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Abstract

A principal contracts with an agent who sequentially searches over projects to

generate a prize. The principal initially knows only one of the agent’s available

projects and evaluates a contract by its worst-case performance. We characterize

the principal’s robustly optimal contracts, which are all debt-like: the agent is only

paid when the prize exceeds a threshold. Debt is optimal because it preserves the

option value of continued exploration. Our characterization encompasses several

common contract forms, including pure debt, debt-plus-equity, and capped-earnout

debt. We identify settings in which each of these contracts is uniquely optimal.
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1 Introduction

Innovation requires exploring ideas whose value is revealed only after investigation. Be-

cause this exploration typically demands expertise, a principal funding an innovation often

contracts with an agent to carry it out. Such delegated search relationships arise in a range

of settings, including the development of intellectual property, R&D partnerships, and the

acquisition of early-stage startups. The principal’s delegation to the agent introduces two

core frictions: the agent’s search process may be inherently difficult to monitor, and the

agent may have better information about potentially fruitful ideas. Faced with limited

information and limited control, how can the principal design a contract that encourages

the agent to explore only worthwhile ideas?

To study this problem, we augment the canonical robust contracting model of Carroll

(2015) to incorporate the agent’s sequential exploration of alternatives. In our model, a

principal (“she”) contracts with an agent (“he”) who can search over projects to generate

a prize. Each project is modeled as a “Pandora’s Box” (Weitzman, 1979), characterized

by a prize distribution and a fixed cost required to make the prize collectible. The agent

is protected by limited liability, and his search process is unobservable to the principal.

Moreover, we assume that the principal knows only one of the agent’s available projects

at the time of contracting. For instance, this could be an author’s “pitch,” an inventor’s

prototype, or an industry-standard method for conducting research. Following Carroll

(2015), we adopt a robustness approach to address this informational asymmetry. The

principal designs a contract to maximize her worst-case expected profit given her initial

knowledge.

A cornerstone result of our paper is that a debt contract is robustly optimal for the

principal. In a debt contract, the principal collects the entire prize if it falls below a

predetermined debt level, while the agent keeps any profits in excess of the debt level.
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Roughly, debt is optimal because it reflects the option value of the agent’s continued

search. By promising payment to the agent only after he reaches a certain milestone, the

agent is incentivized to “swing for the fences” and explore high-risk, high-reward projects.

Our debt contract strictly outperforms linear contracts that are typically optimal in the

robust contracting literature (e.g., Carroll, 2015; Walton & Carroll, 2022; Dai & Toikka,

2022; Liu, 2022). Linear contracts are suboptimal because they dampen the agent’s

search incentive, making the principal vulnerable to low-risk, low-reward projects that

were unknown at the time of contracting.

Building on the optimal debt contract, Theorem 1 characterizes the set of robustly

optimal contracts, which are all debt-like. It establishes that a contract is robustly optimal

if and only if it involves a minimum debt level and enables the principal to capture the full

social surplus in the worst-case scenario. The minimum debt level is crucial to discourage

the agent from terminating search too early, while the full surplus extraction condition

maximizes the principal’s profit subject to the agent’s participation. Our characterization

encompasses several commonly observed contract formats, including pure debt, debt-plus-

equity, and capped-earnout debt.

Our baseline model provides a novel rationale for the use of debt-like contracts in many

environments; however, its predictions are not unique. In Section 5, we refine our model

to better understand when specific contract formats will emerge. In particular, we show

that pure debt arises when the agent can resample projects; debt-plus-equity emerges

under principal moral hazard; and capped-earnout debt is appropriate when the agent

is risk-averse. Lastly, in Section 6, we extend the model to accommodate the principal

contracting with multiple agents who have different projects. We show that dynamically

sponsoring agents and offering each a personalized debt contract is optimal, underscoring

the robustness of this paper’s insight.

The contributions of this paper are threefold. First, we demonstrate the importance
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of incorporating additional structure on the agent’s moral hazard problem within a robust

contracting framework. Our model’s departure from Carroll (2015)—allowing the agent to

sequentially search instead of making a one-time decision— drastically changes the shape

of the optimal contract. One intuition for why the models generate different predictions

relates to which project statistics guide the agent’s decision-making. In Carroll (2015),

the value of a project is captured by its expected prize net of cost, making linear contracts

desirable. In our dynamic search setting, however, the relevant statistic for the agent’s

decision is the Weitzman index, which reflects the option value of continued search. The

agent’s payoff under a debt contract mirrors the index: both evaluate the expected prize

in excess of a threshold. As a result, the agent’s decision-making under a debt contract

reproduces the socially optimal behavior.

Second, to our knowledge, our paper is the first to study contracting for sequential

search à la Weitzman (1979) in a general setting with moral hazard and asymmetric

information. Even without asymmetric information, we are unaware of the solution to

the Bayesian version of this contracting problem outside a few special cases. This paper

further underscores how a robustness approach can deliver simple insights that would be

muddled in a Bayesian setting.

Finally, our results speak to the prevalence of debt-like contracts in practice and

shed light on the forces that give rise to various debt-like instruments. An alternative

interpretation of our model is one where the agent designs a security to sell to a cautious

investor. If the agent’s goal is to maximize the sale price—for example, because he faces

a liquidity constraint—the solution coincides with that of our model. This interpretation

aligns us with more conventional applications of debt within the finance literature. We

provide several real-world examples of these contracts, as well as a more general discussion

of applications, in Section 5 after presenting our main results.
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Related Literature

Our paper primarily connects two strands of the literature that have remained largely sep-

arate. The first studies the financing of experimentation and innovation, highlighting the

role of dynamic incentives, and the second investigates the provision of robust incentives

in moral hazard environments, emphasizing mechanisms that perform well under limited

knowledge of the underlying technology.

Lewis and Ottaviani (2008), Lewis (2012), and Ulbricht (2016) study delegated search

in the context of R&D financing. A common feature of these papers is the stationarity of

the underlying environment: the agent repeatedly samples from an identical distribution

of outcomes, akin to facing an infinite sequence of homogeneous Pandora’s boxes in our

model. As a result, the literature on delegated search primarily focuses on the intensity of

effort or the duration of search. A similar emphasis is found in the broader literature on

contracting for experimentation, which studies how conflicts of interest affect the dynamics

of payments and the length of experimentation (Bergemann & Hege, 1998, 2005; Hörner

& Samuelson, 2013; Halac, Kartik, & Liu, 2016; Guo, 2016).

We examine a complementary question: not how much to search but what to search

for. In many delegated search settings, the agent faces a project selection problem—

such as choosing between safe and risky technologies—on top of deciding how intensely

to search. Capturing this possibility requires departing from the stationary framework

and allowing for the possibility of heterogeneous Pandora’s boxes. Hence, our model

also relates to the small literature on delegated project choice (see, e.g., Armstrong &

Vickers, 2010, Nocke & Whinston, 2013). The closest paper in this literature is Guo and

Shmaya (2023), which derives the robust, regret-minimizing policy. We differ by allowing

for transfers and requiring the agent to exert effort to discover a prize. This leads to

distinct tradeoffs because we have different instruments to separate incentive provision
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from project selection. For example, our principal does not gain from incentivizing the

agent to disclose multiple prizes.

Introducing project selection into delegated search creates significant challenges. The

Bayesian version of the problem is generally intractable and, when solvable, often yields

highly specific, assumption-driven solutions. This motivates our study of the minimax

optimal contract under minimal assumptions about the agent’s technology, placing us

within the literature on robust contracting stemming from Hurwicz and Shapiro (1978).

As mentioned above, the paper closest to ours is the seminal contribution of Carroll (2015).

We only minimally depart from Carroll’s model to study dynamic search, allowing the

agent to take multiple actions sequentially. Relatively few papers study robustness in a

dynamic setting.1 Chassang (2013) and Liu (2022) consider dynamic incentive problems

that are separable across periods, and show that linear contracts perform well. Our

incentive problem is not separable because the principal ultimately selects a single prize,

and our optimal contract disregards the potential arrival of intermediate information.

In this respect, we are closer to Libgober and Mu (2021) and Koh and Sanguanmoo

(2024), who also derive mechanisms that are insensitive to the arrival of intermediate

information. Libgober and Mu (2021) study a durable goods monopoly, and Koh and

Sanguanmoo (2024) study a learning setting similar to ours. One key difference is that

they assume learning benefits the agent but may impose a negative externality on the

principal, while in our model, the prize accrues to the principal and the costs are borne

by the agent.

One can alternatively view our model as a fully static extension of Carroll (2015),

where the principal possesses additional knowledge on the set of feasible actions. Specif-

ically, rather than considering all actions possible, the principal only entertains action

sets whose payoff distributions can be generated by sequential search through some set

1We direct the reader to Carroll (2019) for a survey of this literature, which discusses some of the
challenges in studying dynamics in robust contracting.
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of projects.2 Our approach provides a complementary perspective to the imposition of

exogenous restrictions on the ambiguity set, which often requires making strong assump-

tions to maintain tractability (e.g., considering only MLRP ranked families as in Antic,

2021). We therefore contribute to a nascent theoretical literature that investigates the

sensitivity of robust mechanisms to perturbations in the ambiguity set (Walton & Carroll,

2022; Kambhampati, 2024; Ball & Kattwinkel, 2024; Olszewski, 2025). Our results thus

confirm that natural changes to the ambiguity set are likely to alter the optimal design,

as emphasized by Olszewski (2025).

Finally, our findings complement a large finance-oriented literature that seeks to ex-

plain the prevalence of debt contracts. As we do, many papers have shown the efficacy of

debt in mitigating moral hazard (e.g., Jensen & Meckling, 1976; Townsend, 1979; Innes,

1990; Hébert, 2018).3 The common intuition is that debt contracts approximate complete

ownership transfer to the agent, maximizing incentives while respecting limited liabil-

ity. However, these results often rely on strong distributional assumptions regarding the

agent’s technology or restrictions on the contract space, such as double monotonicity.

More broadly, while debt is valued for its ability to incentivize effort, it is also criticized

for encouraging risk-shifting, an outcome typically undesirable for the principal (Jensen

& Meckling, 1976). Instead, in our delegated search problem, both effects work in the

principal’s favor. Intuitively, debt contracts push the agent toward efficiently exploring

risky alternatives and discouraging early termination.

2For instance, a static model in which the agent has exactly two actions available, (F0, c0) and (F1, c1),
would be inconsistent with the possibility of sequential search. In addition, the agent should have actions
that correspond to adaptively searching the two alternatives.

3Beyond moral hazard, many additional theories justify the widespread use of debt. These include
lowering firms’ tax burden (Miller, 1977), signaling firms’ positive private information about profitability
(Myers & Majluf, 1984), mitigating adverse selection (Dang, Gorton, & Holmström, 2011; DeMarzo &
Duffie, 1999; Nachman & Noe, 1994; Yang, 2020), maintaining control or limiting investment (Aghion &
Bolton, 1992; Hart & Moore, 1994; Jensen & Meckling, 1976), etc. See Tirole (2010) for an overview of
the literature on security design and capital structure.
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2 Model

The setup and notation of our baseline model mirror that of Carroll (2015) when possible.

A principal (“she”) contracts with an agent (“he”), who sequentially searches through

projects to generate a prize. Each project is a “Pandora’s box” in the language of Weitzman

(1979), and the set of projects available to the agent is denoted by A = {ai}ni=0, with

n ∈ N. The project ai is described by a pair (Fi, ci) ∈ ∆(R+) × R+ such that Fi has

finite expectation. The parameter ci represents the agent’s private cost to learn project

i’s realized prize yi, which is distributed according to Fi. Each project’s prize is drawn

independently, and we assume both players are risk-neutral.

When facing a set of projects A, the agent engages in sequential search (with recall)

à la Weitzman (1979). We can describe the agent’s strategy as a function of two state

variables: (1) the set of projects sampled up to date, denoted by Ã ⊆ A, and (2) the

highest monetary wage from the sampled projects, denoted by ỹ. Formally, a strategy is

a function σ : 2A × R → 2A ∪ {∅}, where σ(Ã, ỹ) = ai means that the agent will sample

project ai ∈ A\ Ã next and σ(Ã, ỹ) = ∅ means that he will cease searching and present a

prize that gives himself the monetary reward of ỹ. The agent may always return a prize

of zero without sampling any projects. We abusively write ai ∈ σ to denote the event

that the project ai is sampled according to the strategy σ.

As in a typical moral hazard environment, we assume that the agent’s action—i.e., the

search process—is unobservable and cannot be directly contracted on. In particular, the

principal does not know which projects the agent sampled to generate a prize. However,

she can contract on the final prize y the agent presents to her.4 The principal’s only

incentive tool is thus a wage contract w : R+ → R, where w(y) is the agent’s monetary

4We assume the agent can only present one single prize, as is often the case in practice. In Section 4,
we argue that the principal does not gain from offering general mechanisms, including allowing the agent
to present more than one prize.
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payment when the presented prize is y. All contracts must be measurable and satisfy

limited liability, meaning w(y) ≥ 0 for any y ∈ R+.

The timing of the game is summarized as follows.

1. The principal sets a contract w.

2. The agent sequentially searches among A, after which he presents a prize y.

3. The agent’s payoff is w(y)−
∑

i ci1[ai∈σ] and the principal’s payoff is y − w(y).

Although the agent knows the true set of projects A, we assume the principal only

knows one of those projects, a0 = (F0, c0), at the time of contracting. So, she considers

all A ⊇ A0 := {a0} as possible.

The principal’s objective is to determine a wage contract w that maximizes the worst-

case expected payoff against all possible realizations of A consistent with A0. Formally,

given a realized set of projects A and a wage contract w, we let Σ(w,A) denote the set of

optimal search strategies for the agent. For a given strategy σ, we write Eσ to denote the

expectation with respect to the induced distribution over prizes generated by the agent’s

search. The principal’s payoff for a given contract and set of projects is

VP (w | A) := sup
σ∈Σ(w,A)

Eσ[y − w(y)],

where we assume the agent breaks ties in favor of the principal.5

The principal evaluates a wage contract w by its payoff guarantee VP (w), her expected

payoff in the worst-case realization of A:

VP (w) := inf
A⊇A0

VP (w | A).

5This assumption is for ease of exposition, and is not essential for the qualitative takeaways of this
paper. See Section 4 for further discussion.
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The principal seeks a contract that maximizes her payoff guarantee, defined as VP

below. We call a contract that achieves a guarantee of VP a (robustly) optimal contract.

VP := sup
w

VP (w)

3 Optimal Contracts

Our main objective in this section is to identify the principal’s robustly optimal con-

tract(s). To do so, we begin by describing the agent’s optimal search strategy. Given this

strategy, we will argue that a debt contract is robustly optimal, which we then extend to

a class of related contracts. After presenting the main results, we contrast our findings

with those in the previous literature and explain why the differences emerge.

3.1 Agent’s Response to a Wage Contract

The agent’s optimal search strategy depends on the offered contract and the available set

of projects. As a first step, we begin by recalling the solution to the problem of Weitzman

(1979). For the project ai = (Fi, ci), we define its index (or reservation value), ri, as the

smallest solution to6

ci =

∫
[yi − ri]

+dFi(yi). (1)

A social planner who maximizes the joint welfare of the principal and the agent facing

the same search problem will (1) sample the projects in descending order of their index

values and (2) conclude the search whenever a realized prize y is larger than the index

values of the remaining unsampled projects.7

6When ci is positive, the solution is unique. However, when ci = 0, there may be a continuum of
solutions, including infinity. The index may also be negative, in which case it is never optimal for the
agent to sample the project.

7If there are multiple projects with the same index, the agent is indifferent to their ordering, and
there are multiple optimal strategies.
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When facing the wage contract w, the agent still uses an index strategy, except his

incentives are distorted by the contract. Given a wage contract w, project ai’s w-induced

index (or w-induced reservation value), rwi , is the smallest solution to

ci =

∫
[w(yi)− rwi ]

+dFi(yi). (2)

Thus, the agent optimally samples projects in descending order of rwi and stops search-

ing when his best realized monetary payoff exceeds the w-induced index values of the

remaining unsampled projects.

3.2 Debt Contract Outperforms Linear Contracts

Having specified the agent’s optimal response to any contract w, we now return to the

principal’s problem of finding the contract with the maximal payoff guarantee. We begin

by identifying a simple upper bound on the principal’s payoff guarantee: the surplus of

the known project a0, which we denote by s0.

s0 := EF0 [y]− c0

Observation 1. No contract can guarantee the principal more than the full surplus of the

known project. That is, for all w, VP (w) ≤ s0.

Proof. Under the known set A0, VP (w | A0) ≤ s0 for all contracts, for otherwise the

agent’s payoff would be strictly negative, and he would prefer to not search and return a

prize of 0 instead. The observation follows because VP (w) ≤ VP (w | A0) by definition.

It is not immediately clear that this upper bound is useful, as robustly extracting

the entire known surplus is a demanding desideratum. Indeed, we will argue that linear

contracts—a natural candidate given the preceding literature—are unable to deliver this
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guarantee. Nonetheless, a properly calibrated debt contract can extract the full surplus,

even in the worst case.

To argue this, we start with a useful observation that helps identify the principal’s

worst-case payoff when using a contract that satisfies double monotonicity. A contract

w is said to be doubly monotone if both w(y) and y − w(y) are non-decreasing in y.

Although the following result only applies to doubly monotone contracts, the main results

of the paper do not assume double monotonicity.

Observation 2. Fix any doubly monotone contract w, and let VP (w) be the corresponding

payoff guarantee. Either (1) VP (w | A0) = VP (w) or (2) for any ϵ > 0, there exists

a1 = (δx, 0) such that VP (w | A0 ∪ {a1}) < VP (w) + ϵ, where δx is a Dirac mass for some

x satisfying w(x) > rw0 .8

Proof. See Appendix A.1.

One interpretation of this result is that the principal’s primary concern is the presence

of cheap and safe alternatives unknown at the time of contracting. The principal’s worst

case is either when the agent has a0 alone or exactly one other project a1 that crowds

out the known project. The project a1 constructed in Observation 2 delivers a constant

wage that just exceeds the w-induced index of the known project a0. Hence, the agent’s

optimal search strategy when facing A = {a0, a1} is to only sample a1 and terminate the

search afterward. Unlike in Carroll (2015), the principal’s payoff is never minimized by

additional projects with stochastic output.

Applying Observation 2 to linear contracts, which are doubly monotone, shows that

their payoff guarantee is strictly below the surplus of the known project.

Observation 3. If c0 > 0, no linear contract robustly guarantees the full surplus,9 i.e.,
8The ϵ accounts for the infimum in the definition of VP , which may not be achieved.
9For c0 = 0, the linear contract with slope 0 coincides with the 0-debt contract, extracts the full

surplus, and is robustly optimal.
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supα∈[0,1] VP (w(y) = αy) < s0.

Proof. See Appendix A.2

The main idea behind Observation 3 is seen by considering the naive linear contract

w(y) = α∗y, where α∗ = c0
EF0

[y]
. Under this contract, the principal extracts the full surplus

of the known box when the agent can only sample a0. However, in light of Observation 2,

consider what happens when the agent additionally has access to some project a1 = (δx, 0),

where x > 0 is arbitrarily small. Because the induced index of the known project is zero,

the agent will sample only a1 and deterministically return a prize of x. Since x may be

arbitrarily small, the payoff guarantee of the naive linear contract is 0. The proof in

Appendix A.2 also shows that linear contracts with slope close to α∗ cannot approximate

the naive upper bound obtained in Observation 1.

Intuitively, linear contracts fail to have a high payoff guarantee because they dampen

the agent’s incentive to explore risky projects. When the agent encounters a safe, low-value

project, he may abandon exploration prematurely, even though continued exploration

benefits the principal. This occurs because linear contracts overly penalize high levels

of output, which are focal in the computation of the project’s index value as defined in

Equation (2). This reasoning suggests that the principal’s optimal contract should make

low-risk projects look relatively unattractive to the agent, thereby limiting the principal’s

exposure to unknown alternatives.

Fortunately, debt contracts are immune to these issues. For any z ∈ R+, the z−debt

contract is defined as the contract w(y) := [y−z]+. When the principal offers the z−debt

contract, she collects all the returns up to the debt level z, after which the agent becomes

the residual claimant and collects any prize in excess of z. Conceptually, this is equivalent

to offering the agent a call option on the prize with a strike price of z.

When properly calibrated to the known project, a debt contract can achieve the payoff

guarantee of s0 given in Observation 1. Let r0 denote the index of the known project a0
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as defined using Equation (1), and let w0 denote the r0-debt contract w0(y) = [y − r0]
+.

Proposition 1. The payoff guarantee of the r0-debt contract, w0, is the entire surplus s0.

Therefore, w0 is robustly optimal, and VP = VP (w0) = s0.

Proof. We argue that VP (w0) = s0, which implies that w0 is robustly optimal given the

upper bound of VP ≤ s0 identified in Observation 1.

First, VP (w0 | A0) = s0 because the calibrated debt level r0 leaves the agent zero

expected payoff when A = A0. To see this, notice that

EF0 [w0(y)]− c0 = EF0 [(y − r0)
+]− c0 = 0,

where the last equality follows by definition of the index r0. In other words, when a0 is

the only available project, the contract w0 maximizes total surplus (because the agent is

still willing to sample a0) while leaving none to the agent. This also implies that rw0
0 = 0.

Second, we show that VP (w0) = VP (w0 | A0), i.e., the worst-case scenario is A =

A0 when the principal offers w0. The proof proceeds by contradiction. So, suppose

VP (w0) < VP (w0 | A0). Since w0 is doubly monotone, Observation 2 implies that there

exists A = {a0, a1}, where a1 = (δx, 0) is a safe project with w0(x) > rw0
0 = 0, such that

VP (w0 | A0) > VP (w0 | A). However, the agent’s wage under w0 is strictly positive only if

the presented prize is strictly greater than r0. This guarantees that the principal’s profit

is r0 when the agent has access to the set A, which is the best possible outcome for the

principal under the contract w0. Since r0 > s0 by Equation (1), A = {a0, a1} cannot be

worse than A0.

Thus, VP (w0) = VP (w0 | A0) = s0, and w0 is robustly optimal.

As the proof demonstrates, w0 attains the payoff guarantee upper bound because it

achieves two goals simultaneously. First, w0 fully guards the principal against safe, low-

value projects that may preemptively terminate the agent’s search. The agent is not
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rewarded for presenting low prizes, and thus any prize that can terminate his search

before exploring a0 must be sufficiently large. Debt completely eliminates the risk of the

agent’s access to unknown projects, unlike the linear contract. Second, the debt level r0

is chosen so that the principal extracts the entire surplus when a0 is the only available

project. Together, these two properties maximize the principal’s payoff guarantee.

3.3 Characterization of Robustly Optimal Contracts

Following the construction of the optimal debt contract w0 in Proposition 1, a natural

question is whether other contracts can also attain the same payoff guarantee. The answer

turns out to be yes. To generalize the previous result, notice that for any contract w, we

must have

VP (w) ≤ VP (w | A0) ≤ s0. (3)

As outlined below Proposition 1, the structure of the debt contract w0 causes both inequal-

ities in Equation (3) to bind. By contrast, we have argued that linear contracts cannot

simultaneously deliver both as equalities, rendering them strictly suboptimal. Since the

principal’s maximal payoff guarantee is exactly s0, a necessary and sufficient condition for

a contract to be robustly optimal is therefore to satisfy both sides of Equation (3) with

equality. Using this logic, the following theorem characterizes the properties of robustly

optimal contracts.

Theorem 1. A contract w is robustly optimal if and only if it satisfies the following two

conditions.

1. Minimum Debt Level condition (MDL henceforth):

w(y) ≤ [y − s0]
+
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2. Full Surplus Extraction condition (FSE henceforth):

EF0 [w(y)] = c0.

Proof. See Appendix A.3.

The intuition for this theorem parallels that of Proposition 1. The FSE condition

ensures that the principal collects the full surplus when a0 is the only available project.10

The MDL condition guarantees that A = A0 is indeed the worst case. As before, the

principal collects the entire prize if it falls below s0, whereas her payoff y − w(y) is at

least s0 if the presented prize exceeds s0. This guards the principal against safe, low-value

crowding out the known project because the principal will at least collect s0 even if the

agent terminates the search before sampling a0.

However, because we do not impose double monotonicity of the contract as in Observa-

tion 2, we must address one additional wrinkle. Previously, double monotonicity implied

that any additional search by the agent only increased the prize y that was presented, and

thus the principal’s profit y−w(y). If w(y) and y−w(y) are not co-monotone, the agent

continuing to sample additional projects after a0 could potentially reduce the principal’s

profit. Both the FSE and MDL conditions play a role in eliminating this possibility. If the

agent chooses to sample some project a1 after sampling a0, it must have a w-induced index

of exactly zero, rw1 = 0. Otherwise, the agent would have sampled a1 before a0, which

has rw0 = 0 by FSE, or not at all. This implies the agent’s best wage before sampling a1

must be zero; otherwise, he would have already stopped searching. Finally, if the prize

y1 from a1 satisfies w(y1) = 0, tie-breaking in favor of the principal improves her payoff;

otherwise, if w(y1) > 0, then the MDL condition guarantees the principal’s profit is again

at least s0.

10Here, we use principal-favored tie-breaking by the agent for a tight characterization. A more thorough
discussion appears in Section 4.

16



Theorem 1 underscores the importance of debt-like instruments—such as performance

targets and earnout contracts—in incentivizing exploration. For a contract to be robustly

optimal, some level of debt (though not necessarily as high as r0) is inevitable. This

is reminiscent of many real-world delegated search relationships where the agent is re-

warded only if the outcome reaches a certain standard. For instance, pharmaceutical

startups typically earn bonuses only after passing certain clinical trials, while researchers

are disproportionately rewarded for publications in top journals. Broadly, these high

hurdles provide the appropriate incentives to “swing for the fences.” Although such risk

shifting may be detrimental in other cases, because our environment features exploration,

it is a boon. The risks of failure are muted relative to the benefits of success due to the

option value of exploring alternative projects.

The set of robustly optimal contracts identified in Theorem 1 includes several types

of contracts that are commonly observed in practice. We depict three prominent types of

contracts in Figure 1, which will be the focus of Section 5.

y

w0(y)

y − w0(y)

r0s0

(a) Pure debt

y

w(y)

y − w(y)

zs0

α

(b) Debt-plus-equity

y
z

w̄

s0

w(y)

y − w(y)

(c) Capped-earnout debt

Figure 1: Three examples of optimal contracts. Panel (a) depicts the pure debt contract w0. Panel (b)
depicts the (z, α)-debt-plus-equity contract. Panel (c) depicts the (z, w̄)-capped-earnout-debt contract.
In each panel, the red and the blue curves represent the agent’s and the principal’s payoffs, respectively.

The first type of contract is pure debt (previously, just called “debt”). The only robustly

optimal pure debt contract is w0, the focus of Proposition 1. This contract has the highest
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debt level among all doubly-monotone contracts.

A second type of contract is debt-plus-equity, or convertible debt. We refer to a contract

w as the (z, α)-debt-plus-equity contract if w(y) = [α(y − z)]+ for some z > 0 and

α ∈ (0, 1). Under such a contract, the principal collects all the returns up to the debt level

z, after which the agent collects an α share of the residual. A debt-plus-equity contract

differs from a pure debt contract as the principal still shares some profit after the debt is

fully repaid. Practically, this is implemented by an option in the contract to convert the

debt into equity participation at a pre-specified rate. In our model, there is a continuum

of debt-plus-equity contracts that are robustly optimal — specifically, a (z, α)-debt-plus-

equity contract is robustly optimal if and only if z ∈ [s0, r0) and αEF0(y − z)+ = c0.

The third type of contract we focus on is capped-earnout debt. We refer to a contract

w as the (z, w̄)-capped-earnout-debt contract if w(y) = min{w̄, [y − z]+} for some z > 0

and w̄ > 0. A capped-earnout debt contract is similar to a debt contract except that the

agent’s wage (or “earnout payment”) is bounded above by w̄. The agent is fully sensitive

to marginal changes in the prize between z and w̄, but insensitive outside this region. This

contract resembles a senior tranche used in structured finance. In our model, there is also

a continuum of capped-earnout debt contracts that are robustly optimal — specifically,

a (z, w̄)-capped-earnout-debt contract is robustly optimal if and only if z ∈ [s0, r0) and

EF0 [min{w̄, (y − z)+}] = c0.

Within our baseline model, there is no obvious way to select among these robustly

optimal contracts. Notably, all contracts identified by Proposition 1 are admissible; each

delivers the same payoff guarantee and is the principal’s preferred contract for some re-

alization of A. An alternative refinement would be on the basis of the total surplus

generated by a contract. Unfortunately, in general, there is no contract that maximizes

the total surplus against any A ⊇ A0 while remaining robustly optimal. However, under

some conditions on a0, the pure debt contract w0 is both robustly optimal and socially
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efficient. This follows because pure debt contracts are order-preserving, i.e., the agent’s

search order coincides with the social planner’s, despite the presence of the contract. Di-

rect computation shows that the w0-induced index of any project ai is rw0
i = ri − r0.

Because a pure debt contract uniformly reduces the indices of all projects, it does not

distort the order in which the agent searches them, nor when the agent terminates search

with a positive wage. However, the debt contract may prevent the agent from exploring

projects with lower indices than a0; hence, some extra conditions are required. No other

type of contract besides pure debt can be socially efficient, as any alternative contract

necessarily distorts the agent’s search over some collection of projects. These results are

presented formally in Appendix B.

Instead of direct selection based on admissibility or efficiency, we find it more instruc-

tive to enrich the model setup to identify additional forces that might select one contract

or another. This analysis continues in Section 5.

3.4 Comparison with Literature

We are now in a position to explain why our main findings differ from those in the prior

literature on robust contracting, where linear contracts—not debt contracts—are typically

optimal. Our model departs from Carroll (2015) in one aspect only: rather than choosing

a project as a one-time decision, the agent in our framework sequentially searches across

alternatives. While this difference may appear minor, it leads to qualitatively different

conclusions. We propose two lenses through which to understand this distinction.

First, the robustly optimal contracts in the one-shot versus sequential search models

reflect different “sufficient statistics” of a project that guide the agent’s choice in each

environment. In Carroll (2015), the social value of a project is captured by its expected

prize net of cost. This makes linear contracts desirable, since they align the agent’s and

principal’s incentives over different risk distributions, thereby minimizing distortions. In
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our dynamic search setting, however, the relevant statistic is the Weitzman index, which

captures the option value of continued search. A pure debt contract is therefore optimal

because it mirrors the index: both evaluate the expected prize in excess of a threshold. As

a result, the agent’s decision-making under a debt contract reproduces socially optimal

behavior.11 This leaves less room for a malevolent nature to interfere, as any unknown

projects can only improve social surplus and simultaneously the principal’s payoff. As

Theorem 1 shows, an optimal contract need not look exactly like the Weitzman index,

but it must have the right shape (MDL) and level (FSE).

Second, due to the differing agent strategies, the type of unknown project that our

principal guards against is thus fundamentally different than that of Carroll (2015). In

Carroll (2015), the principal worries that the agent selects an excessively risky project

and gambles for a favorable realization. Instead, in our setting, the principal would

benefit from such gambles. So, she does not need to protect herself against excessive risk-

taking, but aims to prevent the agent from settling too early on a safe, low-value project

and prematurely concluding the search process (as suggested by Observation 2). Linear

contracts effectively align the principal’s and agent’s incentives in a static moral hazard

problem, but they discourage search in our dynamic problem by making safe projects

relatively more attractive. Debt contracts offer a distinct advantage: they discourage

early stopping by making low prizes unattractive to the agent, thus encouraging risk-

taking and continued experimentation.

11As mentioned in Section 3.3, one caveat is that the agent will not search unknown projects whose
indices are lower than the known one. But, as Observation 2 suggests, such projects will not appear in
the worst case under a debt contract.
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4 Discussion of Assumptions

Before turning to extensions of our baseline model, we briefly comment on the roles of

several of our modeling assumptions.

Limited liability. In our setting, limited liability plays a slightly different role than

in Carroll (2015) and the security design literature at large. As is typical, if we allow

the agent’s wage to be negative, the principal can “sell the firm” to the agent for the

expected surplus, using the contract w(y) = y − s0. Thus, limited liability is clearly

important in the necessity direction of Theorem 1, where we characterize all optimal

contracts. However, relaxing limited liability does not interfere with sufficiency because

the contracts we identify give the same worst-case payoff as selling the firm, so they remain

robustly optimal.

Moreover, selling the firm to the agent is weakly dominated by any of the contracts

identified in Theorem 1. Intuitively, selling the firm must yield a deterministic payoff of

s0—the sale price—regardless of the true set of projects A. By contrast, for any robustly

optimal contract w identified in Theorem 1, the principal’s expected payoff is weakly

greater than s0 across all realizations of A, with the inequality being strict for some

realizations of A.12 This provides an alternate rationale for using debt-like contracts.

Relative to selling the firm, debt-like contracts not only “prepare for the worst” but also

“hope for the best” (Dworczak & Pavan, 2022).

Tie-breaking rule. Assuming that the agent selects the principal-preferred search strat-

egy when indifferent appears in the proofs of both Proposition 1 and Theorem 1, but is

not essential to the qualitative takeaways of the paper. Unfavorable selection by the

agent introduces two potential complications that are easily surmounted by considering

contracts very close to pure debt. The first issue is that, after stopping, the agent may

12One such example would be if A included a free, full-support project.
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return the lowest prize among several that equally maximize his wage. The second issue

is that the agent may choose not to explore the known project if his current wage exactly

equals the index of the known project. To overcome these issues, consider a debt-like

contract w(y) = max{ϵy, y − z}, for ϵ > 0. Since this contract is strictly increasing, the

agent must return the highest prize that he opens, solving the former issue. Then, by

choosing ϵ and z such that the known project has a strictly positive index close enough

to zero, the agent cannot stop unless he has searched the known project or produced a

prize sufficiently close to paying off the entire debt. Thus, even under unfavorable selec-

tion, approximating the debt contract brings the principal arbitrarily close to full surplus

extraction.

Principal’s information. Our model assumes that the principal knows one of the

agent’s projects at the outset. A natural question is what happens if the principal knows

more than one project available to the agent. In such an extension, we can no longer

characterize the optimal contracts as in Section 3 because we cannot generally guarantee

full surplus extraction.13 However, it remains true that an optimal contract must include

a minimum debt level. Any contract that does not include debt is susceptible to having

some known projects crowded out by a safe, low-value alternative—the same failing as

the linear contract. Adding a small amount of debt would necessarily improve on this

contract because it again discourages the agent from terminating the search too early. In

this case, the shape of the contract above the debt level will then depend on the specific

parameters of the known projects.

Contracting space, screening, and randomization. To keep the description of the

model simple, we assumed that the principal could only contract on the value of a sin-

gle prize presented by the agent. Depending on the application one has in mind, more

sophisticated mechanisms may be available to the principal. For instance, the principal

13A characterization is possible only in special cases, e.g., when the projects can be resampled repeat-
edly (see Section 5.1).
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could use a wage contract that depends on multiple presented prizes or the identity of the

project that delivered the prize. More generally, the principal may have other ways to

indirectly monitor the agent’s effort. Alternatively, the principal may attempt to mitigate

an adversarial nature by screening the agent’s private information through a menu of con-

tracts or using randomization (Kambhampati, 2023; Kambhampati, Peng, Tang, Toikka,

& Vohra, 2025). Although they may weakly dominate our debt-like contracts, none of

these generalizations can improve the principal’s worst-case payoff. No matter what the

generalized contracting mechanism allows, the payoff guarantee is bounded above by the

case when nature chooses A = A0. Because the full surplus of s0 is already extracted in

this case, it is impossible to strictly improve on this payoff without violating the agent’s

outside option of not searching at all and presenting a prize of 0. So, the contracts identi-

fied in Proposition 1 remain optimal even when the principal can use more sophisticated

mechanisms.

5 Contract Selection

Theorem 1 demonstrates that many contracts achieve the optimal payoff guarantee in our

baseline model. To refine our model’s predictions and better understand the circumstances

under which different debt-like instruments may arise, we examine several extensions that

uniquely select one contract among the ones identified in Theorem 1. Specifically, we argue

that (i) pure debt naturally emerges when projects may be resampled; (ii) debt-plus-equity

is well-suited to environments with two-sided moral hazard; and (iii) capped-earnout con-

tracts are appropriate when it is desirable to limit the agent’s risk exposure. We close each

of the following subsections by illustrating some of these contracts’ application domains

and highlighting how their forms reflect the key forces emphasized in our framework.

To focus on the new forces introduced in these extensions, we henceforth maintain the
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assumption that the distribution of prizes from the known box, F0, has full support. Full

support helps establish uniqueness in these extensions, even though it does not deliver

uniqueness in our baseline model.

5.1 Resampling Projects

An alternative assumption on the agent’s search process, often used in the delegated

search literature, is to allow the agent to resample any available projects to draw a new

prize. One interpretation is that the project represents a repeatable process with the same

ex-ante likelihood of success, such as exploratory drilling in an oil field or pharmaceutical

experimentation with similar molecular structures. In other words, these are settings in

which the principal is confident that the agent could succeed eventually, given enough

effort. Extending the model to allow for resampling projects selects pure debt to be

uniquely optimal.

Proposition 2. If projects may be infinitely resampled, then any robustly optimal contract

coincides with w0 almost everywhere.

Proof. See Appendix A.4.

The optimality of pure debt follows from essentially the same arguments as Proposi-

tion 1. When A = A0, the pure debt contract induces the agent to search efficiently while

leaving the agent with no surplus. In this case, the agent must continue to search until he

generates a prize above the debt level r0, delivering a payoff of VP = r0 to the principal.

A rough argument for uniqueness follows from Theorem 1. Although it cannot be

directly applied in this setting with repeated sampling, replacing the principal’s original

payoff guarantee of s0 with the new payoff of r0 in the MDL condition uniquely pins down

the pure debt contract w0. Intuitively, the principal must have y − w(y) ≥ r0 whenever

the agent stops with prize y; otherwise, she is exposed to the possibility of an unknown
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project that generates y for certain, reducing her payoff. Combining this upper bound on

w with the full surplus extraction condition leaves only the pure debt contract.

Although our model takes the perspective of a principal designing a contract for the

agent, it also speaks to how an agent could design a security to sell to an investor. If the

agent would like to maximize the price at which the security is sold—for example, if he

is cash-constrained—but anticipates the investor’s caution, the agent’s optimal security

would coincide with the debt-like contracts we obtain. Indeed, debt is a familiar feature

of commercial finance.14 Speaking more directly to the role of repeated sampling, oil and

gas companies commonly utilize debt financing to finance capital-intensive projects, such

as exploration and drilling (Clews, 2016). The motivation for using debt is simple: it

protects the investor from downside risks while encouraging the borrower’s effort until

success.

5.2 Principal Moral Hazard

In many environments, the principal ultimately controls how the project’s value is realized

or reported. For instance, a publisher’s negotiations with downstream sellers are critical

for generating profits from a creative work. Moreover, the accounting of these profits may

be somewhat opaque, combining fixed fees, per-unit prices, and other revenue-sharing

agreements. This introduces a moral hazard problem, as the principal may under-monetize

the project or divert part of the realized value for private benefit. To capture these forces,

we extend the baseline model as follows.

After the agent presents the actual prize y, the principal chooses the nominal prize

ŷ ≤ y. We assume that only the nominal prize ŷ can be contracted on. The principal’s

14For example, government-backed R&D loans, clean energy investments, and subsidized infrastruc-
ture projects often rely on debt-like instruments. Government programs like the Small Business Ad-
ministration’s SBIR/STTR programs and others are designed to support a wide range of activities from
early-stage research to commercialization of technologies, appealing to the efficiency properties of debt
(see Appendix B).
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payoff is ŷ − w(ŷ) + k(y − ŷ), where the term k(y − ŷ) captures her private benefit from

diversion or shirking at a rate of k. We assume k ≤ 1− c0
EF0

(y)
to rule out degenerate cases

where the principal’s diversion motive is too strong and deters the agent from exploring

the known project a0. This condition also implies k ≤ 1, so any diversion of the prize is

socially inefficient. Finally, to keep the analysis focused on the moral hazard dimension,

we restrict attention to doubly monotone contracts.15

Given a contract w and a realized prize y, the principal’s nominal prize ŷ solves the

following program, whose largest maximizer we denote by ϕw(y).16

max
ŷ≤y

ŷ − w(ŷ) + k(y − ŷ).

When contracting, the agent anticipates the principal’s possible diversion of the prize.

Consequently, his search and participation decisions are shaped by the nominal prize

ŷ = ϕw(y) rather than the actual prize y. Since the principal cannot commit to fully

monetizing the prize, the agent internalizes the risk of diversion.

We now turn to the design of robustly optimal contracts. Notice that any diversion

by the principal is anticipated by the agent, which further weakens the agent’s incentives

to search. Because diversion is also inefficient, the principal intuitively stands to benefit

from writing a contract that ensures she will not divert any realized prize. We call

such a contract diversion-proof whenever ϕw(y) = y for all y ∈ R+. The following

lemma argues that there is no loss of optimality in restricting attention to diversion-proof

contracts.

Lemma 1. For any contract w, there exists a diversion-proof contract w̃ with a higher

15This simplifies the analysis because it guarantees that maximizers will exist and allows us to skip
other technical cases. Further, principal monotonicity will follow from optimality, while the agent mono-
tonicity can be micro-founded in several ways, including free disposal.

16Because w is doubly monotone, ϕw(y) is well defined. Further, given full support of F0, it will also
be optimal for the principal to select the largest maximizer in the event that there are multiple solutions,
as this will relax the agent’s participation constraint.
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payoff guarantee, VP (w) ≤ VP (w̃). Moreover, a contract is diversion-proof if and only if

Dw(y) ≤ 1− k, ∀y ∈ R+ (4)

where Dw(y) is the left derivative of w(·) evaluated at y.

Proof. See Appendix A.5.

The proof constructively shows that any contract that permits diversion can be im-

proved by dividing the lost social surplus between the principal and agent. This recapture

of surplus also increases the agent’s induced index of the known project, improving the

payoff guarantee against unknown projects. Lemma 1 also highlights that the principal’s

marginal profit share must be everywhere above k in any diversion-proof contract. This

additional constraint on the principal’s contracting problem paves the way for the opti-

mality of debt-plus-equity contracts. Recall that the (z, α)-debt-plus-equity contract has

a debt level of z, above which the agent’s marginal share is α.

Proposition 3. Let k∗ = 1− c0
EF0

[y−s0]+
.

(1) For any k, there exists a (z, α)-debt-plus-equity contract that is optimal, where

(z, α) =


(
s0 , c0

EF0
(y−s0)+

)
if k < k∗,(

zk , 1− k
)

if k ≥ k∗,

and zk satisfies (1− k)EF0(y − zk)
+ = c0.

(2) If k ≥ k∗, any optimal contract coincides with the above (zk, 1 − k
)
-debt-plus-equity

contract almost everywhere.

Proof. See Appendix A.6.

This result describes two cases, depending on whether k is above or below k∗. When

k ≤ k∗, the small diversion benefit is compatible with the debt level of s0 that protects the
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principal from unknown projects, as in the baseline model. Therefore, any contract that

was originally optimal according to Theorem 1 and keeps the principal’s marginal profit

share above k is also optimal here. Diversion-proofness is also necessary for optimality

because any diversion is inefficient, meaning the principal cannot capture the total surplus

s0. The contract presented in Proposition 3 is the one that maximizes the principal’s

minimum profit share across prizes, and is thus most resilient to the principal’s moral

hazard.

When k ≥ k∗, a debt requirement of s0 and a large principal share are incompatible

because the remaining wages are too small to incentivize the agent’s participation. In this

case, the principal must trade off leaving rents to the agent, satisfying diversion-proofness,

and protecting herself from unknown projects. The (zk, 1 − k)-debt-plus-equity contract

optimally balances this trade-off: any slackness in the diversion-proof constraint can be

repurposed to increase the debt level by an amount that maintains the agent’s partici-

pation. The constructed debt-plus-equity contract is optimal because it has the highest

debt level among all diversion-proof contracts that guarantee the agent’s participation.

In practice, two commonly observed contract forms that combine debt with equity par-

ticipation are advance-against-royalties contracts and convertible debt contracts. Advance-

against-royalties contracts are widely used in industries that rely on creative output or

speculative development, including publishing, intellectual property licensing, and early-

stage pharmaceutical R&D. Under this structure, the agent receives an upfront payment

(the advance) but does not earn further income until the project generates sufficient rev-

enue to “earn out” the advance. This contract effectively places the agent in a debt-like

position until the threshold is reached, at which point she becomes a partial residual

claimant. The structure serves three purposes: it provides liquidity to the agent up front,

encourages the agent to generate successful outcomes, and incentivizes the principal to

take productive actions even after recoupment. This final feature is especially important
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in publishing industries where the principal is responsible for downstream negotiations and

distribution. A similar structure appears under convertible debt financing, in which the

debt-holder can convert the debt amount into equity at a specified rate. These contracts

are ubiquitous in venture capital, where investors value upside risk.17 The combination

of debt with optional equity allows investors to protect their downside through debt-like

repayment expectations while also having meaningful exposure to upside outcomes. This

structure is especially well-suited to environments where performance is uncertain, as it

reduces the burden on the financier of assigning too much weight to their forecast of the

company’s valuation.18

5.3 Risk-Averse Agent

Risk neutrality for both the principal and agent contributes to the multiplicity of optimal

contracts in Theorem 1 because every fully-extractive contract generates the same surplus

and profit. If, instead, the agent is more risk-averse than the principal, we argue that a

capped-earnout debt contract proves to be uniquely optimal.

To adjust the baseline setup, we now assume that the agent has a known, strictly

increasing, and strictly concave utility function u(·) : Y → R+ over monetary rewards.

We normalize u(0) = 0 and continue to assume that the principal is risk-neutral.

Proposition 4. The (zu, w̄u)-capped-earnout-debt contract, w∗
u(y) = min{w̄u, [y−zu]

+}, is

robustly optimal. The parameters (zu, w̄u) are determined by the following two conditions:

1. RA - Minimum Debt Level (RA-MDL): zu = VP,u where VP,u is the principal

optimal guarantee;

17For example, see YCombinator’s introduction of the SAFE “Simple Agreement for Future Equity”
contract, which allows investors the option to be repaid either in equity or a fixed nominal amount.

18For instance, in 2013, Tesla raised over $600 million by issuing convertible debt following the initial
release of the Model S, at a time when investors were increasingly skeptical of the market for luxury
electric vehicles. https://www.wsj.com/articles/SB10001424127887324767004578488891523483094
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2. RA - Full Surplus Extraction (RA-FSE): EF0 [u(w
∗
u(y))] = c0.

Any robustly optimal contract coincides with w∗
u almost everywhere.

Proof. See Appendix A.7.

When the agent is risk-averse, the principal has two conflicting objectives. On the

one hand, fully insuring the agent (i.e., providing a constant wage contract) is socially

efficient and would allow the principal to extract the most surplus. On the other hand, to

preserve the agent’s search incentive, the principal needs a contract that withholds wages

for low prizes.

The structure of the capped-earnout contract shows how the principal balances these

objectives. As in the baseline model, if the principal’s payoff guarantee is VP , the prin-

cipal’s robustness concern means she must take at least VP of the prize from the agent;

otherwise, a safe, low-value project would lower her payoff. Subject to this constraint,

reducing the agent’s exposure to risk allows the risk-neutral principal to appropriate more

of the surplus. This leads to the agent’s payoff for high-value prizes being constant, as the

highest realizations provide little in terms of incentives. The insurance motive also causes

the principal to reduce the debt level all the way to VP because this—with a coordinated

reduction in the wage cap—further smooths the agent’s wage.

Capped-earnout debt contracts are widely used in performance-based compensation

schemes. These contracts are popular in executive compensation packages, structured

sales commissions, and acquisition “earnout” contracts, where bonuses or stock options

vest only after hitting performance targets and are subject to payout ceilings.19 Under the

name of a “bet-on agreement” or a “valuation adjustment mechanism” (VAM), capped-

earnout contracts are also prevalent in the booming Chinese venture capitalist market

(Lin, 2020; Xue & Yun, 2022). Frequently, these contracts have clauses wherein the
19For example, see “first earnout payment” in the following contract: https://www.sec.gov/

Archives/edgar/data/1468328/000119312510166754/dex993.htm
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startup is required to reimburse the investor—for example, by rebuying shares at their

original rate—if the startup fails to meet certain IPO price targets or other milestones.

These repurchase clauses place the startup in a debt-like position and guarantee that the

full earnout amount (the cap) is realized only under sufficiently strong outcomes. While

these contracts are sometimes described as tranches—often used to screen or segment

investors with varying degrees of risk aversion—the three regions of our contract have a

different economic significance. The initial flat region mimics debt financing, discouraging

low-quality effort. The intermediate increasing region encourages exploration as the agent

gains from the upside. The final capped region limits windfall rents and protects the

principal from overpaying in extremely successful states that provided minimal ex-ante

incentives to the agent.

6 Extension to Multiple Agents

In many applications we have described, it is typical for a single principal to interact with

many agents (e.g., a publisher sponsoring multiple writers). To capture the new forces at

play in this setting, we consider a variation of our baseline model with multiple agents,

each of whom has potentially multiple projects. Formally, we suppose there are m agents

indexed by k = 1, 2, . . . ,m. Each agent k has access to a set of projects denoted by Ak.

As before, we assume the principal only knows one project available to each agent, which

we denote by ak0 ∈ Ak.

Rather than interact with each agent simultaneously, we allow the principal to cost-

lessly approach and sponsor agents sequentially. Upon being sponsored, an agent searches

over his available projects and presents one single prize to the principal. We assume the

principal can only adopt one presented prize, regardless of how many prizes are presented

(e.g., the publisher has limited capacity to publish books presented by several writers,
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and would like to choose the most profitable one). The principal’s realized payoff is the

value of the adopted prize minus the wage payments to all agents. This setting features

two layers of sequential search: the principal explores among agents, while the agents

explore among their available projects. The principal needs to make two decisions: (1)

the sponsoring strategy, i.e., which agents to sponsor, in what order, and when to stop;

(2) the contracting strategy, i.e., what wage contract to provide each sponsored agent.

Given that the principal interacts with multiple agents, it is natural to allow an agent’s

wage payment to depend on all the presented prizes, including those presented by other

agents. For instance, the principal could use competition between the agents to induce

effort. As we will show, such contracting richness ultimately does not benefit the principal.

A simple strategy in which each agent’s contract only depends on his specific project can

achieve the optimal payoff guarantee. Moreover, this contract need not explicitly condition

on whose prize is ultimately adopted.

To state the principal’s strategy, let rk0 denote the index of agent k’s project ak0 given

by Equation (1). Without loss of generality, we assume r10 ≥ r20 ≥ ... ≥ rm0 .

Proposition 5. A robustly optimal strategy for the principal can be described by the

following dynamic process. In round k ∈ {1, 2, ...,m}, the principal sponsors agent k and

offers him the rk0-debt contract. In each round k, after seeing agent k’s presented prize yk,

the principal stops and adopts the highest up-to-date presented prize, max{y1, y2, ..., yk},

if it is higher than rk+1
0 ; otherwise, she continues to the next round.

Proof. See Appendix A.8.

The argument for optimality is conceptually similar to that of Proposition 1. Specif-

ically, this dynamic strategy generates a principal payoff as if she searched through all

agents’ projects herself. This is clearly an upper bound on her payoff guarantee. Debt

again guarantees that Ak = {ak0} for all k is the worst case for the principal since any

premature stopping by agent k means the debt was fully repaid.
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This finding relates to a small literature that studies sequential contracting with mul-

tiple agents (Kleinberg, Waggoner, & Weyl, 2016; Durandard, 2023; Ben-Porath, Dekel,

& Lipman, 2025). Typically, these problems can be recast as sequential search problems

with the principal being the searcher and agents being the “boxes.” As in our model, the

agents must be appropriately incentivized in order to produce a prize. Where we differ

is through the principal’s ability to offer agent-specific wage contracts, which allows her

to fully separate the incentives of each agent. These contracts, when offered sequentially

as in Proposition 5, obviate any strategic interaction among the agents, as each agent es-

sentially faces a single-player decision problem. In particular, each agent’s wage payment

(upon being sponsored) becomes independent of other agents’ strategies.
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A Proofs Omitted from Main Text

A.1 Proof of Observation 2

Let w be a doubly monotone contract. Under such a contract, both players prefer a

higher realized prize than a lower one, as their payoffs are non-decreasing in the presented

prize. So, the agent always presents the highest discovered prize (under our tie-breaking

assumption). Hence, the principal benefits from the agent sampling more projects, since

it shifts the distribution of the highest realized, hence presented, prize in the sense of

first-order stochastic dominance.

To prove the observation, it suffices to show that, if the principal’s worst-case scenario

is not A = A0, then, for all 0 < ϵ < VP (w | A0) − VP (w), there exists A = {a0, a1}

where a1 = (δx, 0) with δx being a Dirac mass for some x satisfying w(x) > rw0 such that

VP (w) + ϵ ≥ VP (w | A). In what follows, we construct such a set of projects.

Let 0 < ϵ < VP (w | A0)− VP (w) and let {An}n be a minimizing sequence in Nature’s

problem:

VP (w) = inf
A′⊇A0

VP (w | A′) = lim
n→∞

VP (w | An) .

By definition of {An}n, there exists N ∈ N such that, for all n ≥ N , VP (w) ≤ VP (w | An) ≤

VP (w)+
ϵ
2
. Observe that, under AN , there must be a positive probability that the known

project a0 is not sampled; for otherwise our initial observation implies that the principal

would be weakly better off under AN than under A0, and

VP (w) +
ϵ

2
≥ VP (w | AN) ≥ VP (w | A0) > VP (w) + ϵ,

a contradiction. So, under AN , the known project a0 is not sampled with positive proba-
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bility.

But, if a0 is not sampled, the agent must terminate the search for some x that satisfies

w(x) > rw0 in the support of Fi, for some box (ci, Fi) ∈ AN . Since w is non-decreasing,

we can then pick x∗ such that w(x∗) > rw0 and

x∗ ≤ inf
{
x ∈ ∪(ci,Fi)∈AN

supp(Fi) : w(x) > rw0
}
+

ϵ

2
.

Consider then A = {a0, a1} where a1 = (δx∗ , 0). Under A, the agent only ever opens

box a1. By definition of x∗, VP (w | A) = x∗ − w(x∗) ≤ VP (w | AN) +
ϵ
2
, where we used

that VP (w | AN) < VP (w | A0), hence x∗ − w(x∗) < EF0 [y − w(y)], and that w is doubly

monotone. Therefore,

VP (w | A) ≤ VP (w | AN) +
ϵ

2
≤ VP (w) + ϵ.

This concludes the proof.

A.2 Proof of Observation 3

Proof. Let w(y) = αy with α ∈ [0, 1] and let rα0 be the associated w-induced index. By

Observation 2,

VP (w) = (1− α)min {rα0 , EF0 [y]} ,

for α ≥ c0
EF0

[y]
, and 0 otherwise. Observe that, for VP (w) = s0, it must be that α = c0

EF0
[y]

.

But, for α = c0
EF0

[y]
, rw0 = 0 (when c0 > 0). Moreover, by the implicit function theorem,

rα0 is continuous. Therefore, there exists δ > 0 such that rα0 < ϵ < s0 − δEF0 [y] for all
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α < c0
EF0

[y]
+ δ. It follows that, for all α ∈ [0, 1],

VP (w(y) = αy) ≤


0 if α < c0

EF0
[y]

(1− α)ϵ if c0
EF0

[y]
≤ α < c0

EF0
[y]

+ δ

(1− c0
EF0

[y]
− δ)EF0 [y] otherwise

< s0 − δEF0 [y],

which concludes the proof of Observation 3.

A.3 Proof of Theorem 1

Part 1: MDL & FSE ⇒ w is optimal. We show that VP (w) = s0 if the contract w

satisfies MDL and FSE. That is, the contract w attains the robustly optimal guarantee.

Fix the agent’s optimal search strategy and the realized prize {yi}ni=0. Then we consider

two cases of the realized search process: (i) a0 is not sampled, and (ii) a0 is sampled.

Suppose a0 is not sampled. The FSE condition guarantees that the w-induced index

of a0 is exactly 0. Thus, if the agent did not sample a0, the agent must have obtained

a strictly positive wage. By the MDL condition, this implies that the agent sampled a

project whose prize is higher than s0 and stopped, and, hence, that the principal’s payoff

is at least s0 after any history such that a0 is not sampled.

Suppose a0 is sampled. Then, it is also optimal for the agent to stop afterwards

without exploring any additional projects because a0’s w-induced index is exactly zero

according to the FSE condition. Because the agent breaks ties favorably for the principal,

the principal’s expected payoff in this case is at least s0 after any history such that a0 is

sampled.

Part 2: w is optimal ⇒ MDL & FSE. We prove the contrapositive. First, suppose

36



a contract w violates FSE. Then

s0 = VP (w0|A0) > VP (w|A0) ≥ VP (w),

where the equality is proved in Proposition 1, the first inequality holds strictly because

FSE is violated, and the second inequality holds by the definition of VP (w). Hence, no

contract w that violates FSE is robustly optimal as VP (w) < s0.

Second, suppose a contract w satisfies FSE but violates MDL, i.e., there exists y′

such that y′ − w(y′) < s0 and w(y′) > 0. Consider the set of projects A = {a0, a1},

where a1 = (δy′ , 0) is a riskless project. The agent only searches project a1 because the

w-induced index value of the project a0 is zero by FSE. The principal’s corresponding

payoff, y′ − w(y′), is strictly smaller than y′, which is weakly smaller than VP . In other

words, s0 > VP (w|{a0, a1}) ≥ VP (w), and no contract that satisfies FSE but violates MDL

is robustly optimal.

Thus, no contract that violates MDL or FSE is optimal, and hence, any optimal

contract satisfies MDL and FSE.

A.4 Proof of Proposition 2

We have already argued that w0 = [y− r0]
+ achieves the maximal payoff guarantee in the

main text. Here, we show that this optimal contract is essentially unique.

First, recall that under w0, the agent finds it optimal to continue sampling a0 until he

receives a draw above r0, at which point he stops. Therefore, the principal’s payoff under

w0(y) = [y − r0]
+ is exactly r0.

Next, for any other contract w′ to achieve the payoff guarantee of r0, we must have

w(y) ≤ [y− r0]
+ for all y. If not, there exists some y such that w(y) > [y− r0]

+ ≥ y− r0,

so y − w(y) < r0. This means adding a free, constant output project with prize y would
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reduce the principal’s payoff below r0, and hence w′ would have a lower payoff guarantee.

Further, for any contract w′ to achieve the same payoff guarantee as w0, it also needs

to extract the agent’s full surplus, meaning EF0 [w
′(y)] = c0. But, by construction of the

index, EF0 [w0(y)] = EF0 [y− r0]
+ = c0. Since w′ is pointwise below w0 and it has the same

expectation, they can only differ on an F0-null set. Under the full support assumption on

F0, any such F0-null set has measure zero.

A.5 Proof of Lemma 1

We first prove part 2 of the lemma, relating diversion-proofness to the slope of the contract.

Notice that by definition, ϕw(y) = y if and only if the slope of any line connecting two

points on the curve of y 7→ y−w(y) is always weakly above k. Diversion-proofness is then

equivalent to y−w(y)−(ŷ−w(ŷ))
y−ŷ

≥ k whenever ŷ ≤ y. This exactly requires the left derivative

of w(y) always being weakly below 1− k, proving the second statement of the lemma.20

We now show that any contract that admits diversion is dominated by a diversion-

proof contract. Suppose that the contract w is not diversion-proof. If w is not diversion-

proof, there exists a disjoint, countable collection of open intervals (y
i
, yi)i∈N+ whose

union is defined I := ∪i(yi, yi), such that ϕw(y) < y for all y ∈ I and ϕw(y) = y for

all y ̸∈ I.21 In particular, this means for any i and y ∈ (y
i
, yi), we have ϕw(y) = y

i

and y
i
+ k(y − y

i
) > y′ + k(y − y′) for all y′ ∈ (y

i
, yi). Now consider the contract w̃

that linearizes the wage on each interval (y
i
, yi). By construction of the intervals and

continuity of w, the slope of the wage contract on each interval will be exactly (1 − k).

Therefore, the principal’s marginal share on each (y
i
, yi) interval will be exactly k, and w̃

will be diversion-proof.

20The left derivative is well-defined due to double-monotonicity.
21Slightly abusing notation, we allow yi to be ∞.
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w̃(y) =


w(y

i
) + (1− k)(y − y

i
) if y ∈ (y

i
, yi),

w(y) if y /∈ I.

We now argue that this contract improves the principal’s payoff guarantee, VP (w̃) ≥

Vp(w). First, we claim that w̃ strictly increases the agent’s payoff. Because w̃ is diversion-

proof while w was not, for any y ∈ (y
i
, yi), the agent now receives a wage of w(y

i
) + (1−

k)(y − y
i
) which strictly exceeds their wage of w(y

i
) under w due to the principal’s

diversion. For all y ̸∈ ∪iI, the agent’s wage is unchanged. Therefore, the agent strictly

benefits from w̃.

The improvement in the agent’s payoff translates to an improved guarantee for the

principal. Since w̃ is also double monotone, the principal’s payoff guarantee under w and

w̃ is determined by either A = {a0} or A = {a0, a1}. In the former case, the principal’s

payoff is unchanged by construction: the w̃ provides the diversion payoff the principal was

originally receiving under w. In the latter case, the principal is strictly better off under w̃

because rw̃0 > rw0 due to the agent’s increased payoff. This means the prize necessary to

crowd out the known box must be strictly larger, and y− w̃(y) is also strictly increasing.

Combining the two cases, the principal’s payoff guarantee is larger under w̃ than w.

A.6 Proof of Proposition 3

As suggested by the paragraph following Proposition 3, we begin by examining whether

any contract characterized in Theorem 1 satisfies the no-diversion condition (4), which

states that the principal’s marginal share is at least k. Among these contracts, the one

least likely to violate (4) is the (z, α)-debt-plus-equity contract with z = s0 and α =

c0
EF0

(y−s0)+
— if this contract violates (4), any other contract characterized in Theorem 1
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will violate it too. This contract satisfies the condition (4) if and only if c0
EF0

(y−s0)+
≤ 1−k,

which is equivalent to k ≤ k∗. By construction, this contract satisfies the MDL and FSE

conditions of Theorem 1, so it must be optimal when k ≤ k∗. Additionally, note that

diversion-proofness is a necessary condition for optimality when k ≤ k∗. Any contract

that is not diversion-proof is also inefficient, and therefore fails to capture the entire social

surplus.

Now, we turn to the case with k > k∗. For any z ∈ R+, let wz denote the (z, 1 − k)-

debt-plus-equity contract. This contract has a debt level of z after which the principal’s

marginal share is k. Of particular importance is the debt-plus-equity contract wzk , where

the debt level zk satisfies (1 − k)EF0(y − zk)
+ = c0. We will argue that this contract is

uniquely optimal.

Step 1: The debt-plus-equity contract wzk is optimal.

Under the contract wzk , the principal’s worst-case scenario is A = {a0, a1} with a1

being a project with zero exploration cost and a deterministic prize of zk + ϵ, and her

payoff guarantee from wzk is thus zk, VP (wzk) = zk.

We now argue that zk is an upper bound on the principal’s payoff guarantee. Without

loss of optimality (Lemma 1), consider any diversion-proof contract w. Let rw0 be the

induced index of a0, and let yw := sup{y | w(y) = rw0 } be the maximal prize that makes

the agent indifferent between searching a0 and not. The following inequalities relate the

contracts w and wzk .

∫
(1− k) [y − zk]

+ dF0(y) = c0

=

∫
[w(y)− rw0 ]

+ dF0(y)

≤
∫

[w(yw) + (1− k)(y − yw)− rw0 ]
+ dF0(y)

=

∫
(1− k) [y − yw]+ dF0(y)
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The first two equalities follow from the definitions of zk and rw0 , respectively. The

inequality follows because the contract is diversion-proof; therefore, the agent’s marginal

share above yw can be at most (1− k). The final equality is by definition of yw.

Comparing the first and last expression above implies yw ≤ zk, which further implies

yw − w(yw) ≤ zk due to limited liability. Finally, since w is doubly monotone and hence

continuous, we know

VP (w) ≤ inf
ϵ

yw + ϵ− w(yw + ϵ) ≤ zk.

Notice the middle expression is exactly the principal’s payoff when the agent has access

to an unknown box that freely produces prize yw + ϵ. Therefore, the payoff guarantee for

any contract w is at most zk. Since wzk achieves this guarantee, it is optimal.

Step 2: Any optimal contract must be debt-plus-equity.

By contradiction, suppose there is a contract w ̸= wzk that satisfies (i) the condi-

tion (4) and (ii) EF0(w(y)) ≥ c0. We construct a debt-plus-equity contract that always

outperforms it.

If rw0 = 0, the debt level of w, inf{y|w(y) > 0}, must be strictly lower than zk;

otherwise, (i) and (ii) in the last paragraph cannot both be satisfied. Hence, the principal’s

payoff guarantee under w must also be strictly lower than zk, so the debt-plus-equity

contract wzk strictly outperforms w.

If rw0 > 0, we let yw := sup{y|w(y) = rw0 }. This prize yw is the maximal prize in hand

that makes the agent indifferent between exploring a0 and not. The principal’s worst-case

scenario under w is either A = {a0} or A = {a0, a1} with a1 being a project with zero

exploration cost and a deterministic prize of yw + ϵ.

We now construct a contract that improves on w in two steps, as depicted in Figure 2.

First, consider a debt-plus-equity contract wz′ that satisfies wz′(y
w) = w(yw). This con-

dition ensures that if the agent were to follow the same stopping behavior (in terms of

y), the principal’s payoff guarantee is weakly higher. The contract wz′ single-crosses w at
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yw: wz′(y) ≤ w(y) for y < yw and wz′(y) ≥ w(y) for y > yw. Hence, by the definition

of w-induced index, we can infer that r
wz′
0 ≥ rw0 . Since rw0 = w(yw) = wz′(y

w), it follows

that r
wz′
0 ≥ wz′(y

w). This means that the agent finds a0 more attractive under wz′ than

under the original w and requires a higher value of y to not search a0.

Next, we construct another debt-plus-equity contract wz′′ such that z′′ ≥ z′ and r
wz′′
0 =

wz′′(y
w). In other words, this contract (i) has a weakly larger debt level than wz′ and

(ii) faces the same project a1 that yields the principal the lowest payoff if crowding out

a0 as w. Such a z′′ exists because both rwz
0 and wz(y

w) are continuous in z, wz(y
w) ≥ 0

for any z, and rwz
0 ≤ 0 when z is sufficiently large. Since z′′ ≥ z′, this also implies

wz′′(y) ≤ wz′(y) ≤ w(y) for all y ≤ yw.

Now, we are ready to show that the debt-plus-equity contract wz′′ outperforms w

regardless of whether a0 is crowded out or explored. If a0 is not crowded out (i.e., A =

{a0}), wz′′ is better than w because the expected wage paid to the agent has decreased.

∫
w(y)dF0(y) =

∫ yw

0

w(y)dF0(y) +

∫ ∞

yw
w(y)dF0(y)

=

∫ yw

0

w(y)dF0(y) + c0 + rw0 (1− F0(y
w))

≥
∫ yw

0

wz′′(y)dF0(y) + c0 + r
wz′′
0 (1− F0(y

w))

=

∫ yw

0

wz′′(y)dF0(y) +

∫ ∞

yw
wz′′(y)dF0(y)

=

∫
wz′′(y)dF0(y).

The second line follows by definition of yw and the definition of rw0 . The third line follows

because wz′′(y) ≤ w(y) for y ≤ yw and r
wz′′
0 ≤ rw0 . The inequality is strict if w ̸= wz′′

almost everywhere. If a0 is crowded out, notice that the project a1 that yields the principal

the lowest payoff if crowding out a0 is the same for w and wz′′ — the project with no

exploration cost and a deterministic prize of yw + ϵ. Since wz′′(y
w) ≤ w(yw), we know
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that the principal is better off under wz′′ compared to w.

y

y

ky

y − w(y)

−rw0

yw

(a) Initial contract

y

y

ky

y − w(y)

−rw0

y − wz′′(y)

z′′

y − wz′(y)

yw−r
wz′′
0

(b) Constructed debt-plus-equity contracts

Figure 2: Illustration of the optimality of a debt-plus-equity contract. Panel (a) depicts an arbitrary
initial debt contract w. Panel (b) depicts the debt-plus-equity contracts wz′ and wz′′ that we constructed.

Step 3: wzk is best among all the debt-plus-equity contracts.

Recall that wzk is the (zk, 1 − k)-debt-plus-equity contract that features a debt level

of zk satisfying (1−k)EF0(y− zk)
+ = c0, and a principal marginal share of k. Notice that

for any debt-plus-equity contract wz with z < zk, the corresponding wz-induced index for

the known project, rwz
0 , satisfies EF0

[
((1− k)(y − z)+ − rwz

0 )
+]

= c0. Since

EF0

[(
(1− k)(y − z)+ − rwz

0

)+]
= EF0

[
(1− k)

(
y − z − rwz

0

1− k

)+
]
,

while r
wzk
0 = 0 by definition, it follows that rwz

0 = (1 − k)(zk − z). Hence, the worst

project to crowd out a0 is the one with zero exploration cost and a deterministic prize of
rwz
0

1−k
+ z+ ϵ = zk + ϵ, which happens to be exactly the same as the worst project to crowd

out a0 under wzk . Since wzk(zk) < wz(zk) for all z < zk, the principal is strictly better

off under wzk compared to wz, regardless of whether a0 is crowded out or not. Thus, the

contract wzk is uniquely optimal.
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A.7 Proof of Proposition 4

The overall proof proceeds in three steps. First, we prove that any robustly optimal

contract among doubly monotone contracts coincides with the (zu, w̄u)-capped-earnout-

debt contract defined in the statement of Proposition 4, w∗
u(y) = min{w̄u, [y − zu]

+}, on

the support of F0, when the support of F0 is finite. Next, we show that non-monotone

contracts cannot improve the principal’s payoff when the support of F0 is finite. Finally,

we show that w∗
u is optimal among all contracts even when the support of F0 is infinite.

Step 1. Suppose first that #supp(F0) < ∞. The proof proceeds in five steps:

• Step 1.1 We show that any optimal contract must satisfy the modified MDL con-

dition:

w(y) ≤ max
{
u−1 (rw,u

0 ) , y − VP,u

}
. (m-MDL)

• Step 1.2 We show that for any such doubly monotone contract, in the worst-case

scenario, the set of available projects is A0.

• Step 1.3 We show that any robustly optimal contract under A0 takes the form

tw(y) = min
{
w,max

{
u−1

(
rt

w,u
0 ∨ 0

)
, y − VP,u

}}
, (5)

for some constant w, on the support of F0.

• Step 1.4 We show that any robustly optimal candidate coincides with w∗
u on the

support of F0.

• Step 1.5 So far, we have shown that if a robustly optimal contract exists, it coincides

with w∗
u on the support of F0. To conclude the proof, we show that a robustly optimal

contract exists.
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Proof of Step 1.1. We prove the contrapositive. Let w be a contract that violates

(m-MDL). We show that w is not optimal. Since w violates (m-MDL), there exists y∗

such that w(y∗) > u−1(rw,u
0 ) ⇔ u(w(y∗)) > rw,u

0 and y∗ − w(y∗) < VP,u. Consider the

set of projects A = {a0, a1} where a1 = (δy∗ , 0) is a safe project that yields y∗ with

probability 1. Under contract w, since u(w(y∗)) > rw,u
0 , the agent faced with projects A

only ever explore project a1. So, VP (w, | A) = y∗ − w(y∗) < VP,u. But, by definition,

VP (w) ≤ VP (w, | A). Thus, w is not robustly optimal. This concludes the first step.

Proof of Step 1.2. Let w be a contract such that Eq. (m-MDL) holds, and observe

that it implies that, for all y, either y − w(y) ≥ VP,u or u(w(y)) < rw,u
0 . Let A ⊇ A0 be

a set of available projects. We distinguish two sets of histories. After all the histories

such that the agent does not open a0, then the principal gets at least VP,u. After all the

histories such that the agent opens a0, under double monotonicity, the agent presents a

prize whose distribution first-order stochastically dominates F0. So, in both cases, the

principal’s payoff exceeds VP (w | A0).

Proof of Step 1.3. We show the contrapositive. Let w be a (doubly monotone) contract

that does not take the form of a generalized capped-earnout-debt contract, e.g., (5), on

the support of F0. We show that w is not robustly optimal. By Step 1.1, if w does not

satisfy Eq. (m-MDL), it is not robustly optimal. So, assume that it does. Thus, by Step

1.2, in the worst-case scenario, A = A0. Then, note that, if w does not incentivize search

under A0, it is not optimal. So, assume that it does.

Since w does not take the form of a generalized capped-earnout-debt contract, e.g.,

(5), there exists y1 ∈ supp(F0) and ϵ1 > 0 such that w(y1) < max {u−1 (rw,u
0 ) , y − VP,u}.

WLOG, let y1 = min {y ∈ supp(F0) : w(y) + ϵ1 < max {u−1 (rw,u
0 ) , y − VP,u}}. More-

over, since w does not take the form of a generalized capped-earnout-debt contract,

e.g., (5), and w is doubly monotone, there exists y2 ∈ supp(F0), y2 > y1 such that

45



w(y2) > w(y1)+ϵ2 for some ϵ2 > 0. WLOG, let y2 = min {y ∈ supp(F0) : w(y2) > w(y1)}.

Let ϵ = min {ϵ1, ϵ2}, and consider the alternative contract w̃ defined by

w̃(y) =


w(y) if y < y1

w(y) + k1 if y1 ≤ y < y2

w(y)− k2 if y2 ≤ y,

where 0 < k1, k2 < ϵ are chosen so that

1. EF0 [w(y)] = EF0 [w̃(y)], and

2. EF0 [u(w(y))] < EF0 [u(w̃(y))].

That such k1, k2 exist follows from the strict concavity of the agent’s utility since the

distribution of w(y) dominates the distribution of w̃(y) in the convex order: w#F0 ≻cvx

w̃#F0.22 Increasing k2 slightly (such that, still, k2 < ϵ), with a small abuse of notation,

we can assume that

1. EF0 [w̃(y)] < EF0 [w̃(y)], and

2. EF0 [u(w(y))] < EF0 [u(w̃(y))].

Moreover, since the support of F0 is finite and k1, k2 ≤ ϵ, there exists a doubly monotone

contract satisfying (m-MDL) that coincides with w̃ on the support of F0. With a second

small abuse of notation, let w̃ denote this doubly monotone contract. Intuitively, w̃

flattens w to insure the agent, increasing both the total surplus and the principal’s share.

Note that, if the agent was willing to explore the known box under w, he is still willing

22We use w#F0 and w̃#F0 to denote the push-forward distributions of F0 under the contracts w and
w̃.
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to do so under the alternative contract w̃. Therefore,

VP (w | A0) < VP (w̃ | A0).

But, w̃ is doubly monotone and satisfies Eq. (m-MDL). Hence, VP (w̃ | A0) = VP (w̃) by

Step 1.2, and w is not robustly optimal.

Proof of Step 1.4. Taking stock, we have that

VP = sup
w

VP (t
w) = sup

w
VP (t

w | A0) > VP (w),

for all w that does not take the form of a generalized capped-earnout-debt contract as

defined by Eq. (5), on the support of F0. Therefore, to prove that w∗
u is (F0-essentially)

uniquely robustly optimal, it suffices to show that w∗
u uniquely maximizes VP (t

w | A0)

among generalized capped-earnout-debt contracts, which follows from the two observa-

tions below.

First, the principal’s payoff under A0 is maximized by a generalized capped-earnout-

debt contract, tw, such that

EF0 [u(t
w(y))] ≥ c0,

since EF0 [u(t
w(y))] < c0 ⇒ VP (t

w | A0) = 0.

Second, the capped-earnout-debt contract w∗
u defined in Proposition 4 is the (point-

wise) smallest contract satisfying the above inequality (on the support of F0). To see this,

observe that for w < w̄u, the above inequality is violated if the contract tw differs from
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w∗
u on the support of F0, while for larger values of w > w̄u,

tw(y) = min
{
w,max

{
u−1(rt

w,u
0 ) ∨ 0, y − VP,u

}}
≥ min {w̄u,max {0, y − VP,u}} = w∗

u(y).

Moreover, the inequality is strict for y ≥ VP,u + w̄u. Thus w∗
u maximizes the principal

guarantee under A0, uniquely on the support of F0.

Proof of Step 1.5. The set of doubly monotone contracts that the principal may be

willing to offer is included in the set of all nondecreasing 1-Lipschitz continuous functions

on [0, ȳ] that take values in [0, 2max{y : y ∈ supp(F0)}]. So, it is (sequentially) compact

by Arzelà-Ascoli (for the locally uniform semi-norms, and hence, in the product topology

as well). By Weierstrass maximum theorem, it then suffices to show that the mapping

C0,1 → R, w → inf
A⊇A0

Eσ(A,w) [y − w(y)]

is upper semi-continuous to ensure that a robustly optimal contract exists. This follows

from Lemma 3 below. Hence, there exists a robustly optimal contract (among doubly

monotone contracts).

This concludes Step 1 of the proof: we showed that w∗
u is (F0-essentially) uniquely

optimal among doubly monotone contracts.

Step 2. Next, we show that non-monotone contracts cannot improve the principal’s

payoff, and hence, that w∗
u is optimal among all contracts, still under the assumption that
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the support of F0 is finite. Observe that

sup
w

inf
A⊇A0

Eσ(A,w) [y − w(y)]

≥ sup
K≥0

sup
w : w≤K and (m-MDL) and double monotonicity holds

inf
A⊇A0

Eσ(A,w) [y − w(y)]

= Eσ(A0,w∗
u) [y − w∗

u(y)]

= sup
K≥0

sup
w :w≤K and w satisfies (m-MDL) on supp(F0)

Eσ(A0,w) [y − w(y)]

≥ sup
K≥0

sup
w : w≤K and w satisfies (m-MDL) on supp(F0)

inf
A⊇A0 : ∀(F,c)∈A, supp(F )⊂supp(F0)

Eσ(A,w) [y − w(y)]

= sup
K≥0

sup
w : w≤K on supp(F0)

inf
A⊇A0 : ∀(F,c)∈A, supp(F )⊂supp(F0)

Eσ(A,w) [y − w(y)]

≥ sup
w

inf
A⊇A0

Eσ(A,w) [y − w(y)] .

The three inequalities are straightforward. The first equality holds by Step 1. The second

equality holds by Lemma 2 below. The third equality holds by Step 1.1 of the proof,

provided that a robustly optimal contract exists in the subproblem:

sup
w : w≤K and w satisfies (m-MDL) on supp(F0)

inf
A⊇A0 : ∀(F,c)∈A, supp(F )⊂supp(F0)

Eσ(A,w) [y − w(y)] .

To see this, recall that Step 1.1 shows that any optimal contract must satisfy (m-MDL).

Existence follows from Lemma 3 and Weierstrass maximum theorem since the set of

contracts is payoff equivalent to a finite-dimensional compact set under our finite support

assumption, which proves the equality.

As a result, w∗
u is optimal among all contracts when the support of F0 is finite.

Step 3. Finally, we show that w∗
u is optimal among all contracts even when the support

of F0 is infinite. The proof is by contradiction. Suppose that w∗
u is not optimal. Then,
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there exists w̄ such that

Vp(w̄) > Vp(w̄) + ϵ = EF0 [y − w∗
u(y)] + ϵ.

for some ϵ > 0. The equality follows from Step 1.2 since w∗
u is doubly monotone and

satisfies (m-MDL). By Lusin’s theorem, there exists a closed subset K of R+ such that

the restriction of w̄ to C is continuous and
∫
R+\K max{(y − w̄(y)), 1}dF0 < ϵ

6
. Let rw̄,u

0

denote the index of the known box under w̄, and observe that, WLOG, we can assume

that rw̄,u
0 > 0. (Otherwise, consider w̄(y) = w̄(y) + ϵ

2
.)

Since the set of distributions with finite support is dense in ∆(K) when equipped with

the weak∗ topology, there exists a sequence of distributions (F n
0 )n with finite support such

that

1. supp(F n
0 ) ⊂ K, and

2. F n
0 ⇀∗ F0(· | y ∈ K).

Consider then the sequence of known projects An
0 = (F n

0 , c
n
0 ), where we set cn0 = EFn

0

[
(w̄(y)− rw̄,u

0 )+
]
.

By Step 2, for all n ∈ N, the (znu , w̄
n
u)-capped-earnout-debt contract defined in the state-

ment of Proposition 4, w∗,n
u , is optimal, and, hence,

V n
P = V n

P (w
∗,n
u ) = EFn

0
[y − w∗,n

u (y)] ≥ V n
P (w̄).

Therefore, for all n ∈ N, there exists An ⊃ An
0 such that

Eσ(An,w̄)[y − w̄(y)] ≤ V n
P (w

∗,n
u ) +

ϵ

3
= EFn

0
[y − w∗,n

u (y)] +
ϵ

3
.

Since F n
0 ⇀∗ F0(· | K) and y−w∗,n

u (y) → y−w∗
u(y), locally uniformly, there exists N ∈ N
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such that, for all n ≥ N1,

Eσ(An,w̄)[y − w̄(y)] ≤ VP (w
∗
u) +

2ϵ

3
= EF0 [y − w∗

u(y)] +
2ϵ

3
.

Moreover, since rw̄,u
0 > 0, we can choose the set An such that the indices of all boxes are

strictly ordered by altering the sampling costs. Therefore, replacing F0 by F n
0 , does not

change the agent’s strategy, and there exists N2 such that for all n ≥ N2,

Eσ(Ãn,w̄)[y − w̄(y)] ≤ Eσ(An,w̄)[y − w̄(y)] +
ϵ

3
,

where Ãn = An \An
0 ∪A0 and we used that F n

0 ⇀∗ F0(· | K), that the restriction of w̄ to

K is continuous, and that
∫
R+\K max{(y− w̄(y)), 1}dF0 <

ϵ
6
. Thus, for n ≥ max{n1, N2},

Eσ(Ãn,w̄)[y − w̄(y)] ≤ Eσ(An,w̄)[y − w̄(y)] +
ϵ

3
≤ EF0 [y − w∗

u(y)] + ϵ = VP (w
∗
u) + ϵ,

a contradiction. Therefore, w∗
u is optimal.

It only remains to show that it is uniquely optimal under the full support assumption.

This follows from Step 1.1 and Lemma 2, since we have shown that a robustly optimal

contract exists, and hence, any optimal contract must satisfy (m-MDL). But, then, for

any contract w satisfying (m-MDL),

VP (w) ≤ VP (w | A0) < VP (w
∗
u | A0) = VP ,

by Lemma 2, under our full support assumption. Thus, w∗
u is the unique robustly optimal

contract.

51



A.7.1 Supporting Lemmas for the proof of Proposition 4

Lemma 2. w∗
u is (F0-essentially) uniquely optimal among contracts satisfying (m-MDL)

under A0:

Eσ(A0,w∗
u) [y − w∗

u(y)] = sup
w : w satisfies (m-MDL)

Eσ(A0,w) [y − w(y)] .

Proof. By Step 1.4, we know that, if the contract takes the form of a generalized capped-

earnout-debt contract, then it yields a payoff strictly lower than Eσ(A0,w∗
u) [y − w∗

u(y)] to

the principal. So, to prove the lemma, we only need to prove that (i) no contract satisfying

(m-MDL) that does not coincide with a generalized capped-earnout-debt contract, e.g.,

(5), on the support of F0 can be optimal under A0, and (ii) that an optimal contract

exists.

(i) Let w be a contract that does not coincide with a generalized capped-earnout-debt

contract, e.g., (5), on the support of F0. We show that w is not optimal under A0 among

the contracts that satisfy Eq. (m-MDL).

Note first that, if w does not incentivize search under A0, it is not optimal. So,

assume that it does. Since w does not take the form of a generalized capped-earnout-debt

contract, e.g., (5), there exists y1 < y2 such that w(y1) < max {u−1 (rw,u
0 ) , y − VP,u} and

w(y′) ̸= w(y1) on a set of positive measure in [y1, y2] under F0. Let Y + be the subset of

[y1, y2] such that w(y′) > w(y1) and Y − be the subset of [y1, y2] such that w(y′) < w(y1).

Y +∪Y − has positive measure under F0. Consider then the alternative contract w̃ defined

by

w̃(y) =


w̄ if y ∈ Y + ∪ Y − ⊂ [y1, y2],

w(y) otherwise,
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where w̄ ∈ R is chosen so that

1. EF0 [w(y) | y ∈ Y + ∪ Y −] > w̄, and

2. EF0 [u(w(y)) | y ∈ Y + ∪ Y −] < u(w̄).

Such a w̄ exists by Jensen’s inequality as the agent’s utility is strictly concave, and hence,

the Jensen gap is strictly positive. Moreover, we can choose w̄ so that w̃ satisfies Eq. (m-

MDL) by considering subsets of Y + ∪ Y − if needed. Intuitively, w̃ flattens w on Y + ∪ Y −

to insure the agent, increasing both the total surplus and the principal’s share. Therefore,

if the agent was willing to explore the known box under w, he is still willing to do so under

the alternative contract w̃, and,

VP (w | A0) < VP (w̃ | A0).

But, w̃ satisfies Eq. (m-MDL). So, w is not optimal among the contracts that satisfy

Eq. (m-MDL) under A0.

(ii) To prove that an optimal contract exists, we first show that we can restrict atten-

tion to contracts w such that rw0 = 0. To see this, let w be a contract satisfying (m-MDL)

such that rw0 > 0. Consider then the alternate contract w̃ implicitly defined by

u(w̃(y)) = (u(w(y))− rw0 )
+ , ∀y.

Then, w̃ ≤ w, hence, EF0 [y − w(y)] ≤ EF0 [y − w̃(y)], and, by definition, rw̃0 = 0. So, w̃

weakly dominates w. The result then follows if w̃ is admissible, i.e., w̃ satisfies (m-MDL).
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But,

w̃(y) = u−1
(
(u(w(y))− rw0 )

+)
≤ max

{
0, u−1 ((u(w(y))− rw0 ))

}
≤ max

{
0, w(y)− u−1(rw0 )

}
≤ max

{
0, y − VP,u − u−1(rw0 )

}
≤ max {0, y − VP,u} .

where the second inequality follows from the convexity of u−1 and the third inequality

from w satisfying (m-MDL). So, w̃ satisfies (m-MDL), and, hence, we can look for an

optimal contract in the subset

C = {w ≥ 0 : w(y) ≤ max {0, y − VP}} .

Existence then follows from Lemma 10 in Durandard and Ghersengorin (2024) since C is

convex. This concludes the proof of Lemma 2.

Lemma 3. For all superset A of set of boxes, the mapping

C0([0, ȳ]) ⊂ R[0,ȳ]
+ → R, w → inf

A∈A
Eσ(A,w) [y − w(y)]

is sequentially upper semi-continuous when R[0,ȳ]
+ is equipped with the product topology

(i.e., for pointwise convergence).

Proof. The infimum of a family of upper semi-continuous functions is upper semi-continuous.

So, the results follows if w → Eσ(A,w) [y − w(y)] is upper semi-continuous for all A, which

we prove now.

Let A ⊇ A0. Let {wn}n∈N be a sequence of contract that converges to some w∗. We
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show that

lim sup
n→∞

Eσ(A,wn) [y − wn(y)] ≤ Eσ(A,w∗) [y − w∗(y)] .

Observe first that, if σ(A, wn)
weak∗
⇀ σ(A, w∗), where we denote the distribution of the

presented prize under A and w by σ(A, w) with a small abuse of notation, the above

inequality holds as an equality as the bilinear form (σ,w) → Eσ [y − w(y)] is continuous.

So, suppose that σ(A, wn)
weak∗

̸⇀ σ(A, w∗). Since the agent is rational, he follows the

Weitzmann index strategy. From the definition of the indices and the implicit function

theorem, the mapping w → rw is continuous for each box. As a result, σ(A, wn)
weak∗

̸⇀

σ(A, w∗) only if rw∗
i = rw

∗
j for some boxes i and j. That is, the agent is indifferent between

two boxes under contract w∗. But, by assumption, when that’s the case, the agent breaks

the tie in favor of the principal. Therefore, the above inequality also holds in that case.

Since A ⊇ A0 was arbitrary, we have shown that w → Eσ(A,w) [y − w(y)] is upper

semi-continuous for all A ⊇ A0.

A.8 Proof of Proposition 5

The proof of Proposition 5 builds on the idea of the proof of Proposition 1. First, we

identify an upper bound on the principal’s payoff guarantee. Second, we show that the

strategy specified in the statement of the proposition achieves this upper bound.

Step 1. Identifying an upper bound for the principal’s payoff guarantee. Consider the pos-

sible scenario where the only available projects are the ones known for each agent. In this

scenario, the principal’s payoff cannot exceed the highest possible social surplus, which

can be computed by analyzing a social planner’s optimal search strategy when facing m

projects {ak0}mk=1. Following Weitzman (1979), the social planner optimally explores the

projects in descending order of their indexes and stops when the highest up-to-date prize
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is higher than all the unexplored projects’ indexes. We denote by V ∗
S the social planner’s

optimal expected payoff. Since
{
ak0
}m

k=1
is one possible choice by nature, V ∗

S is an upper

bound for the principal’s payoff guarantee.

Step 2. The startegy in Proposition 5 achieves V ∗
S . To prove that the proposed strategy

is optimal, it suffices to prove:

1. Under the proposed strategy, the worst-case scenario is A0 = {ak0}mk=1.

2. The proposed strategy guarantees the principal a payoff of V ∗
S under A0.

First, we show that, under the proposed strategy, the principal’s worst-case scenario is

exactly the aforementioned one where each agent only has access to his known project,

A0 = {ak0}mk=1. The proof of this argument is identical to that of Proposition 1 — under

a debt contract, having more projects induces the agent to present a weakly better prize

in the first-order stochastic dominance sense, which increases the principal’s payoff.

Second, we show that, in the principal’s worst-case scenario, the strategy specified in

Proposition 5 achieves V ∗
S , and, hence, is robustly optimal. To see this, observe first that

it induces the socially efficient outcome, as the order of search among the projects {ak0}mk=1

and the stopping rule under this strategy is identical to that of the social planner’s optimal

strategy. Moreover, this strategy leaves no surplus for the agents, as they each face a debt

contract that satisfies the FSE condition. Hence, the principal’s expected payoff in this

scenario is the entire social surplus.
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B Efficiency Concerns

If the principal only evaluates contracts by their worst-case performance, a natural crite-

rion to tie-break among them is on the basis of total surplus. This section investigates

whether any optimal contract also maximizes total surplus. Given that there may be

many true sets of projects A, we follow a strong notion of efficiency. We denote the

agent’s expected payoff given a contract w and a set of projects A as VA(w | A).

Definition 1. Let VS(w | A) := supσ∈Σ(w,A)[VP (w|A)+VA(w|A)] denote the total surplus

induced by the contract w when the realized set of projects is A. The contract w is said

to be efficient if it maximizes VS(w | A) for any A.

Despite the demanding criterion, efficiency refinement works for some parameters of

a0, as shown by the following proposition. Let y
0
:= inf (supp(F0)) denote the lowest

possible prize that may be generated by the project a0.

Proposition 6. If c0 ≥ EF0 [y]−y
0
, the pure debt contract w0 is the only optimal contract

that is efficient.23 If c0 < EF0 [y]− y
0
, no optimal contract is efficient.

Proof. See Appendix B.1.

This result is driven by an important property that pure debt contracts are order-

preserving, i.e., the agent’s search order coincides with the social planner’s, despite the

presence of the contract. Direct computation shows that the w0-induced index of any

project ai is rw0
i = ri − r0. Because a pure debt contract uniformly reduces the indices of

all projects, it does not distort the order in which the agent searches them, nor when the

agent terminates search with a positive wage.

23Unlike the argument in Section 4, limited liability is important for uniqueness in this theorem;
otherwise, selling the firm to the agent would also be robustly optimal and efficient.
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The only possibility that a debt contract generates inefficient search is when it dis-

courages the agent from searching some project a1 after the known a0 has been explored.

Without the w0 contract in place, it may have been efficient to explore a1 because r1 ≥ 0,

but rw0
1 < 0. This possibility is excluded by the assumption on a0, which implies that

even the social planner will never find it optimal to explore projects with a lower index

than a0. We thus conclude that the agent’s w0-induced search order among any A is the

same as that of the social planner.

Proposition 6 relies on the condition c0 ≥ EF0 [y]− y
0
, which holds in situations where

either (i) the cost of exploring the known project is large or (ii) the “downside risk” of a0,

measured by EF0 [y]− y
0
, is small. This condition holds, for instance, in the special case

where a0 is a riskless project whose potential is well-known at the time of contracting.

B.1 Proof of Proposition 6

Part 1: If c0 ≥ EF0 [y]− y
0
, w0 is efficient. The condition c0 ≥ EF0 [y]− y

0
is equiva-

lent to y
0
≥ r0, which ensures that the social planner’s search process will not continue

after sampling the project a0. This is also true for the agent when he faces the debt con-

tract w0. Hence, as we mentioned in the explanation following Proposition 6, it suffices to

show that under w0, the agent’s search order among the projects whose indexes are weakly

higher than r0 is identical to that of the social planner’s. Intuitively, this is because the

agent is the full residual claimant under a debt contract. To see this formally, notice that

rw0
i = ri − r0 if ri ≥ r0, which is true because [yi − ri]

+ = [(yi − r0)
+ − (ri − r0)]

+ when

ri ≥ r0, making
∫
[yi − ri]

+dFi(yi) =
∫
[(yi − r0)

+ − (ri − r0)]
+dFi(yi).

Part 2: If c0 < EF0 [y]− y
0
, w0 is not efficient. The condition c0 < EF0 [y] − y

0
is

equivalent to y
0
< r0. Let a1 = (δr0−ϵ, 0) and A = {a0, a1}, where ϵ is positive but

arbitrarily small. In this case, the social planner will first sample project a0 and continue

to sample a1 if y < r0, whereas the agent will only sample a0 and stop.
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Part 3: No robustly optimal contract w ̸= w0 is efficient. To ensure that the agent’s

search order among projects with indexes higher than r0 is the same as the social planner’s

for any realization of A, we need w(y′) − w(y′′) = y′ − y′′ for any y′ > y′′ ≥ r0, i.e., the

agent needs to be the full residual claimant. If this condition is violated, we can construct

the following counterexamples.

Suppose w(y′) − w(y′′) > y′ − y′′. Let a1 = (δy′ , y
′ − y′′ + ϵ), a2 = (δy′′ , 0), and

A = {a0, a1, a2}, where ϵ is positive but arbitrarily small. In this case, the social planner

will first sample project a2, whereas the agent will first sample a1.

Suppose w(y′) − w(y′′) < y′ − y′′. Let a1 = (δy′ , y
′ − y′′), a2 = (δy′′ , ϵ), and A =

{a0, a1, a2}, where ϵ is positive but arbitrarily small. In this case, the social planner will

first sample project a1, whereas the agent will first sample a2.

Hence, an efficient contract must satisfy w(y′)−w(y′′) = y′ − y′′ for any y′ > y′′ ≥ r0.

Combining this condition, the FSE condition specified in Theorem 1, and the limited lia-

bility assumption, we conclude that an efficient and optimal contract must satisfy w(y) = 0

if y ≤ r0.
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