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How does the introduction of a remunerated Central Bank Digital

Currency (CBDC) affect financial stability? To study this issue, we

introduce CBDC in a model in which a bank attracts deposits and is

subject to runs, whose probability is endogenously pinned down via

global-games methods. We first validate a commonly held view that

higher CBDC remuneration increases the withdrawal incentives of in-

vestors and thus bank fragility. Second, we identify a contrarian force:

the bank raises deposit rates in response to higher CBDC remunera-

tion to retain deposits that, in turn, reduces fragility. These opposing

effects can lead to a U-shaped relation between CBDC remuneration

and bank fragility. Finally, we examine CBDC holding limits and their

impact on fragility, deposit rates, and optimal CBDC remuneration.
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1 Introduction

The costs and benefits of issuing a central bank digital currency (CBDC) are

currently being researched by the majority of the world’s central banks (Boar

and Wehrli, 2021). This is in response to the concern that digitalization of com-

merce will reduce the demand for physical currency—the only form of central bank

money presently available to the public—in the same way as the internet and email

reduced demand for the postage stamp (Panetta, 2021). In an increasingly digi-

tal economy, CBDC could ensure that central bank money continues to play an

important role as a means of payment and store of value. The wider economic im-

plications of the introduction of CBDC are at the center of a considerable debate

among academics and policymakers.

One issue of particular interest is the effect of CBDC on financial stability.

Its status as safe asset with potentially positive remuneration—a key difference to

physical cash—could render it an attractive store of value and may increase the risk

of bank runs during crisis episodes (BIS, 2021). To mitigate such concerns, policy

makers have proposed restrictions such as holding limits and tiered remuneration

schedules (Bindseil et al., 2021). However, these discussions are at an early stage,

since most CBDC projects are currently in the investigation phase.1

This paper aims to inform this debate by developing a two-period bank-run

model with remunerated CBDC. At an initial date a bank with access to profitable

but risky investment opportunities attracts uninsured deposits from investors. At

an interim date (i.e. before the maturity of investment), investors receive a noisy

private signal about the profitability of investment (and thus about the solvency

of the bank) and decide whether to withdraw their funds or roll them over. The

introduction of a remunerated CBDC has two effects in this economy: first, it

improves the outside option of investors when the bank raises funding. Second, it

increases the return to investors withdrawing from the bank and depositing with

the central bank for consumption at the final date.
1To date, only the Bahamas and Nigeria have launched a CBDC.
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We use global-games methods to pin down a unique equilibrium at the with-

drawal stage (Carlsson and van Damme, 1993; Morris and Shin, 2003; Vives, 2005).

We follow the particular setup of Goldstein and Pauzner (2005) and Carletti et al.

(2022) to derive a unique threshold of investment profitability (economic funda-

mentals) below which the bank fails (Proposition 1). This approach allows us to

study how the deposit contract and CBDC remuneration affects bank fragility.

Consistent with the ongoing policy debate, we show that—for a given deposit

contract—an increase in CBDC remuneration increases the probability of a bank

run (Proposition 2). Ceteris paribus, higher CBDC remuneration increases the

incentives to withdraw from the bank before investment matures.

In equilibrium, however, a profit-maximizing bank adjusts the contract terms

in order to retain deposits. A higher deposit rate, in turn, reduces depositor in-

centives to withdraw (Proposition 3). Accordingly, the overall effect of CBDC on

financial stability depends on which of these two forces dominates. Contrary to the

received wisdom, we show that the introduction of a remunerated CBDC can ac-

tually improve financial stability (Proposition 4). For some parameters, we obtain

a U-shaped relationship between bank fragility and CBDC remuneration.

A numerical example suggests that the level of CBDC remuneration that

maximizes financial stability is about 4.9% per period. While this number may

seem high, it implies roughly a 10% rate over two periods. The two periods in

the model are not two years, rather they corresponds to the average maturity of

bank investment (i.e. several years), resulting in a plausible magnitude for yearly

CBDC remuneration.

In ongoing work, we study the implications of holding limit design for deposit

rates, bank fragility and the fragility-minimising level of CBDC remuneration.

Extensions. To probe the robustness of our results, we consider three exten-

sions. First, we study a version of our model without costly liquidation of invest-

ment such that no panic runs on the bank exist and all bank failures are driven
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by fundamental insolvency only. We find that higher CBDC remuneration always

decreases the relevant measure of financial stability (Proposition 5). This result

suggests that panic runs are an essential ingredient to our main result.

Second, we wish to explore the role of market power in the deposit market.

We have so far assumed a monopolist bank (Andolfatto, 2021), which can respond

quite strongly to the introduction of CBDC, a competition for its deposits, by

increasing deposit rates. However, when there are multiple banks competing for

deposits, the ability of a given bank to attract or retain funding by raising rates

may be more limited, suggesting a more prominent role of the direct effect of

CBDC remuneration on bank fragility (resulting in lower financial stability). We

seek to explore this issue in a spatial model of deposit competition (Salop, 1979)

in future work.

Third, we have considered a fragile liability side of banks (uninsured de-

posits) as a source of financial instability so far. A large literature in banking is

concerned with the risk-taking of banks on their asset side (e.g., risk choices and

asset substitution). Our setup can be naturally extended along this dimension.

Since the banker has to raise deposit rates to retain deposit funding in response

to higher CBDC remuneration, it is less profitable. Such lower skin in the game

would exacerbate a moral hazard problem in risk choices, contributing to financial

instability. We plan to formally investigate this additional channel in future work.
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2 Model

An economy extends over three dates t = 0, 1, 2 and is populated by a bank

and a unit continuum of investors i ∈ [0, 1]. There is a single divisible good for

consumption and investment. All agents are risk neutral and do not discount the

future. Investors are endowed with one unit of funds at date 0 only.

At date 0, the bank has access to a profitable but risky investment tech-

nology. To finance investment, the bank raises funds from investors in exchange

for demandable-deposit contracts.2 Investment returns L ∈ (0, 1) if liquidated at

date 1 (the liquidation value) and Rθ upon maturity at date 2, where θ ∼ U [0, 1]

represents the fundamentals of the economy and R > 2 is a constant that reflects

the return from lending (or from financial intermediation more broadly).

The deposit contract specifies a repayment r1 ≥ 1 at date 1 and r2 at date 2.

Thus it gives investors the option to withdraw before the maturity of investment.

This decision is based on a noisy private signal about the fundamental at date 1:

si = θ + εi, (1)

with εi ∼ U [−ε,+ε]. The signal gives investors information about the fundamental

θ as well as the signals (and withdrawal actions) of other investors. As is standard

in much of the global-games literature, we assume vanishing noise, ε → 0, to

simplify the analysis of date 0 choices and the implications of CBDC.

The bank satisfies interim withdrawals by liquidating investment. Let n ∈

[0, 1] be the fraction of investors who withdraw at date 1. When the liquidation

proceeds at date 1 are insufficient to meet withdrawals, n > n ≡ L
r1
, the bank is

2Bank debt is assumed to be demandable. Demandability arises endogenously with liquidity
needs (Diamond and Dybvig, 1983) or as a commitment device to overcome an agency conflict
(Calomiris and Kahn, 1991; Diamond and Rajan, 2001). Accordingly, uninsured deposits refer
to any short-term or demandable debt instrument, which includes uninsured retail deposits and
insured deposits when deposit insurance is not credible (e.g., when the funding of the deposit
insurance fund is insufficient). Three quarters of U.S. commercial bank funding are deposits and
in the largest commercial banks, half of which are uninsured (Egan et al., 2017).
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bankrupt due to illiquidity. Otherwise, the bank continues until date 2. If at date

2 it cannot meet the remaining withdrawals, n > n̂ ≡ Rθ−r2
Rθ

r1
L
−r2

, it is bankrupt due

to insolvency, where n̂ solves the insolvency condition

Rθ

(
1− n̂r1

L

)
= (1− n̂) r2. (2)

Bankruptcy is costly and we assume zero recovery for simplicity.3

Finally, we introduce CBDC. A deep-pocketed central bank offers investors

deposits with a return ω ∈ [1, R) per period. Thus, the introduction of CBDC has

two effects. First, it improves the outside option of investors deciding whether to

deposit with the bank at date 0: from 1 to ω2, which is the compounded return

earned over two periods from date 0 to date 2. Second, it offers an interest ω

between dates 1 and 2 to those depositors who decide to withdraw at date 1.4

3 Equilibrium

We start by characterizing the threshold θ∗ = θ∗(r1, r2;ω) below which the bank

fails and how it depends on the deposit contract and CBDC remuneration. Next,

we solve for the optimal bank deposit contract (r∗1, r∗2) and its dependence on

CBDC remuneration ω. Finally, we show how CBDC remuneration affects bank

fragility, dθ∗
dω

, once the indirect effect via deposit rates r∗2(ω) is taken into account.

As a preliminary step, we note that the bank chooses a deposit contract such

that

ωr∗1 < r∗2 < R (3)

in any equilibrium. If ωr1 ≥ r2, then there would always be a run on the bank,

resulting zero expected profits, a contradiction. Moreover, deposit-taking cannot

be profitable if r2 ≥ R, so they bank would not choose to offer such a deposit rate.
3The magnitude of bankruptcy costs is large. For example, James (1991) estimated to be 30

cent on a dollar, making bank failures socially costly.
4We abstract from both raising funds (e.g. via taxation) and an investment choice at t = 0.
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3.1 Bank fragility

We use global-games methods to solve for the unique equilibrium at the withdrawal

stage. To characterize an individual investor’s withdrawal decision, we start with

the dominance bounds. First, as in Goldstein and Pauzner (2005), we assume that

when θ → 1, the liquidation value is high, L = R, such that it is a dominant

strategy not to withdraw. We denote this range as the upper dominance region

[θ, 1], where the (upper dominance) bound θ can be arbitrarily close to 1. In fact, we

assume θ → 1 for the analysis of the choice of deposit contract at date 0. Second,

withdrawing is a dominant strategy when θ < θ, where the (lower dominance)

bound θ solves

Rθ − r2 = 0, (4)

so that θ = r2
R
∈ (0, 1). Let us gather some intuition for this result. When no other

investor withdraws, an investor is sure to receive r2 > ωr1 when the bank is solvent

at date 2, i.e. when Rθ ≥ r2. Otherwise, an investor receives 0 if she waits and

r1 if she withdraws, which is worth ω r1 at date 2 when the withdrawal proceeds

are deposited with the central bank between date 1 and 2. Thus, withdrawing is

a dominant action when Rθ < r2, that is for θ < θ.

In the intermediate range (θ, θ), an investor’s decision to withdraw depends

on what she expects the other investors do. Using global-games techniques, we

state the bank failure threshold at date 1, which we refer to as bank fragility θ∗.

Proposition 1. Failure threshold. There exists a unique fundamental threshold

θ∗ ∈
(
θ, θ
)
. Each investor withdraws their deposits from the bank if and only if

θ < θ∗, where

θ∗(r1, r2) ≡ θ
r2 − ωL
r2 − ωr1

> θ. (5)

Proof. See Appendix A.

Having established a unique equilibrium allows us to study how CBDC re-

muneration and the deposit contract affect bank fragility.
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Proposition 2. Fragility is a convex function of long-term deposit rates: ∂θ
∗

∂r2
< 0 if

and only if r2 < rmax2 ≡ ωr1

(
1 +

√
1− L

r1

)
. Higher CBDC remuneration directly

increases fragility, ∂θ∗

∂ω
> 0. Liquidity provision increases fragility, ∂θ∗

∂r1
> 0, while

better investment characteristics reduce fragility, ∂θ∗

∂L
< 0 and ∂θ∗

∂R
< 0.

Proof. See Appendix A.

Figure 1 shows the non-monotonic relationship between the long-term de-

posit rate and bank fragility: when the deposit rate is low, higher rates reduces

fragility while the opposite holds for high deposit rates (U-shaped).

1.5 2.0 2.5 3.0
r2

0.15

0.20

0.25

0.30
θ*

Figure 1: Bank failure threshold θ∗ and the long-term deposit return r2. The
minimum is reached at r2 = rmax2 . Parameters: L = 0.9, R = 15, ω = 1; r1 = 1.

We also obtain the standard result of asset illiquidity and liquidity provision

resulting in bank fragility (Diamond and Dybvig, 1983). Bank liquidity provision,

r1 > L, results in strategic complementarity in investor withdrawal decisions, so

both panic runs and fundamental runs exist. This results in bank fragility, θ∗ > θ.

3.2 Bank deposit rates

We next derive the optimal deposit rates. Recall that private noise and the upper

dominance region vanish, ε→ 0 and θ → 1, so the banker’s problem at date 0 is

max
r1≥1,r2

Π ≡
∫ 1

θ∗
(Rθ − r2) dθ = (1− θ∗)

(
R

2
(1 + θ∗)− r2

)
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subject to

V ≡
∫ 1

θ∗
r2 dθ ≥ ω2, and θ∗ = θ∗(r1, r2).

Because of vanishing noise, ε → 0, no investor withdraws for θ > θ∗ and all

investment matures at date 2, yielding Rθ. The banker pays the promised return

r2 to a unit mass of investors that roll over their funding for θ > θ∗ and keeps the

difference, Rθ − r2. Conversely, for θ < θ∗, all investors withdraw and the bank

is bankrupt, resulting in a loss of output due to costly bankruptcy. The banker is

protected by limited liability and receives zero in this case.

Taken together, we obtain the expected bank profits Π at date 0 and the

expected value of the deposit claim V at date 0. The outside option of investors

is not to fund the bank but to deposit in CBDC with the central bank, earning

a return ω per period. Expected bank profits have a natural interpretation. The

first term is the probability of no bank run and the second term is the expected

bank profits conditional on no bank run. Note, finally, that the bank internalizes

how its choices of deposit rates influence fragility, θ∗ = θ∗(r1, r2).

Our first result on the optimal short-term deposit rate r∗1 follows. Since a

higher r1 increases fragility (Proposition 2), it reduces the objective function be-

cause the bank is solvent less often, ∂Π
∂r1

= (Rθ∗ − r2)∂θ
∗

∂r1
< 0, and tightens the

constraint because investors are repaid less often, ∂V
∂r1

= −r2
∂θ∗

∂r1
< 0. The for-

mer inequality arises because bank fragility is costly in terms of bank value: in

other words, the equity value at the failure threshold is positive, (Rθ∗ − r2) =

r2ω
(r1−L)
r2−ωr1 > 0. The next result follows directly from these arguments.

Lemma 1. Optimal short-term deposit rate. The banker sets r∗1 = 1.

We are now ready to state our main result on bank deposit rates.

Proposition 3. Optimal long-term deposit rate. For L ≥ L, the optimal

deposit rate r∗2 < rmax2 corresponds to the solution to the binding participation con-

straint of investors, V (r∗2) ≡ ω2. The solution r∗2 increases with CBDC remuner-
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ation, while it decreases with the liquidation value and profitability of investment:
∂r∗2
∂ω

> 0, ∂r∗2
∂L

< 0, and ∂r∗2
∂R

< 0.

Proof. See Appendix B, which also defines L.

In general, the optimal deposit rate r∗2 is pinned down by either the first-

order condition of the bank (zero marginal profits) or by a binding participation

constraint of investors. Figure 2 shows that there exists (high enough) liquidation

values of investment for which the participation constraint determines the equi-

librium deposit rate. In what follows, we assume a high enough value, L ≥ L, and

a binding participation constraint in equilibrium.

0.2 0.4 0.6 0.8 1.0
L

1.1

1.2

1.3

1.4

1.5
r2

(a) The graph is drawn for the following
parameters: R = 15 and ω = 1

0.2 0.4 0.6 0.8 1.0
L

1.1

1.2

1.3

1.4

1.5

1.6

r2

(b) The graph is drawn for the following
parameters: R = 15 and ω = 1.05

Figure 2: Optimal deposit rate r∗2 and the liquidation value L. The shaded lines
shows the deposit rate implied by a binding participation constraint, while the
solid line shows the deposit rate implied by zero marginal profits of the bank.
The equilibrium deposit rate r∗2 is the upper envelope of both curves. Panel (a)
shows that the participation constraint binds for high enough values of L. Panel
(b) shows that the participation constraint always binds.

A higher liquidation value of investment or higher investment profitability

both reduce bank fragility (∂θ∗
∂L

< 0 and ∂θ∗

∂R
< 0—see Proposition 1). As a result,

investors are repaid in more states of the world, so a lower equilibrium deposit

rate is still consistent with investor participation. A higher remuneration of CBDC

improves the outside option of investors (at both the initial and interim dates), so

the banker needs to offer a higher deposit rate to ensure investor participation.
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The results so far highlight that the change in CBDC remuneration ω has two

opposing effects on bank fragility θ∗. On the one hand, a higher remuneration is

associated with a higher incentive to withdraw at date 1 and thus a large threshold

θ∗. On the other hand, banks respond to the increase in remuneration by increasing

deposit rates r∗2, which leads to a reduction in bank fragility ceteris paribus. The

overall effect of a change in ω on θ∗ depends on which of this two effects dominates:

dθ∗

dω
=
∂θ∗

∂ω
+
∂θ∗

∂r2

dr2

dω
. (6)

The next result offers some insight into the relative strength of these two forces.

Lemma 2. Elasticity of the failure threshold. Let ε ≡ − r2
θ∗
∂θ∗

∂r2
denote the

elasticity of the failure threshold with respect to the deposit rate. Higher CBDC

remuneration reduces bank fragility, dθ∗

dω
< 0, if and only if ε > 1.

Proof. See Appendix C.

Lemma 2 states that the indirect effect of higher CBDC remuneration dom-

inates the direct effect whenever the failure threshold θ∗ is very elastic to changes

in the bank deposit rate r2. In other words, higher CBDC remuneration needs to

induce a sufficiently strong increase in deposit rates for overall fragility to fall.

Figure 3 plots the range of parameters in (R,L) for which the elasticity is high

enough for two levels of CBDC remuneration.

We now state our main result on CBDC remuneration and bank fragility.

Proposition 4. CBDC remuneration and bank fragility. For a high invest-

ment return, R ≥ R, bank fragility θ∗ is U-shaped in CBDC remuneration ω.

Proof. See Appendix C.

Figure 4 illustrates the case of high enough investment profitability R. It

shows that a positive remuneration of CBDC can be desirable in the sense of max-
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ω = 1.05
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L

Figure 3: Elasticity of the failure threshold. The graph illustrate the range of values
for the parameters R and L for which the elasticity of the failure threshold with
respect to the deposit rate is ε > 1, so the total derivative is negative, dθ∗

dω
< 0.

This range corresponds to the grey area on the right of the two curves, which are
drawn for two different values of ω. The light grey line is drawn for ω = 1, while
the black solid one is for ω = 1.05.

imizing financial stability (minimizing bank fragility θ∗). The relationship between

bank fragility and CBDC remuneration is U-shaped, with a unique minimum ωmin.

ωmin = 1.049

1.02 1.04 1.06 1.08 1.10
ω

0.1265

0.1270

0.1275

0.1280

0.1285
θ*

Figure 4: Bank failure threshold θ∗ and CBDC remuneration. Minimum fragility
is reached at roughly 4.9% interest on CBDC. Parameters: L = 0.9, R = 15.

4 Holding limits

[To be typed up]
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5 Extensions and discussion

We consider several extensions and robustness checks in this section.

5.1 Fundamental runs

In this subsection, we abstract from panic runs and limit attention to fundamental

runs. This case can be studied by considering L→ 1, so the strategic complemen-

tarity among investors vanishes (note that r∗1 = 1 continues to hold).

The fundamental run threshold continues to be θ = r2
R
(irrespective of CBDC

remuneration ω). The banker’s expected profit is Π =
∫ 1

θ
(Rθ − r2)dθ (which is

also irrespective of CBDC remuneration ω), so dΠ
dr2

< 0 and the banker chooses the

lowest feasible level of r2. This level is pinned down by the investors participation

constraint:

ω2 ≤ r2(1− θ) ≡ VF . (7)

Since the value of the deposit claim increases in r2, dVF
dr2

> 0, as long as

r2 < R
2
, the participation constraint is binding in equilibrium. Solving for the

smallest root yields

r∗2 =
R

2
−

√(
R

2

)2

−Rω2, (8)

which confirms the supposition of an increasing deposit claim, r∗2 <
R
2
. We assume

R ≥ 4ω2 throughout. The equilibrium measure of bank stability is thus θ∗ =
r∗2
R
.

Hence, more CBDC remuneration has the following impact on bank stability:

dr2

dω
=

Rω√
R2

4
−Rω2

> 0. (9)

The following proposition summarizes.

Proposition 5. Fundamental runs only. Consider the case of L → 1. Then,

higher CBDC remuneration increases the return on bank deposits and thus the
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fundamental run threshold, dr2
dω

> 0 and dθ
dω
> 0, reducing bank stability.

This analysis shows that panic runs are an essential ingredient of our main

result (higher CBDC remuneration improves bank stability). When bank instabil-

ity is limited to fundamental runs, higher CBDC remuneration always increases

the long-term deposit rate and reduces the relevant measure of bank stability.

5.2 Bank risk-taking on the asset side

We have considered a fragile liability side of banks (uninsured deposits) as a source

of financial instability so far. A large literature in banking is concerned with the

risk-taking of banks on their asset side (e.g., risk choices and asset substitution).

Our setup can be naturally extended along this dimension. Since the banker has

to raise deposit rates to retain deposit funding in response to higher CBDC remu-

neration, it has lower skin in the game. This suggests that a moral hazard problem

in risk choices would be more severe, contributing to financial instability via this

additional channel. We plan to formally investigate this channel in future work.

5.3 Market power in the deposit market

In work in progress, we explore the role of market power in the deposit market

for our results. We have so far assumed a monopolist bank, which can respond

to the introduction of CBDC—a competition for its deposits—quite strongly by

increasing deposit rates. However, when there are multiple banks competing for

deposits, the ability of a given bank to attract or retain funding by raising rates

may be more limited, suggesting a more prominent role of the direct effect of

CBDC remuneration on bank fragility (resulting in lower financial stability). We

seek to explore this issue in a spatial model of deposit competition in future work.
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A Proof of Proposition 1

The proof builds on the arguments developed in Goldstein and Pauzner (2005)

and on Carletti et al. (2022) who adapt these to the case of a profit-maximizing

bank. The arguments in their proofs establish that, in the limit of ε→ 0, there is

a unique threshold value of fundamental, denoted as θ∗, below which all investors

find it optimal to withdraw from the bank.

For θ ∈ (θ, θ), a investor’s decision to withdraw depends on what others

do (i.e. their withdrawal choices). Suppose that all investors behave according to

a threshold strategy s∗. Then, the fraction of investors withdrawing at date 1,

n(θ, s∗), equals the probability of receiving a signal below s∗ and is as follows:

n(θ, s∗) =


1 if θ ≤ s∗ − ε,

s∗−θ+ε
2ε

if s∗ − ε < θ ≤ s∗ + ε,

0 if θ > s∗ + ε.

(10)

Investor withdrawal choices are characterized by the pair of thresholds {s∗, θ∗},

which solve the following system of equations:

Rθ∗
(

1− n(θ∗, s∗)r1

L

)
− (1− n(θ∗, s∗))r2 = 0, (11)

and

r2Pr(θ > θ∗|s∗) = ωr1Pr(θ > θn|s∗), (12)

where θn = s∗+ε−2ε L
r1

being the solution to n(θ, s∗) r1 = L (illiquidity threshold).

Condition (11) identifies the level of fundamentals θ at which the bank is

just able to repay the promised repayment to non-withdrawing investors (solvency

threshold). Hence, it pins down the cutoff θ∗. Condition (12), instead, states that

at the signal threshold s∗ a investor is indifferent between withdrawing at date 1

and waiting until date 2, since the expected payoff at date 2, as captured by the
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LHS in (12), is equal to the expected date 1 payoff, which is captured by the RHS

in (12). Hence, given θ∗ from (11), it pins down the threshold signal s∗.

Differentiating the LHS of (11) with respect to θ, we obtain

R

(
1− n(θ, s∗)r1

L

)
− ∂n(θ, s∗)

∂θ

[
Rθ

r1

L
− r2

]
> 0, (13)

for any θ > θ since r1 > L and ∂n(θ,s∗)
∂θ

≤ 0. Taking the derivative of (11) with

respect to n(.), we obtain:

−Rθr1

L
+ r2 < 0,

for any θ > θ since r1 > L. Overall, this implies that the LHS in (11) strictly

increases with θ and so it does the LHS in (12). Furthermore, rearranging (11) as

follows:

Rθ∗ − r2 − n(θ∗, s∗)
[
Rθ∗

r1

L
− r2

]
= 0,

it follows immediately that (11) is negative when evaluated at θ = θ and positive

when θ = θ. Using (12), this means that when θ = θ, a investor expects to receive

0 when waiting a so strictly prefers to run. Symmetrically, when θ = θ so that the

LHS in (11) is strictly above zero, a investor expects to receive r2 > ω r1 when

waiting until date 2. Since ωr1 is larger than the RHS in (12), it follows that when

θ = θ, a investor strictly prefer not to run.

Overall, the analysis above also implies that θ < θ∗ < θ and analogously

that the threshold signal s∗ falls within the range
(
θ + ε, θ − ε

)
. Given that θ > 0

and θ → 1, it follows that the equilibrium pair {θ∗, s∗} falls in the range (0, 1).

To obtain a closed-form expression, we perform a change of variable using

(10) from which we obtain θ(n) = s∗ + ε(1 − 2n). At the limit, when ε → 0,

θ(n) = s∗, which identifies the run threshold and it is equal to the solution to

∫ n̂(θ∗)

0

r2dn =

∫ n

0

ωr1 dn⇒ n̂ (θ∗) r2 = ωL. (14)

Rewriting and solving for θ∗ yields the expression stated in the proposition. Be-
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cause of L < 1 ≤ r1, we have θ∗ > θ.

We turn to the comparative statics of bank fragility θ∗ with respect to deposit

rates r1 and r2 as well as CBDC remuneration ω and liquidation value L as well

as a cross-partial derivative useful in the subsequent analysis:

∂θ∗

∂r1

=
ωθ∗

(r2 − r1ω)
> 0, (15)

∂θ∗

∂r2

=
1

R

r2 − ωL
r2 − r1ω

− θω(r1 − L)

(r2 − r1ω)2
=
r2

2 − 2ωr1r2 + ω2Lr1

R(r2 − r1ω)2
, (16)

∂θ∗

∂ω
= θ

r2(r1 − L)

(r2 − r1ω)2
> 0, (17)

∂θ∗

∂L
= −ω θ

r2 − r1ω
< 0, (18)

∂θ∗

∂R
= −θ

∗

R
< 0, (19)

∂2θ∗

∂r2∂L
=

ω

R

r1ω

(r2 − r1ω)2
> 0, (20)

where we used r1 > L and r2 > ωr1. Consider now the effect of r2 on θ∗. The

denominator is positive and the numerator is ambiguous. In particular, dθ∗

dr2
< 0

whenever r2
2 − 2ωr1r2 + ω2Lr1 < 0. The roots of the quadratic equation are

r
A/B
2 = ωr1

(
1±

√
1− L

r1

)
. (21)

The smaller root rA2 is inadmissible as it implies r2 < ωr1, a contradiction. Thus,

only the bigger root rB2 > ωr1 is admissible. Since this value is the maximum of

the relevant deposit rates considered by the bank, as we will show shortly, we label

it rmax2 ≡ rB2 . To summarize, ∂θ∗
∂r2

< 0 whenever r2 < rmax2 .

B Proof of Proposition 3

Consider the bank’s problem stated in the main text. First, we report some

intermediate results. Consider a bound on the investment return: R > R ≡
ω(1+

√
1−L)

3

1+
√

1−L−ω . Note that this bound can also be written as L > L. Assuming this

17



bound ensures that the participation constraint of investors is slack at r2 = rmax2 ,

that is V (rmax2 ) > ω2. Note that θ∗(rmax2 ) = ω
R

(
1 +
√

1− L
)2 and V (rmax2 ) =

ω
(
1 +
√

1− L
)
− ω2

R

(
1 +
√

1− L
)3, resulting in the stated bound R. As a corol-

lary, the bank does not always fail, θ∗(rmax2 ) < 1, making the bank’s problem

economically interesting. Note that ∂Π
∂r2

= −(1 − θ∗) − (Rθ∗ − r2)∂θ
∗

∂r2
, so we have

∂Π
∂r2

< 0 for all r2 ≥ rmax2 . As a result, the bound on R also ensures that the

banker’s choice of deposit rate is r∗2 < rmax2 .

We can further narrow down the deposit contracts that a profit-maximizing

bank may choose to offer by noticing that the bank does not choose a deposit

contract that entails θ∗ = 1. If a crisis is certain, the bank is certain to make zero

profits. As a result, the bank chooses r2 > rmin2 where θ∗(rmin2 ) ≡ 1. Thus,

rmin2 =
R + ωL

2
−

√(
R + ωL

2

)2

−Rω. (22)

Note that rmin2 < rmax2 .

In the second step, we can write the Lagrangian as follows, where λ is the

multiplier on the participation constraint of investors:

L =

∫ 1

θ∗
(Rθ − r2)dθ − λ

[
ω2 −

∫ 1

θ∗
r2dθ

]
.

The Kuhn-Tucker conditions are

λ ≥ 0, λ
[
ω2 −

∫ 1

θ∗
r2dθ

]
= 0,

−∂θ∗

∂r2
(Rθ∗ − r2)−

∫ 1

θ∗
dθ − λ∂θ∗

∂r2
r2 + λ(1− θ∗) = 0.

(23)

The third step is to determine whether the participation constraint of in-

vestors or zero marginal bank profits determine the equilibrium deposit rate r∗2.

Consider a case in which ∂θ∗/∂r2 = 0. In this case, we have λ∗ = 1. That

is, if such solution exists, then the participation constraint must bind. This is

intuitive, as a bank would never choose such a deposit rate so high that this

18



derivative is zero. It would stop a bit earlier. Our earlier analysis yielded that

r2 = rmax2 = ω(1 +
√

1− L) at ∂θ∗/∂r2 = 0. Hence, θ∗(rmax2 ) = ω
R

(1 +
√

1− L)2.

Since the participation constraint is binding (as λ∗ > 0), we get the knife-edge

condition

1 +
√

1− L =
ωR

R− ω(1 +
√

1− L)2
, (24)

which uniquely defines a bound R (stated above), ω, or L (implicitly given).

We use a continuity argument to generalize based on the knife-edge condi-

tion. That is, for a sufficiently small perturbation of the parameters, λ∗ remains

strictly positive (i.e., the participation constraint binds). That is, the participa-

tion constraint is binding for any L close enough to L. We have for such L that
dr∗2
dω

=
ω2(r∗2)2(1−L)

(1−θ∗)2(r∗2−ω)2
> 0, ∂2θ∗

∂r22
= 2

R(r∗2−ω)
, and dr∗2

dL
= − ω3·r∗2

(1−θ∗)2(r∗2−ω)R
< 0. Thus, we

can conclude by continuity that ∂θ∗/∂r∗2 < 0 for any L > L close enough to L. It

follows directly that for any L > L close enough to L the participation constraint

is binding and the indirect effect

∂θ∗(1, r∗2;ω)

∂r2

dr∗2
dω

< 0. (25)

In sum, we have provided a cases for which the participation constraint binds

in equilibrium. The numerical examples in the main text suggest that it does so

for a much wider range of parameters.

B.1 Equilibrium deposit rate and its properties

Having established that the deposit rate r∗2 corresponds to the solution to the

binding participation constraint for some L > L, we now move on to prove the

existence and uniqueness of r∗2. Denote as g(r2, ω) the depositors’ net participation

constraint:

g(r2, ω) = ω2 −
∫ 1

θ∗
r2dθ. (26)
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The equilibrium deposit rate r∗2 is then given by the solution to g(r2, ω) = 0.

Evaluating g(r2, ω) at r2 = rmin2 and r2 = rmax2 , we obtain g(rmin2 , ω) = −ω2 < 0

and g(rmax2 , ω) = V (rB2 ) − ω2 > 0, respectively, based on the definitions of rmin2 ,

rmax2 , and Assumption 1 on the lower bound on R. Differentiating g(r2, ω) with

respect to r2, we obtain
∂θ∗

∂r2

r2 −
∫ 1

θ∗
dθ < 0. (27)

Taken together the monotonicity of g(r2, ω) in r2, g(rmim2 , ω) < 0 and g(rmax2 , ω) >

0 imply that a solution for g(r2, ω) = 0 exists in the relevant parameter space and

this solution is unique.

To proceed with the proof, we can now move on to study how r2 changes

with ω. To do this, we use the implicit function theorem, as follows:

dr2

dω
= −

∂g(r2,ω)
∂ω

∂g(r2,ω)
∂r2

,

The denominator is positive, as shown in (27). Hence, the sign of dr2
dω

is equal to

the sign of the numerator, which is equal to

∂g(r2, ω)

∂ω
= 2ω +

∂θ∗

∂ω
r2 > 0. (28)

It follows that r2 monotonically increases with CBDC remuneration ω and formally

dr2

dω
= −

2ω + ∂θ∗

∂ω
r2

∂θ∗

∂r2
r2 −

∫ 1

θ∗
dθ

> 0, (29)

Finally, we derive the comparative statics of the deposit rate with respect to

investment characteristics. Using the implicit function theorem again, the results
dr∗2
dL

< 0 and dr∗2
dR

< 0 follow from ∂g
∂L

= r2
∂θ∗

∂L
< 0 and ∂g

∂R
= r2

∂θ∗

∂R
< 0.

20



C Proof of Lemma 2 and Proposition 4

Lemma. Using the expression for dr2
dω

in Equation (29), we expand the expression

for dθ∗

dω
:

dθ∗

dω
=

∂θ∗

∂ω
+
∂θ∗

∂r2

dr∗2
dω

(30)

=
∂θ∗

∂ω
+
∂θ∗

∂r2

2ω + ∂θ∗

∂ω
r∗2

1− θ∗ − r∗2 ∂θ
∗

∂r2

. (31)

Since the denominator is positive in the previous equation is positive, we get
dθ∗

dω
< 0 whenever ∂θ∗

∂ω

(
1− θ∗ − r∗2 ∂θ

∗

∂r2

)
+ ∂θ∗

∂r2

(
2ω + ∂θ∗

∂ω
r∗2
)
, which simplifies to

∂θ∗

∂ω
(1− θ∗) + 2ω

∂θ∗

∂r2

< 0. (32)

Using the equilibrium deposit rate to replace 1− θ∗ = ω2

r∗2
and the fact that ∂θ∗

∂r2
=

1
r2

[
θ∗ − ω ∂θ∗

∂ω

]
, we can re-express this condition as:

θ∗ + r∗2
∂θ∗

∂r2

< 0, (33)

which has the intuitive interpretation of an elasticity. In particular, the elasticity

of the failure threshold with respect to deposit rate has to be bigger than 1 in

absolute terms for the indirect effect to dominate and thus dθ∗

dω
< 0.

Rewriting condition (32) and using 1 − θ∗ = ω2

r∗2
yields ω ∂θ∗

∂ω
+ 2r2

∂θ∗

∂r2
< 0.

Using the expressions for the partial derivatives and mutiplying by the common

denominator R(r2− 1)2, we get ωr2
2(1−L) + 2r2(r2

2 − 2ωr2 +ω2L) < 0. Rewriting

and dividing by r2 yields the following quadratic equation:

h(r2, ω) ≡ (r∗2)2 − 3 + L

2
ωr∗2 + ω2L < 0. (34)

If this condition holds, then dθ∗

dω
< 0 in equilibrium, where we used the equilibrium

deposit rate r∗2, which solves g(r∗2) = 0.
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Proposition. First, we determine whether dθ∗

dω
< 0 when evaluated at ω = 1 is

possible. Using condition (34), this boils down to (r∗2)2− 3+L
2
r∗2 +L < 0. Consider

next the limit of R → ∞. Note that θ∗ → 0 and thus r∗2 → 1 for a given L < 1.

Hence, the previous condition becomes −1−L
2

< 0, which always holds. Thus, by

continuity, there exists a R s.t. dθ∗
dω

< 0 at ω = 1 for all R ≥ R.

Second, we show that dθ∗

dω
> 0 when ω is large. To do so, recall that we

established that dr∗2
dω

> 0 and r∗2 < rmax2 . Then, we can denote ωmax such that

r∗2 → rmax2 when ω → ωmax. At this limit, Condition (33) is always violated since
∂θ∗

∂r2
→ 0 when r2 → rmax2 . Thus, dθ∗

dω
> 0.

Taken together, we have dθ∗

dω
> 0
∣∣
ω=1

< 0 and dθ∗

dω

∣∣
ωmax > 0, which implies

that, when R ≥ R, there is at least a value of ω—denoted as ωmin—at which

θ∗ is minimized. To complete the proof, we need to show in a third step that

ωmin is unique. The value ωmin solves h(r∗2, ωmin) = 0, where h(r2, ω) is given in

(34). Since r∗2 is a function of ω, h(r2(ω), ω) is a polynomial where ω is the main

variable. The degree of the polynomial determines the number of possible values

ωmin. Since dθ∗

dω

∣∣
ω=1

< 0 and dθ∗

dω

∣∣
ωmax > 0, the number of solutions ωmin must be

an odd number.

To determine the degree of the polynomial h(r2(ω), ω), it is useful to char-

acterize a closed-form solution for r∗2. Recall that r∗2 solves g(r∗2, ω) = 0, as char-

acterized in (26). Substituting the expression for θ∗ from (5), we obtain:

r3
2 − r2

2(R + ωL) + r2Rω(ω + 1)−Rω3 = 0. (35)

The equation (35) has three roots, which we can obtain solving the corresponding

depressed cubic equation

y3 + py + q = 0 (36)

where y = r2−R+ωL
3

, p = 3Rω(1+ω)−(R+ωL)2

3
and q = −2(R+ωL)3+9(R+ωL)Rω(ω+1)−27Rω3

27
.

We focus on parameters such that 4p3 + 27q2 > 0 (for which p ≥ 0 is
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sufficient). As a result, there is only one real root, which is equal to:

y =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
. (37)

The expression pinning down y and, in turn, r∗2 is a function of ω. One can show

that ω only appears at a power of 1. This implies that h(r2(ω), ω) has at most two

roots, of which only one can be in the range 1 < ω < ωmax. Since the derivative is

initially negative and eventually positive, there must be an odd number of crossings

with zero within [1, ωmax]. Hence, ωmin is unique.
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