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Abstract

Population growth has declined markedly in almost all major economies since the 1970s. We ar-
gue that this trend has important consequences for the process of firm dynamics and aggregate
growth. We study a rich semi-endogenous growth model of firm dynamics, and show analytically
that a decline in population growth reduces creative destruction, increases average firm size and
concentration, raises market power and misallocation, and lowers aggregate growth in the long-
run. We also show that lower population growth has positive effects on the level of productivity,
making the short-run welfare impacts ambiguous. In a quantitative application to the U.S we find
that the slowdown in population growth since the 1980s and the projected continuation of this
trend accounts for a substantial share of the fall in the entry rate and the increase in firm size. The
effect on aggregate growth is positive for around one decade, before turning negative thereafter.
The impact on markups is modest.

Keywords: Growth, Firm Dynamics, Creative Destruction, Demographics, Dynamism, Markups

JEL Codes: O40, D22, J11, O47

∗Peters: m.peters@yale.edu. Walsh: caw2226@columbia.edu. We are extremely grateful to Huiyu Li for her insightful
discussion at the AEA meetings and Sara Moreira and David Berger for their help in constructing the RevLBD data. We
thank Paco Buera, Francesco Caselli, Murat Celik, Chad Jones, Ilse Lindenlaub, Maarten De Ridder and Pete Klenow
for comments. We also thank seminar participants at the LSE, Stanford University, the University of Toronto, PSU, Yale
University, the STLAR 2019 Conference, the SED 2019, VMAC, the “Taxation, Innovation and the Environment” conference
at the College de France and the 2021 AEA meetings for helpful suggestions. Ferdinand Pieroth provided outstanding
research assistance. Walsh gratefully acknowledges the support of the Washington Center for Equitable Growth. Any
opinions and conclusions expressed herein are those of the author and do not necessarily represent the views of the U.S.
Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed.



1 Introduction

Almost all major economies experienced a substantial fall in population growth in recent decades.
Figure 1 shows historical population growth for a group of major world economies from 1960 to
2020. Despite different political systems, cultures and levels of development, a clear downward
trend is evident for all of them. Moreover, according to the UN, this trend is projected to continue
for at least the first half of the twenty-first century, driven largely by continuing falls in fertility.1 A
world of low and falling population growth looks like it is here to stay.

In this paper we show that this phenomenon is likely to have important implications for the process
of firm dynamics and aggregate economic performance. We do so in the context of a firm-based
model of semi-endogenous growth that is rich enough to rationalize many first-order features of the
process of firm dynamics. The theory makes tight predictions for the likely effects of falling popu-
lation growth: a slow-down in population growth reduces creative destruction and entry, increases
concentration and average firm size, raises market power and lowers long-run aggregate productiv-
ity growth.

Our baseline model is an enhanced version of Klette and Kortum (2004), augmented by the possibil-
ity of population growth, new variety creation, own-innovation and a demand elasticity that exceeds
unity The model has a full analytic solution and we can express the process of firm dynamics, the
resulting firm size distribution and the aggregate growth rate directly as a function of population
growth.The reason why falling population growth reduces entry and increases concentration and
firm size is the following: Declining population growth reduces creative destruction by lowering
firms’ incentives to engage in product innovation. Importantly, in equilibrium this decline in cre-
ative destruction is only accommodated through a decline in entry - the rate of product creation by
incumbent firms is unaffected by changes in population growth. This change in the composition of
product creation implies that lower population growth increases firm growth conditional on survival
and reduces incumbent firms’ exit hazards. As a consequence, concentration and firm size rises and
the entry rate falls.

Our theory also makes clear predictions about the relationship between population growth and in-
come per capita growth. As in many aggregative models of semi-endogenous growth, the long-run
equilibrium growth rate declines as the rate of population growth falls. However, we show that
there is an important countervailing effect that makes the relationship between population growth
and welfare ambiguous. By reducing creative destruction and hence the rate of firm-exit, falling pop-
ulation growth increases the value of firms because future profits are discounted at a lower rate. Free
entry therefore requires an increase in the economy-wide level of varieties to increase competition.
This raises income per-capita because of variety gains. The welfare consequences of declining pop-
ulation growth therefore hinge on the relative importance of these static variety gains relative to the
dynamic losses due to lower growth.

1See Section OA-1.2 in the Appendix, where we show that birth rates are falling and projected to continue to decline.
Contributions from net migration are expected to be stable, and are mostly small in most major economies.

1



Figure 1: Population Growth Across Major Economies
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Notes: Solid lines plots historical population growth from the UN World Population Prospects 2019 for several major
economies. Dashed lines plots the UN projections for population growth in the “Medium” scenario out to to 2060.

We then show that these results are robust to a variety of changes in the environment. Most impor-
tantly, we extend our model to a setting where firms compete a la Bertrand and market power is
endogenous. Declining population growth interacts with firms’ ability to charge high markups in an
interesting way. In our theory, more productive firms post higher markup and productivity increases
over the firms’ life-cycle. Because creative destruction reduces firms’ chances of survival, it hinders
incumbents from accumulating market power and hence prevents the emergence of dominant pro-
ducers. In short: creative destruction is pro-competitive. Declining population growth, by lowering
creative destruction, reduces competition and increases markups and misallocation.

To quantify the strength of this mechanism, we calibrate our model to data for the population of
US firms, In addition to targeting standard moments like the entry rate, average size and life-cycle
growth, we also link firm-level information on sales to the U.S. Census. We can therefore measure
firm-level markups for all firms in the US, and hence explicitly target the life-cycle profile of markups.
Exploiting information on the evolution of both markups and size at the firm-level is an important as-
pect of our empirical methodology and allows us to separately identify own-innovation and variety
creation at the firm-level.

With the calibrated model in hand, we ask a simple question: what are the implications of the ob-
served and projected decline in the rate of labor force growth since 1980? Empirically, labor force
growth almost halved from 2% to 1% between 1980 and 2015, and the BLS projects labor force growth
to continue to decline to 0.24% after 2050. Our theory is tractable enough that we can solve for the
transitional dynamics induced by this path, treating the projections of the BLS as the rational expec-
tations of the agents in our theory. We find that this decline has quantitatively large effects. Our
model can explain almost the entirety of the decline in the entry rate, the increase in average firm
size and the degree of concentration. In terms of the implications for markups, the magnitudes are
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quantitatively limited. Our calibrated model implies that markups increase by around 1%. The ef-
fects on income growth are more subtle. While growth is bound to decline in the long-run, the static
effect of variety creation can increase income growth during the transition. We find that it does. Our
model implies income growth to be above trend for about one decade. However, we still find the
welfare consequences of falling population growth to be negative.

Throughout the paper, we will often speak of population growth and labor force growth interchange-
ably. We also take movements in the size of the labor force to be exogenous to market concentration
and firm dynamics. Across the developed world, falls in fertility in the 1960s and 1970s have mani-
fested in slower rates of growth in the labor force in the 1980s and 1990s - see De Silva and Tenreyro
(2017, 2020). In the U.S. in particular, slowing labor force growth also reflects an end to increasing
female participation, and declining prime-age male participation. While a declining labor share and
rising market power may itself have implications for worker participation, here the simplicity of tak-
ing these movements as given yields substantial insight into the changing patterns of firm dynamics
we see in the data.

Related Literature. We are not the first to connect the decline in the growth rate of the labor force
to changes in firm dynamics. Karahan et al. (2016) and Hathaway and Litan (2014) are early contri-
butions that use geographic variation in the age structure of the population of the U.S. to provide
direct support that a lower rate of population growth reduces the start-up rate. Recently, Hopenhayn
et al. (2018) document the relationship between changes in demographics and firm dynamics in a
quantitative model. Both Karahan et al. (2016) and Hopenhayn et al. (2018) perform their analysis
in a model in the spirit of Hopenhayn (1992), where firm productivity and aggregate growth is ex-
ogenous and markets are competitive. Falling population growth therefore only affects the firm size
distribution through changes in the age distribution of firms. By contrast, our theory builds on mod-
els with endogenous firm dynamics, and highlights that a declining rate of population growth also
affects the extent of market power and aggregate productivity growth. Engbom (2017, 2020) studies
the implications of population aging in the context of a search model.

On the theory side, we build on firm-based models of Schumpeterian growth in the tradition of
Aghion and Howitt (1992) and Klette and Kortum (2004). We augment these models by allowing for
efficiency improvements of existing firms as in Atkeson and Burstein (2010), Luttmer (2007), Akcigit
and Kerr (2015) or Cao et al. (2017), the creation of new varieties as in Young (1998), and endogenous
markups through Bertrand competition as in Peters (2020) or Acemoglu and Akcigit (2012). We
allow for elasticities of substitution greater than unity, which requires consideration of the full joint
distribution of efficiency and markups. Our model is thus akin to a version of Garcia-Macia et al.
(2016), augmented by endogenous markups and endogenous innovation choices, and incorporating
changes in the long run growth in the labor force. To the best of our knowledge, our paper is the
first that focuses squarely on how demographic changes are likely to affect the equilibrium firm size
distribution in the context of firm-based models of growth.

The relationship between economic growth and population growth has been been subject to an exten-
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sive literature. Many models of endogenous growth (e.g. Aghion and Howitt (1992), Romer (1990),
Grossman and Helpman (1991) or Klette and Kortum (2004)) share the feature that economic growth
depends on the level of population. By contrast, models of semi-endogenous growth (for example
Jones (1995), Kortum (1997) or Young (1998)) imply that income growth is determined by the rate of
population growth.2 We conduct our analysis in a model where growth is tightly tied to the micro
process of firm dynamics. In order for the firm size distribution to be stationary in the presence of a
growing population, growth (generically) needs to be semi-endogenous.

In our quantitative application we focus on the case of the US. There is a growing literature high-
lighting the decline of dynamism and the rise of concentration in the US.This literature shows that
the entry rate has fallen substantially (Karahan et al., 2015; Alon et al., 2018; Decker et al., 2014),
that broad measures of reallocation have declined (Haltiwanger et al., 2015; Davis and Haltiwanger,
2014), that industries are becoming more concentrated (Kehrig and Vincent, 2017; Autor et al., 2017)
and that markups are rising (Edmond et al., 2018; De Loecker and Eeckhout, 2017). See also Akcigit
and Ates (2019a) for a summary.

In terms of explanations for these phenomena, the literature has proposed that improvements in
IT technology raised the returns to scale for productive firms (Aghion et al. (2019); Lashkari et al.
(2019)), a rise in the use of intangible capital (De Ridder (2019)), or changes in the process of knowl-
edge diffusion (Akcigit and Ates (2019b); Olmstead-Rumsey (2020)). Our paper is complementary to
these studies by highlighting that all these phenomena occurred within an environment of declining
population growth, and are key implications of the theory we propose. Falling population growth
might therefore be an important secular determinant of firm-dynamics and aggregate growth in the
decades to come.

The remainder of our paper is structured as follows. In Section 2 we present our baseline model and
derive our main results. In Section 3 we extend this framework by allowing for endogenous market
power. In Sections 4 and 5 we calibrate our theory and quantify the effect of falling population
growth for the process of firm dynamics and growth. Section 6 concludes. An Online Appendix
contains the formal derivations of our theoretical results and details on our quantitative analysis.

2 The Baseline Model

We start with a baseline version of our model, where markups are constant and the efficiency of
firms’ existing products grows exogenously. This version of the model has an analytical solution
and allows for a tight characterization how population growth affects entrants’ and incumbents’
incentives to engage in creative destruction and the creation of new products. Below we extend our
analysis by explicitly allowing for endogenous markups and endogenous own-innovation.

2See also Jones (2020) for a recent analysis of the implications of negative population growth.
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2.1 Environment

Time is continuous. There is a mass Lt of identical individuals, each supplying one unit of labour
inelastically. This mass grows at rate ηt, such that L̇t/Lt = ηt. The rate of population growth ηt,
which we take as exogenous, is the crucial parameter of this paper. Households have preferences
over a final consumption good ct, which are given by

U =
∫ ∞

0
e−(ρ−η)t ln (ct) dt,

where ρ > η.

Production and Market Structure. The final consumption good is composed of a continuum of
differentiated varieties, that (as in Klette and Kortum (2004)) may be produced by multiple firms. The
production of the final good takes place in a competitive final sector, that combines the differentiated
varieties according to

Yt =



∫ Nt

0

(
∑

f∈Sit

y f it

) σ−1
σ

di




σ
σ−1

. (1)

Here Nt is the number of active product lines, where these product lines are indexed by i. This
number evolves endogenously with the creation and destruction of new products. Sit is the set of
firms with the knowledge to produce product i, which likewise evolves endogenously.

Firms can be active in multiple product markets. Each firm f is characterized by a set of the products
it produces, denoted by Θ f , and an efficiency of producing these products, indexed by {q f i}i∈Θ f . We
denote the number of products firm f produces by n f . Production of each good uses only labor, and
is given by

y f i = q f il f i,

where l f i is the amount of labor hired by firm f to produce product i, and q f i denotes the efficiency
of firm f in producing product i.

Because the output of firms producing the same product i is considered to be perfectly substitutable,
each product is only produced by the most efficient firm. Suppose to begin with that the producing
firm charges a constant markup over marginal cost µ = σ

σ−1 .3 Below we explicitly allow for imperfect
competition which gives rise to heterogenous markups. With constant markups, aggregate output Yt

and equilibrium wages wt are given by

Yt = QtN
1

σ−1
t LP

t and wt = µ−1Yt/LP
t , (2)

where Qt ≡
(∫

qσ−1
i dFt (q)

) 1
σ−1

is a measure of average efficiency, Ft is the distribution of product

3This can either be the case if the producer’s relative efficiency advantage exceeds µ or if firms have to pay an infinites-
imal sunk cost before producing, in which case the less productive firm will not enter (see Garcia-Macia et al. (2016)).
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efficiency and LP
t is the total amount of labor devoted to the production of goods. Equilibrium profits

per product are given by

πt (q) = (µ− 1)
(

q
Qt

)σ−1 LP
t

Nt
wt.

Hence profits are high if the product’s efficiency q is large relative to average efficiency Qt and if
average employment per products, LP

t /Nt, is large.

Entry, Innovation and Aggregate Growth. Both firms’ productivities and the products they sell
evolve endogenously. As in Garcia-Macia et al. (2016), our theory allows for three sources of firm
dynamics. First we allow for creative destruction by incumbents and entrants (as in Klette and Kor-
tum (2004)). Creative destruction occurs when either an existing firm or a new firm improves the
efficiency of a product i, which is currently produced by another producer. Such efficiency im-
provements result in churning, whereby the old producer gets replaced. Second we allow for own-
innovation, whereby firms improve the efficiency q of the products they are currently producing (see
Atkeson and Burstein (2010) or Luttmer (2007)). Third, we allow for the endogenous creation of new
varieties. This margin is the source of variety gains, whereby firms can generate product varieties
which are entirely new to the economy. Allowing for variety creation is essential to ensure that the
model has a stationary firm size distribution in the presence of population growth. It is this margin
which implies that our model is a model of semi-endogenous growth, i.e. the growth rate depends
on rate of population growth rather than the level of the population (Jones (1995)). Finally, we also
assume that product lines die at an exogenous rate of δ. This can be interpreted as a taste shock
in which consumers no longer value a product line for exogenous reasons. Doing so helps ensure
stationarity at low or negatives levels of population growth.

We formalize these decisions in the following way. Existing firms increase the efficiency with which
they produce their existing products deterministically at rate I:

q̇it

qit
= I.

To focus on the main economic mechanism how population growth affects firm dynamics we start
by assuming that I is exogenous and constant over time. Below in Section 2.6 we show how to
endogenize this rate.

Firms can also expand into new product lines. To do so, they choose the Poisson rate X at which the
knowledge for how to produce a product new to them is created. Such expansion activities are costly,
and we denote these costs (in units of labor) as

cX
t (X, n) =

1
ϕx

Xζn1−ζ =
1
ϕx

xζn, (3)

where ζ > 1, n denotes the number of products the firm is currently producing and x = X/n is the
firms’ innovation intensity.4

4The particular functional form of the innovation cost function in (3) is not essential. All our results equally apply as
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Conditional on successfully creating a new product, this product can either be a new variety to the
aggregate economy, or it can improve upon an already existing product from another firm. We as-
sume that innovation is “undirected”, such that the firm cannot target new or existing varieties.
With probability α the new product represents a technological advance over a (randomly selected)
incumbent firm’s product, increases the product’s efficiency by a factor λ > 1 and forcing the current
producer to exit (“incumbent creative destruction”). With the complementary probability 1− α, the
product will be new to society as a whole, i.e. the mass of available products Nt grows (“incumbent
new variety creation”).

We assume that the efficiency of new varieties is given by q = ωQt, where ω is drawn from a fixed
distribution Γ(ω). Hence, as in Buera and Oberfield (2016), the efficiency of new varieties is deter-
mined both by the existing knowledge embedded in Qt and by novel ideas. It is useful to define

ω ≡
(∫

ωσ−1dΓ (ω)
) 1

σ−1 , which we also refer to as the mean efficiency of new products (appropri-
ately scaled). As we show below, the equilibrium allocations only depend on ω and not on Γ (ω).

Entrants have the same opportunities as incumbent firms. While they naturally do not own any
products they could improve on, they also engage in creative destruction and new variety creation.
As with incumbent firms, the share of innovations which result in creative destruction is exogenous
and given by α. Entrants have access to a linear entry technology, where each worker they hire for
research generates a flow of ϕE ideas.

Let Zt denote the aggregate flow of entry and zt = Zt/Nt the entry intensity per product. Similarly,
let xt denote the average expansion intensity by incumbent firms xt =

1
Nt

∫
xitdi. Letting νt denote

the rate at which new varieties are created and τt the rate of creative destruction, i.e. the rate at which
the producer of a given product is replaced by another producer, it follows that

νt = (1− α) (xt + zt) and τt = α (xt + zt) .

The rate of variety growth is thus given by

gN
t =

Ṅt

Nt
= νt − δ = (1− α) (xt + zt)− δ =

1− α

α
τt − δ. (4)

Note that creative destruction τ and variety creation are closely linked. Our formulation of undi-
rected innovation makes this link particularly stark. However, as we show in Section 2.6, the optimal
level of creative destruction and variety creation positively co-move even in a more general setting
where α can be chosen directly by the firm and the direction of innovation is thus endogenous.

The rate of efficiency growth gQ is given by

gQ
t =

Q̇t

Qt
= I +

λσ−1 − 1
σ− 1

τt +
ωσ−1 − 1

σ− 1
νt.

long as cX
t (X, n) is homogeneous of degree one in both arguments.
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Aggregate efficiency Qt grows for three reasons. First, firms’ own-innovation efforts raise the effi-
ciency of production of individual products and hence also the aggregate efficiency index Qt at rate
I. Second, because λ > 1, creative destruction is a source of aggregate productivity growth. Finally,
the creation of new varieties also affects the growth rate of average efficiency. If new products are
on average as productive as existing products, i.e. ω = 1, the growth rate of average efficiency Qt is
independent of the rate of product creation gN . If new products are an average worse, ω < 1, faster
product creation is an adverse source of efficiency growth.

Using (4) to substitute for νt and τt, we can write gQ
t as

gQ
t = I +

qσ−1 − 1
σ− 1

(xt + zt) ,

where

q =
(

αλσ−1 + (1− α)ωσ−1
) 1

σ−1
(5)

parametrizes the average efficiency gains of a product innovation and is simply a CES weighted
average of the efficiency improvement of creative destruction λ and the relative efficiency of new va-
rieties ω.The rate of quality growth gQ

t is thus increasing in the aggregate rate of product innovation
xt + zt as long as q > 1, i.e. as long as α and ω are sufficiently large (recall that λ > 1).

Finally, the overall growth of labor productivity Yt/LP
t depends on both efficiency growth gQ

t and
variety growth gN

t :5

gLP
t =

d
dt

ln
(

QtN
1

σ−1
t

)
= gQ

t +
1

σ− 1
gN

t = I +
λσ−1 − 1

σ− 1
τt +

ωσ−1

σ− 1
νt −

1
σ− 1

δ

= I +
qσ−1 − α

σ− 1
(xt + zt)−

1
σ− 1

δ.

Note that variety growth νt is always a source of aggregate growth, even if ω < 1. By contrast, the
destruction of varieties δ has a negative effect on aggregate productivity though the loss of varieties.
This also implies that gLP

t is increasing in the aggregate rate of product innovation xt + zt because
qσ−1 > α (recall that λ > 1 and ω > 0).

2.2 Optimal Product Creation and Entry

Firms’ expansion decisions are forward-looking. The state variables at the firm-level are {q f i}i∈Θ f ,
which we for simplicity denote as [qi]. The value function of a firm is given by the HJB equation

rtVt ([qi])− V̇t ([qi]) =
n

∑
k=1

πt (qk)

︸ ︷︷ ︸
Profits

+
n

∑
k=1

(τt + δ)
[
Vt

(
[qi]i 6=k

)
−V ([qi])

]

︸ ︷︷ ︸
Creative destruction and exit

+
n

∑
k=1

I
∂Vt ([qi])

∂qk
qk

︸ ︷︷ ︸
Own innovation

+Ξt ([qi]) ,(6)

5Along a BGP, where the share of production workers LP
t /Lt is constant, income per capita also grows at rate gLP

t .
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where Ξt is the option value of product creation that is given by

Ξt ([qi]) = n×max
x

{
x
(

α
∫

Vt ([qi] , λq) dFt (q)
︸ ︷︷ ︸

Replacing an existing firm

+ (1− α)
∫

Vt ([qi] , ωQt) dΓ (ω)
︸ ︷︷ ︸

New variety

−Vt ([qi])

)
− 1

ϕx
xζ wt

}
.

The value of a firm, Vt ([qi]), consists of multiple additively separable parts. First, the value of the
firm is increasing in the current flow profits. Second, the firm might lose any of its products to
another firm, which happens at the endogenous rate of creative destruction τ and the exogenous
rate of product loss δ. Third, own-innovation raises the efficiency qi of each product, and hence
profitability. Finally, the firm has the option to start producing a new product outside its current
portfolio. With probability α it replaces a randomly selected product, with probability 1− α, the firm
creates a new variety, whose efficiency is given by ωQt. The following Proposition summarizes the
main properties of the value function:

Proposition 1. Consider the value function Vt ([qi]) given in (6). Vt ([qi]) is given by ,

Vt ([qi]) =
n

∑
i=1

Vt (qi) where (rt + τt + δ)Vt (q)− V̇t (q) = πt (q) + I
∂Vt (q)

∂q
q +

ζ − 1
ϕx

xζwt,

and πt (q) = (µ− 1)
(

qi
Qt

)σ−1 LP
t

Nt
wt. The optimal expansion rate x is constant and given by

x =

(
ϕx

ζ

) 1
ζ−1
(

αVCD
t + (1− α)VNV

t
wt

) 1
ζ−1

, (7)

where
VCD

t =
∫

Vt (λq) dFt (q) = Vt (λQt) and VNV
t =

∫
Vt (ωQt) dΓ (ω) = Vt (ωQt) .

Along a BGP, where the interest rate is constant and output grows at a constant rate gY, Vt (q) is given by

Vt (q) =




(µ− 1)
(

qi
Qt

)σ−1 LP
t

Nt

ρ + τ + δ + (gQ − I) (σ− 1)
+

1
ρ + τ + δ

ζ − 1
ϕx

xζ


wt (8)

and LP
t /Nt is constant. Moreover, the expected value of product creation is given by

αVCD
t + (1− α)VNV

t = Vt (qQt) ,

where q is defined in (5).

Proof. See Section A-1.1 in the Appendix.

Proposition 1 contains four results. First, the value function Vt ([qi]) is additive, so we can focus on
the value of a single product Vt (q). Second, Vt (q) is itself the sum of two components. The first
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part consists of the flow profits and the gains from own-innovation. The second is determined by
the option value of expansion, which equals the inframarginal rents of the innovation technology.
Third, the optimal expansion rate x is determined by the average of the creative destruction value
VCD

t and the value of new variety creation VNV
t (both relative to the wage). Hence, the link between

population growth η and firms’ innovation rate x operates via VCD
t and VNV

t . Moreover, these values
are in turn simply the value of a single product evaluated at the creative destruction entry point λQt

or the initial efficiency of a new variety ωQt. All these properties do not hinge on the economy to be
on a BGP and we use them below to compute the transitional dynamics.

Along a BGP, we can solve the value function Vt (q) explicitly - see (8). It is the sum of the net present
value of flow profits and the net present value of the expansion value. Note that flow profits are
discounted at a different rate than the option value of innovation, reflecting the evolution of the rel-
ative competitiveness of the firm’s product. Because the relative efficiency of a product (q/Qt)

σ−1

changes at rate
(

I − gQ) (σ− 1), if Qt grows faster (slower) than q, the product’s profitability de-
clines (increases) along its life-cycle. This difference in the rate of discounting between flow profits
and innovation value turns out to be important to understand how population growth affects the
equilibrium level of LP

t /Nt. Finally, note that the expected value of product creation is simply given
by Vt (q), i.e. the value of entering with a product with efficiency qQt. As we show below, this
property makes the characterization of the BGP equilibrium very tractable.

Entry. Free entry requires that the expected value of a successfully created new product (which, like
for incumbents, with probability α, stems from an existing firm and with probability 1− α is entirely
new to society) does not exceed the cost of entry, i.e.

VEntry
t ≡ αVCD

t + (1− α)VNV
t ≤ 1

ϕE
wt. (9)

For the remainder of this paper we focus on the empirically relevant case where the flow of entry is
positive and equation (9) holds with equality.

The free entry condition in (9) is a crucial equation in our theory. Most importantly, it implies that
the rate of product creation by incumbent firms is a function of technology only. Combining (9) with
(7) yields

x =

(
1
ζ

ϕx

ϕE

) 1
ζ−1

. (10)

Hence, incumbent product creation is independent of any general equilibrium variables. In particu-
lar, it does not depend on the rate of population growth η. Note that equation (10) holds both on and
off the BGP and only relies on the free entry condition to be binding.

This property plays an important role in our analysis and allows for a precise characterization of
the role of population growth. It follows from the fact that incumbents’ innovation technology has
decreasing returns at the firm-level, while entry - that operates at the aggregate level - has constant
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returns.6 Hence, the free entry condition pins down the value of product creation (relative to the
wage) and incumbent firms optimally chose the rate of product creation to equalize the marginal
cost and the marginal benefits. In Section 2.6 below we generalize our results to the case where
the entry process has decreasing returns in the aggregate. In that case, x also depends on general
equilibrium variables and is affected by population growth.

2.3 Balanced Growth Path Equilibrium

To characterize the BGP in this economy, define the two aggregate statistics

Nt ≡
Nt

Lt
and `P

t ≡
LP

t
Lt

.

We will refer to Nt as the economy’s variety intensity and to `P
t as the production share. These two

aggregate statistics are sufficient to characterize the BGP.7

Note first that labor market clearing implies that

Lt = LP
t + LR

t = LP
t + Nt

(
1

ϕE
zt +

1
ϕx

xζ

)
.

Using that zt =
1

1−α νt − x and the optimal rate of incumbent expansion given in (10), labor market
clearing requires that (

1− `P
t

Nt

)
=

1
ϕE

(
νt

1− α
− ζ − 1

ζ
x
)

. (11)

Holding the variety intensity Nt constant, a higher production share `P
t reduces the creation of new

varieties νt as less resources are allocated towards research. Conversely, for a given production share,
variety creation νt is decreasing in the variety intensity Nt as the amount of research effort per exist-
ing variety is lower. Equation (11) is the first key equation to characterize the equilibrium.

The second key equation is the free entry condition. Along the BGP, Proposition 1 and the free entry
condition in (9) implies that

1
ϕE

=
Vt (qQt)

wt
=

qσ−1 (µ− 1)

ρ + δ +
(

qσ−1

1−α − 1
)

νt

`P
t

Nt
+

ζ−1
ϕx

xζ

ρ + δ + α
1−α νt

, (12)

Equation (12) highlights that free entry determines the average number of production workers per
product `P

t /Nt = LP
t /Nt as a function of the rate of variety creation νt. Whether `P

t /Nt and νt are
positively or negatively related depends on the sign of qσ−1

1−α − 1. A sufficient condition for `P
t /Nt to

6Note that incumbent product creation also has constant return in the aggregate: if the number of incumbent firms
were to double, the anount of aggregate product creation performed by incumbents would also double.

7In Section A-1.1.4 in the Appendix we derive the full system of differential equations that characterize the equilibrium
path during the transition.
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increase in gN is
qσ−1

1− α
− 1 > 0, (13)

which is satisfied if λ, α and ω are sufficiently large.To understand the role of this restriction, recall
that α

1−α νt = τt and
(

qσ−1

1−α − 1
)

νt = (σ− 1) (gQ − I) + τt. A higher rate of variety growth always
increases creative destruction τ This channel reduces the value of existing firms through an increase
in the effective discount rate. At the same time, gQ − I decreases with a higher rate of variety growth
if q < 1. As long as (13) is satisfied (which is the case at our estimated parameters), the creative
destruction effects always dominates the quality growth effect and a higher rate of variety growth
increases creative destruction and hence reduces the value of existing firms through a higher rate of
discounting.8 Free entry therefore requires the level of flow profits to go up. This is achieved through
an increase in the number of workers per product `P

t /Nt.

Along a BGP, the growth rate is constant. This implies that gN grows at a constant rate. (11) and (12)
therefore require that Nt and `P

t are constant. This has the important implication that the number of
varieties Nt has to grow at the rate of population growth:

η = gN = νt − δ = (1− α) (z + x)− δ

The aggregate quantity of innovation z + x is thus directly tied to the growth rate of labor force.
And given that equation (4) then also determines the rate of creative destruction we can analytically
characterize the BGP allocations as a function of population growth.

Proposition 2. On a BGP, the following holds:

1. The rate of creative destruction τ, the rate of incumbent product creation x and the rate of entry z are
given by

ν = η + δ τ =
α

1− α
(η + δ) x =

(
1
ζ

ϕx

ϕE

) 1
ζ−1

z =
η + δ

1− α
− x. (14)

2. Aggregate growth gy is given by

gy = I +

(
qσ−1 − α

σ− 1

)
η

1− α
+

(
qσ−1 − 1

σ− 1

)
δ

1− α
, (15)

where qσ−1 = αλσ−1 + (1− α)ωσ−1 > α (see (5)).

8Note that (13) is weaker than q > 1, i.e. average quality growth can be declining in research expenditure. (13) requires
that it cannot decline fast enough to outweigh the effect on creative destruction.
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3. The production share `P and the variety intensity N are uniquely determined by the two equations

(
1− `P

N

)
=

1
ϕE

(
η + δ

1− α
− ζ − 1

ζ
x
)

(16)

1 =
ϕEq (µ− 1)

ρ + qσ−1

1−α δ +
(

qσ−1

1−α − 1
)

η

`P

N
+

ζ − 1
ζ

x
ρ + 1

1−α δ + α
1−α η

. (17)

Proof. See Section A-1.1.2 in the Appendix.

Proposition 2 contains three key theoretical results of this paper. First, a decline in population growth
reduces creative destruction. Moreover, the entirety of the decline is absorbed by the economy’s ex-
tensive margin - entrants do all the work. Hence, even though our model allows for incumbents’
incentives to engage in product creation to respond, in equilibrium free entry implies that incum-
bents’ rate of product creation is insulated from demographics and the economy lowers its aggregate
innovative effort z + x entirely through a quantity response: the flow of entrants declines.

Second, the rate of population growth directly affects the rate of growth. It does so in two ways.
First, population growth determines variety creation, which is in itself a form of growth. Second,
population growth also affects creative destruction and hence the rate of efficiency growth gQ. While
the effect of population growth on variety growth is always positive, its affect on efficiency growth
depends on the average efficiency of newly created products ω and the increment of creative destruc-
tion λ. The overall effect on income growth, however, is unambiguous: falling population growth
reduces long-run income growth as is typical in models of semi-endogenous growth (Jones, 2021).

Third, the level of varieties Nt (relative to the population) is determined in equilibrium and is a func-
tion of population growth η. This is seen in Figure 2, where we depict the free entry condition
(shown in orange) and the labor market clearing condition (shown in blue) from Proposition 2. The
labor market clearing schedule always shifts upwards as population growth declines. Because a de-
cline in population growth reduces the entry intensity z and keeps incumbent expansion x constant,
the demand for research labor declines holding the number of varieties fixed. To satisfy the resource
constraint, the variety N increases for a given sectoral allocation of labor. Similarly, the schedule
describing the free entry condition shifts upwards if (13) is satisfied. Declining population growth
raises the value of existing firms through the above-mentioned effect on firms’ discount rates, and
hence requires variety intensity to increase product market competition.

Note that this rise in the variety intensity is a countervailing force to the growth implications high-
lighted in Proposition 2. Because increases in Nt/Lt are a source of welfare gains, lower population
growth has positive welfare consequences through a higher level of varieties (a “static” effect) but
negative consequences via a decline in the growth rate (a “dynamic” effect). By contrast, the effect
of population growth on the long-run share of production workers `P is theoretically ambiguous. In
Figure 2, we show the case where a decline in population growth reduces the share of production
workers `P and increases the share of workers employed in research 1− `P.
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Figure 2: Declining Population Growth and Variety Creation along the BGP

   𝒩 = Nt /Lt

   ℓP = LP
t /Lt

1
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(1 − α)η − ζ − 1
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Labor Market 
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Free 
entry

A decline in 
population 

growth !(η ↓ )A decline in 
population 
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Note: This figure shows the determination of
(
`P, N

)
along the BGP (see Proposition 2). It also depicts the consequences

of a decline in population growth η.

2.4 Growth and Firm-Dynamics Without Scale Effects

One key implication of Proposition 2 is the absence of scale effects, both for the aggregate growth
rate and the equilibrium firm size distribution. For the aggregate growth rate, this is immediately
apparent from (15): as in the semi-endogenous growth model of Jones (1995), the rate of growth is
fully determined from the rate of population growth and is independent of the level of the popula-
tion.9 Relatedly, our model also highlights the absence of scale effects for the equilibrium firm-size
distribution. Firm-level employment is given by

l f t =
n f

∑
i=1

(
qi

Qt

)σ−1

× LP
t

Nt
=

n f

∑
i=1

(
qi

Qt

)σ−1

× `P

N
(18)

and thus depends on the number of products the firm owns
(
n f
)
, the scaled efficiency of the firms’

products (qi/Qt) and the mass of production workers relative to the number of varieties LP
t /Nt.

Along a BGP, both the distribution of the number of products and the distribution of scaled qualities
are stationary and fully determined from the entry flow z, the rate of product innovation by incum-
bents x and the rate of own-innovation I, all of which are independent of the level of the population

9In contrast to Jones (1995) however, our model features the possibility of positive growth even if the population is
stationary, i.e. η = 0. While there will not be any growth through variety creation, the “vertical” dimensions of own-
innovation I and creative destruction τ are still available to achieve long-run growth if the population is constant (partic-
ularly if products die at the exogenous rate δ we assume in the quantitative section). In that sense, our model is similar to
the model of Young (1998), which also features growth without scale effects.
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Lt.10 Similarly, the free entry equation (17) shows that `P/N is also independent of the level of the
population but only depends on the rate of population growth η. A larger population increases the
number of firms but leaves the distribution of firm-size unchanged.

This symmetry whereby neither the firm size distribution nor the equilibrium growth rate depends
on the level of the population is not a coincidence, because both are determined by firms’ innovation
incentives. Hence, firm-based models of growth that feature a stationary firm size distribution in
the presence of population growth also point towards a world of semi-endogenous growth where
population growth rather then the level of the population is the central determinant of rising living
standards. As a case in point consider for example the baseline model of Klette and Kortum (2004),
which features strong scale effects where the growth rate is increasing in the size of the population.
At the same time, the firm size distribution is not stationary in the presence of population growth: a
rising population will lead to ever increasing entry rates and smaller and smaller firms.

Our model does not have this implication because the level of varieties is endogenous. In fact, con-
sider the case of a constant population, i.e. η = 0. Proposition 2 then directly shows that our model
features growth without scale effects: the equilibrium then directly pins down `P and N . Hence, a
doubling of the level of population simply doubles the number of varieties Nt but leaves everything,
including the process of firm-dynamics unchanged. In Klette and Kortum (2004), the produce space
is exogenously fixed and free entry thus requires that a larger population, which comes with higher
profits per potential entrant, leads to higher discounting via creative destruction. In our model, the
adjustment operates through the level of flow profits. And while changes in creative destruction
lead to changes in the growth rate and the firm size distribution , changes in the variety intensity N

lead to changes in the level of productivity while keeping the rest of the economy stationary. In that
sense, our model is a version of Young (1998) but augmented with a full endogenous process of firm
dynamics.

We have also assumed that innovation costs scale with overall productivity Qt. In particular, the
entry cost is a fixed amount of labor, and hiring the same about of labor will generate a constant
flow of useful ideas no matter how advanced the economy is. Doing so is crucial to generate a
stationary firm size distribution. We can modify the theory to incorporate rising costs of entry as
the economy grows (due, for example, to diminishing returns to research as ideas become harder to
find, as in Bloom et al. (2020)). We analyze this case in Section A-1.2 in the Appendix. The main
implication is that average firm size is no longer constant, but must rise forever on the balanced
growth path. Intuitively, if the cost of entry rise faster than aggregate productivity, free entry requires
that aggregate profits must also rise. This is achieved though a decline in competition and a secular
increase in the size of firms.

10This result does not hinge on taking I to be exogenous, which we assumed for purely expositional purposes. Even if
we treat I as endogenous (as we do below), it is still the case that the optimal rate of own-innovation I is independent of
level of the population.
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2.5 Population Growth and Firm Dynamics

The discussion above highlights the pivotal role of population growth for the process of firm-dynamics
and the resulting equilibrium firm size distribution. In this section we leverage the analytical results
of Proposition 2 to provide a characterization of the consequences of declining population growth
for firm survival and the age distribution, the size distribution and market concentration and the
equilibrium entry rate.

Population Growth and Firm Survival Consider first the impact of population growth on firms’
chances to survive. To do so, define firms’ net rate of product accumulation ψ = x− (τ + δ) , which
is exactly the difference between the rate of product loss τ + δ and the accumulation of products x.
Using (14) to express τ in terms of the rate of population growth η yields

ψ = x− αη + δ

1− α
,

i.e. a decline in the rate of population growth increases the net rate of product accumulation at the
firm-level as firms’ face less of a threat of creative destruction.

This net accumulation rate ψ emerges as one key determinant for the process of firm dynamics. Let
S (a) denote the survival function, i.e. the probability that a given firm survives until age a. As we
show in Section A-1.1.6 in the Appendix, this survival function is given by

S (a) =
ψeψa

ψ− x (1− eψa)
. (19)

In the left panel of Figure 3 we display S (a) graphically. Naturally, S (a) is declining in a and satis-
fies lima→∞ S (a) = 0 because all firms exit eventually. More importantly, lower population growth
increases firms’ survival rates through an increase in the accumulation rate ψ. Hence, firms exit at a
lower rate and become older on average. In fact, one can show that the average age of firms is given
by E [Age] = 1

x ln
(

αη+δ
αη+δ−(1−α)x

)
, which is decreasing in η.

Population Growth, Concentration and Firm Size. Because firms on average grow as they age
conditional on survival, lower population growth increases firm size and concentration by shifting
the age distribution towards older firms. In addition, by increasing the net accumulation rate ψ,
lower population growth also increases the whole profile of life-cycle growth, i.e. firms are becoming
bigger conditional on age since their expansion incentives do not change but they lose products less
often. In particular, let n (a) denote the average number of products of a firm of age a. Then it can be
shown that

n (a) = 1− x
ψ

(
1− eψa) , (20)

which we display in the right panel of Figure 3. Not only is n (a) increasing in a, but it is also declining
in η. These two forces imply that market concentration rises as population growth declines.

Interestingly, these increases in concentration and firm size go hand in hand with an increase in the
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Figure 3: Falling Population Growth and Rising Concentration

(a) Firm Survival
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ηH → ηL

1 − x/ψ (ηH)
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Note: The figure shows the relationship between population growth η and firms’ survival probabilities S (a) (see (19)) in
the left panel and the relationship between population growth η and the average number of products n (a) (see (20)) in the
right panel.

aggregate variety intensity Nt = Nt/Lt. This is due to the multi-product nature of our theory: while
population growth reduces the number of firms per worker, it increases the number of products per
worker because each existing firm offers a larger product portfolio. Hence, higher concentration
can coexist with an expansion of product variety. This potential positive welfare effect is absent in
theories without multi-product firms.

Another way to analyze the effect of population growth on concentration is by considering the right
tail of the size distribution. As highlighted in equation (18), both the distribution of the number of
products n and of scaled efficiency q/Q determine the distribution of firm size. In our model, both of
these distributions have a pareto tail. The right tail of the employment distribution is thus given by

$l = min
{

$n,
1

σ− 1
$q

}
,

where $n is the tail of the product distribution and $q is the tail of the scaled efficiency distribution.
Intuitively, there are two ways for firms to be very large: through having many products, or by
having an extraordinarily good product.

As we show in the Section A-1.1.6 in the Appendix, as long as η > ψ > 0, the results of of Luttmer
(2011) imply that the distribution of the number of products n f has a pareto tail ζn, which is given by

$n =
η

ψ
=

(1− α) η

x (1− α)− δ− αη
. (21)

Hence, the Pareto tail of the product distribution is a closed form expression of the rate of population

17



growth η and a decline in population growth increases concentration, i.e lowers $n towards unity.
Equation (21) also highlights that lower population growth affects the product distribution through
two channels. Holding firms’ net expansion rate ψ constant, lower population growth increases con-
centration because it reduces the rate at which new firms, which are on average small by virtue of
being young, enter. In addition, lower population growth endogenously increases the net accumula-
tion rate ψ by lowering creative destruction. This further increases market concentration and lowers
the tail of the product distribution.11

The distribution of relative efficiency also has a Pareto tail. In particular, as long as the entrant
efficiency distribution Γ has a thin tail, the tail parameter $q is implicitly defined by (see Section
A-1.1.6 of the Appendix)

$q

(
qσ−1 − 1

σ− 1

)
= −1 + αλ$q , (22)

and hence depends on λ, α, σ and q. Interestingly, and in stark contrast to (21), the tail of the ef-
ficiency distribution $q is independent of population growth η. As λ → 1, $q approaches $q =

(σ− 1) /
(
1−ωσ−1) . Hence, if creative destruction does not contribute to efficiency growth, the tail

of the efficiency distribution will be thicker, the lower the relative efficiency of new varieties, i.e. the
smaller ω̄.

To summarize, declining population growth always increases concentration because incumbent firms
expand at a faster rate and survive longer. Whether this increase in concentration also shows up in
the tail of the size distribution depends on the comparison between $n and $q . If $n < $q, lower
population growth reduces the tail of the employment distribution. If $q < $n, the right tail of
the employment distribution is unaffected by population growth. Which of these tail coefficients
dominates is a quantitative question.

Population Growth and the Entry Rate. Finally, our theory highlights the implications of population
growth for the equilibrium entry rate. Letting Ft denote the number of firms at time t, the entry rate
is given by

Entry ratet =
Zt

Ft
= z× Nt

Ft
.

Holding the number of products per firm constant, a lower entry flow z reduces the rate of entry.
Conversely, for a given entry intensity z, an increase in Nt/Ft increases the entry rate. Our theory
reflects these two counteracting forces. A decline in population growth lowers z, which all else equal
pushes the entry rate lower. At the same time, we argued above that Nt/Ft increases in response
to a decline in population growth as both the variety intensity Nt/Lt increases and firms become

11Note that (21) can also be written as ζn =
η

η−z , i.e. concentration is large if the flow of new entrants z is small relative

to population growth η. Our theory, in particular Proposition 2, implies that a decline in η will reduces both z and η
η−z .

This also implies that the product distribution does not have a pareto tail in the absence of population growth (as is the
case in the baseline model of Klette and Kortum (2004)).
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larger, i.e. Lt/Ft rises.12 Quantitatively, we find that the first effect decisively dominates: declining
population growth lowers the rate of entry in equilibrium.

2.6 Discussion of Assumptions

Three assumptions make our theory particularly tractable. First, we assume that the economy has
access to a linear entry technology. Second, product creation is undirected: a constant share α of
innovation and entry results in creative destruction rather than new variety creation. Third, we
assumed the rate of own-innovation I to be exogenous. In this section we show that our main results
qualitatively do not hinge on these assumptions.

Decreasing Returns in the Entry Technology. Assume that the productivity of entrant labor hired to
produce new ideas is given by

ϕE (zt) = ϕ̃Ez−χ
t where χ ≥ 0. (23)

Here, zt is the aggregate entry rate that each entrant takes as given. For χ = 0, this specification yields
the constant returns to case analyzed above. For χ > 0, the cost of entry rises with the aggregate entry
rate. We refer to χ as the strength of congestion.

Under (23), free entry requires that

Vt (qQt)

wt
=

1
ϕE (zt)

=
1

ϕ̃E
zχ

t . (24)

Hence, to the extent that there is congestion, i.e. χ > 0, the average value of product creation (relative
to the wage) is increasing in the aggregate entry rate. Alternatively, the aggregate entry supply curve
is increasing in the value of entry with an elasticity 1/χ. For our baseline case of χ = 0, entry is
infinitely elastic.

Irrespective of the entry technology, it is still the case that the rate of variety growth is equal to the rate
of population growth, i.e. ν = η + δ. This directly implies that two important results of Proposition 2
still apply: the rate of creative destruction is still given by τ = α

1−α (η + δ) (see (14)) and the aggregate
growth rate gy is still given in (15).

By contrast, the composition of creative destruction into the entry flow z and incumbents’ rate of
product creation x, depends on the strength of congestion χ. Note that the policy function of incum-

12We have not found an analytic expression for Nt/Ft. However, it is straightforward to calculate. Let ν (n) =
ωt(n)

Nt

denote the share of firms with n products. As we show in Section A-1.1.6 in the Appendix, ν (n) is given by

ν (n + 1) =





(
2 αη

1−α

)−1 (
ν (1)

(
η

1−α + x
)
− z
)

if n = 1
(
(n + 1) αη

1−α

)−1 (
ν (n) n

(
αη

1−α + x
)
+ ν (n) η − ν (n− 1) (n− 1) x

)
if n > 2

.

Together with the consistency condition ∑∞
n=1 ν (n) n = 1, these equations fully determine {ν (n)} n as a function of pa-

rameters, in particular the rate of population growth η Then, Nt/Ft = (∑∞
n=1 ν (n))−1.
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bents (7) and the congestion-adjusted free entry condition in (24) imply that

τ = α (z + x) = α

(
z +

(
ϕx

ζ

) 1
ζ−1
(

Vt (qQt)

wt

) 1
ζ−1
)

= α

(
z +

(
ϕx

ζ ϕ̃E

) 1
ζ−1

z
χ

ζ−1

)
.

Using τ = α
1−α (η + δ), this implies that the product entry flow z is uniquely determined from the

equation

η + δ

1− α
= z +

(
ϕx

ζ ϕ̃E

) 1
ζ−1

z
χ

ζ−1 .

It easy to see that z is declining in η, that is falling population growth still reduces the entry flow z.
Given z, the rate of incumbent product creation x is given by

x =

(
ϕx

ζ ϕ̃E

) 1
ζ−1

z
χ

ζ−1 .

For the case of no congestion, χ = 0, the solution is exactly as in Proposition 2 and x does not depend
on population growth. If χ > 0, x is increasing in z and hence also declining in population growth.
Whether changes in population growth affect entrants or incumbents relatively more depends on the
congestion elasticity χ relative to the convexity of the cost function ζ. In particular, z/x ∝ z

ζ−1−χ
ζ−1 so

that entrants respond relatively more to changes in population growth if ζ − 1 > χ, i.e. if the entry
cost elasticity χ is smaller than the incumbent cost elasticity ζ − 1. Hence, qualitatively, all the results
derived above hold true as long as χ < ζ − 1. The case of χ = 0 makes the “entry dependence”
particularly salient.

Endogenizing the Direction of Innovation α. Our second assumption concerns the direction of in-
novation α. In Section A-1.3 in the Appendix we present a detailed analysis of an extension of our
model, where entrants and incumbents can directly chose the flow rate at which they want to cre-
atively destroy products (xCD and zCD) and at which they want to create new varieties (xNV and zNV).
Hence, τ = zCD + xCD and gN = xNV + zNV .

For incumbent firms the value function takes exactly the same form as in (8) in Proposition 1: the
value of having a product with quality q is given by

Vt (q) =
(µ− 1)

(
qi
Qt

)σ−1 LP
t

Nt

ρ + τ + δ + (gQ − I) (σ− 1)
wt +

1
ρ + τ + δ

Ξ∗t

where Ξ∗t is the value of innovation is given by

Ξ∗t = n×
(

max
xCD

{
xCD

(
VCD

t − 1
ϕCD

xζ
CDwt

}
+ max

xNV

{
xNV

(
VNV

t − 1
ϕNV

xζ
NVwt

})
, (25)

where, as before, VCD
t = Vt (λQt) and VCD

t = Vt (ωQt). For entrants we assume the following entry
technology: as in the baseline model, each workers can generate ϕE new business ideas. To turn
a business idea into a viable product, new firms have access to the same innovation technology as
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incumbent firms. This structure maintains both the symmetry between entrants and incumbents and
the linear entry technology but endogenies the direction of innovation α.

As we show in Section A-1.3 in the Appendix, this extension of our model is still very tractable. First,
the optimal rates of incumbent innovation are given by

xNV =

(
ϕN

ζ

Vt (ωQt)

wt

) 1
ζ−1

and xCD =

(
ϕCD

ζ

Vt (λQt)

wt

) 1
ζ−1

. (26)

Second, because entering firms have the same innovation technology as incumbents, zNV = xVNz
and zCD = xCDz, where z is the aggregate flow of entry (per product Nt). Third, free entry requires
that

1
ϕE

=
Ξ∗t
wt

=
ζ − 1
ϕNV

xζ
NV +

ζ − 1
ϕCD

xζ
CD, (27)

where the second equality stems from substituting (26) into (25).

Equation (26) highlights why variety creation and creative destruction are tightly linked: both de-
pend on the same value function Vt (q) /wt. In fact, in a special case, this model is exactly isomorphic
to our simpler baseline model. Suppose what λ = ω, i.e. new varieties and creatively destroyed
products have - on average - the same initial quality. (26) then implies that

α =
xCD

xCD + xNV
=

ϕ
1/(ζ−1)
CD

ϕ
1/(ζ−1)
CD + ϕ

1/(ζ−1)
N

,

i.e. the direction of innovation is constant. As in our baseline model we can thus write xCD = αx
and xNV = (1− α) x, where x = xCD + xNV is the total quantity of incumbent innovation. The free
entry condition (27) then implies that x is again fully determined from parameters and insulated
from demographics. Finally, the rate of creative destruction and the amount of entry z are given by

(1− α) x (1 + z) = η + δ and τ = αx (1 + z) =
α

1− α
(η + δ) .

Hence, as in our baseline model, falling population reduces creative destruction and all the adjust-
ment is achieved through a reduction in entry.

In Section A-1.3 in the Appendix we analyze the general case of λ 6= ω. This implies that α is
no longer constant. However, we still show that falling population growth reduces both creative
destruction and the relative importance of entrants z/x.

Endogenous Own-Innovation I. Finally, consider our choice of treating the rate of efficiency growth
of incumbent firms I as exogenous. As we show in Section A-1.3 in the Appendix, all of our results
extend to a case where I is endogenous in a straight-forward way. In particular the expressions
for τ and gN are exactly the same as in Proposition 2 and so is the expression for the equilibrium
growth rate gy, except that I is no longer a parameter but a choice variable. This endogenous rate of
own-innovation is in turn implicitly defined by
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I =


 (σ− 1) (µ− 1) LP

t /Nt

ρ + τ + δ +
(

gQ − ζ−1
ζ I
)
(σ− 1)

ϕI

ζ




1
ζ−1

. (28)

Note that I depends on the rate of population growth both through the discount rate (i.e. τ and gQ)
and the level of flow of profits (i.e. LP

t /Nt).13 Because lower population growth reduces τ and gQ

and increases Nt/LP
t , it seems that the effect of population on own-innovation is ambiguous. This,

however, is not the case. Using the free entry condition, one can show that the optimal rate of own-
innovation I is given by

I = ς


1−

(
ζ−1

ζ

) (
1
ζ

ϕx
ϕE

) 1
ζ−1

ρ + τ + δ




1
ζ−1

, (29)

where ς is a collection of structural parameters. Note that this expresses I directly as a function of
parameters and a single endogenous variable - the rate of creative destruction. And because I is
increasing the rate of creative destruction, a decline in population growth reduces the rate of own
innovation. This endogenous response of incumbents’ own-innovation efforts this amplifies the neg-
ative growth consequences of falling population growth.

The fact that I is increasing in the rate of creative destruction might at first seem surprising. After
all, a higher rate of creative destruction reduces the expected life-span, which should reduce firms’
incentives to invest in productivity improvements. And as seen in (28), this intuition is indeed cor-
rect: holding the market size LP

t /Nt fixed, a higher rate of creative destruction reduces the rate of
own-innovation. However, once the change in LP

t /Nt is taken into account, the general equilibrium
effect of a higher rate of creative destruction becomes positive. The reason is the following: free en-
try requires the average production value plus the innovation value to be equal to the entry costs. A
lower rate of population growth increases the innovation value because creative destruction declines.
Hence, for the free entry condition to be satisfied, the production value has to decrease. And as the
returns to own-innovation scale with the production value but not the innovation value, the returns
to own-innovation are lower in an environment with lower population growth.

3 Extension for the Quantitative Analysis: Endogenous Market Power

So far we assumed that markups were constant and equal to the standard CES markup. We now
generalize our model by assuming that firms compete a la Bertrand within product lines. Doing so
makes the distribution of markups endogenous and allows us to study the effects of falling popula-
tion growth on market power.

13Note also that I is independent of the level of the population, i.e. even when I is treated as endogenous, our model
does not feature strong scale effects and the firm size distribution is stationary.
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Given the CES structure of demand, each firm would like to charge a markup of σ
σ−1 over marginal

cost. However, the presence of competing firms within their product line implies that the most effi-
cient producer might have to resort to limit pricing. If they are unable to price at the optimal markup
without inviting competition, they will set their price equal to the marginal cost of the next most effi-
cient producer of that good, who is then indifferent between producing or not. The markup charged
in product i, µi, is thus given by

µi = min

{
σ

σ− 1
,

qi

qC
i

}
≡ min

{
σ

σ− 1
, ∆i

}
, (30)

where qi denotes the efficiency of current producer in product i, qC
i is the efficiency of the next best

competitor and ∆i ≡ qi/qC
i > 1 is the firm’s efficiency advantage relative to it competitors (we also

refer to this as the “gap”). Markups are rising in the gap ∆ because higher efficiency shields the firm
from competition.

The static equilibrium allocations generalize in a straight-forward way and aggregate output and
equilibrium wages are now given by

Yt =MtQtN
1

σ−1
t LP

t and wt = ΛtYt/LP
t = ΛtMtQtN

1
σ−1

t ,

where

Mt =

(∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
) σ

σ−1

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)
and Λt =

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
, (31)

and Ft(q, µ) denotes the joint distribution of efficiency and markups. The two aggregate statisticsMt

and Λt fully summarize the static macroeconomic consequences of monopoly power. Market power
reduces both production efficiency (the misallocation termMt) and lowers factor prices relative to
their social marginal product (the labor share Λt). In particular, a common increase in markups re-
duces the labor wedge Λt but keeps the allocation efficiency Mt unchanged. The latter is affected
by the dispersion of markups. Because our model generates the joint distribution distribution of
markups and efficiency Ft (q, µ) endogenously and this distribution is a function of the rate of popu-
lation growth, a decline in the rate of population growth affects allocative efficiency viaMt and has
distributional consequences through Λt.

Perhaps more surprisingly, the dynamic implications are very similar to our baseline model. While
the value function is more involved, we show in Section A-1.4 in the Appendix that we can still derive
an analytic expression which has a similar form to the one derived in the constant markup case. More
importantly, all the results of Proposition 2 exactly hold in the model with Bertrand competition, i.e.
the equilibrium rate of creative destruction τ, the entry rate z and the rate of incumbent expansion x
are still given by (14). Hence, our findings that lower population growth increases concentration and
shifts the age distribution towards older firms directly carries over to the environment with Bertrand
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Figure 4: Falling Population Growth and Rising Market Power

(a) The Life-Cycle of Product Markups
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(b) The Distribution of Markups
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Notes: This left panel shows a stylized example of how markups evolve at the product level. When a firm takes over a
product, markups increase through own-innovation. Once the product is lost to another firm, markups are reset to the
baseline level of λ. The right panel shows what happens to the distribution of markups when population growth falls.

competition.

Allowing for imperfect competition, however, yields additional insights. Our model features a cru-
cial asymmetry between productivity growth due to creative destruction and own-innovation. Sup-
pose the current producer of product i has an efficiency gap of ∆i. If this firm is replaced by another
producer, the efficiency gaps reduces to λ as the new firm’s efficiency exceed the one of the previ-
ous producer by the creative destruction step size λ. Hence, churning through creative destruction
reduces markups. By contrast, if the existing firm successfully increases its efficiency through own-
innovation, the efficiency gap and hence the markup increase at rate I (as long as ∆i ≤ σ

σ−1 ). Hence,
own-innovation is akin to a positive drift for the evolution of markups, while creative destruction is
similar to a “reset” shock, which lowers markups and keeps the accumulation of market power in
check.

This process is displayed in the left panel of Figure 4. When a firm adds a product to its portfolio,
the initial markup is λ. Conditional on survival, markups increase at rate I. A faster rate of cre-
ative destruction lowers the expected time a given firm produces a particular product and limits the
opportunities for incumbent firms to accumulate market power.

The stochastic process shown in the left panel ofFigure 4 gives rise a stationary distribution of effi-
ciency gaps ∆ and hence markups. Newly created varieties do not face any competitor and hence
charge a markup of σ

σ−1 . Products that have been creatively destroyed at some point in the past are
subject to Bertrand competition and the markup depends on ∆. Let NNC

t denote the mass of products
without any competitor and NC

t be the mass of products that are subject to competition. Consistency
requires that Nt = NNC

t + NC
t . In Section A-1.4.5 in the Appendix we prove two results. First, we
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show that, along a BGP, the share of product without any competitor is given by

NNC
t /Nt = 1− α,

i.e. it is simply given by the share of product creation that results in new varieties (rather than creative
destruction).14 Second, the distribution of efficiency gaps among products with a competitor is given
by

FC (∆) = 1−
(

λ

∆

) τ+η
I

= 1−
(

λ

∆

) 1
1−α

η
I

, (32)

i.e. the marginal distribution of efficiency gaps is a Pareto distribution with tail parameter of τ+η
I . As

such, slower population growth increases the equilibrium distribution of efficiency gaps in a first-
order stochastic dominance sense. First of all, slower population (and hence product) growth shifts
the product distribution towards old products, which on average have higher markups. In addition,
because slower population growth also reduces creative destruction, this effect is amplified, i.e. the
average product age is increasing even for a given cohort of firms.15

To translate the distribution of efficiency gaps into the distribution of markups, recall from (30) that
µ (∆) = min

{
σ

σ−1 , ∆
}

. Hence, for the case where markups are below the “unconstrained”, mo-
nopolistically competitive markup σ

σ−1 , the distribution of markups is a truncated Pareto. Among
products without a competitor, the markup is given by σ

σ−1 . Hence, the cross-sectional distribution
of markups across products is given by

G (µ) =





αFC (µ) µ < σ
σ−1

1 µ = σ
σ−1

.

A reduction in population growth therefore increases markups along the whole distribution and
shifts more mass towards the maximum CES markup. In the right panel of Figure 4 we depict how
the distribution of markups changes in response to a decline in population growth from ηH to ηL.

The macroeconomic consequences of misallocation are summarized byM and Λ, which depend on
the joint distribution between efficiency gaps ∆ and efficiency q. To derive this distribution, define
relative efficiency q̂ = ln (q/Qt)

σ−1 and let λ̂ = ln λσ−1 . Denote FC
t (∆, q̂) as the joint distribution

14Let NNC
t (a) the number of products without a competitor that have been around for a years at time t. Because

(1− α) (z + x) Nte−ηa such products entered at time t − a and receive a competitor at the rate of creative destruction τ,
NNC

t (a) = (1− α) (z + x) Nte−(η+τ)a. Hence,

NNC
t =

∫ ∞

a=0
NNC

t (a) da = Nt

(
1− α

α

)(
τ

τ + η

)
= (1− α) Nt,

because τ = 1−α
α η.

15To see intuitively, why our model gives rise to a Pareto distribution, let aP denote the time a product has been pro-
duced by the same firm. Because the efficiency gap ∆ increases at rate I as long as the firm is not replaced, ∆ (aP) = eIaP .
And because the current producer gets replaced at rate τ and the number of products increases at rate η, the distribution

of aP is P (aP ≤ a) = 1− e−(η+τ)a. Hence, P
(
eIaP < ∆

)
= 1− e−(

η+τ
I ) ln ∆, which is (32).
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of efficiency gaps and relative efficiency for products which have a next best competitor. Similarly,
denote FNC

t (q̂) as the distribution of relative efficiency for products that do not have a competitor.
We show in Appendix A-1.4.4 that these objects evolve according to laws of motion given by

∂FC
t (∆, q̂)

∂t
= −∂FC

t (∆, q̂)
∂∆

I∆− (σ− 1)(I − gQ
t )

∂FC
t (∆, q̂)

∂q̂︸ ︷︷ ︸
drift from own innovation

− (τt + δ + η) Ft

(
∆, q̂

)

︸ ︷︷ ︸
product loss

+ lim
s→∞

τtFC
t
(
s, q̂− λ̂

)

︸ ︷︷ ︸
creative destruction of C products

+ τt
NNC

t
NC

t
FNC

t (q̂− λ̂)

︸ ︷︷ ︸
creative destruction of NC products

,

∂FNC
t (q̂)
∂t

= −∂FNC
t (q̂)
∂q̂

(σ− 1) (I − gQ
t )

︸ ︷︷ ︸
drift from own innovation

− (τt + δ + η) FNC
t (q̂)︸ ︷︷ ︸

product loss

+
(1− α)

α
τtΓ
(

exp (q̂)
σ− 1

)

︸ ︷︷ ︸
new products

.

These expressions highlight the separate roles of own innovation and creative destruction in influenc-
ing the evolution of efficiency and markups. Own innovation causes both the production efficiency
and the gap to drift upwards at the deterministic rate I, while creative destruction “resets” the mass
in the distribution above ∆ to have a gap of λ. Also note that there is a one-way flow of products from
the non-competitive mass to the competitive through creative destruction events, while the entrant
distribution Γ only directly affects the non-competitive mass.

Though these distributions do not have a closed form solution on the BGP, they can easily be com-
puted. And given FC(∆, q̂) and FNC(∆, q̂), the economy-wide joint distribution is given by

F(∆, q̂) = (1− α) FC(∆, q̂) + αFNC(∆, q̂),

because α is exactly the steady-state fraction of products that have a competitor. Given F(∆, q̂) we
can then quantify the aggregate consequences of market power. Because higher markups reduce
the labor share Λ and more dispersed markups reduce allocative efficiency M, lower population
growth tends to increase profits relative factor payments and has adverse effects on static allocation
efficiency. Below we quantify the strength of these forces and solve for the joint distribution FC

t (∆, q̂)
computationally, both along the BGP and during the transition.

4 Quantitative Analysis: Calibration

To quantify the importance of declining population growth we now calibrate our model to data from
the US. In Figure 5 we display the historical growth rate of the labor force since 1980 and the official
projections of the BLS. Our exercise to quantify the aggregate impact of this actual and projected
decline is conceptually simple. We parametrize the model to a balanced growth path matching key
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Figure 5: Labor Force Growth in the US
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Notes: The figure shows the growth rate of the labor force in the U.S., with the raw series in blue and a HP-filtered trend
component in red. The data is sourced from the BLS, accessed through FRED. Grey shading indicates projections.

moments of the data in 1980, when labor force growth was approximately 2%. We then study the
aggregate impact of the path of labor force growth shown in Figure 5 by computing the dynamic
response in our model. To do so, we treat the projections of the BLS as agents’ rational expectations
in our model, and also assume that the projected labor force growth rate after 2050 persists in the
long-run..

4.1 Data

Our main dataset is the U.S. Census Longitudinal Business Database (LBD). The LBD is an admin-
istrative dataset containing information on the universe of employer establishments since 1978. It
contains information on the age, industry, employment and payroll of each establishment, along
with identifiers at the firm level that allow us to track the ownership of each establishment over time.
We define the age of the firm in the LBD as the age of the oldest establishment that the firm owns.
The birth of a new firm requires both a new firm ID in the Census and a new establishment record.
We also modify the Census firm ID’s to deal with some issues involving multi-establishment firms
in the same way as developed in Walsh (2019).

To measure firms’ markups, we require information on sales. We therefore augment the LBD data
with information on firm revenue from administrative data contained in the Census’ Business Reg-
ister, following Moreira (2015) and Haltiwanger et al. (2016). The Business Register is the master list
of establishments and firms for the U.S. Census and we are able to match approximately 70% of the
records to the LBD.

27



In Table A-1 we provide some basic summary statistics on the firms in our data set. In total our
data comprises about 3.61m firms in 1980 and 4.95m firms in 2010. During that time period, average
firm employment increased by around 10% from 20 to 22 employees. The aggregate employment
share of firms with less than 20 employees declined from 21.5% to 18.8% and the one of very large
firms (with more than 10,000 employees) increased from 25.7% to 27%. Furthermore, firms became
substantially older: the employment share of firms less than five years old declined from 38% to
30%. Qualitatively, all these are implications of our theory. Below we show the observed decline in
population growth goes a long way to also replicate these patterns quantitatively.

4.2 Calibration

Our model is parsimoniously parametrized and rests on 11 parameters:

Ψ =





α, ζ, ϕE, ϕx, I, ω̄, λ︸ ︷︷ ︸
Innovation & Entry technology

, δ︸︷︷︸
Exog. exit

, η︸︷︷︸
Pop. growth

, ρ, σ︸︷︷︸
Preferences





.

Three of them - the demand elasticity σ, the discount rate ρ, and the convexity of the innovation
cost function ζ - we set exogenously. We fix the elasticity of substitution between products σ at 4,
following Garcia-Macia et al. (2016), set the discount rate ρ to 0.95 and assume a quadratic innovation
cost function (i.e. ζ = 2) as in Acemoglu et al. (2012).

The rate of labor force growth η is directly observed in the data (see Figure 5) and is our key param-
eter for the comparative statics. The remaining seven parameters are calibrated internally. We target
key moments from the cross-sectional firm-size distribution in 1980 and observed life-cycle dynam-
ics of markups and sales.16 We are able to match these moments with arbitrary precision. Building
a quantitatively accurate picture of the dynamic evolution of sales, employment and markups at the
firm-level is crucial to credibly quantify the consequences of declining population growth. In Table 1
we report the parameters and the main moments we target.

While all moments are targeted simultaneously, there is nevertheless a tight mapping between par-
ticular moments and particular parameters which highlights how the different parameters are iden-
tified.

Innovation efficiency of incumbent firms: I and ϕx We identify the relative efficiency of the differ-
ent sources of innovation from two dynamic moments: the life-cycle profile of sales and the life-cycle
of markups. Because markup growth is driven by incumbents’ own-innovation activities (see Figure

16The LBD data does not contain direct information on products. Argente et al. (2019) use data from Nielsen to provide
direct evidence on the process of life-cycle growth at the product-level. Akcigit et al. (2021) analyze a related model and
show that their model, calibrated to employment data, replicates the product-level distribution well. Cao et al. (2017)
identify products (in the theory) with plants (in the data). For an early analysis of product-level data, see Bernard et al.
(2011).
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Table 1: Model Parameters

Structural Parameters Moments
Description Value Data Model

η Labor force growth in 1980 0.02 Data from BLS 2% 2%

λ Step size on quality ladder 1.11 Aggregate poductivity growth 2% 2%

I Rate of own innovation 0.023 Markup growth by age 10 (RevLBD) 10.2% 10.2%

ϕX Cost of inc. product creation 0.04 Sales growth by age 10 (RevLBD) 58% 58%

ϕE Cost of entry 0.12 Avg. firm size (BDS) 20.7 20.7

δ Destruction rate of products 0.06 Entry Rate in 1980 (BDS) 11.6 % 11.6 %

α Share of creative destruction 0.59 Markup of entrants - 18 %

ω̄ Relative efficiency of new products 0.45 Pareto tail of LBD employment distribution in 1980 1.1 1.1

ζ Curvature of innovation cost 2 Set exogenously

σ Demand elasticity 4 Set exogenously

ρ Discount rate 0.05 Set exogenously

Note: This table reports the calibrated parameters for the full model. Data for the firm lifecycle comes from the U.S.
Census Longitudinal Database, augmented with revenues from tax-information using the Census’ Business Register. Data
for average firm size and the firm entry rate in 1980 are taken from the public use Business Dynamics Statistics.

4), this moment is informative about the rate of efficiency improvement I. Sales growth is in addi-
tion also affected by the rate of incumbent product creation, which depends directly on the cost of
product expansion ϕx.

As we show in detail in Section A-2.3.3 in the Appendix, we can derive the life-cycle profiles of sales
and markups (essentially) explicitly. This is not only convenient from a quantitative standpoint but
also clarifies our identification strategy. The main insight to derive these moments is to first express
markups and sales of a given product as a function of the product age aP. Average relative sales as a
function of a product age aP are given by

sP (aP) ≡ E
[ piyi

Y

∣∣∣ ap

]
= E

[
µ1−σ

i

(
qi
Qt

)σ−1
∣∣∣∣∣ ap

]
= µ

(
ap
)1−σ e(σ−1)(I−gQ)ap qσ−1,

where µ (aP) = min
{

σ
σ−1 , ∆ (aP)

}
= min

{
σ

σ−1 , λeIaP
}

and the remaining terms are the average rel-
ative quality . Because own-quality q increases at rate I while average quality Q increases at rate
gQ, e(σ−1)(I−gQ)ap is the relative drift of these random variables. The last term reflects that the initial
average quality when the firm adds the product to its portfolio (see (5)).

With this expression for relative product sales s (aP) in hand, we can calculate the life-cycle of sales
and markups at the firm-level. In particular, average sales and markups as a function of firm age a f
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are given by17

s f
(
a f
)

= E

[ N f

∑
n=1

sP (aP)

∣∣∣∣∣ a f

]

µ f
(
a f
)

= E



( N f

∑
i=1

µ
(
ap
)−1 sP (aP)

∑
N f
i=1 sP (aP)

)−1∣∣∣∣∣∣
a f


 ,

where the expectations are taken with respect to the conditional distribution of N f and aP, conditional
on a f . Note that the conditional distribution of product age will in general depend on the age of the
firm a f , and will the conditional distribution of the number of products N. As we show in Section
A-2.3.3 in the Appendix, we can calculate these conditional distributions of product age aP and the
number of products N f given firm age a f essentially explicitly. We can therefore calculate s f

(
a f
)

and
µ f
(
a f
)

without having to simulate the model.

Empirically, we measure markups at the firm level by the inverse labor share:

µ f =
py f

wl f
, (33)

where py f is the total revenue of the firm, and wl f is the total wage bill. We calculate the total wage
bill by aggregating establishment payroll. While this allows us in principle to measure markups
for the population of U.S. firms, we only use firms’ markup growth to calibrate our model. More
specifically, letting µ f ,t be the mark-up of firm f at time t, we run a regression of the form

ln µ f ,t =
20

∑
a=0

γ
µ
a IAge f t=a + θ f + θt + ε f ,t, (34)

where IAge f t=a is an indicator for whether the firm is of age a and θ f and θt are firm and time fixed
effects respectively. Hence, γ

µ
a provides a non-parametric estimate of the rate of markup growth. We

calibrate our model to the growth rate at the 10-year horizon, γ
µ
10.

Because we explicitly control for a firm fixed effect when estimating (34), we do not have to take
a stand on firms’ output elasticities as long as they are constant with age.18 We follow the same
approach when we estimate the life-cycle of sales, i.e. we also estimate (34) using log sales as the
dependent variable and target γ

py
10 in our quantitative model. In the LBD, firms increase their average

17Equivalently, the firm-level markup µ f can also be expressed as a cost-weighted average of product-level markups,

µ f = ∑
N f

i=1 µi
wli

∑
Nf
i=1 wli

, as in Edmond et al. (2018).

18If, for example, firms within sectors had different production functions with different output elasticities, neither the
level nor the dispersion of markups as measured from (33) could be distinguished from such differences in technology
(see De Loecker and Warzynski (2012) and Peters (2020)). Also, by targeting markup growth, we avoid estimating output
elasticities for labor, which is not feasible with the data we have as it does not contain data on capital or material inputs.
Doing so would also complicate the mapping from model to data, since in our model labor is the only factor of production.
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markup by roughly ten percentage points and grow in size by about 80% by age 10.

Entry Costs and product loss: ϕE and δ. We choose ϕE and δ to jointly match the entry rate and
average firm size. The free condition determines market size LP

t /Nt as a function of entry efficiency
ϕE. This in turn is a key component of average firm employment. We thus choose ϕE to match an
average firm employment of 20.76 in 1980 from the BDS. The higher the entry efficiency, the lower
market size and the smaller the average size of firms. The exogenous rate of product loss δ directly
influences the exit and hence - in a BGP - the entry rate of firms. We target the entry rate in 1980 of
11.6%.

Productivity growth through innovation: λ and ω. The parameters λ and ω determine the relative
quality of creatively destroyed products (λ) and newly generated varieties (ω). We infer these pa-
rameters from the aggregate rate of growth and the tail of the firm size distribution. That λ and ω

directly affect the growth rate is apparent from Proposition 2. For the tail of the firm size distribution,
we find in our calibration that ςn > 1

σ−1 ςq, i.e. the tail of the employment distribution is given by
ςl = 1

σ−1 ςq, where ςq is given in (22). Given α and σ, this tail only depends on λ and ω. For our
calibration we chose λ and ω̄ to target a rate of productivity growth of 2% and a tail parameter of
the firm size distribution of 1.1 (close to Zipf’s law). See Section A-2.2 in the Appendix for the details
how we estimate the tail of the size distribution from our data.

New varieties vs. creative destruction: α. The share of new products in innovation, 1− α, plays an
important role for the level of markups in the economy. The higher α, the lower the economy-wide
markup because the higher the share of products that are subject to Bertrand competition. We target
an economy-wide profit share of 25%.

4.3 Estimates and Model Fit

As seen in Table 1, our model is able to match the targeted moments perfectly. To match the fact
that firm-level markups grow by around ten percentage points at the ten year horizon, our model
implies a rate of own-innovation of around 2.3%. For a creative destruction event, we estimate a
productivity increase of 11%. This is required to match an annual aggregate growth rate of 2%.
The initial production efficiency of new products is estimated to be low, about 10% of the average
product in the economy. This relative low value is required to match the thickness of the tail of the
employment distribution.

In addition to the targeted moments, our model, despite its parsimonious parametrization, also
matches a variety of additional non-targeted moments. Consider first the sales and markup life cycle.
In Figure 6 we show the model’s performance by plotting the estimated coefficients γ

µ
a and γ

py
a from

specification (34) estimated in the model and in the data. As highlighted in Table 1, we calibrate our
model to match γ

py
10 and γ

µ
10. Figure 6 shows that the model’s implication for the whole age profile

of sales (in the left panel) and markups (in the right panel) is quite close to what is observed in the
data.
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Figure 6: Lifecycle Growth in Firm Sales and Markups
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(b) Markup Growth By Age
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Note: Panel (a) in this Figure compares the lifecycle of firm sales in the model to the estimated lifecycle in the data. The data lifecycle
plots the age coefficients from estimating equation (34) in the LBD. N = {35, 300, 000}, where this number has been rounded to accord
with Census Bureau disclosure rules. The lifecycle of sales in the calibrated model is computed by simulating a panel of 106 firms , and
averaging sales within age groups. Panel (b) does the same for relative markups.

For the case of sales, the model replicates the slight concavity of log sales well. In the model, this
shape reflects survivorship bias; small firms either grow or are destroyed, while large firms can have
products stolen and shrink without exiting. As such, average growth conditional on survival is de-
clining with age for young firms before, eventually, becoming log-linear for large old firms, matching
Gibrat’s law. Quantitatively, firms in the US grow their sales by about 60 log points during their first
10 years. The fit for markups in Panel (b) is also relatively good, even though in the data markups ap-
pear more linear with age than emerge from the model. Empirically, markups are increasing almost
linearly by 1% each year. In the model, the rate of markup growth is much more concave, reflecting
the fact that markups are bounded from above by σ

σ−1 .19

In Figure 7 we confront our model’s predictions for the size distribution with the data. While we have
explicitly targeted average size and the Pareto tail, our model matches the full non-parametric firm
size and employment distribution very well. We plot the distribution of employment (left panel) and
the number of firms (right panel) for both the model and the data in 1980.20 Our model successfully
matches both of these margins. Note in particular that it replicates the aggregate importance of very
large firms with more than 1000 employees, that account for 25% of aggregate employment.

A central reason why our model successfully replicates the firm-size distribution is that it provides
a good fit for the empirically observed exit hazards. In the left panel of Figure 8 we depict the exit
rate by age from the micro-data in the LBD for the 1980 cohort of firms.21 Our model is remarkably

19In Figure A-5 in the Appendix we show the joint density of markups and efficiency at the product level, illustrating
the positive correlation between markups and efficiency induced by survival and own-innovation.

20For replicability we chose size bins that are also available in the publicly available data from the BDS.
21To construct exit rates by age, we estimate a non-parametric Kaplan-Meier survival function by age for firms in the

LBD. We select the cohort of firms born between 1980 and 1990, and follow them until 2015. We then take the exit rates to
be the increments of the estimated survival functions. Each estimate is essentially the fraction of the sample that exits at
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Figure 7: Size Distribution in Model and Data

(a) Employment Size Distribution
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(b) Firm Counts in Size Bins
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Notes: Panel (a) of this figure plots the employment shares by firm size in the calibrated model (blue bars) and the data
(orange bars). Panel (b) shows the shares of the firm counts in model and data. The data is from the BDS release of 1980.

successful in replicating theses exit rates, despite the fact that we do not target them in the estimation.
In our theory, exit rates are declining in age because older firms have more product lines and owning
more products makes it progressively less likely that they will all be destroyed within a particular
year.22

In the left panel we depict the exit rate for different size categories. Empirically, these exit rates are
declining. Our model implies that this exit rate is initially declining but essentially independent
of size for firms with more than 10 employees. The reason why our model has this counterfactual
prediction is that (in our calibration) the thick tail of the employment distribution is driven by the
distribution of product quality q and not the extensive margin of product creation. Hence, large
firms are firms with a few superstar products, not those with many products. And because creative
destruction is independent of product quality, such firms are as likely to exit as other firms. However,
because - as seen in Figure 7 - the mass of large firms is relatively small, this prediction does not
interfere greatly with our models’ ability to provide a good fit to the firm size distribution. In Section
A-2.6 of the Appendix, we extend our model to allow for type heterogeneity, whereby some young
firms (sometimes flamboyantly described as “rockets” or “gazelles”, see Pugsley et al. (2019)) grow
at a faster rate for a time through product expansion. This allows a subset of firms to become large
by adding a large number of products, an outcome which is unlikely in the baseline model. This
extension improves the model’s fit along this dimension substantially, since some large firms have
many products and are thus unlikely to exit, but changes little else in the theoretical analysis.

age a (though the estimator accounts for the truncation from ceasing to observe firms after 2015).
22Data on the age distribution in the target year of our calibration is unavailable both in the public BDS and the admin-

istrative LBD, since the Census only begins tracking age for new establishments in 1978 (the first year the data is available).
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Figure 8: Firm Exit Rates: Model and Data

(a) Exit Rates By Age

0
2

4
6

8
10

12
14

16
 L

if
cy

cl
e 

Ex
it

 R
at

e(
%

)

0 2 4 6 8 10 12 14 16
 Age

Calibrated Model
Data

(b) Exit Rates By Size

0

5

10

15

Ex
it

 R
at

e(
%

)

1 to 4 5 to 9 10 to 19 20 to 99 100 to 499 500 to 999 1k-2,499
Number of Employees

Calibrated Model
Data in 1980

Note: This figure presents a comparison of lifecycle exit rates between model and data. The exit rates in the data are taken
from the increments in a Kaplan-Meier survival function estimated on all firms in the LBD born between 1980 and 1990.
The model exit rates come from simulating a panel of 106 firms and calculating the fraction of the panel that exit at yearly
frequencies. Age of a on the horizontal axis indicates that the firm exited between age a− 1 and age a.

5 The Aggregate Impact of Falling Population Growth

We now use our calibrated model to quantify the effects the implications of the observed and pro-
jected decline in labor force growth shown in Figure 5. To do so, we start with the calibrated BGP
in 1980 and then feed the path displayed in Figure 5 into the model. In the context of our theory,
we assume that all agents have rational expectations about this path. All other parameters are held
constant.

We focus both on the positive and normative aspects of our theory. On the positive side we focus
on changes in the process of firm-dynamics, in particular the entry rate, average firm size, measures
of concentration, the distribution of markups and firms’ lifecycle growth. On the normative side we
quantify the effect of the observed population growth decline on the economy-wide growth gy, the
static increase in the variety intensity Nt and overall welfare.

5.1 Declining Population Growth and Changing Firm Dynamics

We start by considering the impact on firm dynamics. We focus first on the entry rate and average
firm size. In Figure 9 we plot both the data and the implications of our theory.

Consider first the data, shown in green. The entry rate (shown in the left panel) declined markedly
in the last 30 years from around 12% in the 1980s to around 8% in the mid 2000s. Note that this
series of the entry rate tracks the evolution of population growth shown in Figure 5 very closely, and
indeed the contemporaneous correlation is 0.74.23 At the same time, average firm size (shown in the

23Karahan et al. (2016) and Hathaway and Litan (2014) study this link directly in the geographic cross-section, showing
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Figure 9: Declining Population Growth and Changing Firm Dynamics

(a) Entry Rate
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Note: The figure displays the dynamic response of the entry rate (left panel) and average firm size (right panel) to the path
of population growth shown in Figure 5.

right panel) rose from 20 to 23 employees, i.e. increased by around 15%. In blue, we superimpose
the predictions of our theory. Recall that we used both the entry rate and average size in 1980 as a
calibration target and hence match these numbers by construction. The subsequent fall in the entry
rate and the rise in average size are then the sole consequence of the observed and projected decline
in population growth.

Figure 9 shows that the decline in population growth goes a long way to explain the observed
changes in the entry rate and average size. For the entry rate, our model matches the US experi-
ence almost perfectly. For average size, our model also predicts an increase in average employment.
However, our model implies a somewhat slower increase compared to what is observed in the data,
and that the long-run increase will take many decades to settle at a higher value once labor force
growth stabilizes. The increase in concentration is also similar to what is observed in the data, with
the employment share of large firms (defined by the BDS to be 10,000 employees or more) increasing
by 1% by 2015, roughly in line with the data (see Table A-1).

In Figure 9 we only display the implications of our theory until 2070. Given the population growth
path shown in Figure 5, our model has not reached a new BGP at this point. Hence, we also plot
the long-run implications for the entry rate and average size as dashed line. The entry rate adjusts
relatively quickly and is already quite close to its long-run BGP value by 2070. By contrast, our model
predicts that average size has some way left to run due to the slow-moving firm size distribution and
in the long-run will increase substantially.

As highlighted in Section 2.5, average size is increasing both because of a shift in age distribution to-
wards older firms and because lower population growth increases firm size conditional age. Quanti-

that states with slower labor force growth, as predicted by lagged birth rates in previous decades, see lower rates of firm
entry.

35



Figure 10: Declining Population Growth and Rising Market Power

(a) Average Markup

1.
26

2
1.

26
4

1.
26

6
1.

26
8

1.
27

1.
27

2
 A

v
e
ra

g
e
 m

a
rk

u
p

1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070
 Year

Average markup

Average markup BGP

(b) Long-run Distribution of Markups
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Note: The left panel shows the transition path of the average product markup as labor force growth changes according to
the path in Figure 5. The right panel shows the markup distribution in the BGP before and after the transition.

tatively, however, much of the increase depicted in Figure 9 comes from shifts in the age distribution.
In Figure A-6 in the Appendix we show the change in our targeted life-cycle moments of exit by age
and sales growth by age. These objects do change as population growth declines, but only modestly.
This dominant role of the age distribution is consistent with the data, where size or exit rates by age
also changed little (see Karahan et al. (2016) and Hopenhayn et al. (2018)).

In Figure 10 we report the implied changes in product-level markups. We display both the evolution
of the cost-weighted average markup (left panel) and the change in the distribution of markups in the
BGP (right panel). As implied by our theoretical results, the decline in population growth increases
markups in a first-order stochastic dominance sense. Quantitatively, the increase in market power
is modest: the average product markup increases by about 1%. The markup distribution in the
right panel highlights where this increase stems from. Declining population growth lowers creative
destruction and hence increases markups among products that have a competitor. By contrast, the
markup for products without a competitor is - by construction - σ/ (σ− 1) and hence independent
of η. Moreover, the share of non-competitive products is given by 1− α and hence also independent
of η.

As for average firm size, our model implies that the increase in average markups shown in Figure
10 occurs mostly across firms and is a reflection of the fact that firms become older. Within firms,
products tend to become older since products are destroyed less frequently. On its own, this would
tend to raise average markups. However, firms also tend to accumulate more products, which are on
average younger and hence have lower markups (see Figure A-7). Quantitatively, these two forces
almost exactly offset one another, so that the rise in markups reflects compositional changes whereby
large and old firms with high markups increase their market share. This pattern is qualitatively
consistent with the findings reported in Kehrig and Vincent (2017) and Autor et al. (2017).
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Table 2: Population Growth and Firm-level Moments

Avg. Firm Size Entry Rate Avg. Markup Large Emp Share Small Emp Share
Emp. per Firm % % >10000 Emp, % <20 Emp, %

Calibrated Baseline 20.04 11.60 26.4 25.6 37.8%
1.76% Decline in η 40.91 5.42 27.5 27.1 37.6%

Note: The table reports several firm level moments computed in the model. The first row refers to the BGP of the calibrated
model. The second row is the counterfactual BGP where we reduce population growth by 1.76 to 0.24%. For ease of
comparison we normalize Nt/Lt to 1 in the calibrated baseline.

Figure 11: Declining Population Growth and Income per Capita
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Note: The figure displays the dynamic response of the aggregate growth rate (left panel) and the variety intensity Nt =
Nt/Ltto the path of population growth shown in Figure 5.

5.2 Declining Population Growth, Aggregate Growth and Welfare

We now turn to the normative implications of the decline in population growth. In Figure 11 we
depict the growth rate of income per capita (left panel) and the change in the variety intensity Nt

(right panel). As in Figure 9 above we trace out the model’s implication until 2070 and indicate the
long-run levels of the respective variables in the new BGP as dashed lines.

Interestingly, the effect of population growth on output growth is not monotone. On impact, a pop-
ulation growth decline increases output growth for about one decade. This is due to an increase in
the variety intensity Nt, which is a source of variety gains. These variety gains at the aggregate level
coexist with rising average firm size because firms produce multiple products and the number of
products per firm increases. Hence, rising concentration does not necessarily go hand in hand with
falling variety. The mass of products available to consumers actually goes up in response to falling
population growth. Because the increase in variety is only a transitory phenomenon, eventually, out-
put growth declines and stabilizes at a lower level. In the long-run, declining population growth will
reduce the growth rate of income per capita, as in most models of semi-endogenous growth (Jones,
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Table 3: Population Growth and Economic Growth

Welfare Growth Production labor Variety intensity
gy Variety (Nt) Efficiency (Qt) LP

t /Lt Nt/Lt
Calibrated Baseline 100% 0.02 0.007 0.013 0.86 1
1.76% Decline in η 62% 0.016 0.001 0.015 0.88 1.21

Note: The table reports the aggregate growth rate (gy), the growth stemming from variety gains
(

1
σ−1 gN

)
and efficiency

growth
(

gQ), the share of workers employed in researcher
(

LP/L
)

and the variety intensity (Nt/Lt). The first row refers
to the calibrated model. The second row is the counterfactual where we reduce population growth by 1.76 to 0.24%. For
ease of comparison we normalize Nt/Lt to 1 in the calibrated baseline.

2021). In our calibration, the long-run growth rate declines from around 2% to 1.6%.

In Table 3 we report the welfare implications of declining population growth and use the model to
decompose the long-run growth rate into its different components. We measure welfare in consump-
tion equivalent terms, that is by how much would we need to change the level of consumption per
capita in the old BGP to achieve the same level of welfare for a member of the representative house-
hold. Welfare is 38% lower in the new BGP when population growth decreases from 2% to 0.24%.
Around three quarters of this effect is due to slower growth in income, while the remainder comes
from an an increase in misallocationMt.

The remainder of the table reports the aggregate growth rate and its composition between variety
gains and efficiency growth. A decline in population growth reduces the long-run equilibrium
growth rate from 2% to 1.6%. Furthermore, this decline stems almost entirely from falling variety
growth. In fact, efficiency growth rises slightly in response to the decline in population growth. The
reason is that we estimate the efficiency of production of new varieties ω to be relatively low. The
declining rate of variety creation therefore impacts average efficiency growth positively.

In the remaining two columns we also report the equilibrium allocation of labor and the long-run
variety intensity, which is constant along a BGP. Note that falling population growth increases the
level of productivity by increasing the variety intensity of the economy.

6 Conclusion

Most countries have experienced declining rates of fertility and a slowdown in population growth
in recent decades. There is little reason to think that this trend is going to reverse any time soon; a
world of low and falling population growth looks like it is here to stay.

In this paper we have shown that this trend is likely to have important implications for both the
process of firm dynamics and for aggregate productivity. We proposed a rich firm-based model of
semi-endogenous growth, that features creative destruction, variety growth, productivity growth by
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incumbent firm and heterogeneous markups, but nevertheless lends itself to an analytical character-
ization of the effects of population growth. We derived two main results: First, declining population
growth reduces creative destruction and entry and increases average firm size and market concen-
tration. Second, lower population growth reduces economic growth in the long-run, but has positive
effects on productivity in the short-run.

At the heart of our mechanism is a simple insight: along a balanced growth path, the number of
available products has to grow at the rate of population growth. In equilibrium, this leads to lower
innovative activity by entering firms, lower creative destruction and higher concentration and - even-
tually - lower growth. At the same time, corporate valuations increase because future profits are
discounted at a lower rate. Free entry therefore requires an increase in competition, which is accom-
modated by a rise in the economy’s number of products per capita and hence average productivity.
The short-fun welfare consequences of lower population growth are a priori ambiguous.

To quantify the importance of falling population growth, we calibrate our model to firm-level data
of the US. The model, despite being parsimoniously parametrized, matches a variety of salient firm-
level moments, and provides a laboratory to understand the quantitive impact changes in demo-
graphics. . We draw three main conclusions. First, the population growth channel can account for a
large share of the change in entry rates and firm size since the 1980s. Hence, changes in population
growth are likely to be an important contributor for the decline in dynamism in the US and the rest
of the developed world. Second, even though the decline in population growth is predicted to lower
economic growth in the long-run, economic growth remains higher for almost two decades. Finally,
even though lower population growth increases market power and markups, we estimate this effect
to be quantitatively small. Hence, the rise in markups and the fall in the labor share are unlikely to
be driven by falling fertility, but rather due to technological or institutional changes.
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Appendix for “Population Growth and Firm Dynamics”

[NOT FOR PUBLICATION]

A-1 Theory

A-1.1 Characterization of the Baseline Model

This section contains the derivation of all results for the baseline model characterized in Section 2.
Note that the household side is characterized by usual Euler equation ċt

ct
= rt − ρ and the transver-

sality condition
lim
t→∞

[
e−
∫ t

0 (rs−η)dsat

]
= 0,

where at denotes per-capita assets of the representative household. Our assumption ρ > η implies
that the transversality condition is satisfied along a BGP.

A-1.1.1 Static Equilibrium

Consider first the static equilibrium allocations, in particular (2). Letting µi denote the markup in
product i, the equilibrium wage is given by

wt =

(∫ Nt

0
µ1−σ

i qσ−1
i di

) 1
σ−1

= N
1

σ−1
t

(∫
µ1−σqσ−1dFt (q, µ)

) 1
σ−1

. (A-1)

Similarly, aggregate output Yt is given by

Yt = N
1

σ−1
t

(∫
µ1−σqσ−1dFt (q, µ)

) σ
σ−1

∫
µ−σqσ−1dFt (q, µ)

LP
t . (A-2)

Defining Qt =
(∫

qσ−1dFt (q)
) 1

σ−1 =
(
E
[
qσ−1]) 1

σ−1 we can write (A-2) as

Yt = N
1

σ−1
t QtMtLP

t where Mt =

(∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
) σ

σ−1

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)
. (A-3)

Similarly,

wtLP = ΛtYt where Λt =

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
. (A-4)

For the case of µi = µ,Mt and Λt reduce toMt = 1 and Λt = 1/µ as required in (2).
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Product-level sales and profits are given by

pyi = µ1−σ
i

(
qi

Qt

)σ−1 ( 1
MtΛt

)σ−1 Yt

Nt
(A-5)

πi =

(
1− 1

µi

)
× µ1−σ

i

(
qi

Qt

)σ−1 ( 1
MtΛt

)σ−1 Yt

Nt
. (A-6)

If markups are constant, (A-5) reduces to

pyi =

(
qi

Qt

)σ−1 Yt

Nt
and πi =

(
µ− 1

µ

)(
qi

Qt

)σ−1 Yt

Nt
.

A-1.1.2 Aggregate Growth Rate

Given τt and νt = gNt + δ, the rate of quality growth is given by

gQ =
Q̇t

Qt
=

(
λσ−1 − 1

σ− 1

)
τt +

(
ωσ−1 − 1

)

σ− 1
νt + I. (A-7)

The growth rate of labor productivity is given by

gLP
t =

d
dt

ln
(

QtN
1

σ−1
t

)
= gQ

t +
1

σ− 1
gN

t

= I +
(

λσ−1 − 1
σ− 1

)
τt +

ωσ−1

σ− 1
νt −

1
σ− 1

δ. (A-8)

A-1.1.3 Proof of Proposition 1

We first derive the value function stated in Proposition 1. Upon rewriting the innovation value
Ξt ([qi]) as

Ξt ([qi]) = n×max
x

{
x
(

α
∫

Vt ([qi] , λq) dFt (q) + (1− α)
∫

Vt ([qi] , ωQt) dΓ (ω)−Vt ([qi])

)
− 1

ϕx
xζ wt

}
,

it is immediate that the value function is additive, i.e. Vt ([qi]) = ∑n
i=1 Vt (qi). The HJB equation associated

with Vt (qi) is given by

rtVt (q)− V̇t (q) = πt (q) + I
∂Vt (q)

∂q
q− (τ + δ)Vt (q) + Ξt, (A-9)

where Ξt = maxx

{
x
(

αVCD
t +(1− α)VNV

t

)
− 1

ϕx
xζwt

}
with VCD

t =
∫

Vt (λq) dFt (q) and VNV
t =

∫
Vt (ωQt) dΓ (ω).

Suppose the value function takes the following forms

Vt (q) = qσ−1Ut + Mt, (A-10)
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where Mt and Ut grow at some rate gM and gU respectively. Then

I
∂Vt (q)

∂q
q = I (σ− 1) qσ−1Ut.

Using that

πt (q) = (µ− 1) µ−σqσ−1 Yt

wσ−1
t

= (µ− 1)
(

q
Qt

)σ−1 LP
t

Nt
wt

(A-9) can be written as

(rt + τ + δ− gU) qσ−1Ut +(r + τ + δ− gM) Mt =

(
(µ− 1)

(
1

Qt

)σ−1 LP
t

Nt
wt + I (σ− 1)Ut

)
qσ−1 +Ξt.

(A-11)
It is easy to show that along a BGP this implies that

Ut =
(µ− 1)

(
1

Qt

)σ−1 LP
t

Nt
wt

ρ + τ + δ + (σ− 1) (gQ − I)

Mt =
Ξt

ρ + τ + δ
,

as Ξt ∝ wt. To see this note that

Ξt = max
x

{
x
(

αVCD
t + (1− α)VNV

t

)
− 1

ϕx
xζwt

}
=

ζ − 1
ϕx

xζwt,

where

x =

(
ϕx

ζ

) 1
ζ−1
(

α
VCD

t
wt

+ (1− α)
VNV

t
wt

) 1
ζ−1

. (A-12)

The value function is therefore given by

Vt (q) =
(µ− 1)

(
q

Qt

)σ−1 LP
t

Nt
wt

ρ + τ + δ + (σ− 1) (gQ − I)
+

ζ−1
ϕx

xζwt

ρ + τ + δ

=
πt (q)

ρ + τ + δ + (σ− 1) (gQ − I)
+

ζ−1
ϕx

xζwt

ρ + τ + δ
.

Note also that

VCD
t =

∫
Vt (λq) dFt (q) = Vt (λQt) and VNV

t =
∫

Vt (ωQt) dΓ (ω) = Vt (ωQt) .

This concludes the proof of Proposition 1.
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A-1.1.4 Characterization of Equilibrium

In this section we characterize the full equilibrium of our economy. We maintain the assumption that
the free entry condition is binding along the equilibrium path. The equilibrium is characterized by
the following conditions:

1. The evolution of aggregate productivity is given by (see (A-7))

gQ =
Q̇t

Qt
=

λσ−1 − 1
σ− 1

τt +
ωσ−1 − 1

σ− 1
νt + I

where νt = gNt + δ

2. The rate of creative destruction is linked to the growth rate of Nt according to

τ =
α

1− α
νt, (A-13)

where νt = (1− α) (zt + x). Note that x is constant because of the binding free entry condition.

3. Labor market clearing requires Lt = LPt + LRt, where

LRt = Nt

(
1

ϕE
zt +

1
ϕx

xζ

)
= Nt

1
ϕE

(
zt +

1
ζ

x
)

Hence,
Lt

Nt
=

LPt

Nt
+

1
ϕE

(
zt +

1
ζ

x
)

(A-14)

4. The Euler equation is given by
r = ρ + gc (A-15)

where gc is the growth rate of per capita consumption. Wages and output are given by Yt =

N
1

σ−1
t QtLP

t and wt =
1
µ Yt/LP

t . Note that market clearing requires Ct = Yt. Hence, the growth
rate of per capita consumption is given by

gc = gY − η = gw + gLP − η, (A-16)

where gw = 1
σ−1 gN + gQ (see (A-8)). The Euler equation in (A-15) therefore implies that the real

interest rate is given by

r = ρ + gw + gLP − η.

5. To derive the implications for the free entry condition, note that (A-11) implies that

1
ϕE

= qσ−1ut + mt
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where

mt =

ζ−1
ϕx

xζ

ρ + gLP − η + τ + δ− gm

ut =
(µ− 1) LP

t
Nt

ρ + gLP − η + τ + δ− gu + (σ− 1) (gQ − I)
.

Now define

`P
t ≡ LP

t
Lt

and Nt =
Nt

Lt
.

Also note that τ = α (z + x) = α
1−α νt. Then we can write the free entry condition as

1
ϕE

=
qσ−1 (µ− 1)

ρ + g` + δ− gu +
(

qσ−1

1−α − 1
)

νt

`P
t

Nt
+

ζ−1
ϕx

xζ

ρ + g` + α
1−α νt + δ− gm

.

Hence, the equilibrium is characterized by a path
{
`P

t , Nt
}

t that satisfies the the free entry condition
and labor market clearing

1
ϕE

=
qσ−1 (µ− 1)

ρ + g` + δ− gu +
(

qσ−1

1−α − 1
)

νt

`P
t

Nt
+

ζ−1
ϕx

xζ

ρ + g` + α
1−α νt + δ− gm

(A-17)

1− `P
t

Nt
=

1
ϕE

(
νt

1− α
− ζ − 1

ζ
x
)

, (A-18)

where gu and gm are the growth rates of ut and mt given in

mt =

ζ−1
ϕx

xζ

ρ + g` + α
1−α νt + δ− gm

ut =
(µ− 1) `P

t /Nt

ρ + g` + δ− gu +
(

qσ−1

1−α − 1
)

νt

.

For a given initial condition N0 and the terminal condition that `P
t → `

P
and mt → m and ut → u one can

solve for the dynamic path
{
`P

t , Nt
}

t.

A-1.1.5 Balanced Growth Path

Along a BGP, income per capita grows at a constant rate. (A-16) implies that

gc = gw + gLP − η =

(
qσ−1 − α

σ− 1

)
νt

1− α
− 1

σ− 1
δ + I + g`P .
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Along the BGP it also has to be the case that `P = LP
t /Lt is constant. Hence, gN is constant along a

BGP. (A-18) therefore implies that Nt has to be constant, i.e.

gN = ν− δ = η.

Hence, along the BGP the mass of products Nt grows at the same rate as the population. With `P and
N constant, gu = gm = 0 along the BGP. Hence,

(
N , `P) are given by

1
ϕE

=
qσ−1 (µ− 1)

ρ +
(

qσ−1

1−α − 1
)

η + qσ−1

1−α δ

`P
t

Nt
+

ζ−1
ϕx

xζ

ρ + αη+δ
1−α

(A-19)

1− `P

N
=

1
ϕE

(
η + δ

1− α
− ζ − 1

ζ
x
)

. (A-20)

To characterize the solution, note that the free entry condition (A-19) defines a relationship N FE (`P) which

is increasing and satisfies lim`P→0 N FE (`P) = 0 and N FE (1) =
(

1
ϕE
−

ζ−1
ϕx xζ

ρ+
αη+δ
1−α

)−1
(µ−1)qσ−1

ρ+

(
qσ−1
1−α −1

)
η+

qσ−1
1−α δ

. Simi-

larly, the resource constraint (A-20) defines a schedule N RC (`P), which is decreasing and satisfies N RC (0) =
ϕE

η+δ
1−α−

ζ−1
ζ x

and lim`P→1 N FE (`P) = 0. Hence, these equations have a unique solution for N > 0 and `P ∈

(0, 1). Equation (A-20) also implies that N RC (`P) is decreasing in η holding `P constant. It can also be shown
that N FE (`P) is decreasing in η holding `P constant if α and ω are sufficiently large. A sufficient condition

for that to be the case is qσ−1

1−α > 1. If qσ−1

1−α > 1, future profits are discounted at a higher rate if η increases. This
implies that - holding `P constant - N FE (`P) shifts down. In Figure 2 in the main text we depict these loci for

the case of qσ−1

1−α > 1, which is satisfied at our estimated parameters.

A-1.1.6 Population Growth and Firm Dynamics (Section 2.5)

In this section we derive the relationship between population growth η and the different moments of
the process of firm dynamics. In particular, we derive

1. the survival function S (a) in (19),

2. the average number of products by age n (a) in (20),

3. the pareto tail of the product distribution ζn in (21).

Firm survival S (a) and the average number of products n (a) Let pn (a) be the probability that a
firm has n products at age a. This evolves according to

ṗn (a) = (n− 1) xpn−1 (a) + (n + 1) (τ + δ) pn+1 (a)− n (x + τ + δ) pn (a) . (A-21)
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Because exit is an absorbing state, ṗ0 (a) = (τ + δ) p1 (a) . The solution to this set of differential
equations is (see Klette and Kortum (2004))

p0 (a) =
τ + δ

x
γ (a) (A-22)

p1 (a) = (1− p0 (a)) (1− γ (a))

pn (a) = pn−1 (a) γ (a) (A-23)

where

γ (a) =
x
(

1− e−(τ+δ−x)a
)

τ + δ− x× e−(τ+δ−x)a . (A-24)

Given that 1−α
α τ = δ + η, the net rate of accumulation ψ is given by

ψ ≡ x− τ − δ = x− α

1− α
(η + δ)− δ (A-25)

= x− αη + δ

1− α
.

Hence, ψ is decreasing in η. Also note that ψ = η − z.

To make the firm-size distribution stationary, we need that η > x− τ− δ. Using equation (A-25), this
implies that z > 0, i.e. stationary requires the entry flow to be positive. From this solution for pn (a)
we can calculate both the survival rate and the cross-sectional age distribution.

The survival function S (a). Let S (a) denote share of firms that survive until age a. Then

S (a) = 1− p0 (a) =
ψeψa

ψ− x (1− eψa)
, (A-26)

which is equation (19) in the main text. The average age is given by (again see Klette and Kortum
(2004))

E [Age] =
∫ ∞

0
(1− p0 (a)) da =

ln
(

τ+δ
τ+δ−x

)

x
=

ln
(

τ+δ
τ+δ−x

)

x

The expected number of products by age n (a). To derive n (a) in (20), let pn (a) denote the share of
firms of age a with n production conditional on survival. Then,

pn (a) =
pn (a)

1− p0 (a)
for n ≥ 1.

Using pn (a) in (A-22)-(A-23), this implies that

pn (a) = γ (a)n−1 (1− γ (a)) . (A-27)

Then,
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n (a) = E
[

N| A f = a
]

=
∞

∑
n=1

npn (a) = (1− γ (a))
∞

∑
n=1

nγ (a)n−1 =
1

1− γ (a)
. (A-28)

Using (A-24), this implies n (a) = 1− x
ψ

(
1− eψa), which is the expression in (20).

The pareto tail of the product distribution $n. To derive the tail of the product distribution, let
ωt (n) be the mass of firms with n products at time t. Consider n ≥ 2. Then

ω̇t (n) = ωt (n− 1) (n− 1) x︸ ︷︷ ︸
From n−1 ton products

+ωt (n + 1) (n + 1) (τ + δ)︸ ︷︷ ︸
From n+1 ton products

− ωt (n) n (τ + x + δ)︸ ︷︷ ︸
From n to n−1 or n+1 products

.

For n = 1 we have
ω̇t (1) = Zt + ωt (2) 2 (τ + δ)−ωt (1) (τ + x + δ) .

Along the BGP the mass of firms grows at rate η. Intuitively: the distribution of firms across products
is stationary and the number of products Nt is increasing at rate η. Hence, the mass of firms is
increasing at rate η. Hence, along the BGP we have

ω̇t (n) = ηωt (n) .

Denote ν (n) = ωt(n)
Nt

and z = Zt
Nt

. Along the BGP, {ν (n)}∞
n=1 is determined by

ν (2) =
ν (1) (τ + x + δ + η)− z

2 (τ + δ)
(A-29)

and
ν (n + 1) =

ν (n) n (τ + x + δ) + ν (n) η − ν (n− 1) (n− 1) x
(n + 1) (τ + δ)

for n ≥ 2 (A-30)

Given ν (1), these equations fully determine [ν (n)]n≥2 as a function of (x, z, τ). We can then pin
down ν (1) from the consistency condition that

∞

∑
n=1

ν (n) n =
∞

∑
n=1

ωt (n)
Nt

n =
∑∞

n=1 ωt (n) n
Nt

= 1. (A-31)

Hence, equations (A-29), (A-30) and (A-31) fully determine the firm-size distribution [ν (n)]n≥1.

In particular, the average number of products per firm are given by n = 1
∑∞

n=1 νt(n)
.

Importantly, the distribution described by (A-29), (A-30) and (A-31) has a pareto tail as long as

η > x− τ − δ > 0.

In particular, applying Proposition 3 in Luttmer (2011), the tail index of the product distribution is
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given by24

$n =
η

x− τ − δ
.

Using that τ = α
1−α (η + δ) we get that

$n =
(1− α) η

x (1− α)− δ− αη
=

η

η − z
,

where the second equality uses that z = η+δ
1−α − x. Also

∂$n

∂η
= (1− α)

x (1− α)− δ

(x (1− α)− δ− αη)2 > 0.

Note that the requirement that x − τ − δ > 0 ensures that x (1− α)− δ > 0.25 Hence, a decline in
population growth reduces the Pareto tail towards unity and increases concentration.

The pareto tail of the efficiency distribution $q. In this section we derive the marginal distribution
of efficiency q. In particular we derive (22), which we use to calibrate ω.

Define q̂t as the relative productivity of a product

q̂t ≡ ln (qt/Qt)
σ−1 . (A-32)

The drift of q̂t (conditional on survival) is given by

∂q̂t

∂t
= (σ− 1) I − (σ− 1) d ln Qt = −

(
α
(
λσ−1 − 1

)

1− α
+ ωσ−1 − 1

)
(η + δ) , (A-33)

where the second equality uses (15).

Let Ft (q̂) denote the share of products at time t with q̂i ≤ q̂. This cdf evolves according to the

24To map the formulation of Luttmer (2011) to our model, note that he expresses the law of motion for the number of
products as

DM1 = λ2M2 + νN − (µ + λ) M1

and
DMn = µ (n− 1) Mn−1 + λ (n + 1) Mn+1 − (µ + λ) nMn.

This is the same law of motion as ours once we chose ν = z, µ = x and λ = τ + δ. He shows that the pareto tail is given by
η

µ−λ or (using our notation) η
x−τ−δ .

25Using that τ = α
1−α (η + δ), it follows that

x− τ − δ =
1

1− α
(x (1− α)− αη − δ) .

Hence, x− τ − δ > 0 implies that x (1− α)− δ > αη > 0.
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differential equation

∂Ft (q̂)
∂t

= − ∂Ft (q̂)
∂q̂

∂q̂t

∂t︸ ︷︷ ︸
Drift of q̂

+ τ
(

Ft(q̂− λ̂)− Ft (q̂)
)

︸ ︷︷ ︸
Creative destruction

− (δ + η)

(
Ft (q̂)− Γ

(
exp

(
q̂

σ− 1

)))

︸ ︷︷ ︸
Product loss vs new product creation

,

where λ̂ = ln λσ−1. In the steady state, ∂Ft(q̂)
∂t = 0 so that

dF (q̂)
dq

∂q̂t

∂t
= τ

(
Ft(q̂− λ̂)− Ft (q̂)

)
− (δ + η)

(
Ft (q̂)− Γ

(
exp

(
q̂

σ− 1

)))
. (A-34)

Guess that F is exponential in the tail with index $q, that is

lim
q̂→∞

e$q q̂(1− F(q̂)) = a

for some a and $q. If we assume that Γ has a thin tail26 then as q̂→ ∞, (A-34) implies that

lim
q̂→∞

(
ae−$q q̂$q

∂q̂t

∂t

)
= lim

q̂→∞

[
(δ + η + τ)− τe$qλ̂

]
ae−$q q̂ − (δ + η) .

Hence, the tail coefficient $q solves the equation

−$q
∂q̂t

∂t
= −(δ + η + τ) + τe$qλ̂.

Substituting for (A-33) and noting that τ = α
1−α (η + δ) yields

$q

(
λσ−1 +

1− α

α
ωσ−1 − 1

α

)
= −1

α
+ e$qλ̂. (A-35)

Using that λ̂ = ln λσ−1, (A-35) yields

$q

(
αλσ−1 + (1− α)ωσ−1 − 1

)
= −1 + αλ$q(σ−1).

This is equation (22) in the main text. For the special case where creative destruction does not lead to
any productivity advancements, i.e. λ = 1, the tail coefficient is given by

$q =
1

1−ωσ−1 .

26Formally, assume that for any κ, we have lim
q̂→∞

eκq̂(1− Γ
(

exp
(

q̂
σ−1

))
) = 0.
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A-1.2 Diminishing returns to research in entry and product creation

Now we suppose that there are diminishing returns to research labor as the general state of technol-
ogy improves, as suggested by the evidence in Bloom et al. (2020). In particular, suppose that the
entry cost in units of labor is 1

ϕE
Qς

t with ς > 0. Moreover, suppose that the innovation cost function
for expanding the portfolio of products the firm has is

cX
t (x, n) =

1
ϕx

xζnQς
t

In this case, the HJB for a single product can still be written

rtVt (q)− V̇t (q) = πt (q) + I
∂Vt (q)

∂q
q− τVt (q) + Ξt,

where

Ξt = max
x

{
x
(

αVCD
t + (1− α)VNV

t

)
− 1

ϕx
xζwtQ

ς
t

}

And the solution is given by

Vt(q) = qσ−1Ut + Mt

Ut =
(µ− 1)

(
1

Qt

)σ−1 LP
t

Nt
wt

(ρ + τ + (σ− 1)(gQ − I)− glP)

Mt =
(ζ − 1)xQς

t wt

(ρ + τ − ςgQ)

Free entry then requires that

1
ϕE

wtQ
ς
t = q̄

(µ− 1) LP
t

Nt
wt

(ρ + τ + (σ− 1)(gQ − I)− glP)
+

(ζ − 1)xQς
t wt

(ρ + τ − ςgQ)

So that
1

ϕE
=

(µ− 1) LP
t

Nt
Q−ς

t

(ρ + τ + (σ− 1)(gQ − I)− glP)
+

(ζ − 1)x
(ρ + τ − ςgQ)

(A-36)

For this to hold on a BGP, it must be that
glP = ςgQ

So that the number of workers per product is rising at a constant rate on the BGP.

η = gN + ςgQ
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In this model specification it is still true that

gQ
t =

Q̇t

Qt
= I +

λσ−1 − 1
σ− 1

τt +
ωσ−1 − 1

σ− 1
gN

t

gN
t =

Ṅt

Nt
= (1− α) (xt + zt) =

1− α

α
τt

so we can find that the rate of creative destruction is

τ =
η − ςI

1−α
α + ς

(
λσ−1−1

σ−1 + ωσ−1−1
σ−1

1−α
α

)

To fully characterize the equilibrium, the research share of the economy again comes from the labor
market clearing condition, which now reads

Lt = LP
t + LR

t = LP
t + Qς

t Nt

(
1

ϕE
zt +

1
ϕx

xζ

)
.

So that
1
`P

t
= 1 +

Qς
t Nt

LP
t

(
1

ϕE
z +

1
ϕx

xζ

)

Given that the ratio Qς
t Nt

LP
t

is fully determined from free entry and constant on the BGP (see (A-36)),

and z and x are constant on the BGP, the share of production labor `P
t is constant. The main difference

between the baseline model and this modification is that average firm size should be increasing on
the BGP at a constant rate. Higher profits per firm are needed to offset the constantly increasing entry
cost.

A-1.3 Model Extensions (Section 2.6)

A-1.3.1 Endogenizing the Direction of Innovation α.

In the baseline model in we assume that innovation was undirected, i.e. the share of product inno-
vation resulting in creative destruction (rather than new varieties) was constant and equal to α. In
this section we show that we can extend our theory to a setting where the direction of innovation is
a choice variable of the firm.

Incumbent Innovation and the Value Function Suppose that the firm can chose the flow of new
varieties xN and creative destruction xCD. The value function is then given by

rtVt (q)− V̇t (q) = πt (q) + I
∂Vt (q)

∂q
q− τtVt (q) + Ξt
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where
Ξt ≡ max

xN

{
xNVN

t −
1

ϕN
xζ

Nwt

}
+ max

xCD

{
xCDVCD

t − 1
ϕCD

xζ
CDwt

}
, (A-37)

where ϕCD and ϕN parametrize the efficiency of creative destruction and new variety creation and
VN

t and VN
t denote the value of creative destruction and new variety creation respectively. Along the

BGP, the solution of Vt (q) is given by

Vt (q) =
(µ− 1)

ρ + (gN − η) + (gQ − I) (σ− 1) + τ

(
q

Qt

)σ−1 LP
t

Nt
wt +

Ξt

r + τ − gΞt

.

Optimal Innovation and the Value of Innovation The optimal innovation rates associated with
(A-37) are given by

xNV =

(
ϕN

ζ

VNV
t
wt

) 1
ζ−1

and xCD =

(
ϕCD

ζ

VCD
t
wt

) 1
ζ−1

. (A-38)

Note that this implies that the endogenous share of product creation directed to creative destruction
is given by

α̃ =

(
ϕCD

VCD
t
wt

) 1
ζ−1

(
ϕN

VN
t

wt

) 1
ζ−1

+
(

ϕCD
VCD

t
wt

) 1
ζ−1

,

i.e. the relative “bias” of innovation depends on the relative valuations. This also implies that

Ξt =

(
ζ − 1
ϕNV

xζ
NV +

ζ − 1
ϕCD

xζ
CD

)
wt, (A-39)

where xNV and xCD are constant (see below). Hence, the value of product creation grows at rate wt,
i.e.

gΞt = gw = r− ρ.

Similarly, along the BGP we have gN = η. Hence,

Vt (q) =
(µ− 1)

ρ + (gQ − I) (σ− 1) + τ

(
q

Qt

)σ−1 LP
t

Nt
wt +

Ξt

ρ + τ
,

where Ξt is given in (A-39).

To solve for Ξt and xNV and xCD, we need VN
t and VCD

t . As before these are given by

VCD
t =

∫
V (λq) dFt (q) =

(µ− 1) λσ−1

ρ + (gQ − I) (σ− 1) + τ

LP
t

Nt
wt +

Ξt

ρ + τ

=


 (µ− 1) λσ−1

ρ + (gQ − I) (σ− 1) + τ

LP
t

Nt
+

ζ−1
ϕNV

xζ
NV + ζ−1

ϕCD
xζ

CD

ρ + τ


wt.
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Similarly, the value of new variety creation is given by

VNV
t = V (ωQt) =


 (µ− 1)ωσ−1

ρ + (gQ − I) (σ− 1) + τ

LP
t

Nt
+

ζ−1
ϕNV

xζ
NV + ζ−1

ϕCD
xζ

CD

ρ + τ


wt (A-40)

Entry We assume the following process of entry. As in the baseline model, the economy has access
to a linear entry technology whereby each worker generates a flow of ϕE new firms. These firms
then have access to the same innovation technology as incumbents to eventually start producing
either a creatively destroyed product or a new variety. In the event that no product is discovered, the
potential firm exits.

Because new firms have - after paying the entry costs 1
ϕE

wt - the same opportunity as incumbents,
their direction of innovation (i.e. new varieties versus creative destruction) is exactly the same as
the one of incumbent firms. Hence, if z new firms are created (per product Nt), the total amount of
creative destruction and new variety creation by entrants is given by zxCD and zxNV respectively. It
also implies that the free entry condition is given by

1
ϕE

wt = Ξt,

where Ξt is the value of innovation given in (A-39). Note that the value of entry is only the flow
value of innovation Ξt, not the present discounted value.

BGP equilibrium The BGP equilibrium in this economy is fully characterized by innovation choices
xNV and xCD, the entry flow z, value functions VNV/wt and VCD/wt, the rate of creative destruction
τ and the mass of production labor per product LP

t /Nt. These objects are determined from the fol-
lowing conditions:

1. Because gN = η along the BGP,

xNV + zxNV = xNV (1 + z) = η. (A-41)

2. Creative destruction τ is given by

τ = xCD + zxCD = xCD (1 + z) (A-42)

3. The first order condition for xNV and xCD are given by (see (A-38))

xN =

(
ϕN

ζ

VN
t

wt

) 1
ζ−1

and xCD =

(
ϕCD

ζ

VCD
t
wt

) 1
ζ−1

. (A-43)
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4. The free entry condition is (see (A-39))

1
ϕE

=
Ξt

wt
=

ζ − 1
ϕNV

xζ
NV +

ζ − 1
ϕCD

xζ
CD.

5. To solve for the value functions VNV/wt and VCD/wt note that

(gQ − I) (σ− 1) + τ =
(

λσ−1 − 1
)

τ +
(

ωσ−1 − 1
)

gN + τ

= λσ−1τ +
(

ωσ−1 − 1
)

η.

Hence, VNV/wt and VCD/wt are given by

VNV
t
wt

=
(µ− 1)ωσ−1

λσ−1τ + (ωσ−1 − 1) η

LP
t

Nt
+

1
ρ + τ

1
ϕE

(A-44)

and
VCD

t
wt

=
(µ− 1) λσ−1

λσ−1τ + (ωσ−1 − 1) η

LP
t

Nt
+

1
ρ + τ

1
ϕE

. (A-45)

These are 7 equations in 7 unknowns (z, xNV , xCD, VCD
t
wt

, VNV
t
wt

, τ, LP
t

Nt
), which fully determine the BGP

equilibrium.

We can simplify this system further and express the BGP equilibrium in terms of xNV and xCD. Using
(A-41) and (A-42) we get that

τ =
xCD

xNV
η.

From (A-43) we get that

xζ
N

ζ − 1
ϕN

=
ζ − 1

ζ

VN
t

wt
xN and xζ

CD
ζ − 1
ϕN

=
ζ − 1

ζ

VCD
t
wt

xCD. (A-46)

Free entry therefore requires that

1
ϕE

=
ζ − 1

ζ

(
VCD

t
wt

xN +
VNV

t
wt

xCD

)
.

Using the expressions for VCD
t
wt

and VNV
t
wt

in (A-44) and (A-45), we can solve for LP
t

Nt
as

(µ− 1)
λσ−1 xCD

xNV
η + (ωσ−1 − 1) η

LP
t

Nt
=

1
ϕE




ζ
ζ−1 − 1

ρ+
xCD
xNV

η
(xN + xCD)

λσ−1xCD + ωσ−1xNV


 . (A-47)
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This implies that VCD
t
wt

and VNV
t
wt

are given by

VCD
t
wt

=
1

ϕE

( ζ
ζ−1 λσ−1

λσ−1xCD + ωσ−1xNV
− 1

ρ + xCD
xNV

η

( (
λσ−1 −ωσ−1) xNV

λσ−1xCD + ωσ−1xNV

))

VNV
t
wt

=
1

ϕE

( ζ
ζ−1 ωσ−1

λσ−1xCD + ωσ−1xNV
− 1

ρ + xCD
xNV

η

( (
ωσ−1 − λσ−1) xCD

λσ−1xCD + ωσ−1xNV

))
.

Hence, (A-46) implies that xNV and xCD are determined from the equations

xζ−1
N

ζϕE

ϕN
=

ζ
ζ−1 ωσ−1

λσ−1xCD + ωσ−1xNV
− 1

ρ + xCD
xNV

η

(
ωσ−1 − λσ−1) xCD

λσ−1xCD + ωσ−1xNV
(A-48)

xζ−1
CD

ζϕE

ϕCD
=

ζ
ζ−1 λσ−1

λσ−1xCD + ωσ−1xNV
− 1

ρ + xCD
xNV

η

(
λσ−1 −ωσ−1) xNV

λσ−1xCD + ωσ−1xNV
. (A-49)

Using that τ = xCD
xNV

η we write (A-48) and (A-49) in terms of xNV and τ. With some algebra we can
solve for xNV explicitly as a function of τ and parameters. In particular, one can show that

xN =

(
ϕN

(ζ − 1) ϕE

)1/ζ
(

1 +
(

τ

η

)ζ ϕN

ϕCD

)−1/ζ

.

Substituting this expression for xNV into (A-48), we arrive at the equation

((
λ

ω

)σ−1

− 1

)
1
η

τ

ρ + τ
=

ζ

(ζ − 1)
ζ−1

ζ

(
ϕE

ϕN

) 1
ζ

(
λ
ω

)σ−1 τ
η −

(
τ
η

)ζ ϕN
ϕCD

(
1 +

(
τ
η

)ζ ϕN
ϕCD

) ζ−1
ζ

. (A-50)

This equation determines τ as a function of parameters. In particular, τ depends directly on η.

A Special Case Consider first a special case of this setup which is exactly isomorphic to our baseline
model where the direction of innovation α is exogenous. Assume that creative destruction and new
variety creation leads to the same quality improvement, i.e.

λ = ω.

This implies that the value of creative destruction and new variety creation is equalized, i.e. VCD
t =

VNV
t = Vt. This in turn directly yields

α =
xCD

xCD + xNV
=

(
ϕCD

ζ
Vt
wt

) 1
ζ−1

(
ϕCD

ζ
Vt
wt

) 1
ζ−1

+
(

ϕNV
ζ

Vt
wt

) 1
ζ−1

=
(ϕCD)

1
ζ−1

(ϕCD)
1

ζ−1 + (ϕNV)
1

ζ−1
.
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Hence, the share of innovation activity directed to creative destruction, α, is indeed endogenous
and simply determined from the relative innovation efficiencies ϕCD and ϕNV . Hence, we can write
xNV = (1− α) x and xCD = αx as in the baseline model. Along the BGP we still have

xNV (1 + z) = (1− α) x (1 + z) = η

Similarly, creative destruction is given by

τ = αx (1 + z) .

Hence, as in the baseline model,
τ =

α

1− α
η,

i.e. lower population growth reduces creative destruction.27

To solve for the level of x, note that free entry requires that

1
ϕE

=
Ξt

wt
=

ζ − 1
ϕNV

xζ
NV +

ζ − 1
ϕCD

xζ
CD

= (ζ − 1)

(
(1− α)ζ

ϕNV
+

αζ

ϕCD

)
xζ .

Hence,

x =




1
ζ − 1

1
ϕE

1(
(1−α)ζ

ϕNV
+ αζ

ϕCD

)




1/ζ

.

As in the baseline model, x is constant and fully determined from parameters governing the relative
innovation technologies. And with x constant, we have

zx =
η

1− α
− x,

i.e. the total entry flow per product, zx, is a decreasing function of population growth: in equilibrium
entrants bear the brunt of declining population growth.

Finally, we can use (A-47) to solve for the level of market size LP
t

Nt
. For the case where λ = ω, (A-47)

implies that

LP
t

Nt
=

1
ϕE

λσ−1 α
1−α +

(
ωσ−1 − 1

)

µ− 1

( ζ
ζ−1

(λσ−1α + ωσ−1 (1− α)) x
− 1

ρ + α
1−α η

)
η.

27Note that this solution is also implied by (A-50). If λ = ω, (A-50) requires that τ
η −

(
τ
η

)ζ ϕN
ϕCD

= 0. This implies that

τ =
(

ϕCD
ϕN

) 1
ζ−1

η = α
1−α η.
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Hence, LP
t

Nt
is increasing in η. Conversely, a fall in population growth reduces LP

t
Nt

and increases the
number of varieties per worker.

The General Case If λ 6= ω, τ is determined from (A-50). We can rewrite (A-50) as

(
κ − 1

κ

)
A 1

ρ + τ

(
1 +

(
τ

η

)ζ ϕN

ϕCD

) ζ−1
ζ

+
1
κ

(
τ

η

)ζ−1 ϕN

ϕCD
= 1,

where κ =
(

λ
ω

)σ−1
and A = (ζ−1)

ζ−1
ζ

ζ
(

ϕE
ϕN

) 1
ζ

. Define the function

h (τ) =
(

κ − 1
κ

)
A 1

ρ + τ

(
1 + τζ 1

ηζ

ϕN

ϕCD

) ζ−1
ζ

+
1
κ

τζ−1 1
ηζ−1

ϕN

ϕCD
.

Then, a solution τ∗ is implicitly defined by h (τ∗) = 1. Note that h (.) satisfies

h (0) = 0 and lim
m→∞

h (m) = ∞.

Note also that h is continuous so that there is at least one solution h (τ∗) = 1. Moreover, at least
one solution satisfies h′ (τ∗) > 0. If there is a unique solution then h′ (τ∗) > 0. Hence, focus on a
solution where h′ (τ∗) > 0. Note that an increase in η shifts the function h (τ) downwards. Hence, an
increase in η will increase τ∗. As in our baseline model, falling population growth reduces creative
destruction τ.

In Figure A-1 we show creative destruction τ, the relative importance of entry z = zNV
xNV

= zCD
xCD

, the
share of innovation directed towards creative destruction α = xCD

xCD+xNV
and the size of the market

LP
t /Nt as a function of population growth.

The comparative static results shown in Figure A-1 accord well with our baseline model. First, shown
on the upper left, creative destruction is an increasing function of population growth. Second, shown
in the upper right, falling population reduces z, the flow of entrant product innovation relative to in-
cumbents. Third, shown in the lower left, the creative destruction share α is increasing in η. Hence,
falling population growth reduces creative destruction more than the creation of new varieties. Fi-
nally, shown in the lower right, falling population growth reduces the market size and flows profits
through a decline in LP

t /Nt.

The result that α is increasing in η is driven by our estimates that ω < λ. To see why, consider the
special case where new entrants are extremely unproductive, i.e. ω ≈ 0. In that case, equations
(A-48) and (A-49) can be solved analytically as

xNV =

(
ϕN

ζϕE

1
ρ + xCD

xNV
η

) 1
ζ−1

and xζ
CD =

ϕCD

ϕE

1
ζ − 1

− ϕCD

ϕN
xζ

NV .
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Figure A-1: The Effects of Population Growth (Endogenous α)
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Note: This figure plots model outcomes in a calibrated version of the extended model with endogenous innovation direc-
tion as a function of the rate of population growth.

Hence, xNV is decreasing in η and xCD is decreasing in xNV but does not depend on η conditional on
xNV . Falling population growth therefore increases xNV but decreases xCD. Hence, falling population
growth reduces α as shown in Figure A-1. To see why, define the function

v (m) =
(µ− 1)mσ−1

λσ−1τ + (ωσ−1 − 1) η

LP
t

Nt
+

1
ρ + τ

1
ϕE

.

Then VNV
t /wt = v (ω) and VCD

t /wt = v (λ). Now recall that a decline in population growth reduces
both τ and LP

t /Nt. The reduction in τ increases v (m) due to a decline in the discount rate. The
reduction in LP

t /Nt obviously lowers v (m). The initial quality term m thus governs the weight on
the present discount value of profits (the first term) as opposed to the value of innovation (the second
term). If m is small, v (m) is not negatively affected by the decline in LP

t /Nt but mostly benefits from
the increase in the innovation value. A decline in population growth therefore raises the value of
new variety creation relative to the value of creative destruction, leading to a decline in the creative
destruction share α.

A-1.3.2 Endogenous own-innovation I

Suppose now that firms can chose the rate of own-innovation I subject to some costs. In particular,
assume that the cost function (in terms of labor) of achieving a drift I of a particular product is given
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by

c (I; q/Q) =

(
q

Qt

)σ−1 1
ϕI

Iζ .

Hence, the cost of innovation are convex in I (for simplicity we assume the same convexity as for
firms’ product creation technology). Additionally, the cost of innovation depend on firms’ relative
efficiency q/Qt. Allowing for this cost-shifter is required to make the model consistent with balanced
growth (see e.g. Atkeson and Burstein (2010)) and Gibrat’s law for large firms.

Most results of the baseline model generalize in a straightforward way. In particular, Proposition 2
is exactly the same in this more general framework, except I in the expression for the growth rate is
no longer a parameter but a choice variable. The characterization of the value function contained in
Proposition 1 is also strikingly similar. The value function is still additive across products and the
value of a given product with efficiency q is given by

Vt (q) =
πt (q)

ρ + τ +
(

gQ − ζ−1
ζ I
)
(σ− 1)

+

ζ−1
ϕx

xζwt

ρ + τ
. (A-51)

Hence, the only difference to the baseline model is the term ζ−1
ζ in front of I in the discount rate.

Given V I
t (q) the optimal rate of own-innovation is therefore defined by

max
I

{
I

∂Vt (q)
∂q

q−
(

q
Qt

)σ−1 1
ϕI

Iζwt

}
. (A-52)

Using (A-51), the optimal innovation rate associated with (A-52) is given by

I =


 (σ− 1) (µ− 1) `

ρ + τ +
(

gQ − ζ−1
ζ I
)
(σ− 1)

ϕI

ζ




1
ζ−1

, (A-53)

where again ` = LP
t /Nt. Hence, the optimally chosen drift is indeed independent of the efficiency q

and constant in a BGP. Importantly, because `, τ and gQ depend on the rate of population growth η,
I also changes when population growth declines.

To see how I depends on the rate of population growth η, note that the free entry condition now
implies

1
ϕE

=
(µ− 1)

(
αλσ−1 + (1− α)ωσ−1) `

ρ + τ +
(

gQ − ζ−1
ζ I
)
(σ− 1)

+

ζ−1
ϕx

(
1
ζ

ϕx
ϕE

) σ
ζ−1

ρ + τ
.

Hence,
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I = ς


1−

(
ζ−1

ζ

) (
1
ζ

ϕx
ϕE

) 1
ζ−1

ρ + τ




1
ζ−1

, (A-54)

where ς is a collection of structural parameters.28 Importantly, this expresses the optimal rate of
own-innovation I directly as a function of parameters and a single endogenous variable - the rate of
creative destruction. In particular, I only depends on the rate of population growth through τ. And
because I is increasing the rate of creative destruction, a decline in population growth reduces firms’
own innovation incentives.

The fact that I is increasing in the rate of creative destruction might at first seem surprising. After
all, a higher rate of creative destruction reduces the expected life-span, which should reduce firms’
incentives to invest in productivity improvements. To see that this intuition is correct, consider the
(A-53): holding market size ` and the rate of efficiency growth gQ constant, an increase in τ indeed
lowers I. However, once one realizes that all these objects are linked through the free entry condition,
the general equilibrium effect of a higher rate of creative destruction becomes positive. Economically:
free entry requires the average production value plus the innovation value to be equal to the entry
costs. A higher rate of creative destruction lowers the innovation value. Hence, for the free entry
condition to be satisfied, the production value has to increase. This increase is achieved through an
increase in market size `. And as the returns to own-innovation scale with the production value but
not the innovation value, the returns to own-innovation are higher in an environment with higher
creative destruction. Conversely, lower population growth lowers own-innovation. This endogenous
response of incumbents’ own-innovation efforts amplifies the negative consequences of population
growth.

A-1.4 Characterization of the Model with Bertrand Competition (Section 3)

In this section we derive the results for the model with Bertrand competition described in Section 3

A-1.4.1 The Value Function

The only difference relative to the baseline case characterized in Section A-1.1.3 is that the static profit
function is given by (A-5), i.e.

π (qi, ∆i) =

(
1− 1

µ (∆i)

)
µ (∆i)

1−σ
(

qi

Qt

)σ−1 1

(MtΛt)
σ−1

Yt

Nt
. (A-55)

The value function is still additive across products, i.e. Vt ([qi, ∆i]) = ∑n
i=1 Vt (qi, ∆i). The HJB equa-

tion for Vt (qi, ∆i) is given by

28In particular, ς =
(

σ−1
αλσ−1+(1−α)ωσ−1

ϕI
ζ

) 1
ζ−1 1

ϕE
.
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rtVt (q, ∆)− V̇t (q, ∆) = πt (q, ∆) + I
{

∂Vt (q, ∆)
∂q

q +
∂Vt (q, ∆)

∂∆
∆
}
− τVt (q, ∆) + Ξt, (A-56)

where Ξt = maxx

{
x
(

αVCD
t +(1− α)VNV

t

)
− 1

ϕx
xζwt

}
with VCD

t =
∫

Vt (λq, 1) dFt (q) and VNV
t =

∫
Vt
(
ωQt, σ

σ−1
)

dΓ (ω).

Note that for notational simplicity we denote the quality gap for the creation of a new variety by σ
σ−1

to indicate that new varieties are able to charge the monopolistic markup.

To characterize the value function, note first that the definition of Ξt still implies that

0 =

(
αVCD

t + (1− α)VNV
t

)
− ζ

ϕx
xζ−1wt.

The free entry condition thus still requires that

wt = ϕE

(
αVCD

t + (1− α)VNV
t

)
.

Hence, as in the baseline model, x =
(

ϕx
ϕE

1
ζ

) 1
ζ−1

. Therefore Ξt =
ζ−1
ϕx

xζwt ∝ wt.

To solve for Vt (q, ∆) in (A-56) along the BGP, conjecture that Vt (q, ∆) takes the form

Vt (q, ∆) = k (∆) qσ−1Ut + Mt.

This implies that

∂Vt (q, ∆)
∂q

q = (σ− 1) k (∆) qσ−1Ut and
∂Vt (q, ∆)

∂∆
∆ = k′ (∆)∆qσ−1Ut,

so that
∂Vt (q, ∆)

∂q
q +

∂Vt (q, ∆)
∂∆

∆ = ((σ− 1) + εk (∆)) k (∆) qσ−1Ut,

where εk (∆) ≡ k′(∆)∆
k(∆) .

Equation (A-56) thus implies that k (∆), Ut and Mt solve the equations

(rt + τ) Mt − Ṁt =
ζ − 1

ϕx
xζwt (A-57)

and

(rt + τ) k (∆) qσ−1Ut − k (∆) qσ−1U̇t = πt (q, ∆) + I ((σ− 1) + εk (∆)) k (∆) qσ−1Ut

= h (∆)
(

qi

Qt

)σ−1 1

(MtΛt)
σ−1

Yt

Nt
+ I ((σ− 1) + εk (∆)) k (∆) qσ−1Ut,
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where h (∆) =
(

1− 1
µ(∆)

)
µ (∆)1−σ. Thus

(rt + τ) k (∆)Ut − k (∆) U̇t = h (∆)
(

1
Qt

)σ−1 1

(MtΛt)
σ−1

Yt

Nt
+ I ((σ− 1) + εk (∆)) k (∆)Ut.

Along the BGP,MtΛt is constant and Ut grows at the same rates as Yt
Nt

Q1−σ
t . From (A-3) and (A-4)

this implies that

gU =
U̇t

Ut
= gw − (σ− 1) gQ.

Hence,

k (∆)Ut =
h (∆)

(
1

Qt

)σ−1
1

(MΛ)σ−1
Yt
Nt

r + τ − gw + (σ− 1) (gQ − I)− Iεk (∆)
.

The solution to the value function is therefore

Ut =

(
1

Qt

)σ−1 1

(MΛ)σ−1
Yt

Nt

and

k (∆) =
h (∆)

r + τ − gw + (σ− 1) (gQ − I)− Iεk (∆)

=
h (∆)

r + τ − gw + (σ− 1) (gQ − I)− I k′(∆)∆
k(∆)

.

Along the BGP we have

r + τ − gw + (σ− 1) (gQ − I) = ρ +

(
αλσ−1

1− α
+ ωσ−1 − 1

)
η.

Hence, the function k (∆) solves the differential equation

k (∆) C − Ik′ (∆)∆ =
min

{
σ

σ−1 , ∆
}
− 1

min
{

σ
σ−1 , ∆

}σ ,

where C = ρ +
(

αλσ−1

1−α + ωσ−1 − 1
)

η.

For ∆ ≥ σ
σ−1 we have

k (∆) C − Ik′ (∆)∆ =
1

σ− 1

(
σ− 1

σ

)σ

.
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Hence, k′ (∆) = 0 and

k (∆) =
1

σ−1

(
σ−1

σ

)σ

C for ∆ ≥ σ

σ− 1
. (A-58)

For ∆ < σ
σ−1 , we have

k (∆) C − Ik′ (∆)∆ =
∆− 1

∆σ
. (A-59)

We can solve this differential equation together with the terminal condition k
(

σ
σ−1

)
given in (A-58).

Equation (A-57) implies Mt grows at gw along the BGP. Hence,

Mt =
1

r + τ − gw

ζ − 1
ϕx

xζ =
1

ρ + τ

ζ − 1
ϕx

xζ ,

because r = ρ + gw. Together with the solution for k (∆), the value function along the BGP is given
by

Vt (q, ∆) = k (∆)
(

q
Qt

)σ−1 1

(MΛ)σ−1
Yt

Nt
+

1
ρ + τ

ζ − 1
ϕx

xζwt.

Using (A-4) we get that

1

(MΛ)σ−1
Yt

Nt
=

1
Mσ−1Λσ

LP

Nt
wt =

1
Mσ−1Λσ

`P

N
wt,

where `P = LP
t /Lt and N = Nt/Lt are constant along a BGP. Hence,

Vt (q, ∆) =

{
k (∆)

(
q

Qt

)σ−1 1
Mσ−1Λσ

`P
t

Nt
+

1
ρ + τ

ζ − 1
ϕx

xζ

}
wt. (A-60)

A-1.4.2 The Free Entry Condition

Using (A-60) we can derive the free entry condition. The value of creative destruction is given by

VCD
t =

∫
Vt (λq, λ) dFt (q) =

{
k (λ) λσ−1 1

Mσ−1Λσ

`P

N
+

1
ρ + τ

ζ − 1
ϕx

xζ

}
wt.

The value of variety creation is

VNV
t =

∫
Vt

(
ωQt,

σ

σ− 1

)
dΓ (ω) =

{
k
(

σ

σ− 1

)
ωσ−1 1

Mσ−1Λσ

`P

N
+

1
ρ + τ

ζ − 1
ϕx

xζ

}
wt,
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where ω = E
[
ωσ−1]1/(σ−1). Hence,

VEntry
t = αVCD

t + (1− α)VNV
t =

{
αk (λ) λσ−1 + (1− α) k

(
σ

σ−1

)
ωσ−1

Mσ−1Λσ

`P

N
+

1
ρ + τ

ζ − 1
ϕx

xζ

}
wt.

The free entry condition, is thus given by

1
ϕE

=
VEntry

t
wt

=
αk (λ) λσ−1 + (1− α) k

(
σ

σ−1

)
ωσ−1

Mσ−1Λσ

`P

N
+

1
ρ + τ

ζ − 1
ϕx

xζ .

Because Mσ−1Λσ can be calculated along a BGP, the free entry condition determines `P

N as in the
model with constant markups. In particular, x, τ and k (∆) can be calculated as functions of parame-
ters andMσ−1Λσ is fully determined from the joint distribution F (∆, q), which is also only a function
of parameters along the BGP.

A-1.4.3 Proposition 2 in the model with Bertrand Competition

To see that Proposition 2 still applies in the model with Bertrand competition, note first that creative
destruction and the rate of variety creation are still given by

τ = α (z + x)

gN = (1− α) (z + x) .

Moreover, the optimality condition for incumbent expansion x is still given by (A-12) and the free
entry condition still holds. Hence,

x =

(
ϕx

ζ

) 1
ζ−1
(

α
VCD

t
wt

+ (1− α)
VNV

t
wt

) 1
ζ−1

=

(
1
ζ

ϕx

ϕE

) 1
ζ−1

.

These three equations together with BGP condition gN = η are sufficient to derive Proposition 2.

A-1.4.4 The Joint Distribution of Gaps and Productivity

In the model with Bertrand competition in Section 3, the joint distribution of relative quality q̂t =

ln (qt/Qt)
σ−1 (see (A-32)) and quality gaps ∆, Ft (∆, q̂t) emerges as a key endogenous object. To

solve for Ft (∆, q̂t), it is useful to separate the problem by focusing individually on products with
competitors (i.e. where creative destructions has happened at some point in the past) and products
without competitors (i.e. products which are still owned by the firms that introduced the variety
originally). We denote these distributions by FC

t (∆, q̂) and FNC
t (q̂).29 They are characterized from the

29Note that we do not need to keep track of the quality gap among products without competitors because markups are
always given by σ

σ−1 .
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two differential equations ∂FC
t (∆,q̂)

∂t and ∂FNC
t (q̂)
∂t given in the main text. In this section we derive these

expressions. We denote the mass of products with and without competitors respectively by NC
t and

NNC
t . Of course, Nt = NC

t + NNC
t . Also recall that q̂t has a drift of gq̂ = (σ− 1) (I − gQ,t) (see (A-33)).

Let F̄C
t (∆, q̂) denote the mass of products with a gap less than ∆ and relative productivity less than q̂,

for products with a direct competitor. Similarly, let F̄NC
t (q̂) denote the mass of the products who have

no direct competitor at time t with relative productivity less than q̂. Hence, FNC
t = F̄NC

t /NNC
t and

FC
t = F̄C

t /NC
t . The evolution of the non-competitor mass F̄NC

t (q̂) satisfies

F̄NC
t (q̂) = F̄NC

t−ι

(
q̂− gq̂ι

)
(1− (τt + δ) ι)

︸ ︷︷ ︸
existing mass that survives and improves/falls

+

(
1− α

α

)
τtNtΓ

(
exp (q̂)
σ− 1

)
ι

︸ ︷︷ ︸
new products that enter

.

where we have used the fact that the new product creation rate is 1−α
α τ = gN

t . Note also that Nt(1− α)

will be the equilibrium mass of non-competitive products, which we will call NNC
t . As ι becomes

small this leads to the differential equation

∂F̄NC
t (q̂)
∂t

= −gq̂
∂F̄NC

t (q̂)
∂q̂

− (τt + δ) F̄NC
t (q̂) +

(
1− α

α

)
τt

NNC
t

(1− α)
Γ
(

exp (q̂)
σ− 1

)
. (A-61)

Defining the distribution FNC
t ≡ F̄NC

t /NNC
t , A-61 implies

∂FNC
t (q̂)
∂t

= −gq̂
∂FNC

t (q̂)
∂q̂

− (τt + δ + η) FNC
t (q̂) +

τt

α
Γ
(

exp (q̂)
σ− 1

)
.

This is the equation reported in Section 3.

For the mass of products with a competitor, F̄C
t (∆, q̂), we not only need to keep track of the relative

quality q̂ but also of the quality gap ∆. This mass evolves according to

F̄C
t (∆, q̂) = F̄C

t−ι

(
∆e−Iι, q̂− gq̂ι

)
(1− (τt + δ) ι)

︸ ︷︷ ︸
existing mass that survives and improves/falls

+ lim
s→∞

ιτt F̄C
t−ι(s, q̂− λ̂)

︸ ︷︷ ︸
Creative destruction of C products below q̂-λ̂

+ τιF̄NC
t−ι (q̂− λ̂)︸ ︷︷ ︸

Creative destruction of NC products below q̂-λ̂

,
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where again we defined λ̂ = ln λσ−1. As ι becomes small this leads to the differential equation

∂F̄C
t (∆, q̂)

∂t
=− ∂F̄C

t (∆, q̂)
∂∆

I∆− gq̂
∂F̄C

t (∆, q̂)
∂q̂

− F̄C
t

(
∆, q̂

)
(τt + δ)

+ lim
s→∞

τt F̄C
t (s, q̂− λ̂) + τF̄NC

t (q̂− λ̂).

Defining F̄C
t (∆, q̂) = NC

t FC
t (∆, q̂), we get

∂FC
t (∆, q̂)

∂t
= −∆I

∂FC
t

(
∆, q̂

)

∂∆
− gq̂

∂FC
t

(
∆, q̂

)

∂q̂
− (τt + δ + η) FC

t (∆, q̂)+ lim
s→∞

τtFC
t (s, q̂− λ̂)+ τt

NNC
t

NC
t

FNC
t (q̂− λ̂).

Note that the latter term depends on the relative share of products without a competitor NNC
t /NC

t .

To derive NNC
t /NC

t , note that NNC
t and NC

t evolve according to

ṄNC
t = Ntτ

(
1− α

α

)

︸ ︷︷ ︸
New varieties

− NNC
t (δ + τ)︸ ︷︷ ︸

Products that turn into C products or exit

,

And
ṄC

t = −δNC
t︸ ︷︷ ︸

Exiting products

+ NNC
t τ︸ ︷︷ ︸

New inflows

.

The steady state share of NC products is therefore given by

NNC
t

Nt
=

τ
( 1−α

α

)

η + δ + τ
= 1− α, (A-62)

i.e. the steady-state share of NC products is simply given by its share in the process of product
creation.

A-1.4.5 Marginal gap distribution

We now derive the distribution of efficiency gaps given in (32). Let FC
t (∆) denote the cdf of quality

gaps among products with a competitor. Let, as before, denote the number of competitor and non-
competitor products as NC

t and NNC
t . The distribution FC

t (∆) the solves the differential equation

∂FC
t (∆)
∂t

+ FC
t (∆)

1
NC

t

∂NC
t

∂t
= −I∆

∂FC
t (∆)
∂∆︸ ︷︷ ︸

Upward drift of own-innovation

− δFC
t (∆)︸ ︷︷ ︸
Exit

+ (1− FC
t (∆))τ︸ ︷︷ ︸

Inflow through CD

+
NNC

t

NC
t

τ

︸ ︷︷ ︸
Inflow from NCproducts

.
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Along a BGP, this distribution is stationary (i.e. ∂FC
t (∆)
∂t = 0), the number of competitive products

grows at rate η and NNC
t /NC

t = 1−α
α (see (A-62)). Hence,

I∆
∂FC (∆)

∂∆
= − (δ + η) FC(∆) + (1− FC(∆))τ +

1− α

α
τ

= − (δ + η + τ) FC(∆) +
1
α

τ.

Together with the initial condition FC (λ) = 0 and the fact that 1−α
α τ = η + δ, it is easy to verify that

the solution to this differential equation is

FC(∆) = 1−
(

λ

∆

) δ+η+τ
I

.

A-2 Quantitative Analysis

A-2.1 Data Description

Our main data is the LBD, which contains information for employment and age for the population
of firms in the US. In Table A-1 we report a set of descriptive statistics from this data. The firm size
distribution in the US has been changing. Between 1980 and 2010 average firm size increased from
20 employees to about 22 employees. This increase in firm size is mostly due to a change in the
concentration of economic activity. As seen in Panel B, the employment share of firms with more
than 10,000 employees increased and the employment share of firms with less than 20 employees
declined. Finally, an important mechanisms underlying these changes in the size distribution are
shifts in the age distribution. As seen in the lowest panel, young firms account for much lower share
of aggregate employment then they used to in 1980.
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Table A-1: Summary of Data

Aggregate Statistics

Year Number of Firms Employees Average Employment

1980 3,606,457 73,753,303 20.04
1995 4,613,849 99,243,906 21.20
2010 4,953,425 111,189,088 22.15

Size Distribution
Firms with <20 Employees Firms with >10,000 Employees

Year Firm Share Employment Share Firm Share Employment share

1980 89.38 21.58 0.0002 25.71
1995 88.95 20.74 0.0002 23.84
2010 88.88 18.8 0.0002 27.02

Age Distribution
Firms with <5 years Firms with >5 years

Year Firm Share Employment Share Firm Share Employment share

1980 13.84 % 38.50 % 86.16% 61.50 %
1995 13.12 % 35.34 % 86.88 % 64.66 %
2010 9.43% 30.02% 91.57 % 69.98 %

Notes: This Table gives basic summary information about the firms in the LBD through time.

A-2.2 Estimating the Pareto tail of the employment distribution

One of our target moments is the pareto tail of the employment distribution. The distribution of firm
employment at time t is - for large firms - given by Pt

(
l f > x

)
=
(

l/x
)ς

.Hence,

ln Pt
(
l f > x

)
= δ− ς ln x. (A-63)

In Figure A-2 we show the empirical relationship between ln Pt
(
l f > x

)
and ln x for different years.

As predicted by (A-63), the relationship is almost perfectly linear and stable across years.

In Table A-2 we estimate (A-63) and we include a set of year fixed effects in lieu of δ. The parameter
ς is constrained to be common across years. We estimate (A-63) for different samples, i.e. by only
including firm above a certain threshold (as the employment distribution only has a pareto tail for
large firms). We estimate ς ≈ 1. If anything ς is slightly smaller than 1. To keep average size
bounded, we require ς > 1. We therefore opt to calibrate our model to a tail of 1.1.

A-2.3 Computing the sales and markups lifecycle

In this section we derive the details of our characterization of the firms’ lifecycle of markup and sales
that we use to calibrate the model (see Section 4.2). In particular, we show that relative sales by age
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Figure A-2: Estimating the tail of the firm size distribution

1
.1

.0
1

.0
01

Sh
ar

e 
of

 fi
rm

s 
w

ith
 e

m
pl

oy
m

en
t >

 x

1 10 100 1000 10000
Employment

1978 1980
1982 1984

Tail of the firm size distribution

Notes: The figure plots ln Pt

(
l f > x

)
against ln x for different years. The data is taken from the BDS.

Full Sample Empl >= 5 Empl >= 20 Empl >= 100
log employment -0.963∗∗∗ -1.000∗∗∗ -0.981∗∗∗ -0.935∗∗∗

(0.010) (0.004) (0.009) (0.006)

Year FE Yes Yes Yes Yes
Observations 80 72 56 48
R2 0.995 0.998 0.997 0.999
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A-2: Estimates of the pareto tail ς
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of the product is given by

sP (aP) ≡ E
[ piyi

Y

∣∣∣ ap

]
= µ

(
ap
)1−σ e(σ−1)(I−gQ)ap

(
αλσ−1 + (1− α)ω̄σ−1

)
. (A-64)

Moreover we derive the distribution of product age aP as a function of firm age a f and the number of
products N. Given this distribution we can then easily evaluate s f

(
a f
)

and µ f
(
a f
)

computationally.

A-2.3.1 Derivation of sP (aP) in (A-64)

Consider a BGP whereMt and Λt are constant. (A-5) then implies that sales of product i relative to
average sales are

sP (aP) ≡ E
[

piyi

Yt/Nt

∣∣∣∣ ap

]
= E

[
µ1−σ

i

(
qi

Qt

)σ−1
∣∣∣∣∣ ap

](
1

MtΛt

)σ−1

.

Note first that markups are a deterministic function of ∆ and ∆ is a deterministic function of the age
of the product. In particular,

µi = µ (aP) = min
{

λeIaP ,
σ− 1

σ

}
.

Similarly, Qt is given by Qt = egQap Qt−ap .

Now consider the distribution of qi conditional on aP. This distribution is given by

P (qi ≤ q|aP) = P (qi ≤ q|aP, CD) α + P (qi ≤ q|aP, NV) (1− α) ,

where P (qi ≤ q|aP, CD) and P (qi ≤ q|aP, NV) denotes the conditional probability, conditional on
the firm having acquired product i through creative destruction or new variety creation respectively.
Then

P (qi ≤ q|aP, CD) = Ft−aP

(
1
λ

qe−IaP

)
,

where Ft−aP (q) denotes the productivity distribution at time t− aP. Similarly,

P (qi ≤ q|aP, NV) = Γ
(

qe−IaP
1

Qt−aP

)
.

Hence.

E
[

qσ−1
i

∣∣∣ aP

]
= α

∫
qσ−1dFt−aP

(
1
λ

qe−IaP

)
+ (1− α)

∫
qσ−1dΓ

(
qe−IaP

1
Qt−aP

)

= e(σ−1)IaP Qσ−1
t−aP

(
αλσ−1 + (1− α)ωσ−1

)
,

so that

A-31



sP (aP) = µ (aP)
1−σ e(σ−1)(I−gQ)aP

(
αλσ−1 + (1− α)ωσ−1

)( 1
MtΛt

)σ−1

,

which is the expression in (A-64).

A-2.3.2 Life-Cycle Dynamics

Relative sales and markups at the product level as a function of the state variables ∆ and q are given
by

µi = µ (∆i) = min
{

σ

σ− 1
, ∆i

}

si

Yt/Nt
= sP (∆i, qi) =

(
1

MtΛt

)σ−1

µ (∆i)
1−σ

(
qi

Qt

)σ−1

.

Relative sales and average markups of firm f level as a function of the random vector [∆i, qi]
N f
i=1 are

then given by
s f t

Yt/Nt
=

N f

∑
n=1

sP (∆i, qi) and µ f =
1

N f

N f

∑
i=1

µ (∆n) .

Expected relative sales as a function of firm age a f are given by

E
[

s f t

Yt/Nt

∣∣∣∣ a f

]
= E

[
E
[

s f t

Yt/Nt

∣∣∣∣ a f , aP, N f

]∣∣∣∣ a f

]

= E

[ N f

∑
n=1

E
[

sP (∆i, qi)| a f , aP, N f
]
∣∣∣∣∣ a f

]

= E

[ N f

∑
n=1

sP (aP)

∣∣∣∣∣ a f

]
,

where sP (aP) is given in (A-64). The last equality exploits the fact that conditional on product age
aP, product level sales are independent of firm age a f and the number of products N f . Letting
faP|A f ,N (aP|a, n) denote the conditional distribution of product age aP conditional on firm age a f and
the number of products n and pn

(
a f
)

the probability a firm of age a f having n products (conditional
on survival). Then

E
[

s f t

Yt/Nt

∣∣∣∣ a f

]
=

∞

∑
n=1

n
(∫

aP

sP (aP) faP|A f ,N
(
aP|a f , n

)
daP

)
pn
(
a f
)

.

Using the expression for pn
(
a f
)

in (A-27) yields

E
[

s f t

Yt/Nt

∣∣∣∣ a f

]
=
(
1− γ

(
a f
)) ∞

∑
n=1

n
(∫

aP

sP (aP) faP|A f ,N
(
aP|a f , n

)
daP

)
γ
(
a f
)n−1 ,
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where γ (a) is given in (A-24). Using the same logic, the average markup as a function of firm age a f

is given by

E
[

µ f
∣∣ a f
]
=

∞

∑
n=1

(∫

aP

µ (aP) faP|A f ,N
(
aP|a f , n

)
daP

) (
1− γ

(
a f
))

γ
(
a f
)n−1 .

Given the density faP|A f ,N
(
aP|a f , n

)
, these expressions can be directly evaluated. We now show how

to compute this density.

A-2.3.3 Calculating the conditional density faP|A f ,N
(
aP|a f , n

)

We now derive the conditional density of product age aP, faP|A f ,N
(
aP|a f , n

)
.

For illustration, we first derive the expected age of the products in a firm’s portfolio as it ages. To do
so, consider the mass of firms with n products at age A. We are going to derive the law of motion for
the total number of years the products that this mass of firms owns have been alive (think of products
accumulating years for every instant they have been alive). Call this object ΨA(n), where

ΨA(n) = ΛA(n)n︸ ︷︷ ︸
Total number of products by firms of age A

EA[a|n]︸ ︷︷ ︸
Average age of products of firms of age A and n products

.

The pool of total years ΨA(n) is equal to the number of firms of age A with n products, denoted
ΛA(n), times the number of products they own n, times the average age of all those products EA[a|n].

We are going to consider how this object evolves through a discrete time approximation. For a small
time interval ι,

EA[a|n]ΛA(n)n = (EA−ι[a|n] + ι)ΛA−ι(n)n(1− (τ + δ + x)nι)︸ ︷︷ ︸
drift from existing mass

+ ιx(n− 1)ΛA−ι(n− 1)
(
(n− 1)EA−ι[a|n− 1])

)

︸ ︷︷ ︸
flow in from n-1 firms

+ ι(τ + δ)(n + 1)ΛA−ι(n + 1)
(

nEA−ι[a|n + 1]
)

︸ ︷︷ ︸
flow in from n+1 firms

The first term in this expression is the drift in total years from an increment of time ι, multiplied by
the fraction of firms who don’t drop or gain a product in this increment. Intuitively, these products
age with a unit drift. The second term is the flow of total years into the pool ΨA(n) from the mass of
firms with n− 1 products who are each gaining a product. Importantly, while they bring n products
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each into the year pool, only n− 1 have a positive age, and their average age is EA−ι[a|n− 1]. Lastly,
the third term is the flow from the mass of firms with n + 1 products who are losing a product. They
bring n products with average age EA[a|n + 1] with them.

Rewrite this as

ΨA(n)−ΨA−ι(n)
ι

= ΛA(n)n− (τ + δ + x)nEA−ι[a|n]ΛA(n)n

+ x(n− 1)ΛA(n− 1)
(
(n− 1)EA−ι[a|n− 1])

)

+ (τ + δ)(n + 1)ΛA(n + 1)
(

nEA−ι[a|n + 1]
)

so that

ΨA(n)
dA

= ΛA(n)n− (τ + δ + x)nEA[a|n]ΛA(n)n

+ x(n− 1)ΛA(n− 1)
(
(n− 1)EA[a|n− 1])

)

+ (τ + δ)(n + 1)ΛA(n + 1)
(

nEA[a|n + 1]
)

(A-65)

This gives us a set of equations for the evolution of ΨA(n) for all n > 1 that can be solved computa-
tionally given initial conditions. We also need one for n = 1, which comes from

dEA[a|1]ΛA(1)1
dA

= ΛA(1)− (τ + δ + x)EA−ι[a|1]ΛA(1)

+ (τ + δ)(2)ΛA(2)
(

EA[a|2]
)

The initial condition is that
E0[a|n]Λ0(n)n = Ψ0(n) = 0

for all n. The equations we solve computationally are

ΨA(n)
dA

= ΛA(n)n− (τ + δ + x)nΨA(n)

+ x(n− 1)ΨA(n− 1)

+ (τ + δ)nΨA(n + 1) (A-66)

Lastly, to recover EA[a|n] after computing ΨA(n), note that

ΛA(n) = F0 pA(n)
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where F0 is the initial number of firms, and pA(n) as above is the probability that a firm of age A will
have n products , for which we have closed form expressions. Then

EA[a|n] =
ΨA(n)

ΛA(n)n

Finally, to compute the expected age of products for surviving firms of age A, we have

EA[a] =
∞

∑
n=1

EA[a|n]
pA(n)

1− pA(0)

We use this object in computing markups and sales by firm age, since product markup is a determin-
istic function of product age.

A-2.3.4 Full Product Age Distribution

Consider the object XA,n(a) = ΛA(n)nΦA,n(a), the total number of products with age less than a
by firms of age A with n products. Recall that ΛA(n) is the total number of firms of age A with n
products. Define ΦA,n(a) as the probability that a product of a firm of age A with nproducts is less
than or equal to a. This evolves as

XA,n(a) = ΛA−ι(n)ΦA−ι,n(a− ι)n(1− (τ + δ + x)nι)

+ ιx(n− 1)ΛA−ι(n− 1)
(
(n− 1)ΦA−ι,n−1(a) + 1

)

+ ι(τ + δ)(n + 1)ΛA−ι(n + 1)
(

nΦA−ι,n+1(a)
)

Note the difference on the second line now, because the new product has age 0 < a.

Write this as

XA,n(a)− XA−ι,n(a− ι)

ι
=− (τ + δ + x)nXA−ι,n(a− ι)

+ x(n− 1)ΛA−ι(n− 1) + x(n− 1)XA−ι,n−1(a)

+ (τ + δ)nXA−ι,n+1(a) (A-67)

XA,n(a)− XA−ι,n(a) + XA−ι,n(a)− XA−ι,n(a− ι)

ι
=− (τ + δ + x)nXA−ι,n(a− ι)

+ x(n− 1)ΛA−ι(n− 1) + x(n− 1)XA,n−1(a)

+ (τ + δ)nXA,n+1(a)
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which goes to

∂XA,n(a)
∂A

+
∂XA,n(a)

∂a
=− (τ + δ + x)nXA,n(a)

+ x(n− 1)ΛA(n− 1) + x(n− 1)XA,n−1(a)

+ (τ + δ)nXA,n+1(a) (A-68)

In Figure A-3 we depict the average product by firm age (left panel) and the probability of having
n products as a function of age. The left panel shows the effect of selection on the average product
age of multi-product firms. Conditional on the age of the firm, the average product is declining in
the number of products because newly added products are - by construction - younger. In the right
panel we show five “slices” of the joint distribution of age and the number of products. One-product
firms are mostly young firms as all firms enter with a single product. Old firms only rarely have a
single product as they either grew or exited already. The remaining lines show that older firms are
more and more likely to have many products.

Figure A-3: Product Age and Firm Age

(a) Average Product Age By Firm Age
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(b) Probability of Product Portfolios By Age
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Notes: Panel (a) of this figure plots the average product age for a firm of n products for n = 1, ..., 5 as the firm ages in the
calibrated model. These objects are computed using the productivity distribution XA,n(a) (see (A-68)). Panel (b) plots the
conditional probability of a portfolio of n products for n = 1, ..., 5 in the calibrated model for surviving firms by firm age.

A-2.4 Computing the the cross-sectional size and age distribution (Section 4.3)

In Section 4.3 we reported the model-implied distribution of firm size and firm age. We now show
how to derive these objects.
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A-2.4.1 The cross-sectional size distribution

We have expressions for the probability distribution of number of products by age pn, as well as the
age distribution of firms. So the final piece is the distribution of employment conditional on firm age
and number of products. To do so, define

lA,n = µ−σ
i

(
qi

Qt

)σ−1 Lt

Nt
Λ−σ

t M1−σ
t

as the random variable of employment at the product level, conditional on the firm having age of A
and n products. Conditional on the age of the firm and the number of products, the distribution of
lA,n is independent across products, so we derive the distribution of the sum of these objects through
a convolution. For the first product

Prob(lA,n ≤ y) ≡ D1
A,n(y)

= Prob(log
(
(

qi

Qt
)σ−1

)
≤ log(y) + log(µσ

i )− log(
Lt

Nt
Λ−σ

t M1−σ
t ))

Now note that µ = ∆ = λeIa for a below the critical threshold. Define the joint density of (log)
productivity and gaps f C(q̃, ∆)from

FC(q̂, ∆) =
∫ q̂

−∞

∫ ∆

λ
f (x, y)dxdy

with associated conditional density f C
q̂|∆(q̃|∆) and conditional distribution function FC

q̂|∆(q̂|∆). Lastly,
denote the distribution of productivity for the non-competitor mass as FNC(q̂|a). Given that incum-
bent innovation is constant for non-competitive products, the law of motion for the mass of products
F̄NC

a (q̂) at age a is given by

∂F̄NC
a (q̂)
∂a

=
∂FNC(q̂|a)

∂q̂
(σ− 1)((I(∆̄)− γ)− F̄NC

a (q̂)(τt + δ)

with initial condition
F̄NC

0 (q̂) = Γ
(

exp (q̂)
σ− 1

)

From this we can compute the conditional distribution of productivity FNC(q̂|a).With these pieces
we can compute the distribution of employment as
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D1
A,n(y) =

∫ ā

0
dΦA,n(a)FC(log(y) + log(µσ)− c|∆(a))

+
∫ A

ā
dΦA,n(a))FC(log(y) + log(µ̄σ)− c|∆(a))

+
∫ A

0
dΦA,n(a))FNC(log(y) + log(µ̄σ)− c|a)

where c ≡ log( Lt
Nt

Λ−σ
t M1−σ

t ). Now we have the distribution of this object, we can define recursively
the distribution of the sums of employment across products from a convolution. Define

Zj
A,n =

j

∑
i=1

li
A,n

and then

P(Zj
A,n ≤ y) = Dj

A,n(y) =
∫ y

0

∫ ∞

−∞

dDj−1
A,n (x)
dx

dD1(z− x)
dx

dxdz

for j ≥ 2. Then, for each age of the firm we can define the conditional employment distribution as

Prob(E f ≤ y|a f = A) =
∞

∑
n=1

pn(A)

1− po(A)
Dn

A,n(y).

A-2.4.2 The cross-sectional age distribution

Let Υta be the number of firms who are a years old at time t. The total number of firms at time t is
then given by Υt =

∫ ∞
a=0 Υtada. Let Eτ denote the number of entrants at time τ. Then

Υta = Et−a︸︷︷︸
Entrants

S (a)︸︷︷︸
Survival

.

Note also that the number of entrants is given by Eτ = zNτ. And as Nτ grows at rate η, we have
Eτ = zN0eητ. Hence

Υta = zN0eη(t−a)S (a) .

The density of firms which are a years old is therefore given by

ωF
t (a) =

Υta

Υt
=

zN0eη(t−a)S (a)∫ ∞
a=0 zN0eη(t−a)S (a) da

=

ψe−(ψ+η)a

ψ+x(1−e−ψa)
∫ ∞

a=0
ψe−(ψ+η)a′

ψ+x(1−e−ψa′)
da′

,

where the last line uses (A-26).
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A-2.5 Exit rates by size

To compute exit rates by size (show in Figure 8) we can compute an exit rate per product. Then, the
probability of having a number of products n by age A of the firm, conditional on being a certain size
y (between l and uemployees) is

Prob(A, n|l ≤ y ≤ u) =
Prob(l ≤ y ≤ u|A, n)× P(A, n)

∑A′ ∑n′ Prob(l ≤ y ≤ u|A′, n′)× P(A′, n′)

The joint probability of the age bins and number of products is

P(A, n) = pn(A)ωF
t (A)

Then we can construct the probability

Prob(n|l ≤ y ≤ u) = ∑
A

Prob(l ≤ y ≤ u|A, n)× P(A, n)
∑A′ ∑n′ Prob(l ≤ y ≤ u|A′, n′)× P(A′, n′)

where we are using discrete A bins to compute this object. Once we have the conditional probabilities
of numbers of products by size bins, we can compute exit rates by size bins, since exit only depends
on the number of products. The exit probability for each number of products n can be calculated as
follows.

The probability of losing k products in an interval ∆ if you lose each product at rate τ + δ is

pn (k, τ) = e−τn∆ ((τ + δ)n∆)k

k!

The probability of winning m products in an interval ∆ if you expand at rate x

gn (m, x) = e−xn∆ (xn∆)m

m!

Hence, the probability of exit when a firm has n products is

Prob (k−m >= n) = Em [Prob (k >= n + m)]

= Em

[
∞

∑
k=n+m+1

pn (k, (τ + δ))

]

=
∞

∑
m=0

e−xn∆ (xn∆)m

m!

∞

∑
k=n+m

e−τn∆ ((τ + δ)n∆)k

k!
.
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A-2.6 Firm Heterogeneity: Young Firm Rockets

Very young firms tend to grow fast even conditional on survival (Dunne et al., 1989). Luttmer (2011)
discusses how a violation of Gibrat’s law is needed to deliver the relatively low age of very large
firms: to match the data, there must be a mechanism whereby young firms can grow quickly for
a time. A similar reasoning is also discussed in Pugsley et al. (2019). In our baseline model, such
a mechanism is absent. Young firms do indeed violate Gibrat’s law in the model, but this is only
because of survival bias. Here we discuss the implications for the effects of a population growth
slowdown of introducing a subset of young firms that act as “rockets”, growing and innovating
quickly for a time, before their growth rate slows to look like other ordinary firms (see also Acemoglu
et al. (2012))

Suppose that when a firm is born, it can be a rocket (R) or slow (S) type. The only difference between
the two is the speed with which a firm can invent new products, such that x = {xR, xS} To highlight
the central differences with the main model, we take these rates to be exogenous. In addition, assume
that a rocket firm transitions into being a slow firm at rate ξ. For exposition, assume labor is perfectly
substitutable between research and production, and the rate of own product improvement I is fixed.
The value of such a firm can be written

rtVR
t ([∆i, qi]) =

n

∑
i=1

πt ([∆i, qi]) + V̇R
t ([∆i, qi]) +

n

∑
i=1

(τ + δ)
[
VR

t

([
∆j, qj

]
j 6=i

)
−VR ([∆i, qi])

]

+
n

∑
j=1

I
∂VR

t ([∆i, qi])

dqj
qj

+n max
x

{
x
[

α
∫

q
VR

t ([∆i, qi] , 1, λq) dFt (q) + (1− α)
∫

ω

∫

∆
VR

t ([∆i, qi] , ∆, ωQt) dG(∆)dΓ (ω)

−VR
t ([∆i, qi])

]
− 1

ϕR
x

xζwt

}

ξ(VS
t ([∆i, qi])−VR

t ([∆i, qi])).

with an analogous equation holding for VS
t . Suppose lastly that entrants cannot choose whether they

are going to be a rocket or slow, but become a rocket at entry with fixed probability κ. It can be shown
that under these assumptions, the solution to the value functions are

VR
t ([∆i, qi]) =

n

∑
i=1

Ut (∆i, qi) + nφRwt

VS
t ([∆i, qi]) =

n

∑
i=1

Ut (∆i, qi) + nφSwt

Where

Ut (∆i, qi) =
u (∆i)

g (σ− 1) + ρ + τ + δ− η

qσ−1
i Yt

(MtΛt)σ−1NtQσ−1
t
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and φR and φS are the solutions to

(ρ + τ + δ)φR = xR
[

1
ϕE

+ (1− κ)(φR − φS)

]
− 1

ϕR
x
(xR)ζ − ξ(φR − φS)

(ρ + τ + δ)φS = xS
[

1
ϕE
− κ(φR − φS)

]
− 1

ϕS
x
(xS)ζ

The share of rocket firms vR in the population depends on the entry rate, and so changes in popu-
lation growth will affect the average rate of incumbent expansion. To see this, note that the share of
rockets firm ΥR

a,t of age a at time tdenoted is given by

ΥR
a,t = κe−ξa

where ΥR
a,tand so the share of rockets in the economy is given by integrating this object over the age

distribution. The age distribution is defined by the following two pieces. First, for fast firms the
fraction of firms with n products evolves with age a as

ṗR
n (a) = (n− 1) xR pR

n−1 (a) + (n + 1) (τ + δ) pR
n+1 (a)− n

(
xR + τ + δ

)
pR

n (a)− ξ pR
n (a) . (A-69)

Because exit is an absorbing state, ṗR
0 (a) = (τ + δ) pR

1 (a) . The fraction of firms that have survived

by a is SR (a) = 1−pR
0 (a)

∑∞
n=0 pR

n (a) . Similarly for slow firms, we have

ṗS
n (a) = (n− 1) xS pS

n−1 (a) + (n + 1) (τ + δ) pS
n+1 (a)− n

(
xS + τ + δ

)
pS

n (a) + ξ pR
n (a) .

with ṗS
0 (a) = (τ + δ) pS

1 (a) and SS (a) =
1−pS

0 (a)
∑∞

n=0 pS
n(a)

. The total fraction of surviving firms is then
given by

S(a) = 1− κSR(a)− (1− κ)SS(a)

m

The age distribution can be obtained from calculating the density of firms by age using

ωt (a) =
(1− α) zN0eη(t−a)S (a)∫ ∞

a=0 (1− α) zN0eη(t−a)S (a) da

=
e−ηaS (a)∫ ∞

a=0 e−ηaS (a) da

Then the share of rockets in the overall population of is

vR =
∫ ∞

0
κe−ξaω (a) da

The share of products that are owned by rockets however, is not quite the same thing. This is given
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by

v̂R =
FR

t
∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)ωR(a)da

FS
t
∫ ∞

0 ∑∞
n=1

pS
n(a)n

1−pS
0 (a)

ωS(a)da + FS
t
∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)ωR(a)da

=
vR
∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)ωR(a)da

(1− vR)
∫ ∞

0 ∑∞
n=1

pS
n(a)n

1−pS
0 (a)

ωS(a)da + vR
∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)ωR(a)da

where the numerator is the number of rocket firms times the average products of a rocket firm.

Creative destruction in this economy is given by

τ = α
(

z + v̂RxR + (1− v̂R)xS
)

However, it is still the case that
τ =

α

1− α
(η + δ)

So while changes in the age distribution will affect the share of rockets in the population, the overall
effect on growth is the same as the baseline model. To characterize the equilibrium with rockets, we
close the model with the labor market clearing condition

Lt = LP
t + LR

t = LP
t + Nt

(
1

ϕE
zt +

v̂R

ϕR
x
(xR)ζ +

(1− v̂R)

ϕS
x

(xS)ζ

)
.

Which we can characterise in terms of the production share `P and variety intensity N on the BGP
as (

1− `P
t

Nt

)
=

1
ϕE

z +
v̂R

ϕR
x
(xR)ζ +

(1− v̂R)

ϕS
x

(xS)ζ

There are xx things we need to calculate the equilibrium.

Free entry requires that

1
φE

wt = κα
∫

VR
t (λ, q) dFt(q) + κ(1− α)

∫
VR

t (∆̄, Qtq) dG(q)

+ (1− κ)α
∫

VS
t (λ, q) dFt(q) + (1− κ)(1− α)

∫
VS

t (∆̄, Qtq) dG(q)

=
αu(λ)λσ−1 + (1− α)u(ω̄)ω̄σ−1

g (σ− 1) + ρ + τ + δ− η

LP
t /Nt

(Mt)σ−1Λσ
t

wt + κφR + (1− κ)φS

where in the exogenous I case, we can solve for u(∆) from the differential equation

u (∆) = h (∆) +
(σ− 1)u (∆) + u′ (∆)∆

g(σ− 1) + ρ + τ + δ− η
I
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A-2.6.1 Pareto Tail in the Product Distribution

Now we the following law for the evolution of the rocket distribution. Consider n ≥ 2. Then, the
number of rocket firms with each number of products n evolves according to

ω̇R
t (n) = ωR

t (n− 1) (n− 1) x︸ ︷︷ ︸
From n−1 ton products

+ωR
t (n + 1) (n + 1) (τ + δ)︸ ︷︷ ︸

From n+1 ton products

− ωR
t (n) n (τ + x + δ)︸ ︷︷ ︸

From n to n−1 or n+1 products

− ξωR
t (n)︸ ︷︷ ︸

Transition to slow

.

For n = 1 we have
ω̇R

t (1) = κZt + ωR
t (2) 2 (τ + δ)−ωR

t (1) (τ + x + δ) .

Along the BGP the mass of firms grows at rate η. . Hence, the mass of firms is increasing at rate η.
Hence, along the BGP we have

ω̇Rt (n) = ηωR
t (n) .

Along the BGP, {ν (n)}∞
n=1 is determined by

νR (2) =
νR (1)

(
τ + xR + δ + η + ξ

)
− κz

v̂R

2 (τ + δ)
(A-70)

and

νR (n + 1) =
νR (n) n

(
τ + xR + δ

)
+ νR (n) (η + ξ)− νR (n− 1) (n− 1) xR

(n + 1) (τ + δ)
for n ≥ 2 (A-71)

Again we can apply the result from Luttmer (2011) and the Pareto tail is given by

ζn =
η + ξ

xR − τ − δ

=
η + ξ

xR − α
1−α (η + δ)− δ

and we again have the result that lower population growth lowers this tail coefficient. Note also
that a smaller transition rate ξ reduces the Pareto tail, that is concentration in the top rises as rockets
transition into the slow types at a slower pace.

A-2.6.2 Exit Rates by Size with Firm Heterogeneity

The introduction of type heterogeneity substantially improves the fit of the model against the data
on exit rates by size. Simply put, this heterogeneity allows some firms to grow large by adding more
products, an outcome which is relatively rare in the baseline model. Because of diversification across
products, this lowers the exit rate for large firms (whereas in the baseline model, the overwhelming
majority of large firms are so because they have a single, high q product). Figure A-4 shows an
illustrative calibration of the model with rockets, demonstrating a declining exit rate with size.
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Figure A-4: Exit Rate By Size with Rocket Firms
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Notes: This figure shows the exit rate by size in an illustrative calibration of the model with rocket firms. The transition
rate is set to ξ = 0.25, and the share of rockets at 0.1. The innovation rate of rockets xR is chosen to match average sales
growth by age 10 from the LBD, as in the main quantitative section, while the rate of slow firms is set to 0.1.

A-2.7 The Joint Distribution of Efficiency and Markups

All aggregate allocations in our model depend on the misallocation wedge M and the labor share
Λ. These aggregate wedges in turn depend on the joint distribution of relative efficiency q/Q and
efficiency gaps ∆. In the left panel of Figure A-5 we display this distribution. Multiple forces shape
this distribution. On the one hand, firms increase their efficiency q over their life-cycle. This tends
to generate a positive correlation between relative efficiency and efficiency gaps. On the other hand,
successful creative destruction events also increase relative efficiency but reduce efficiency gaps and
hence markups. Moreover, new products have - in our calibration - low efficiency (because ω < 1)
and high efficiency gaps. In the right panel we look at the efficiency distributions of the different type
of products more directly. We depict the overall cross-sectional distribution of competitive products
in red and compare it to the efficiency of products conditional on having a quality gap of λ (blue) and
to the products that just entered and are still without a competitor (orange). The overall distribution
dominates the distribution of new products in a first-order stochastic dominance sense because new
products have on average lower qualities. The conditional efficiency distribution, conditional on
having a quality gap of ∆, is also lower because some of these products are non-competitive products
that just experienced their first creative destruction event.
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Figure A-5: The Distributions of Efficiency q and Gaps ∆

(a) Joint Distribution of Efficiency and Gaps (b) Conditional Productivity Distributions
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Notes: The left panel shows the joint density of q̂ (relative efficiency) and ∆ (the gap between the leading product and the
next best product) in the calibrated BGP. The right panel shows the productivity distributions in the calibrated model for
three types of products: non-competitive products (orange), products which have just seen a creative destruction event
and have a gap of ∆ = λ (red) and all competitive products (blue)

A-2.8 Decomposing the Impact of Falling Population Growth

Our analysis in Section 5 showed that the experienced and projected decline in population growth
increased firm size substantially. In addition, the average markup also increased. In principle this
rise in firm size and markups can be due to both changes in the age distribution and changes in firms’
size conditional on age. In Figures A-6 and A-7 we show that the lion share of these changes is due
to changes in the age distribution. Consider first Figure A-6, where we show the exit rate by age (left
panel) and the sales life-cycle (right panel) both in the original BGP (blue) and the new BGP when
population growth is 0.24% (red line). While both the age conditional exit rate and the life-cycle
do change, the changes are qualitatively small. In Figure A-7 we report the life-cycle of markups
(left panel) and the age distribution (right panel) again for both BGPs. The life-cycle of markups is
essentially unchanged. By contrast, the age distribution shifts substantially: declining population
growth causes firms to become older. And because older firms are larger, charge higher markups
and exit at a lower rate, such shifts in the age distribution explain most of the observed change in
concentration in our model. This result is consistent with the findings of Hopenhayn et al. (2018)
and Karahan et al. (2016), who document empirically that the age-conditional allocations have been
relatively constant since the 1980s.

A-45



Figure A-7: Markups Within and Across Firms

(a) Lifecycle Firm-level Markups
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(b) Age Distribution
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Note: Panel A shows the average firm-level markup in the model at the calibrated baseline (blue) and and the counter-
factual of a 1.74% decline in population growth (red). Panel B shows the density of the age distribution for the same
cases.

Figure A-6: Model Counterfactual Lifecycle Moments

(a) Exit Rates
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(b) Sales Growth
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Notes: This left panel shows the model prediction for firm exit rates by age when population growth is 2% (blue) and
0.24% (red). The right panel shows the same for sales growth.

A-2.9 Computing the Transitional Dynamics

In this section we characterize the transitional dynamics of our model. In Section A-2.9.1 we solve
for the value function without imposing the economy to be on the BGP. In Section A-2.9.2 we char-
acterize the value of entry during the transitional dynamics. In Section A-2.9.3 we use the free entry
condition to characterize the differential equation for the free entry equilibrium during the transition.
In Section A-2.9.4 we derive the characterization of the system of equations that fully characterize the
transitional dynamics. In Section (A-2.9.5) we derive the differential equation for the joint distribu-
tion of quality q and quality gaps ∆, Ft (q, ∆), that we need to compute the evolution of markups
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along the transition.

A-2.9.1 The value function

As shown in Section A-1.4, the value function is additive across products and the value of a single
product with quality q and quality gap ∆ is described by the HJB equation

rtVt (q, ∆)− V̇t (q, ∆) = πt (qi, ∆i) +

(
∂Vt (q, ∆)

∂q
+

∂Vt (q, ∆)
∂∆

∂∆
∂q

)
q̇− (τt + δ)Vt (q, ∆) + Ξt,

where

πt (qi, ∆i) =

(
1− 1

µ (∆i)

)
µ (∆i)

1−σ
(

qi

Qt

)σ−1 1
Mσ−1

t Λσ
t

LP

Nt
wt.

Note that ∂∆
∂q = 1

q ∆. Also note that the free entry condition still implies that Ξt =
ζ−1
ϕx

xζwt. Hence, the
HJB equations reduces to

rtVt (q, ∆)− V̇t (q, ∆) = πt (qi, ∆i) +

(
∂Vt (q, ∆)

∂q
q +

∂Vt (q, ∆)
∂∆

∆
)

I − (τt + δ)Vt (q, ∆) +
ζ − 1

ϕx
xζwt,

where q̇
q = I.

Now conjecture that the value function takes the form

Vt (q, ∆) =
(

q
Qt

)σ−1

Ut (∆) + Mt. (A-72)

This implies that

∂Vt (q, ∆)
∂q

q +
∂Vt (q, ∆)

∂∆
∆ = ((σ− 1) + εk (∆))

(
q

Qt

)σ−1

Ut (∆) ,

where
εt (∆) ≡

U′t (∆)∆
Ut (∆)

. (A-73)

Using the conjecture in (A-72), the HJB simplifies to the following two equations:

1. The function Mt in (A-72) solves the differential equation

(rt + τt + δ) Mt − Ṁt =
ζ − 1

ϕx
xζwt

2. The function Ut (∆) in (A-72) solves the differential equation
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(rt + τt + δ + (σ− 1) (gQ − I)− Iεt (∆))Ut (∆)− U̇t (∆) = h (∆)
1

Mσ−1
t Λσ

t

LP

Nt
wt

where

h (∆) =

(
1− 1

µ (∆i)

)
µ (∆i)

1−σ =

(
µ (∆i)− 1

µ (∆i)
σ

)
=

min
{

∆, σ
σ−1

}
− 1

(
min

{
∆, σ

σ−1

})σ

and εt (∆) is given in (A-73).

A-2.9.2 The value of entry

The value of entry is given by

VEntry
t = α

∫
Vt (λq, λ) dFt (q)

︸ ︷︷ ︸
CD with gap λ and quality λq

+ (1− α)
∫

Vt

(
ωQt,

σ

σ− 1

)
dΓ (ω)

︸ ︷︷ ︸
New variety with gap σ

σ−1 and quality ωQt

Using the conjecture in (A-72), VEntry
t can be written as

VEntry
t = αλσ−1Ut (λ) + (1− α)ωσ−1Ut

(
σ

σ− 1

)
+ Mt.

Upon defining vEntry
t =

VEntry
t
wt

, mt =
Mt
wt

and ut (∆) =
Ut(∆)

wt
, we get

vEntry
t = αλσ−1ut (λ) + (1− α)ωσ−1ut

(
σ

σ− 1

)
+ mt (A-74)

where mt solves

(rt + τt + δ− gw)mt − ṁt =
ζ − 1

ϕx
xζ (A-75)

and ut (∆) solves

(rt + τt + δ− gw + (σ− 1) (gQ − I)− Iεt (∆)) ut (∆)− u̇t (∆) = h (∆)
1

Mσ−1
t Λσ

t

LP

Nt
(A-76)

= h (∆)
1

Mσ−1
t Λσ

t
`tsP

t ,

where `t =
Lt
Nt

and sP
t = LPt

Lt
.
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A-2.9.3 Free Entry

Free entry requires vEntry
t = 1/ϕE so that

1
ϕE

= αλσ−1ut (λ) + (1− α)ωσ−1ut

(
σ

σ− 1

)
+ mt. (A-77)

This also implies v̇Entry
t = 0. From (A-74) this means u̇t and ṁt satisfy the restriction.

0 = αλσ−1u̇t (λ) + (1− α)ωσ−1u̇t

(
σ

σ− 1

)
+ ṁt.

Together with (A-75), we can use this restriction to solve for mt in terms of ut as

mt =

ζ−1
ϕx

xζ −
(
αλσ−1u̇t (λ) + (1− α)ωσ−1u̇t

(
σ

σ−1

))

rt + τt + δ− gw
.

Substituting this in (A-77) yields

1
ϕE

= αλσ−1
(

ut (λ)−
u̇t (λ)

rt + τt + δ− gw

)
+ (1− α)ωσ−1

(
ut

(
σ

σ− 1

)
− u̇t

(
σ

σ−1

)

rt + τt + δ− gw

)
+

ζ − 1
ϕx

xζ

rt + τt + δ− gw
,(A-78)

where ut solves the differential equation (A-76).

Note that two discount rates appear in these equations.

1. First we have rt + τt + δ− gw + (σ− 1) (gQ − I) in (A-76). This can be written as

rt + τt + δ− gw +(σ− 1) (gQ − I) = ρ+ gLP − gΛ− η +

(
ωσ−1 + λσ−1 α

1− α

)
δ+

(
ωσ−1 − 1 + λσ−1 α

1− α

)
gN

t ,

where gΛ = Λ̇t/Λt and gLP = L̇P
t /LP

t . Using sP
t = LP

t /Lt we havegsP
t
= gLP − η. Hence,

rt + τt + δ− gw +(σ− 1) (gQ − I) = ρ+ gsP
t
− gΛ +

(
ωσ−1 + λσ−1 α

1− α

)
δ+

(
ωσ−1 − 1 + λσ−1 α

1− α

)
gN

t ,

2. Second we have the expression rt + τt + δ− gw in (A-78). This can be written as

rt + τt + δ− gw = ρ + gsP
t
− gΛ +

α

1− α
gN +

1
1− α

δ

A-2.9.4 Final Dynamic system

We now derive the final characterization equations characterizing the transitional dynamics. Note
first that labor market requires
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`t

(
1− sP

t

)
=

1
ϕE

(
gN

t + δ

1− α
− ζ − 1

ζ
x
)

, (A-79)

where `t =
Lt
Nt

and sP
t = LPt

Lt
.

Using the discount rates defined in Section A-2.9.3, equation A-78 reads

1
ϕE

= αλσ−1

(
ut (λ)−

u̇t (λ)

ρ + gsP
t
− gΛ + α

1−α gN
t + 1

1−α δ

)
+ (1− α)ωσ−1

(
ut

(
σ

σ− 1

)
− u̇t

(
σ

σ−1

)

ρ + gsP
t
− gΛ + α

1−α gN
t + 1

1−α δ

)

+
ζ − 1

ϕx

xζ

ρ + gsP
t
− gΛ + α

1−α gN
t + 1

1−α δ
(A-80)

where ut (∆) solves

(
ρ + gsP

t
− gΛ +

(
ωσ−1 + λσ−1 α

1− α

)
δ +

(
ωσ−1 − 1 + λσ−1 α

1− α

)
gN

t

)
ut (∆)− I

∂ut (∆)
∂∆

∆− u̇t (∆) = h (∆)
1

Mσ−1
t Λσ

t
`tsP

t .(A-81)

This is a differential equation in ∆ and t. We have two terminal conditions. For ∆ ≥ σ
σ−1 we have

h
(

σ

σ− 1

)
=

σ
σ−1 − 1
(

σ
σ−1

)σ =

(
1

σ− 1

)1−σ 1
σσ

=
(σ− 1)σ−1

σσ

and ∂ut(∆)
∂∆ = 0. Furthermore, we have that 1

Mσ−1
t Λσ

t
`tsP

t is constant in the steady state so that u̇t (∆)→
0.

The transitional dynamics of the system is a path of
{
`t, sP

t
}

t that solves the equations above. Note
that given

{
`t, sP

t
}

t, we can calculate gN
t from A-79. Given gN

t we can calculate τt and gQ,t as

τt =
α

1− α

(
gN

t + δ
)

(A-82)

(gQ − I) (σ− 1) =

((
λσ−1 − 1

) α

1− α
+ ωσ−1 − 1

)(
gN

t + δ
)

. (A-83)

As we show in Section , this is also sufficient to compute
{
Mσ−1

t Λσ
t

}
t

and gΛ.

A-2.9.5 The Evolution of Ft (∆, q): Calculating {Mt, Λt}t

To calculateMt and Λt we require the joint distribution of productivity q and quality gaps ∆, Ft (∆, q).
Note thatMt and Λt only depend on q via (q/Q)σ−1 . Hence, it is useful to characterize the distribu-
tion of Ft (∆, q̂), where q̂t = ln (qt/Qt)

σ−1. Let FC
t (∆, q̂) denote the distribution among products that

have a competitor and FNC
t (q̂) denote the distribution for products without a competitor.30 Let NC

t

and NNC
t denote the mass of these products. Let F̂C

t (∆, q̂) = FC
t (∆, q̂)NC

t
Nt

and F̂NC
t (q̂) = FNC

t (q̂)NC
t

Nt
.

30Recall that we do not need ∆ for the non-competitor products as they all have a markup of σ−1
σ .
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If we have the full evolution of
{

Nt, F̂C
t (∆, q̂), F̂NC

t (q̂)
}

t we can calculate Λt andMt as

Λt =
Nt
∫

µ (∆)−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)−σ ∫ eq̂dF̂NC
t (q̂)

Nt
∫

µ (∆)1−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)1−σ ∫ eq̂dF̂NC
t (q̂)

Mt =

(
Nt
∫

µ (∆)1−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)1−σ ∫ eq̂dF̂NC
t (q̂)

) σ
σ−1

Nt
∫

µ (∆)−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)−σ ∫ eq̂dF̂NC
t (q̂)

,

where eq̂ = (qt/Qt)
σ−1 as q̂t = ln (qt/Qt)

σ−1 and µ (∆) is the markup function µ (∆) = min
{

σ
σ−1 , ∆

}
.

We now derive expressions to calculate the evolution of
{

Nt, F̂C
t (∆, q̂), F̂NC

t (q̂)
}

t. Let
(

NC
0 , NNC

0 , F̂C
0 (∆, q̂), F̂NC

0 (q̂)
)

be given. In practice these objects are determined in the initial BGP. This in particular implies that
NC

0 = αNt and NNC
0 = (1− α) Nt. Suppose a path for

{
gN

t
}

is given. Then we can calculate and {τt}
and {gQt} from (A-82) and (A-83)

1. Given {τt} and {gQt}, we can calculate
{

F̂C
t (∆, q̂), F̂NC

t (q̂)
}

t as follows:

(a) The evolution of F̂NC
t (q̂) is given by

∂F̂NC
t (q̂)
∂t

= −gq̂
∂F̂NC

t (q̂)
∂q̂

−
(

τt + δ + gN
t

)
F̂NC

t (q̂) +
(

1− α

α

)
τtΓ
(

exp
(

q̂
σ− 1

))
,

where gq̂ = (σ− 1) (I − gQt) is given in (A-83) and Γ
(

exp
(

q̂
σ−1

))
is the exogenous source

distribution.

(b) Given
{

F̂NC
t (q̂)

}
t we can solve for

{
F̂C

t (∆, q̂)
}

t. In particular,
{

F̂C
t (∆, q̂)

}
t then solves the

differential equation

∂F̂C
t (∆, q̂)

∂t
= −∆I

∂F̂C
t

(
∆, q̂

)

∂∆
− gq̂

∂F̂C
t

(
∆, q̂

)

∂q̂
−
(

τ + δ + gN
t

)
F̂C

t (∆, q̂)+ lim
s→∞

τF̂C
t (s, q̂− λ̂)+ τF̂NC

t (q̂− λ̂),

where λ̂ = ln λσ−1. Given that we solved for F̂NC
t (q̂− λ̂) already, this determines

{
F̂C

t (∆, q̂)
}

t
given an initial condition F̂C

0 (∆, q̂)

A-2.9.6 Firm-level moments along the transition

Given the equilibrium path {gN,t, zt} we can compute the time series of the entry rate and average
firm size. To do so, let ωt (n) be the mass of firms with n products at time t. Consider n ≥ 2. Then

ω̇t (n) = ωt (n− 1) (n− 1) x︸ ︷︷ ︸
From n−1 ton products

+ωt (n + 1) (n + 1) (τ + δ)︸ ︷︷ ︸
From n+1 ton products

− ωt (n) n (τ + x + δ)︸ ︷︷ ︸
From n to n−1 or n+1 products

.

For n = 1 we have
ω̇t (1) = Zt + ωt (2) 2 (τ + δ)−ωt (1) (τ + x + δ) .
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Let νt (n) =
ωt(n)

Nt
, which is stationary along the BGP. Then

ω̇t (n)
Nt

= νt (n− 1) (n− 1) x + νt (n + 1) (n + 1) (τ + δ)− νt (n) n (τ + x + δ)

ω̇t (1)
Nt

= zt + νt (2) 2 (τ + δ)− νt (1) (τ + x + δ) .

Now
ω̇t (n) = ν̇t (n) Nt + νt (n) Ṅt

so that
ω̇t (n)

Nt
= ν̇t (n) + νt (n) gN,t

Hence,

ν̇t (n) = νt (n− 1) (n− 1) x + νt (n + 1) (n + 1) (τ + δ)− νt (n) n (τ + x + δ)− νt (n) gN,t

ν̇t (1) = zt + νt (2) 2 (τ + δ)− νt (1) (τ + x + δ)− νt (1) gN,t.

Given an initial condition{ν0 (n)}nwe can calculate the evolution of {νt (n)}n for given {gN,t, zt}.
Given {νt (n)}n we can calculate some objects:

1. The number of firms at time t:

Ft =
∞

∑
n=1

ωt (n) = Nt

∞

∑
n=1

νt (n)

and hence average firm size Lt/Ft

2. The entry rate

Entry− ratet =
ztNt

Fr
=

zt

∑∞
n=1 νt (n)

.

3. The exit rate
Exit− ratet =

τtNtνt (1)
Ft

.

A-2.10 The Impact of Falling Population Growth: The Model with Endogenous Own-
Innovation

We calibrate the model under this specification, and find that quantitatively the slowdown in growth
is significantly amplified by this endogenous response of own innovation. The aggregate conse-
quences appear in Table A-3.
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