)+αipj(x,X)

pi(x,S)

=
αi(

pi(y,X)
pi(y,S)

− pi(x,X)
pi(x,S)

)

pi(x,S)[wi(S)+αi]
pi(x,S)

− pi(y,S)[wi(S)+αi]
pi(y,S)

+ pi(y,X)[1+αi]
pi(y,S)

− pi(x,X)[1+αi]
pi(x,S)

=
αi(

pi(y,X)
pi(y,S)

− pi(x,X)
pi(x,S)

)

[1 + αi](
pi(y,X)
pi(y,S)

− pi(x,X)
pi(x,S)

)

=
αi

1 + αi

From this the axioms 1 and 3 follow directly. Axiom 2 follows from wi(x) > 0 for all x

since wi(x) = (1 + αi)pi(x,X)− αipj(x,X). Then we have
pi(x,X)

pj(x,X)
> βi.

(⇐) We first establish that if the axioms are satisfied, then the representation holds.
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Suppose that p1 6= p2. Define βi ≡ βi(x, y, S), which is well-defined by Axiom 1. We first

show that for each i ∈ {1, 2}, βi 6= 1. Assume by means of contradiction that βi = 1. By

Axiom 2, 1 <
pi(x,X)

pj(x,X)
for all x ∈ X. Observe then that for all x ∈ X, pi(x,X) > pj(x,X),

from which it follows that 1 =
∑
x∈X

pi(x,X) >
∑
x∈X

pj(x,X) = 1, a contradiction.

Now, define, for S 6= X, and x, y ∈ S for which x 6= y,

αi(x, y, S) :=

pi(x,X)
pi(x,S)

− pi(y,X)
pi(y,S)

di(x,S)−dj(x,S)
pi(x,S)

− di(y,S)−dj(y,S)
pi(y,S)

=
βi

1− βi

By Axiom 1, αi does not depend on x, y ∈ S and S 6= X, so, let αi(x, y, S) ≡ αi. We

claim that αi ≥ 0 for each i ∈ {1, 2}. Observe that by Axiom 2, βi < 1. Joint with Axiom

3, this means βi ∈ [0, 1). Hence it follows that αi =
βi

1− βi
≥ 0. Next, define

wi(x) ≡ pi(x,X) + αi(pi(x,X)− pj(x,X)).

Observe that
∑
x∈X

wi(x) = 1.

Then:

pi(x,X)

pi(x, S)
− pi(y,X)

pi(y, S)
= αi

[
di(x, S)− dj(x, S)

pi(x, S)
− di(y, S)− dj(y, S)

pi(y, S)

]
or

pi(x,X) + αidj(x, S)− αidi(x, S)

pi(x, S)
=
pi(y,X) + αidj(y, S)− αidi(y, S)

pi(y, S)
.

Adding αi to both sides of the equality and organizing
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pi(x, S)

pi(y, S)
=
pi(x,X) + αidj(x, S)− αidi(x, S) + αipi(x, S)

pj(y,X) + αidj(y, S)− αidi(y, S) + αipi(y, S)

=
pi(x,X) + αi(pi(x,X)− pj(x,X)) + αipj(x, S)

pi(x,X) + αi(pi(x,X)− pj(x,X)) + αipj(x, S)

=
wi(x) + αipj(x, S)

wi(y) + αipj(y, S)
.

Observe in particular that this equality holds even in the case x = y.

Now, for any x, y ∈ S, we have

pi(y, S) = pi(x, S)
wi(y) + αipj(y, S)

wi(x) + αipj(x, S)

so that ∑
y∈S

pi(y, S) =
∑
y∈S

pi(x, S)
wi(y) + αipj(y, S)

wi(x) + αipj(x, S)
.

Conclude

1 = pi(x, S)

∑
y∈S(wi(y) + αipj(y, S))

wi(x) + αipj(x, S)
.

Consequently,

pi(x, S) =
wi(x) + αipj(x, S)∑

y∈S(wi(y) + αipj(y, S))
.

We now show that wi(x) > 0 for all x ∈ X. For all x ∈ X,
pi(x,X)

pj(x,X)
> βi =

αi
1 + αi

.

Here, we obtain (αi + 1)pi(x,X) > αipj(x,X) for all x. Consequently, wi(x) = pi(x,X) +

αi[pi(x,X)− pj(x,X)] > 0 for all x.

We conclude the proof of sufficiency by establishing uniqueness of the representation.

The following system defines αi uniquely given p1 6= p2:

pi(x, S) =
wi(x) + αipj(x, S)

wi(S) + αi
(1)

pi(x,X) =
wi(x) + αipj(x,X)

1 + αi
(2)
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since they imply

wi(x) = pi(x,X) + αi(pi(x,X)− pj(x,X))

wi(x) = pi(x, S)
∑
x∈S

wi(x) + αi(pi(x, S)− pj(x, S)) (3)

Unique identification of w1, w2 is immediate. �

Proof of Theorem 2. The proof is via contraction mapping. Let us metrize the set

∆(S)×∆(S) with the function defined by d((p, q), (p′, q′)) ≡ ‖p− p′‖+ ‖q − q′‖, where ‖p‖

references the standard Euclidean norm.10 Observe that this metric generates the standard

Euclidean topology on ∆(S)×∆(S).

Let us use the notation wi|S for the restriction of wi to S. We will establish that the map

f : ∆(S)×∆(S)→ ∆(S)×∆(S) defined by

f(p, q) ≡
(
w1|S + α1q

w1(S) + α1

,
w2|S + α2p

w2(S) + α2

)
is a contraction. It is straightforward to establish that f is contraction in our metrization of

∆(S)×∆(S) if and only if the maps fi : ∆(S)→ ∆(S) given by

fi(p) ≡
wi|S + αip

wi(S) + αi

are contractions on ∆(S) with the standard Euclidean topology. So this is what we prove.

Observe that

fi(p)− fi(p′) =
wi|S + αip

wi(S) + αi
− wi|S + αip

′

wi(S) + αi
=

(
αi

wi(S) + αi

)
(p− p′).

Hence the mapping fi is a contraction with modulus
αi

wi(S) + αi
< 1; consequently, so is the

mapping f with the above metric on ∆(S)×∆(S), with modulus max

{
α1

w1(S) + α1

,
α2

w2(S) + α2

}
.

10That is, ‖p− p′‖ =

√∑
y∈S

(p(y)− p′(y))2.
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Now, thanks to Banach Fixed Point Theorem, we can conclude that f has a unique

fixed point, (p∗1(S), p∗2(S)), establishing the first claim of the theorem, and the sequence

(pt1(S), pt2(S)) converges to (p∗1(S), p∗2(S)), establishing the latter. �

Proof of Theorem 3. (⇒) We skip the proof of necessity since it closely follows that of

Theorem 1.

(⇐) Let {pi}i∈N . Take any i ∈ N , x, y and S and define β̄i := β̄i(x, y, S), by Axiom 3.

Further, define ᾱi ∈ Rn−1 such that αij =
β̄ij

1−
∑

j 6=i β̄ij
. We first show that ᾱi is well-defined

and nonnegative since
∑
j 6=i

βij < 1. This is because by Axiom 5 pi(x,X) > β̄ip−i(x,X) for all

x, we have 1 =
∑
x∈X

pi(x,X) >
∑
x∈X

β̄ip−i(x,X) =
∑
j 6=i

β̄ij. Hence, ᾱi ∈ Rn−1
+ is well-defined

for all β̄i as claimed.

Notice we then have
ᾱi

1 +
∑

j 6=i αij
= β̄i.

Now define

wi(x) := pi(x,X) + ᾱi · [pi(x,X)1̄− p−i(x,X)]

where 1̄ ∈ Rn−1 is a vector of ones and observe that

∑
x∈X

wi(x) =
∑
x∈X

pi(x,X) + ᾱi · [pi(x,X)1̄− p−i(x,X)]

= 1 + ᾱi · [
∑
x∈X

pi(x,X)1̄−
∑
x∈X

p−i(x,X)]

= 1 + ᾱi(1̄− 1̄)

= 1.

By Axiom 3,

ᾱi
1 +

∑
j 6=i αij

·
(
d−i(x, S)

pi(x, S)
− d−i(y, S)

pi(y, S)

)
=
pi(y,X)

pi(y, S)
− pi(x,X)

pi(x, S)

(1 +
∑

j 6=i αij)pi(x,X) + ᾱi · p−i(x, S)− ᾱi · p−i(x,X)

pi(x, S)
=

(1 +
∑

j 6=i αij)pi(y,X) + ᾱi · p−i(y, S)

pi(y, S)

− ᾱi · p−i(y,X)

pi(y, S)
.
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Hence

pi(x, S)

pi(y, S)
=
pi(x,X) + ᾱi · [pi(x,X)1̄− p−i(x,X)] + ᾱi · p−i(x, S)

pi(y,X) + ᾱi · [pi(y,X)1̄− p−i(y,X)] + ᾱi · p−i(y, S)

=
wi(x) + ᾱi · p−i(x, S)

wi(y) + ᾱi · p−i(y, S)
.

But then, since this claim holds for all y ∈ S:

pi(y, S) = pi(x, S)
wi(y) + ᾱi · p−i(y, S)

wi(x) + ᾱi · p−i(x, S)∑
y∈S

pi(y, S) =
∑
y∈S

pi(x, S)
wi(y) + ᾱi · p−i(y, S)

wi(x) + ᾱi · p−i(x, S)

1 = pi(x, S)

∑
y∈S[(wi(y) + ᾱi · p−i(y, S)]

wi(x) + ᾱi · p−i(x, S)

pi(x, S) =
wi(x) + ᾱi · p−i(x, S)∑
y∈S[wi(y) + ᾱi · p−i(y, S)]

.

We finally show that wi(x) > 0 for all x ∈ X. This is established by Axiom 5. Since

pi(x,X) > β̄ip−i(x,X) and 1 +
∑
j 6=i

αij > 0, then, (1 +
∑
j 6=i

αij)pi(x,X) > ᾱip−i(x,X) ⇒

wi(x) > 0.

We conclude the proof of sufficiency by establishing uniqueness of the representation.

The following system defines ᾱi uniquely given {pi}i∈N :

pi(x, S) =
wi(x) + ᾱi · p−i(x, S)∑
y∈S[wi(y) + ᾱi · p−i(y, S)]

pi(x,X) =
wi(x) + ᾱi · p−i(x,X)

1 +
∑

j 6=i αij

since they imply

wi(x) = pi(x,X) + ᾱi · [pi(x,X)1̄− p−i(x,X)]

wi(x) = wi(S)pi(x, S) + ᾱi · [pi(x,X)1̄− p−i(x, S)]
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Unique identification of wi is immediate. �
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