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1— Introduction

Estimation of the effects of a treatment in panel settings often relies on a two-way
fixed effect (TWFE) structure. The untreated potential outcomes for a unit i at time
t are determined by a unit ‘fixed effect’ that captures the individual heterogeneity
that is constant over time, a set of time ‘fixed effects’ that capture macroeconomic
trends which affect each unit equally, and a mean-zero error term uit. This model is
written as

yit(∞) = µi + λt + uit. (1)
Individual treatment effects are defined as the contrast between the observed

post-treatment outcomes, yit, and untreated outcomes, yit(∞). We are interested
in averages of individual treatment effects

E [yit − yit(∞) | Ω] (2)
where Ω is the specified set of post-treatment observations to average over. To
estimate average treatment effects, researchers often invoke a ‘parallel-trends’ type
restriction that the unobservable confounder, uit, is unrelated to selection into treat-
ment. When units select into treatment based on contemporaneous shocks, the
treated units no longer follow the same outcome trajectory as untreated units re-
sulting in treatment effects being confounded by contemporaneous shocks.

This paper considers a more general ‘parallel trends’ type assumption that allows
units to enter treatment based on their differential exposure to a set of unobservable
but commonly experienced macroeconomic shocks. To accommodate this form of
selection, we model untreated potential outcomes as

yit(∞) = µi + λt + f ′
tγi + εit, (3)

where ft is a p×1 vector of unobservable factors , γi is a p×1 vector of unobservable
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factor loadings, and we assume that E [εit] = 0 for all (i, t).1 One possible motivation
for this model is that the factor is a macroeconomic shock and the factor-loading
γi denotes a unit’s exposure to the shock. Another possibility lets the γi represent
time-invariant characteristics with a marginal effect on the outcome that changes
over time.2

Current panel-data estimators that allow for this form of selection either require
(i) the number of time periods available is large, e.g. synthetic control (Abadie 2021),
factor-model imputation (Xu 2017, Gobillon andMagnac 2016), and the matrix com-
pletion method (Athey et al. 2021); or (ii) that an individual’s error term, uit, is uncor-
related over time (Imbens et al. 2021). Both of these restrictions are non-realistic in
many applied microeconomic data sets where the number of time periods is much
smaller than the number of units and serial correlation of shocks is expected.

Recent work has proposed ‘imputation’ based estimators for treatment effects
that use non-treated and pre-treatment observations to ‘impute’ the untreated po-
tential outcomes for the post-treatment observations (e.g. Borusyak et al. 2021,
Gardner 2021, Wooldridge 2021). However, these approaches only allow for level
fixed effects and preclude interactions like in equation (3). We generalize these tech-
niques by proposing an estimator that imputes the untreated potential outcomes
under the more general (3).

To do so, we first remove the additive fixed effects with a double-demeaning
transformation. Our treatment effect identification result then only requires root-N
consistent estimates of ft.3 We compute a matrix that projects the pre-treatment
outcomes onto the estimated post-treatment factors, imputing the untreated poten-
1. For simplicity, covariates ignored at first and are added to (3) in Section 3. Note that this modelfor outcomes coincides with the standard TWFE model when p = 0 and with a TWFE model withunit-specific linear time trends coincides when p = 1 and ft = t.
2. Ahn et al. (2013) suggest a wage equation where γi are unobserved worker characteristics and
ft are their time-varying prices or returns. See Bai (2009) for a collection of economic examples thatjustify the inclusion of a factor structure.
3. As discussed below in Section 2.2, some estimators of ft can only identify a normalized versionof ft. This is fine as our imputation procedure works with any normalization of the factors.
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tial outcome. Averaging over the difference between the post-treatment observed
outcome and the imputed potential outcomes gives a √

N-consistent estimator of
the average treatment effects.

There are two benefits of our imputation approach. First, it allows researchers to
graph the estimated untreated potential outcomes and the observed outcomes for
treated units, similar to a synthetic control plot. These plots provide a visual check
for the parallel-trends type assumption that our estimator requires, making empirical
analysis more transparent. Second, root-N consistent estimates of ft are possible in
short panels using a variety of approaches, such as instrumental variables (Callaway
and Karami 2022, Ahn et al. 2013), common-correlated effects (Westerlund 2019),
or projected principal components (Fan et al. 2016).4 Since our identification result
only relies on estimates of ft, we open up a broad set of tools from the factor-model
literature on short-T estimation.

Below, we derive asymptotic properties of an imputation estimator using the
method of Ahn et al. (2013) to estimate the factors. The resulting estimator takes
the form of a generalized method of moments (GMM) estimator, which allows esti-
mation and inference to be handled easily with common statistical software.5 One
advantage of this estimator is that we can form statistical tests for the sufficiency of
the TWFE model, equation (1), for consistently estimating the ATTs. This is practi-
cally useful since difference-in-differences is simple to implement, so providing prac-
tical ways to test whether our more general model is necessary is valuable.

Our work contributes to an emerging literature on adjusting for parallel-trends
violations in short panels. Freyaldenhoven et al. (2019) propose a similar instrumen-
tal variable type estimator in the presence of time-varying confounds. Their results
rely importantly on homogeneous treatment effects and their simulations show that
4. Our imputation procedure also works in large panels because the identification results are inde-pendent of T .
5. Deriving the asymptotic distribution of treatment effects using other factor estimators is left forfuture work.
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heterogeneous treatment effects bias their estimates severly. Callaway and Karami
(2022) allows for heterogeneous effects in short panels. They prove identification
using a similar strategy of quasi-long-differencing and instrumental variables. They
require time-invariant instruments whose effects on the outcome are constant over
time. Their instruments would be valid in our estimator, but we allow for more gen-
eral instruments including time-varying covariates.

The rest of the paper is divided into the following sections: Section 2 describes
the theory behind our methods and presents identification results of the group-
specific dynamic ATTs when the outcomes are generated by a linear factor structure.
Section 3 provides the main asymptotic normality result. We also study covariates
with group-specific partial effects. Section 4 gives several specification tests for the
underlying model. We demonstrate when TWFE is sufficient for consistency. We
also derive a structural break test for the underlying common factor assumption. We
include a small Monte Carlo experiment in Section 5 to examine the finite-sample
performance of our estimator. Finally, Section 6 contains our application and Section
7 leaves with some concluding remarks.

2— Theory

We assume a panel dataset with i = 1, . . . , N and periods t = 1, . . . , T . Treatment
turns on in different periods for different units; we denote these groups by the
period they start treatment. For each unit, we define Gi to be unit i’s group with
possible values {g1, . . . , gG} ≡ G ⊂ {2, . . . , T}.6 Following Callaway and Sant’Anna
(2021), we denote Gi = ∞ for units that never receive treatment in the sample. Po-
tential outcomes are a function of group-timing which we denote yit(g). For treat-
ment indicators, we define the vector of treatment status di = (di1, ..., diT ) where
dit = 1(t ≥ Gi) and the indicator Dig = 1(Gi = g) if unit i is a member of group g.
6. We do not allow units to start treatment in the first observed period because they have nountreated observations to use for imputation.
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Let T0 = minj{gj} − 1 be the last period before the earliest treatment adoption.
We also introduce some matrix notation. For a vector of length T , we use the

subscript xt<g to denote the first g−1 elements and xt≥g to refer to the last T −g+1

elements. This holds similarly for the rows of a matrixX . Finally, we suppose there
exist observed instruments wi that will identify the factor space. We elaborate on
these instruments in Section 2.2.
Assumption1 (Sampling). The data {(yi,wi,di,γi, µi,ui)} is randomly sampled from
an infinite population and has finite moments up to the fourth order.
Assumption 2 (Untreated potential outcomes). The untreated potential outcomes
take the form

yit(∞) = µi + λt + f ′
tγi + uit

for t = 1, .., T . We allow for heterogeneous and dynamic treatment effects of any
form, i.e. yit(g) = τigt + yit(∞).
Assumption 3 (No Anticipation). For all units i and groups g ∈ G, yit = yit(∞) for
t < g.
Assumption 4 (Selection into treatment). E [uit | γi, µi, Gi] = 0 for t = 1, ..., T .

It may seem that Assumption 4 is a stronger assumption than the standard par-
allel trends assumption. However, this assumption is more general since we include
the factor structure in our potential outcome model. In particular, it assumes that
the error term is uncorrelated with treatment status after controlling for the factor-
loadings. Treatment can still be correlated with contemporaneous shocks so long
as the shocks are ‘common’ across the sample. For example, our identification strat-
egy is valid if workers select into a job training program based on their exposure to
macroeconomic trends.

The two-way error model cannot accommodate differential exposure. Consider
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the standard TWFE parallel trends assumption that E [uit − uit−1 | Gi] = 0.7 In the
more general factor model, this assumption would imply our ‘error term’ for a given
group g in a given period t would have expectation:

E [yit − yit−1 | Gi = g] = (ft − ft−1)
′E [γi | Gi = g] + E [uit − uit−1 | Gi = g]

= (ft − ft−1)
′E [γi | Gi = g]

Unless either (i) the factor-loadings have the same mean across treatment groups,
E [γi | Gi = g] = E [γi], or (ii) the factors are time-invariant, then the standard par-
allel trends assumption would not hold. If these two cases hold for all g and t, the
TWFE model is correctly specified. In contrast, our Assumption 4 allows for the
factor-loadings to be correlated with treatment timing and opens up treatment ef-
fect estimation for a much broader set of empirical questions.

Following Callaway and Sant’Anna (2021), we aim to estimate group-time aver-
age treatment effects

ATT(g, t) = τgt ≡ E [yit(g)− yit(∞) | Gi = g]

These quantities represent the average effect of treatment for units that start treat-
ment in period g when they are in period t. If there are too few units in a given
group, then averaging the group-time ATTs is necessary for proper inference. For
example, averaging over all post-treatment periods estimates an overall ATT (when
using weights proportional to the number of units in (g, t)) and averaging over (i, t)
where t−Gi = ℓ estimates event-study estimands ATTℓ.8

The key econometric challenge lies in that we do not observe yit(∞) whenever
7. This assumption is seen in the imputation estimator proposed by Borusyak et al. (2021) forexample. The following derivation is also shown in Callaway and Karami (2022), but we are repeatingit here for expositional purposes.
8. Our theory also extends for other averages of τgt in the post period. See Callaway and Sant’Anna(2021) for more details.
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dit = 1. Our goal is to consistently estimate E [yit(∞) | Gi = g] under equation
(3) to consistently estimate group-time average treatment effects. Borusyak et al.
(2021) and Gardner (2021) implicitly rely on this insight in studying the two-way
error model.

Intuitively, if we had a large number of pre-treatment periods (large T0), we could
separately estimate γi, ft, and the fixed effects using untreated observations (dit = 0)
to produce an estimate for ŷit(∞) = µ̂i+λ̂t+f̂ ′

tγ̂i. This strategy is studied byGobillon
and Magnac (2016) and Xu (2017). However, this technique requires the number of
pre-periods T0 to grow to infinitywhich is often undesirable in applied settingswhich
typically have only a few pre-treatment periods9.

Instead, we pursue identification noting that
E [yit(∞) | Gi = g] = E [µi | Gi = g] + λt + f ′

tE [γi | Gi = g]

Therefore, we only need to estimate the average of the fixed effects and factor-
loadings among a treatment group. Instead of the typical requirement that we need
a large number of pre-treatment periods, we require a large number of treated units.
2.1. ATT(g, t) Identification

Identification of average treatment effects will proceed in three steps. The first step
is to manually remove the additive fixed effects. The second step is to impute ỹit(∞)

in the post-treatment periods for each group where ỹit denotes the outcome after
the fixed effects are removed. The final step is averaging the contrast between ỹit

and ˆ̃yit(∞) to estimate treatment effects.
9. Ahn et al. (2001) show that least squares estimation of a single factor model is only consistentwhen the errors are white noise.
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We first define the following averages:

y∞,t =
1

N∞

N∑
i=1

Di∞yit

yi,t≤T0
=

1

T0

T0∑
t=1

yit

y∞,t<T0
=

1

N∞T0

N∑
i=1

T0∑
t=1

Di∞yit

where y∞,t is the cross-sectional averages of the never-treated units for period t,
yi,t≤T0

is the time-averages of unit i before any group is treated, and y∞,t<T0
is the

total average of the never-treated units before any group is treated. These quantities
leverage only observations with dit = 0 and are not contaminated by the treatment.

We then perform all estimation on the residuals ỹit ≡ yit−y∞,t−yi,t<T0
+y∞,t<T0

.
These residuals are reminiscent of the usual TWFE residuals, except we carefully se-
lect this transformation to accomplish two things. First, this transformation leaves
the treatment dummyvariables unaffected to prevent problemswith negativeweight-
ing of aggregating treatment effects (Goodman-Bacon 2021, Borusyak et al. 2021).
Second, it preserves a common factor structure for all units and time periods10. This
result is summarized in the following lemma:
Lemma 2.1. E [ỹit | Gi = g] = E

[
ditτit + (ft − f t<T0

)′(γi − γ∞) | Gi = g
] for t =

1, ..., T and g ∈ G∪{∞}where f t<T0
is the average of ft in the pre-treatment periods

and γ∞ is the average of γi among the control units.
All proofs are contained in the Appendix. Lemma 2.1 is important because it tells

us that the factors and loadings retain a constant structure across the panel (both
being only shifted by a constant). Any imputation method that wants to include
10. The TWFE imputation estimator of Gardner (2021) and Borusyak et al. (2021) would not sharethis property because they estimate µi and λt based on the full sample dit = 0. Then the factorstructure is different for the post-treated treatment group than the pre-treatment groups becausethe residualized factor model is different.
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factor models should provide a similar result to Lemma 2.1. Otherwise, theymay not
be able to use untreated observations to remove the effects in the post-treatment
periods. Since we are not interested in inference on the factors themselves, this
form will suffice for the imputation process. Explicitly, the transformed outcomes
take the form

ỹit = ditτit + (ft − fpre)′(γi − γ∞) + ũit.

For ease of exposition, we rewrite the above equation as:
ỹit = ditτit + f̃ ′

tγ̃i + ũit.

where we define F̃ = (f̃1, ..., f̃T )
′.

Lemma 2.1 has the added benefit of showing us when the ATTs are identified by
our TWFE transformation alone.
Corollary 2.1. Under Assumptions 1-4, ATT(g, t) is identified by the fixed effects
imputation transformation if E [γi | Gi = g] = E [γi] for all g ∈ G.

This result is an immediate consequence of Assumptions 1 – 4 asE [γj | Gi = g]−

E [γi] for j ≠ i under random sampling. Corollary 2.1 tells us that TWFE imputation
is sufficient to estimate the ATTs, even when the factor structure exists, so long as
the average factor-loading of each treatment group does not differ11. Asymptotic
normality of our imputation procedure under a two-way error model is studied in
Appendix Section A.

We now define a useful matrix function for our purposes. GivenmatricesX1 and
X0 that are respectively n × k and m × k, suppose Rank(X0) = k. We define the
imputation matrix P (X1,X0) ≡ X1(X

′
0X0)

−1X ′
0. This matrix takes a similar form to

a projection matrix but "imputes" on a different matrix X1 than the matrix used for
estimating the regression coefficient (X ′

0X0)
−1X ′

0. Gardner (2021) implicitly uses
11. This result echos Theorem 1 of Westerlund (2019)
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the imputation matrix where X1 is the matrix of unit and time fixed effects and X0

is X1 with rows of zero whenever dit = 1.
Now that the transformed untreated outcomes display a pure-factor structure,

we impute untreated potential outcomes for group g usingP (F̃t≥g, F̃t<g)where F̃t<g

is the first g − 1 rows of F̃ and F̃t≥g is the last T − g + 1. When applying this matrix
to outcomes, the post-treatment factors are multiplied by the factor loadings from
the pre-treatment observations. In particular, we impute ỹit(∞) by P (f̃ ′

t , F̃t<g)ỹi,t<g

with g = Gi.
Theorem 2.1 (Identification of τgt). Suppose F̃ is known and Rank(F̃t≤T0) = p. Un-
der Assumptions 1-4 for g ∈ G,

ATT(g, t) = E
[
ỹit − P (f̃ ′

t , F̃t<g)ỹi,t<g | Gi = g
] (4)

for t ≥ g

Theorem 2.1 shows that we can identify τgt if we know the factor imputation
matrix. As we discussed previously, estimation of the factors and factor loadings
are generally infeasible when T is small. However, our approach requires estimation
of only the factors. We can estimate these consistently in fixed-T settings using the
QLD approach of Ahn et al. (2013).
2.2. Factor Identification

This section considers identification of the factors in a fixed-T environment using
the approach of Ahn et al. (2013). We reiterate that it is not the only method to
identify the factors and any estimator that is consistent for the factors would work
in Theorem 2.1. Each estimator has different identifying assumptions which may be
more or less plausible in different contexts. For example, if one wanted to utilize
a common correlated effects approach, they would require identifying assumptions
like those in Westerlund et al. (2019).
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The advantage of our proposed estimator is two-fold. First, the estimator takes
the form of a generalized method of moments estimator which makes asymptotic
inference a result of simple theory. Second, this estimator will allow us to form an
easy-to-implement statistical test for the sufficiency of the two-way fixed effect
model in subsection 4.

It is well-known in the factor literature that neither the factors ft nor the loadings
γi are separately identifiable because both are unobserved. We, therefore, need to
impose a normalization on the factors. The particular normalization does not affect
our resulting imputation, so we follow Ahn et al. (2013) and use the normalization:

F̃ (θ) =

 Θ

−Ip

 (5)

where Θ is a (T − p)× p matrix of unrestricted parameters and θ = vec(Θ). Given
this normalization, the quasi-long-differencing (QLD) matrix is

H(θ) =

I(T−p)

Θ′


For any given θ,H(θ)′F (θ) = 0.

Like Callaway and Karami (2022), we require instrumentswi to identify the factor
model. Section 3 describes how to include covariates in the selection assumption.
Naturally, these covariates would also serve as instruments to identify θ. We intro-
duce three additional identifying assumptions:
Assumption 5 (Factor identification). The following rank assumptions for the un-
treated units, where wi is a L× 1 vector of instruments:

(i) Rank(V ar(γi | Gi = ∞)) = Rank(F̃t<T0) = p < T0.
(ii) The matrix E [I(T−p) ⊗wiγ̃

′
i | Gi = ∞

] has full column rank.
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(iii) E [ui | wi, Gi = ∞] = 0.
Assumption 5 is our adaptation of BA.3 from Ahn et al. (2013) and gives identifi-

cation of the normalized factors. Assumption 5(ii) and (iii) inform what instruments
are allowed. Part (iii) implies they are exogenous with respect to the idiosyncratic
error. We can weaken the strict exogeneity assumption to allow for instruments
that are only valid in certain time periods so that (iii) is not as restrictive as it seems.
Second, we require the instruments to correlate with the demeaned factor loadings.
We can allow covariates that vary over time and individual, or just across individuals,
giving us a broad selection of potential instruments.

Given Assumption 5, we now show that the never-treated individuals can be
used to identify the parameters in θ.
Lemma 2.2. Under Assumptions 1-5 and given p is known and p + 1 < T , θ is
identified by

E [H(θ)′ỹi ⊗wi | Gi = ∞] = 0 (6)
The proof is an immediate consequence of Lemma 2.1 and Section 2 of Ahn et al.

(2013). A key identifying assumption is that p is known to the researcher. Ahn et al.
(2013) provide consistent tests of p under Assumptions 1-5. Further, simulation
evidence suggests that overestimating the number of factors does not lead to bias
in the parameters of interest12. We treat p as known for the remainder of the paper.

Lemma 2.2 tells us that θ can be identified, but says nothing about the actual F̃ .
However, as θ is generated by a rotation of F̃ , we can use θ to identify the column
space of F̃ .
Lemma 2.3. Under Assumption 5,

P (F̃ (θ)t≥g, F̃ (θ)t<g) = P (F̃t≥g, F̃t<g)

for g ∈ G.
12. See Ahn et al. (2013), Breitung and Hansen (2021), and Brown (2022)
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Combinedwith Theorem2.1, Lemma2.3 implies that the τg,ts are identified under
Assumptions 1-5. The following Section uses the moment conditions constructed
in this section to consistently estimate the functionals of the treatment effects.

3— Estimation and Inference

This Section considers estimation of the group-time average treatment effects. A
major benefit of our approach is the simplicity of inference. Our moment condi-
tions lead to a simple GMM estimator for which inference is standard and can be
computed via routine packages in Stata and R. Further, we can use the moment
conditions to test the fundamental features of the model.
3.1. Asymptotic Normality

Equations (4) and (6) provide us the necessary moment conditions to estimate the
ATTs. We collect them here in their unconditional form:

E [gi∞(θ)] = E
[

Di∞

P(Di∞ = 1)
H(θ)′ỹi ⊗wi

]
= 0

E [gigG(θ, τgG)] = E
[

DigG

P(DigG = 1)

(
ỹi,t≥gG − P (F̃t≥gG , F̃t<gG)ỹi,t<gG − τgG

)]
= 0

...
E [gi1(θ, τg1)] = E

[
Dig1

P(Dig1 = 1)

(
ỹi,t≥g1 − P (F̃t≥g1 , F̃t<g1)ỹi,t<g1 − τg1

)]
= 0

where τg = (τgg, ..., τgT )
′ is the vector of post-treatment treatment effects. We stack

these over g as τ = (τ ′
g1
, ..., τ ′

gG
)′. The first set of moment conditions identify θ and

the remaining moments identify the τgt via our imputation method.13 We need one
final assumption to implement the asymptotically efficient GMM estimator:
Assumption 6. E [gig(θ, τg)gig(θ, τg) | Gi = g] is positive definite for each g ∈ G.
13. We implicitly assume P(Digh) is strictly between 0 and 1 for every gh ∈ G ∪ {∞}.
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Assumption 6 makes sure the variance of the moments is not rank deficient after
removing the factors. We collect the moment functions into the vector gi(θ, τ ) =

(gi∞(θ)′, gigG(θ, τgG)
′, ..., gig1(θ, τg1)

′)′. We define ∆ = E [gi(θ, τ )gi(θ, τ )
′] which is

positive definite with probability approaching one by Assumptions 5 and 6. Then
our GMM estimators of (θ′, τ ′)′ solve

min
θ,τ

(
N∑
i=1

gi(θ, τ )

)′

∆̂−1

(
N∑
i=1

gi(θ, τ )

)
(7)

where ∆̂
p→ ∆ uses an initial consistent estimator of (θ′, τ ′)′. We now present the

main theoretical result.
Theorem3.1. Let (θ̂′, τ̂ ′)′ solve equation (7). Under Assumptions 1-6,√N

(
(θ̂′, τ̂ ′)′−

(θ′, τ ′)′
) is jointly asymptotically normal and

√
N(θ̂ − θ)

d→ N
(
0,
(
D′

∞∆−1
∞ D∞

)−1
)

√
N(τ̂gG − τgG)

d→ N
(
0,∆gG +DgG

(
D′

∞∆−1
∞ D∞

)−1
D′

gG

)
...

√
N(τ̂g1 − τg1)

d→ N
(
0,∆g1 +Dg1

(
D′

∞∆−1
∞ D∞

)−1
D′

g1

)
where the matricesDg and∆g are defined in the Appendix. Further, the asymptotic
covariance between√N(τ̂gh−τgk) and√N(τ̂k−τk) is given byDgh(D

′
∞∆−1

∞ D∞)−1D′
gk
.

The asymptotic distribution of√N(τ̂g−τg) generally depends on the estimation
of θ in the first stage (by the term Dg(D

′
∞∆−1

∞ D∞)−1D′
g). We can see directly from

Theorem 3.1 that a smaller Avar(√N(θ̂−θ)) leads to a smaller Avar(√N(τ̂g−τg)) (in
thematrix sense), strictly sowhenDg has full rank. Estimation of τg is not dependent
on the first stage estimation of θ when Dg = 0. This typically occurs when the
transformed factor loadings for group g center about zero. However, simpler fixed
effects imputation suffices if this equality holds; see Corollary 2.1.
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Assumption 3 implies treated individuals do not anticipate treatment and adjust
their behavior prior to the intervention. Suppose treated individuals from group
g anticipate the intervention in period qg < g. We could simply redefine the last
pre-treatment period as qg − 1 and incorporate the additional g − qg periods into
the moment conditions, so long as there are still enough pre-treatment periods to
construct the imputation matrix. Then τg is a T − qg+1 vector that makes treatment
anticipation a testable hypothesis:

H0 : τg,qg = ... = τg,g−1 = 0

This test can easily be carried using standard statistical packages once estimation is
finished.

In fact, the above test is just one of many that can be carried out on the ATTs.
As ATT(g, t) is √N-consistently estimated by τ̂gt, and all standard errors come from
known theory on GMM estimation, we can test any well-defined nonlinear function
of the parameters using canned statistical packages.
3.2. Inference of Aggregate Treatment Effects

As in Callaway and Sant’Anna (2021), we can form aggregates of our group-time av-
erage treatment effects. For example, event-study type coefficients would average
over the τgt where t−g = e for some relative event-time ewith weights proportional
to group membership. Consider a general aggregate estimand δ which we define as
a weighted average of ATT (g, t):

δ =
∑
g∈G

∑
t>T0

w(g, t)τgt

where the weights w(g, t) are non-negative and sum to one. Table 1 of Callaway and
Sant’Anna (2021) and the surrounding discussion describes various treatment effect
aggregates and discuss explicit forms for the weights.
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Our plug-in estimate for δ is given by δ̂ =
∑

g∈G
∑

t>T0
ŵ(g, t)τ̂gt. Inference on

this term follows directly from Corollary 2 in Callaway and Sant’Anna (2021) if we
have the influence function for our τgt estimates. Rewriting our moment equations
in an asymptotically linear form, we have:

√
N
(
(θ̂′, τ̂ ′)′ − (θ′, τ ′)′

)
= −

(
1√
N

N∑
i=1

(D′∆−1D)−1D′∆−1gi(θ, τ )

)
+ op(1).

This form comes from the fact that the weight matrix is positive definite with prob-
ability approaching one.14. The first term on the right-hand side is the influence
function and hence inference on aggregate quantities follows directly. This result
allows for uniform confidence bands on event-study estimates as recommended by
Freyaldenhoven et al. (Forthcoming).
3.3. Plotting Estimates

The proposed estimator can be used to produce estimates for yit(∞) in all periods
for the treated observations:

ŷit(∞) = P (f̃t, F̃t<g)ỹi,t<g + y∞,t + yi,t<T0
− y∞,t<T0

where the first term on the right-hand side imputes ˆ̃yit(∞) and the last three terms
in the sum ‘undo’ the within-transformation. In the pre-treatment periods, our esti-
mates ŷit(∞) should be approximately equal to the observed yit under our assump-
tions. Similar to synthetic control estimators, comparing the imputed values to the
true value can validate the ‘fit’ of our model. However, since we have many treated
units, doing so unit by unit is not practical. There are two complementary ways to
aggregate treated units that will prove useful.

First, you can aggregate over a group and plot the average of yit and the average
14. This is a well-known expansion for analyzing the asymptotic properties of GMM estimators. SeeSection 14 of Wooldridge (2010) for example.
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of ŷit(∞) separately for each group g ∈ G. This will create a set of ‘synthetic-control’
like plots. To produce an ‘overall’ plot, the observed outcome yit and the estimated
untreated potential outcome ŷit(∞) should be ‘recentered’ to event-time, i.e. rein-
dex time to e = t − Gi, so that treatment is centered at event-time 0. Then yie and
ŷie(∞) can be aggregated for each value of e. We recommend researchers plot these
estimates as it makes what is driving the results more transparent to the reader.
3.4. Including Covariates

We now discuss the inclusion of covariates in the untreated potential outcomes:
yit(∞) = xitβ + µi + λt + f ′

tγi + uit (8)
where xit is a K × 1 vector of covariates. All covariates must vary over i and t if
we hope to identify their coefficients. We can jointly estimate β and θ using the
moments

E
[
H(θ)′(ỹi − X̃iβ)⊗wi

]
= 0

Given a consistent estimator forβ, identification of τ follows just as it didwithout
covariates. For each group g ∈ G, define Xi,t<g and Xi,t≥g as the pre- and post-
treatment covariates. The treatment effects are identified by imputing the full error
Fγi + ui. Imputation on treatment group g then follows

E
[
ỹi,t≥g − P (F̃t≥g, F̃t<g)(ỹi,t<g −Xi,t<gβ)− τg | Gi = g

]
As the work above demonstrates, all procedures in this paper can be easily modified
to incorporate covariates by simply imputing the residual yi −Xiβ.

We may believe the slopes are specific to the treatment timing. If we further
add E [τi | Gi = g,Xi] = E [τi | Gi = g] along with E [ui | wi, Gi = g] = 0, which is
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common in practice, we have the following valid moments:
E
[
wi ⊗

(
ỹi,t≥g − P (F̃t≥g, F̃t<g)(ỹi,t<g −Xi,t<gβg)− τg

)
| Gi = g

]
where there are (T−p)K(T−g+1)moment conditions for (T−g+1)+K parameters.
It is then easy to test the hypothesis β∞ = βgG = ... = βg1 by Theorem 3.1. Allowing
β∞ ̸= βg implies that the slopes can change after exposure to treatment. As G is
fixed asymptotically, we place no restrictions on the slopes βg and thus allow the
change βg − β∞ to be artbitrary.

4— Specification Testing

This section provides tests for different aspects of themodel’s functional form. These
tests can help the researcher determine if a factor model is appropriate for their ap-
plication.
4.1. Sufficiency of TWFE

A novel insight of our paper concerns the ability to test for a factor structure, once
the additive effects have been removed.15 We consider the following hypotheses:

H0 : yit(∞) = µi + λt + uit

HA : yit(∞) = µi + λt + f ′
tγi + uit

If the null hypothesis is true, the QLD procedure is unnecessary and may lead to a
less efficient estimate of τit. It is also computationally more difficult to implement
15. It is theoretically possible to compare the difference between our imputation estimator fromTheorem 3.1 to the TWFE imputation estimator via a generalized Hausman test. While it may seemlike the full imputation estimator is less efficient under the null, a direct efficiency comparison requiressubstantive assumptions on the error ui. The tests presented in this section require no assumptionson ui beyond those needed for identification in Section 2. For example, removing the factors fromthe error could yield a spherical covariance, making the factor imputation estimator efficient. But ifthe factor structure centers around zero, OLS is still consistent.
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than a standard fixed effects regression. Therefore, we think this test is of practical
importance for researchers.

We discuss in the previous section how Ahn et al. (2013) provide consistent es-
timation of p. Those tests have a new interpretation under this null hypothesis.
Theorem4.1. Under the null hypothesisH0 : yit(∞) = µi+µt+uit and Assumptions
1 and 3, p = 0.

Failure to reject the null hypothesis implies that the two-way error model is suffi-
cient for capturing all heterogeneity in the potential outcomes. Under the untreated
model, one could use our imputation approach from Section 2, or an approach that
uses all untreated outcomes to estimate µi and λt. One can even carry out this test
without implementing a QLD procedure. The imputed residuals are mean zero un-
der the null hypothesis so the usual overidentifying test is implemented by setting
H(θ)′ = IT .

Even if the two-way errormodel is unrepresentative of the factor structure, Corol-
lary 2.1 shows that mean independence of the factor loadings with respect to treat-
ment timing is sufficient for consistency of TWFE. Specifically, we need E [γi] =

E [γi | Gi = g] for all g ∈ G. Our imputation approach allows us to identify these
terms up to a rotation. To see how, letA∗ be the rotation that imposes the Ahn et al.
(2013) normalization. Then
P (Ip,F (θ)t<g)E [yi,t<g | Gi = g] =

(
F (θ)′t<gF (θ)t<g

)−1
F (θ)′t<gFt<gE [γi | Gi = g]

=
(
F (θ)′t<gF (θ)t<g

)−1
F (θ)′t<gF (θ)t<g(A

∗)−1E [γi | Gi = g]

= (A∗)−1E [γi | Gi = g]

where F (θ) = FA∗.
It is irrelevant that the mean of the factor loadings are only known up to a non-

singular transformation, because A∗ is the same for each g ∈ G by virtue of the
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common factors. We note that
E [γi | Gi = g]− E [γi] = 0 ⇐⇒ (A∗)−1(E [γi | Gi = g]− E [γi]) = 0

The results above show how we can identify (A∗)−1E [γi | Gi = g] by imputing the
pre-treatment observations onto an identify matrix.

Collect the moments
E
[

Di∞

P(Di∞ = 1)
H(θ)ỹi ⊗wi

]
= 0

E [P (Ip,F (θ))yi − γ∗] = 0

E
[

DigG

P(DigG = 1)

(
P (Ip,F (θ)t<gG)yi,t<gG − γ∗

gG

)]
= 0

...
E
[

Dig1

P(Dig1 = 1)

(
P (Ip,F (θ)t<g1)yi,t<g1 − γ∗

gG

)]
= 0

The parameters (γ∗,γ∗
gG
, ...,γ∗

g1
) represent the rotated means of the factor loadings.

γ is the unconditionalmean (A∗)−1E [γi] andγg is the conditionalmean (A∗)−1E [γi | Gi = g]

for g ∈ G. We include estimation of the factors for convenience, so that one does
not need to directly calculate the effect of first-stage estimation on the asymptotic
variances of conditional means.

Joint GMM estimation of the above parameters, including θ, then allows one to
test combinations of the rotated means. Specifically, we have the following result:
Theorem 4.2. If E [γi | Gi = g] = E [γi] for all g ∈ G, then

γ∗ = γ∗
gG

= ... = γ∗
g1

4.2. Testing Equality of Factors

An important assumption underlying our approach is that the factors, which affect
both the pre- and post-treatment outcomes, are equal between the treated and un-
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treated groups. This assumption may not hold if, for example, the control and treat-
ment groups are geographically or sociologically separated. We, therefore, derive
tests for equivalence of the factors.

We can only compare the pre-treatment factors because those are the ones the
treated groups can identify. Testing each group sequentially may give misleading
results, especially when there are few units per group. Therefore, we combine all
treated groups and only compare the first T0 factor observations before any group
is treated. We define Di =

∑
g∈G Dig which is one if the unit is ever treated.

We consider two estimators of the pre-sample factors, one using the untreated
observations and one using the pre-treated observations. The rank condition on F

in Assumption 3(i) means we can hope to identify the pre-treatment factors with the
pre-treatment treated observations. We apply the Ahn et al. (2013) normalization to
the pre-treatment factors, and defineH∗(θ)′ =

[
I(T0−p)Θ

∗]whereΘ∗ is (T0 − p)× p

matrix of free parameters.
Given the appropriate identifying assumptions on the treated units, the two sets

of moments are then
E
[
g0
i (θ0)

]
= E

[
(1−Di)

P(Di = 0)
H∗(θ0)

′yi,t<T0 ⊗wi

]
= 0T0×1

E
[
g1
i (θ1)

]
= E

[
Di

P(Di = 1)
H∗(θ1)

′yi,t<T0 ⊗wi

]
= 0T0×1

which are the unconditional versions of the moments based on both respective sub-
samples, and θ0 and θ1 are the vectorizations of the (T0− p)× p unrestricted param-
eters associated with the ALS normalization applied to Fpre. We write the empirical
analogs as g1(θj) = 1

N1

∑N
i=1D1g

1
i (θ1) and g0(θ0) = 1

N0

∑N
i=1(1 − Di)g

0
i (θ0) where

N0 and N1 are the number of never-treated and treated individuals, respectively.
First, we must test whether the number of factors affecting both groups is the

same. This can be achieved simply by estimating p separately using both subsam-
ples. ALS provide tests for estimating p using their GMM estimator. Given that p is
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the same for both sets of moment conditions, we are interested in testing the null
hypothesis H0 : θ0 − θ1 = 0. This condition suffices for testing the equality of the
pretreatment factors for the untreated and pre-treated groups, which we denote
F0,pre and F1,pre respectively. This fact holds because

θ0 = θ1 ⇐⇒ F (θ0) = F (θ1) ⇐⇒ F (θ0)A = F (θ1)A ⇐⇒ F0 = F1

where the second equivalence holds because the rotation matrix A is nonsingular,
just as in Section 4.1.

We define the variance matrices as
S0(θ0) = V ar(g0

i )

S1(θ1) = V ar(g1
i )

with consistent estimators Ŝ0 and Ŝ1. Let
J(θ0,θ1) =

N0

N
g0(θ0)

′Ŝ−1
0 g0(θ0) +

N1

N
g1(θ1)

′Ŝ−1
1 g1(θ1) (9)

Finally, define θ̂ as the estimator of θ which uses both sets of moment conditions,
and let θ̂0, θ̂1 be the estimators using the respective subsamples and their respective
moment conditions.
Theorem 4.3. Suppose Assumption 3 holds conditional onDi. Then under Assump-
tions 1-5 and the null hypothesis,

N ∗
(
J(θ̂, θ̂)− J(θ̂0, θ̂1)

)
d→ χ2

((T0−p)p) (10)
as N → ∞.

This result is a direct application of Theorem 5.8 from Hall (2004). He requires
the partial sums √Ng0(θ0) and √

Ng1(θ1) be uncorrelated, which holds under ran-
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dom sampling. Further, we can replace N0/N and N1/N in equation (9) with their
asymptotic counterparts P(Di = 0) and P(Di = 1) because they are multiplied by
Op(N

−1) terms. P(Di = 0) takes the place of π in Hall (2004).

5— Simulations

XXX

6— Application

XXX

7— Conclusions

We consider identification and inference of functions of treatment effects in a linear
panel data model when the number of time periods is small. We show how to relax
the usual parallel trends assumption by introducing a linear factor model in the error.
Our main identification result shows that a consistent estimator of the unobserved
factors is all that one needs to estimate the treatment effect coefficients.

While a factor model nests the usual two-way fixed effects error structure, we
explicitly model the TWFEs in addition to the factors. This setting allows us to pro-
vide a number of useful tests for the sufficiency of the TWFE estimator. We also
show that one must remove the unit and time fixed effects in a particular way so as
to preserve the common factor structure in all time periods for all individuals. We
provide such a transformation and prove a unifying identification result for imputa-
tion estimators of ATTs.

While we study the quasi-long-differencing transformation, any method for esti-
mating the factor space suffices to estimate the ATTs. Other approaches, like com-
mon correlated effects or principal components, can also be implemented. Such a
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range of techniques allow for flexibility in estimation for applied researchers. Fur-
ther work can demonstrate both theoretical and finite-sample properties of these
various estimators of the factors, and how they affect to ATT estimation.
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A— Inference in Two-Way Fixed Effect Model

We derive the asymptotic distribution of our imputation estimator based off of the
two-way errormodel in equation (1). First, we note that this estimator can bewritten
in terms of the imputation matrix from Section 2. In particular, let 1t be a T × 1

vector of ones up the t’th spot, with all zeros after. Define y∞ = (y∞,1, ..., y∞,T )
′

be the full vector of never-treated cross-sectional averages. Then our imputation
transformation can be written as

ỹi = [IT − P (1T ,1T0)] (yi − y∞)

where the tth component of the above T -vector is
ditτit + ũit,

with ũit is defined as the same transformation as ỹit.
The imputation equation in Section 2.3 is a just-identified system of equations.

As such, we do not need to worry about weighting in implementation and inference
comes from standard theory of M-estimators. In fact, we have the following closed-
form solution for the estimator of a group-time average treatment effect:

τ̂gt =
1

Ng

∑
i

Digỹit,

where Ngt =
∑

i Dig is the number of units in group g.
The following theorem characterizes estimation under the two-way error model:

TheoremA.1. Assume untreated potential outcomes take the form of the two-way
error model given in (1). Suppose Assumptions 1, 3(iii), and 4 hold with γi = 0. Then
for all (g, t)with g > t, τ̂gt is conditionally unbiased for E [τit | Dig = 1], has the linear
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form
√

Ng

(
τ̂gt − τgt

)
=

1√
Ng

N∑
i=1

Dig(τit − τgt + uit − ui,t<T0 − u∞,t + u∞,t<T0) (11)

and √
N1(τ̂gt − τgt)

d→ N(0, V1 + V0) (12)
as N → ∞, where V1 and V0 are given below and τgt = E [yit(g)− yit(∞) | Dig = 1]

is the group-time average treatment effect (on the treated).
Theorem (A.1) demonstrates the simplicity of our imputation procedure under

the two-way error model. While the general factor structure requires more care,
estimation and inference will yield a similar result.
Proof of Theorem A.1

The transformed post-treatment observations are
ỹit = τit + uit − u∞,t − ui,t<T0 + u∞,t<T0

To show unbiasedness, take expectation conditional onDig = 1. This expected value
is

E [τit + uit − ui,t<T0 − u∞,t + u∞,t<T0 | Dig = 1] = E [τit | Dig = 1]

by Assumption 3 and 4.
For consistency, note that averaging over the sample with Dig = 1, subtracting

τgt, and multiplying√Ng gives
√

Ng

(
τ̂gt − τgt

)
=

1√
Ng

N∑
i=1

Dig(τit − τgt + uit − ui,t<T0) +
1√
Ng

N∑
i=1

Dig(−u∞,t + u∞,t<T0)

which is two normalized sums of uncorrelated iid sequences that have mean zero
(by iterated expectations) and finite fourth moments.

27



Rewriting the second term in terms of the original averages 1
N∞

∑N
i=1−ui,t+ui,t<T0

gives:
√
Ng

(
τ̂gt − τgt

)
=

1√
Ng

N∑
i=1

Dig(τit − τgt + uit − ui,t<T0) +

√
Ng

N∞

(
1√
N∞

N∑
i=1

Di∞(−ui,t + ui,t<T0)

)

Since these terms are mean zero and uncorrelated (by Assumption 1), we find the
variance of each term separately.

The first term has asymptotic variance
V1 = E

[(
τit − τgt + uit − ui,t<T0

)(
τit − τgt + uit − ui,t<T0

)′
| Dig = 1

]

and the second term has asymptotic variance
V0 =

P(Dig = 1)

P(Di∞ = 1)
E
[(

ui,t<T0 − ui,t

)(
ui,t<T0 − ui,t

)′
| Di∞ = 1

]

The result follows from the independence of the two sums.

B— Common Correlated Effects

As noted in the main text, our identification results hold regardless of the particular
estimator of the factor space. We briefly consider identification of the treatment
effect coefficients under a common correlated effects scheme.

We suppose there exists a 1×K vector of covariates xit. We stack xit over t to
get the T ×K matrixXi. Through what follows, we assumeXi is randomly sampled
and has finite fourth moments. For simplicity, we consider only one treatment pe-
riod which starts after T0. membership into the treatment group is denoted by the
dummy variable Di.
B.1. Brown, Schmidt, and Wooldridge CCE

We assumeXi satisfies the model of Brown et al. (2022):
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Assumption 7 (BSWModel). Let µ = E [Xi].
(i) There exists a K × p matrix Λ such that

F = µΛ (13)

(ii) Rank(µt≤T0) = K < T0.
Assumption 7 is motivated by the common correlated effects literature. The

usual CCE model assumes that Rank(E [Γi]) = p ≤ K . When this is true, we can
always rewrite

µ = FE [Γi] ⇒ F = µE [Γi]
′ (E [Γi]E [Γi]

′)−1

and redefine Λ = E [Γi]
′ (E [Γi]E [Γi]

′)−1. However, the BSW model puts no restric-
tions on the rank ofΛ, so it is not true that one can recover the CCE model from the
BSW, making BSW strictly weaker.

In their analysis, Brown et al. (2022) assume Rank(µ) = K , which is not implied
by CCE. In fact, assuming the factors are full rank, the CCEmodel implies Rank(µ) =
p ≤ K which means that cross-sectional averages ofXi may converge to a reduced
rank limit. We do not address this problem here and continue to assume thatXi has
full rank in expectation, which is reasonable in microeconometrics. An analysis of
the classical case in a fixed-T setting can be found in Westerlund et al. (2019).

It is important to note that the Ahn et al. (2013) factor-identifying assumptions
do not overlap with the Brown et al. (2022) assumptions. The QLD model places no
restrictions on the relationship between covariates and factors. Also, the QLD pa-
rameters are not identified under the BSW assumptions as Brown et al. (2022) place
no restrictions on γi and Λ is not necessarily invertible. Thus, neither of the two
models imply the other, so their study in this context leads to different estimators
which can be chosen by the researcher. However, we should note that classical CCE
allows for identification of the QLD parameters as in Brown (2022).
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We begin with the pure factor potential outcome model yit(∞) = ftγi + uit.
Under the BSW model, we can rewrite yit(∞) = µtρi + uit where ρi = Λγi. Then
we can identify the ATTs with

E [yi,t>T0 − P (µt>T0 ,µt≤T0)yi,t≤T0 | Di = 1] = 0

The moment conditions hold as
P (µt>T0 ,µt≤T0)yi,t≤T0 = P (µt>T0 ,µt≤T0)(µt≤T0ρi + ui,t≤T0)

= µt>T0ρi + P (µt>T0 ,µt≤T0)ui,t≤T0

which, in expectations conditional on Di = 1, is equal to yi,t>T0(∞).
The obvious estimator of τ is

1

N1

N∑
i=1

Di

(
yi,t>T0 − P (X t>T0 ,X t≤T0)yi,t≤T0

)
which we denote τ̂CCE We first prove consistency of the above estimator.
Theorem B.1. Under Assumptions 1-4 and Assumption 6, τ̂CCE

p→ τ .
Proof.

τ̂CCE =
N

N1

1

N

(
N∑
i=1

Diyi,t>T0 − P (X t>T0 ,X t≤T0))
N∑
i=1

Diyi,t≤T0

)
p→ E [yi,t>T0 | Di = 1]− µt>T0(µ

′
t≤T0

µt≤T0)
−1µt≤T0E [µt≤T0ρi | Di = 1]

= E [yi,t>T0 − µt>T0ρi | Di = 1]

= E [yi,t>T0(1)− Fγi | Di = 1]

= E [τi | Di = 1]

= τ

as Fγi = µxΛγi ≡ µxρi by BSW and E [yi,post(∞) | Di = 1] = E [Fγi | Di = 1] by
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Assumption 4.
Asymptotic normality is more complicated, because we may have to account for

the effect of the factor proxies in the imputation matrix. For notational convenience,
we write P̂ = P (X t>T0 ,X t≤T0).16 First write everything in terms of the uncondi-
tional moments:

√
N(τ̂CCE − τ ) =

N

N1

(
1√
N

N∑
i=1

Di

(
yi,t>T0 − P̂ yi,t≤T0 − τ

))

Let P = P (µt>T0 ,µt≤T0). Add and subtract Pyi,t≤T0 within the sum to get
√
N(τ̂CCE − τ ) =

N

N1

(
1√
N

N∑
i=1

Di

(
(yi,t>T0 − Pyi,t≤T0 − τ ) + (P − P̂ )yi,t≤T0

))

=
N

N1

(
1√
N

N∑
i=1

Di (yi,t>T0 − Pyi,t≤T0 − τ )

)
+
√
N(P − P̂ )

N

N1

(
1

N

N∑
i=1

Diyi,t≤T0

)

The first sum is comprised of mean zero, iid terms:
E [Di(yi,t>T0 − Pyi,t≤T0 − τ )] = E [µt>T0ρi + ui,t>T0 + τi − µt>T0ρi − Pui,t≤T0 − τ | Di = 1]P(Di = 1)

= E [τi − τ | Di = 1]P(Di = 1)

= 0

as τ ≡ E [τi | Di = 1] = E [yi,t>T0(1)− yi,t>T0(∞) | Di = 1]. Thus the first sum is
asymptotically normal.

The second sum is easier to deal with theoretically. √N(vec(X−µ)) is asymptot-
ically normal by the CLT and Assumption 1. Then applying the continuous mapping
theorem twice, √N(P̂ − P ) N

N1

(
1
N

∑N
i=1Diyi,t≤T0

) is asymptotically normal.

16. Authors in the CCE literature will often write F̂ = X as shorthand, because the cross-sectionalaverages are proxies for the factors.
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C— Proofs

Proof of Lemma 2.1

Wefirst derive the averages defined in Section 2.1 in terms of the potential outcome
framework:

y∞,t =
1

N∞

N∑
i=1

Di∞yit = µ∞ + λt + ftγ∞ + ut,∞

yi,t≤T0
=

1

T0

T0∑
t=1

yit = µi + λt<T0 + f t<T0
γi + ui,t<T0

y∞,t<T0
=

1

N∞T0

N∑
i=1

T0∑
t=1

Di∞yit = µ∞ + λt<T0 + f t<T0
γ∞ + u∞,t<T0

where µ∞ and γ∞ are the averages of the never-treated individuals’ heterogeneity
and f t<T0

and λt<T0 are the averages of the time effects before anyone is treated.
The error averages have the same interpretation as the outcome averages.

The definition of τit is the difference between treated and untreated potential
outcomes for unit i at time t, so for any (i, t), yit = dityit(1) + (1 − dit)yit(∞) =

ditτ + yit(∞). Then
ỹit = ditτit + f ′

tγi − f
′
t<T0

γi − f ′
tγ∞ + f t<T0

γ∞ + uit − ut,∞ − ui,t<T0 + u∞,t<T0

= (ft − f t<T0
)′(γi − γ∞) + +uit − ut,∞ − ui,t<T0 + u∞,t<T0

Taking expectation conditional on Gi = g gives E [uit − ui,t<T0 | Gi = g] = 0 by As-
sumption 4 and E [u∞,t<T0 − ut,∞ | Gi = g] = E [u∞,t<T0 − ut,∞] = 0 by random sam-
pling and iterated expectations.

□

Proof of Theorem 2.1

E
[
ỹit − P (f̃ ′

t , F̃t<g)ỹi,t<g | Gi = g
]
= E [ỹit(1) | Gi = g]−E

[
P (f̃ ′

t , F̃t<g)ỹi,t<g | Gi = g
]
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We use the fact that
E
[
P (f̃ ′

t , F̃t<g)ỹi,t<g | Gi = g
]
= E

[
f̃ ′
t(F̃

′
t<gF̃t<g)

−1F̃ ′
t<gỹi,t<g | Gi = g

]
= E

[
f̃ ′
t(F̃

′
t<gF̃t<g)

−1F̃ ′
t<g

[
F̃t<gγ̃i + ũi,t<g

]
| Gi = g

]
= E

[
f̃ ′
tγ̃i + f̃ ′

t(F̃
′
t<gF̃t<g)

−1F̃ ′
t<gũi,t<g | Gi = g

]
= E [ỹit(∞) | Gi = g]

The second equality hold by Assumption 2 and the fact that yi,t<g = yi,t<g(0). The
final equality holds by Lemma 2.1 and Assumption 2.

□

Proof of Lemma 2.3

Let A∗ be the p × p rotation that generates the Ahn et al. (2013) normalization for
F̃ . Note that both inverses in the permutation matrix definition exist for every g

because Rank(F̃ (θ)) = Rank(F̃ ). Since

FA∗ =

F̃t<gA
∗

F̃t≥gA
∗

 =

F̃ (θ)t<g

F̃ (θ)t≥g


we have

P (F̃t≥g, F̃t<g) = F̃t≥g(F̃
′
t<gF̃t<g)

−1F̃ ′
t<g

= F̃t≥gA
∗(A∗′F̃ ′

t<gF̃t<gA
∗)−1A∗′F̃ ′

t<g

= F̃ (θ)t≥g(F̃ (θ)′t<gF̃ (θ)t<g)
−1F̃ (θ)′t<g

= P (F̃ (θ)t≥g, F̃ (θ)t<g)

□
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Proof of Theorem 3.1

Asymptotic normality is a consequence of well-known large sample GMM theory.
See, for example, Hansen (1982).

The onlyworkweneed to do is derive the asymptotic variances.Note that gi∞(θ)⊗

gig(θ, τg) = 0 (from the Dig terms) and gih(θ, τh)⊗ gik(θ, τk) = 0 almost surely uni-
formly over the parameter space for all g ∈ G and h ̸= k. The covariance matrix of
these moment functions, which we denote as∆, is a block diagonal matrix.

∆ =



E [gi∞(θ)gi∞(θ)′] 0 0 . . . 0

0 E [gigG(θ, τgG)gigG(θ, τgG)
′] 0 . . . 0

... . . .
0 0 0 . . . E [gig1(θ, τg1)gig1(θ, τ )

′]


We write the individual blocks as∆g for g ∈ G ∪ {∞}. The gradient is also simple to
compute because all of the moments are linear in the treatment effects. We define
the overall gradient D and show it is a lower triangular matrix which we write in
terms of its constituent blocks:

D =



E [∇θgi∞(θ)] 0 0 . . . 0

E [∇θgigG(θ, τgG)] −IT−gG+1 0 . . . 0

... . . .
E [∇θgig1(θ, τg1)] 0 0 . . . −IT−g1+1


where we write the blocks in the first column as Dg for g ∈ G ∪ {∞}. The diagonal
is made up of negative identity matrices because E

[
Digh

P(Digh
=1)

]
= 1.

Given we use the optimal weight matrix, the overall asymptotic variance is given
by (D′∆−1D)−1. ∆ is a block diagonal matrix so its inverse is trivial to compute.
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First, we have

∆−1D =



∆−1
∞ D∞ 0 . . . 0

∆−1
gG
DgG −∆−1

gG
. . . 0

... . . .
∆−1

g1
Dg1 0 . . . −∆−1

g1


The transpose of the gradient matrix is

D′ =



D′
∞ D′

gG
. . . D′

g1

0 −IT−gG+1 . . . 0

... . . .
0 0 . . . −IT−g1+1


so that we get

D′∆−1D =



∑
g∈G∪{∞}D

′
g∆

−1
g Dg −D′

gG
∆−1

gG
. . . −D′

g1
∆−1

gG

−∆−1
gG
DgG ∆−1

gG
. . . 0

... . . .
−∆−1

g1
Dg1 0 . . . ∆−1

g1


We write this matrix as A B

C D


where A =

∑
g∈G∪{∞}D

′
g∆

−1
g Dg and D = diag{∆−1

g }g∈G . We then apply Exercise
5.16 of Abadir and Magnus (2005) to get the final inverse. The top left corner of the

35



inverse is F−1 where
(F )−1 = (A−BD−1C)−1

=

 ∑
g∈G∪{∞}

D′
g∆

−1
g Dg −

(∑
g∈G

D′
g∆

−1
g Dg

)−1

= (D′
∞∆−1

∞ D∞)−1

= Avar(√N(θ̂ − θ))

The rest of the first column of matrices takes the form

−D−1CF−1 =


DgG...
Dg1

 (D′
∞∆−1

∞ D∞)−1

=


DgG(D

′
∞∆−1

∞ D∞)−1

...
Dg1(D

′
∞∆−1

∞ D∞)−1


and the rest of the first row is −F−1BD−1 = (−D−1B′F−1)′ = (−D−1CF−1)′.

Finally, the bottom-right block, which also gives the asymptotic covariance ma-
trix of the ATT estimators, is

D−1 +D−1CF−1BD−1 = D−1 +


DgG(D

′
∞∆−1

∞ D∞)−1D′
gG

. . . DgG(D
′
∞∆−1

∞ D∞)−1D′
g1. . .

Dg1(D
′
∞∆−1

∞ D∞)−1D′
gG

. . . Dg1(D
′
∞∆−1

∞ D∞)−1D′
g1


The g’th diagonal elements of the resulting matrix is∆g +Dg(D

′
∞∆−1

∞ D∞)−1D′
g.

□
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