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Abstract

This paper proposes a dynamic approach to modeling opportunism in bilateral ver-
tical contracting between an upstream monopolist and competing downstream firms.
Unlike previous literature on opportunism which has focused on games in which the
upstream firm makes simultaneous secret offers to the downstream firms, we model
opportunism as a consequence of asynchronous recontracting in an infinite-horizon
continuous-time model. We find that the degree of opportunism depends on the ab-
solute and relative reaction speeds of the different bilateral upstream-downstream
firm pairs and on the firms’ discount rate. Patience, fast reaction speeds, and asym-
metries in reaction speeds across upstream-downstream pairs are shown to alleviate
opportunism. Our results are relevant for vertical merger policy and for competition
policy on vertical restraints.

∗We are grateful to Paulo Barelli, Leslie Marx, Volker Nocke, Michael Raith, Nicolas Schutz, Lucy White,
and audiences at the CEPR Virtual IO seminar, the Macci Summer Institute in Competition Policy, DICE,
UTD, the University of Rochester, NUS, the Paris School of Economics, CREST, EARIE, and APIOC for
helpful feedback and comments. Any errors are our own.

†School of Economics, Yonsei University; e-mail: econ.jihwando@yonsei.ac.kr
‡Simon Business School, University of Rochester; e-mail: jeanine.miklos-thal@simon.rochester.edu



1 Introduction

It is well-known that an upstream firm may suffer from an opportunism problem when
it deals with multiple competing downstream firms through bilateral contracts. Although
the upstream firm wants to restrict the total quantity of its input in order to maintain
high prices and profits, it may be unable to commit to refrain from opportunistic moves
that increase the bilateral surplus with one downstream firm at the expense of other firms.
Therefore, the upstream firm may not be able to fully exert its market power, even if it
enjoys a monopoly position in the upstream market. This opportunism problem, which
was first analyzed by Hart and Tirole (1990), O’Brien and Shaffer (1992), and McAfee and
Schwartz (1994), occupies a central place in the literature on vertical contracting and has
been invoked as an explanation for vertical mergers and vertical restraints such as exclusive
dealing that allow the supplier to restore its market power (see Rey and Tirole (2007) for
an overview).1

The leading approach to modeling opportunism in vertical contracting is to assume that
an upstream monopolist makes simultaneous secret offers to competing downstream firms.
Under the commonly adopted equilibrium refinement that a downstream firm holds passive
beliefs when it receives an out-of-equilibrium offer, that is, the downstream firm does not
revise its beliefs about the offers received by its rivals upon reception of an ‘unexpected’
offer, the upstream firm is unable to fully exert its market power in equilibrium. If the up-
stream monopolist makes simultaneous public offers, on the other hand, then the monopoly
outcome arises in equilibrium.

This paper proposes a different approach to modeling opportunism in vertical contract-
ing. Our approach is dynamic in nature, capturing the notion that opportunism arises
because an upstream “monopolist might gain by recontracting with another firm” once
“the initial firm is somewhat locked in” (McAfee and Schwartz (1994, p. 210)). Although
recontracting has long been recognized as an important source of opportunism, previous
attempts to model the opportunism problem dynamically are scarce. McAfee and Schwartz
(1994)’s seminal paper on opportunism in vertical contracting does consider a game in

1Important contributions on the opportunism problem and the various solutions to it include Rey and
Vergé (2004), Marx and Shaffer (2004), White (2007), Montez (2015), Reisinger and Tarantino (2015), and
Gaudin (2019).
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which the upstream monopolist makes sequential offers (see Section II of their paper), but,
as they explain, this game fails to capture that “all firms will be leery that the monopolist
might recontract with their rivals” (McAfee and Schwartz (1994, p. 218), emphasis added).
This weakness of the sequential-offers model prompts them to consider a game with simul-
taneous secret offers, which has since become the workhorse model of vertical contracting
with opportunism in the literature. Our paper, in contrast, models recontracting explicitly,
using an infinite-horizon model in which each downstream firm anticipates future recon-
tracting between the upstream firm and its rival, as well as between the upstream firm and
itself.

In addition to capturing the inherently dynamic recontracting explanation for oppor-
tunism, our dynamic modeling approach has a number of advantages over the standard
secret-offers approach. First, the dynamic approach allows us to obtain new comparative
statics results. It delivers predictions about the degree of opportunism and how it varies
with the key parameters of our model—the discount rate and the absolute and relative
recontracting reaction speeds of the various bilateral upstream-downstream pairs. This is
useful for vertical merger policy and competition policy on vertical restraints, because when
the supplier’s opportunism problem is worse, the competitive damage from strategies such
as vertical intergration that restore the supplier’s monopoly power will be worse as well
(and the supplier’s incentive to use such strategies will be stronger).

Second and relatedly, our model yields less stark, and thus perhaps more realistic,
predictions about the degree of opportunism. As a function of the different parameter
values, our theory can explain steady-state outcomes that lie between the boundary cases
of (i) the integrated monopoly outcome (no opportunism), which would arise in equilibrium
under simultaneous public offers, and (ii) the pairwise-proof outcome (full opportunism),
which would arise in equilibrium under simultaneous secret offers and passive beliefs.

Third, no assumptions about out-of-equilibrium beliefs are needed to characterize the
degree of opportunism in our dynamic model. The equilibrium outcome of a game with
simultaneous secret offers, on the other hand, is highly sensitive to which out-of-equilibrium
belief refinement is adopted, with different assumptions often leading to radically different
equilibrium outcomes.

Our setting embeds a simple Cournot-style model of bilateral contracting between one
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upstream firm and two competing downstream firms, similar to the one set out by Rey
and Tirole (2007), into an infinite-horizon continuous-time framework. The upstream firm
(henceforth also called supplier) gets to make new contract offers to the downstream firms
(henceforth also called retailers) according to independent Poisson processes, one for each
retailer. The independence of the Poisson processes implies that recontracting occurs asyn-
chronously, that is, the probability of simultaneous offers is zero. Moreover, because a
higher Poisson rate implies that a retailer’s contract reacts more quickly (in expectation)
to changes in the other retailer’s contract, the Poisson rate that governs the arrival of recon-
tracting events between a supplier-retailer pair has a natural interpretation as the reaction
speed of that retailer’s contract. Contracts specify the quantity supplied by the supplier
and a fixed fee to be paid by the downstream firm per unit of time, and we focus on Markov
Perfect Equilibria (MPE).2

The supplier’s Markov strategy involves dynamic quantity reaction functions that spec-
ify how the quantity that the supplier offers to a retailer depends on the quantity that the
supplier currently supplies to the retailer’s rival. We characterize the first-order conditions
that differentiable dynamic quantity reaction functions must satisfy in an MPE, and use
them to derive a series of results about the equilibrium steady-state quantities (assuming
existence of a stable equilibrium with differentiable dynamic quantity reaction functions).
For the case of linear demand functions, we establish the existence of a unique MPE with
linear dynamic quantity reaction functions. This linear MPE is shown to be dynamically
stable, with the retailers selling symmetric quantities in the equilibrium steady state when
the reaction speeds are symmetric, and the retailer whose contract reacts faster selling a
larger quantity than its rival when the reaction speeds are asymmetric.

The analysis yields three broad takeaways about the degree of opportunism, as measured
by the aggregate quantity sold in the equilibrium steady state. First, patience reduces
opportunism. Second, a faster average reaction speed reduces opportunism. And third,
asymmetry in reaction speeds reduces opportunism.

The intuition for the first two insights can be understood as follows. When making an
offer to retailer Di, the supplier internalizes only the effect on Di’s own variable profit in the

2The restriction to Markov strategies reduces the large multiplicity of equilibria, and it allows us to focus
on the key trade-off between short-term incentives to behave opportunistically and longer-term incentives
to achieve collective surplus maximization.
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time interval until the next recontracting with the retailer’s rival D−i, but it internalizes
the future effects on all retailers’ variable profits from the next recontracting with D−i

onwards (through its current and anticipated future fixed fees). Greater patience makes
the supplier care relatively more about profits earned after the next recontracting with
the rival retailer, the time for which it internalizes the effects of its current offer on total
surplus, thus weakening the supplier’s incentive to behave opportunistically. Similarly, fast
reaction speed reduces the expected length of time until the next recontracting with the
rival retailer, that is, the length of time during which effects on the rival retailer’s variable
profits are ignored, thereby weakening the supplier’s incentive to behave opportunistically.3

Nonetheless, under symmetric reaction speeds, some degree of opportunism prevails in
the equilibrium steady state even in the limit, when the discount rate goes to zero or the
reaction speed goes to infinity. However, asymmetries in reaction speeds across supplier-
retailer pairs—due to, for instance, asymmetries in the closeness of the relationships between
the supplier and different retailers—can further reduce the extent of opportunism, and even
eliminate it altogether in a limiting case when the retailers sell undifferentiated products.
The intuition for why asymmetries in reaction speeds help to reduce opportunism can be
understood as follow. Suppose retailer DA’s contract reacts faster to changes in retailer
DB’s contract than DB’s contract reacts to changes in DA’s contract. The supplier can
then exploit its relatively weaker incentive to behave opportunistically when making offers
to DB to also weaken its (otherwise stronger) incentive to behave opportunistically when
making offers to DA by offering a smaller quantity to DB. Doing so reduces the conflict
between bilateral profit maximization and industry profit maximization when the supplier
makes its next offer to DA, thereby leading to less opportunism overall and a lower aggegrate
steady state equilibrium quantity (compared to a situation with the same average reaction
speed but symmetry across supplier-retailer pairs).

Our results have implications for vertical merger policy and for competition policy on
vertical restraints. Models of vertical contracting with opportunism have been used to un-
derstand anticompetitive effects of vertical mergers and vertical restraints by noting that

3This result may appear surprising in the sense that fast reaction speed can be thought of as a lack of
commitment to refrain from recontracting. However, as our setting makes it clear, opportunism arises not
due to a lack of commitment to long contracts, but due to a lack of commitment on the terms of future
contracts.
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if secret offers and passive beliefs are observed, then vertical intergration and contract pro-
visions that eliminate opportunism reduce total output and harm downstream consumers.
Our model shows that secret offers are not needed for opportunism to arise, and that verti-
cal mergers and opportunism-avoiding contract provisions can have anticompetitive effects
even when contracts are public. Moreover, our results offer new guidance on when verti-
cal mergers and opportunism-avoiding contract provisions are likely to be more harmful,
namely when firms are impatient, there are long time gaps between recontracting, and
reaction speeds are symmetric.

The paper is organized as follows. In Section 2, we discuss the connections of our
paper to the related literatures on dynamic vertical contracting and on dynamic oligopoly
games. In Section 3, we describe the model setup. Section 4 offers a brief summary of
the benchmark case of simultaneous offers in a static game. Section 5 contains our main
analysis. In Section 5.1, we derive the equilibrium conditions, and we prove the existence of
a unique MPE with linear dynamic quantity reaction functions in the linear-demand case.
In Section 5.2, we derive limit results and comparative static results on the equilibrium
steady-state quantities for the case of symmetric reaction speeds. In Section 5.3, we analyze
the implications of asymmetries in reaction speeds across supplier-retailer pairs. Section 6
discusses several important extensions of the baseline model. In Section 6.1, we consider the
effects of product differentiation, and in Section 6.2, we extend the analysis from quantity-
forcing contracts to two-part tariffs. In Section 7, we discuss the policy implications of the
results and some directions for further research. Proofs are relegated to the appendix.

2 Related literature

In addition to the aforementioned literature on opportunism in static models of vertical
contracting, our paper contributes to the literatures on dynamic vertical contracting and
on dynamic oligopoly games.

Dynamic vertical contracting Although the literature on vertical contracting is vast,
previous attemps to model the opportunism problem dynamically are scarce. McAfee and
Schwartz (1994), Marx and Shaffer (2004), and Bedre-Defolie (2012) consider models in
which a supplier makes public sequential offers to competing retailers, so the supplier has
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an incentive to behave opportunistically with the later retailer(s) in the sequence. However,
sequential-offer models fail to capture that all retailers may be wary of future opportunistic
behavior, and they impose a strong ex ante asymmetry between firms. Our infinite-horizon
model is more general, encompassing sequential offers as a special limiting case when the
reaction speeds are allowed to be asymmetric.

Dequiedt and Martimort (2015) consider a model in which offers are made simultane-
ously but that nonetheless has a dynamic flavor, because the supplier is allowed to move
last, choosing each retailer’s quantity from a menu contract accepted by the retailer. Offers
are public but retailers have private information. The supplier’s ability to choose quantities
can thus be thought of as allowing the supplier to dynamically “respond to new information
as it arrives.” We focus on forcing contracts instead, and introduce dynamics explicitly by
considering repeated asynchronous contracting in an infinite-horizon model. Opportunism
arises due to the supplier’s inability to commit to the terms of future contracts in our
setting, whereas Dequiedt and Martimort (2015) focus on a new form of “informational”
opportunism due to private information on the retailer side.4

Lee and Fong (2013) analyze MPE of an infinite-horizon dynamic seller-buyer network
formation game with transfers. However, the focus of their work is on network formation
(who trades with whom), whereas we are interested in the severity of the opportunism
problem that a monopolistic supplier faces. Closer to our setting, Farrell (2019, Section 5)
proposes to analyze a symmetric alternating-offers model of vertical contracting between
an upstream monopolist and competing downstream firms. However, the formal analysis of
the dynamic model in his paper is highly incomplete. It does not include a characterization
of the MPE strategies and steady-state quantities, nor any comparative statics results.
Moreover, Farrell (2019)’s main focus are partially exclusionary contracts rather than the
degree of opportunism.5

4Segal and Whinston (2003) consider menu contracts, from which the principal chooses after the agents
have made their acceptance decisions, in a model without private information. They show that when
marginal production costs are nonincreasing (as we will assume), allowing menu contracts does not restrict
the equilibrium set in a game in which a principal makes simultaneous secret offers to competing agents:
Any profile of quantities and transfers such that total surplus is nonnegative can be sustained as a Weak
Perfect Bayesian Equilibrium in this case (see Proposition 6 in their paper).

5The broader literature on dynamic vertical contracting also includes work on dynamic common agency
games (Bergemann and Välimäki (2003), Pavan and Calzolari (2009)), in which multiple principals make
offers to a common agent rather than the opposite scenario considered in this paper, and research on the
implications of vertical market structure and contracting for firms’ ability to sustain collusion in a repeated
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Dynamic oligopoly and asynchronous moves This paper is also related to the lit-
erature on dynamic oligopoly, and more broadly the literature on dynamic games with
asynchronous moves. In a series of seminal articles on dynamic oligopoly, Maskin and Ti-
role (1987, 1988a,b) analyze MPE of repeated games in which duopolists make alternating
moves.6 Our continuous-time model in which contract timing is governed by independent
Poisson processes is inspired by the micro-foundation that Maskin and Tirole (1988a, Sec-
tion 4) propose for such games.

A key difference to the models considered by Maskin and Tirole and other work on
dynamic oligopoly is that we consider a vertical industry structure with a supplier that
makes asynchronous offers to two competing firms (who then accept or reject and compete
in the market), instead of two competing firms that make asynchronous strategic decisions.
Unsurprisingly, this leads to qualitatively different results. For instance, under symmetry
the equilibrium steady-state quantity lies below the static Cournot quantity in our set-
ting, whereas Maskin and Tirole (1987) obtain the opposite result in a dynamic game of
symmetric Cournot competition with linear demand functions.

An important feature of our dynamic model is that contract offers are asynchronous.
Asynchronous moves have also been analyzed in repeated coordination games (Lagunoff and
Matsui (1997)), and more recently in asynchronous revision games where players prepare
some actions at the beginning and then obtain revision opportunities according to indepen-
dent Poisson processes until some predetermined deadline (Kamada and Kandori (2012),
Calcagno et al. (2014)). Ambrus and Lu (2015) analyze a continuous-time finite-horizon
coalitional bargaining game in which opportunities to make offers arrive asynchronously
according to independent Poisson processes, until an agreement is reached. While these
papers share the asynchronous-moves assumption and some important modeling ingredi-
ents with our research, they differ substantially from our work in motivation, focus, and
analysis.

game (Nocke and White (2007), Piccolo and Miklós-Thal (2012), Gilo and Yehezkel (2020)).
6Other important contributions to this literature include Eaton and Engers (1990) who consider dy-

namic price competition with differentiated goods, De Fraja (1993) who analyzes the impact of staggered
wage bargaining on wages in an oligopolistic industry, Davies (1991) who explores a dynamic entry deter-
rence model where two firms alternate in making price and entry choices, and Pastine and Pastine (2002)
who consider dynamic competition when duopolists choose advertisement and price levels and there are
consumption externalities among buyers. Jun and Vives (2004) analyze a dynamic duopoly model with
adjustment costs.
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3 Setting

We embed a simple Cournot-style model of vertical contracting, similar to the one set out by
Rey and Tirole (2007), into a continuous-time dynamic setting. Consider a vertical structure
with one upstream supplier, U , and two competing downstream firms Di (i = A,B, also
called retailers). The downstream firms purchase an input from the supplier, transform
it into a final good using a one-to-one technology, and sell the final good to consumers.
Upstream marginal costs are constant and equal to c ≥ 0, downstream marginal costs are
constant and normalized to zero.

Consumers have an inverse demand curve P (Q) : R+ → R for the product, where
Q = qA + qB denotes the total quantity put on the market by the downstream firms. We
make the following assumptions:

A1 P (Q) is continuous and strictly decreasing for all Q ≥ 0, and twice continuously
differentiable for all Q > 0.

A2 P ′ (Q) + P ′′ (Q)Q < 0 for all Q > 0.

A3 P (0) > c and limQ→∞ P (Q) < c.

A1 and A3 implies that there exists a unique quantity Qc > 0 such that price is equal
to total marginal cost: P

(
Qc

)
= c.7 This quantity will be useful because it represents a

natural upper bound to impose on quantities in order to obtain bounded action spaces.
The instantaneous variable profit of downstream firm Di (gross of any payments to the

supplier) is given by
π (qi, q−i) = qiP (qA + qB) ,

where qi denotes Di’s own quantity, and q−i its competitor’s quantity. We use sub-
scripts to denote derivatives, e.g., π2 (qi, q−i) =

∂π(qi,q−i)
∂q−i

. Assumptions A1-A2 imply that
π11 (qi, q−i) =

∂2π(qi,q−i)

∂q2i
< 0 and π12 (qi, q−i) =

∂2π(qi,q−i)
∂qi∂q−i

< 0.
The instantaneous industry profit, that is, the sum of all three firms’ profits, is given by

Π(qA + qB) = (qA + qB) (P (qA + qB)− c) .

7Note that for c = 0, A3 implies that price must be negative for high quantities. This assumption is
not crucial for our results. See Footnote 21 in Section 5.1, where we discuss the implications of restricting
prices to be non-negative in the linear-demand case.
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We denote by RC (q−i) = argmaxq (q (P (q + q−i)− c)) = argmaxq (Π (q + q−i)− π (q−i, q))

the Cournot reaction function given the marginal production cost c. The per-firm Cournot
quantity qC is defined by qC = RC

(
qC
)
. The quantity that maximizes industry profits is

denoted by QM = argmaxQ Π(Q), and we let RM (q−i) = argmaxq Π(q + q−i) = QM − q−i

denote the “monopoly reaction function” and qM = QM/2 = RM
(
qM
)

the quantity per
downstream firm when they split the total monopoly quantity equally. Throughout the
paper, we will frequently use the linear-demand specification P (Q) = 1−Q.8 In this case,
qC = 1−c

3
and qM = 1−c

4
, and A1 to A3 are satisfied for any c < 1.

Time is continuous and infinite, indexed by t ∈ [0,∞), and all firms discount future
payoffs at a rate r > 0. A contract between U and Di consists of a vector (qi, fi) ∈

[
0, Qc

]
×R

that specifies a flow of input quantity qi from the supplier to the retailer and a fixed payment
fi from the retailer to the supplier per unit of time.9 For simplicity, we assume that
the supply contracts are quantity-fixing, that is, they fix how much quantity the retailer
transforms into the final output and sells to consumers per unit of time.10 The absence of
a contract between U and Di is equivalent to (qi, fi) = (0, 0).

Di’s flow payoff given the current contracts is thus π (qi, q−i)− fi, and U ’s flow payoff is

fA + fB − c (qA + qB) .

The sum of the three firms’ flow payoffs is equal to the industry profit Π(qA + qB).
The timing of contracting is governed by two independent Poisson processes with rates

λA > 0 and λB > 0, respectively. For a small time interval ∆t, the probability that the
current contract between U and Di terminates and recontracting occurs is λi∆t. In this
event, U instantaneously makes a new offer to Di, and Di immediately accepts or rejects

8Using P (Q) = 1−Q rather than P (Q) = a− bQ is without loss of generality. Given that the marginal
cost c is constant and a free parameter, setting a = 1 amounts to a choice of measurement units for output,
and setting b = 1 is a normalization of the market size.

9Two-part tariffs will be considered in Section 6.2.
10An alternative would be that after purchasing their input quantities, the downstream firms play the

Bertrand-Edgeworth game of downstream price competition with capacity constraints. In this alternative
specification, both retailers find it optimal to transform all their input and set their price at P (qA, qB) for
any (qA, qB) ∈

[
0, Qc

]2 if the following assumptions hold: the upstream marginal cost c is high enough,
stockpiling is infeasible (i.e., a retailer whose contract specifies quantity qi can sell at most qi∆t in a time
interval ∆t), and the retailers can adjust their prices instantaneously in response to a change in either
retailer’s contract. Our assumptions on contracts (quantity-transfer pairs, and quantity fixing) are in line
with those in Segal (1999)’s general analysis of contracting with externalities between one principal and
several agents.
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the offer.11 If Di accepts (rejects) an offer (qi, fi), its quantity becomes qi (zero) per unit
of time until the contract terminates and the next recontracting between U and Di occurs.

We will refer to λi as the “reaction speed” of Di’s contract. A higher λi (shorter com-
mitment length) means that recontracting with Di occurs more frequently, therefore the
bilateral pair U − Di can react more quickly to changes in the contract between U and
D−i. Conversely, a lower λi (longer commitment length) means that recontracting with Di

occurs less frequently, therefore the bilateral pair U −Di reacts less quickly to changes in
the contract between U and D−i.

We focus on (stationary) pure Markov strategies. The state variable when U is about
to make an offer to Di is the quantity in U ’s current contract with D−i.12 Formally, a
Markov strategy of U is given by a pair of mappings (Ri, Fi)i=A,B where (Ri (q−i) , Fi (q−i))

is the contract offered to Di when U currently sells quantity q−i to D−i. We will refer to
(RA, RB) as the dynamic quantity reaction functions, because they capture how the quantity
in U ’s contract with one retailer reacts to the quantity in the competing retailer’s contract.
The quantity action spaces are restricted to a bounded set; specifically, we assume that
Ri :

[
0, Qc

]
→
[
0, Qc

]
for all i.13 The fixed fee offers are allowed to take on any value in

R. For Di, a pure Markov strategy is given by a function Mi (q, f ; q−i) ∈ {0, 1}, where
Mi (q, f ; q−i) = 1 (resp. Mi (q, f ; q−i) = 0) means that Di accepts (resp. rejects) the offer
(q, f) when U currently sells quantity q−i to D−i. All actions are public.

A strategy profile is called a Markov Perfect Equilibrium (MPE) if it is a subgame

11The assumption that time lapses between offers, but not between offers and acceptance decisions, goes
back to the classic bargaining models of Stahl (1972) and Rubinstein (1982). It has also been adopted more
recently by Ambrus and Lu (2015) in a continuous-time bargaining model where proposal opportunities
arrive according to a Poisson process over time. The assumption helps us to focus on the opportunism
problem and how the supplier’s contract with one retailer reacts to changes in its contract with the other
retailer.

12One may wonder why the state when U makes an offer to Di excludes the fixed fee f−i in U ’s current
contract with D−i, although this fixed fee affects U ’s (and D−i’s) payoff until the next recontracting with
D−i. The reason is that U ’s preferences over continuation strategies are independent of f−i. The fixed
fee f−i does not affect Di’s payoffs when deciding whether to accept or reject an offer (qi, fi) from U ,
which implies that U ’s continuation payoff functions for the same q−i but two different values of f−i are
positive affine transformations of one another. Applying the criterion set out in Maskin and Tirole (2001),
Markov strategies therefore only depend on the quantity that U currently supplies to the rival retailer in
our context.

13The assumption that the quantity action spaces are bounded ensures that the value functions are well
defined and that dynamic programming techniques are applicable. Our approach in the analysis will be to
ignore the upper and lower bounds on quantity when solving the supplier’s optimization problem and to
verify ex post that indeed Ri (q−i) ∈

[
0, Qc

]
for all q−i ∈

[
0, Qc

]
and i.
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perfect equilibrium in Markov strategies. We restrict attention to equilibria in which all
offers are accepted (Mi (Ri (q−i) , Fi (q−i) ; q−i) = 1 for all q−i and all i), which is without
loss of generality because an offer that would be rejected can be replaced by an accepted
null contract (qi, fi) = (0, 0) without any impact on expected present discounted payoffs.
Henceforth, an MPE is also referred to simply as equilibrium, and we will say that an
equilibrium is linear if the equilibrium dynamic quantity quantity reaction functions are
linear. All firms are risk neutral and seek to maximize expected present discounted payoffs.

Remarks The results in our main model do not hinge on the assumption that contract
offers are publicly observed. As the two Poisson processes according to which contracts
terminate are independent, the probability that the supplier makes simultaneous offers
to the two downstream firms is zero. Moreover, since contracts are quantity-forcing, a
downstream firm can infer its rival’s current quantity from its own variable profit. When
receiving a contract offer, a downstream firm would thus be aware of the quantity in its
rival’s current contract even if the rival’s offer had been privately observed. The issue
of beliefs about the supplier’s offer to another downstream firm, which is central to the
analysis when the suplier makes secret simultaneous offers, is therefore moot in our setting.

It is also worth noting that the stochastic nature of the contract timing is not important
for our results. Given that the firms are risk neutral, formally the model is equivalent to
one in which all contracts have length ∆A +∆B, where ∆i (i = A,B) denotes the time lag
with which the bilateral pair U −Di reacts to a change in D−i’s quantity.14 By the Poisson
property, the probability of contract termination is independent of a contract’s age in our
setting. Therefore, as in a model with alternating offers and deterministic contract lengths,
only the quantity that the rival retailer is committed to under its current contract, and not
contract age, is relevant. The critical feature of our model is that recontracting events are
asynchronous, not that they are stochastic.

14Specifically, the setting with deterministic reactions lags ∆A and ∆B is analogous to our model when
e−r∆i = λi

r+λi
for each i (or, in a discrete-time version of the model with deterministic reaction lags, when

δTi = λi

r+λi
, where Ti denotes the number of periods before i’s contract reacts and δ the discount rate).

See also Maskin and Tirole (1988a) and Lagunoff and Matsui (1997, Section 3) for discussions of various
microfoundations of dynamic games with asynchronous moves.
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4 Benchmark: Static Model

Before we analyze the dynamic game, let us set out the benchmark of simultaneous offers in
a static game. Consider a game in which U makes simultaneous contract offers of the form
(qi, fi) to the retailers, and the retailers simultaneously and independently decide whether
to accept or reject these offers. The payoffs are the same as the flow payoffs in our dynamic
setting, namely π (qi, q−i)− fi for Di and fA + fB − c (qA + qB) for U , with (qi, fi) = (0, 0)

if Di rejects U ’s offer.

Public offers When the supplier’s offers are publicly observed by the retailers, the
supplier can fully exert its market power and obtains the entire monopoly profit in (a
subgame perfect) equilibrium. For instance, U can achieve this by offering the contract(
qM , π

(
qM , qM

))
to each retailer. Both retailers will accept and together they will sell the

monopoly quantity. The intuition for why the monopoly outcome arises in equilibrium is
that the supplier internalizes the effects on all retailers’ profits when making offers: Any
change in the quantity offered to Di affects the fixed fee that the supplier can obtain from
retailer D−i by an amount equal to the effect of the change on D−i’s variable profit.

Secret offers When Di cannot observe the contract offered to D−i, the (perfect Bayesian)
equilibrium of the game is sensitive to Di’s beliefs about the contract offered to D−i when
Di receives an out-of-equilibrium offer. A sensible and widely-used assumption in Cournot
settings like the one we consider is that retailers hold passive beliefs, whereby a retailer
that receives an out-of-equilibrium offer believes that its rival was offered the equilibrium
contract.15

Let (q̂A, q̂B) denote the equilibrium quantities. With passive beliefs, retailer Di is willing
to accept an offer (q, f) if and only if f ≤ π (q, q̂−i). The equilibrium offer to Di must
therefore be pairwise-proof, i.e., maximize the bilateral surplus of the pair U − Di given
q̂−i, which in our setting means that Di’s equilibrium quantity must be the Cournot best

15The passive beliefs refinement is appealing in Cournot-like settings because U has no incentive to
change the offer to D−i when it changes the offer to Di. See Hart and Tirole (1990), Rey and Vergé (2004),
or Rey and Tirole (2007) for more detailed discussions.
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response to q̂−i:

q̂i = RC (q̂−i) = argmax
qi

(Π (qi + q̂−i)− π (q̂−i, qi)) .

In the unique equilibrium given passive beliefs, the retailers thus sell the Cournot quantities(
qC , qC

)
and the supplier earns Π

(
2qC
)
< Π

(
QM
)
. Intuitively, the supplier is unable to

fully exert its market power because when making an offer to Di, it does not internalize
the negative effect that a higher qi has on D−i’s variable profit.16

Different beliefs can lead to different equilibrium outcomes. In particular, the monopoly
outcome arises in equilibrium under symmetric beliefs, whereby a retailer that receives an
out-of-equilibrium offer believes that its rival was offered the same contract.17,18

The simultaneous-offer games analyzed in the literature thus all feature one of two
polar outcomes in our setting. Either the monopoly outcome arises in equilibrium (when
offers are public or offers are secret and beliefs symmetric) or opportunism leads to the
Cournot competition outcome in equilibrium (when offers are secret and beliefs passive or
wary). Other than through changes in parameters that affect the Cournot or the monopoly
outcome, these models do not accommodate varying degrees of opportunism.

16Some papers in the vertical contracting literature (e.g., O’Brien and Shaffer, 1992) use the “contract
equilibrium” concept pioneered by Cremer and Riordan (1987), which requires contracts to be pairwise
proof (i.e., each contract must maximize bilateral surplus given the contracts of other retailers) but does
not rule out multilateral deviations. In the model with Cournot competition and quantity-fixing contracts
considered here, the quantities in a passive-beliefs perfect Bayesian equilibrium coincide with the quantities
in such a contract equilibrium, hence this alternative solution concept would lead to the same conclusion.

17The third belief refinement in the literature is wary beliefs, first introduced by McAfee and Schwartz
(1994). Wary beliefs coincide with passive beliefs in our setting with quantity-fixing contracts, hence the
Cournot outcome would remain the equilibrium outcome under this alternative belief refinement. See In
and Wright (2018) for a more general analysis of “endogenous signaling games” that offers a game-theoretic
foundation for wary beliefs in vertical contracting games.

18In fact, in our setting, an equilibrium with any non-negative quantities (q̂A, q̂B) such that q̂A+ q̂B < Qc

can be sustained by appropriately defined out-of-equilibrium beliefs. To see this, suppose that if Di receives
an offer qi ̸= q̂i, Di believes that D−i was offered the contract

(
Qc − qi, 0

)
and that D−i holds similar beliefs

(which makes accepting
(
Qc − qi, 0

)
optimal for D−i). The highest fixed fee Di is willing to pay is thus

equal to π
(
qi, Qc − qi

)
= qic, which makes a deviation unprofitable for the supplier.
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5 Dynamic Model

5.1 Equilibrium conditions and existence

To solve for an equilibrium, we define four value functions. Given the Markov strategies
((RA, FA, RB, FB) ,MA,MB), let WA(qB, fB) denote the expected present discounted value
of U ’s profits when U is about to make an offer to DA, the other retailer’s current contract
is (qB, fB), and all firms play according to their Markov strategies henceforth. WB(qA, fA)

is defined symmetrically. Let VA(q, f ; qB) denote the expected present discounted value of
DA’s profits when DA accepts the contract offer (q, f) it just received, U currently supplies
qB to the other retailer, and all firms play according to their Markov strategies henceforth.
VB(q, f ; qA) is defined symmetrically.

U ’s optimization problem when it is about to make an offer to Di can then be written
as19

Wi(q−i, f−i) = max
(q,f)

(
f + f−i − c (q + q−i)

r + λi + λ−i

+
λi

r + λi + λ−i

Wi(q−i, f−i) +
λ−i

r + λi + λ−i

W−i (q, f)

)
(1)

s.t. Vi(q, f ; q−i) ≥ Vi(0, 0; q−i).

The first term in the objective function captures the discounted present value of U ’s profits
in the time interval until the next recontracting. The second and third term capture the
discounted present value of U ’s continuation profits from the next recontracting onwards,
taking into account that either the contract with Di or the contract with D−i can terminate
first. Morover, the supplier is constrained by the condition that Di finds it optimal to accept
U ’s offer (q, f). Note that it is without loss of generality to require Di’s acceptance in U ’s
optimization problem, because any offer that Di’s strategy would reject can be replaced by
an offer (0, 0) such that Di is indifferent between acceptance and rejection.

We first show that the retailer’s acceptance condition boils down to an upper bound on
the fixed fee:

Lemma 1 It is optimal for Di to accept offer (q, f) when the rival’s current quantity is
q−i, i.e., Vi(q, f ; q−i) ≥ Vi(0, 0; q−i), if and only if

f ≤ fi(q; q−i) ≡
r + λi

r + λi + λ−i

π (q, q−i) +
λ−i

r + λi + λ−i

π (q, R−i (q)) .

19Details on how to derive the objective function in (1) can be found in Online Appendix A.
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The fixed payment fi(q; q−i) extracts the present discounted value of all variable profits
that Di earns (in expectation) during the contract. Capturing the possibility of a reaction
in the rival’s contract before Di’s own contract terminates, it is a weighted average of
Di’s variable profit given its rivals’ current quantity q−i and Di’s variable profit given
its rival’s quantity R−i (q) after recontracting between U and D−i. The weights depend
on the relative reaction speeds of the two supplier-retailer pairs, with a smaller λi and a
higher λ−i increasing the relative weight of π (q, R−i (q)), and on the discount rate, with a
higher discount rate increasing the weight of the profit prior to the possible recontracting
with D−i. Variable profits beyond the current contract do not matter for the retailer’s
acceptance decision, because these profits will be fully extracted by the fixed fees in future
contracts.

The objective function in the supplier’s optimization problem in (1) is strictly increasing
in f , as can be seen by noting that ∂W−i(q,f)

∂f
= 1

r+λi
> 0. It follows that f = fi(q; q−i) at the

solution of the supplier’s problem. Substituting the binding constraint into the objective
function, solving for Wi(q−i, f−i), and denoting by W i(q−i) = Wi(q−i, f−i) − f−i

r+λ−i
the

supplier’s value function net of the fixed payments already committed to in the past, the
supplier’s problem can be rewritten as

W i(q−i) =
1

r + λ−i

max
q

(
π (q, q−i)− c (q + q−i) +

λ−i

r + λi

π (q, R−i (q)) + λ−iW−i (q)

)
.

(2)
The strategies ((RA, FA, RB, FB) ,MA,MB) form an MPE if and only if there exist value
functions

(
WA,WB

)
such that, for every i and q−i, (2) holds,

Ri (q−i) ∈ argmax
q

(
π (q, q−i)− c (q + q−i) +

λ−i

r + λi

π (q, R−i (q)) + λ−iW−i (q)

)
,

Fi (q−i) = fi(Ri (q−i) ; q−i), and Mi (q, f ; q−i) = 1 if and only if f ≤ fi(q; q−i).
For the remainder of the analysis, we will focus on characterizing the equilibrium dy-

namic quantity reaction functions (RA, RB), with the implicit understanding that Fi (q−i) =

fi(Ri (q−i) ; q−i) and Mi (q, f ; q−i) = 1 if and only if f ≤ fi(q; q−i).
Our first result on the equilibrium dynamic quantity reaction functions is that they must

be downward sloping (if they exist). As in dynamic oligopoly models, this result follows
from π12 < 0 (see Maskin and Tirole (1987, 1988a,b) or Vives (2005)).

Lemma 2 When an equilibrium exists, the equilibrium dynamic quantity reaction functions
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are downward sloping: Ri (q) ≤ Ri (q
′) if q > q′, for i ∈ {A,B}.

Assuming that an equilibrium has differentiable dynamic quantity reaction functions,
we can use the first-order conditions of the supplier’s optimization problem to further
characterize these functions. For each i = A,B, the first-order condition of the problem in
(2) is that, at q = Ri (q−i),

π1 (q, q−i)− c+
λ−i

r + λi

(
π1 (q, R−i (q)) + π2 (q, R−i (q))R

′
−i (q)

)
+ λ−i

dW−i (q)

dq
= 0. (3)

By the envelope theorem,

dW−i (q)

dq
=

1

r + λi

(π2 (R−i (q) , q)− c) ,

which implies that the first-order condition for each i = A,B can be written as follows: at
q = Ri (q−i),

0 = −c+
r + λi

r + λi + λ−i

π1 (q, q−i)

+
λ−i

r + λi + λ−i

(
π1 (q, R−i (q)) + π2 (q, R−i (q))R

′
−i (q) + π2 (R−i (q) , q)

)
. (4)

The first-order condition in (4) has the following interpretation. Consider U ’s contract
offer to DA given that DB’s current contract specifies a quantity qB. At q = RA (qB), a
small change ∆q in the quantity that U and DA agree upon must have zero effect on the
present discounted joint profit of the bilateral pair U −DA. This effect can be decomposed
as follows. First, there is a direct effect −c∆q on upstream costs until U ’s next recontracting
with DA. Second, DA’s variable profit is affected, both at its rival’s current quantity qB and
after a possible reaction in the rival’s quantity during DA’s contract. At the rival’s current
quantity, the only effect on DA’s variable profit is the direct effect π1 (q, qB)∆q, but after
a reaction in DB’s contract there is both a direct effect π1 (q, RB (q))∆q and an indirect
effect π2 (q, RB (q))R′

B (q)∆q due to the marginal reaction in DB’s quantity. Third, there
is the direct effect π2 (RB (q) , q)∆q on DB’s variable profit after a reaction of DB’s contract
during DA’s contract. This change in DB’s variable profit is part of the present discounted
joint profit of U −DA, because it will be fully extracted by U through the fixed fee in its
next contract with DB. From the envelope theorem, ∆q has no additional first order effects.
In particular, the indirect effect of ∆q on DB’s variable profit due to the marginal reaction
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in DB’s quantity in case of recontracting is not first order, because U ’s recontracting offer
to DB internalizes this change.20

The first-order conditions are necessary for an equilibrium given differentiable dynamic
quantity reaction functions, but they are not sufficient. For the case of linear demand
functions, however, we can show that there exists a unique set of linear dynamic quan-
tity reaction functions such that the necessary and sufficient condition of U ’s dynamic
optimization problem are satisfied:

Proposition 1 Suppose P (Q) = 1 − Q.21 For any parameter values r, λA, λB > 0 and
c ∈ [0, 1), there exists a unique linear MPE. This MPE is dynamically stable, i.e., for any
history, quantities converge to a steady state.

The next two subsections further analyze the properties of the steady state in a dy-
namically stable equilibrium. We first consider the case of symmetric reaction speeds and
then turn to the implication of asymmetries in reaction speeds. In each case, we first derive
results for the general model assuming equilibrium existence and differentiability of the
dynamic quantity reaction functions, and then we analyze the comparative statics of the
steady-state equilibrium quantities in the unique linear MPE under linear demand.

5.2 Symmetric reaction speeds

If λA = λB = λ, the equilibrium dynamic quantity reaction functions depend on r
λ
, the

discount rate scaled by the recontracting rate, but not on r and λ separately. This can be
seen directly from the first-order conditions in (4) by rewriting the weights on the second
and third term as

r
λ
+1

r
λ
+2

and 1
r
λ
+2

, respectively. Intuitively, what matters for the firms’

20In contrast, U ’s recontracting offer to DB will not internalize the effect on DA’s variable profit in
the time interval until the next recontracting with DA, therefore the indirect effect π2 (q,RB (q))R′

B (q)
appears in the first-order condition for U ’s offer to DA.

21Our specification allows for negative prices, but that is not essential for the results. The alternative
specification P (Q) = max {1−Q, 0} would yield the same equilibrium for high enough c, because the
equilibrium dynamic reaction functions in our unrestricted specification satisfy Ri (q−i) + q−i < 1 for all
q−i ∈

[
0, Qc

]
and i if c is large enough. In the case of small c, where Ri (q−i) + q−i > 1 for q−i close to

Qc = 1− c (although on path aggregate quantity never exceeds 1, that is, Ri (R−i (q))+R−i (q) < 1 for all
q ∈

[
0, Qc

]
), restricting the quantity action space to

[
0, QM

]
re-establishes the equivalence between the two

specifications, because the equilibrium dynamic reaction functions in our specification satisfy Ri (q−i) +
q−i < 1 and Ri (q−i) ∈

(
0, QM

)
for all q−i ∈

[
0, QM

]
and i.
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present discounted payoffs is not the absolute value of the discount rate but the discount
rate relative to the expected time between recontracting events.

The next proposition uses the result that the equilibrium dynamic reaction functions
must be downward-sloping together with the (local) stability condition for the steady-state
quantities, R′

A (qeB)R
′
B (qeA) < 1,22 to establish upper and lower bounds on the equilibrium

steady-state quantity in a symmetric equilibrium:

Proposition 2 Suppose λA = λB = λ. In a dynamically stable equilibrium with symmetric
differentiable dynamic quantity reaction functions and a symmetric steady state,

(i) the steady-state quantity qe < qC.

(ii) the steady-state quantity qe ≥ q
(
r
λ

)
, where the lower bound q

(
r
λ

)
∈
(
qM , qC

)
is uniquely

defined by
Π′ (2q)− π2

(
q, q
)
+

1
r
λ
+ 1

Π′ (2q) = 0,

strictly increasing in r
λ
, and has limits

lim
r
λ
→0

q
( r
λ

)
∈
(
qM , qC

)
and lim

r
λ
→∞

q
( r
λ

)
= qC .

Proof. Let λA = λB = λ, and suppose that a dynamically stable equilibrium with
differentiable RA = RB = R and a symmetric steady state (qe, qe) exists. The first-order
condition (4) evaluated at (qe, qe) is

−c+
r
λ
+ 1

r
λ
+ 2

π1 (q
e, qe) +

1
r
λ
+ 2

(π1 (q
e, qe) + π2 (q

e, qe)R′ (qe) + π2 (q
e, qe)) = 0

for each i = A,B, which, using Π′ (2qe) = π1 (q
e, qe) + π2 (q

e, qe)− c, can be rewritten as

Π′ (2qe)− π2 (q
e, qe) +

1
r
λ
+ 1

(Π′ (2qe) + π2 (q
e, qe)R′ (qe)) = 0. (5)

We first prove part (ii), and then part (i), of the proposition.
Part (ii): By Lemma 2, R′ (qe) ≤ 0. Since π2 (q, q) ≤ 0 for all q ≥ 0, (5) and R′ (qe) ≤ 0

imply that
0 ≥ Π′ (2qe)− π2 (q

e, qe) +
1

r
λ
+ 1

Π′ (2qe) . (6)

22The equilibrium reaction functions define a difference equation from (qA,t, qB,t−1) to (qA,t+2, qB,t+1) =
(RA (RB(qA,t)) , RB (RA(qB,t−1))). Then, its Jacobian matrix evaluated at a steady state (qeA, q

e
B) has two

equal real eigenvalues R′
B(q

e
A)R

′
A(q

e
B), which must be strictly less than one for (local) stability. See Vives

(1999) for more details.
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The function G(q) ≡ Π′ (2q)−π2 (q, q)+
1

r
λ
+1

Π′ (2q) is strictly decreasing in q, because both
Π′ (2q) − π2 (q, q) and Π′ (2q) are strictly decreasing in q. Moreover, by the definitions of
qM and qC , G(qM) = −π2

(
qM , qM

)
> 0 and G(qC) = 1

r
λ
+1

Π′ (2qC) < 0. Hence, for every
r
λ
> 0, there exists a unique q

(
r
λ

)
∈
(
qM , qC

)
such that

Π′ (2q)− π2

(
q, q
)
+

1
r
λ
+ 1

Π′ (2q) = 0, (7)

and (6) implies that qe ≥ q
(
r
λ

)
.

Applying the implicit function theorem to (7), we obtain that

dq

d
(
r
λ

) sign
= − 1(

r
λ
+ 1
)2Π′ (2q) ,

which is strictly positive because q > qM and thus Π′ (2q) < 0. Moreover, it follows from
(7) that lim r

λ
→∞ q

(
r
λ

)
= qC and lim r

λ
→0 q

(
r
λ

)
∈
(
qM , qC

)
.

Part (i): By the stability condition and Lemma 2, R′ (qe) > −1. Moreover, the result
from part (ii) that qe > qM implies that π2 (q

e, qe) < 0. (5) and R′ (qe) > −1 thus imply
that

0 <

(
1 +

1
r
λ
+ 1

)
(Π′ (2qe)− π2 (q

e, qe)) . (8)

The function Π′ (2q) − π2 (q, q) is strictly decreasing in q and equal to zero for q = qC .
Hence, (8) implies that qe < qC .

Proposition 2 implies that any symmetric steady-state quantity lies strictly between qM

and qC . The intution for this finding is as follows. Consider U ’s contract offer to DA.
When making an offer, the supplier internalizes only the effect on DA’s own variable profit
in the time interval until the next recontracting with DB, but it internalizes the effect on
all retailers’ variable profits from the next recontracting with DB onwards (because the
fixed fee offered to DA takes into account expected changes in DA’s variable profit due to
recontracting with DB before DA’s own contract terminates, and similarly the fixed fees
in future contracts extract all expected future changes in the retailers’ variable profits).
Hence, it is intuitive that the steady state in the dynamic model falls in between the
benchmark cases of simultaneous secret offers with passive beliefs, in which the supplier
only internalizes the effect on DA’s own variable profits when making an offer to DA and
each retailer sells qC in equilibrium, and the case of simultaneous public offers, in which the
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supplier internalizes the effects on all retailers variable profits when making an offer and
each retailer sells qM in the symmetric equilibrium.23

By this reasoning, one might expect that lim r
λ
→∞ q

(
r
λ

)
= qC and lim r

λ
→0 q

(
r
λ

)
= qM ,

but the latter part of this intuition turns out to be wrong. While indeed lim r
λ
→∞ q

(
r
λ

)
= qC ,

we find that lim r
λ
→0 q

(
r
λ

)
> qM . Although the short-term gain from making an offer that

raises bilateral profits at the expense of industry profit goes to zero when reactions become
near instantaneous (λ → ∞),24 the equilibrium steady-state quantity must nonetheless lie
strictly above the monopoly quantity. Intuitively, that the short-term gain from making
an opportunistic offer goes to zero is not enough to guarantee that the supplier has no
incentive to behave opportunistically, because the expected present discount value of the
losses in future industry profits triggered by an opportunistic move also goes to zero in this
limit case. In a dynamically stable equilibrium, quantities converge back to the steady-
state level after a deviation from it (and do so “fast” for λ → ∞), hence a deviation from
a candidate steady-state

(
qM , qM

)
does not have a persistent negative effect on industry

profits.25 For r
λ
→ ∞, on the other hand, the short-term gain from an opportunistic move

remains positive while the present discounted value of long-term effects goes to zero, hence
the supplier makes offers that maximize bilateral profits in equilibrium.

Consistent with these intuitions, we obtain the following comparative statics results on
the steady-state quantity in the linear-demand case:

Proposition 3 Suppose P (Q) = 1 − Q, λA = λB = λ, and c ∈ [0, 1). Then, the unique
linear MPE is symmetric (RA = RB) with steady-state quantities qeA = qeB = qe. The
steady-state quantity qe is strictly increasing in r

λ
, with lim r

λ
→0 q

e = 3(1−c)
10

∈ (qM , qC), and

23This insight may seem to suggest that RM (q−i) < R (q−i) < RC (q−i) (which is equivalent to qM < qe <
qC for q−i = qe) for all q−i, but that intuition is incorrect. As will be illustrated later, RM (q−i) > R (q−i) for
small q−i in the linear-demand case. Intuitively, maximizing current industry profits given q−i is different
from maximizing future industry profits, because the quantity offered to Di today triggers reactions in
future recontracting offers and thus dynamically affects the quantities of both retailers.

24Or, in the case of r → 0, the weight put on the short-term gain goes to zero.
25The observation that both the short-term gain from an opportunistic offer and the net present value

of the effects on future industry profits go to zero for r
λ → 0 also holds for a deviation from a candidate

equilibrium steady-state with a symmetric quantity qe > qM . However, intuitively the supplier’s incentive
to behave opportunistically is smaller when the hypothetical steady-state quantity is larger, because (i) the
maximal gain in bilateral profits that U − Di can obtain is smaller for larger q−i, and (ii) since industry
profits are concave, the negative effect of a marginal increase in total quantity on industry profits is larger
when the aggregate quantity is farther above qM .
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Figure 1: The solid line shows the equilibrium steady-state quantity qe as a function of r
λ
,

the dashed lines the per-firm Cournot quantity (qC) and the per-firm symmetric monopoly
quantity (qM). All quantities are computed for P (Q) = 1−Q and c = 0.

lim r
λ
→∞ qe = 1−c

3
= qC.

Figure 1 illustrates the comparative statics results of Proposition 3. The equilibrium
steady-state quantity is smaller, that is, the opportunism problem is less severe, for greater
patience (lower r) and faster reaction speed (higher λ). Intuitively, faster reaction speed
alleviates the opportunism problem, for a given discount rate, because it decreases the
length of time during which each supplier-retailer pair can gain from opportunistic moves
at the expense of the rival retailer, and greater patience alleviates the opportunism problem,
for a given reaction speed, because firms attach less weight to the short-term profit gains
from opportunistic moves. As also illustrated in the figure, the equilibrium steady state
approaches the Cournot quantity as r

λ
approaches infinity, but remains bounded strictly

above the per-firm monopoly quantity as r
λ

approaches zero.
It is worth noting that although the aggregate quantity always lies between QM and

2qC in the equilibrium steady state, the same need not be true out of steady state. This
is illustrated in Figure 2, which shows how aggregate quantity changes with each reaction
in the rival retailer’s contract starting from the state q−i = 0. Moreover, the pattern of
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Figure 2: The dots show the sequence of aggregate quantities 0 + R(0), R (R(0)) + R(0),
R (R(0))+R(R (R(0))), etc. given the dynamic quantity reaction function R in the equilib-
rium from Proposition 3. The dashed lines show the aggregate Cournot quantity (2qC) and
the monopoly quantity (QM). All quantities are computed for P (Q) = 1−Q and c = 0.

convergence in Figure 2, whereby the aggregate quantity “zig-zags” around the steady state
and the distance to the aggregate steady-state quantity decreases at each reaction, holds
more generally, starting from any initial state:

Proposition 4 Suppose P (Q) = 1−Q, λA = λB = λ, and c ∈ [0, 1). In the unique linear
MPE,

q +R (q) < 2qe < R (q) + R (R (q)) if and only if q < qe,

with both inequalities reversed for q > qe, and

|2qe − (q +R (q))| > |2qe − (R (q) + R (R (q)))| for any state q ̸= qe.

5.3 Asymmetric reaction speeds

This section considers the implications of asymmetries in reaction speeds. Specifically, we
assume that DB’s contract reacts faster than DA’s contract, i.e., that

λA ≤ λB,
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which is without loss of generality but simplifies the exposition.
In order to disentangle the effects of asymmetry from effects of changes in the aggre-

gate recontracting rate, our comparative statics exercises will focus on the following two
parameters. First, the mean reaction speed, denoted by

λM =
λA + λB

2
,

and second, the degree of asymmetry in reaction speeds, defined as

σ =
λM − λA

λM

∈ [0, 1) .

The reaction speeds of the two supplier-retailer pairs can be expressed as functions of these
two parameters as follows:

λA = (1− σ)λM ,

λB = (1 + σ)λM .

For a small time interval ∆t, the probability of a contract termination occuring is then
given by 2λM∆t, independently of the degree of asymmetry σ. Raising σ makes the reaction
speeds more asymmetric without changing the mean recontracting rate.

Using the first-order conditions together with the result that the dynamic quantity
reaction functions are non-increasing and the local stability condition, our next proposition
establishes a series of insights about the steady-state quantities under asymmetric reaction
speeds without imposing linear demand.

Proposition 5 Suppose λA ≤ λB. In any dynamically stable equilibrium with twice differ-
entiable dynamic quantity reaction functions that have uniformly bounded first and second
derivatives (when such an equilibrium exists),

(i) the aggregate steady-state quantity qeA + qeB ≥ Q
(

r
λM

, σ
)

, where the lower bound

Q
(

r
λM

, σ
)
∈
(
QM , 2qC

)
is uniquely defined by

Π′ (Q)− π2

(
1

2
Q,

1

2
Q

)
+

r
λM

+ 1 + σ2(
r

λM
+ 1− σ

)(
r

λM
+ 1 + σ

)Π′ (Q) = 0,
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strictly decreasing in σ, strictly increasing in r
λM

, and has limits

lim
σ→0

Q

(
r

λM

, σ

)
= 2q

(
r

λM

)
> QM , lim(

r
λM

,σ
)
→(0,1)

Q

(
r

λM

, σ

)
= QM , and

lim
r

λM
→∞

Q

(
r

λM

, σ

)
= 2qC ;

(ii) for any given ϵ > 0, the steady-state quantities satisfy

qeA < ϵ and
∣∣qeB −QM

∣∣ < ϵ

if r
λM

is close enough to 0 and σ is close enough to 1.

The key new insight in Proposition 5 is that asymmetry in reaction speeds can lead to a
lower aggregate quantity in the equilibrium steady state (when an equilibrium exists). When
the reaction speeds are symmetric, the aggregate steady-state quantity is bounded below
by an amount strictly above the monopoly quantity. When the degree of reaction speed
asymmetry is sufficiently large (and r

λM
is close enough to zero), however, the aggregate

steady-state quantity is arbitrarily close to the monopoly quantity, as shown in part (ii) of
the proposition.

Consistent with this, our next proposition shows that in the linear-demand case, the
aggregate steady-state quantity is falling in the degree of reaction speed asymmetry in the
unique equilibrium with linear dynamic quantity reaction functions.

Proposition 6 Suppose P (Q) = 1 − Q, c ∈ [0, 1), and λA ≤ λB. The steady-state
quantities (qeA, q

e
B) in the unique linear MPE vary with r

λM
and σ as follows:

(i) The aggregate quantity qeA + qeB is strictly increasing in r
λM

.

(ii) The aggregate quantity qeA + qeB is strictly decreasing in σ, qeA is strictly decreasing in
σ, and qeB is strictly increasing in σ.

(iii) lim(
r

λM
,σ
)
→(0,1)

(qeA, q
e
B) = (0, QM).

Figures 3 and 4 provide graphical illustrations of these results. First, as illustrated in
Figure 3, reaction speed asymmetry reduces the degree of opportunism: For a given mean
reaction speed, the aggregative quantity in the steady state is lower for higher degrees of
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asymmetry. Second, and consistent with the results in the symmetric case, for a given
degree of asymmetry, the aggregate steady-state quantity is smaller when the firms are
more patient (smaller r) or the mean reaction speed is higher (greater λM). Third, as
illustrated in Figure 4, at the steady state the retailer whose contract reacts faster sells a
larger quantity than the retailer whose contract reacts more slowly. Finally, as r

λM
→ 0

and σ → 1, the steady state approaches the “exclusive dealing outcome” in which one
retailer sells the entire monopoly quantity and its rival sells zero.26 For q−i = 0, the
conflict vanishes altogether, as RC (0) = RM (0) = QM . Hence, although reaction speed
asymmetry strengthens the incentive for opportunism with DB for a given current quantity
qA, when qA is small the conflict between collective surplus maximization and bilateral
surplus maximization between the supplier and DB is weak to begin with. By selling a small
quantity to DA, exploiting the weakened incentive to behave opportunistically when making
offers to DA, the supplier thus also weakens its own incentive to behave opportunistically
when making the next contract offer to DB.

Overall, this intuition suggests that, consistent with our results, the aggregate steady-
state quantity will be smaller under reaction speed asymmetry than under symmetry, and
that it will be allocated asymmetrically across retailers, with the retailer whose contract
reacts faster (DB) selling a larger quantity than its rival. In the limit case where σ → 1 and
r

λM
→ 0, DA’s quantity converges to zero, eliminating the conflict between collective surplus

maximization and bilateral surplus maximization when U contracts with DB. Anticipating
the slow future reaction of DA’s contract (since λA → 0 when σ → 1), the supplier therefore
optimally offers the quantity RC (0) = RM (0) = QM to DB. The supplier also has no
profitable deviation to offering a larger quantity to DA in this limit case, because doing so
would harm future industry profits and these negative effects are persistent when λA ≈ 0.

More generally, the steady state in the limit case where σ → 1 and r
λM

→ 0 corresponds
to the equilibrium outcome of a sequential-move game in which U first offers a contract
to DA and then to DB, and the second retailers (DB) observes the first retailer’s (DA’s)
contract. The contract offered to the second retailer (DB) then maximizes the bilateral
surplus of the supplier and the second retailer given the contract accepted by the first

26Formally, RC (q−i) − RM (q−i) is strictly increasing for all q−i > 0 because ∂RM

∂q−i
= −1 while ∂RC

∂q−i
∈

(−1, 0) by assumptions A1 and A2.
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Figure 3: The solid lines show the aggregate equilibrium steady-state quantity qeA+ qeB as a
function of the reaction speed asymmetry σ for two different values of r

λM
, the dashed lines

the aggregate Cournot quantity (2qC) and the monopoly quantity (QM). All quantities are
computed for P (Q) = 1−Q and c = 0.

retailer, while the contract offered to the first retailer (DA) maximizes the bilateral surplus
of the supplier and the first retailer anticipating that the later contract will maximize the
bilateral surplus of the supplier and the second retailer (DB). In our setting, this means
that the supplier offers RC (qA) to DB, and, anticipating this, offers 0 to DA, which leads
to quantities

(
0, QM

)
and a total profit of ΠM .

6 Extensions

6.1 Product differentiation

While the result that the opportunism problem is fully solved in the limit clearly hinges on
the retailers selling undifferentiated products, the findings that reaction speed asymmetry
and patience alleviate the opportunism problem hold more broadly. To see this, we now
extend our baseline model to allow for differentiation between the final products sold by
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per-firm quantity

Figure 4: The solid lines show the equilibrium steady-state quantities qeA and qeB as a
function of the reaction speed asymmetry σ, given r

λM
≈ 0. The dashed line indicates the

monopoly quantity QM . All quantities are computed for P (Q) = 1−Q and c = 0.
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Figure 5: Illustration of the per-firm steady-state quantity under differentiated Cournot
competition with symmetric reaction speeds when c = 0.

the retailers. Suppose the inverse demand curve for Di’s good is

Pi (qi, q−i) = 1− 2 + γ

1 + γ

(
qi +

γ

2 + γ
q−i

)
, (9)

where γ ≥ 0 measures the degree of product substitutability, with γ = 0 corresponding
to independent goods and γ → ∞ to perfect substitutes. Under this demand formulation,
which is due to Levitan and Shubik (1971), the monopoly benchmark is independent of the
degree of product substitutability: qMLS = qM = 1−c

4
and Pi

(
qM , qM

)
= 1+c

2
. The Cournot

quantity given the marginal production cost c becomes qCLS = (1+γ)(1−c)
4+3γ

, which is rising in
the degree of substitutability γ. Competition is more intense when the retailers sell closer
substitutes. The limit γ → ∞ corresponds to our baseline model: limγ→∞ qCLS = qC .

As in our baseline linear-demand setting, the game has a unique linear MPE that is
dynamically stable.27 Figure 5 illustrates the main comparative statics of the equilibrium
steady-state quantity under reaction speed symmetry.28 The per-firm steady-state quantity,

27The proof of equilibrium existence and uniqueness within the class of linear MPE proceeds in the same
way as in our baseline model with perfect substitutes.

28For λA = λB = λ, the equilibrium steady-state quantity given the demand functions in (9) becomes

qeLS =
3 (1− c) (1 + γ) (2 + r̃)

10 (2 + r̃) + γ (19 + 8r̃) +

√
4 (1 + γ) (2 + r̃)

2
+ γ2 (1 + r̃ + r̃2)

,
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100γ =
10γ =

2γ =

monopoly

Figure 6: Illustration of the aggregate steady-state quantity under differentiated Cournot
competition with asymmetric reaction speeds when λA = (1−σ)λM , λB = (1+σ)λM , c = 0

and r
λM

= 1.

which lies between the monopoly quantity and the Cournot quantity, rises in the degree of
product substitutability. Hence, the degree of opportunism, defined as the gap between the
the steady-state equilibrium outcome and the monopoly outcome, is greater when the final
products are closer substitutes. Intuitively, for given reaction speeds and discount rates,
better substitutability leads to greater opportunism because each bilateral pair has greater
incentives to free-ride on the rival downstream firm when the competitive externalities are
stronger.29 The comparative statics of the equilibrium steady-state quantity with respect
to r

λ
are the same as before.

The insight that reaction speed asymmetry alleviates the opportunism problem also
extends to the setting with differentiated final goods, as illustrated in Figure 6. Moreover,
reaction speed asymmetry affects the aggregate steady-state equilibrium quantity more
strongly when the downstream goods are closer substitutes (that is, for higher γ).

where r̃ = r
λ . Straightforward calculations show that ∂qeLS

∂γ > 0 for all γ > 0, and that ∂qeLS

∂r̃ > 0.
29In Online Appendix D, we also analyze an extension of the model to three retailers, with a fixed order

of recontracting. We find that (under reaction speed symmetry) the equilibrium degree of opportunism is
greater with three retailers than with two retailers. Intuitively, all else equal, the incentive of each bilateral
supplier-retailer to free-ride on the rival retailers is greater when there are more retailers and thus each
individual supplier-retailer pair has a smaller market share in a symmetric equilibrium.
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6.2 Two-part tariffs

We now consider two-part tariff contracts, which allow retailers to choose their quantities
freely and adjust them in response to changes in the rival’s contract. Suppose that a
contract between U and Di consists of a vector (wi, fi), where wi is the wholesale price per
unit of quantity ordered and fi ∈ R is a flow of fixed payment per unit of time. Contract
rejection is denoted by (w, T ) = (∞, 0).

The retailers can adjust their quantities freely, and we assume that at any point in
time, the retailers play the Nash equilibrium of the downstream competition game given
the current wholesale price vector.30 Retailer Di’s quantity given the wholesale price vector
(wi, w−i) is

q (wi, w−i) = argmax
q

(P (q + q (w−i, wi))− wi) q.

If D−i does not have an accepted contract, then D−i’s quantity is q (∞, wi) = 0 and Di’s
quantity is q(wi,∞) = argmaxq (P (q)− wi) q.

Retailer Di’s variable downstream profit can thus be written in reduced form as

π (wi, w−i) ≡ π (q (wi, w−i) , q (w−i, wi)) = (P (q (wi, w−i) + q (w−i, wi))− wi) q (wi, w−i) .

The supplier’s profit is

fA + fB + (wA − c) q (wA, wB) + (wB − c) q (wB, wA) ,

and the industry profit becomes

Π(wA, wB) = π (wA, wB) + (wA − c) q (wA, wB) + π (wB, wA) + (wB − c) q (wB, wA) .

Benchmarks The benchmarks against which we will compare the equilibrium steady
state of the dynamic game are the monopoly wholesale prices and the pairwise-proof whole-
sale prices.

As in the case of quantity-forcing contracts, the equilibrium of the game with simultane-
ous public offers features monopoly profits. In equilibrium, the supplier offers the wholesale
prices

(
wM , wM

)
that induce the retailers to set the industry profit-maximizing quantities

30This requires that each retailer can adjust its own quantity without delay and observes changes in its
rival’s wholesale price, either because contract offers are publicly observed or because accepted wholesale
prices are ex post observable.
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(i.e., q
(
wM , wM

)
= qM) and sets fi = π

(
wM , wM

)
for all i. The equilibrium wholesale price

wM ∈
(
c, P

(
2qM

))
and is equal to wM = 1+3c

4
in our baseline linear demand specification.

Our other benchmark are the pairwise-proof wholesale prices that satisfy the first-order
equilibrium conditions of the simultaneous secret-offers game with passive beliefs and ex
post observability, ensuring that the retailers play the Nash equilibrium of the downstream
competition game given wholesale prices as in our dynamic setting.31 Letting (ŵA, ŵB)

denote the equilibrium wholesale prices, under passive beliefs Di is willing to accept (w, f)
if and only if f ≤ π (w, ŵ−i). Thus, ŵi must maximize the bilateral profit of U and Di

given ŵ−i (pairwise proofness):

ŵi = argmax
wi

π (wi, ŵ−i) + (wi − c) q (wi, ŵ−i) + (ŵ−i − c) q (ŵ−i, wi) .

As shown in McAfee and Schwartz (1995), the pairwise-proof wholesale price in a symmetric
game lies below the supplier’s marginal cost: ŵ < c. In our linear-demand specification,
ŵ = 3c−1

2
, which is non-negative if and only if c ≥ 1

3
, and the per-retailer quantity becomes

q (ŵ, ŵ) = 1−c
2

.
It is important to note, however, that while the pairwise-proof wholesale prices satisfy

the first-order equilibrium conditions in the simultaneous-offers game with passive beliefs
and ex post observability, a perfect Bayesian equilibrium also requires immunity to mul-
tilateral deviations. And as shown by McAfee and Schwartz (1995) and Rey and Vergé
(2004), multilateral deviations are profitable under linear demand and undifferentiated
goods, leading to equilibrium inexistence. As we show next, however, our dynamic game
can have an MPE, with a steady-state that approaches the pairwise-proof outcome in the
limit, even in cases where the static game with secret offers, passive beliefs, and ex post
observability does not have a perfect Bayesian equilibrium.

Dynamic model The state variable when U contracts with Di is now the wholesale price
in U ’s current contract with D−i, and the dynamic reaction function Ri (w−i) determines
the wholesale price offered to Di given D−i’s current wholesale price. We are interested in
an MPE in which rejections do not occur on the equilibrium path.

31Under ex post (or interim) observability, the retailers observe each other’s accepted contracts before
competing in the downstream market. Ex post observability in simultaneous-offer games has been con-
sidered by McAfee and Schwartz (1994), McAfee and Schwartz (1995), and Rey and Vergé (2004), among
others.
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Figure 7: Illustration of the per-firm steady-state wholesale price and quantity under linear
demand P (Q) = 1−Q with λA = λB = λ and c = 0.5.

In Online Appendix C, we provide a detailed equilibrium analysis. Two new challenges
arise relative to the case of quantity-forcing contracts. First, unlike with quantity-forcing
contracts, there is no null contract whose acceptance is equivalent to contract rejection.
“Large” deviations that induce contract rejection therefore need to be ruled out separately
even when the second-order conditions for deviations that induce contract acceptance are
satisfied. Second, solving for the equilibrium strategies in the linear-demand specification
becomes more computationally difficult.

In spite of these challenges, we are able to establish existence of unique linear MPE
and derive comparative statics results in our linear-demand setting under some restrictions
on the parameter values.32 Figure 7 illustrates the equilibrium steady-state under sym-
metric reaction speeds for parameter values such that deviations that induce rejection are
unprofitable and wholesale prices, quantities, and prices are nonnegative on- and off the
equilibrium path. The symmetric steady-state wholesale price decreases in r

λ
and converges

to the pairwise-proof wholesale price level ŵ as r
λ

goes to infinity. The steady-state per-firm
quantity increases in r

λ
and converges to the pairwise-proof quantity level q (ŵ, ŵ), consis-

tent with the result in our baseline setting. Moreover, as shown formally in the Online
Appendix, the opportunism problem cannot disappear, even in the limit r

λ
→ 0.

Numerical analyses also suggest that asymmetry in reaction speeds continues to reduce

32For instance, we can show that if c ∈
(
1
2 ,

5
9

)
and the upper bound on the supplier’s wholesale price

action space is chosen appropriately, there exists a unique linear MPE for sufficiently small λ. In this
equilibrium, wholesale prices, quantities, and prices are nonnegative on and off the equilibrium path. A
formal analysis can be found in Online Appendix C.
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Figure 8: Illustration of the steady-state wholesale prices and aggregate quantities under
linear demand P (Q) = 1−Q with λA = (1− σ)λM , λB = (1 + σ)λM , c = 0.5 and r

λM
= 10.

the degree of opportunism with two-part tariffs contracts. The left panel of Figure 8
depicts the steady-state equilibrium wholesale prices, showing that the wholesale price of
DB, whose contract reacts faster, is lower than the wholesale price of DA, whose contract
reacts more slowly. As a result, DB sells a larger quantity than DA in the steady state,
which is qualitatively similar to the baseline model of quantity-forcing contracts. The overall
impact of reaction asymmetry is illustrated in the right panel of Figure 8, which shows that
the aggregate steady-state quantity is decreasing in the reaction speed asymmetry.

The analysis with two-part tariffs raises the exciting prospect that the dynamic modeling
approach proposed in this paper could potentially lend a proper game-theoretic foundation
for pairwise-proofness and the related “contract equilibrium” concept pioneered by Cremer
and Riordan (1987). The contract equilibrium concept, which imposes pairwise-proofness
but lacks an equilibrium foundation, is hard to defend in simultaneous-offer games because
it ignores multilateral deviations by the supplier. And indeed, as shown by Rey and Vergé
(2004), such multilateral deviations are profitable in many cases, leading to inexistence of a
perfect Bayesian equilibrium with passive beliefs (in which pairwise proofness is implied by
the first-order conditions). In our dynamic model, the issue of multilateral deviations does
not arise because offers are made asynchronously, and we have shown that there can exist
an MPE with a steady state that converges to the pairwise-proof outcome in a setting where
the simultaneous secret-offers game with passive beliefs and ex post observability does not
have an equilibrium. We leave a more complete analysis of the prospect that a dynamic
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model could serve as a game-theoretic foundation for the contract equilibrium concept for
future research.

7 Concluding Remarks

We have analyzed a dynamic model of bilateral contracting between one supplier and mul-
tiple competing downstream firms. In our setting, each downstream firm anticipates future
recontracting between the supplier and its rival (as well as itself), and supplier suffers from
opportunism even if it can make public contract offers. The proposed dynamic model offers
an alternative to simultaneous secret-offers models of opportunism in vertical contracting.
Although characterizing equilibria tends to be more difficult in the dynamic model, we have
shown that a unique equilibrium in simple linear strategies, with closed-form solutions for
the strategies and equilibrium steady-state quantities, exists under linear demand. More-
over, the dynamic model overcomes a key weakness of simultaneous secret-offers models,
the sensitivity of the equilibrium outcome to out-of-equilibrium beliefs. The dynamic model
also unifies existing literature, by offering a setting that generates the equilibrium outcomes
of existing models, with either simultaneous or sequential offers, as special limit cases.

The focus of our analysis has been the extent of opportunism that prevails in the absence
of any strategies used by the supplier to restore its monopoly power. In Online Appendix
B, we discuss various strategies that would allow the supplier to overcome its opportunism
problem, many of which mirror solutions in static games. The supplier can restore its
monopoly power by vertically integrating with one of the retailers, by committing to deal
exclusively with one retailer, or by offering the retailers opt-out contracts, which allow
retailers to stop buying before contract termination and thereby protect them against future
opportunistic moves.

Our results are relevant for vertical merger policy as well as for competition policy on
vertical restraints. First, the results show that secret offers are not needed for opportunism
to arise, and that vertical mergers and opportunism-avoiding contract provisions like ex-
clusive dealing or opt-out clauses can have anticompetitive effects even when contracts
are public. Second, the results offer guidance on when vertical mergers and opportunism-
avoiding contract provisions are likely to be more harmful. We have found that the degree
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of opportunism is greater when firms are impatient, there are long time gaps between recon-
tracting, and reaction speeds are symmetric. This, in turn, suggests that vertical mergers
and opportunism-avoiding contract provisions are likely to be more harmful for downstream
consumers (and more attractive for suppliers) when firms are impatient, time gaps between
recontracting are long, and reaction speeds are symmetric. Proxies for the model’s key pa-
rameters that can potentially be observed and used by competition authorities to help assess
the likely competitive harm include the average duration of downstream firm i’s contracts
(as a proxy for 1

λi
) and the interest rate (as a proxy for r). Moreover, useful information to

assess the degree of asymmetries in reaction speeds would include observed asymmetries in
the time gap between a change in downstream firm A’s supply terms followed by a change
in downstream firm B’s supply terms versus the opposite order, and evidence of otherwise
similar downstream firms being treated asymmetrically prior to a vertical merger.

There are several interesting issues that we leave for future research. First, an important
yet difficult direction for future research is to endogenize the speed of contract reactions and
the associated contract durations. Second, a more extensive analysis of non-linear vertical
contracts could be done in more general environments. Finally, the model could potentially
be extended to allow for upstream competition.
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Appendix: Proofs

Proof of Lemma 1. Let Vi (s) = Vi(Ri (s) , Fi (s) ; s) and recall that Mi (Ri (s) , Fi (s) ; s) = 1 for all
i and s. We have that

Vi(q, f ; s) =
π (q, s)− f

r + λi + λ−i
+

λi

r + λi + λ−i
Vi (s) +

λ−i

r + λi + λ−i
Ṽi (q, f) ,

Ṽi (q, f) =
π (q,R−i (q))− f

r + λi
+

λi

r + λi
Vi (R−i (q)) .

The first term in Vi(q, f ; s) captures the flow profit that Di earns until the next contract termination occurs.

The second term captures the case in which Di’s own contract terminates before D−i’s contract. The third

term captures the case in which D−i’s contract terminates first. In the latter case, Di earns flow profit

(π (q,R−i (q))− f) in the time interval between the termination of D−i’s contract and the termination of

its own current contract,33 and an expected discounted profit of Vi (R−i (q)) thereafter.34

Substituting Ṽi (q, f) into Vi(q, f ; s) yields

Vi(q, f ; s) = − f

r + λi
+

π (q, s)

r + λi + λ−i
+

λ−i

(r + λi + λ−i) (r + λi)
π (q,R−i (q))

+
λiλ−i

(r + λi + λ−i) (r + λi)
Vi (R−i (q)) +

λi

r + λi + λ−i
Vi (s) .

Firm Di prefers acceptance over rejection if Vi(q, f ; s) ≥ Vi(0, 0; s), which holds if and only if

f ≤ r + λi

r + λi + λ−i
π (q, s) +

λ−i

r + λi + λ−i
π (q,R−i (q)) +

λiλ−i

r + λi + λ−i
(Vi (R−i (q))− Vi (R−i (0))) . (10)

The supplier’s objective function in (1) is strictly increasing in f , because ∂W−i(q,f)
∂f = 1

r+λi
> 0. Hence,

the retailer’s acceptance condition must be binding in equilibrium, otherwise U could increase its profit by
offering a contract with the same quantity but a higher fixed payment. It follows that

Vi (s) ≡ Vi(Ri (s) , Fi (s) ; s) =
λiλ−i

(r + λi + λ−i) (r + λi)
Vi (R−i (0)) +

λi

r + λi + λ−i
Vi (s) ,

which can be rewritten as
Vi(s) =

λiλ−i

(r + λi) (r + λ−i)
Vi (R−i (0)) .

Since this must hold for all s including s = R−i (0), we can conclude that

Vi(s) = 0 for all s.

33Note that if D−i’s contract terminates within this interval, D−i will be offered and accept a contract
with quantity R−i (q) again, hence Di’s flow profit remains constant until its own contract terminates.

34For details on how to derive the weights in Vi(q, f ; s) and Ṽi (q), see Online Appendix A, which presents
the omitted details for the analysis of the supplier’s objective function.
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Hence, (10) simplifies to f ≤ fi(q; q−i) ≡ r+λi

r+λi+λ−i
π (q, q−i) +

λ−i

r+λi+λ−i
π (q,R−i (q)).

Proof of Lemma 2. The proof strategy follows that of Lemma 1 in Maskin and Tirole (1988a).
Suppose (in negation) that there exist q−i > q′−i such that Ri(q−i) > Ri(q

′
−i). By the definition of Ri, we

have that

π(Ri(q−i), q−i)− c(Ri(q−i) + q−i) +
λ−i

r + λi
π(Ri(q−i), R−i(Ri(q−i))) + λ−iW−i(Ri(q−i))

≥ π(Ri(q
′
−i), q−i)− c(Ri(q

′
−i) + q−i) +

λ−i

r + λi
π(Ri(q

′
−i), R−i(Ri(q

′
−i))) + λ−iW−i(Ri(q

′
−i)), (11)

and similarly,

π(Ri(q
′
−i), q

′
−i)− c(Ri(q

′
−i) + q′−i) +

λ−i

r + λi
π(Ri(q

′
−i), R−i(Ri(q

′
−i))) + λ−iW−i(Ri(q

′
−i))

≥ π(Ri(q−i), q
′
−i)− c(Ri(q−i) + q′−i) +

λ−i

r + λi
π(Ri(q−i), R−i(Ri(q−i))) + λ−iW−i(Ri(q−i)). (12)

Adding (11) to (12), we obtain that

π(Ri(q−i), q−i)− π(Ri(q
′
−i), q−i) ≥ π(Ri(q−i), q

′
−i)− π(Ri(q

′
−i), q

′
−i),

which can be rewritten as ∫ q−i

q′−i

∫ Ri(q−i)

Ri(q′−i)

π12(x, y)dxdy ≥ 0.

This is a contradiction because π12 < 0.

Proof of Proposition 1. Suppose that P (Q) = 1 − Q and c ∈ [0, 1). We look for an equilbrium
with linear dynamic quantity reactions functions of the form

Ri(q−i) = αi − βiq−i,

where βi ≥ 0 for each i. Given linearity of the dynamic reaction functions, the first-order conditions (4)
simplify as follows: for q = Ri(q−i),

1− c− q−i − 2q +
λ−i

r + λi
(1− 2α−i − c+ (3β−i − 2)q) = 0,

or, equivalently,

Ri(q−i) =
1

2− λ−i

r+λi
(3β−i − 2)

(
1− c+

λ−i

r + λi
(1− 2α−i − c)− q−i

)
. (13)

Setting the right-hand side of (13) equal to αi − βiq−i for each i = A,B, we obtain that either (βA, βB) =

(β∗
A, β

∗
B) or (βA, βB) = (β∗∗

A , β∗∗
B ), where

β∗
i =

7λi + λ−i + 4r −
√

(λA + λB + 4r)2 + 12λAλB

12λi
> 0, (14)

and
β∗∗
i =

7λi + λ−i + 4r +
√
(λA + λB + 4r)2 + 12λAλB

12λi
> 0. (15)
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We first show that the solution (β∗
A, β

∗
B) gives rise to a dynamically stable equilibrium, and then rule

out an equilibrium in which (βA, βB) = (β∗∗
A , β∗∗

B ). From the definition of β∗
i ,

β∗
i <

7λi + λ−i + 4r − λA − λB − 4r

12λi
=

1

2
.

To see the second-order conditions, note that the value functions of the supplier are quadratic under linear
demand and dynamic quantity reaction functions. By taking derivatives of both sides in the first-order
condition (3) with respect to q−i, we have: for all q−i,

G (q−i)R
′
i (q−i) + π12 (Ri (q−i) , q−i) = 0,

where G (q−i) is the second derivative of the supplier’s objective function,

G (q−i) = π11 (q, q−i) +
λ−i

r + λi

(
π11 (q,R−i (q)) + π12 (q,R−i (q))R

′
−i (q) + π12 (q,R−i (q))R

′
−i (q)

+ π22 (q,R−i (q))R
′′
−i (q) + π2 (q,R−i (q))R

′′
−i (q)

)
+ λ−iW

′′
−i (q) ,

with q = Ri (q−i). Note that G (q−i) is constant and strictly negative since π12 < 0 and R′
i (q−i) = −β∗

i < 0.

Hence, the necessary conditions in (13) are also sufficient.
Given the slope parameters, we can characterize the intercepts of the dynamic quantity reaction func-

tions. First, one can check from (13) that the following system of linear equations should be satisfied:

α∗
i =

(1− c)(r + λi) + λ−i(1− 2α∗
−i − c)

2(r + λi)− λ−i(3β∗
−i − 2)

.

Solving for the intercepts yields

α∗
i =

(1− c) (λA + λB + r)

(
7λi + λ−i + 4r −

√
(λA + λB + 4r)

2
+ 12λAλB

)
2λi

(
7λA + 7λB + 10r −

√
(λA + λB + 4r)

2
+ 12λAλB

) , (16)

for each i = A,B.
Letting R∗

i (q−i) = α∗
i − β∗

i q−i, we check that R∗
i (q−i) ∈ [0, Qc] = [0, 1 − c] for all q−i ∈ [0, 1 − c]

and i = A,B, i.e., that it was innocuous to ignore the lower and upper bound on the action space in the
supplier’s optimization problem. To economize on notation, let us define

x = (λA + λB + 4r)2 + 12λAλB .

We then obtain that
R∗

i (0) =
(1− c) (λA + λB + r) (7λi + λ−i + 4r −

√
x)

2λi (7λA + 7λB + 10r −
√
x)

,

and
R∗

i (Qc) = R∗
i (1− c) =

(1− c) (
√
x− λA − λB − 4r) (7λi + λ−i + 4r −

√
x)

12λi (7λA + 7λB + 10r −
√
x)

.

It is immediate that R∗
i (Qc) ≥ 0, and hence R∗

i (q−i) ≥ 0 for all q−i ∈ [0, Qc]. Moreover, R∗
i (0) ≤ 1 − c is

equivalent to

(λA + λB + r)
(
7λi + λ−i + 4r −

√
x
)
≤ 2λi

(
7λA + 7λB + 10r −

√
x
)

⇐⇒ (λ−i − λi + r)
(
7λA + 7λB + 10r −

√
x
)
≤ 6 (λ−i + r) (λA + λB + r) ,
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which is true since 6λA + 6λB + 6r ≥ 7λA + 7λB + 10r −
√
x and λ−i + r ≥ λ−i − λi + r.

We can conclude that there exists an equilibrium with steady-state quantities (qeA, q
e
B) that satisfy

R∗
A(q

e
B) = qeA and R∗

B(q
e
A) = qeB and are given by

(qeA, q
e
B) =

(
α∗
A − β∗

Aα
∗
B

1− β∗
Aβ

∗
B

,
α∗
B − β∗

Bα
∗
A

1− β∗
Aβ

∗
B

)
. (17)

The steady state is dynamically stable because the slopes of the reaction functions are less than one in

absolute value.
It remains to rule out the existence of an equilibrium with slope parameters (βA, βB) = (β∗∗

A , β∗∗
B ),

which would give rise to an unstable dynamic path because β∗∗
A β∗∗

B > 1.35 Computing the intercepts of the
dynamic quantity reaction functions that correspond to (β∗∗

A , β∗∗
B ), we obtain

α∗∗
i =

(1− c) (λA + λB + r)

(
7λi + λ−i + 4r +

√
(λA + λB + 4r)

2
+ 12λAλB

)
2λi

(
7λA + 7λB + 10r +

√
(λA + λB + 4r)

2
+ 12λAλB

) . (20)

Denoting R∗∗
i (q−i) = α∗∗

i − β∗∗
i q−i, it is easy to check R∗∗

i

(
Qc

)
< 0. Thus, there is no MPE in which

the dynamic quantity reaction functions are (R∗∗
A , R∗∗

B ), because the restriction that Ri :
[
0, Qc

]
→
[
0, Qc

]
would be violated.

It is worth noting that this equilibrium inexistence result is not an artifact of the restriction to non-

negative quantities. First, if quantities were allowed to take on negative values and the supplier were to

35Since each β∗∗
i is strictly increasing in r,

β∗∗
A β∗∗

B >

(
7λA + λB +

√
(λA + λB)2 + 12λAλB

)(
λA + 7λB +

√
(λA + λB)2 + 12λAλB

)
144λAλB

=
1

3
+

(λA + λB)
2
+ (λA + λB)

√
(λA + λB)2 + 12λAλB

18λAλB
, (18)

where the last equality is obtained by straightforward algebra. From (18), β∗∗
A β∗∗

B > 1 if

(λA + λB)
2
+ (λA + λB)

√
(λA + λB)2 + 12λAλB

18λAλB
≥ 2

3
,

which can be rewritten as

(λA + λB)
2
+ (λA + λB)

√
(λA + λB)2 + 12λAλB − 12λAλB ≥ 0. (19)

For a given λT = λA + λB , the derivative of the left-hand-side of (19) with respect to λAλB is

6λT√
λ2
T + 12λAλB

− 12 < 0.

Hence, if (19) holds for λA = λB = λT

2 , then it also holds for all other λA, λB > 0 such that λA+λB = λT .
For λA = λB = λT

2 , (19) becomes λ2
T + λT

√
λ2
T + 3λ2

T − 3λ2
T ≥ 0, which holds with equality. Thus,

β∗∗
A β∗∗

B > 1.
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follow (R∗∗
A , R∗∗

B ), its present discounted payoff when contracting with one retailer would tend to +∞ and

its present discounted payoff when contracting with the other retailer would tend to −∞. Hence, the

value functions would not be well defined. Second, an equilibrium with piece-wise linear dynamic quantity

reaction functions of the form Ri (q−i) = max {α∗∗
i − β∗∗

i q−i, 0} does not exist either, as shown in the next

lemma.36

Lemma A1 Suppose P (Q) = 1−Q and c ∈ [0, 1). There does not exist a MPE in which the dynamic
quantity reaction functions are

Ri (q−i) = max {α∗∗
i − β∗∗

i q−i, 0} for each i,

where α∗∗
i and β∗∗

i are as given in (20) and (15), respectively.

Proof of Lemma A1. Suppose (in negation) that there exists a MPE with the dynamic reaction
functions

Ri(q−i) = max{α∗∗
i − β∗∗

i q−i, 0}

for each i = A,B. Moreover, without loss of generality, suppose that λA ≥ λB .
For all i = A,B,

α∗∗
i − β∗∗

i q−i = 0 ⇐⇒ q−i = q ≡ 6(1− c)(λA + λB + r)

7 (λA + λB) + 10r +
√
x
.

It is easy to check that
α∗∗
B > q,

and thus RB(0) > q, if and only if
24λB(λA − λB + 2r) > 0,

which is true for λA ≥ λB .
Since RA (qB) = 0 for all qB ≥ q, we have that for all qB ≥ q,

WA(qB) = − cqB
r + λB

+
λB

r + λB
W̄B(0).

Now consider U ’s optimal offer to DB when DA’s current quantity is 0. According to the postulated
equilibrium strategies, RB (0) = α∗∗

B > q, hence

WB(0) =
π(α∗∗

B , 0)− cα∗∗
B

r + λA
+

λA

(r + λA)(r + λB)
π(α∗∗

B , 0) +
λA

r + λA
WA(α

∗∗
B )

=
π(α∗∗

B , 0)− cα∗∗
B

r + λA
+

λA

(r + λA)(r + λB)
π(α∗∗

B , 0) +
λA

r + λA

(
− cα∗∗

B

r + λB
+

λB

r + λB
WB(0)

)
.

36In contrast, since R∗
i (q−i) > 0 for all q−i ∈

[
0, Qc

]
, an equilibrium in which Ri (q−i) =

max {R∗
i (q−i) , 0} exists and exhibits the same dynamics and steady-state quantities as the equilibrium

charaterized in this proof.
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Now consider a one-shot deviation to offering α∗∗
B − ϵ, where α∗∗

B − ϵ ≥ q. U ’s deviation profit is

W̃B(α
∗∗
B − ϵ, 0) ≡ π(α∗∗

B − ϵ, 0)− c(α∗∗
B − ϵ)

r + λA
+

λA

(r + λA)(r + λB)
π(α∗∗

B − ϵ, 0) +
λA

r + λA
WA(α

∗∗
B − ϵ)

=
π(α∗∗

B − ϵ, 0)− c(α∗∗
B − ϵ)

r + λA
+

λA

(r + λA)(r + λB)
π(α∗∗

B − ϵ, 0)

+
λA

r + λA

(
−c(α∗∗

B − ϵ)

r + λB
+

λB

r + λB
WB(0)

)
.

Comparing U ’s deviation profit to its equilibrium profit, we obtain that

W̃B(α
∗∗
B − ϵ, 0)−WB(0) =

(
λA + λB + r

(r + λA)(r + λB)

)
ϵ (c+ 2α∗∗

B − (1 + ϵ)) .

Thus, U has a profitable deviation if there exists an ϵ > 0 such that α∗∗
B − ϵ ≥ q and

c > 1 + ϵ− 2α∗∗
B ⇐⇒ α∗∗

B >
1− c+ ϵ

2
.

If α∗∗
B > 1−c

2 , then both inequalities are satisfied for small enough ϵ > 0. Denoting x = (λA + λB + 4r)2 +

12λAλB , we obtain that α∗∗
B > 1−c

2 if and only if

(λA + λB + r)(7λB + λA + 4r +
√
x) > λB(7λA + 7λB + 10r +

√
x),

which can be simplified to
7λA + 7λB + 10r +

√
x > 6λA + 6λB + 6r,

which is true. Hence, U has a strictly profitable deviation.

Proof of Proposition 3. Let λA = λB = λ, and suppose that P (Q) = 1 − Q and c ∈ [0, 1).
From the expressions for α∗

i and β∗
i in (16) and (14) in the proof of Proposition 1, it is immediate that

α∗
A = α∗

B = α∗ and β∗
A = β∗

B = β∗. Specifically, letting r̃ ≡ r
λ , we obtain that

β∗ =
8λ+ 4r −

√
(2λ+ 4r)

2
+ 12λ2

12λ
=

2 + r̃ −
√
1 + r̃ + r̃2

3
,

and

α∗ =

(1− c)(2λ+ r)

(
8λ+ 4r −

√
(2λ+ 4r)

2
+ 12λ2

)
2λ

(
14λ+ 10r −

√
(2λ+ 4r)

2
+ 12λ2

)
= (1− c) (2 + r̃)

(
2 + r̃ −

√
1 + r̃ + r̃2

7 + 5r̃ − 2
√
1 + r̃ + r̃2

)
.

Given that the dynamic quantity reaction functions are symmetric, the steady-state quantities are sym-
metric as well and given by

qe =
α∗

1 + β∗ = (1− c) (2 + r̃) 3
2 + r̃ −

√
1 + r̃ + r̃2(

7 + 5r̃ − 2
√
1 + r̃ + r̃2

) (
5 + r̃ −

√
1 + r̃ + r̃2

) ,
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which can be simplified to
qe =

(1− c) (2 + r̃) 3

19 + 8r̃ +
√
1 + r̃ + r̃2

. (21)

The symmetric steady-state quantity qe is strictly increasing in r̃ because

∂qe

∂r̃

sign
= 19 + 8r̃ +

√
1 + r̃ + r̃2 − (2 + r̃)

(
8 +

1 + 2r̃

2
√
1 + r̃ + r̃2

)
= 3 +

√
1 + r̃ + r̃2 −

2
(
1 + r̃ + r̃2

)
2
√
1 + r̃ + r̃2

− 3r̃

2
√
1 + r̃ + r̃2

= 3

(
1− r̃

2
√
1 + r̃ + r̃2

)
> 0.

Next, observe that for r̃ = 0, (21) simplifies to qe = 3(1−c)
10 . It remains to show that qe converges to

qC = 1−c
3 as r̃ tends to +∞. From (21),

lim
r̃→∞

qe = 3(1− c) lim
r̃→∞

(
2 + r̃

19 + 8r̃ +
√
1 + r̃ + r̃2

)

= 3(1− c) lim
r̃→∞

 2
r̃ + 1

19
r̃ + 8 +

√
1+r̃
r̃2 + 1


= 3(1− c)

1

9
,

which is equal to the Cournot quantity qC .

Proof of Proposition 4. As shown in Propositions 1 and 3, the unique linear MPE is symmetric
with a slope −β∗ ∈

(
− 1

2 , 0
)

of R(q). It follows that q′ + R (q′) > q + R (q) if and only if q′ > q. Since
R (qe) = qe, it follows that q + R (q) < (>)2qe if and only if q < (>)qe. Moreover, R′ < 0 implies that
R (q) > (<)qe if and only if q < (>)qe. Together, these observations imply that if q < qe, then

q +R (q) < 2qe < R (q) +R (R (q)) ,

with both inequalities reversed if q > qe.
Next, note that ∂(q+R(q)+R(q)+R(R(q)))

∂q = (1− β∗)
2
> 0. Hence, q +R (q) +R (q) +R (R (q)) < (>)4qe

if and only if q < (>)qe. It follows that for any q ̸= qe,

|2qe − (q +R (q))| > |2qe − (R (q) +R (R (q)))| .

Proof of Proposition 5. Let r̃ = r
λM

thoughout the proof. Note that the first-order equilibrium

conditions in (4) can be rewritten as functions of r̃ and σ as follows: at q = RA (qB) ,

0 = −c+
r̃ + 1− σ

r̃ + 2
π1 (q, qB) +

1 + σ

r̃ + 2
(π1 (q,RB (q)) + π2 (q,RB (q))R′

B (q) + π2 (RB (q) , q)) , (22)

and at q = RB (qA),
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0 = −c+
r̃ + 1 + σ

r̃ + 2
π1 (q, qA) +

1− σ

r̃ + 2
(π1 (q,RA (q)) + π2 (q,RA (q))R′

A (q) + π2 (RA (q) , q)) . (23)

Part (i): The first-order conditions evaluated at a steady state (qeA, q
e
B) can be written as

R′
B(q

e
A) = − (r̃ + 2)Π′ (Qe)− (r̃ + 1− σ)π2(q

e
B , q

e
A)

(1 + σ)π2(qeA, q
e
B)

,

R′
A(q

e
B) = − (r̃ + 2)Π′ (Qe)− (r̃ + 1 + σ)π2(q

e
A, q

e
B)

(1− σ)π2(qeB , q
e
A)

,

where Qe = qeA + qeB denotes the aggregate quantity. The stability condition R′
A(q

e
B)R

′
B(q

e
A) < 1 therefore

implies that

((r̃ + 2)Π′ (Qe)− (r̃ + 1 + σ)π2(q
e
A, q

e
B)) ((r̃ + 2)Π′ (Qe)− (r̃ + 1− σ)π2(q

e
B , q

e
A))

(1− σ)π2(qeB , q
e
A) (1 + σ)π2(qeA, q

e
B)

< 1,

or, equivalently,

((r̃ + 1− σ) (P (Qe)− c+ qeAP
′ (Qe)) + (1 + σ) (P (Qe)− c+QeP ′ (Qe)))

× ((r̃ + 1 + σ) (P (Qe)− c+ qeBP
′ (Qe)) + (1− σ) (P (Qe)− c+QeP ′ (Qe)))

<(1 + σ)(1− σ) (P ′ (Qe))
2
qeAq

e
B . (24)

Now suppose (in negation) that qeA ≥ RC(qeB) and qeB ≥ RC(qeA). By the definition of the Cournot
reaction function, we then have that P (Qe)− c+ qeAP

′ (Qe) ≤ 0 and P (Qe)− c+ qeBP
′ (Qe) ≤ 0. Moreover,

adding up these two conditions yields P (Qe)− c+ Qe

2 P ′(Qe) ≤ 0, and thus

P (Qe)− c+QeP ′(Qe) ≤ Qe

2
P ′(Qe) ≤ 0,

It follows that the left-hand side of (24) is greater than or equal to

(1 + σ)(1− σ)
(Qe)

2

4
(P ′(Qe))

2
. (25)

We now show that (25) is greater than or equal to the right-hand side of (24), thereby establishing
a contradiction. Since qeA + qeB = Qe and qei ≥ 0, there exists an α ∈ [0, 1] such that qeA = αQe, qeB =

(1− α)Qe, and thus qeAq
e
B = α (1− α) (Qe)

2. As α (1− α) ≤ 1
4 for all α ∈ [0, 1], it follows that the

right-hand side of (24) is smaller than or equal to

(1 + σ)(1− σ) (P ′ (Qe))
2 (Qe)

2

4
. (26)

Since (25) is equal to (26), condition (24) is violated. Hence, it cannot be that qeA ≥ RC(qeB) and qeB ≥

RC(qeA) in a stable equilibrium with differentiable dynamic quantity reaction functions.
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Part (ii): From R′
B ≤ 0, R′

A ≤ 0, and the first-order conditions, we obtain that

r̃ + 1− σ

r̃ + 2
(Π′ (qeA + qeB)− π2 (q

e
B , q

e
A)) +

1 + σ

r̃ + 2
Π′ (qeA + qeB) ≤ 0,

r̃ + 1 + σ

r̃ + 2
(Π′ (qeA + qeB)− π2 (q

e
A, q

e
B)) +

1− σ

r̃ + 2
Π′ (qeA + qeB) ≤ 0,

which can be rewritten as

qeB
P ′ (Qe)

Π′ (Qe)
≤ r̃ + 2

r̃ + 1− σ
,

qeA
P ′ (Qe)

Π′ (Qe)
≤ r̃ + 2

r̃ + 1 + σ
.

Adding up these two conditions yields

QeP ′ (Qe)

Π′ (Qe)
≤ 2 (r̃ + 2) (r̃ + 1)

(r̃ + 1 + σ) (r̃ + 1− σ)
. (27)

The left-hand side of (27) is strictly decreasing in Qe, because

∂

∂Q

(
QP ′ (Q)

Π′ (Q)

)
=

(P ′(Q) +QP ′′(Q)) (P (Q)− c)−Q (P ′(Q))
2

(Π′(Q))
2 < 0, (28)

where the inequality follows from assumption A2 and P (Qe) ≥ c. Moreover, limQe→QM
QeP ′(Qe)
Π′(Qe) = ∞ and

2qCP ′(2qC)
Π′(2qC)

= 2, while the right-hand side of (27) lies strictly above 2 for all r̃ > 0 and σ ∈ [0, 1). It follows
that, for each r̃ > 0 and σ ∈ [0, 1), there exists a unique Q (r̃, σ) ∈

(
QM , 2qC

)
such that

Π′ (Q)
QP ′

(
Q
) =

(r̃ + 1− σ) (r̃ + 1 + σ)

2 (r̃ + 2) (r̃ + 1)
, (29)

which can be rewritten as

Π′ (Q)− π2

(
1

2
Q,

1

2
Q

)
+

r̃ + 1 + σ2

(r̃ + 1− σ) (r̃ + 1 + σ)
Π′ (Q) = 0. (30)

The right-hand side of (29) is strictly decreasing in σ, and strictly increasing in r̃. Given (28), it follows

that Q (r̃, σ) is strictly decreasing in σ, and strictly increasing in r̃.
For σ = 0, (30) coincides with the condition that defines the lower bound q (r̃) in the symmetric case

(see Proposition 2), hence
Q (r̃, 0) = 2q (r̃) > QM .

Also, note that the right-hand side of (29) converges to zero as (r̃, σ) → (0, 1). Since Q ∈
[
QM , 2qC

]
and

P ′ (·) is continuous, |QP ′ (Q) | is bounded above and

lim
(r̃,σ)→(0,1)

Q (r̃, σ) = QM .

Finally, as r̃ tends to ∞, the right-hand side of (29) converges to 2, which implies that

lim
r̃→∞

Q (r̃, σ) = 2qC .
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This completes the proof of part (ii).

Part (iii): We define E as the set of equilibrium dynamic reaction functions (RA, RB) such that Ri’s are

twice continuously differentiable, and sup |R′
i| and sup |R′′

i | are bounded by K. Although the set E can

depend on the choice of bounds K > 0, as well as the parameters r, λM , and σ, we omit them to simplify

the notations. In particular, it will be clear in the proof that, given equilibrium existence, the specific

choice of K > 0 does not affect our limit result.37

Our first intermediate result is that RB approaches the Cournot reaction function when the degree of

asymmetry σ converges to 1.

Lemma A2 Let ϵ > 0 be given. There exists σ̄ < 1 such that

max
qA∈[0,Q̄c]

|RB(qA)−RC(qA)| < ϵ,

for any (RA, RB) ∈ E when σ ≥ σ̄.

Proof of Lemma A2. Let ϵ > 0 be given. Recall that for q = RB(qA),

Π′(q + qA)− π2(qA, q) +
1− σ

r̃ + 1 + σ
(Π′(RA(q) + q) + π2(q,RA(q))R

′
A(q)) = 0,

while for q = RC(qA),
Π′(q + qA)− π2(qA, q) = 0.

Now, we choose σ̄ < 1 such that σ ≥ σ̄ implies(
1− σ

r̃ + 1 + σ

)
·max |Π′ + π2 ·K| ≤ ϵ ·min |π11| .

Then, we have for any qA ∈ [0, Q̄c] and (RA, RB) ∈ E with σ ≥ σ̄,∣∣π1(RB(qA), qA)− π1(R
C(qA), qA)

∣∣ ≤ ϵ ·min |π11|.

By the mean-value theorem, there exists z between min{RC(qA), RB(qA)} and max{RC(qA), RB(qA)} such
that (

RB(qA)−RC(qA)
)
π11(z, qA) = π1 (RB(qA), qA)− π1

(
RC(qA), qA

)
,

and hence
|RB(qA)−RC(qA)||π11(z, qA)| ≤ ϵ ·min |π11|.

We conclude that maxqA∈[0,Q̄c] |RB(qA)−RC(qA)| < ϵ for any (RA, RB) ∈ E with σ ≥ σ̄.

Our next intermediate result is that the slope of reaction function RB also converges to that of the

Cournot reaction function as σ approaches 1.

37The existence of equilibria with bounded first and second derivaties will be satisfied in the case of linear
demand, where |R∗

i
′| ≤ 1

2 for all i and all parameter values r > 0, λM > 0, and σ ∈ [0, 1).
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Lemma A3 Let ϵ > 0 be given. There exists σ̄ < 1 such that

max
qA∈[0,Q̄c]

|R′
B(qA)−RC ′(qA)| < ϵ,

for any (RA, RB) ∈ E when σ ≥ σ̄.

Proof of Lemma A3. Let ϵ > 0 be given. Recall that for q = RB(qA),

Π′(q + qA)− π2(qA, q) +
1− σ

r̃ + 1 + σ
(Π′(RA(q) + q) + π2(q,RA(q))R

′
A(q)) = 0,

while for q = RC(qA),
Π′(q + qA)− π2(qA, q) = 0.

By the implicit function theorem,

R′
B(qA) = −π12(RB(qA), qA)

H(RB(qA), qA)
, and RC ′(qA) = −π12(R

C(qA), qA)

π11(RC(qA), qA)
,

where
H(q, qA) = π11(q, qA) +

1− σ

r̃ + 1 + σ
H̃(q),

for some H̃(q) such that there exists an upper bound K ′ > 0 with max |H̃| < K ′ for any (RA, RB) ∈ E .
Together with Lemma A2, this implies that for any given ϵ′ > 0, there exists σ̄′ < 1 such that for any
(RA, RB) ∈ E with σ ≥ σ̄′,

max
qA∈[0,Q̄c]

|H(RB(qA), qA)− π11(R
C(qA), qA)| ≤ ϵ′. (31)

To see this, note first that

|H(RB(qA), qA)− π11(R
C(qA), qA)|

≤|π11(RB(qA), qA)− π11(R
C(qA), qA)|+

1− σ

r̃ + 1 + σ
K ′

≤max |P ′′| · |RB(qA)−RC(qA)|+max |RC | · |P ′′(RB(qA) + qA)− P ′′(RC(qA) + qA)|

+2|P ′(RB(qA) + qA)− P ′(RC(qA) + qA)|+
1− σ

r̃ + 1 + σ
K ′.

Since P ′′ and P ′ are continuous functions on a compact interval, they are uniformly continuous. Thus, by
Lemma A2, we can choose σ̄′ < 1 such that for any (RA, RB) ∈ E with σ ≥ σ̄′,

|H(RB(qA), qA)− π11(R
C(qA), qA)| < ϵ′.

Now, notice that

|R′
B(qA)−RC ′(qA)|

=

∣∣∣∣π12(RB(qA), qA)

H(RB(qA), qA)
− π12(R

C(qA), qA)

π11(RC(qA), qA)

∣∣∣∣
=

∣∣∣∣π12(RB(qA), qA)π11(R
C(qA), qA)−H(RB(qA), qA)π12(R

C(qA), qA)

H(RB(qA), qA)π11(RC(qA), qA)

∣∣∣∣ .
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Observe that the denominator is strictly bounded away from zero when σ beccomes arbitrarily close to 1.
To see this, note that for each qA ∈ [0, Q̄],

|H(RB(qA), qA)π11(R
C(qA), qA)|

=
∣∣∣(H (RB(qA), qA)− π11

(
RC(qA), qA

))
π11(R

C(qA), qA) + π11

(
RC(qA), qA

)2∣∣∣
≥π11(R

C(qA), qA)
2 −

∣∣H(RB(qA), qA)− π11(R
C(qA), qA)||π11(R

C(qA), qA)
∣∣ .

Then, from (31) and the fact that min |π2
11| > 0, we have σ̄′′ > 0 such that the minimum of the right-hand

side is bounded below from some K ′′ > 0 for any (RA, RB) ∈ E with σ ≥ σ̄′′. Therefore, we have∣∣R′
B(qA)−RC ′(qA)

∣∣
≤ 1

K ′′

∣∣π12(RB(qA), qA)π11(R
C(qA), qA)−H(RB(qA), qA)π12(R

C(qA), qA)
∣∣ .

Since π12(RB(qA), qA) and H(RB(qA), qA) approach to π12(R
C(qA), qA) and π11(R

C(qA), qA) respectively
as σ converges to 1, we can apply the same argument before and find σ̄ > 0 such that

max
qA∈[0,Q̄c]

∣∣R′
B(qA)−RC ′(qA)

∣∣ < ϵ,

for any (RA, RB) ∈ E with σ ≥ σ̄.

Given Lemmas A2 and A3, we now prove the statement in part (iii). Let ϵ > 0 be given. Recall that
the first-order conditions evaluated at steady-state quantities (qeA, q

e
B) are given by, for RA(q

e
B) = qeA,

(r̃ + 1− σ) (Π′ (Qe)− π2 (q
e
B , q

e
A)) + (1 + σ) (Π′ (Qe) + π2 (q

e
A, q

e
B)R

′
B (qeA)) = 0,

and for RB(q
e
A) = qeB ,

(r̃ + 1 + σ) (Π′ (Qe)− π2 (q
e
A, q

e
B)) + (1− σ) (Π′ (Qe) + π2 (q

e
B , q

e
A)R

′
A (qeB)) = 0.

By Lemma A3, we have max |R′
B | ≤ L for some L ∈ (0, 1) for any (RA, RB) ∈ E with σ being close

enough to 1, because the Cournot reaction function has a slope whose absolute value is strictly less than
than 1. As a result, we obtain

0 = (r̃ + 1− σ) (Π′ (Qe)− π2 (q
e
B , q

e
A)) + (1 + σ) (Π′ (Qe) + π2 (q

e
A, q

e
B)R

′
B (qeA))

≤ (r̃ + 1− σ) (Π′ (Qe)− π2 (q
e
B , q

e
A)) + (1 + σ) (Π′ (Qe)− Lπ2 (q

e
A, q

e
B))

= (r̃ + 1− σ) (Π′ (Qe)− π2 (q
e
B , q

e
A)) + (1 + σ) (π1 (q

e
B , q

e
A)− c) + (1 + σ) (1− L)π2 (q

e
A, q

e
B) ,

which is equivalent to

0 ≤
(
r̃ + 1− σ

1 + σ

)
(Π′ (Qe)− π2 (q

e
B , q

e
A)) + π1 (q

e
B , q

e
A)− c+ (1− L)π2 (q

e
A, q

e
B) .

Now, choose σ̄ < 1 and r̄ > 0 such that(
r̃ + 1− σ

1 + σ

)
(Π′ (Qe)− π2 (q

e
B , q

e
A)) ≤

ϵ (1− L)min |P ′|
2

,
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and
π1(q

e
B , q

e
A)− c = π1 (RB(q

e
A), q

e
A)− c ≤ ϵ(1− L)min |P ′|

2
,

for any (RA, RB) ∈ E with σ ≥ σ̄ and r̃ ≤ r̄, where the latter inequality follows from Lemma A2. As a
result, we have

0 ≤
(
r̃ + 1− σ

1 + σ

)
(Π′(Qe)− π2(q

e
B , q

e
A)) + π1(q

e
B , q

e
A)− c+ (1− L)π2(q

e
A, q

e
B)

≤ (1− L) (ϵmin |P ′|+ P ′(Qe)qeA) ,

implying
0 ≤ ϵmin |P ′|+ P ′(Qe)qeA.

Therefore,
(−P ′(Qe)) qeA ≤ ϵmin |P ′| ⇐⇒ qeA ≤ ϵmin |P ′|

|P ′(Qe)|
< ϵ.

By Lemma A2, we also obtain
|qeB −QM | = |RB(q

e
A)−RC(0)| < ϵ,

provided that σ is sufficiently close to 1. This completes the proof of part (iii).

Proof of Proposition 6. Letting r̃ = r
λM

and x̃ = (2+ 4r̃)2 +12(1− σ2), the intercepts and slopes
of the equilibrium dynamic quantity reactions (R∗

A, R
∗
B) from the proof of Proposition 1 become

α∗
A =

(1− c) (2 + r̃)
(
2 + 4r̃ + 6 (1− σ)−

√
x̃
)

2 (1− σ)
(
14 + 10r̃ −

√
x̃
) ,

α∗
B =

(1− c) (2 + r̃)
(
2 + 4r̃ + 6 (1 + σ)−

√
x̃
)

2 (1 + σ)
(
14 + 10r̃ −

√
x̃
) ,

β∗
A =

1

2
−

√
x̃− (2 + 4r̃)

12 (1− σ)
,

β∗
B =

1

2
−

√
x̃− (2 + 4r̃)

12 (1 + σ)
.

The steady-state quantities are given by

(qeA, q
e
B) =

(
α∗
A − α∗

Bβ
∗
A

1− β∗
Aβ

∗
B

,
α∗
B − α∗

Aβ
∗
B

1− β∗
Aβ

∗
B

)
.

We first prove part (iii), and then parts (i) and (ii) of the proposition.

Part (iii): Note that

lim
r̃→0

β∗
B =

1

2
−
√
4 + 12(1− σ2)− 2

12 (1 + σ)
,

so, by continuity,
lim

(r̃,σ)→(0,1)
β∗
B =

1

2
,
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and
lim

(r̃,σ)→(0,1)
α∗
B =

1− c

2
= QM .

Now, we show that β∗
A converges to 0 as (r̃, σ) → (0, 1). Note that

1

2
≥ 1

2
− β∗

A =

√
(2 + 4r̃)

2
+ 12 (1− σ2)− (2 + 4r̃)

12 (1− σ)

The right-hand side is strictly decreasing in r̃ since

∂

∂r̃


√

(2 + 4r̃)
2
+ 12 (1− σ2)− (2 + 4r̃)

12 (1− σ)

 =
1

12 (1− σ)

 8 (2 + 4r̃)

2

√
(2 + 4r̃)

2
+ (1− σ2)

− 4

 < 0,

and strictly increasing in σ because

∂

∂σ


√
(2 + 4r̃)

2
+ 12 (1− σ2)− (2 + 4r̃)

12 (1− σ)


sign
=

−288σ (1− σ)

2

√
(2 + 4r̃)

2
+ 12 (1− σ2)

+ 12

(√
(2 + 4r̃)

2
+ 12 (1− σ2)− (2 + 4r̃)

)
sign
= − 144σ (1− σ) + 12

(
(2 + 4r̃)

2
+ 12

(
1− σ2

)
− (2 + 4r̃)

√
(2 + 4r̃)

2
+ 12 (1− σ2)

)
sign
= 144 (1− σ) + (2 + 4r̃)

(
12 (2 + 4r̃)−

√
(2 + 4r̃)

2
+ 12 (1− σ2)

)
≥0,

where the last inequality follows from

12 (2 + 4r̃) ≥
√
(2 + 4r̃)

2
+ 12 (1− σ2) ⇐⇒ 143 (2 + 4r̃)

2 ≥ 12
(
1− σ2

)
.

Therefore, any point (r̃, σ) in the open ball around (r̃, σ) = (0, 1) of radius ϵ > 0 satisfies

1

2
≥ 1

2
− β∗

A =

√
(2 + 4r̃)

2
+ 12 (1− σ2)− (2 + 4r̃)

12 (1− σ)

≥

√
(2 + 4ϵ)

2
+ 12

(
1− (1− ϵ)

2
)
− (2 + 4ϵ)

12ϵ

→ 1

2
as ϵ → 0,

which shows that lim(r̃,σ)→(0,1) β
∗
A = 0. This, in turn, implies that α∗

A converges to 0 as (r̃, σ) → (0, 1)
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because

lim
(r̃,σ)→(0,1)

α∗
A = lim

(r̃,σ)→(0,1)

 (1− c) (2 + r̃)

2
(
14 + 10r̃ −

√
x̃
)
(2 + 4r̃ + 6 (1− σ)−

√
x̃

1− σ

)

= lim
(r̃,σ)→(0,1)

 (1− c) (2 + r̃)

2
(
14 + 10r̃ −

√
x̃
)
(6− √

x̃− (2 + 4r̃)

1− σ

)

= lim
(r̃,σ)→(0,1)

 (1− c) (2 + r̃)

2
(
14 + 10r̃ −

√
x̃
)
(6− 12

(
1

2
− β∗

A

))

= 0

By the above observations, we conclude that (qeA, q
e
B) =

(
α∗

A−α∗
Bβ∗

A

1−β∗
Aβ∗

B
,
α∗

B−α∗
Aβ∗

B

1−β∗
Aβ∗

B

)
→
(
0, QM

)
as (r̃, σ) →

(0, 1).

Part (i): Note that the aggregate steady-state quantity is given by

Qe =

(
12 (1− c) (2 + r̃)

14 + 10r̃ −
√
x̃

) 36(1− σ2)− (2 + 4r̃ −
√
x̃)2

108 (1− σ2)− 12
(
2 + 4r̃ −

√
x̃
)
−
(
2 + 4r̃ −

√
x̃
)2
 .

To simplify notations, let us write X = 2 + 4r̃ −
√
x̃ < 0. Then, we have

x̃ = (2 + 4r̃ −X)2 ⇐⇒ 12(1− σ2) = X2 − 2X(2 + 4r̃),

and so

Qe =

(
12 (1− c) (2 + r̃)

6 (2 + r̃) +X

)(
2X2 − 6X (2 + 4r̃)

8X2 − 18X (2 + 4r̃)− 12X

)
=

(
12 (1− c) (2 + r̃)

12 + 6r̃ +X

)(
X − 6− 12r̃

4X − 24− 36r̃

)
=12(1− c) ·

(
6 +

X

2 + r̃

)−1

·
(
4 +

12r̃

X − 6− 12r̃

)−1

.

Since (
6 +

X

2 + r̃

)
·
(
4 +

12r̃

X − 6− 12r̃

)
=24 + 4

(
18r̃

X − 6− 12r̃
+

X

2 + r̃
+

3r̃X

(2 + r̃)(X − 6− 12r̃)

)
,

it sufficies to show that

18r̃

X − 6− 12r̃
+

X

2 + r̃
+

3r̃X

(2 + r̃)(X − 6− 12r̃)

is strictly decreasing in r̃. One can check that the denominator of its first-order derivative is

(2 + r̃)
2
√
4 (1 + r̃ + r̃2)− 3σ2

(
2 + 4r̃ +

√
4 (1 + r̃ + r̃2)− 3σ2

)2
> 0,
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and the numerator is

− 3
(
8− 6σ4 + 2r̃

(
10 + 7r̃ + 3r̃2

)
+ σ2

(
10 + 13r̃2 + 16r̃

)
+ 2

(
2 + 4r̃ + 3r̃2 + 10σ2 + 8r̃σ2

)√
4 (1 + r̃ + r̃2)− 3σ2

)
< 0.

Therefore, we conclude that Qe is strictly increasing in r̃.

Part (ii): Finally, we prove part (ii). Remark that if Qe is strictly decreasing in σ, and qeB is strictly

increasing in σ, then qeA must be strictly decreasing in σ. Therefore, it sufficies to show the monotonicity

of Qe and qeB with respect to σ.
Recall that with X = 2 + 4r̃ −

√
x̃,

Qe =

(
12 (1− c) (2 + r̃)

12 + 6r̃ +X

)(
X − 6− 12r̃

4X − 24− 36r̃

)
.

Thus, Qe is strictly decreasing in σ if and only if

(12 + 6r̃ +X) (4X − 24− 36r̃)

X − 6− 12r̃

is strictly increasing in σ. Since ∂X
∂σ > 0, it sufficies to show that

∂

∂X

(
(12 + 6r̃ +X) (4X − 24− 36r̃)

X − 6− 12r̃

)
> 0,

which is equivalent to

(4X − 24− 36r̃ + 4 (12 + 6r̃ +X)) (X − 6− 12r̃)− (12 + 6r̃ +X) (4X − 24− 36r̃) > 0

⇐⇒ (4X − 24− 36r̃) (X − 6− 12r̃ − 12− 6r̃ −X) + 4 (12 + 6r̃ +X) (X − 6− 12r̃) > 0

⇐⇒ 18 (1 + r̃) (24 + 36r̃ − 4X) > 4 (6 + 12r̃ −X) (12 + 6r̃ +X)

⇐⇒
(
3

2
(24 + 36r̃ − 4X)

)
(12 (1 + r̃)) > (24 + 48r̃ − 4X) (12 + 6r̃ +X) .

Note that the first term in the left-hand side is greater than the first term in the right-hand side. To see
this,

3

2
(24 + 36r̃ − 4X)− 24− 48r̃ + 4X = 12 + 6r̃ − 2X > 0,

where the inequality follows from X < 0. Similarly, the second term in the left-hand side is greater than
the second term in the right-hand side, because

12 (1 + r̃)− 12− 6r̃ −X = 6r̃ −X > 0.

We conclude that the aggregate quantity Qe is strictly decreasing in σ.
Now, we show that qeB is strictly increasing in σ, which completes the proof of part (ii). Note that

qeB =

(
6(1− c)(2 + r̃)

14 + 10r̃ −
√
x̃

)(
36(1− σ2) + 12σ(

√
x̃− (2 + 4r̃))− (

√
x̃− (2 + 4r̃))2

108(1− σ2) + 12(
√
x− (2 + 4r̃))− (

√
x− (2 + 4r̃))2

)
.
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Using our previous notation X = 2 + 4r̃ −
√
x̃ < 0, it is rewritten as

qeB =

(
6(1− c)(2 + r̃)

12 + 6r̃ +X

)(
2X2 − 6X(2 + 4r̃)− 12σX

8X2 − 48X − 72r̃X

)
=

(
6(1− c)(2 + r̃)

12 + 6r̃ +X

)(
X − 3(2 + 4r̃)− 6σ

4X − 24− 36r̃

)
.

Thus, it sufficies to show that
X − 3(2 + 4r̃)− 6σ

(12 + 6r̃ +X) (4X − 24− 36r̃)

is strictly increasing in σ. Letting X ′ = ∂X
∂σ , one can check that

∂

∂σ

(
X − 3(2 + 4r̃)− 6σ

(12 + 6r̃ +X) (4X − 24− 36r̃)

)
> 0

is equivalent to

X ′ (4X − 24− 36r̃) (12 + 6r̃ +X −X + 3(2 + 4r̃) + 6σ)

−X ′ (48 + 24r̃ + 4X) (X − 6− 12r̃ − 6σ)− 6 (12 + 6r̃ +X) (4X − 24− 36r̃) > 0

⇐⇒ X ′ ((4X − 24− 36r̃) (18 + 18r̃ + 6σ)− (48 + 24r̃ + 4X) (X − 6− 12r̃ − 6σ))

>6 (12 + 6r̃ +X) (4X − 24− 36r̃)

⇐⇒ X ′
(

3 + 3r̃ + σ

12 + 6r̃ +X
− X − 6− 12r̃ − 6σ

6(X − 6− 9r̃)

)
< 1,

where the last equivalence follows from dividing each side by 6 (4X − 24− 36r̃) (12 + 6r̃ +X), which is
negative. Since ∂X

∂σ = 12σ√
x̃
= 12σ

2+4r̃−X , it can be shown to be equivalent to

(2σ(6 + 6σ + 12r̃ −X) + (2 + 4r̃ −X)(6 + 9r̃ −X)) (12 + 6r̃ +X)

> 12σ(6 + 9r̃ −X)(3 + 3r̃ + σ).

Noting that 12σ = 2 · 6σ, we show that each term in the left-hand side is greater than each term in the
right-hand side. More precisely, note first that

12 + 6r̃ +X > 2(3 + 3r̃ + σ) = (6 + 6r̃ + 2σ)

⇐⇒ 6 +X > 2σ

⇐⇒ 2(2 + 4r̃)(6− 2σ) + (6− 2σ)2 > 12(1− σ2),

where the last equivalence follows from X = 2 + 4r̃ −
√
x̃. Certainly, the left-hand side is strictly greater

than the right-hand side.
In addition, we have

2σ(6 + 6σ + 12r̃ −X) + (2 + 4r̃ −X)(6 + 9r̃ −X) > 6σ(6 + 9r̃ −X)

⇐⇒ 2σ(6 + 6σ + 12r̃ −X) > (6 + 9r̃ −X)(6σ − 2− 4r̃ +X)

⇐⇒ 2σ(6 + 9r̃ −X + 6σ + 3r̃) > (6 + 9r̃ −X)(6σ − 2− 4r̃ +X)

⇐⇒ 2σ(6σ + 3r̃) > (6 + 9r̃ −X)(4σ − 2− 4r̃ +X)

⇐⇒ 6σ(2σ + r̃) > (6 + 9r̃ −X)(4σ − 2− 4r̃ +X).
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Now, substituting X = 2 + 4r̃ −
√
x̃, it reduces to

6σ(2σ + r̃) > (4 + 5r̃ +
√
x̃)(4σ −

√
x̃)

⇐⇒ 6σ(2σ + r̃)− (4 + 5r̃ +
√
x̃)(4σ −

√
x̃) > 0. (32)

One can check that the left-hand side is strictly decreasing in σ:

∂

∂σ

(
6σ(2σ + r̃)− (4 + 5r̃ +

√
x̃)(4σ −

√
x̃)
)

=−
2
(
16(1 + r̃ + r̃2)− 24σ2 + 3σ(4 + 5r̃) + (8 + 7r̃)

√
4(1 + r̃ + r̃2)− 3σ2

)
√

4(1 + r̃ + r̃2)− 3σ2

<0.

Thus, it sufficies to show that the inequality (32) is satisfied at σ = 1:

6(2 + r̃)− (4 + 5r̃ + 2 + 4r̃)(4− 2− 4r̃) > 0

⇐⇒ 6(2 + r̃)− (6 + 9r̃)(2− 4r̃) = 36r̃2 + 12r̃ > 0.

Thus, we conclude that qeB is strictly increasing in σ.
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