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Abstract: In the case of panel data, we propose a simple time-series transformation that

can be combined with various treatment effect estimators, including regression adjustment,

matching methods, and doubly robust estimators. The approach is motivated by the fact that,

in the common timing case, our transformation, when applied with linear regression

adjustment, numerically reproduces the pooled OLS estimator in Wooldridge (2021). In the

general staggered case, the transformation is at the unit level, and simply requires computing

the average outcome prior to an intervention, subtracting it from a post-treatment outcome,

and then carefully selecting the control units in each time period. We show formally that,

allowing for staggered entry under no anticipation and parallel trends assumptions, the cohort

treatment indicators satisfy the key unconfoundedness assumption with respect to the

transformed potential outcome. Given identification, any number of treatment effect estimators

can be applied for each treated cohort and calendar time pair where the average treatment

effects on the treated are identified. In effect, we establish the consistency of intuitively

appealing rolling methods. The doubly robust method of combining inverse probability

weighting with linear regression works particularly well in terms of bias and efficiency. Long

differencing methods, such as those proposed by Callaway and Sant’Anna (2021), can be

considerably less efficient. We also show how to modify the transformation to account for

unit-specific trends.

Keywords: Difference-in-differences; panel data; parallel trends, doubly robust estimators;

heterogenous trends
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1. Introduction

The two-way fixed effects (TWFE) estimator, applied to a linear panel model with a

constant treatment effect, has been commonly applied in difference-in-differences settings. The

TWFE estimator of a single effect is simple to understand and is taught in courses that cover

panel data methods. Recently, several authors have pointed out shortcomings of the constant

effect model, especially when the intervention is staggered. These include Borusyak and

Jaravel (2018), de Chaisemartin and D’Haultfoeuille (2020), and Goodman-Bacon (2021), who

establish different representations of the simple TWFE estimator when the treatment effects

(TEs) are heterogeneous across treatment cohort or calendar time and the intervention is

staggered.

Other authors have proposed more flexible estimation methods that uncover average

treatment effects on the treated in the staggered intervention case. These include Callaway and

Sant’Anna (2021) [CS (2021)], who propose long-differencing strategies and apply standard

treatment effect estimators. Sun and Abraham (2021) [SA (2021)] propose a fixed effects

estimator applied to a more flexible model. Both SA (2021) and CA (2021) are

event-study-type estimators that use only the single period prior to the first intervention time

as the control period. Wooldridge (2021) shows that a pooled OLS (POLS) strategy that

includes cohort and calendar time interactions, as well as interactions of cohort dummies, time

period dummies, and the treatment indicators with covariates, identifies the ATTs under

standard no anticipation and parallel trends assumptions. These estimators effectively use all

pre-treatment periods and all not-yet-treated units in the control group. Wooldridge (2021) also

shows the POLS is equivalent to a TWFE estimator on an expanded equation that includes

interactions of cohort and time dummies with each other and with covariates. Borusyak,

Jaravel, and Spiess (2022) propose imputation estimators based on pooled OLS regressions

that can include unit and time fixed effects. Wooldridge (2021) shows that, with time constant
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covariates, the imputation estimates are identical to POLS (and therefore TWFE) estimation of

the flexible model using the entire sample.

An attractive feature of the CS (2021) approach, which builds on Abadie (2005) for the

two-period case, is that it permits the application of treatment effects estimators beyond

regression adjustment. However, as mentioned above, the CS (2021) method uses only the

period just prior to the intervention in defining the control group, thereby discarding

potentially useful information in earlier time periods. In fact, Wooldridge (2021) shows that,

under the standard “error components” structure on the error, with a homoskedastic

time-constant component and homoskedastic and serially uncorrelated idiosyncratic errors, the

POLS estimator is both best linear unbiased (BLUE) and asymptotically efficient. These

theoretical results imply that the CS (2021) estimators are inefficient under a standard set of

assumptions. The simulations in Wooldridge (2021) bear this out, showing the CS approach

can be very inefficient. Balanced against the loss in precision is that the CS approach can be

less biased when parallel trends are violated. See de Chaisemartin and D’Haultfoeuille (2023)

and Wooldridge (2021) for further discussion.

In this paper, we propose an alternative “rolling” approach that allows for the application

of many different treatment effects estimators while maintaining much of the efficiency of

regression-based methods. The idea is to use as many control observations as possible – in

both the common timing and staggered cases – while permitting methods such as inverse

probability weighting (IPW), doubly robust methods such as the one in Wooldridge (2007) that

combines regression and IPW (IPWRA), and matching on covariates or the propensity score.

Like CS (2021) in the panel data case, our approach is based on time series transformations at

the unit level. Rather than using long differences, we show how to use all suitable control

observations in transforming the outcome variable. This leads to significant improvements in

efficiency compared with CS (2021) and allows one substantial flexibility in the choice of
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treatment effects estimators.

In the case of common timing – so that there is one average treatment effect per

post-treatment period – we show that applying regression adjustment to our transformed

outcome variable is equivalent to the regression adjustment estimator based on levels. As

mentioned above, Wooldridge (2021) shows that this estimator is both BLUE and

asymptotically efficient under standard assumptions. This provides strong motivation for

applying estimators other than regression adjustment to the transformed variables in order to

check robustness of findings. In the case of staggered entry, our approach identifies the

average treatment effects on the treated (ATTs) by cohort and calendar time under the same

no anticipation and parallel trends assumptions as in Wooldridge (2021). We show this in both

the case of common timing and staggered interventions. Once identification is established,

various estimation methods can be applied.

The remainder of the paper is organized as follows. Section 2 begins with the common

timing case, defining the potential outcomes and parameters of interest, and establishing

identification under no anticipation, conditional parallel trends, and overlap assumptions. In

Section 3 we propose a general approach to estimation using a transformed outcome variable.

We also show that regression adjustment applied to the new transformation is identical to

pooled OLS estimator in Wooldridge (2021).

In Section 4 we extend the framework and identification argument to the staggered case,

where there is more than one treatment cohort and each cohort may be treated in multiple

periods. The transformation is applied by cohort, time period pair before applying standard

treatment effect estimators. In Section 5, we show how we can account for heterogeneous

trends, focusing on linear trends, to allow violation of the parallel trends assumption (even

after we condition on covariates). Section 6 discusses how one might accommodate suspected

failures of no anticipation, and how one modifies the procedure for unbalanced panels.
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Section 7 contains simulations to show that the new approach works well in terms of both

bias and precision. Section 8 contains some concluding remarks

2. Setup and Identification in the Common Timing Case

In this section we assume that the date of the intervention is the same for all treated units

and then the intervention is in place through the final period. The time periods in the

population are t  1, 2, . . . , T and the date of the intervention is S, where 1  S  T; in other

words, there is at least one pre-treatment period. The arguments in this section are based on

an underlying population, and so we use Y t0,Y t1 : t  1, . . . ,T to denote the time

series of outcomes in the control and treated states.

The binary time-constant treatment indicator is D, where D  1 means treatment starting

in period S and lasting through period T. A time-varying treatment indicator is Wt  D  pt,

where pt is a post-treatment period indicator: pt  1 if t  S and equals zero of t  S.

Without treated units prior to time S we can, at most, hope to identify average treatment

effects in periods S, S  1, ..., T. Our focus here, like almost all of the other recent literature,

is on the average treatment effect on the treated (ATT or ATET) in each treated period:

r  EYr1  Yr0|D  1, r  S, . . . ,T     (2.1)

The methods we propose can, under stronger assumptions than we propose, recover the overall

average treatment effects (ATEs), EYr1  Yr0, and we will mention how that can be

done.

The fundamental problem of identification of r is that we only observe the treatment

status, D, and the outcome

Yr  1  D  Yr0  D  Yr1     (2.2)

(Shortly we will introduce a vector of covariates). Importantly, when D  1, Yr  Yr1,

which means
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EYr1|D  1  EYr|D  1, r  S, . . . ,T     (2.3)

The expectation EYr|D  1 can be estimated in a consistent,even unbiased, way under

various sampling schemes. Under random sampling, the average of Yr across the treated

subsample is unbiased and consistent. Therefore, writing

r  EYr1|D  1  EYr0|D  1  EYr|D  1  EYr0|D  1,

it is easily seen that the challenge is in identifying EYr0|D  1.

If the treatment is randomly assigned with respect to Yr0, then EYr0|D  1

 EYr0|D  0. Because Yr  Yr0 when D  0, EYr0|D  0  EYr|D  0 is

consistently estimated using the control units under various sampling schemes. Under random

sampling, one would use the sample average of Yr across the control units. The resulting

estimator of r would be the simple difference in sample means between the treated and

control units in period r.

The assumption of random assignment is too strong for most applications. To see how to

relax it, use simple algebra to write

Yr1  Yr0  Yr1  1
S  1 

q1

S1

Yq1  Yr0  1
S  1 

q1

S1

Yq0

 1
S  1 

q1

S1

Yq1  Yq0

 Y r1  Y r0  1
S  1 

q1

S1

Yq1  Yq0     (2.4)

where

Y r1  Yr1  1
S  1 

q1

S1

Yq1     (2.5)

and similarly for Y r0. Note that for each r  S, S  1, . . . ,T, Y r1 is the time r potential

outcome with the average of the pre-treatment period outcomes removed. The third term is the

average of the difference of the pre-treatment period “treatment” effects.
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Given the representation in (2.4), we can write

r  EY r1|D  1  EY r0|D  1  1
S  1 

q1

S1

EYq1  Yq0|D  1     (2.6)

The first assumption, a weak version of “no anticipation,” eliminates the third term in (2.6).

Assumption NAC (No Anticipation, Common Timing): For the eventually treated

indicator D,

EY t1  Y t0|D  1  0 , t  1, . . . , S  1.      (2.7)

The name of this assumption derives from the fact that EY t1  Y t0|D  1 for t  S are

average treatment effects on the treated prior to the intervention, and the assumption is that

these are all zero. Assumption NAC is implied by an assumption commonly used in the

literature, namely, Y t1  Y t0, t  1, . . . , S  1. This assumption is implicit in Heckman,

Ichimura, and Todd (1997) and made explicit in Abadie (2005) and elsewhere. Because the

variable indexing Y t is treatment status not yet assigned, the assumption rules out

anticipatory changes in the potential outcomes, on average. If one is concerned about

anticipation of a policy that is announced prior to its being implemented, one might drop a

period or two just prior to the intervention – as a minimum, as a robustness check. Naturally,

this will result in less precise estimators in general.

Given Assumption NAC, we can express r as

r  EY r1|D  1  EY r0|D  1.     (2.8)

Estimating the first term in (2.8) is easy because we observe Y r1 when D  1. More

precisely, define the same transformation in the observed variable Yr:

Y r  Yr  1
S  1 

q1

S1

Yq  Yr  Y pre     (2.9)

When D  1, Y r  Y r1 and so EY r1|D  1  EY r|D  1 and the latter is trivially

identified (as usual, under a suitable sampling scheme). Notice in the simple T  2 case with
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S  1, Y 2  Y2  Y1, the difference from period one to two.

The difficult term in identifying r is EY r0|D  1. The unconditional parallel trends

assumption implies that EY r0|D  1  EY r0|D  0. Here we allow a weaker version

of parallel trends by assuming it holds conditional on observed (pre-treatment) covariates.

Assumption CPTC (Conditional Parallel Trends, Common Timing): For observed

covariates X,

EY t0  Y10|D,X  EY t0  Y10|X, t  2, . . . ,T.      (2.10)

Simple algebra shows that (2.10) is the same as assuming EY t0  Ys0|D,X

 EY t0  Ys0|X for all t  s. Wooldridge (2021) used very similar assumptions, along

with linearity of conditional means, to derive identification of the r. Here we are interested in

applying methods other than regression adjustment to the transformed outcomes in (2.8).

Assumption CPTC allows us to identify EY r0|D  1. To see how, first note that, by

iterated expectations,

EY r0|D  1  EEY r0|D  1,X|D  1     (2.11)

Next, write

Y r0  S  11
q1

S1

Yr0  Yq0

Then, by CPTC,

EY r0|D  1,X  S  11
q1

S1

EYr0  Yq0|D  1,X

 S  11
q1

S1

EYr0  Yq0|D  0,X

 E Yr0  S  11
q1

S1

Yq0 D  0,X

 EY r0|D  0,X     (2.12)

The conclusion in equation (2.12) is simple but important. It says that, in terms of the
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potential outcome Y r0, treatment D is unconfounded conditional on X. Assumption NA

ensures that the ATTs can be expressed as in (2.8). This means that, for a post-intervention

period r, we have turned the difference-in-differences problem into a standard problem of

estimating an ATT in a cross-sectional population.

Using the fact that Yq  Yq0 when D  0, (2.12) implies that,

EY r0|D  1,X  EY r|D  0,X

Now the argument is the same as in the typical cross section setting: By iterated expectations,

EY r0|D  1  EEY r|D  0,X|D  1

 Em 0rX|D  1,     (2.13)

where m 0rX  EY r|D  0,X  x is the conditional mean of the observed variable Y r for

the control group. This function is nonparametrically identified on SuppX|D  0, the

support of the covariates for the control group. To ensure we can compute Em 0rX|D  1

without extrapolation to covariate values outside SuppX|D  0, we impose a standard

overlap assumption.

Assumption OVLC (Overlap, Common Timing): Define the propensity score

px  PD  1|X  x, x  SuppX.     (2.14)

Then

px  1, x  SuppX.      (2.15)

The previous derivations and discussion prove the following.

Theorem 2.1: Under Assumption NAC, r can be expressed as in (2.8) for r  S, . . . ,T.

Under Assumption CPTC, D is unconfounded (in the conditional mean sense) with respect to

Y r0 conditional on X. When we add Assumption OVLC, the parameters r, r  S, . . . ,T, are

identified. 
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3. Estimation in the Common Timing Case

Given the identification result stated in Theorem 2.1, the estimation of the r is

straightforward. We can apply any estimation method once the outcome variable has been

transformed as in equation (2.9). Essentially, this is the conclusion reached in Sant’Anna and

Zhou (2020) in the T  2 case. Earlier, Abadie (2005) proposed inverse probability weighting

when T  2.

For simplicity, assume in this section we observe a random sample of size N from the

cross section. The observed outcome can be expressed as

Y it  1  Di  Y it0  Di  Y it1     (3.1)

where we use an i subscript to denote unit i. Under the strong form of no anticipation,

Y it1  Y it0 for t  S and all i. Given the derivations in the previous section, we only

need Assumption NAC. For each i, we observe the time series Y it,Di,Xi : i  1, 2, . . .N.

To exploit the unconfoundedness and identification in Theorem 2.1, we simply need to obtain

the transformed data. For each unit i, define

Y ir  Y ir  1
S  1 

q1

S1

Y iq  Y ir  Y i,pre     (3.2)

Then, for any r  S, S  1, . . . ,T, we can apply any standard treatment effect (TE)

estimator to the data Y ir,Di,Xi : i  1, 2, . . .N.

A common TE estimator is called “regression adjustment,” which means estimating

separate regression functions for the control and treated units. Because Y ir can take on

negative and positive values, linear regression adjustment (RA) makes the most sense. Linear

RA is based on the conditional mean, stated in terms of population random variables,

EY r|D  0,X   r  X r     (3.3)

The parameters  r and  r are estimated from the cross-sectional regression
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Y ir on 1, Xi if Di  0     (3.4)

Then, r can be estimated using imputation:

 r  Y r1  N1
1

i1

N

Di

 r  Xi


 r  Y r1 


 r  X 1


 r     (3.5)

where Y r1  N1
1i1

N DiY ir and X 1  N1
1i1

N DiXi are the averages over the treated units.

From a practical perspective, the important thing to remember is that  r can be obtained from

standard software that does basic regression adjustment once the Y ir have been obtained.

As discussed in Wooldridge (2021),  r also can be obtained as the coefficient on Di in the

pooled OLS regression

Y ir on 1, Di, Xi, Di  Xi  X 1, i  1, 2, . . . ,N,     (3.6)

which uses all observations in time period r. This formulation is convenient because it leads to

simple inference for  r, allowing easy computation of standard errors robust to any kind of

heteroskedasticity. Also, it is often easy to account for the sampling variation in X 1 as an

estimator of 1  EX|D  1. Issues of clustering standard errors are relatively easy to deal

with given we have a standard cross-sectional regression.

Because of the representation of Y ir in (3.2), there is a simple characterization of  r. All of

the coefficients in (3.6) are obtained by differencing the coefficients from two separate

regressions. In the first, Y ir is regressed on all variables in (3.6). Then Y i,pre is regressed on the

same set of variables, and these coefficients are subtracted from the first. In particular,  r is

obtained as the difference between two standard ATT estimators using regression adjustment.

The first uses observations in period r only, and the second uses the average of Y iq over the

pre-treatment periods. Without covariates, the estimator would be

 r  Y 1r  Y 0r  Y 1,pre  Y 0,pre     (3.7)

where the first subscript indicates treatment or control units. This has a clear interpretation as
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a DiD estimator.

Recognizing that an estimator can be obtained from (3.6) has additional benefits. For

example, if Di is independent of Y ir0, then the covariates Xi need not be included in (3.6) in

order to consistently estimate r as the coefficient on Di. Remember, this allows Di to be

correlated with, the level, say, Y10, the potential outcome in the first time period. If, in

addition, Di is independent of Xi, the regression in (3.6) still can be used to improve

efficiency over the simple estimator without the covariates. As discussed in Negi and

Wooldridge (2021), such improvements are possible if Xi helps predict Y ir. In many cases, Xi

may not have much predictive power for Y ir even though it might predict the level, Y ir, well.

A special case is T  2, in which case (3.6) is simply Y i on 1, Di, Xi, Di  Xi  X 1,

i  1, 2, . . . ,N where Y i  Y i2  Y i1. In the T  2 case, whether including Xi substantively

helps precision when Di is independent of Xi hinges on how well Xi predicts the difference,

Y i.

It turns out there is another useful algebraic equivalence. Suppose we act as if the

following conditional expectation holds for all population units and time periods:

EY t|D,X    X  D  D  X 
r2

T

rfrt 
r2

T

frt  Xr


rS

T

rD  frt 
rS

T

D  frtX  1r, t  1, . . . ,T,     (3.8)

where frt is a time period dummy equal to one if r  t and zero otherwise. The interaction

D  frt is the treatment indicator for time period r. Equation (3.6) suggests a pooled OLS

regression across all i and t:

Y it on 1, Xi, Di, Di  Xi, f2t, ..., fTt, f2t  Xi, ..., fTt  Xi

Di  fS t, ..., Di  fTt, Di  fS t  Xi  X 1, ..., Di  fTt  Xi  X 1     (3.9)

The estimated treatment effects, say  r, are the coefficients on the treatment dummies Di  fS t,

..., Di  fTt. Wooldridge (2021) shows that the  r are numerically identical to a two-stage
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imputation approach based on the levels, Y it. It turns out that the  r are also equivalent to the

 r obtained by using the transformed outcome variable, Y ir, one period at a time.

Theorem 3.1: Let  r, r  S, S  1, . . . , T be the coefficients on Di in the separate

regressions (3.6) – equivalently, from equation (3.5) – and let  r be the coefficients on

Di  fS t, ..., Di  fTt from (3.9). Then  r   r, r  S, . . . ,T. Moreover, the coefficient vector

on Di  frt  Xi  X 1 in (3.9) is identical to that on Di  Xi  X 1 in (3.6). 

The proof of Theorem 3.1 is given in the appendix. The equivalence is valuable for a

couple of reasons. First, it shows that two different ways to approach identification under the

same set of assumptions – that in Wooldridge (2021) and the approach we use here – leads to

the same estimation methods. Second, Wooldridge (2021, Theorem 6.2) shows that, under

standard assumptions on the implied error term (which includes a unit-specific unobserved

effect and a time-varying component), the estimators from (3.9) are both best linear unbiased

and asymptotically efficient (with T fixed, N  ) under random sampling across i. This

establishes that the transformation used in (3.6) does not discard useful information.

Given the equivalence of our transformation approach and the OLS estimator pooled

across i and t, what use is the former? Importantly, it allows us to use other treatment effects

estimators beyond regression adjustment. For example, we can apply IPW or, even better,

IPWRA, using the cross-sectional data Y ir,Di,Xi : i  1, 2, . . .N. We can also apply

propensity score matching or nearest neighbor matching.

Procedure 3.1 (Rolling Methods, Common Timing):

1. For a given time period r  S, S  1, . . . ,T and each unit i, compute Y ir as in (3.2).

2. Using all of the units, apply standard TE methods – such as linear RA, IPW, IPWRA,

matching – to the cross section

Y ir,Di,Xi : i  1, . . . ,N. 

Inference on a single r is simple when one uses built-in commands in step (2) of
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Procedure 3.1. Joint inference on multiple r is trickier because the estimators are not

independent. For estimators such as IPW and IPWRA using parametric models, a general

approach is to stack all moment conditions used in estimation and use the formulas from

just-identified generalized method of moments estimation. Applying the panel bootstrap –

resampling all time periods from the cross-sectional units – is valid for IPW and IPWRA, and

should be computationally feasible in most cases.

It is instructive to compare the transformation in equation (3.2) to that in Callaway and

Sant’Anna (2021). In the common timing case, the CS transformation, for r  S, is

Y ir  Y ir  Y i,S1,     (3.10)

so that Y ir is a “long” difference. (If r  S then Y iS  Y iS  Y i,S1, which is differencing

adjacent periods.) The CS transformation is generally inefficient compared with (3.2) because

the CS (2021) differencing ignores time periods other than the one just prior to the

intervention. When T  2, the transformation is Y 2  Y 2  Y2  Y2  Y1. Thus, our

approach encompasses and extends Abadie (2005) and Sant’Anna and Zhou (2020) in the

panel data case.

4. Staggered Interventions

4.1. Some Units Never Treated

We now turn to the staggered intervention case. As in Athey and Imbens (2022) and

Wooldridge (2021, 2023), the potential outcomes are denoted

Y tg, g  S, . . . ,T,, t  1, 2, . . . , T,     (4.1)

where g indicates the first time subjected to the intervention – defining the treatment group

cohorts – and t is calendar time. The case g   indicates the potential outcome in the never

treated state. In other words, Y t is the potential outcome at time t when a unit is not

subjected to the intervention over the observed stretch of time. Listing potential outcomes that

vary only by cohort and calendar time reflects the assumption of no reversibility with
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staggered entry.

We denote the group or cohort indicators by DS,DS1, . . . ,DT,D, where D  1

indicates never treated. These dummy variables are mutually exclusive and exhaustive:

DS    DT  D  1.

The ATTs of interest are now written as

gr  EYrg  Yr|Dg  1, r  g, . . . ,T; g  S, . . . ,T     (4.2)

For each (eventually) treated cohort g, gr, r  g, . . . ,T are the ATTs in all subsequent time

periods.

To identify the gr, we extend the trick for the common timing case by writing

Y tg  Y t  Y tg  1
g  1 

s1

g1

Ysg

 Y t  1
g  1 

s1

g1

Ys

 1
g  1 

s1

g1

Ysg  Ys

    (4.3)

As in the common timing case, we make a no anticipation assumption so that the third term

can be dropped and that effectively allows using all available control units in each treated

period. Here we condition on the covariates so that we can use not-yet-treated units as part of

the control group.

Assumption CNAS (Conditional No Anticipation, Staggered): For g  S, . . . ,T,

t  1, . . . , g  1 and covariates X,

EY tg|Dg  1,X  EY t|Dg  1,X.      (4.4)

As in the common timing case, this assumption means that the “treatment” effects prior to the

intervention are all zero. Because s  g in the third sum, it follows that the expected value of

the last term conditional on Dg  1 is zero. Therefore,

gr  EY rgg|Dg  1  EY rg|Dg  1     (4.5)
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where Y rgg and Y rg are defined as the first and second terms in (4.3), respectively. Note

that the first subscript on Y rgg and Y rg means that we are averaging all periods just prior

to g and subtracting from the outcome in the current current calendar time period r.

As before, the first term in equation (4.3) is easily estimated because we observe Y rgg

when Dg  1. A parallel trends assumption, stated in terms of the never treated state, is

sufficient to identify EY rg|Dg  1. We state an assumption conditional on a set of

covariates, X, with no covariates as a special case.

Assumption CPTS (Conditional PT, Staggered): For D  DS, . . . ,DT and

t  1, 2, . . . , T,

EY t  Y1|D,X  EY t  Y1|X, t  2, . . . ,T.      (4.6)

This assumption is used in Wooldridge (2021). Again, it is unconfoundedness of the treatment

level, as given by D, with respect to the trend in the untreated state, Y t  Y1.

Wooldridge (2021) used this assumption, along with linearity of conditional means, to derive

an imputation estimator and showed it was the same as a pooled OLS and TWFE estimator.

Here we show how it can be used to identify the gr very generally.

With Y rg defined above,

EY rg|Dg  1,X  1
g  1 

s1

g1

EYr  Ys|Dg  1,X

 1
g  1 

s1

g1

EYr  Ys|D  1,X

 EY rg|D  1,X

    (4.7)

where the second equality follows from CPTS and the third follows by taking the expectation

outside the summation.

We have shown the following.

Theorem 4.1: Under Assumption CNAS, equation (4.5) holds. If we add Assumption

CPTS, the cohort assignments, D  DS,DS1, . . . ,DT are unconfounded with respect to
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Y rg (in the conditional mean sense), g  S, . . . ,T, r  g, . . . ,T, conditional on X. 

Because the vector of cohort indicators is unconfounded with respect to Y rg, Theorem

4.1 implies

EY rg|D  1,X  EY rg|Dh  1,X, h  S, . . . ,T     (4.8)

We can combine this implication of CPTS with Assumption CNAS because, at time r, cohorts

h  r  1, . . . ,T have yet to be treated. Therefore,

EY rg|Dh  1,X  EY rgh|Dh  1,X, h  r  1, . . . ,T     (4.9)

Combined, (4.8) and (4.9) mean that, in addition to the never treated (NT) group, we can use

treatment cohorts h  r  1, . . . ,T in estimating EY rg|D  1,X. Incidentally, this

derivation shows that if we only use the NT group as the control for each g, r pair then we

can drop the conditioning on X in Assumption CNAS. Later we discuss what can be identified

in period T without a NT group (under CNAS).

We have established the following. For estimating EY rg|Dg  1,X for

r  g, g  1, . . . ,T we can use cohorts r  1, . . . ,T, as the control group. Define the

indicator for the control group as

Ar1  Dr1  Dr2    DT  D     (4.10)

Then, within the subpopulation Dg  Ar1  1, Dg is unconfounded with respect to Y rg,

conditional on X. Therefore, we can apply standard treatment effect estimators after

transforming the observed outcome and conditioning on the subpopulation.

Naturally, we will need an overlap assumption in order to ensure identification when using

methods that condition on covariates. For gr and using all legitimate control groups under

CNAS and CPTS, the overlap assumption is

Assumption OVLS (Overlap, Staggered Case): For cohorts g  S, S  1, . . . ,T and

time periods r  g, g  1, . . . ,T,
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PDg  1|Dg  Ar1  1,X  x  1 for all x  SuppX.      (4.11)

This condition ensures that, within the subpopulation of cohort g plus the never treated and

not-yet-treated units at time r, every treated unit has a comparable control unit.

Given data on units again indexed by i, the following simple steps lead to a general

analysis. Assumptions CNAS, CPTS, and the overlap assumption are in force.

Procedure 4.1 (Rolling Methods, Staggered Interventions):

1. For a given g  S, . . . ,T and time period r  g, g  1, . . . ,T, compute

Y irg  Y ir  1
g  1 

s1

g1

Y is  Y ir  Y i,preg     (4.12)

2. Choose as the control group the units with Di,r1  Di,r2    DiT  Di  1 (or, if

desired, a subset, such as only the NT group).

3. Using the subset of data with

Dig  Di,r1  Di,r2    DiT  Di  1,     (4.13)

apply standard TE methods – such as linear RA, IPW, IPWRA, matching – to the cross

section

Y irg,Dig,Xi : i  1, . . . ,N,

with Dig acting as the treatment indicator. 

Interestingly, when r  g, so that gg is the instantaneous effect of the intervention for

treatment cohort g, applying linear RA to

Y igg,Dig,Xi : i  1, . . . ,N,

with all possible control units, reproduces the POLS estimator proposed by Wooldridge

(2021); verification requires a modification of the proof of Theorem 3.1 in the appendix.

When r  g this is not the case, which means, under standard assumptions, the rolling

approach we propose is inefficient for the dynamic effects. The tradeoff is that we are able to
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apply many different kind of estimators, including doubly robust and matching estimators.

Procedure 4.1 can be compared with the Callaway and Sant’Anna (2021) approach with

staggered interventions. CS (2021) suggest using a long difference of the form

Y irg  Y ir  Y i,g1     (4.14)

and then choosing control groups from cohorts r  1, . . . ,T,. The transformation in (4.14)

is inefficient because it ignores the control periods prior to g  1. Also, the default

implementation in commonly used software (R and Stata) is to use only the never treated

group as controls.

Implementing Procedure 4.1 is straightforward because it simply requires obtaining Y irg

and then applying standard treatment effect software. Standard errors are easily obtained.

4.2. All Units Eventually Treated

As in Wooldridge (2021, 2023), we can handle situations where all units are treated by

t  T by simply modifying the parallel trends assumptions and changing the specifics of the

estimation. Rather than stating the CPT assumption in terms of the NT state, Y t, it is stated

in terms of Y tT, the state of not being treated until the final time period. Now all of the

treatment effects are, initially, defined relative to Y tT: EYrg  YrT|Dg  1,

g  S, . . . ,T  1, r  g, . . . ,T. We can no longer estimate a treatment effect for the final

treated cohort because there are no control units. As discussed in Wooldridge (2021), by no

anticipation it follows that for r  T, EYrg  YrT|Dg  1  EYrg  Yr|Dg  1

and so, except for the final time period, the ATTs are interpreted as when we have a never

treated group.

In terms of estimation, the modifications to Procedure 4.1 are straightforward. In

particular, Y irg is computed as in (4.12) but only for g  S, . . . ,T  1. In steps (2) and (3),

we drop Di everywhere – which means still choosing as the control group for cohort g in

period r those units not yet treated. Then, for each g  S, . . . ,T  1 and for each period
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r  g, . . . ,T, we apply standard treatment effect estimators, as before. When r  T,

DT  1 acts as the only control group for all cohorts first treated prior to period T.

5. Heterogeneous Trends

One way to test for violation of the PT assumption is to estimate placebo treatment effects

prior to the intervention. Callaway and Sant’Anna (2021) take this approach using their

differencing method. Here, we can apply Procedure 3.1 or 4.1 to pre-treatment periods and test

for effects prior to the intervention. For cohort g, it makes sense to split pre-treatment periods,

1, 2, . . . , g  1, into roughly equal sizes. Then, the never treated group, or any of the groups

not yet treated in 1, 2, . . . , g  1 can be used as the controls. Under the null hypothesis of

(conditional) PT, the tests should not find a “treatment” effect.

As motivation for adjusting Procedure 4.1 (with common timing being a special case) to

allow for heterogeneous trends, express the conditional PT assumption as

EY t|D,X  qX 
gS

T

DgqgX  mtX, t  1, . . . ,T,     (5.1)

where qg and mt are functions of the covariates, with the first not changing across time

and the second not depending on the treatment cohort. As a normalization, m1x  0 for all

x  SuppX. It is easily seen that

EY t  Y1|D,X  mtX, t  2, . . . ,T,

which does not depend on D. Moreover, for r  g, it follows from the definition of Y rg

that

EY rg|D  1,X  mrX  1
g  1 

s1

g1

msX  m rgX     (5.2)

and so m rg is the conditional mean function implicit in the methods from Section 4 that use

a conditional mean specification (RA IPW or IPWRA). Because m rg can take on positive

and negative values, we essentially assumed in regression-based methods that m rg can be
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approximated by a function linear in parameters (allowing controls to appear flexibly, as

usual).

The representation in (5.1) suggests a way to relax parallel trends for cohorts where we

have at least two pre-treatment time periods. We replace (5.1) with the following assumption.

Assumption CHT (Conditional Heterogeneous Trends): For D  DS, . . . ,DT and

t  1, 2, . . . , T,

EY t|D,X  SDS  t    TDT  t  qX 
gS

T

DgqgX  mtX.      (5.3)

Assumption CHT allows a separate linear trend in the never treated state for each

treatment cohort. It is easy to see that

EY t  Y t1|D,X  gDg    TDT  mtX  mt1X     (5.4)

and so PT, even conditional on X, fails. Because the trend in the never treated state is

systematically related to cohort, the estimation approaches in Sections 3 and 4 are no longer

valid.

Instead, we can use a linearly detrending, unit by unit, to remove the relationship between

Y t and cohort assignment. For any i, we can write

Y it  hDi,Xi  Di  t    mtXi  Uit

EUit|Di,Xi   0,

    (5.5)

where hDi,Xi does not vary across t. For any t  2, we can eliminate both

hDi,Xi  Di  t   using unit-specific linear detrending.

Equation (5.5) is an example of a heterogenous (or random) trend model of the kind

discussed in Wooldridge (2010, Section 11.7.2). Now, for a cohort g, where we require g  3

so there are at least two pre-treatment periods. Define the g  1  2 matrix
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Jg1 

1 1

1 2

 

1 g  1

    (5.6)

and let Yi,g1 be the g  1  1 vector

Yi,g1  Y i1, . . . ,Y i,g1
;     (5.7)

A similar definition holds for Ui,g1. Also, let M i,g1 be the g  1  1 vector with

elements mtXi, t  1, . . . , g  1. Note that we can write

Yi,g1  Jg1
hDi,Xi

Di
 M i,g1  Ui,g1

 Jg1Q i  M i,g1  Ui,g1     (5.8)

Now regress Yi,g1 on Jg1, and obtain the coefficients,

B i,g1  Jg1
 Jg1

1
Jg1
 Yi,g1  Q i  Jg1

 Jg1
1
Jg1
 M i,g1  Ui,g1     (5.9)

For r  g, the detrend Y ir using the unit-specific linear trend up through period g  1 to

predict Y ir:

Y irg  1, rB i,g1     (5.10)

Use these predicted values to detrend Y ir:

Y irg  Y ir  Y irg  Y ir  1, rB i,g1  1, rQ i  mrXi  Uir

 1, r Q i  Jg1
 Jg1

1
Jg1
 M i,g1  Ui,g1

 mrXi  Uir  1, r Jg1
 Jg1

1
Jg1
 M i,g1  Ui,g1     (5.11)

The expression in (5.9) shows that Y ir does not depend on Di. In particular,

EY irg|Di,Xi   EY irg|Xi   mrXi  1, rJg1
 Jg1

1
Jg1
 M i,g1     (5.12)

This conclusion is practically important because it shows that the treatment cohort indicators,

Di, are unconfounded with respect to the detrended variable Y ir, conditional on Xi. Note

how this extends the argument in Section 4: instead of Jg1 having rows 1, t, its rows simply
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consisted of unity.

Now the modification to the arguments in Section 4 are now straightforward. In place of

(4.3) we have

Y irg  Y ir  Y irgg  Y irg  Y irgg  Y irg ,     (5.13)

where Y irgg  Y irg  Y irgg and Y irgg are the predicted values from (5.11) and (5.10)

but with Yi,g1g and Y irg in place of Yi,g1 and Y ir. Now take the expectation

conditional on Dg  1:

gr  EY irg  Y ir|Dig  1  EY irgg  Y irg|Dig  1

 E Y irgg  Y irg|Dig  1

    (5.14)

The second term in (5.14) is zero by no anticipation because Y irgg and Y irg are the same

linear functions of the potential outcomes in periods 1, 2, . . . , g  1. Therefore,

gr  EY irgg  Y irg|Dig  1     (5.15)

Now the argument is as in Section 4: Y irgg is observed when Dig  1 and Di is

unconfounded for Y irg given Xi. Moreover, by Assumption CNAS, cohorts with h  r

(including h  ) can be used as part of the control group. We have justified the following

procedure as producing consistent estimators of gr under Assumptions CNAS, CHT, and

OVLS.

Procedure 5.1 (Staggered Entry, Heterogeneous Linear Trends):

1. For a cohort g  S, . . . ,T, run the unit-specific regressions

Y it on 1, t, t  1, . . . , g  1     (5.16)

For r  g, . . . ,T, compute the out-of-sample predicted value Y irg and the prediction error

(detrended variable) Y irg  Y ir  Y irg.

2. Choose as the control group the units with Di,r1  Di,r2    DiT  Di  1 (or, if

desired, a subset, such as only the NT group).
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3. Using the subset of data with

Dig  Di,r1  Di,r2    DiT  Di  1,     (5.17)

apply standard TE methods – such as linear RA, IPW, IPWRA, matching – to the cross

section

Y irg,Dig,Xi : i  1, . . . ,N,

with Dig acting as the treatment indicator. 

Procedure 5.1 is very easy to implement, requiring just many unit-specific simple

regressions on a constant and linear time trend. The common timing case is especially easy

because the regression in (5.5) is done with g  S only and then the detrended outcomes Y ir

are used in standard treatment effect estimation for r  S, . . . ,T.

In the simplest case where Procedure 5.1 can be applied, with T  3 and common

intervention at S  3, and without covariates, the resulting estimator of 3 is

N1
1

i1

N

DiY i3  N0
1

i1

N

1  DiY i3     (5.18)

where Y i3 is obtained as the prediction error in period three after the regression Y it on 1, t,

t  1, 2. After a little algebra, (5.18) can be shown to equal

Y 13  Y 12  Y 03  Y 02  Y 12  Y 11  Y 02  Y 01,     (5.19)

where the first subscript on the average is one for treated and zero for control, and the second

subscript indicates time period. The first term in brackets is the usual two-period DiD

estimator if the first time period is ignored. The second term is an estimate of the difference

in trends prior to the intervention – often interpreted as estimating a placebo effect. The

estimator in (5.19) is an example of a difference-in-difference-in-differences estimator.

Procedure 5.1 allows one to control for covariates in case removing an estimate of the

pre-intervention difference in twins is still not deemed sufficient to uncover a causal effect.

Before ending this section, we head off a potential source of confusion. The fact that we
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are running unit-specific linear trend regressions in (5.16) does not mean there is an incidental

parameters problem that can cause inconsistency in the  gr when the number of time periods

is small. In fact, we are just using these regressions to eliminate unit-specific heterogeneity

that can be correlated with treatment cohorts. It is substantively the same as removing the

unit-specific pre-treatment means in Procedure 4.1. In fact, this kind of unit-specific

detrending is the same idea prevalent in the panel data literature with heterogeneous trends.

See, for example, Wooldridge (2010, Section 11.7.2).

6. Violation of No Anticipation. Unbalanced Panels

The no anticipation assumption requires that, prior to the first intervention period for a

given treatment cohort, the potential outcomes are the same (on average) as in the never

treated state. This assumption can fail if units know that a program or policy change is

approaching prior to its being actually implemented. If the NA assumption is in doubt, one

can leave one or more periods prior to the intervention time, and redo the analysis as a

robustness check.

As an example, suppose a cohort is first treated in g  5. In Procedure 4.1, one would

average over periods 1, 2, 3, 4 in obtaining the average to remove for Y i5 (or, one would

remove a unit-specific linear trend, as in Procedure 5.1). Instead, one might drop period four

altogether, or maybe even periods three and four. Any precise recommendation is context

specific. It is very easy to apply any of the procedures we have recommended to cases where

time periods are skipped.

Another issue that often arises in practice is unbalanced panels. With time-constant

controls, unbalancedness would typically arise because of missing data on Y it, possibly due to

attrition. If data are missing on Y it for some time periods for unit i, the demeaning or

detrending is simply applied to the observed data. The mechanics of the procedure are then

exactly the same. For treatment cohort g in period r, Y ir can only be used if there are enough
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observed data in the periods t  g to compute an average (one period) or a linear trend (two

periods). Of course, Y ir must also be observed.

It is natural to wonder when ignoring the reason the panel is unbalanced does not cause

systematic bias. Because our method removes unit-specific averages in Procedure 4.1,

selection is allowed to depend on unobserved time-constant heterogeneity – just like with the

usual fixed effects estimator. Selection cannot be systematically related to the shocks to Y it

– again, just as with the FE estimator. When we remove a unit-specific linear trend, now

selection can be correlated with both a level heterogeneity term and a trend heterogeneity

term, providing for somewhat more robustness to sample selection bias.

7. Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to study the exact properties of our

proposed estimators and compare them with competing approaches. We evaluate the

performance of five different estimators. The first is the POLS/ETWFE estimator in

Wooldridge (2021), which is efficient under a commonly imposed set of assumptions (but is

not doubly robust). Three of the estimators use our transformation approach: regression

adjustment (RA), inverse-probability-weighted regression adjustment (IPWRA), and propensity

score matching (PSM). The final estimator is Callaway Sant’Anna (2021), who apply the

augmented IPW (AIPW) estimator – a different doubly robust estimator than IPWRA. We use

the never treated group as the control in CS (2021).

7.1. Common Timing

We start with the common timing case. Recall that the POLS method in Wooldridge

(2021) and regression adjustment using our rolling method, based on equation (3.8), are the

same in the common timing case. Therefore, we have four estimators in the simulations. The

CS (2021) transformation is in equation (4.14). We assume that Assumptions NA and CPTC

hold, along with overlap. However, we consider scenarios where the functional form of the
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conditional means and the functional form of the propensity score can be misspecified. For

each scenario, we use T  6 with the first treatment in S  4. Across Monte Carlo

simulations we draw random samples of sizes 100, 500, and 1,000. For the three ATT

parameters, we report Monte Carlos bias, Monte Carlo standard deviation, and the root mean

squared error (RMSE). All simulations use 1,000 Monte Carlo replications.

7.1.1. Data Generation

We generate the data as follows. Two control variables are included: X  X1,X2, where

X1 and X2 are independent with X1  Gamma2, 2 [and so EX1  4] and

X2  Bernoulli0. 6. The treatment indicator, D, has propensity score

px  PD  1|X  x 
expZ11

1  expZ11
    (7.1)

where Z11 (i,e, the propensity score index function) is

Z11  1. 2  X1  4
2

 X2     (7.2)

Our second step is generating heterogeneous treatment effects as follows:

rX   
rS

T

r  S  11  rhX, r  S, . . . ,T,     (7.3)

where   T  S  1 and r is a time-varying parameter, set as S, . . , T  0. 5, 0. 6, 1. 0

in each simulation. This setup allows dynamic effects of being treated to vary across time and

to increase as the length of exposure to the treatment increases. We consider two different

functional forms of hX in simulations. The first is

hX 
X1  4

2
 X2

3
    (7.4)

In the second, hX includes a quadratic in X1 and an interaction between X1 and X2:

hX 
X1  4

2
 X2

3


X1  42

4
 X1  4  X2

2
    (7.5)

We generate the potential outcomes in the untreated state as
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Y t0  t  C  t  fX  Ut0,     (7.6)

where t  t is a time-specific component, C|D,X  Normal2, 1 is an individual-specific

component, Ut0|D,X  Normal0, 4 is the time-varying shock. The time-varying t allows

the effect of the covariates on potential outcome paths to vary across time. For each

simulation, the parameters are fixed as bellow:

  1,2, . . . ,T  1. 0, 1. 5, 0. 8, 1. 5, 2, 2. 5     (7.7)

We consider two functional forms for fX:

fX 
X1  4

3
 X2

2
    (7.8)

and

fX 
X1  4

3
 X2

2


X1  42

3
 X1  4  X2

4
    (7.9)

Finally, the post-treatment period outcome in the treated state is generated as

Y t1 
Y t0 , t  S

Y t0  t  Ut1  Ut0 , t  S

where Ut1|D,X  Normal0, 4.

For each simulation, all estimators that involve estimating the conditional means of Y t

assume the correct model is linear in X. Therefore, when (7.4) and (7.8) are used in

simulations, the conditional mean is correctly specified, given as Scenarios 1C and 2C below.

However, when we consider (7.5) and (7.9), each of which includes quadratic term X1
2 and an

interaction term X1  X2, the conditional mean is misspecified (Scenarios 3C and 4C).

We also use a simulation where X1  42/2 is added to the index function in the

propensity score, and so the estimated logit model, which assumes an index linear in X1 and

X2, is misspecified as follows:

Z22  1. 2  X1  4
2

 X2 
X1  42

2
    (7.10)
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which is used in Scenarios 2C and 4C.

Table 7.1 describes basic setup for each scenario.

Table 7.1. Scenarios with Common Timing

Conditional Mean Propensity Score

Correctly Specified? hX fX Correctly Specified? PS Index Function

Scenario 1C Yes 7. 4 7. 8 Yes 7. 3

Scenario 2C Yes 7. 4 7. 8 No 7. 10

Scenario 3C No 7. 5 7. 9 Yes 7. 3

Scenario 4C No 7. 5 7. 9 No 7. 10

7.1.2. Results for Common Timing Case

This section shows the simulation results under four different scenarios listed in Table 7.1.

The results for Scenario 1C are shown in Table 7.2. Here the conditional means and the

propensity score are correctly specified, so we expect all estimators to have little bias. This is

indeed the case, with the biases being trivial as a percentage of the effect sizes (which are

obtained as sample average treatment effects, averaged across the observations and

simulations).

The biases are small even when N  100. Because the POLS estimator, which is the same

as RA on the transformed outcome, is best linear unbiased, it is not surprising that it produces

notably smaller standard deviations compared with PSM and CS (2021). For example, with

N  500, and for 4, the PSM SD is about 37 percent higher than the POLS/RA SD and the

CS SD is about 25 percent higher. Because POLS/RA averages all three pre-treatment periods,

its main competitor is the doubly robust IPWRA estimator, which also averages the three

pre-treatment periods. When N  500, the rolling IPWRA estimator has SDs that are, at most,

three percent higher than those for POLS.

In terms of RMSE, the POLS estimator is uniformly better in Table 7.2 – again, this is not

surprising because POLS is the BLUE. When N  1, 000, the IPWRA estimator has RMSEs

that are just slightly larger than POLS. For example, the RMSE of Rolling IPWRA for 6 is
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0.399, which is slightly higer than that of POLS/RA estimator: 0.379.

Table 7.2. Scenario 1C: EY t|X  x and px are Correctly Specified

4 5 6
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 3.326 4.800 5.858

POLS/RA 100 0. 002 1. 241 1. 241 0. 006 1. 220 1. 220 0. 036 1. 285 1. 285

PSM 100 0. 020 1. 784 1. 784 0. 130 1. 803 1. 807 0. 195 1. 820 1. 831

IPWRA 100 0. 014 1. 318 1. 318 0. 018 1. 352 1. 352 0. 046 1. 380 1. 381

CS(2021) 100 0. 015 1. 534 1. 534 0. 036 1. 554 1. 554 0. 065 1. 576 1. 577

Sample ATT 3.218 4.809 5.992

POLS/RA 500 0. 008 0. 541 0. 541 0. 036 0. 537 0. 538 0. 010 0. 552 0. 552

PSM 500 0. 002 0. 893 0. 893 0. 001 0. 931 0. 931 0. 084 0. 939 0. 943

IPWRA 500 0. 009 0. 566 0. 566 0. 034 0. 562 0. 563 0. 009 0. 579 0. 579

CS(2021) 500 0. 011 0. 662 0. 662 0. 033 0. 659 0. 660 0. 009 0. 684 0. 684

Sample ATT 3.220 4.802 5.959

POLS/RA 1,000 0. 006 0. 375 0. 375 0. 009 0. 382 0. 382 0. 020 0. 378 0. 379

PSM 1,000 0. 023 0. 710 0. 710 0. 055 0. 673 0. 676 0. 101 0. 679 0. 686

IPWRA 1,000 0. 007 0. 395 0. 395 0. 007 0. 411 0. 411 0. 021 0. 398 0. 399

CS(2021) 1,000 0. 008 0. 474 0. 474 0. 006 0. 486 0. 486 0. 007 0. 476 0. 476

Notes: (i) The population R-squared values are about 0.39, 0.36, and 0.36, respectively.

(ii) The average propensity score is about 0.26.

In Table 7.3, the propensity score is misspecified but the conditional means are correctly

specified. Of the four estimation methods, only PSM should show systematic bias, as the other

estimators are consistent whenever the mean functions are correctly specified. In some

scenarios and for some of the ATTs, the PSM estimator does not show much bias, especially

as a percentage of the effect sizes. Nevertheless, PSM is substantially more biased than the

other procedures in some of the runs. The clear winner is again POLS, which has essentially

no bias even when N  100 and easily has the smallest SDs. IPWRA (applied, as always, to

the transformed outcome) still performs better than PSM and CS (2021) but, evidently, using a

misspecified PS increases its imprecision relative to just using POLS.
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Table 7.3. Scenario 2C: EY t|X  x Correctly Specified, px Misspecified.

4 5 6
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 3.326 4.800 5.858

POLS/RA 100 0. 002 1. 241 1. 241 0. 006 1. 220 1. 220 0. 036 1. 285 1. 285

PSM 100 0. 020 1. 784 1. 784 0. 130 1. 803 1. 807 0. 195 1. 820 1. 831

IPWRA 100 0. 014 1. 318 1. 318 0. 018 1. 352 1. 352 0. 046 1. 380 1. 381

CS(2021) 100 0. 015 1. 534 1. 534 0. 036 1. 554 1. 554 0. 065 1. 576 1. 577

Sample ATT 3.218 4.809 5.992

POLS/RA 500 0. 008 0. 541 0. 541 0. 036 0. 537 0. 538 0. 010 0. 552 0. 552

PSM 500 0. 002 0. 893 0. 893 0. 001 0. 931 0. 931 0. 084 0. 939 0. 943

IPWRA 500 0. 009 0. 566 0. 566 0. 034 0. 562 0. 563 0. 009 0. 579 0. 579

CS(2021) 500 0. 011 0. 662 0. 662 0. 033 0. 659 0. 660 0. 009 0. 684 0. 684

Sample ATT 3.220 4.802 5.959

POLS/RA 1,000 0. 006 0. 375 0. 375 0. 009 0. 382 0. 382 0. 020 0. 378 0. 379

PSM 1,000 0. 023 0. 710 0. 710 0. 055 0. 673 0. 676 0. 101 0. 679 0. 686

IPWRA 1,000 0. 007 0. 395 0. 395 0. 007 0. 411 0. 411 0. 021 0. 398 0. 399

CS(2021) 1,000 0. 008 0. 474 0. 474 0. 006 0. 486 0. 486 0. 007 0. 476 0. 476

Notes: (i) The population R-squared values are about 0.39, 0.36, and 0.36, respectively.

(ii) The average propensity score is about 0.26.

Table 7.4 reports the findings for Scenario 3C, where now the conditional means are

misspecified because the linear regressions omits the terms X1
2 and X1  X2. Because the

propensity score is correctly specified in this scenario, POLS is the only estimator that,

theoretically, will exhibit systematic bias. The doubly robust IPWRA and CS (2021)

approaches are still consistent, as is PSM. In these simulations, the POLS estimator does have

the most bias, although it is fairly small as a fraction of the size effects. For instance, for

N  1, 000, the bias of POLS/RA estimator for 6 is 0. 154, which is at least five times larger

(in absolute value) than those of the PSM, IPWRA, and CS(2021) estimators: 0. 032,

0. 002, and 0. 008, respectively. Nevertheless, 0. 154 is still small as a percentage of the

effect size, 6. 361.

In some cases, the smaller SD of POLS gives it the smallest RMSE even when it is

biased. Among the consistent estimators, IPWRA is the most efficient. And, in several cases,

the IPWRA estimator has the smallest RMSE. For example, the RMSEs for  6 with
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N  1, 000 are 0. 477, 0. 617, 0. 448, and 0. 559 for POLS, PSM, IPWRA, and CS(2021),

respectively. Our application of IPWRA to the transformed outcome that uses all pre-treatment

periods not only reduces bias compared with POLS, but it largely preserves the efficiency of

the POLS estimator.

Table 7.4. Scenario 3C: EY t|X  x Misspecified, px Correctly Specified.

4 5 6
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 3.550 4.975 6.295

POLS/RA 100 0. 034 1. 412 1. 413 0. 104 1. 406 1. 410 0. 222 1. 568 1. 583

PSM 100 0. 060 1. 797 1. 798 0. 071 1. 867 1. 868 0. 054 1. 966 1. 967

IPWRA 100 0. 099 1. 431 1. 434 0. 025 1. 433 1. 433 0. 071 1. 561 1. 563

CS(2021) 100 0. 100 1. 751 1. 753 0. 009 1. 734 1. 734 0. 053 1. 863 1. 864

Sample ATT 3.418 5.053 6.356

POLS/RA 500 0. 079 0. 608 0. 614 0. 085 0. 613 0. 619 0. 197 0. 670 0. 699

PSM 500 0. 032 0. 827 0. 828 0. 015 0. 863 0. 863 0. 081 0. 878 0. 882

IPWRA 500 0. 034 0. 618 0. 619 0. 013 0. 619 0. 619 0. 047 0. 665 0. 666

CS(2021) 500 0. 055 0. 764 0. 766 0. 006 0. 763 0. 763 0. 062 0. 830 0. 833

Sample ATT 3.440 5.017 6.361

POLS/RA 1,000 0. 044 0. 402 0. 404 0. 091 0. 426 0. 436 0. 154 0. 452 0. 477

PSM 1,000 0. 031 0. 569 0. 570 0. 017 0. 576 0. 577 0. 032 0. 616 0. 617

IPWRA 1,000 0. 000 0. 408 0. 408 0. 011 0. 423 0. 423 0. 002 0. 448 0. 448

CS(2021) 1,000 0. 003 0. 513 0. 513 0. 015 0. 523 0. 523 0. 008 0. 559 0. 559

Notes: (i) The population R-squared values are about 0.41, 0.38, and 0.38, respectively.

(ii) The average propensity score is about 0.17.

The final simulation, based on Scenario 4C, has both the means and propensity scores

misspecified. The findings are in Table 7.5. The IPWRA estimator is always less biased than

POLS and has a lower RMSE. Compared with rolling IPWRA, neither PSM nor CS (2021) is

competitive, as they either have more bias, larger SDs, or both. (In some cases PSM has

slightly less bias.)
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Table 7.5. Scenario 4C: EY t|X  x and px are Misspecified.

4 5 6
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 3.655 5.194 6.516

POLS/RA 100 0. 258 1. 269 1. 295 0. 593 1. 279 1. 410 0. 949 1. 421 1. 709

PSM 100 0. 210 1. 797 1. 809 0. 560 1. 856 1. 939 0. 863 1. 928 2. 113

IPWRA 100 0. 193 1. 334 1. 348 0. 485 1. 394 1. 476 0. 774 1. 476 1. 667

CS(2021) 100 0. 428 1. 562 1. 620 0. 745 1. 613 1. 777 1. 068 1. 705 2. 012

Sample ATT 3.546 5.203 6.649

POLS/RA 500 0. 266 0. 555 0. 615 0. 546 0. 573 0. 791 0. 895 0. 617 1. 087

PSM 500 0. 177 0. 901 0. 918 0. 395 0. 943 1. 022 0. 696 0. 980 1. 202

IPWRA 500 0. 211 0. 575 0. 613 0. 422 0. 585 0. 721 0. 699 0. 621 0. 935

CS(2021) 500 0. 420 0. 679 0. 798 0. 669 0. 694 0. 964 0. 986 0. 741 1. 234

Sample ATT 3.549 5.197 6.617

POLS/RA 1,000 0. 264 0. 385 0. 467 0. 592 0. 399 0. 714 0. 926 0. 433 1. 022

PSM 1,000 0. 194 0. 716 0. 742 0. 444 0. 687 0. 818 0. 706 0. 714 1. 004

IPWRA 1,000 0. 210 0. 404 0. 455 0. 466 0. 421 0. 628 0. 735 0. 438 0. 856

CS(2021) 1,000 0. 404 0. 488 0. 633 0. 701 0. 505 0. 864 1. 007 0. 528 1. 137

Notes: (i) The population R-squared values are about 0.48, 0.46, and 0.46, respectively.

(ii) The average propensity score is about 0.26.

7.2. Staggered Intervention

In this subsection, we consider the staggered intervention case. For simulations, we follow

Procedure 4.1 by using the transformation in (4.12). In applying RA, PSM, and IPWRA, we

use the never treated and not-yet treated units as the control group. Similar to common timing

cases, we consider four different scenarios where the conditional mean and propensity score

are either correctly specified or misspecified given Assumptions CNAS, CPTS, and OVLS

hold. For each scenario, we use T  6 and g  G  4, 5, 6, and 1,000 replications. For

treated cohort g, initial treatment occurs at time t  g; g   indicates the never treated

cohort.

7.2.1. Data Generation

We generate the data for each simulation following similar steps in the common timing

case. In particular, X1,X2 are generated in the same way, with X1 continuous and

nonnegative and X2 binary. The cohort probabilities, PDg  1|X, are generated using an
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ordered logit specification. This means that the logit propensity score is never correctly

specified because, conditional on using a subset of the units as controls, the response

probability is different from logit. Still, in one case we use an index linear in X as in (7.3) and

in another the index is nonlinear, as in (7.10); both are as described earlier. Although the

language is not precise, we refer to the first case as “correct specification” of the PS because

the index is correctly specified and the second as “misspecification” because the nonlinear

terms in the index are are ignored.

The treatment effects for treated cohort g in period r  g, conditional on X, are given by

grX  g 
rS

T
1
2
r  S  1

1
 grhgX; g  4, 5, 6, r  g, g  1, . . . ,T,     (7.11)

where 4, 5, 6  4, 3, 2 and gr is time-varying parameter, each of which varies across

treated cohort g at r  4, 5, 6 as follows:

44, 54, 64  0. 5, 0. 6, 1

45, 55, 65  0, 1, 0. 5

46, 56, 66  0, 0, 0. 5

When the mean is correctly specified (and linear in X1 and X2), the functions hg are just as

in (7.4) for all g  4, 5, 6. When we add neglected nonlinearity,

hgX 
g  X1  42

3


X2X1  4
3

, g  4, 5, 6     (7.12)

We generate the outcome in the never treated state as

Y it  t  Ci  t  fXi  Uit,     (7.13)

where t  t is a time-specific component, Ci|Di,Xi  Normal2, 1 is an individual-specific

component, Uit|Di,Xi  Normal0, 4 is the time-varying shock, and the t are fixed at

the same values in (7.7). The function fX is initially taken to be linear, as in (7.8). We

introduce neglected nonlinearity as in (7.9).

Finally, the post-treatment period outcome in the treated state is generated as
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Y itg 
Y t , t  S

Y t  gtX  Uitg  Ut , t  S
    (7.14)

where Uitg|Di,Xi  Normal0, 4 and independent across g and t.

The different scenarios are summarized in Table 7.6.

Table 7.6. Scenarios with Staggered Intervention

Conditional Mean Propensity Score

Correctly Specified? hgX fX Correctly Specified? PS Index Function

Scenario 1S Yes 7. 4 7. 8 Yes 7. 3

Scenario 2S Yes 7. 4 7. 8 No 7. 10

Scenario 3S No 7. 12 7. 9 Yes 7. 3

Scenario 4S No 7. 12 7. 9 No 7. 10

7.2.2. Results for Staggered Case

For each simulation, we use 1,000 Monte Carlo replications. We obtain the SATTs for

cohorts g  4, 5, 6 at post-treatment periods r  g, g  1, . . . , 6. As before we report the

bias, standard deviations, and RMSEs of each estimator. Recall that the POLS method in

Wooldridge (2021) and the RA method applied to Y irg are the same only when r  g;

therefore, these estimators are reported separately.

The findings for Scenario 1S are given in Table 7.7. Because all estimators are consistent,

it is not surprising that each is essentially unbiased. The same general pattern for precision

that we found in the common timing case holds in the staggered case: POLS and RA are the

most efficient, IPWRA is a bit less precise, and PSM and CS (2021) have notably larger SDs.

Table 7.8 contains the simulation results for Scenario 2S, where the propensity score

neglects the nonlinear terms. Even PSM shows little relative bias, although it is more than the

other estimators. POLS, RA, and IPWRA again perform best in terms of precision, with

IPWRA doing a bit worse for some of the cohort/year combinations.
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Table 7.7. Scenario 1S: EY t|X  x and pgx are Correctly Specified.

44 45 46
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 4.168 6.207 8.338

POLS 1,000 0. 006 0. 466 0. 466 0. 007 0. 472 0. 472 0. 012 0. 488 0. 488

RA 1,000 0. 006 0. 466 0. 466 0. 007 0. 472 0. 472 0. 012 0. 491 0. 491

PSM 1,000 0. 008 0. 640 0. 640 0. 005 0. 663 0. 663 0. 005 0. 676 0. 676

IPWRA 1,000 0. 006 0. 468 0. 468 0. 007 0. 473 0. 473 0. 011 0. 495 0. 496

CS (2021) 1,000 0. 001 0. 595 0. 595 0. 020 0. 589 0. 589 0. 020 0. 676 0. 676

55 56 66
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 3.390 4.689 2.172

POLS 1,000 0. 031 0. 452 0. 453 0. 033 0. 472 0. 473 0. 019 0. 461 0. 461

RA 1,000 0. 031 0. 452 0. 453 0. 034 0. 473 0. 474 0. 019 0. 461 0. 461

PSM 1,000 0. 021 0. 641 0. 641 0. 022 0. 645 0. 646 0. 020 0. 648 0. 648

IPWRA 1,000 0. 032 0. 455 0. 456 0. 034 0. 482 0. 483 0. 019 0. 468 0. 468

CS (2021) 1,000 0. 037 0. 600 0. 601 0. 036 0. 620 0. 622 0. 009 0. 615 0. 615

Notes: (i) The population R-squared value from the POLS regression is 0. 36.

(ii) The cohort shares are 0. 66 , 0. 12, 0. 11, and 0. 11.

Table 7.8. Scenario 2S:EY t|X  x CorrectlySpecified, pgx Misspecified

44 45 46
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 4.181 6.202 8.336

POLS 1,000 0. 002 0. 401 0. 401 0. 004 0. 422 0. 422 0. 001 0. 461 0. 461

RA 1,000 0. 002 0. 401 0. 401 0. 003 0. 424 0. 424 0. 003 0. 470 0. 470

PSM 1,000 0. 010 0. 566 0. 566 0. 025 0. 588 0. 589 0. 062 0. 718 0. 721

IPWRA 1,000 0. 002 0. 402 0. 402 0. 006 0. 427 0. 427 0. 002 0. 480 0. 480

CS (2021) 1,000 0. 016 0. 565 0. 565 0. 009 0. 565 0. 565 0. 013 0. 718 0. 718

55 56 66
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 3.334 4.685 2.168

POLS 1,000 0. 023 0. 408 0. 409 0. 029 0. 455 0. 456 0. 015 0. 437 0. 437

RA 1,000 0. 023 0. 408 0. 409 0. 032 0. 458 0. 459 0. 015 0. 437 0. 437

PSM 1,000 0. 008 0. 580 0. 580 0. 057 0. 685 0. 687 0. 036 0. 680 0. 681

IPWRA 1,000 0. 021 0. 409 0. 409 0. 030 0. 463 0. 464 0. 014 0. 447 0. 448

CS (2021) 1,000 0. 029 0. 556 0. 556 0. 026 0. 562 0. 563 0. 003 0. 570 0. 570

Notes: (i) The population R-squared from the POLS regression is about 0. 40.

(ii) The cohort shares are about 0. 55, 0. 15, 0. 15, and 0. 15.

The results for Scenario 3S are given in Table 7.9. When the coditional mean is

misspecified whereas the propensity is correctly specified, our rolling method with IPWRA
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has the lowest RMSE among different estimators.

Table 7.9. Scenario 3S: EY t|X  x Misspecified, pgx Correctly Specified

44 45 46
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 5.113 7.341 10.227

POLS 1,000 0. 014 0. 522 0. 523 0. 030 0. 544 0. 545 0. 103 0. 680 0. 688

RA 1,000 0. 014 0. 522 0. 523 0. 033 0. 545 0. 546 0. 118 0. 682 0. 692

PSM 1,000 0. 011 0. 679 0. 679 0. 015 0. 709 0. 710 0. 019 0. 807 0. 807

IPWRA 1,000 0. 009 0. 521 0. 521 0. 036 0. 536 0. 537 0. 012 0. 667 0. 667

CS (2021) 1,000 0. 003 0. 662 0. 662 0. 026 0. 671 0. 671 0. 029 0. 807 0. 808

55 56 66
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 5.869 5.928 3.678

POLS 1,000 0. 010 0. 666 0. 667 0. 090 0. 577 0. 584 0. 093 0. 591 0. 598

RA 1,000 0. 010 0. 666 0. 667 0. 097 0. 579 0. 587 0. 093 0. 591 0. 598

PSM 1,000 0. 008 0. 783 0. 783 0. 006 0. 725 0. 725 0. 004 0. 747 0. 747

IPWRA 1,000 0. 052 0. 655 0. 657 0. 028 0. 574 0. 574 0. 013 0. 584 0. 585

CS (2021) 1,000 0. 037 0. 764 0. 764 0. 035 0. 696 0. 697 0. 008 0. 674 0. 674

Notes: (i) The population R-squared value from the POLS regression is about 0. 47.

(ii) The cohort probabilities are about 0. 66, 0. 12, 0. 11 and 0. 11.

Finally, Table 7.10 includes the results when the conditional mean and propensity scores

have neglected nonlinearties (Scenario 4S). The IPWRA estimator has the smallest RMSE for

all ATTs, gr, g  S, . . . ,T; r  g, . . . ,T. in these particular simulations.
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Table 7.10. Scenario 4S: EY t|X  x and pgx are Misspecified

44 45 46
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 5.376 7.636 10.725

POLS 1,000 0. 074 0. 442 0. 448 0. 234 0. 490 0. 543 0. 596 0. 641 0. 875

RA 1,000 0. 074 0. 442 0. 448 0. 241 0. 492 0. 548 0. 655 0. 650 0. 923

PSM 1,000 0. 054 0. 591 0. 594 0. 160 0. 638 0. 658 0. 535 0. 860 1. 013

IPWRA 1,000 0. 053 0. 440 0. 443 0. 170 0. 492 0. 521 0. 560 0. 649 0. 857

CS (2021) 1,000 0. 323 0. 607 0. 687 0. 535 0. 627 0. 824 0. 759 0. 860 1. 147

55 56 66
N Bias SD RMSE Bias SD RMSE Bias SD RMSE

Sample ATT 1,000 6.390 6.213 4.029

POLS 1,000 0. 188 0. 584 0. 613 0. 547 0. 538 0. 767 0. 520 0. 547 0. 755

RA 1,000 0. 188 0. 584 0. 613 0. 578 0. 540 0. 791 0. 520 0. 547 0. 755

PSM 1,000 0. 113 0. 695 0. 704 0. 498 0. 742 0. 893 0. 425 0. 751 0. 863

IPWRA 1,000 0. 126 0. 573 0. 587 0. 492 0. 534 0. 726 0. 445 0. 544 0. 703

CS (2021) 1,000 0. 190 0. 675 0. 701 0. 412 0. 615 0. 740 0. 223 0. 620 0. 659

Notes: (i) The population R-squared value from the POLS regression is about 0. 51.

(ii) The cohort probabilities are about 0. 55, 0. 15, 0. 15 and 0. 15.

8. Concluding Remarks

In this paper we propose an alternative estimation approach in order to obtain consistent

estimates of the average treatment effect on the treated in difference-in-differences setting

where there are multiple periods and possible staggered adoption. The key advantage of this

approach is that once the transformed dependent variable is defined – whether in the common

timing case, the staggered case, or when unit-specific trends have been removed in either case

– one can apply standard TE estimators to the cross sectional data for a given time period and

each cohort treated in that time period. One need only be careful about choosing units not yet

treated as the control group (including possibly limiting the controls the the never-treated

group). Regression adjustment (RA) using the transformed outcome is one of many methods

that one can apply. In the common timing case, we show that the RA estimator is

algebraically equivalent to the POLS/ETWFE/RE estimators in Wooldridge (2021). This

equivalence implies RA estimator with our proposed transformed data yields consistent
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estimators of ATT when the outcome model is linear in the chosen covariates and the no

anticipation and parallel trends assumptions hold only after conditioning on covariates. If the

idiosyncratic errors are serially uncorrelated and the composite error is homoskedasticity, the

RA estimator is also efficient.

The Monte Carlo simulation results provide evidence that the doubly robust IPWRA

estimator achieves close to the efficiency of RA when the conditional means are correctly

specified and often has less bias when the mean is misspecified and the propensity score

model is correctly specified or even misspecified. The IPWRA estimator applied to our

transformed variable has better precision compared with that of the CS(2021), something that

makes intuitive sense because our approach uses all suitable time periods and cohorts in the

control group.
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Proof of Theorem 3.1

We modify the argument in Wooldridge (2021, Theorem 8.1). The  r are obtained from

regression (3.6). Because Y ir  Y ir  Y i,pre, basic OLS algebra shows that all coefficients from

(3.6) are obtained by differencing the coefficients from the two regressions

Y ir on 1, Di, Xi, Di  X i, i  1, 2, . . . ,N     (A.1)

Y i,pre on 1, Di, Xi, Di  X i, i  1, 2, . . . ,N     (A.2)

where X i  Xi  X 1 are the covariates demeaned using the treated units. In particular, letting

 r be the coefficient on Di from (A.1) and  pre the coefficient on Di from (A.2),

 r   r   pre     (A.3)

Note also that the coefficients on the “moderating” terms, Di  X i, are also obtained by

differencing across the two regressions.

To show (A.3) is the same as the coefficient on Di  frt in (3.9), first note that, by

Wooldridge (2021, Theorem 3.2), we can drop fq t, fq t  Xi for q  S without affecting the

estimates. In other words, the  r are the coefficients on Di  frt in the regression

Y it on 1, Xi, Di, Di  Xi, fS t, ..., fTt, fS t  Xi, ..., fTt  Xi

Di  fS t, ..., Di  fTt, Di  fS t  X i, ..., Di  fTt  X i     (A.4)

Now, define H i  1,Xi,Di,Di  Xi, a 1  2K  1 vector, and

Lit  fS t, fS t  Xi,Di  fS t,Di  fS t  X i, . . . , fTt, , fTt  Xi,Di  fTt  X i,     (A.5)

a row vector with 2T  S  1K  1 elements. Note that for q  r,

fq t, fq t  Xi,Di  fq t,Di  fq t  X i and frt, frt  Xi,Di  frt,Di  frt  X i are orthogonal in

sample because fq t  frt  0. The full set of regressors in (A.4) is simply H i,Lit. With

pt  fS t    fTt, the post-treatment period indicator, 1  ptfrt  0, r  S, S  1, ..., T,

which means 1  ptLit  0. Therefore, the objective function underlying the regression in

(A.4) can be written as
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min
,

i1

N


t1

T

1  ptY it  H i2 
i1

N


t1

T

ptY it  H i  Lit2     (A.6)

Letting  and  denote the POLS estimators, the first order conditions are


i1

N


t1

T

1  ptH i
Y it  H i 

i1

N


t1

T

ptH i
Y it  H i  Lit  0     (A.7)


i1

N


t1

T

ptLit
 Y it  H i  Lit  0     (A.8)

Next, note that because pt  fS t    fTt, we can write

ptH i  pt, pt  Di, pt  Xi, pt  Di  X i   
qS

T

fq t, fq t  Di, fq t  Xi, fq t  Di  X i ,     (A.9)

which is simply the sum the subvectors in Lit consisting of different time periods. It follows

that ptH i  ptLitA for a 2T  S  1K  1  2K  1 matrix A. Plugging into (A.7) gives


i1

N


t1

T

1  ptH i
Y it  H i  A

i1

N


t1

T

ptLit
 Y it  H i  Lit  0     (A.10)

Along with (A.8), (A.10) implies that the FOCs for ,  are


i1

N


t1

T

1  ptH i
Y it  H i  0     (A.11)

But (A.11) means that  is the OLS estimator from the regression Y it on H i using the

pre-treatment period observations. With H i not varying over time,  is the same as the

cross-sectional regression

Y i,pre on 1, Di, Xi, Di  X i     (A.12)

In particular, the coefficient on Di is precisely  pre in (A.3).

Next, the FOC in (A.8) shows that  is from a POLS regression using the post-treatment

periods:

Y it  H i on Lit, t  S, . . . ,T; i  1, . . . ,N
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By definition of Lit and the orthogonality of the elements of Lit across the subvectors

representing the different time periods, each 2K  1 subvector,  r, r  S, . . . ,T, is obtained

from a separate cross-sectional regression for each post-treatment period. Namely, because

frr  1, the regression for period r is

Y ir  H i on 1, Di, Xi, Di  X i, i  1, . . . ,N     (A.13)

The vector on right is simply H i, and so

 r  
i1

N

H i
H i

1


i1

N

H i
Y ir       (A.14)

The first term is the regression coefficients from

Y ir on 1, Di, Xi, Di  X i, i  1, . . . ,N,

which is  r from (A.3). We have shown that the coefficient corresponding to Di  frt in the

regression (A.4) is  r   pre, which establishes the equivalence of the pooled OLS estimator

across all time periods, (3.9), and the cross-sectional OLS estimators using the transformed

variable Y ir for each r  S, . . . ,T separately. Essentially the same argument shows that the

coefficients on the interaction terms Di  frt  X i in (3.9) are the same as the coefficients on

Di  X i in (3.6). 
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