
Latent Utility and Permutation Invariance: A Revealed Preference

Approach ∗

Roy Allen

Department of Economics

University of Western Ontario

rallen46@uwo.ca

John Rehbeck

Department of Economics

The Ohio State University

rehbeck.7@osu.edu

October 25, 2023

Abstract

This paper provides partial identification results for latent utility models

that satisfy an invariance property on unobservables such as exchangeability.

We employ a simple revealed preference argument to “difference out” unob-

servables and show that this gives identifying inequalities for utility indices.

We show the differencing argument is also useful for counterfactual analysis.

The framework generalizes existing work in discrete choice by allowing latent

feasibility sets and by allowing individuals to purchase multiple (possibly con-

tinuous) goods. We present a new framework leveraging nesting structures that

generalizes nested logit. In a panel setting, we innovate by allowing preferences

for variety.
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1 Introduction

Latent utility models often invoke an assumption that different unobservable compo-

nents have the “same” distribution in some sense. One leading example is maximum

score (Manski, 1975). For multinomial discrete choice, maximum score assumes the

distribution of additive unobservables is exchangeable conditional on covariates. That

is, the distribution of unobservables is the same when their order is changed (Goeree

et al., 2005; Fox, 2007). Another example is nested logit where unobservables are

exchangeable within a nest conditional on a nest-specific shock. Lastly, the static

panel analysis of Manski (1987) and Shi et al. (2018) assumes the distribution of

unobservables is the same across time conditional on fixed effects and covariates.

This paper combines invariance and utility maximization to generate identifying in-

equalities. A central challenge is that while it is straightforward to write revealed

preference inequalities characterizing optimization, it is hard to “remove” the role

of unobservables because they are not independent of choices (Pakes et al., 2015;

Pakes, 2010). We address this by showing how to leverage invariance conditions to

“difference out” the distribution of unobservables. Once these are differenced out,

we are left with conditional moment inequalities that provide identifying information

for utility indices. Unlike classic revealed preference arguments (e.g. Afriat (1967)),

this revealed preference argument allows heterogeneous preferences and holds even

when budgets are latent and random. The contribution of this paper is to unify ex-

isting work discussed above and present a general toolkit to use revealed preference

arguments in new settings.

First, we use this framework to study new cross-sectional models. We present a

generalization of nested logit that assumes a within-nest exchangeability condition

on unobservables, but not a parametric distribution for unobservables. We show

how within-nest exchangability generates within-nest moment inequalities. We then

generalize the setup to consider the purchase of multiple goods which can be com-

plements or substitutes. For example, in Ershov et al. (2018) it is assumed that all

types of soda are in a nest, all types of chips are in a nest, and the paper allows soda

and chips to be complements. More generally, the moment inequalities we obtain

involve the conditional mean quantities of goods given covariates and hold for general

discrete/continuous models that have a nesting structure.
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Next, we turn to panel models. We study invariance conditions concerning the

joint distribution of utility shocks across time. We show how to extend the cyclic

monotonicity inequalities of Shi et al. (2018) to all perturbed utility models. As

a leading example, we cover a fixed effects bundles model allowing complementar-

ity/substitutability, as in Gentzkow (2007).1 We accommodate a generalization in

which quantities may be discrete, continuous, or any mix. We also show that the

inequalities of Shi et al. (2018) can be motivated two ways: panel stationarity with

time-separable preferences, or a new way that imposes panel exchangeability but

allows preferences that are not time-separable, covering preference for variety.

In order to accommodate a variety of choice settings, we use the perturbed utility

model (McFadden and Fosgerau, 2012; Allen and Rehbeck, 2019a). This model covers

the classic discrete choice additive random utility model (McFadden, 1981), as well

as models of matching (Fox et al., 2018), decisions under uncertainty (Agarwal and

Somaini, 2018), and purchases of bundles (Gentzkow, 2007).2 In addition to covering

these existing models, perturbed utility models have also been used as direct models

of choice. Examples include Fosgerau et al. (2022a), Fosgerau et al. (2022b), and Yan

et al. (2022). One key feature of general perturbed utility models that we exploit

is additively separable heterogeneity, which allows us to difference out unobservable

heterogeneity.

Our identification analysis starts by examining the necessary and sufficient inequal-

ities for optimization. In general, choices and unobservables are related, making a

revealed preference approach challenging. In particular, it is not obvious how to re-

move the role of unobservables such as by an independence or mean-zero condition.

We innovate by providing a general way to use invariance assumptions on how the

unobservables and choices interact in the utility function. We construct a random

variable from the assumed invariance conditions that reproduces the utility-match

between the original choice and unobservables. In doing so, we show that the mean

utility (of unobservables) of the original utility match and the utility match of the

constructed random variable are equivalent. Thus, rather than assume a mean-zero

condition on utility unobservables, we assume invariance conditions that ensure an

1Our analysis applies with an arbitrary number of goods. Wang (2021) derives sharp bounds for
a slightly different version with two goods and binary quantities of each good.

2See Allen and Rehbeck (2019a) for how to represent choice models in these papers as perturbed
utility models.
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equal mean utility match. This is how we difference out the role of unobservables,

generating identifying inequalities only concerning observable regressors and choices.

The technique we introduce is robust to latent feasibility sets. By a latent feasibility

set, we mean that an individual may only be able to choose from a subset of the

candidate choices the econometrician observes. Examples of latent feasibility include

random stock outs or limited consideration. We handle latent feasibility sets by

working with extended real-valued functions. Thus, we encode “infeasible” choices

by setting their utility to ´8.3 The key assumption we require is that infeasibility

satisfies an invariance property. For example, using the panel stationarity assumption

of Shi et al. (2018), the invariance assumption requires that the distribution of utility

shocks and feasible sets is the same across time, conditional on covariates and fixed

effects. This handles the case of individual-specific (but not time varying) latent

feasibility as a special case.4

This paper is part of broader agenda providing identification results for general per-

turbed utility models in Allen and Rehbeck (2019a) and Allen and Rehbeck (2020).

The key difference is that both previous papers require an average structural func-

tion where covariates change and the distribution of unobservables is fixed. This is

an invariance condition on the distribution of unobservables; it is implied if covari-

ates are independent of unobservables. Both papers take a demand approach and

use the envelope theorem heavily, in the style of classic discrete choice work such

as McFadden (1981). The invariance condition employed in those papers rules out

many examples that motivate the present paper, such as exchangeability conditional

on covariates as in multinomial choice maximum score following Manski (1975). Our

analysis here differs in four ways. First, we consider general invariance conditions such

as exchangeability between unobservables in the same choice problem as in maximum

score following Manski (1975), not just independence of covariates and unobservables

across choices. Second, we use discrete revealed preference techniques whereas Allen

and Rehbeck (2019a, 2020) differentiate the envelope theorem and focus on calculus-

based techniques. Third, we provide inequalities that typically only partially identify

structural objects of interest, whereas Allen and Rehbeck (2019a, 2020) focus on point

3This is a standard technique in convex analysis, e.g. Rockafellar (1970).
4See also Lu (2022), Crawford et al. (2021), and Aguiar and Kashaev (2019), who use different

methods.

4



identification. Fourth, we focus on the linear index case with constant coefficients,

whereas Allen and Rehbeck (2019a) study general nonparametric indices and Allen

and Rehbeck (2020) study identification of the distribution of random coefficients.

Finally, we study panel settings with fixed effects, which were not considered in Allen

and Rehbeck (2019a) or Allen and Rehbeck (2020).

The rest of the paper is organized as follows. Section 2 describes the basic setup.

Section 3 presents the main result delivering identifying inequalities by revealed pref-

erence. Section 4 show how invariance conditions imply inequalities for counterfac-

tuals. Section presents examples in which invariance holds within a nest. Section 6

presents examples in which invariance holds across time in a panel context. Section 7

discusses the results and potential avenues for future work.

2 Setup

We study perturbed utility models where the observed choice Y P RK satisfies

Y P argmax
yPB

K
ÿ

k“1

ykβ
1
kXk `Dpy, α, ηq. (1)

Each good k has utility shifters Xk. These are collected in X “ pX 1
1, . . . , X

1
Kq
1. The

shifters enter through a utility index β1kXk where β “ pβ11, . . . , β
1
Kq
1 is nonrandom.

The unobservables are shifters α of unrestricted dimension, and good-specific shifters

η of dimension K. We place no restrictions on α. In a panel setting, α can represent

fixed effects. The unobservables combine with quantities y through the disturbance

function D.

The primary object of interest in the paper is β. The other parts of the utility are

“differenced out” by a revealed preference argument and we do not directly study

identification of the disturbance function or distribution of unobservables. These

objects indirectly show up when we examine counterfactual analysis in Section 4.

The set B and function D jointly encode complementarity/substitutability patterns

between goods. For notational simplicity we use B to denote a “budget” constraint.

For example, in discrete choice the budget is the probability simplex which we define

formally in Example 1. Latent feasibility is allowed and can be encoded inD by letting
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Dpy, α, ηq “ ´8 for infeasible quantities. Importantly, these latent feasibility sets can

be random and unobserved to the analyst as in Manski (1977). Thus, Equation (1)

can equivalently be written

Y P argmax
yPB̃pα,ηq

K
ÿ

k“1

ykβ
1
kXk `Dpy, α, ηq,

where B̃pα, ηq is the set of y P B such that Dpy, α, ηq ą ´8.5 We focus on Equa-

tion (1) and follow the convex analysis approach of encoding budgets in extended

real-valued functions. We emphasize this point because there has been extensive re-

cent interest in latent feasibility that could arise because of stock out (Conlon and

Mortimer (2013)) or limited consideration of alternatives (Goeree (2008); Fox (2007);

Manzini and Mariotti (2014)).6

We require the following maintained technical assumptions.

Assumption 1. Assume the following:

i. The random variables pY,X, α, ηq satisfy (1) almost surely, where D : RK ˆAˆ

RK Ñ RY t´8u.

ii. PrpsupyPBDpy, α, ηq ą ´8q “ 1.

iii. Y is pX,α, ηq-measurable.

iv. Y , X, DpY, α, ηq and Ykβ
1
kXk have finite expectation for each k.

Part (i) formalizes the choices come from the optimizing model. The disturbance D

can be ´8 to reflect stochastic infeasibility of certain quantities, but can never be

8. Part (ii) formalizes that some y is feasible with probability 1. This condition

guarantees that the maximizer has finite utility for every draw of α and η. Part (iii)

is for technical convenience and is automatic when the maximizer is unique. Part (iv)

is needed because we work with conditional means.

Our key requirement is the following set of invariance conditions.

Assumption 2 (G-Invariance). For a specified set of transformations G in RK, for

5See also Allen and Rehbeck (2019a), pp. 1025-1026.
6Classic work includes Manski (1977), which emphasizes endogeneity in choice sets.
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each Π P G, the following conditions hold:

i. The inverse Π´1 exists and Π´1 P G.

ii. Conditional on pX,αq, η and Πpηq have the same distribution.

iii. For each y P B, Dpy, α, ηq “ DpΠpyq, α,Πpηqq almost surely.

iv. y P B implies Πpyq P B.

v. ΠpY q and ΠkpY qβ
1
kXk have finite expectation for each k.

For the examples in this paper, G is a set of permutations that change the order

of a vector. Condition (ii) is an exchangeability condition. For the main analysis,

the α random variable is unobservable and integrated out to partially identify linear

utility indices. When Π is a permutation, (iii) and (iv) formalize that “order doesn’t

matter” and are satisfied in many examples. The basic idea of this paper is that when

G-Invariance holds, we can “difference out” the distribution of unobservables using

transformations of the data that are in G. In part (v), ΠkpY q is the k-th component

of the K dimensional vector ΠpY q.

By differencing out the unobservables, we can cover a range of existing models. As

discussed in the Introduction, Allen and Rehbeck (2019a) show how different choices

of disturbance D and budget B cover different existing models. In particular, rep-

resentations of choice in the following papers are covered by this setup: classic dis-

crete choice additive random utility (McFadden, 1981), matching (Fox et al., 2018),

decisions under uncertainty (Agarwal and Somaini, 2018), and bundles (Gentzkow,

2007).7

To fix ideas in the familiar setting of discrete choice, we begin with an example where

G-Invariance holds for all permutations of indices of the K goods. This example is

related to maximum score and related work studied in Manski (1975), Matzkin (1993),

Goeree, Holt, and Palfrey (2005), Fox (2007), and Allen and Rehbeck (2019a). We

study additional examples in Section 5.

Example 1 (Full Exchangeability). Consider the discrete choice additive random

7We emphasize that while each of these papers has a utility representation of choice covered by
our setup, one also needs to make additional invariance conditions to use the tools of this paper.
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utility model, which can be written as a perturbed utility model by writing

Y P argmax
yP∆K´1

K
ÿ

k“1

ykβ
1
kXk `

K
ÿ

k“1

ykηk,

where B “ ∆K´1 “ ty P RK | yk ě 0,
ř

k“1 yk “ 1u is the probability simplex and

let Dpy, εq “
řK
k“1 ykηk. With this specification, if alternative k is chosen, then the

quantity vector Y has a 1 in the k-th dimension and a 0 elsewhere, and the individual

gets utility vk “ β1kXk`ηk. The budget set ∆K´1 allows randomization in the presence

of utility ties.

We make assumptions such that GF -Invariance holds with GF the set of all permuta-

tions in RK. We verify each part of Assumption 2. Part (i) holds because permuta-

tions are invertible, and the inverse of a permutation is a permutation. Part (ii) is sat-

isfied by assuming η “ pη1, . . . , ηKq is exchangeable, conditional on X. (There is no α

in this example.) In other words, for any permutation Π, Πpηq “ pΠ1pηq, . . . ,ΠKpηqqq

has the same distribution as η, conditional on X.8 Note here that if components of η

are independent and identically distributed conditional on X, then η is automatically

exchangeable conditional on X. Thus, logit shocks satisfy this assumption. Part (iii)

is verified by noting that DpY, ηq “ DpΠpY q,Πpηqq by construction of D. Part (iv)

is satisfied because the probability simplex ∆K´1 is invariant to permutations. Choice

Y here is bounded and hence ΠpY q is as well, and so ΠpY q has finite expectation. A

maintained assumption is that X has finite expectation, and so since Y is bounded,

ΠkpY qβ
1
kXk has finite expectation. Thus part (v) is satisfied and we have verified

GF -Invariance.

3 Identification by Revealed Preference

We show how G-Invariance (see Assumption 2) provides identifying power for slope

coefficients by leveraging revealed preference inequalities. To that end, let Y “

pY1, . . . , YKq be a maximizer given pX,α, ηq as in Equation (1). A necessary and

8We can encode permutations as permutations of indices. Thus, each Π can be written as
Πpηq “ pηπp1q, . . . , ηπpKqq for a permutation π of the set t1, . . . ,Ku.
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sufficient condition for optimality is that for any random variable Ỹ supported on B,

K
ÿ

k“1

Ykβ
1
kXk `DpY, α, ηq ě

K
ÿ

k“1

Ỹkβ
1
kXk `DpỸ , α, ηq. (2)

Taking expectations conditional on X, we obtain

K
ÿ

k“1

ErYk ´ Ỹk | Xsβ1kXk ě ErDpỸ , α, ηq ´DpY, α, ηq | Xs (3)

whenever these expectations exist. For brevity we will leave the almost sure qualifi-

cations implicit, except in formal results.

The inequality in (3) states that the average change in utility due to the interaction

of quantities and observables must outweigh the change due to the interaction with

unobservables. A general challenge of operationalizing revealed preference arguments

in econometrics is that Y and η are related (Pakes, 2010). This paper addresses this

fundamental selection problem by constructing a random variable that “matches” the

type of selection between Y and η. Specifically, this paper refines the inequality in

Equation (3) by constructing a random variable Ỹ such that the right hand side is

zero. We do this by leveraging the following implication of G-Invariance.

Lemma 1. Let Assumption 1 hold and let the set of transformations G satisfy As-

sumption 2. Then for every Π P G there is a random variable Ỹ Π supported on B

such that:

i. ErỸ Π ´ ΠpY q | X,αs “ 0 almost surely.

ii. E
”

DpỸ Π, α, ηq ´DpY, α, ηq | X,α
ı

“ 0 almost surely.

The constructed variable Ỹ Π is not observed in the general case. Thus, part (i) is

key to identifying the conditional mean of Ỹ Π. Part (ii) is key to remove the role

of unobservables in the inequality (3). Combining Lemma 1 and (3), we have the

following result.

Theorem 1. Let Assumption 1 hold and let the set of transformations G satisfy
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Assumption 2. For every Π P G,

K
ÿ

k“1

ErYk ´ ΠkpY q | X,αsβ
1
kXk ě 0 a.s.

and hence
K
ÿ

k“1

ErYk ´ ΠkpY q | Xsβ
1
kXk ě 0 a.s. (4)

This result provides identifying information relating β and the joint distribution of

observables. Note that this result holds without needing to specify the budget B,

disturbance D, or the distribution of pα, ηq. Instead, revealed preference conditions

show that we can “difference out” these components of the distribution when taking

expectations. We describe implications of Theorem 1 in an example.

Example 1 (continued). When G “ GF is the set of all permutations, (4) becomes

K
ÿ

k“1

ErYk ´ ΠkpY q | Xsβ
1
kXk ě 0

for every Π P GF . In particular, by considering permutations that swap only two

indices at a time, we obtain that for each pair k, `,

pErYk | Xs ´ ErY` | Xsqpβ1kXk ´ β
1
`X`q ě 0,

which is equivalent to

ErYk | Xs ą ErY` | Xs ùñ β1kXk ě β1`X`.

This shows the order of conditional probabilities lines up with the order of utility

indices. These are a version of the maximum score inequalities originally studied in

discrete choice (Manski, 1975). We differ because we allow utility ties, and these

inequalities hold for all perturbed utility models when GF -Invariance is satisfied. That

is, while this example stated an existing discrete choice setup, the resulting inequalities

do not use specific features of discrete choice.

We make some additional remarks.
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Remark 1 (Scale). The inequalities in Equation (4) do not contain scale information.

That is, if β satisfies all such inequalities, then so does λβ for any λ ą 0. To handle

this, we recommend setting |β1,1| “ 1, where the goods are arranged so that the first

characteristic of the first good is thought to be relevant on a priori grounds. Alter-

natively, analysis can be done on relative terms such as the ratio of two components

of β.

Remark 2 (Exclusion Restrictions). Theorem 1 does not make use of exclusion restric-

tions. Thus, Xk and Xj can be arbitrarily related; for example they can be identical.

In many contexts, exclusion restrictions are important for meaningful analysis. To

illustrate this, suppose we can split Xk “ pZ
1
k,W

1q1 into variables Zk that are good-

specific shifters and variables W that are common across goods. For example, Zk

could include price of good k and W could include demographic variables. Suppose

further βk “ pβ
z1
k , β

w1q1 so that β1kXk “ βz1k Zk ` β
w1W . Equation (4) then reads

K
ÿ

k“1

ErYk ´ ΠkpY q | Xsβ
z1
k Zk ` β

w1W
K
ÿ

k“1

ErYk ´ ΠkpY q | Xs ě 0 a.s.

In discrete choice, quantities sum to 1 and so when Π is a permutation, the second

sum (next to W ) is zero. Thus, the inequalities are not informative for βw, though

they can be for βzk . From this, we conclude that for discrete choice when coefficients

for common regressors are the same across goods (βw has no k subscript here), the

inequalities from G-invariance contain no information for the common regressors when

the transformations consist of permutations.

Remark 3 (Utility Ties). When Y is the unique maximizer with probability 1, the

inequality from Equation (2) is strict whenever Y ‰ Ỹ . Thus, (4) is strict provided

P pY ‰ ΠpY q | Xq ą 0. Assuming a unique maximizer is common in the literature

though we do not require this assumption.

Remark 4 (Smaller Conditioning Set). Suppose Π only alters a subset of alternatives,

e.g. the first L ă K alternatives. Then we obtain ErYk ´ ΠkpY q | Xs “ 0 for any

k ą L. From this, (4) becomes

L
ÿ

k“1

ErYk ´ ΠkpY q | Xsβ
1
kXk ě 0 a.s. (5)
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so that from the law of iterated expectations,

L
ÿ

k“1

pErYk ´ ΠkpY q | X1, . . . , XLsqβ
1
kXk ě 0 a.s. (6)

So we see Equation (5) is stronger than Equation (6). Importantly though, Equa-

tion (6) only requires observation of pX1, . . . , XLq and pY1, . . . , YLq, and not the full

vectors X and Y . This is related to a finding in Fox (2007) that certain multino-

mial choice maximum score inequalities arise when only a subset of alternatives are

observed.

Remark 5 (Larger Conditioning Set). This paper focuses on α being an unobservable

(such as a fixed effect). The analysis goes through if α is partially or fully observable.

Specifically, split α “ pW, ξq where W is observable and ξ is unobservable; ξ can

be degenerate in which case α is fully observable. Note in particular that some

observables W can then enter the disturbance DpY,W, ξ, ηq. In addition, invariance

conditions then hold conditional on the mix of observables and unobservables pW, ξq.

By integrating out ξ, we obtain the inequalities

K
ÿ

k“1

ErYk ´ ΠkpY q | W,Xsβ
1
kXk ě 0 a.s. (7)

Remark 6 (Beyond Means). Here we only leverage identifying power of conditional

means. In discrete choice these are conditional probabilities and this does not lose

information, but in some contexts it might. The proof of Lemma 1 actually establishes

equality of certain conditional distributions. Specifically, it constructs a random

variable Ỹ Π such that conditional on pX,α), ΠpY q and Ỹ Π have the same distribution,

and similarly for DpỸ Π, α, ηq and DpY, α, ηq.

Here we only use the implication that means conditional on X are equal (by integrat-

ing out α). An interesting direction for future work is to study additional implications

of this matching argument.
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4 Invariance and Counterfactuals

This section studies how invariance conditions can be used to place restrictions on

counterfactuals. To formalize this, the analyst is interested in placing restrictions on

quantities at covariates x̃. We write the optimizing quantities as

Ỹ px̃, α, ηq P argmax
yPB

K
ÿ

k“1

ykβ
1
kx̃k `Dpy, α, ηq.

This assumes the individual optimizes the same utility function as before. It

also assumes for technical convenience that the counterfactual quantity is px̃, α, ηq-

measurable.

The object of interest is the mean quantity at the value of covariates x̃, under the

distribution of pα, ηq in the counterfactual setting, denoted FC . We write this as

Y px̃, FC
q “ EFC rỸ px̃, α, ηqs.

Some restrictions on FC are needed for meaningful counterfactual analysis. We con-

sider some examples.

First, we can assume the distribution FC over pα, ηq satisfies an invariance condition

similar to Assumption 2 before. Namely, let the set of transformations applied to the

counterfactual setting be denoted GC , and for any Π P GC , the distribution of η is the

same as Πpηq conditional on α. Moreover, DpΠpỸ q, α,Πpηqq “ DpỸ , α, ηq and y P B

implies Πpyq P B. Similar to Theorem 1, this leads to inequalities such as

K
ÿ

k“1

`

Y px̃, FC
q ´ ΠpY px̃, FC

qq
˘

β1kx̃k ě 0. (8)

As an example, with GC the set of all permutations in RK , the analysis of Example 1

implies the inequalities

β1kx̃k ą β1`x̃` ùñ Y kpx̃, F
C
q ě Y `px̃, F

C
q.

Suppose β is identified or more generally we can identify whether the left hand side

holds. Then this implication provides inequalities relating different components of
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the counterfactual average quantities.9

We now consider an alternative assumption on FC . Let x be a point in supppXq,

i.e. the support of X.10 We assume that FC equals the distribution of pα, ηq given

X “ x, which we can write as FC
x “ Fpα,ηq|X“x. Since x is a point in the support of X,

this formalizes that the counterfactual distribution of latent variables is the same at

a certain value x of observable covariates. This invariance condition allows us to use

revealed preference inequalities to describe restrictions on Y px̃, FC
x q. Specifically, for

pY,X, α, ηq consistent with utility maximization, we use the following implications of

optimization

K
ÿ

k“1

Ykβ
1
kXk `DpY, α, ηq ě

K
ÿ

k“1

Ỹkpx̃, α, ηqβ
1
kXk `DpỸ px̃, α, ηq, α, ηq

K
ÿ

k“1

Ỹkpx̃, α, ηqβ
1
kx̃k `DpỸ px̃, α, ηq, α, ηq ě

K
ÿ

k“1

Ykβ
1
kx̃k `DpY, α, ηq.

These rearrange to

K
ÿ

k“1

´

Yk ´ Ỹkpx̃, α, ηq
¯

pβ1kXk ´ β
1
kx̃kq ě 0.

Taking the expectation conditional on X “ x yields

K
ÿ

k“1

`

ErYk | X “ xs ´ Y kpx̃, F
C
x q

˘

pβ1kxk ´ β
1
kx̃kq ě 0,

where we have used the assumption that FC
x “ Fpα,ηq|X“x to conclude that Y px̃, FC

x q “

EFpα,ηq|X“xrỸ px̃, α, ηqs. We emphasize that while this counterfactual exercise holds the

distribution of unobservables fixed and varies covariates, we do not require indepen-

dence between X and unobservables for the general results in the paper.11

9Appendix A of Chiong et al. (2021) presents similar inequalities for discrete choice.
10The support of X is the smallest closed set K such that P pX P Kq “ 1.
11Allen and Rehbeck (2019a) and Chiong et al. (2021) show independence places additional restric-

tions on counterfactuals. Recall here we only exploit invariance (equality) between two distributions:
the distribution of unobservables at X “ x and in the (single) counterfactual setting.
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5 Nesting Invariance

In this section we describe examples in which G-Invariance holds for a class of trans-

formations due to a nesting structure. We first consider a discrete choice example

that generalizes nested logit because it does not require a parametric specification

of unobservables. Then we consider nesting structures in discrete/continuous models

that allow complementarity between goods.

5.1 Nesting in Discrete Choice

Partition the K goods into m non-overlapping nests K1, . . . , KM . For each m P

t1, . . . ,Mu, let GN,m be the set of permutations of indices of goods in Km. Let

GN “
ŤM
m“1 GN,m be the set of all such permutations. Note that transformations in

GN,m only compare elements of the nest Km.

First, consider a discrete choice model. Let the nest alternative k belongs to be

denoted mpkq. Specify latent utility for good k as

vk “ β1kXk ` αmpkq ` ηk.

The unobservable αmpkq is common to the nest mpkq. The unobservable ηk is specific

to alternative k. As in Example 1, write Dpy, α, ηq “
řK
k“1 ykpαmpkq ` ηkq. Then any

element of GN only permutes choices in the same nest. For example, if Π P GN,m,

then alternatives in nest m are permuted and we have

DpΠpyq, α,Πpηqq “ αm

˜

ÿ

kPKm

yπpkq

¸

`
ÿ

kPKm

yπpkqηπpkq `
ÿ

kPKzKm

ykpαmpkq ` ηkq

“ αm

˜

ÿ

kPKm

yk

¸

`
ÿ

kPKm

ykηk `
ÿ

kPKzKm

ykpαmpkq ` ηkq

“ Dpy, α, ηq.

We see that the disturbance D is invariant to transformations that permute the

quantities of the goods within the same nest. Suppose that conditional on pα,Xq,

Πmpηq and η have the same distribution for any Πm P GN,m. That is, Πm permutes

only goods in nest m and we have within-nest exchangeability. Then under minor
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regularity conditions we satisfy GN,m-Invariance for nest m. Thus, the inequalities of

Theorem 1 hold for Π P GN,m. We note nested logit is a special case of this framework

(Cardell (1997), Galichon (2022)). Here, we generalize nested logit since we do not

specify a parametric distribution for any of the random variables.

5.2 Nesting Outside of Discrete Choice

Now consider a model in which a consumer can buy quantities of different goods.

We go beyond discrete choice by allowing complementarity between goods. Goods

are partitioned into M nests. For example, Ershov et al. (2018) study demand for

soda and potato chips.12 Here, the partition splits the goods into a nest containing

all types of soda, and a nest containing all types of potato chips. More generally, we

consider M nests.

To begin, assume quantities are each either 0 or 1, and quantity in each nest is at

most 1. Quantities across nests need not sum to 1 and so this is not classic discrete

choice. Motivated by the presentation of nesting in discrete choice, suppose utility

takes the form

K
ÿ

k“1

ykβ
1
kXk `

K
ÿ

k“1

ykηk `
ÿ

m

αm

˜

ÿ

kPKm

yk

¸

`
ÿ

m1‰m2

αm1,m2

¨

˝

ÿ

kPKm1

yk

˛

‚

¨

˝

ÿ

kPKm2

yk

˛

‚

` ¨ ¨ ¨ `
ÿ

m1‰¨¨¨‰mM

αm1,...,mM

¨

˝

ÿ

kPKm1

yk

˛

‚¨ ¨ ¨

¨

˝

ÿ

kPKmM

yk

˛

‚.

(9)

The term
řK
k“1 ykβ

1
kXk reflects that the utility shifters only shift the marginal utility of

each good. The term
ř

kPK ykηk describes how preferences depend on the good-specific

unobservables. The term
ř

m αm
`
ř

kPKm
yk
˘

describes how preferences depend on

the nest-specific unobservable αm. This part parallels the discrete choice analysis

above. What differs here is that individuals may purchase goods from multiple nests.

For this reason, we include terms such as
ř

m1‰m2
αm1,m2

´

ř

kPKm1
yk

¯´

ř

kPKm2
yk

¯

.

12See also Iaria and Wang (2019) and Iaria and Wang (2021) for recent work on bundles in other
contexts.
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When αm1,m2 ą 0, there is a utility “boost” to consuming positive quantities of goods

in nest m1 and nest m2 at the same time. This is a direct generalization of Gentzkow

(2007), which considers bundles of at most two types of goods. Higher order terms

allow complementarity/substitutability patterns to depend on total consumption from

each nest.

The key structure in (9) that can motivate invariance conditions is that quantities

in each nest enter utility either through a pure sum involving a component of α,

or the weighted sum involving η. We will study invariance conditions that use this

structure. We cast it in a more general setup to handle examples in which quantities

are not zero or one. That is, we now assume instead that quantities in each nest are

unrestricted, so they can be discrete, continuous, or any mix. Let utility be given by

K
ÿ

k“1

ykpβ
1
kXkq ` g

¨

˝

K
ÿ

k“1

ykηk,
ÿ

kPKm1

yk, ¨ ¨ ¨ ,
ÿ

kPKmM

yk, α

˛

‚. (10)

Here, g is now a general function that depends on the η-weighted sum of all quan-

tities, the summation of quantities in each nest, and the individual-specific term α.

The function g encodes general complementarity/substitutability patterns between

the goods. Heterogeneity in this relationship is encoded by α. The restriction on

complementarity/substitutability is that it enters through sums or a weighted sum

(the first argument of g). This setup generalizes the specification in Equation (9).

We now present an invariance condition in this model of multiple purchase. Let m

index an arbitrary nest and let Πm be a permutation of quantities within nest Km.

Suppose that conditional on pα,Xq, Πmpηq and η have the same distribution. Each

summation
`
ř

kPKm
yk
˘

is equal when components of Km are permuted. Moreover,
ř

kPKm
ykηk is the same as

ř

kPKm
yπpkqηπpkq, where π encodes Πm in terms of the

corresponding permutation of indices. We conclude that with the specification in

Equation (10), GN,m-Invariance is satisfied under straightforward conditions. We can

directly apply Theorem 1. The resulting inequalities are

ÿ

kPKm

ErYk ´ Πm
k pY q | Xsβ

1
kXk ě 0.

Note that the sum only involves terms in the nest k P Km, because these are the
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only parts of k that are affected by the transformation Πm. Further, note that by

the law of iterated expectations, these inequalities can be applied if we only observe

covariates for the goods in nest Km, and do not require observing the full vector of

covariates X.

Additional invariance conditions yield additional inequalities. One example is if sub-

stitution/complementarity patterns are similar between nests. This can be modelled

by assuming g is invariant to permutations of different arguments, such as arguments

2 and 3 corresponding to the quantities in nests 2 and 3. Common continuous demand

systems such as CES exhibit such symmetries.

6 Panel Data and Invariance across Time

We now describe how panel data and across-time invariance conditions fit into this

framework. Specifically, we focus on invariance conditions that permute choices across

time periods. We first consider when there is separability in preferences over time

in Section 6.1. This covers and extends work on discrete choice panel models as

studied in Manski (1987) and Shi et al. (2018) to general perturbed utility models.

In Section 6.2, we show that we can relax the time-separability of preferences when

unobservables are exchangeable across time. This accommodates when individuals

have nontrivial preferences for variety.

We emphasize here that while we reference existing work on discrete choice in this

section, and use specific examples for familiarity, we cover general perturbed utility

models. In particular, this analysis covers “panel versions” of classic discrete choice

(McFadden, 1981), matching (Fox et al., 2018), decisions under uncertainty (Agarwal

and Somaini, 2018), and bundles (Gentzkow, 2007).

6.1 Time-Separability

Consider a panel setting with T periods. In period t, quantities in RL are chosen to

satisfy

Y t
P argmax

ytPBt

L
ÿ

`“1

yt`β
t1
` X

t
` `D

t
pyt, α, ηtq. (11)
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We use superscripts to index time periods. We interpret Y t as the choice in period

t where there are L goods available each time period. We switch to this notation

since we will later show that decisions across time can be written as a single period

decision. Here, α is an individual-specific fixed effect and ηt is a individual-time-

specific, L-dimensional unobservable.

To write this in our previous framework, define the covariates in period t by X t “

pX1
1 , . . . , X

t
Lq
1 and the period t linear coefficients by βt “ pβt1, . . . , β

t
Lq
1. In practice

it common to make these constant across t but we do not require this, which can

accommodate discounting. Collect terms across periods in Y “ pY 11, . . . , Y T 1q1, X “

pX11, . . . , XT 1q1, β “ pβ11, . . . , βT 1q1, and η “ pη11, . . . , ηT 1q1. We can compactly write

the collection of all T choice problems as

Y P argmax
py11,...,yT 1q|ytPBt@t

T
ÿ

t“1

L
ÿ

`“1

yt`pβ
t1
` X

t
`q `

T
ÿ

t“1

Dt
pyt, α, ηtq,

which we recognize as a time-separable case of our original formulation (1) by setting

DTS
py, α, ηq :“

T
ÿ

t“1

Dt
pyt, α, ηtq (12)

and B “
śT

t“1B
t. To map to our previous notation, we let K “ T ˆL for this section

so that the choice variables are given by all goods over all time periods.

We formalize assumptions on time-separability below.

Assumption 3 (Time-Separability). Assume the following:

i. (11) holds for each t P t1, . . . , T u.

ii. Y t is pX t, α, ηtq-measurable.

iii. Dt and Bt are the same for each t.

Parts (i) and (ii) ensure full separability across time, except through the individual-

specific fixed effect α. Part (iii) ensures the disturbance function and budgets are the

same across time. We recall, however, that Dt itself can encode random feasibility

sets and so heterogeneous choice sets are possible provided they satisfy the conditions

below.
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In contrast with the previous results, here we only study transformations that swap

time periods. In more detail, we consider Π that satisfy

ΠpY q “ pY πp1q1, . . . , Y πpT q1
q,

where π is a permutation of time indices. We call such transformations time swaps.

An example is the transformation that swaps periods 1 and 2,

Π1,2pY q “ pY
21, Y 11, Y 31, . . . , Y T

q
1.

Here, π1,2p1q “ 2, π1,2p2q “ 1, and π1,2ptq “ t for t ě 3. For notational convenience,

when Π is a time swap we then write ΠtpY q “ Y πptq, so that Πt extracts the time-t

components after the transformation Π has been applied.

Our new invariance conditions are as follows.

Assumption 4. For a specified set of transformations G in RK, for each Π P G, the

following conditions hold:

i. The inverse Π´1 exists and satisfies Π´1 P G.

ii. Each Π P G is a time swap. Formally, there is a permutation π of time indices

t1, . . . , T u such that for every y “ py11, . . . , yT 1q1 P RK with each yt P RL,

Πpyq “ pyπp1q1, . . . , yπpT q1q1.

iii. For every t, ηt and Πtpηq have the same distribution conditional on pα,Xq.

iv. For each y P B,
řT
t“1D

tpyt, α, ηtq “
řT
t“1D

tpΠtpyq, α,Πtpηqq almost surely.

v. y P B implies Πpyq P B almost surely.

vi. ΠpY q and ΠkpY qβ
1
kXk have finite expectation for each k.

Part (ii) is an additional restriction relative to Assumption 2. Part (iii) is often

referred to as a stationarity assumption, and is used in Manski (1987), Shi et al.

(2018), and Pakes and Porter (2021). Part (iii) weakens the previous Assumption 2(ii),

which required that η and Πpηq have the same conditional distribution. Note that

in this panel setup, η is a vector of shocks for all goods and for all time periods.
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Part (iii) of the new assumption only requires time-t unobservables ηt and the time-

swapped part Πtpηq to have the same distribution. Given the other assumptions, (iv)

is equivalent to

DTS
pY, α, ηq “ DTS

pΠpY q, α,Πpηqq,

where DTS represents the sum of all period-t disturbances as in (12). Part (vi) is

stated in the previous notation for consistency because it is unchanged; in panel

notation, the good k in ΠkpY qβ
1
kXk corresponds to a time-good tuple pt, `q.

We obtain the following counterpart to Theorem 1. We use separability (Assump-

tion 3) to replace Assumption 2 with Assumption 4.

Theorem 2. Let Assumptions 1 and 3 hold and let G satisfy Assumption 4. For

every Π P G,

T
ÿ

t“1

L
ÿ

`“1

ErY t
` ´ Πt

`pY q | Xsβ
t1
` X

t
` ě 0 a.s. (13)

Recall the panel notation of (11) uses the notation Y “ pY 11 , . . . , Y T 1q1, so Y is a

K “ T ˆ L-dimensional vector.

6.1.1 Cyclic Monotonicity

When G is the set of all time swaps, the inequalities of (13) are cyclic monotonicity

as in Shi et al. (2018).13 Cyclic monotonicity can be stated in terms of cycles or

permutations. A function f : RA Ñ RA is cyclically monotone if for any sequence

z1, . . . , zS with zS`1 “ z1, it follows that

S
ÿ

s“1

fpzsqpzs ´ zs`1
q ě 0.

Equivalently, f is cyclically monotone if for any such sequence and permutation π of

t1, . . . , Su,
S
ÿ

s“1

pfpzsq ´ fpzπpsqqqzs ě 0.

13See also McFadden and Fosgerau (2012), which generalizes cyclic monotonicity to accommodate
observable budget variation.
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Inequalities in (13) can be written in this form by writing them as

T
ÿ

t“1

L
ÿ

`“1

ErY t
` ´ Y

πptq
` | Xsβt1` X

t
` ě 0 a.s.,

where π encodes the time swap Π as a permutation of time indices.

While Shi et al. (2018) study discrete choice, we present a general framework in

which the same identifying inequalities hold for all perturbed utility models. When

we specialize our analysis to discrete choice, our assumptions are weaker than those

in Shi et al. (2018) because we allow extended real-valued unobservables, and because

we do not require existence of a density.14 Extended real-valued unobservables are

not just a technical curiosity. They are needed to accommodate latent feasibility sets.

6.1.2 Latent Feasibility Sets

While the main goal of this paper is to push beyond discrete choice, we illustrate how

latent feasibility sets can be handled for discrete choice. This analysis can be adapted

to other settings by the general method of encoding latent feasibility sets through

restrictions on combinations of quantities and unobservables such that Dpy, α, ηq “

´8.

To illustrate latent feasibility sets in discrete choice, suppose the latent utility of

alternative k in period t is given by

vtk “ βt1kX
t
k ` αk ` η

t
k.

We define a´8 “ ´8 for any a ă 8. If αk “ ´8, then alternative k is infeasible or

not considered. More generally, our framework also allows the feasibility set to change

across time. Alternative k is stochastically infeasible at time t if ηtk “ ´8 can occur

with positive probability. We allow random infeasibility as long as it satisfies our

invariance assumptions. With time swaps, this means the distribution of infeasible

alternatives must be the same across time, conditional on covariates and the fixed

effect. When the latent feasibility set is individual-specific but does not change across

time, we note that the only restriction is that one alternative must be feasible.

14Shi et al. (2018) focus on the inequalities resulting from T “ 2 or from a time swap that only
permutes two time periods.
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6.2 Nonseparability across time

We now consider a more general specification of the disturbance that allows nontrivial

interactions of choices across time periods. For example, preferences can depend on

the total consumption of a good across time. Results here return to the original

Theorem 1. The key trade-offs are that nonseparability means we have to match the

full conditional distributions of η and Πpηq, whereas additive separability means we

only need the conditional distributions of ηt and Πtpηq to be equal (Theorem 2).

We begin by analyzing time-swaps as in Section 6.1 and then turn to partial swaps

that only swap time indices for a fixed good.

6.2.1 Time Swaps

We show that the cyclic monotonicity inequalities of Shi et al. (2018) hold with

nontrivial substitution/complementarity patterns over time when we strengthen the

invariance condition. In this section Π P GT is a time swap. We require η to have

the same distribution as Πpηq, conditional on pX,αq. This strengthens Assumption 2,

which only required matching the period-t marginal distributions. This is not for free.

Invariance of η to time swaps rules out an AR(1) model for ηt because the distribution

of η would then depend on the order of time.

To formalize the setup, assume choices Y across all time periods satisfy

Y P argmax
py11,...,yT 1qPB

T
ÿ

t“1

L
ÿ

`“1

yt`pβ
t1
` X

t
`q `Dpy, α, ηq.

Here, we do not assume Dpy, α, ηq is additively separable across time (Section 6.1),

but instead assume it is invariant to time swaps. Formally, we assume

DpY, α, ηq “ DpΠpY q, α,Πpηqq, (14)

for any Π P GT . Here GT is defined in Assumption 4(iii).

The only restriction on the budget B is that it must be invariant to time swaps.

Specifically, Assumption 2(iii) states only that y P B implies Πpyq P B. Here, B is

the budget of quantities across all time periods. Importantly, the budget B need not

be the Cartesian product of identical period-t budgets; this stronger condition was
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required in Section 6.1. Here B need only satisfy the time-invariance condition. An

example in which B is not a Cartesian product is repeated binary choice in which a

good is chosen at most once. Then B can encode vectors py1, . . . , yT q that sum to

either 0 or 1 across all time periods, where each yt is either 0 or 1. If we force these

components to also sum to exactly 1, this budget admits the interpretation as an

optimal stopping problem.

By treating the disturbance as a nontrivial function across all time periods, this

formulation models an individual who chooses all of Y at once. Specifically, the

individual knows the persistent value α as well as covariates X t and shocks ηt for all

t, and then chooses all quantities Y “ pY 1, . . . , Y T q at once. This differs from the

separable case (11), which requires only that at each t the individual knows pX t, α, ηtq

and chooses Y t.

Inequalities for this setup are directly covered by Theorem 1. Any transformation

satisfying Assumption 2 generates inequalities. Here we focus on time-swaps GT . For

any Π P GT ,

K
ÿ

k“1

ErYk ´ ΠkpY q | Xsβ
1
kXk ě 0 a.s.,

or in panel notation,

T
ÿ

t“1

L
ÿ

`“1

ErY t
` ´ Πt

`pY q | Xsβ
t1
` X

t
` ě 0 a.s.

Thus, the inequalities of Shi et al. (2018) hold even when there are nontrivial prefer-

ences for variety that imply violations of time-separability.

For an example that satisfies Equation (14), consider the weak separability restriction

that

DWS1
pY, α, ηq “ V pD1

pY 1, α, η1
q, . . . , DT

pY T , α, ηT q, αq,

where each function Dt is the same across t, and the aggregator function V is sym-

metric in its first T arguments so that V pd, αq “ V pΠpdq, αq for any permutation Π

in T dimensions. Assumption 3(i) is a special case of this in which V pd, αq “
řT
t“1 d

t.
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For a parametric example of weak separability, consider the specification

DWS2
pY, α, ηq “

˜

T
ÿ

t“1

pηt1Y t
q
α

¸1{α

.

Here, the period-t utility part is inside the sum, and is aggregated by the α terms.

That is, DtpY t, α, ηtq “ ηt1Y t and then the aggregator is given by
´

řT
t“1pd

tqα
¯1{α

.

The case α “ 1 corresponds to simple summation (and satisfies time-separability),

while α ‰ 1 allows nontrivial relationships across time.

A key restriction of weak separability is that it assumes that substitu-

tion/complementarity patterns across time enter only through the index Dt. This

rules out substitution/complementarity patterns that directly depend on quantities.

To allow such patterns, consider a parametric specification

DV 1
pY, α, ηq “

˜

L
ÿ

`“1

˜

T
ÿ

t“1

ηt`Y
t
`

¸α¸1{α

.

This specification states that preferences depend on an aggregator that depends on

the weighted sum of quantities for each good. Another parametric specification is

DV 2
pY, α, ηq “

T
ÿ

t“1

L
ÿ

`“1

ηt1` Y
t
` `

˜

L
ÿ

`“1

˜

T
ÿ

t“1

Y t
`

¸α¸1{α

.

When α ă 1, there is diminishing marginal benefit to repeatedly choosing a good.

This is a preference for variety that violates time-separability.

6.2.2 Time Swaps for a Specific Good

Both DV 1 and DV 2 satisfy Equation (14) for Π P GT , and allow nontrivial preferences

across time whenever α ‰ 1. These transformations also are invariant to permutations

of time only for a specific good. That is, if we permute the time superscript on all

variables with the same subscript `, the function DV 2 is unchanged. This means these

transformations imply inequalities by comparing swaps across time for the same good.
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We can write these inequalities as

T
ÿ

t“1

ErY t
` ´ Y

πptq
` | Xsβt1` X

t
` ě 0 a.s.,

where π encodes the transformation of time. Since no other quantities are permuted,

the sum of differences only involves the good ` that is swapped. Note here that these

inequalities are similar to the maximum score inequalities (Example 1). When we

only permute time for one good `, the invariance condition on the distribution of η

is that conditional on pX,αq, Πpηq has the same distribution as η are unrestricted.

Here, Π is a permutation swapping time for one good `, and thus permutes as most

T elements of the K ˆ T dimensional vector η.

7 Discussion

This paper presents a new technique to difference out unobservables and generate

identifying inequalities for slope coefficients. We apply the technique to generate

inequalities in settings with a nesting structure. The analysis covers nested logit and

also models of mixed continuous/discrete choice of multiple goods. We generalize

the panel cyclic monotonicity inequalities of Shi et al. (2018) to all perturbed utility

models, show they hold with preferences for variety, and show they are robust to

latent feasibility sets.15 We discuss some avenues for future work.

Remark 7 (Future Work on Inference). We outline some relevant dimensions for in-

ference here. These dimensions interact in nontrivial ways.

The first key distinction is whether covariates are treated as discrete or continuous.

For discrete covariates with finite support, Theorem 1 describes finitely many moment

inequalities that “in principle,” can be taken to data using the many tools designed for

moment inequalities. For example, one can form a confidence set for β by inverting

the test of Chernozhukov et al. (2019) or Bai et al. (2022).16 Point identification

is typically impossible with discrete covariates.17 With continuous covariates, point

15We make this claim for the identifying inequalities, not the estimator used in Shi et al. (2018),
which imposes additional regularity conditions.

16Note the moment inequalities have a linear structure that can potentially be exploited. There
are often many inequalities when the set of transformations is large, e.g. permutations.

17Provided they also have finite and not countably infinite support. See Shi et al. (2018).
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identification is possible depending on the nature of the invariance condition.18

The second key distinction is the specific invariance condition. Here we consider

general invariance conditions, in which the number of identifying inequalities equals

the cardinality of the set of transformations G. For example, cyclic monotonicity

studied in Shi et al. (2018) yields T ! inequalities in a panel setup, where T is the

number of time periods.19 Substantive simplifications are possible in this setup.20 A

general analysis of computational simplifications that exploit the specific structure of

the set of transformations is beyond the scope of the paper.

The third key distinction is that analysis should depend on the ultimate object of

interest. This paper focuses on identifying inequalities for β, and then in Section 4

shows these inequalities can be used for the dual purpose of counterfactual bounds

once we have a candidate β. This analysis is amenable to a two-step approach in

which one first conducts inference on β, and then does counterfactual inference for

each candidate β.21 An alternative approach is an integrated one-step approach that

directly targets counterfactuals as in Christensen and Connault (2023) or Tebaldi

et al. (2023). A one-step approach to counterfactuals may be possible by further

studying the empirical content of the model, i.e. studying restrictions directly on the

population distribution without the intermediate step of constructing inequalities for

β. Another interesting topic is welfare analysis, which we do not study here. Welfare

analysis is subtle when covariates and unobservables can violate (conditional) inde-

pendence, because common welfare analysis proceeds by having a stable distribution

of unobservable heterogeneity not one that changes with covariates.

Remark 8 (Future Work on Identification). More analysis is needed in panel contexts

studying preferences that violate time-separability and allow forward-looking behav-

ior with uncertainty. For example, we do not study binary choice panel models with

state dependence like Honoré and Kyriazidou (2000) or Khan et al. (2019). These

18When regressors and unobservables are independent, Allen and Rehbeck (2019a) show with a
slightly different setup and using different techniques that we can replace utility indices β1

kXk with
unknown functions ukpXkq and identify these functions with a single scale assumption.

19The main analysis of Shi et al. (2018) focuses on inequalities for cycles of length 2, which
correspond to time swaps that only swap two time periods.

20Theorem S.7.1(iii) in the Supplemental Appendix of Allen and Rehbeck (2019c) shows how to
write cyclic monotonicity with order T 2 inequalities. See also Chiong et al. (2021) and Franguridi
(2021).

21See e.g. Chiong et al. (2021) which estimates a β and then conducts counterfactual analysis.
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papers allow choices to depend on a lagged variable but do not model forward-looking

behavior. While we do study a forward-looking panel model, we do not study un-

certainty as in Aguirregabiria et al. (2021), which studies a multinomial choice fixed

effects logit model. We also do not study sharpness. As mentioned above, we pro-

vide two separate assumptions that generate the cyclic monotonicity inequalities of

Shi et al. (2018) – a panel stationarity assumption with time-separability and panel

exchangeability with a preference for variety. It is unknown whether the identified

sets coincide under these assumptions for general perturbed utility models.22

Appendix A Proof of Main Results

This section provides proofs for the results in the paper.

A.1 Proof of Lemma 1 and Theorem 1

We first prove Lemma 1 and then use it to prove Theorem 1.

Proof of Lemma 1. Define the random variable Ỹ Π via

Ỹ Π
pX,α, ηq “ ΠpY pX,α,Π´1

pηqqq,

which is possible since Assumption 2(i) ensures Π´1 exists. Ỹ Π is supported on B by

Assumption 2(iv). We obtain the almost sure equalities

ErΠpY pX,α, ηqq | X,αs “ ErΠpY pX,α,Π´1
pηqqq | X,αs

“ E
”

Ỹ Π
pX,α, ηq | X,α

ı

.

Assumption 2(v) ensures ErΠpY pX,α, ηqq | X,αs is well-defined. The first equality

22Pakes and Porter (2021) characterize the sharp identified set for a panel multinomial choice
model when T “ 2 with a panel stationarity condition. Pakes and Porter (2021) shows the inequal-
ities of Shi et al. (2018) are not sharp in that setting. Mbakop (2022) shows when we strengthen
the invariance condition to across-time exchangeability and have T “ 2, there are additional iden-
tifying inequalities in that setting. We reiterate that we show the inequalities of Shi et al. (2018)
hold for a strictly more general model of perturbed utility. In a stochastic choice context in which
a single individual chooses a probability distribution over alternatives, Allen and Rehbeck (2019b)
characterize the model for which cyclic monotonicity delivers sharp identifying inequalities. The key
qualitative difference from classic discrete choice is that this model allows complementarity.
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uses Assumption 2(ii), i.e. η and Π´1pηq have the same conditional distribution. The

second equality is a definition. Thus, part (i) holds by subtraction. We also obtain

the almost sure equalities

ErDpỸ Π, α, ηq | X,αs “ ErDpΠpY pX,α,Π´1
pηqqq, α, ηq | X,αs

“ ErDpΠpY pX,α, ηqq, α,Πpηqq | X,αs

“ ErDpY pX,α, ηq, α, ηq | X,αs.

The first equality is a definition, the second equality uses Assumption 2(ii), and the

third equality uses Assumption 2(iii), i.e. DpΠpY q, α,Πpηqq “ DpY, α, ηq. These con-

ditional expectations are well-defined because Assumption 1(iv) states that DpY, α, ηq

has finite expectation. Thus, Ỹ Π satisfies part (ii).

Proof of Theorem 1. First note that when ΠkpY qβ
1
kXk has finite expectation for each

k, we can reproduce the proof of Lemma 1(i) to obtain

E rΠkpY qβ
1
kXk | X,αs “ E

”

Ỹ Π
k β

1
kXk | X,α

ı

.

In particular, since ΠkpY qβ
1
kXk has finite expectation, so does Ỹ Π

k β
1
kXk.

With this setup, recall the main text establishes the revealed preference inequalities

K
ÿ

k“1

pYk ´ Ỹ
Π
k qβ

1
kXk ě DpỸ Π, α, ηq ´DpY, α, ηq.

The expectations of each term in the sum exists, and the expectation of the right

hand side exists by the proof of Lemma 1(ii). This implies existence of conditional

expectations that satisfy the almost sure inequality

K
ÿ

k“1

ErYk ´ Ỹ Π
k | X,αsβ1kXk ě ErDpỸ Π, α, ηq ´DpY, α, ηq | X,αs.

The right hand side is zero from Lemma 1(ii). Using Lemma 1 we modify the left
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hand side to obtain the almost sure inequality

K
ÿ

k“1

ErYk ´ ΠkpY q | X,αsβ
1
kXk ě 0.

Integrating out α completes the proof.

A.2 Proof of Theorem 2

The proof technique is the same as Theorem 1. The change is we need to replace

Lemma 1 with the following lemma.

Lemma A.1. Let Assumption 1 and Assumption 3 hold and the set of transfor-

mations G satisfy Assumption 4. For every Π P G there is a random variable Ỹ Π

supported on B such that:

i. ErỸ Π ´ ΠpY q | X,αs “ 0 almost surely.

ii. E
”

DpỸ Π, α, ηq ´DpY, α, ηq | X,α
ı

“ 0 almost surely.

Proof. The proof of part (i) is similar to that of Lemma 1. As before, define the

random variable Ỹ Π via

Ỹ Π
pX,α, ηq “ ΠpY pX,α,Π´1

pηqqq.

Write

Y pX,α, ηq “ pY 1
pX1, α, η1

q
1, . . . , Y T

pXT , α, ηT q1q1,

which is possible because Assumption 3(ii) states each Y t is pX t, α, ηtq-measurable.

We obtain the almost sure equalities

ErΠpY pX,α, ηqq | X,αs “ ErpΠ1
pY pX,α, ηqq1 . . .ΠT

pY pX,α, ηqq1q1 | X,αs

“ E
“

pY πp1q
pXπp1q, α, ηπp1qq1, . . . , Y πpT q

pXπpT q, α, ηπpT qq1q1 | X,α
‰

“ E
“

pY πp1q
pXπp1q, α, η1

q
1, . . . , Y πpT q

pXπpT q, α, ηT q1q1 | X,α
‰

“ ErΠpY pX,α,Π´1
pηqqq | X,αs

“ E
”

Ỹ Π
pX,α, ηq | X,α

ı

.
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Assumption 4(vi) ensures ErΠpY pX,α, ηqq | X,αs is well-defined. The first equality

represents Π in terms of blocks as described in the main text. The second equality uses

the fact that Π is a time swap to write the transformation in terms of a permutation π

of time indices. The third equality uses the fact that permutations are invertible and

so ηt “ ηπ
´1pπptqq. In addition, ηπptq and ηt have the same conditional distributions by

Assumptions 4(iii). The final two equalities are definitions.

Part (ii) follows from the almost sure equalities

ErDpỸ Π, α, ηq | X,αs “ ErDpΠpY pX,α,Π´1
pηqqq, α, ηq | X,αs

“ E

«

T
ÿ

t“1

Dt
pΠt
pY pX,α,Π´1

pηqqq, α, ηtq | X,α

ff

“ E

«

T
ÿ

t“1

Dt
pΠt
pY pX,α, ηqq, α,Πt

pηqq | X,α

ff

“ E

«

T
ÿ

t“1

Dt
pY pX,α, ηq, α, ηtq | X,α

ff

“ ErDpY pX,α, ηq, α, ηq | X,αs.

The first equality is a definition. The second equality rewrites D as formalized in As-

sumption 3(i), and uses the fact that each time-specific disturbance Dt only depends

on the t-specific components of Y and η. To establish the third equality, recall Π is

a time swap. Thus, ΠtpY pX,α,Π´1pηqq “ Y πptqpXπptq, α, ηtq and hence

Dt
pΠt
pY pX,α,Π´1

pηqqq, α, ηtq :“ Dt
pY πptq

pXπptq, α, ηtq, α, ηtq.

This has the same conditional distribution when we replace ηt with ηπptq :“ Πtpηq,

which completes the proof of the third equality. The fourth equality applies Assump-

tion 4(iv). The final equality just rewrites the Dt summation in terms of the overall

disturbance D. All expectations are finite by Assumption 1(iv).
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