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Abstract. The recent literature points out that the conventional cluster-robust standard

errors fail in the presence of large clusters. We propose a novel cluster-robust score subsam-

pling inference method that is valid even in the presence of large clusters. Specifically, we

derive the asymptotic distribution for the t-statistics based on the common cluster-robust

variance estimators when the distribution of cluster sizes follows a power law with an ex-

ponent less than two. We then propose an inference procedure based on score subsampling

and show its validity. Additionally, we prove that the wild cluster bootstrap is inconsistent

under this environment. Our proposed method does not require tail index estimation and

remains valid under the usual thin-tailed scenarios as well.
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1. Introduction

Consider the linear model

Ygi “ X 1
giθ ` Ugi, ErUg|Xgs “ 0,

where Xg “ pXg1, . . . , XgNgq1, Ug “ pUg1, . . . , UgNgq1, g P t1, . . . , Gu index clusters, and Ng

denotes the size of the g-th cluster. Define the OLS estimator and the cluster-robust (CR)

variance estimator by

pθ “

˜

G
ÿ

g“1

Ng
ÿ

i“1

XgiX
1
gi

¸´1
G

ÿ

g“1

Ng
ÿ

i“1

XgiYgi “

˜

G
ÿ

g“1

X 1
gXg

¸´1 G
ÿ

g“1

pX 1
gXgθ ` Sgq and

pV CR
“ aG

˜

G
ÿ

g“1

X 1
gXg

¸´1 ˜

G
ÿ

g“1

pSg
pS 1
g

¸ ˜

G
ÿ

g“1

X 1
gXg

¸´1

,

respectively, for some finite sample adjustment aG Ñ 1 as the number of clusters G Ñ 8,

where Sg “
řNg

i“1XgiUgi, pSg “
řNg

i“1Xgi
pUgi, and pUgi “ Ygi ´ X 1

gi
pθ. For simplicity, we set

aG “ 1 throughout.

Consider a linear combination, δ “ r1θ, r P Rdimpθq with }r} “ 1, as the parameter of

interest. Let the corresponding estimator and the cluster-robust standard error be denoted

by

pδ “r1
pθ and

pσ2
“r1

˜

G
ÿ

g“1

X 1
gXg

¸´1 ˜

G
ÿ

g“1

pSg
pS 1
g

¸ ˜

G
ÿ

g“1

X 1
gXg

¸´1

r,

respectively. A researcher is interested in conducting inference for δ using the common

t-statistic

ppδ ´ δq

pσ
“

r1ppθ ´ θq
c

r1

´

řG
g“1X

1
gXg

¯´1 ´

řG
g“1

pSg
pS 1
g

¯ ´

řG
g“1X

1
gXg

¯´1

r

with the CR standard error.
2



Suppose each cluster size Ng is a random variable such that its distribution follows a power

law with an exponent that is potentially less than two, and so the existence of Er}Sg}2s

is not guaranteed. The recent literature points out that the conventional cluster-robust

inference fails in the presence of large clusters. It has been shown in Sasaki and Wang

(2022) that if the cluster size distribution follows a power law with a less than two exponent,

normal approximation-based inference can fail. In a different but closely related setup,

Kojevnikov and Song (2023) show consistent estimation for variance estimation fails when

there is only one large cluster. As an alternative, this paper proposes a novel cluster-robust

score subsampling inference procedure that is also robust to heavy-tailed distributed cluster

sizes. Estimation of the tail index for cluster size distribution is not required for the proposed

inference procedure.

1.1. Relations to the Literature. Cluster-robust inference has a long history. Instead

of attempting to exhaustively list the large body of the literature, we refer the reader to

the surveys by, for example, Cameron and Miller (2015) and MacKinnon, Nielsen, and

Webb (2023) for comprehensive reviews. The sampling frameworks in which cluster sizes

themselves are random have been previously investigated by Bugni, Canay, Shaikh, and

Tabord-Meehan (2022) and Sasaki and Wang (2022). Our key distributional approximation

results for self-normalized sums are due to Logan, Mallows, Rice, and Shepp (1973), LePage,

Woodroofe, and Zinn (1981), and Giné, Götze, and Mason (1997). For theoretical details

of the underlying foundations of probability and statistics for heavy-tailed distributions, we

refer the reader to Resnick (1987) and Resnick (2007). For the failure of empirical bootstrap

for means of heavy-tailed distributions, see, e.g. Athreya (1987); Arcones and Giné (1989);

Knight (1989). Our inference procedure relies on the theory of resampling method developed

in Politis and Romano (1994) and Romano and Wolf (1999). Also, see Politis, Romano, and

Wolf (1999) for a comprehensive treatment.
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2. Robust Inference

We propose a novel cluster-robust score subsampling procedure that is also robust to

heavy-tailed distributions of cluster sizes Ng. Our objective is to conduct statistical infer-

ence for δ using the self-normalized t-statistic ppδ ´ δq{pσ. Denote the CDF of the sampling

distribution of the t-statistic by

J˚
Gptq “ P

´

ppδ ´ δq{pσ ď t
¯

.

It will be shown that, under appropriate conditions, it converges to the CDF of a limiting

distribution J˚ptq. Consider a sequence of subsample sizes b “ bG that grows with b{G “ op1q

as G Ñ 8. Let BG “
`

G
b

˘

denote the total possible number of subsamples of b clusters. For

a given b and j P t1, ..., BGu, let Sj Ă t1, .., Gu be one of the BG subsamples of the cluster

indices with |Sj| “ b, and define the score-resampled estimators

pδb,j “r1
pθb,j “

ˆ

G

b

˙

r1

˜

G
ÿ

g“1

X 1
gXg

¸´1
ÿ

gPSj

X 1
gYg and

pσ2
b,j “

ˆ

G

b

˙2

r1

˜

G
ÿ

g“1

X 1
gXg

¸´1
¨

˝

ÿ

gPSj

pSg,j
pS 1
g,j

˛

‚

˜

G
ÿ

g“1

X 1
gXg

¸´1

r,

where pSg,j “ X 1
gpYg´Xg

pθb,jq. Note, in these definitions, that the inverse factor p
řG

g“1X
1
gXgq´1

is calculated based on the full sample while the linear component and its variance are com-

puted based on the subsample Sj – see Remark 2 below.

Define the empirical CDF of ppδb,j ´ pδq{pσb,j based on all possible BG-subsamples by

L˚
G,bptq “

1

BG

BG
ÿ

j“1

1
´

ppδb,j ´ pδq{pσb,j ď t
¯

.

It will be shown that, under suitable conditions, one can approximate J˚p¨q by L˚
G,bp¨q uni-

formly as the number G of clusters grows. In practice, however, L˚
G,bptq is computationally

infeasible when G and b are both large. Thus, we randomly draw M such subsamples of
4



clusters of size b with replacement, and define

pLG,bptq “
1

M

M
ÿ

j“1

1
´

ppδb,j ´ pδq{pσb,j ď t
¯

.

As M grows with the number G of clusters, this pLG,bp¨q can be used in place of L˚
G,bp¨q.

For any a P p0, 1q, define the critical value

pcG,bp1 ´ aq “ inf
!

t P R : pLG,bptq ě 1 ´ a
)

.

Since J˚p¨q has no point mass as we shall show, it follows that

P
´

ppδ ´ δq{pσ ď pcG,bp1 ´ aq

¯

Ñ 1 ´ a

as G Ñ 8. Therefore, this critical value leads to theoretically valid tests. In addition, a

confidence region can be obtained by test-inversion.

Practical Implication: For the estimator pδ, one can continue to use the conventional

cluster-robust “standard error” pσ.1 However, instead of using the conventional cutoff values,

Φ´1p0.025q « ´1.96 and Φ´1p0.975q « 1.96, one should use pcG,bp0.025q and pcG,bp0.975q

obtained by subsampling to construct a 95% confidence interval for example.

Remark 1 (Tail index estimation is not required). Unlike many other situations that involve

statistical analysis of heavy-tailed distributions, our inference procedure does not require the

estimation of the unknown tail index, which is a practical advantage.

Remark 2 (Finite sample non-invertibility of other cluster-based resampling methods). In

finite samples, when regressors contain a cluster-specific binary treatment variable or other

dummies variables that are highly correlated within a cluster,
ř

gPSj
X 1

gXg might be singular

especially for a small b “ |Sj|, and thus the subsampled OLS might not be well-defined

1Note that the “standard error” pσ is not guaranteed to be consistent in the presence of large clusters. It

may even diverge.

5



for a non-negligible proportion of subsamples. This issue is also faced by other cluster-

based resampling methods, such as jackknife and bootstrap. In practice, several ad hoc

“fixes,” such as the use of generalized inverse or dropping such realizations, are employed, but

their theoretical implications remain largely unclear. Our cluster-robust score subsampling

procedure avoids such an issue in a theoretically supported manner.

2.1. The Main Theoretical Result. We start by briefly reviewing some definitions and

known facts about stable distributions. For more detail, see Feller (1971), Zolotarev (1986),

Samorodnitsky and Taqqu (1994), Embrechts, Klüppelberg, and Mikosch (1997), and Geluk

and de Haan (2000) for example. A random variable η is said to be stable if it has a domain

of attraction in that there exists a sequence of i.i.d. random variables ξ1, ξ2, . . . and sequences

of positive numbers AG and real numbers DG such that as G Ñ 8,
řG

g“1 ξg ´ DG

AG

d
Ñ η.

A function Lp¨q is said to be slowly varying at 8 if limtÑ8 Lpytq{Lptq “ 1 for all y ą 0.

If η is stable, then AG takes the form of G1{αLpGq for some α P p0, 2s and some slowly

varying function Lp¨q at 8. In addition, if α P p1, 2s, then DG can be chosen to be G ¨Erξgs.

Otherwise, one can set DG “ 0. Here, the number α is called the index of stability, and η

is said to be α-stable. In such a case, ξg is said to belong to the domain of attraction of an

α-stable distribution. We shall focus on the case with α P p1, 2s, since even the first moment

of ξg would not be well-defined otherwise.

Assumption 1. pX 1
g, SgqGg“1 are i.i.d., ErNgs “ c P p0,8q, and the design matrix satisfies

˜

1

G

G
ÿ

g“1

X 1
gXg

¸´1

“ Q´1
` opp1q

for a finite and positive definite matrix Q. In addition, for v “ r1Q´1 and for all u1, u2 P

R
dimpθq with unit length, v1Sg and u1

1X
1
gXgu2 belong to the domain of attraction of stable

laws with an index of stability α.
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Remark 3 (Index of stability, tail index, and CLT). Assumption 1 is rather general and

covers the most common situations. To see this, note that, when α P p0, 2q, Theorem 2.24

of de la Peña, Lai, and Shao (2009) suggests that v1Sg (respectively, u1
1X

1
gXgu2) belongs to

the domain of attraction of an α-stable distribution if and only if

Pp|v1Sg| ą tq “ t´αL1ptq,
`

respectively, Pp|u1XgX
1
gu2| ą tq “ t´αL2ptq

˘

lim
tÑ8

Ppv1Sg ą tq

Pp|v1Sg| ą tq
“ p, p P r0, 1s,

ˆ

respectively, lim
tÑ8

Ppu1
1X

1
gXgu2 ą tq

Pp|u1
1X

1
gXgu2| ą tq

“ rp, rp P r0, 1s

˙

for some slowly varying L1p¨q and L2p¨q, where L2p¨q and rp may depend on u1, u2. The first

condition in this alternative characterization requires the tails the cluster specific unit follows

a power law with an exponent α, which coincides with the standard definition of the tail index

(or the tail exponent) of heavy-tailed random variables in the literature on the extreme value

theory (see, e.g. Resnick 2007). See, for example, Theorems 1 and 4 in Sasaki and Wang

(2022) for low level sufficient conditions for this index of stability condition, which are framed

in terms of cluster size distributions and moments of the regressors and error term. Known

as the balancing condition, the second condition in this alternative characterization imposes

a mild restriction on the existence of limiting ratios of one-sided tail probabilities over the

two-sided tail probability; it rules out some irregular, infinitely oscillating type situations

such that these limiting ratios do not exist. This condition only imposes restrictions in the

limit and accommodates a wide range of tail behaviors as p (respectively, rp) are permitted

to be either 0 or 1. When α ă 2, the variances do not exist and the central limit theorems

(CLT) are inapplicable.

On the other hand, when α “ 2, the limiting α-stable distribution must be normal (cf.

Geluk and de Haan, 2000, Theorem 2) and we say the random variables of interest belong to

the domain of attraction of the normal distribution. It covers most of the common situations

when variance is finite and thus CLT can be applied. It also covers some non-standard cases
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with a normal limiting distribution but without a finite variance, e.g., a Pareto random

variable with a shape parameter (Pareto exponent) of 2.

The next theorem states the main result of this paper focusing on the case of α P p1, 2q

for the moment. We will deal with the remaining case later.

Theorem 1 (Cluster robust inference by score subsampling). Suppose that Assumption 1 is

satisfied for α P p1, 2q. If b Ñ 8 and b{G “ op1q as G Ñ 8, then

sup
tPR

|L˚
G,bptq ´ J˚

ptq|
p

Ñ 0

and the limiting distribution J˚p¨q is continuous. In addition, if M Ñ 8, then

sup
tPR

|pLG,bptq ´ J˚
ptq|

p
Ñ 0,

and thus

P
´

ppδ ´ δq{pσ ď pcG,bp1 ´ aq

¯

Ñ 1 ´ a.

This theorem formally justifies that the method of inference based on the proposed sub-

sampling procedure is asymptotically valid.

Remark 4 (Heavy-tailed cluster sums). In this theorem, we essentially assume that the tails

of the distribution of }Sg} and }X 1
gXg} both follow a power law with the shape parameter

(Pareto exponent) in p1, 2q, which implies that the variances of Sg and pX 1
gXgq do not exist.

See Remark 3. This is a rather general condition in the sense that the heavy tail can come

from the distribution of cluster sizes Ng or the distribution of individuals’ pX 1
gi, Ugiq, or both.

Remark 5 (Impossibility of normal approximation). An inspection of the proof of Theorem

1, combined with Remark 2 in LePage et al. (1981), unveils that, when α ă 2, the largest

cluster has an asymptotically non-negligible influence on the limiting α-stable distribution

(see also Sec. 1.4 in Samorodnitsky and Taqqu 1994). For illustration, suppose that the
8



regressor and error distributions are uniformly bounded with variances bounded away from

zero. Then this setting essentially translates to

maxg“1,...,G }Sg}

G
„

maxg“1,...,G Ng

G
" 0.

This is in contrast to the conventional assumption

maxg“1,...,G N2
g

G
“ opp1q,

which is used in the literature of cluster-robust inference based on the normal approximation.2

In addition, a necessary and sufficient condition for the limiting distribution of sums of

independent random variables to be normal is the uniform asymptotic negligibility condition,

i.e., the largest summand (in absolute value) has an asymptotically negligible contribution to

the sum (cf. Davidson, 1994, Theorem 23.13). Thus, it is impossible to derive a theoretically

valid normal approximation-based procedure of inference in the presence of non-negligibly

large clusters without imposing restrictions on within-cluster dependence.

Remark 6 (On CR standard error estimation). The test statistic we consider is the stan-

dard t-statistic used in the literature. Its denominator consists of a CR standard error

without imposing a null hypothesis. When α ă 2, the asymptotic variance does not exist,

and nor is this “standard error” consistent but remains random asymptotically. This is sim-

ilar in spirit to the fixed-b asymptotics (e.g., Kiefer and Vogelsang, 2002) in the literature

of long-run variance estimation, although the underlying theory is completely different as

the fixed-b asymptotics crucially relies on normal approximation and the functional central

limit theorem. Showing that this “standard error” with estimated residuals has negligible

impact on the asymptotic distribution requires a completely different proof strategy from

the conventional approach of those taken in the proof of Theorem 7.6 in Hansen (2022) for

example.

2It is assumed in the literature of cluster-robust inference based on the normal approximation that

maxg“1,...,G N2
g

N “ opp1q. When ErNgs “ c ą 0 exists, this assumption is equivalent to
maxg“1,...,G N2

g

G “ opp1q.
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Proof of Theorem 1. Without loss of generality, suppose that Xgi is a scalar and r “ 1,

and hence δ “ θ. The proof is divided into two steps. In the first step, we derive the

asymptotic distribution of the self-normalized sums that consist of the linear component of

the influence function of the estimator. In the second step, we derive the validity of the

proposed subsampling inference procedure.

Step 1. Recall that

pθ ´ θ “

˜

G
ÿ

g“1

X 1
gXg

¸´1 G
ÿ

g“1

Sg.

We shall derive the asymptotic distribution for the following self-normalized sums of the

linear component
řG

g“1 Sg:

SN1Gpθq :“

řG
g“1 Sg

b

řG
g“1 S

2
g

, SN2Gpθq :“

řG
g“1 Sg

b

řG
g“1

pS2
g

, (2.1)

where pSg “ X 1
g

pUg. The asymptotic distribution of a properly re-scaled ppθ ´ θq will then

follow straightforwardly from the multiplication of Q´1 on both the numerator and the

denominator. Since α P p1, 2q, Corollary 1 in LePage et al. (1981) yields

SN1Gpθq
d

Ñ

ř8

k“1tϵkZk ´ p2p ´ 1qErZk1pZk ă 1qsu
a

ř8

k“1 Z
2
k

(2.2)

as G Ñ 8, where

p “ lim
tÑ8

P pSg ą tq

P p|Sg| ą tq
,

Zk “ pE1 ` ... ` Ekq´1{α for each k, tEkuk are i.i.d. standard exponential random variables,

and tϵkuk are i.i.d. random variables that take the value of 1 with probability p and ´1 with

probability p1 ´ pq and are independent of tZkuk.
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We now claim that SN2Gpθq converges in distribution to the same limiting distribution as

(2.2). By Theorems 1 and 11 in LePage et al. (1981),

˜

1

AG

G
ÿ

g“1

Sg,
1

A2
G

G
ÿ

g“1

S2
g

¸

d
Ñ pS, V q “:

˜

8
ÿ

k“1

tϵkZk ´ p2p ´ 1qErZk1pZk ă 1qsu,
8
ÿ

k“1

Z2
k

¸

“ Opp1q

(2.3)

holds for AG “ G1{αL1pGq, where Zk, ϵk, and p are defined below Equation (2.2), and L1p¨q

is slowly varying at 8; and

1

pA1
Gq2

G
ÿ

g“1

pX 1
gXgq

2 d
Ñ

8
ÿ

k“1

rZ2
k “ Opp1q (2.4)

holds where A1
G “ G1{αL2pGq, rZk “ p rE1 ` ... ` rEkq´1{α for each k, t rEkuk are i.i.d. standard

exponential random variables, and L2p¨q is slowly varying at 8. Because α P p1, 2q and L1

is slowly varying at 8, Equation (2.3) implies the consistency

}pθ ´ θ} “

›

›

›

›

›

›

˜

G
ÿ

g“1

X 1
gXg

¸´1 G
ÿ

g“1

Sg

›

›

›

›

›

›

“ OppL1pGqG´p1´1{αq
q “ opp1q (2.5)

under Assumption 1. Using pUg “ Ug ` Xgpθ ´ pθq and pSg “ Sg ` X 1
gXgpθ ´ pθq, where

pUg “ p pUg1, ..., pUgNgq1, we can write

1

A2
G

G
ÿ

g“1

pS2
g “

1

A2
G

G
ÿ

g“1

S2
g `

1

A2
G

G
ÿ

g“1

´

pSg ´ Sg

¯

pSg `
1

A2
G

G
ÿ

g“1

Sg

´

pSg ´ Sg

¯

“
1

A2
G

G
ÿ

g“1

S2
g ` p1q ` p2q.

We are going to show that the terms (1) and (2) are opp1q. First,

}p1q} “

›

›

›

›

›

1

A2
G

G
ÿ

g“1

pSg ` X 1
gXgpθ ´ pθqqpX 1

gXgpθ ´ pθqq
1

›

›

›

›

›

ď

›

›

›

›

›

1

A2
G

G
ÿ

g“1

SgX
1
gXg

›

›

›

›

›

}pθ ´ θ} `

›

›

›

›

›

1

A2
G

G
ÿ

g“1

pX 1
gXgq

2

›

›

›

›

›

}pθ ´ θ}
2
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ď

g

f

f

e

1

A2
G

G
ÿ

g“1

S2
g

loooooomoooooon

“Opp1q

g

f

f

e

1

A2
G

G
ÿ

g“1

pX 1
gXgq2

loooooooooomoooooooooon

“Opp1q

}pθ ´ θ}
loomoon

“opp1q

`
1

A2
G

G
ÿ

g“1

pX 1
gXgq

2

loooooooomoooooooon

“Opp1q

}pθ ´ θ}
2

looomooon

“opp1q

“opp1q

holds, where the second inequality follows from the Cauchy-Schwarz inequality and the sto-

chastic orders are due to Equations (2.3), (2.4), and (2.5). Second, similar lines of calculations

yield

}p2q} “

›

›

›

›

›

1

A2
G

G
ÿ

g“1

SgpX 1
gXgpθ ´ pθqq

1

›

›

›

›

›

“ opp1q.

We have now established that

1

A2
G

G
ÿ

g“1

pS2
g “

1

A2
G

G
ÿ

g“1

S2
g ` opp1q,

and consequently, SN1Gpθq is asymptotically equivalent to SN2Gpθq.

Step 2. We next show the validity of cluster robust score subsampling procedure. Define

the conventional subsampling estimator

qθb,j “

¨

˝

ÿ

gPSj

X 1
gXg

˛

‚

´1

ÿ

gPSj

X 1
gYg.

Since B´1 ´ A´1 “ A´1pA ´ BqB´1, we have

qθb,j ´ pθb,j “

¨

˝

ÿ

gPSj

X 1
gXg

˛

‚

´1

ÿ

gPSj

X 1
gYg ´

ˆ

G

b

˙

˜

G
ÿ

g“1

X 1
gXg

¸´1
ÿ

gPSj

X 1
gYg

“

˜

1

G

G
ÿ

g“1

X 1
gXg

¸´1
¨

˝

1

G

G
ÿ

g“1

XgXg ´
1

b

ÿ

gPSj

X 1
gXg

˛

‚

¨

˝

1

b

ÿ

gPSj

X 1
gXg

˛

‚

´1

1

b

ÿ

gPSj

X 1
gYg

“opp1q ¨ qθb,j
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This implies pθb,j “ qθb,jp1`opp1qq. Therefore, in the subsampling process, qθb,j can be replaced

by pθb,j without changing the asymptotic behavior. Thus, it suffices to establish validity of

subsampling procedure based on the conventional subsampling estimator qθb,j.

Now, since the stable distributions S and V defined in the previous step are both continu-

ous and V ą 0 with probability 1, S{V 1{2 is continuously distributed and J˚p¨q is continuous.

Hence, by invoking Theorem 11.3.1 in Politis et al. (1999), we have

sup
tPR

|L˚
G,bptq ´ J˚

ptq| “ opp1q

as G Ñ 8, b Ñ 8, and b{G “ op1q. Next, note that pLG,b is an empirical CDF consisting

of M i.i.d. summands as we randomly sample the subsample clusters with replacement. By

Dvoretzky-Kiefer- Wolfowitz inequality, therefore, we have the uniform convergence of the

empirical CDF:

sup
tPR

|pLG,bptq ´ J˚
ptq| “ opp1q

as M Ñ 8 and G Ñ 8 This concludes the proof. □

In the case that }Sg} and }X 1
gXg} are in the domain of attraction of the normal law, our

proposed inference procedure based on subsampling continues to hold, regardless of whether

the variances of Sg and pX 1
gXgq exist or not. The next corollary supports this claim.

Corollary 1. Under Assumption 1, the conclusion of Theorem 1 continues to hold for α “ 2.

Remark 7 (Normal limiting law with and without a finite variance). As mentioned in

Remark 3, the case of α “ 2 includes situations where the limiting distribution follows

a normal distribution after proper centering and scaling. Hence, it includes the common

situations where variances are finite and thus the CLT is applicable. In addition, it also

covers some special circumstances with a normal limiting law but with VarpSgq “ 8 and

thus CLT is not applicable. Theorem 1 and Corollary 1 together comprehensively cover both

heavy- and thin-tailed distributions.
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Proof of Corollary 1. The proof is similar to the proof of Theorem 1 with the following minor

modifications. First, when α “ 2, Sg is in the domain of attraction of the normal distribution

and hence Theorem 3.4 in Giné et al. (1997) yields

SN1Gpθq
d

Ñ Np0, 1q.

Second, to show the asymptotic equivalence of SN1pθq and SN2pθq, note that both Sg and

pX 1
gXgq belong to the domain of attraction of the normal law when α “ 2. We branch into

two cases. In case that both Sg and pX 1
gXgq have finite variances, we have

1

G

G
ÿ

g“1

pS2
g “

1

G

G
ÿ

g“1

S2
g ` opp1q

p
Ñ VarpSgq

by following the standard argument for consistency of the CR variance estimator. In case

their variances do not exist, Lemma 3.1 in Giné et al. (1997) yields

1

A2
G

G
ÿ

g“1

S2
g

p
Ñ 1

for AG such that

1

AG

G
ÿ

g“1

pSg ´ ErSgsq
d

Ñ Np0, 1q.

A similar argument holds when Sg is replaced by pX 1
gXgq. Then, the arguments for bounding

}p1q} and }p2q} in the proof of Theorem 1 still go through, and thus for the self-normalized

sums defined in Equation (2.1), it holds that SN2pθq “ SN1pθq ` opp1q. Finally, for the

validity of the subsampling procedure, we now invoke Theorem 2.2.1 in Politis et al. (1999)

and note that the limiting distribution is normal and hence continuous. □

In situations with α P p1, 2q, one might hope that the use of the self-normalized CLT

can restore the asymptotic normality. Section 4.3 in Sasaki and Wang (2022) shows that,

when α ă 2, there exists a counterexample that the asymptotic distribution is non-gaussian

even when a self-normalized test statistic is employed. It turns out that a much stronger

conclusion can be made, that is, the score being in the domain of attraction of the normal
14



distribution is not only sufficient, but also necessary for the limiting distribution of the t-

statistic to be normal. Therefore, when α ă 2, it is impossible to derive a valid unconditional

inference procedure based on normal approximation without further imposing conditions on

within cluster dependence.

Corollary 2. Suppose that Assumption 1 is satisfied for an α P p1, 2s, then the t-statistic

ppδ ´ δq{pσ is asymptotically normal if and only if α “ 2.

Proof. The if part of the statement follows from the proof of Corollary 1. The only if part is

a direct implication of Theorem 3.4 in Giné et al. (1997) and the fact that for any α P p1, 2s,

the self-normalized sums defined in Equation (2.1) satisfy SN2pθq “ SN1pθq`opp1q, as shown

in the proofs for Theorem 1 and Corollary 1. □

2.2. Choosing the Number of Subsample Clusters. For the choice of b in practice, we

adapt the minimum volatility method (Algorithm 9.3.3) from Section 9.3.2 in Politis et al.

(1999) to our framework of cluster-robust inference. For subsampling to be valid, b needs to

grow with the number G of clusters but at a slower rate. If b is too close to G, then all the

subsampled t-statistics will be almost identical to the full-sample t-statistic, resulting in a

subsampling distribution being too tight and thus in under-coverage by confidence intervals.

On the other hand, if b is too small, then the subsampled t-statistics will be noisy and can

result in either under-coverage or over-coverage. Thus, intuitively, we wish to select a b that

is in a stable range for the test statistic. The following algorithm formalizes such an idea.

Algorithm 1 (Minimum volatility method for cluster-robust inference).

(1) For b P tbsmall, bsmall ` 1, ..., bbigu, compute the critical value pcG,bp1 ´ aq at a desired

significance level a.

(2) For b P tbsmall ` k, bsmall ` k ` 1, ..., bbig ´ ku, compute a volatility index V Ib of

the critical value, i.e., the standard deviation of the values pcG,b´kp1 ´ aq, ...,pcG,bp1 ´

aq, ...,pcG,b`kp1 ´ aq for a small positive integer k.
15



(3) Pick b˚ that has the smallest V Ib˚ and the corresponding confidence interval.

Remark 8. As pointed out in Section 11.5 in Romano and Wolf (1999), as empirical boot-

strap is not valid in the presence of heavy-tailed distributions, the common calibration

method for the choice of subsampling block size cannot be used in our setup.

3. Inconsistency of the Bootstraps

It is well-known that empirical bootstrap is inconsistent when the variance of the summand

is infinite (c.f. Athreya 1987; Knight 1989). It follows straightforwardly that the pairs

cluster bootstrap (Cameron, Gelbach, and Miller, 2008) is inconsistent in the context with

heavy-tailed distributed cluster sizes. The wild cluster bootstrap (Cameron et al., 2008)

is a popular alternative resampling method in the CR context, which has been shown in

various simulation studies to be well-behaved under thin-tailed distributed cluster size setups.

Validity of the wild cluster bootstrap in the case of thin-tailed cluster size has been shown

in, e.g. Djogbenou, MacKinnon, and Nielsen (2019) under fairly general conditions. As

their proof relies crucially on Lyapunov’s CLT, however, their arguments do not hold in the

presence of heavy-tailed cluster sizes (see Remark 5). A remaining and potentially more

interesting question is whether one can prove its validity using an alternative argument.

The following result suggests that such efforts are ill-fated when α ă 2. For simplicity of

illustration, consider the case of a univariate regression with only the intercept, i.e. a cluster

sampled mean pθ “ N´1
řG

g“1

řNg

i“1 Ygi with the cluster specific population mean normalized

to θ “ E
”

řNg

i“1 Ygi

ı

“ 0 without loss of generality. Suppose that the parameter for inference

is θ. Under the null hypothesis that θ “ 0, the standard cluster robust t-statistic can be

formed as

TG “

řG
g“1

řNg

i“1 Ygi
c

řG
g“1

´

řNg

i“1pYgi ´ pθq

¯2
.

16



The wild-cluster-bootstrap version of the estimator is defined by pθ˚ “ N´1
řG

g“1 v
˚
g

řNg

i“1 Ygi,

where pv˚
g qGg“1 are i.i.d. Rademacher auxiliary random variables generated by the researcher

independently from the observed data. The null-imposed wild cluster bootstrap test statistic

is defined by

T ˚
G “

řG
g“1 v

˚
g

řNg

i“1 Ygi
c

řG
g“1

´

v˚
g

řNg

i“1pYgi ´ pθ˚q

¯2
.

Denote Y1:G “ pYgi : g “ 1, ..., G, i “ 1, ..., Ngq. As Theorem 1 implies continuity of the

limiting distribution of TG, the wild cluster bootstrap is consistent if, as G Ñ 8,

sup
tPR

|PpT ˚
G ď t|Y1:Gq ´ PpTG ď tq| “ opp1q.

Theorem 2. Under the above setup and Assumption 1, if α P p1, 2q, then the wild cluster

bootstrap with Rademacher auxiliary r.v.’s is inconsistent.

Proof of Theorem 2. Write

TG “
SG

?
VG

:“
A´1

G

řG
g“1

´

řNg

i“1 Ygi

¯

c

A´2
G

řG
g“1

´

řNg

i“1pYgi ´ pθq

¯2
and

T ˚
G “

S˚
G

a

V ˚
G

:“
A´1

G

řG
g“1 v

˚
g

´

řNg

i“1 Ygi

¯

c

A´2
G

řG
g“1

´

v˚
g

řNg

i“1pYgi ´ pθ˚q

¯2
.

Let P denote the probability measure for the data and P˚ denote the probability measure of

Rademacher auxiliary random variables. Define

p “ lim
tÑ8

P
´

řNg

i“1 Ygi ą t
¯

P
´

ˇ

ˇ

ˇ

řNg

i“1 Ygi

ˇ

ˇ

ˇ
ą t

¯ .

Write Wg “

ˇ

ˇ

ˇ

řNg

i“1 Ygi

ˇ

ˇ

ˇ
and the order statistics of W1, ...,WG as follows:

WG1 ěWG2 ě ... ě WGG.

17



The rescaled counterpart is denoted by ZGg “ A´1
G WGg, for g “ 1, ..., G – recall that AG “

G1{αLpGq for a slow varying Lp¨q is defined right before Assumption 1. For each G, we can

collect them into a countably long vector

ZG
“ pZG1, ..., ZGG, 0, 0, ...q P R

8.

Similarly defined is the countably long sign vector

ϵG “ pϵG1, ..., ϵGG, 1, 1, ...q P R
8,

where ϵGg indicates the sign such that
řNh

i“1 Yhi “ ϵGgWGg for the cluster h that corresponds

to the g-th order statistic WGg for each g “ 1, ..., G, G P N. By Lemmas 1 and 2 in LePage

et al. (1981), we have

ZG d
ÑZ “ pZ1, Z2, ...q and ϵG

d
Ñ ϵ “ pϵ1, ϵ2, ...q,

where tZkuk and tϵku are defined in the proof for Theorem 1. In addition, since R8 is a

complete separable metric space under the metric

dppx1, x2, ...q, py1, y2, ...qq “

8
ÿ

k“1

1

2k
¨

|xk ´ yk|

1 ` |xk ´ yk|
,

following Skorohod’s representation theorem, on an adequately chosen probability space,

dpZG, Zq Ñ 0 and dpϵG, ϵq Ñ 0

P-almost surely. Denote the countable vector of i.i.d. Rademacher random variables by

v˚ “ pv˚
1 , v

˚
2 , ...q P R8, which is invariant of G. We now claim that the weak convergence

S˚
G “

G
ÿ

g“1

ϵGgZGgv
˚
g

d˚

Ñ S˚ :“
8
ÿ

k“1

ϵkZkv
˚
k

for pZ, ϵq with P-probability one, where the convergence in distribution
d˚

Ñ is with respect to

P˚. Note that the limiting random variable on the right-hand side is well-defined since

E˚
rϵkZkv

˚
k s “ 0 for all k and
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8
ÿ

k“1

E˚
“

pϵkZkv
˚
kq

2
‰

“

8
ÿ

k“1

Z2
k ă 8

P-almost surely. The convergence in distribution is shown following the same arguments as in

the proof of Theorem 2 in Knight (1989) with i.i.d. Rademacher random variables v˚
k in place

of their centered i.i.d. Poisson random variables pM˚
k ´ 1q. Specifically, observe that Zk Ñ 0

as k Ñ 8 P-almost surely. Following Equation (12) in the proof of Theorem 1 in LePage

et al. (1981), define Z Ă R8 be the subspace consists of countable sequences z “ pz1, z2, ...q

such that z1 ě z2 ě ... ě 0 (note that Z is also a complete separable space with the inherited

topology). Subsequently, for a fixed ε ą 0, define ϕ : Z ˆ t´1, 1u8 ˆ t´1, 1u8 by

ϕpz, ϵ, v˚
q “

$

’

’

&

’

’

%

ř8

k“1 ϵkzk1pzk ą ϵqv˚
k if zk Ñ 0 as k Ñ 8,

0 otherwise.

Then ϕ is a continuous mapping with respect to the product topology. Thus by the contin-

uous mapping theorem as well as the convergences of dpZG, Zq Ñ 0 and dpϵG, ϵq Ñ 0 with

P-probability one established earlier, for any ε ą 0,

G
ÿ

g“1

ϵGgZGg1pZGg ą εqv˚
g

d˚

Ñ

8
ÿ

k“1

ϵkZk1pZk ą εqv˚
k

for pZ, ϵq with P-probability one. In addition, note that

E˚

»

–

˜

G
ÿ

g“1

ϵGgZGg1pZGg ď εqv˚
g

¸2
fi

fl “

G
ÿ

g“1

Z2
Gg1pZGg ď εqVar˚

pv˚
kq ď

8
ÿ

k“1

Z2
k1pZk ď εq

holds almost surely in P and the right-hand side converges to zero as ε Ñ 0, which implies

via Markov’s inequality that, for any δ ą 0,

lim
εÑ0

lim sup
GÑ8

P˚

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

ϵGkZGk1pZGk ď εqv˚
k

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

¸

“ 0

P-almost surely. Finally, for any δ ą 0,

lim
εÑ0

P˚

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

ϵkZk1pZk ď εqv˚
k

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

¸

“ 0
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P-almost surely, which follows immediately from the fact that

E˚

»

–

˜

8
ÿ

k“1

ϵkZk1pZk ď εqv˚
k

¸2
fi

fl “

8
ÿ

k“1

Z2
k1pZk ď εq Ñ 0

P-almost surely as ε Ñ 0. Combining these results yields that

S˚
G

d˚

Ñ S˚
“

8
ÿ

k“1

ϵkZkv
˚
k

for pZ, ϵq with P-probability one. On the other hand, recall from Step 1 in the proof of

Theorem 1 that

SG “

G
ÿ

g“1

ϵGgZGg
d

Ñ S :“
8
ÿ

k“1

tϵkZk ´ p2p ´ 1qErZk1pZk ď 1qsu,

by Theorem 1 in LePage et al. (1981). Note that Zk, ϵk, and v˚
k are all mutually independent

from each other. Therefore, the limiting distribution of S˚
G given Y1:G, i.e. S

˚ conditionally

on pZ, ϵq, differs from, S, the limiting α-stable distribution of SG with positive P-probability.

Next, to cope with the denominator term of S˚
G, note that, combined with the law of large

numbers, the above weak convergence of S˚
G also implies

pθ˚
“

1

N

G
ÿ

g“1

ϵGgWGgv
˚
g

“
1

c ` opp1q
¨
1

G

G
ÿ

g“1

ϵGgWGgv
˚
g

“
1

c ` opp1q
loooomoooon

“Opp1q

¨
AG

G
loomoon

“
LpGq

G1´1{α

¨

G
ÿ

g“1

ϵGgZGgv
˚
g

loooooomoooooon

“Opp1q

“ opp1q.

Thus, the denominator term, pV ˚
Gq1{2, of S˚

G turns out to be asymptotically independent of

the auxiliary Rademacher random variables v˚
g :

V ˚
G “

1

A2
G

G
ÿ

g“1

˜

v˚
g

Ng
ÿ

i“1

pYgi ` opp1qq

¸2

“

G
ÿ

g“1

Z2
Gg ` opp1q.
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Given Y1:G, the denominator is asymptotically constant. Following Step 1 in the proof of

Theorem 1, we have

VG “

G
ÿ

g“1

Z2
Gg ` opp1q

d
Ñ

8
ÿ

k“1

Z2
k “ Opp1q.

Thus, given Y1:G, the denominator term pV ˚
Gq1{2 is a fixed value, while the original limit of the

denominator is an pα{2q-stable, non-degenerate continuous distribution. Hence, the limiting

distribution of V ˚
G given Y1:G and the unconditional limiting distribution of VG differs with

non-zero P-probability.

Finally, note that V ˚
G ą 0 P-almost surely. Thus, the fact that pS˚

G, V
˚
Gq

d˚

Ñ
`
ř8

k“1 ϵkZkv
˚
k ,

ř8

k“1 Z
2
k

˘

for almost every pZ, ϵq and the continuous mapping theorem yields that

T ˚
G

d˚

Ñ

ř8

k“1 ϵkZkv
˚
k

a

ř8

k“1 Z
2
k

for pZ, ϵq with P-probability one. This, together with the unconditional limiting distribution

of TG implies the conclusion that the unconditional limiting distribution of TG and the

conditional limiting distribution of T ˚
G differs with positive P-probability. The inconsistency

then follows.

□
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