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Abstract

We provide evidence that the signature empirical patterns of prospect theory are not special

phenomena of risk. They also arise (and often with equal strength) when subjects evaluate

deterministic monetary payments that have been disaggregated to resemble lotteries. Thus,

we find, e.g., apparent probability weighting in settings without probabilities and loss aversion

in settings without loss. Across subjects, the appearance of anomalies in these deterministic

tasks strongly predicts their appearance in lotteries. These findings suggest that much of the

behavior described by prospect theory may be driven by the complexity of evaluating lotteries

rather than by risk or risk preferences.
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1 Introduction

In this paper we provide evidence that the main empirical patterns motivating behavioral theories

of risk like prospect theory are not in fact special phenomena of risk. They also arise (and often

with equal strength) when we ask experimental subjects to value deterministic monetary payments

that we describe in the same disaggregated way that we necessarily describe lotteries. Thus, we find

“probability weighting” in valuation problems without probabilities and “loss aversion” in prob-

lems without risk of loss, and, across subjects, the appearance of these anomalies in deterministic

valuations predicts their appearance in the valuation of true lotteries. Our findings therefore sug-

gest that these anomalies may be, in large part, a response to the complexity of lotteries (i.e., the

information processing required to value lotteries) rather than a response to their risk (e.g., risk

preferences or failures to understand stochasticity).

Our study is centered on a suite of anomalies that researchers typically find in the certainty

equivalents of lotteries – the deterministic monetary amounts subjects assess as equivalently valu-

able to lotteries. The “fourfold pattern” of risk, the “most distinctive implication of prospect

theory” (Tversky & Kahneman 1992), is the tendency for certainty equivalents to be (i) lower than

expected value (revealing risk aversion) for lotteries with high probabilities of gain, but (ii) higher

than expected value (revealing risk seeking) for lotteries with low probabilities of gain and (iii)

for exactly the reverse to occur in each of these cases for prospects of losses. These distinctive

reversals in risk postures (between low vs. high probabilities and gains vs. losses) are generally

interpreted as signatures of the two main distinctive components of prospect theory preferences:

reference dependence (the tendency to evaluate changes in wealth rather than final wealth) and

probability weighting (the tendency to value low probability prospects as if they are more likely

and high probability prospects as if they are less likely than they actually are).

These anomalies, and the putative behavioral mechanisms driving them, are generally inter-

preted as special responses to the riskiness of lotteries (e.g., as consequences of non-EU risk pref-

erences). But lotteries are not only risky – they are also necessarily complex, in the sense that

they are disaggregated and therefore require potentially costly and difficult information processing

to properly value them. To the degree the attentional and computational resources required to

carefully evaluate a lottery are costly (or unavailable), decision makers may substitute to less care-

ful (but less costly) valuation strategies instead.1 As we discuss in more depth in Section 2.2, a

number of recent theoretical models have described how the use of less precise valuation strategies

can produce the distinctive fingerprint of the fourfold pattern, and for reasons that have nothing

to do with risk.

Our key observation is that such complexity-based explanations apply not only to lotteries

but also to deterministic objects that are disaggregated in a lottery-like way. By comparing the

1The idea that the complexity of a problem is a measure of the procedural cost of properly solving it is a direct

adaptation of the definition of complexity used in computer science. See Footnote 2, below.
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way people value lotteries to the way they value similarly complex deterministic prospects, we can

measure how much of the pattern can be rationalized as a pure response to complexity (i.e., a pure

response to the costs and difficulties of information processing).

To do this, we elicit not only subjects’ certainty equivalents for a standard set of diagnostic

lotteries, but also their valuations for what we call “deterministic mirrors” of the same lotteries –

adaptations of lotteries in which we simply replace probabilities with deterministic payoff weights.

These elicitations give us, not certainty equivalents (there is no uncertainty in these problems), but

rather simplicity equivalents – simply-described monetary amounts that subjects believe to be of

equivalent value to the relatively more complexly-described payoffs of mirrors. The deterministic

values of mirrors are equal to the expected values of their source lotteries, so any appearance of

standard anomalies in the simplicity equivalents of these objects are necessarily complexity-derived

mistakes (because there is no risk, preferences over risk cannot apply). To put it differently,

deterministic mirrors are lotteries in which preferences have been induced by the design to be linear

so that deviations from risk neutrality in their simplicity equivalents cannot be rationalized by, e.g.,

risk preferences. By comparing the incidence and severity of anomalies in simplicity equivalents

(where risk preferences cannot influence valuation) to those in certainty equivalents (where they

can), we can benchmark how much of the empirical fingerprint of prospect theory can be reasonably

attributed to complexity rather than risk.

We find that the full fourfold pattern appears in the simplicity equivalents of riskless mirrors,

just as it does in the certainty equivalents of risky lotteries. That is, subjects tend to undervalue

positive payoff components with large weights and overvalue positive payoff components with small

weights, but do exactly the reverse when payoff components are negative, thus displaying the

fourfold pattern. What’s more, the pattern is roughly as severe in mirrors as it is in lotteries: the

median subject’s certainty and simplicity equivalents deviate from expected value to exactly the

same degree for most of our elicitations and, in the aggregate, the fourfold pattern is 97% as severe

in deterministic mirrors as in true lotteries.

We also apply these same methods to lotteries designed to measure loss aversion, the third and

final distinctive component (alongside reference dependence and probability weighting) of prospect

theory. Loss aversion is a regularity in which decision makers overweight negative payments relative

to positive payments when evaluating probabilistic mixtures between the two. We find that the

average subject displays apparent loss aversion when evaluating mirrors just as she does when

evaluating lotteries, even though loss is not possible for the relevant choices in the mirrors we

study. Subjects thus overweight negative payoff components when evaluating deterministic mirrors

even when there is no risk of actually losing money. Overall “loss aversion” is 66% as severe in

mirrors as in lotteries.

Crucially, we find significant evidence that these anomalies likely arise in lotteries and mirrors

for similar reasons, driven by related behavioral mechanisms. Because we use a within-subjects

design (all subjects are asked to value both lotteries and their deterministic mirrors in a random
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order), our design allows us to evaluate how the severity of the pattern covaries in the two types of

tasks across subjects. We find that the appearance of the pattern in simplicity equivalents strongly

predicts its appearance in certainty equivalents – the correlation between the two across subjects

ranges between 0.59 to 0.65 depending on the metric used and is highly statistically significant.

What’s more, in both deterministic and stochastic tasks, deviations are highly systematic and non-

symmetric, running nearly uniformly in the direction of the fourfold pattern and loss aversion. This

strong relationship suggests that these anomalies probably arise in lotteries for the same reasons

that they arise in deterministic mirrors.

Additional treatments and controls affirm the robustness of these results and aid in their in-

terpretation. Removing scope for treatment-to-treatment contagion, quintupling incentives, using

a more sophisticated subject pool, intensifying training and decreasing the computational diffi-

culty of evaluating lotteries/mirrors all have at most minor impacts on our results in both lotteries

and mirrors. The nature of the design furthermore minimizes scope for subjects to “mis-import”

probabilistic heuristics usually reserved for lotteries to deterministic mirrors (we deliberately de-

scribe mirrors in a frequentist way that allows us to avoid mention of probabilities or likelihoods

altogether). Instead, demographic data, auxiliary behavioral data and post-experiment questions

suggest that these anomalies arise because subjects consciously (perhaps even deliberately) elect

to use imprecise, error-prone valuation procedures instead of the precise methods of evaluation we

often implicitly assume when interpreting lottery choice.

In our concluding discussion, we interpret these results. There, we argue that because these

anomalies in deterministic mirrors are clear mistakes, and mirrors are no more complex than their

source lotteries, the principle of parsiomony suggests that the anomalies in lotteries are, to a similar

degree, complexity-driven mistakes. This interpretation is significantly reinforced by the fact that

the severity of anomalies strongly covaries across subjects, suggesting that they derive from the

same source (which, recall, must be complexity since risk is not present in mirrors). Decomposing

the data, we argue that in our main dataset roughly 91% of the overall pattern can be attributed to

the complexity of aggregation (97% of the fourfold pattern and 66% of loss aversion). We emphasize,

however, that this is a conservative estimate: there are strong reasons to believe based on recent

evidence (Martinez-Marquina et al. 2019) that stochasticity makes information processing tasks

like valuation more difficult. As such, this decomposition likely provides a lower bound estimate of

the role complexity plays in driving prospect theoretic behavior in standard risky lotteries.

These findings, if borne out by future research, have several potentially important implications.

First, they suggest that, to a great extent, the deviations from expected utility theory documented

in behavioral economics may be a consequence of the costs and difficulties of information processing

rather than of behavioral risk preferences. This has direct welfare implications, because it suggests

that choices made in response to risk may not accurately reveal true risk preferences. This in

turn has policy implications, suggesting as it does that these anomolous responses to risk may be

correctible through training, nudging and judicious institutional framing and that such corrections
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may be welfare-enhancing. Second, these results suggest that lottery anomalies and the theories

constructed to describe them may have a far greater scope of application than is conventionally

assumed. Complexity is in some sense more fundamental than risk, applying as it does to a

much broader range of decision contexts. Our results suggest that theories like prospect theory

may be directly descriptive of the way humans respond to one important and ubiquitous type of

complexity in economics (the complexity of valuing objects with disaggregated components such as

consumption bundles, production plans or strategies). As such, our results may point to a much

wider range of descriptive and predictive uses for such theories in economics.

Our work relates to and builds on several literatures. First is a long literature documenting

the signature anomalies of prospect theory empirically (e.g., Kahneman & Tversky 1979, Tversky

& Kahneman 1992, Barberis 2013, Wakker 2010). Second is a nascent literature in economics

that (i) follows computer science by defining complexity as the cost of implementing a decision

rule and (ii) measures these algorithmic costs and their distortionary impacts on behavior directly

(e.g., Oprea 2020, Banovetz & Oprea 2022, Camara 2021).2 Third is a growing literature showing

that as lotteries become more complex (i.e., as the number of elements in their supports grow),

departures from expected value become more severe (e.g., Bernheim & Sprenger 2020, Puri 2020,

Fudenberg & Puri 2022).3 Fourth is a literature showing that measured risk aversion (e.g., Benjamin

et al. 2013) and probability weighting (e.g., Choi et al. 2021) are strongly related to measures

of cognitive ability, suggesting that information processing costs and therefore complexity likely

influence lottery valuation (Stango & Zinman 2022). Fifth is a literature showing that measurements

of risk posture (e.g., Friedman et al. 2017, 2022, Beauchamp et al. 2020), the fourfold pattern

(Harbaugh et al. 2010), and prospect theory parameters (Bauermeister et al. 2018) are unstable,

changing sometimes dramatically (even within-subject) when the method of elicitation is changed;

Holzmeister & Stefan (2021) provides evidence that this instability is driven by the way complexity

varies across choice environments. Finally, a recent literature (reviewed in detail in Section 2.2)

shows theoretically how complexity (broadly writ) can produce classical anomalies like the fourfold

pattern via a variety of boundedly rational mechanisms.4 Methodologically, our paper is closely

2 In computer science, complexity is defined as the cost (usually denominated in time or memory) of implementing

an algorithm to properly solve a problem. We can define complexity analogously in humans: a problem is complex if

it requires a human to use a mentally costly algorithm (i.e., procedure or rule) to properly solve it. One way to study

the role of this complexity empirically is to attempt to measure it directly by measuring distaste for implementing

algorithms, an approach followed by Oprea (2020). A second approach is to try to remove the costs of implementing

algorithms and study whether this causes anomalies to disappear thus implicating complexity in the anomaly –

an approach taken by Banovetz & Oprea (2022). Our paper suggests a third approach: remove putative drivers

of anomalous behavior other than complexity from a decision problem, and study whether the anomalous behavior

remains. To the degree it does, we have evidence that the anomaly was an outgrowth of complexity. Camara (2021)

proposes an axiomatic framework for studying these computational costs theoretically and shows that they lead

directly to heuristic behaviors like choice bracketing.
3Relatedly, Nielsen & Rehbeck (2022) show that subjects fail to comply with some of the central axioms of expected

utility theory, not due to preferences but rather due to the complexity of applying axioms in lottery choice.
4Perhaps most closely related to our paper in this literature is Enke & Graeber (2021) who show empirically that

subjects’ stated uncertainty concerning the optimality of their valuations predicts the severity of the fourfold pattern.
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related to Martinez-Marquina et al. (2019) who also compare stochastic and deterministic versions

of otherwise isomorphic optimization problems and show that people are better at reasoning about

the latter (the “power of certainty”).

The remainder of the paper is organized as follows. In Section 2 we describe a collection of

lottery anomalies that we collectively call the “classical pattern,” discuss the relative role risk and

complexity play in driving this pattern, and outline our methodology for separating the two classes

of explanation. In Section 3, we discuss our experimental design and in Section 4, we present our

results. We close with a discussion in Section 5.

2 Conceptual Background

In this section we discuss the key conceptual issues motivating our study. In subsection 2.1 we

describe “the fourfold pattern of risk” and “loss aversion,” the key empirical regularities underlying

prospect theory, which we call collectively the “classical pattern.” Next, in subsection 2.2 we discuss

the complexity of lotteries and a recent literature that suggests that anomalies in lottery valuation

may be a consequence of the complexity of lotteries rather than of their riskiness. Finally, in section

2.3 we describe how we propose to remove risk from lotteries while retaining their complexity. There,

we argue that we can use this method to decompose the relative roles complexity versus risk play

in driving the classical pattern.

2.1 The “Classical Pattern”

Consider a simple lottery L = (p;X,Y ) that pays out $X with probability p and $Y with probability

1−p. Let $C be the certainty equivalent of L: the certain (i.e., riskless) dollar amount the decision

maker values equivalently to L. Let E = pX + (1 − p)Y be the expected value of lottery L. A

decision maker is risk averse if C−E is negative and risk seeking if it is positive. That is, a decision

maker is risk averse if her certainty equivalent for the lottery is less than its expected value, and

risk seeking if the reverse is true.

In standard expected utility theory a decision maker can be risk averse or risk seeking, but for

conventional utility functions this should not change as p changes, holding the payoffs in L fixed.

Instead, a decision maker should remain weakly risk averse or weakly risk seeking as p changes

in the lottery. Similarly, under expected utility theory, decision makers’ risk postures should not

depend on what direction gambles shift wealth relative to the status quo, but should instead depend

soley on the distribution of final wealths the lottery induces. Thus risk aversion in the valuation of

lotteries should not depend on whether decision makers face potential losses versus gains (relative,

They also show that this cognitive uncertainty and the severity of the fourfold pattern rise in tandem as tasks become

more complex. We show in Section 4.7 that cognitive uncertainty predicts the severity of anomalies in our data too,

in both lotteries and mirrors.
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Figure 1: Prospect theory preference functions. Notes: The left hand panel shows an example of the prospect

theory probability weighting function which transforms probabilities into decision weight. The right panel shows an example of

the value function which assigns value as a function of changes in wealth. The sharp kink at 0 and increased slope in negative

values describes loss aversion.

e.g., to the status quo) under expected utility theory.

However, a central finding of behavioral economics (encoded in influential behavioral theories

like prospect theory) is that people tend to violate these broad predictions of expected utility

theory in systematic ways. These anomalies of the certainty equivalent are summarized in the fa-

mous “fourfold pattern” of risk, consisting of four “effects” (assume, following typical measurement

approaches, that Y = 0 in each case):

• Certainty Effect in Gains: When X > 0 and p is large (e.g, p > 0.7), decision makers are

risk averse (C − E < 0).

• Possibility Effect in Gains: When X > 0 and p is small (e.g, p < 0.3), decision makers

are risk seeking (C − E > 0).

• Certainty Effect in Losses: When X < 0 and p is large (e.g, p > 0.7), decision makers are

risk seeking (C − E > 0).

• Possibility Effect in Losses: When X < 0 and p is small (e.g, p < 0.3), decision makers

are risk averse (C − E < 0).

Thus, the fourfold pattern consists of a series of distinctive reversals in risk postures as probabilities

move from low to high, and payoffs switch from gains to losses. When decision makers face the
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possibility of gains, they seek risk at low probabilities and avoid it at high ones. When decision

makers face losses, they do exactly the opposite.

Tversky & Kahneman (1992) call the fourfold pattern the “most distinctive implication of

prospect theory,” because it crisply displays two of the theory’s three distinctive ingredients.5

First prospect-theoretic decision makers display probability weighting, valuing lotteries as if small

probabilities are larger and large probabilities are smaller than they actually are. This is usually

summarized by a distinctive inverse s-shaped “probability weighting function,” w, like the one

pictured in the left hand panel of Figure 1 that transforms true probabilities into “decision weights.”

Second, prospect-theoretic decision makers are reference dependent, valuing changes in wealth

relative to a reference point (conventionally zero in this setting) rather than (as in expected utility

theory) final wealth. This is usually summarized by an s-shaped “value function,” v, like the one

pictured in the right hand panel of Figure 1. Prospect-theoretic agents are then assumed to make

choices that maximize (in, e.g., binary settings like the ones described above) w(p)v(X) + (1 −
w(p))v(Y ).6 Applying probability weighting in this way to sign-preserving valuations of changes to

wealth produces (and therefore rationalizes) the fourfold pattern.

While the fourfold pattern describes how prospect theoretic agents value prospects of gains

relative to prospects of losses, loss aversion, describes how they value mixtures of the two. This

third distinctive component of prospect theory (alongside probability weighting and reference de-

pendence) describes a tendency for decision makers to put greater weight on losses than gains when

evaluating lotteries containing both. A classic diagnostic case is the following:

• Loss Aversion: When X > 0, Y < 0 and p = 0.5, decision makers require |X| > |Y | in

order to be indifferent between L and a sure payoff of $0. In particular there is some λ > 1

such that if |X| = λ|Y |, the decision maker is indifferent between L and $0.

In prospect theory, loss aversion is described by a “kink” in the value function at the reference

point of zero that steepens the impact of losses on valuations relative to symmetric gains (as in the

right hand panel of Figure 1).

Together, these five anomalies in lottery valuation constitute the main empirical content of

5Prospect theory comes in two main forms: “original prospect theory” (Kahneman & Tversky (1979)) and “cumu-

lative prospect theory” (Tversky & Kahneman (1992)). The distinctions between the two versions are unimportant

for our analysis and so we ignore those distinctions throughout the paper.
6For example, Tversky & Kahneman (1992) propose the following simple functional forms of the probability

weighting function

w(p) =
pγ

(pγ + (1 − p)γ)1/γ
(1)

and the value function

v(x) =

xα, x > 0

−λ(−x)α, x < 0
(2)

Many alternative functional forms have been proposed in the literature.
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prospect theory, by far the most influential “behavioral” model of decision making under risk.7 We

will collectively refer to this group of empirical regularities as the “classical pattern” or simply “the

pattern,” and understanding its source is the goal of this paper.8

2.2 Risk and Complexity

The classical pattern is typically interpreted as a special response to to the risk inherent in lotteries.

In particular, it is traditionally explained as an expression of non-expected utility risk preferences.

For instance in prospect theory, probability weighting, reference dependence and loss aversion are

traditionally understood as descriptions of how decision makers’ preferences for lotteries respond

to deviations from a reference point or to variation in probabilities.9 Some accounts of the pattern

also attribute some of its characteristics (e.g., some aspects of probability weighting) to mistakes in

understanding stochasticity that produce systematic errors in lottery valuation (see, e.g., Wakker

(2010)).

Importantly, however, lotteries are not only risky – they are also, unavoidably, complex in the

sense that they are disaggregated into multiple payoff components that a decision maker must

aggregate in order to discover its value. Indeed, “disaggregatedness” (the number of elements in

a lottery’s support) is the most common metric of lottery complexity in the recent literature on

the topic (e.g., Bernheim & Sprenger (2020), Puri (2020), Fudenberg & Puri (2022)). As long

literatures in psychology, neuroscience and computer science emphasize (e.g. Kool & Botvinick

2018), this kind of information processing is costly and such costs are precisely what we (following

the operationalization used in computer science) mean by “complexity.”10 In this sense, even the

seemingly simple two-outcome lotteries that are usually used to measure the classical pattern are

complex relative to a simple dollar payment like a certainty equivalent (which, note, has only one

payoff component and therefore requires minimal information processing to value).

7Some other well-known anomalies like the Allais paradox or the endowment effect are often also interpreted as part

of the “main empirical content of prospect theory.” However recent evidence calls this into question. McGranaghan

et al. (2022) provides evidence that the common-ratio Allais effect, often interpreted as an outgrowth of probability

weighting, is not consistent with measured probability weighting. Likewise, Chapman et al. (2021) provide evidence

that the endowment effect is not statistically related to standard measurements of loss aversion.
8We will generally refer to this group of anomalies as the “classical pattern” rather than, e.g., “prospect-theoretic

behavior” to emphasize that our interest is in understanding the roots of the empirical pattern that motivates theories

like prospect theory rather than in testing any specific descriptive theory.
9Although the classical pattern is traditionally interpreted as a consequence of preferences, there is a great deal

of ambivalence about this interpretation in behavioral economics. For instance, in a recent review O’Donoghue &

Somerville (2018) conclude ‘there is relatively limited discussion or consensus about the psychological principles that

underlie probability weighting.” Likewise, Camerer (2005), in a discussion of loss aversion, concludes “[a]n important

open question about loss aversion is whether it is a judgement error or a genuine expression of preference.”
10In computer science, a task or decision problem is described as “complex” to the degree that the least costly

algorithm for correctly performing or solving it is complex (i.e., costly). Any lottery is complex in this sense to the

degree that the procedure required to process information is more costly than the trivial procedure required to assess

a simple, deterministic payment.

9



Complexity serves as an alternative explanation for the classical pattern, because it can produce

systematic distortions in valuation that resemble the classical pattern for reasons unrelated to risk.

Because a lottery is complex, its value is not immediate or transparent to a decision maker: she

must first process information, combining the disaggregated payoff components of the lottery, in

order to understand how she values it. And, because processing information with any precision is

costly, complexity produces an immediate incentive to substitute to less costly (but less accurate)

methods of information processing instead.11 There are many ways this substitution to cheaper

modes of information processing might produce biases in valuations, including biases resembling the

classical pattern, and recent literatures in both psychology and economics have detailed a number

of them in the last decade.

The aim of our investigation is not to differentiate between the many ways that economizing

on information processing costs might produce the classical pattern via complexity; our experi-

mental methods are largely agnostic to distinctions between the many possible proximal accounts.

Nonetheless, we give a brief overview of some of the mechanisms that have been discussed in the

recent literature in order to give the reader a flavor of how complexity, rather than risk, might

produce these kinds of anomalies. First, DMs may economize by choosing to incompletely evaluate

lotteries, ignoring or severely underweighting some relevant pieces of information and directly bias-

ing valuations in the process. For instance, Bordalo et al. (2012) show that over-weighting of salient

payoffs in lotteries can directly produce the fourfold pattern and apparent probability weighting.

Likewise, decision makers can reduce information processing costs by evaluating changes to wealth

directly instead of integrating lottery outcomes with final wealth, automatically producing apparent

reference dependence (a key ingredient in the pattern). Second, a long literature in neuroscience

and the psychophysics of perception suggests that precisely encoding or representing perceptual

information is costly to the brain and that brains economize by coding information noisily (see

Woodford (2020) and Glimcher (2022) for recent reviews). This will result in systematic bias if

brains attempt to attenuate the costs of this “noisy coding” by efficiently biasing its evaluations

when “decoding” noisy representations to inform choice, e.g., by shading evaluations towards prior

beliefs in a Bayesian manner. A recent literature shows how this efficient biasing of noisily processed

information can produce lottery anomalies including (i) reference dependence and small stakes risk

aversion (e.g., Khaw et al. 2021, Frydman & Jin 2021), (ii) probability weighting and the fourfold

pattern (e.g., Steiner & Stewart 2016, Vieider 2022) and even (iii) loss aversion (Khaw et al. 2021).12

11See Simon (1955) for an early discussion of this idea. See Oprea (2020) for evidence that humans find information

processing costly and Banovetz & Oprea (2022) for evidence that they respond sensitively to these costs when choosing

decision procedures. See Camara (2021) for a related theoretical discussion of this mechanism.
12The literature has gathered significant recent evidence for this class of mechanism. Khaw et al. (2021) shows that

small-stakes risk aversion is intimately linked to noise in evaluations – a key implication of these models. Frydman &

Jin (2021) show that subjects’ beliefs about the range of lottery payoffs they are likely to encounter jointly impacts

behavioral noise and risk aversion in a manner supportive of the hypothesis that “coding” is not only noisy but also

efficiently adapted to the decision environment (“efficient coding”). Vieider (2022) provides evidence that such noisy

coding models do a significantly better job of predicting and organizing the anomalies of the classical pattern than

do standard noisy prospect theory models.
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Third, and relatedly, imperfect processing of information (due to noisy coding or simply due to

computational errors) might produce “cognitive uncertainty” about the optimality of valuations,

leading decision makers to cautiously shade their valuations towards safe-seeming defaults; this,

too, can produce probability weighting and the fourfold pattern.13 Indeed, if a decision maker does

nothing more sophisticated than force her noisy valuations to fall within the support of the lottery

(either for rational reasons or because of bounds in the set of available valuations in the elicitation),

this will result in apparent probability weighting in mean valuations (Blavatskyy (2007)).14

What is important for our purposes is that none of these complexity-based explanations rely

in any special way on risk. Instead they rely on the fact that lotteries are disaggregated and their

values are therefore not transparent to decision makers. In order to properly aggregate (value)

them, the DM must implement a costly information processing procedure and may therefore opt

to (or be forced to) use less costly but also less accurate valuation strategies instead. Our main

observation is that because these complexity-based explanations do not rely on risk, they should

also operate in valuations of riskless prospects that share the complexity (the information processing

required) of a lottery.

2.3 Simplicity Equivalents

Our contribution is to propose a method for separating these two broad classes of explanations for

anomalies like the classical pattern: risk-based explanations (that rely on behavioral risk preferences

or confusions about stochasticity) versus complexity-based explanations (that stem from the generic

costs and difficulties of evaluating disaggregated objects). Our method has the appealing advantage

that it does not require us to commit to or even articulate any specific model of complexity (e.g., any

one of the many proximal mechanisms discussed in the previous subsection) in order to accomplish

this empirical separation.

Our proposal is to compare valuations of lotteries to valuations of objects that are complex

(disaggregated) like a lottery but that contain no risk. Specifically, for any lottery L we can

construct what we will call a “deterministic mirror,” ML, of L that replaces probability p with a

deterministic weight. Thus, instead of paying X with probability p and Y with probability 1 − p
like a lottery, a mirror pays pX+ (1−p)Y with certainty. ML is thus identically disaggregated and

13Consistent with such explanations, Enke & Graeber (2021) show that probability weighting and the fourfold

pattern are significantly stronger for subjects who report in post-experiment questions that they are uncertain about

the correctness of their valuations than they are for subjects who report relative confidence. They also show that

this uncertainty and the severity of probability weighting jointly rise as the description of lotteries becomes more

complex.
14Notice that this last kind of explanation highlights a relationship between “complexity” and recent discussions of

the distorting effects of measurement error on measured preferences (e.g., Gillen et al. 2019). Blavatskyy (2007) can

be interpreted as a description of how noisy implementation of preferences produces measurement error and thereby

artificial evidence of probability weighting. To the degree this noise is a response to the costs of precisely interpreting

lotteries, this kind of measurement error is a complexity effect.
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therefore (in the sense described above) identically complex as L, but contains no risk. Because its

certain value is the expected value of L, the cognitive act required to value it is precisely the same

cognitive act that a risk neutral DM must perform in order to properly value L.

Because ML is already a certain payment, the dollar value a decision maker assigns to it cannot

be called a “certainty equivalent.” Instead it is a “simplicity equivalent,” – the simply-described

dollar amount, S, the DM views as equivalently valuable to the complexly-described (but equally

certain) payment ML. While deviations of the certainty equivalent of L from expected value may

be driven by, e.g., risk preferences, the same is not true of the simplicity equivalent of ML. Since

ML pays off its expected value for sure, deviations of S from expected value are unambiguously

complexity-driven mistakes in which the decision maker has transparently left money on the table.15

Thus, to whatever degree we observe the fourfold pattern in simplicity equivalents, we have evidence

that this complexity alone is sufficient to induce the pattern. To whatever degree DMs behave

similarly in valuing ML and L (i.e., to whatever degree errors in the simplicity equivalent predict

errors in the certainty equivalent across DMs), we further have evidence suggesting that the same

complexity that drives the pattern in ML also drives the pattern in L.

In the same spirit, we can use deterministic mirrors to evaluate the role complexity plays

in expressions of loss aversion, by examining which deterministic mixtures between positive and

negative payments subjects treat as equivalent to a simply-described payment of $0. Suppose ML

is the deterministic mirror of L, a lottery that mixes an X > 0 and Y < 0 with equal likelihood. As

long as X ≥ |Y |, ML produces no loss, so if a decision maker demands a minimum X greater than

λ|Y | for some λ > 1 to counterbalance Y , it cannot be a rational expression of loss preferences.

In mirrors, λ is instead a measure of the excess weight the decision maker mistakenly applies to

negative numbers in the act of aggregation. To the degree λ > 1 in ML, we have evidence that

patterns resembling “loss aversion” can arise due to aggregation mistakes, even in the absence of

true risk of loss.

A deterministic mirror is simply a lottery in which we have induced risk-neutral preferences

by paying the expected value, following standard experimental economic methods (Smith 1976).16

Risk neutrality is the natural benchmark for our purpose because under expected utility theory,

15Though, note, these “mistakes” may be optimal once the costs of information processing are accounted for.
16Preference induction is a standard technique in experimental economics, allowing researchers to study how indi-

viduals optimize and groups equilibrate without the confounding influence of unobserved preferences. For instance,

instead of having subjects trade real goods in experimental markets, researchers create fictional goods and pay sub-

jects reservation values and marginal costs for producing or acquiring them in trade directly (Smith 1962). Doing

this removes subjects’ unobserved “home grown” preferences (i.e., for real goods) from the experiment, allowing

researchers to directly calculate and manipulate competitive equilibrium predictions by controlling the distribution

of induced preferences in the market. Similar preference induction is used in experimental games for the same reason

(e.g., we use dollar payments instead of jail time when studying Prisoner’s Dilemmas). By removing unobserved pref-

erences and replacing them with known preferences, induction allows the researcher to study how factors other than

preferences shape behavior. Our methodology simply applies the same strategy to the choice tasks we usually use

to measure preferences, inducing risk-neutral preferences in order to measure how factors other than risk preferences

(i.e., complexity) shape valuation.
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we should expect subjects to be approximately risk neutral given the stakes present in typical

experiments (as emphasized, e.g., by Rabin (2000)). By studying how people value mirrors, we can

uncover what errors in aggregation we should expect a risk neutral agent to make due to complexity

alone. To the degree valuations of mirrors produce the same classical pattern that we observe in

lotteries, we therefore have evidence that the pattern can arise as a consequence of risk-neutral

but complexity-biased decision making. To the degree the pattern fails to appear in mirrors, we

instead have evidence that either (i) risk/loss preferences or (ii) contributions to complexity that

are special to risk are at the root the pattern.

Of course, this empirical strategy relies on an assumption that stochasticity introduces no

additional complexity to the problem of valuation above and beyond the complexity already present

in a similarly disaggregated mirror. That is, it assumes that it is no harder or more costly to process

information and formulate and implement a strategy for valuing a risky object than a deterministic

one. There are reasons to doubt this assumption. For instance in an important predecessor to our

paper, Martinez-Marquina et al. (2019) show that subjects have more difficulty solving stochastic

optimization problems than isomorphic deterministic problems, suggesting that stochasticity can

make decision problems more complex. If risk adds to the difficulty of accurate valuation, it

may drive decision makers to turn to less costly but more error-prone valuation strategies with

greater frequency (or greater intensity) when valuing lotteries than when valuing mirrors. Crucially,

however, to the degree this is true, our methodology will underestimate the role complexity plays

in producing the pattern, meaning our method produces a lower bound estimate of the degree to

which anomalies in lottery valuation are driven by complexity.

3 Experimental Design

We designed our experiment to

1. measure certainty equivalents for a set of standard lotteries usually used to document the

“fourfold pattern” of risk,

2. compare these to simplicity equivalents for a set of deterministic mirrors of these same lot-

teries, within subject and

3. repeat the exercise for the measurement of loss aversion, again by comparing lotteries to their

deterministic mirrors.

Our experiment is built around a series of “multiple price lists,” the most popular tool for

eliciting certainty equivalents and related measures of value in the literature. Figure 2 shows a

screenshot from our software for one of the price lists we study (called G10). In each price list,

subjects are shown a number of pairs of lotteries, A and B, one appearing on each row of the list.

Lottery B is identical in all rows of the list, while lottery A changes in each row. For instance, in
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Figure 2, A (in red) guarantees a sure payment amount ranging from $25.00 to $1 across rows; B

(in blue), by contrast, offers the same lottery in each row: $25.00 with 10% chance and $0.00 with

a 90% chance.

The subject’s task is to choose a lottery for payment in each row of the list by clicking on the

table, highlighting their choices in yellow. Subjects respecting first order stochastic dominance will

choose A in early rows (or, with extreme preferences, may never choose A) and switch to B in exactly

one row (possibly the first), never switching back to A again. We enforced this single switching

property in the experimental design mostly to simplify our analysis and speed up the experiment.17

The switching point between A and B reveals the A for which the subject is indifferent to fixed

lottery B. In this example, this yields an estimate of the subject’s dollar value (e.g., her certainty

equivalent) for a lottery that pays $25 with probability 0.1 and $0 with probability 0.9.

After clicking on the table, the subject clicks a button to submit her choice before moving on

to the next price list. The subject is told (truthfully) that one row from one price list from one

treatment will be selected randomly at the end of the experiment to determine her payment.

These methods are standard in the literature and, as we discuss in Section 3.2, we use them

to study very conventional lotteries. Our contribution is to include an additional version of each

price list in which we pay subjects (in effect) the expected value of the lottery they select; in the

language of Section 2, A and B are thereby transformed into “deterministic mirrors.” This allows

us to elicit “simplicity equivalents,” as described in Section 2, which can be directly compared to

certainty equivalents elicited for true stochastic lotteries.

3.1 Treatments

The main experiment consists of two treatments and every subject participated in each, in a ran-

dom order (i.e., a within-subjects design). In the Lottery treatment, subjects are paid under a

conventional stochastic incentive rule, as in standard lottery choice problems. If a row is selected

for payment, the computer uses the likelihoods listed at the top of the table to randomly select a

state from the lottery the subject chose (A or B) and pays the subject the monetary payout spec-

ified for that state. In the Mirror treatment, by contrast, the computer instead pays the subject

the (deterministic) expected value of the lottery she selected for the paid row. This transforms

lotteries into deterministic mirrors.

Crucially, we frame lotteries and mirrors in a nearly identical way by avoiding any reference to

probabilities. Instead, we describe each lottery/mirror as consisting of a set of 100 “boxes,” each of

which contains some (possibly negative) payment. The description of any given lottery consists of

a description of how many of these boxes contain each possible payment amount. In Figure 2, for

instance, lottery A consists of 100 boxes, each of which contains the same amount (which changes

17Note that this means that our design prevents some mistakes from occurring and may therefore lead our design

to understate the role bounded rationality plays in lottery valuation.
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Figure 2: Screenshot from a mirror task (list G10). Notes: In lottery tasks, the screen is identical except for

the text in green which instead reads “...plus the value of one of the boxes from the Set you selected, randomly chosen by the

computer.”
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systematically from row-to-row); B consists of 10 boxes each containing $25.00 and 90 boxes each

containing $0.

This means that the only difference between lotteries and mirrors is in how these identically-

described box-configurations determine the subject’s payment. In lotteries, we explain to subjects

that the computer will randomly open one of the 100 boxes randomly and uniformly and pay the

subject the amount in the randomly selected box. In mirrors, by contrast, we explain that the

computer will open all of the 100 boxes and pay them the sum (divided by 100).

We ran these two treatments within-subject (every subject experienced both treatments) in a

random order (either Lottery followed by Mirror or the reverse). In each treatment, subjects were

assigned all of the price lists discussed in Section 3.2, below, in an independent, random order.

Prior to each treatment we clearly described the treatment’s payoff rule and then gave subjects a

set of quiz questions to give them practice with and feedback on the payment rule.18 Thus, we made

a serious effort prior to each treatment to highlight and provide salient insight into the difference

between the two payoff rules in the two treatments.

Importantly, subjects who were initially assigned the Mirror (Lottery) treatment were not aware

they would later be facing the Lottery (Mirror) treatment. This, combined with the frequentist way

we framed the problem, means that we completely avoid “priming” stochasticity to the roughly

half of subjects initially assigned to Mirror. For these subjects, the valuation task has nothing

per se to do with probabilities or randomness but is instead a sort of reasoning task involving

box-opening. As we will see, this produces a clean separation between Lotteries and Mirrors in the

initially-assigned treatment, which will be important for interpreting the results.

3.2 Lists and Hypotheses

The core of the design is a series of ten price lists that includes two lists designed to measure each

of the five components of the classical pattern (the fourfold pattern and loss aversion). We assign

every subject each of these lists under stochastic (Lottery) and again under deterministic (Mirror)

incentives (in a randomized order). We call these our “core lists.”

Eight of these lists (G10, G25, G75, G90, L10, L25, L75, L90) we call “fourfold lists” and their

purpose is to elicit certainty/simplicity equivalents that, when compared to expected value, allow

us to test for the fourfold pattern. Lists beginning with G (for “gains”) elicit the value (between

$25 and $1 in $1 increments) of the lottery (p; $25, $0) and we vary p across lists between 0.1 (G10),

18For instance before both the Lottery treatment and the Mirror treatment, we showed the subject the same

example lottery/mirror (0.5; $16, $0) and asked them the same question: “What is the chance that $8 is added to

your earnings?” The correct answer is different in each treatment (0% in Mirror but 50% in Lottery), highlighting

the difference in the two incentive rules. Likewise, we asked “What is the chance that $8 is added to your earnings”

which has a correct answer of 100% in Mirror but 0% in Lottery. By asking the same question twice, we thus tried to

make the difference in payoff rules highly salient to subjects prior to the change of incentives in the second-assigned

treatment.
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0.25 (G25), 0.75 (G75) and 0.9 (G90). Figure 2 pictures one of these lists (G10). As with all “G”

lists, A’s payoff falls monotonically in each row from $25 to $1 in $1 increments, while B is a fixed

lottery whose value the list is designed to elicit.19 Lists beginning with L (for “losses”) look for the

monetary equivalent (between -$1 and -$25, again in $1 increments) of the lottery (p;−$25, $0) and

across lists we vary p between 0.1 (L10), 0.25 (L25), 0.75 (L75) and 0.9 (L90). (Because some lists

involve losses, all lists also come with an initial endowment added to the lottery payments from the

list.20)

Identifying the row at which subjects switch from A to B in Lotteries allows us to estimate

the certainty equivalent C as the midpoint between the lowest sure amount at which A is selected

and the highest sure amount at which A is rejected in favor of B. The fourfold pattern entails the

following regularities for certainty equivalent estimates C in these lists (given the coarseness of the

elicitation grid):21

• Certainty Effect in Gains: C <$18.50 in G75, C <$22.50 in G90

• Possibility Effect in Gains: C >$2.50 in G10, C >$6.50 in G25

• Certainty Effect in Losses: C > −$18.50 in L75, C > −$22.50 in L90

• Possibility Effect in Losses: C < −$2.50 in L10, C < −$6.50 in L25

Looking for the row at which subjects switch from A to B in the same lists in mirrors similarly

allows us to elicit the simplicity equivalent, S. Our primary question is whether the fourfold pattern,

a phenomenon of the certainty equivalent, arises also in the simplicity equivalent (i.e., whether the

pattern continues to arise when we replace “C” with “S” in the description above).

Two additional core lists, LA10 and LA15 measure loss aversion, the fifth main empirical

regularity prospect theory is designed to explain. In these lists B is fixed at $0 while A yields a

fixed payment -$Y (-$10 in LA10 or -$15 in LA15) with 50% chance and otherwise pays a positive

amount $X that declines from $50 to $2 in $2 steps from the highest to lowest row in the list. By

looking at the row at which subjects switch from A to B we can observe the positive payment a

subject demands to compensate for a negative payment of -$10 (LA10) or -$15 (LA15) in a 50/50

gamble. Loss aversion entails the following regularities in Lotteries:

• Loss Aversion: X > $10 in LA10 and X > $15 in LA15.

19The G lists are used in Bernheim and Sprenger (2020); similar price lists are also used in Gonzalez and Wu (1999)

and Bruhin et al. (2010). The L lists are negative reflections of these standard lists.
20This payment is $5 for the G lists, $15 for LA10, $20 for LA15, $30 for the L lists.
21Given the coarseness of the elicitation grid, in practice we will look for evidence of deviations in the specified

direction that are at least $1 (one price list row) away from these thresholds in establishing evidence of the pattern.
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Once again, our interest is in comparing choices in mirrors to choices in lotteries. In mirrors (unlike

lotteries) there are no losses at the expected value maximizing value of $X. Thus, evidence of loss

aversion here cannot be a rational response to distaste for losses.

Finally, we included a pair of lists, G50 and L50 that elicit certainty/simplicity equivalents for

a lottery mixing $0 and $25 with equal chance, included mostly to allow us to draw typical plots

used to visualize probability weighting. For half of our subjects in our main treatment, we repeated

each of these lists in both lotteries and mirrors, giving us a measure of how consistent subjects’

decisions are. This gives us a measure of the noisiness of subjects’ decisions, which we discuss in

our analysis of the results.

3.3 Implementation and Variations

We ran the experiment on a total of 389 subjects using custom Javascript software programmed

by the author and deployed via Qualtrics. Our main design (described above), consisted of 186

subjects recruited on Prolific in May 2022, who were paid a $6 base payment and, with 20% chance,

were additionally paid the outcome from a randomly selected list and row. Subjects in this design

spent an average of 31.2 minutes in the experiment and earned an average of $9.85.

We also ran an additional diagnostic treatment called “Easier” on Prolific using 90 subjects

under the same protocol. This treatment assigned subjects lists G25, G50, G75, L25, L50, L75

and LA10 but described the underlying probabilities using 4 boxes rather than 100 (i.e., a 0.25

probability of earning $25 was described as a 1-out-of-4 chance rather than a 25-out-of-100 chance).

To these, we added list sL25 and sG75 which were identical to L25 and G75 but paid out $20 instead

of $25. We motivate and discuss this treatment in Section 4.6 and Online Appendix C.

Finally, we ran a robustness version of our main design using 113 undergraduate student subjects

at UC Santa Barbara. This experiment (discussed in Online Appendix C) included longer training

(in particular more comprehension questions), payment to all subjects (rather than 20% as in

our Prolific dataset) and was run in traditional sessions (with subjects recruited via ORSEE,

Greiner (2015)) on Zoom in which subjects were allowed to ask the experimenter clarifying questions

throughout these experiments as in a typical laboratory session.

At the end of the experiment, we included a short battery of three cognitive reflections tasks,

a short demographic survey (focused on the subject’s technical education) and (in the Prolific

samples) a number of questions about subjects’ strategies and beliefs during the experiment. We

discuss these in more depth in Section 4.7 and Online Appendix B.2.
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4 Results

In this Section we report our empirical results. In Section 4.1 we show that the classical pattern

arises with nearly equal strength in both risky lotteries and riskless mirrors, suggesting that the

pattern is not primarily a phenomenon of risk. In Section 4.2 we show that the severity of the

pattern in the two cases are strongly correlated with one another across subjects, suggesting they

are driven by a common behavioral mechanism. In Section 4.3 we propose a simple taxonomy of

subjects, suggesting that the pattern is far more sensitive to complexity than it is to risk in the

subject population. In Section 4.4 we show that the results are not due to order effects or contagion

across treatments. In Section 4.5 we show that similar results occur using a different subject pools

with more intensive instructions and stronger incentives. In Section 4.6 we present results from

a diagnostic treatment that suggests that the pattern is not driven primarily by computational

difficulties or computational errors. Finally, in Section 4.7 we examine predictors of the pattern.

Throughout the analysis we will analyze deviations from the benchmark of the expected earnings

maximizing choice, which we will call EvMax. For the fourfold lists (the “G” and “L” lists) EvMax

is simply the lottery’s expected value; for the loss aversion lists (the “LA” lists) EvMax is the lottery

that equally weights gains and losses.22 Throughout, we will refer to the absolute size of deviations

from EvMax as our measure of error. We will instead refer to deviations that we have normalized

to be positive if they go in the direction of the classical pattern as our measure of pattern-consistent

bias. Thus, in our usage, high average error is evidence of severe departures from EvMax, while

high average bias is evidence that these departures are those of the classical pattern. We use these

terms (bias and error) in a statistical sense not in a normative sense, and their use should not be

read as judgements on the optimality of choices made in lotteries (where deviations from expected

payoff maximization can, ex ante, be rationalized as optimal responses to risk preferences).

4.1 Main Findings: The Pattern in Lotteries and Mirrors

Figure 3 presents our main results by plotting the difference between subjects’ mean elicited cer-

tainty/simplicity equivalent and the lottery’s expected value (on the y-axis) for each of our “fourfold

lists” as a function of the probability of the lottery’s non-zero payment (on the x-axis).23 Devia-

tions above zero are evidence of risk seeking and below zero evidence of risk averse behavior. List

names are plotted next to dots and error bars represent two standard errors. Light gray labels

describe the regions (e.g., north-east, north-west etc.) in which we expect each of the four parts of

the fourfold pattern to occur (i.e., the certainty effect and possibility effect, in gains and losses).

Data from lotteries are plotted as solid blue dots while data from mirrors are plotted as hollow red

22In calculating EvMax and deviations from it we use, not the lottery’s/mirror’s expected value, but the midpoint

between price list rows that is closest to expected value. This prevents us from recording small deviations from

expected value that are unavoidable given the coarseness of the design.
23Certainty/simplicity equivalents are calculated as the midpoint between the lowest certain/simple amount the sub-

ject preferred to the lottery/mirror and the largest certain/simple amount she rejected in favor of the lottery/mirror.
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Figure 3: Mean deviations from EvMax in lotteries (solid blue dots) and mirrors (hollow red dots)
for all core lists. Notes: For fourfold lists, the y-axis measures the difference between subjects’ certainty/simplicity

equivalent and expected value (as stated in the axis label): positive values display risk-seeking and negative values risk-averse

valuation. The x-axis is the probability of the non-zero payoff. For loss aversion lists, the y-axis measures instead the difference

between zero and the expected value of the lottery subjects evaluate equivalent to zero: positive values are evidence of loss-seeking

and negative values loss-averse valuation. Two-standard-error bars are included for every list. Light gray background labels

list and give the expected region of deviation for each component of the classical pattern.

dots.

The figure shows, as in previous work, that valuations of lotteries follow the fourfold pattern:

subjects are risk averse towards gains and risk seeking towards losses at high probabilities (the

certainty effects) and risk seeking towards gains and risk averse towards losses at low probabilites

(the possibility effects). In the left two panels of Figure 4 we plot the same data using an alternative

visualization (used, e.g., in Tversky & Kahneman (1992)) by plotting the probability of the non-

zero payoff on the x-axis and the ratio of the certainty equaivalent to the lottery’s non-zero payoff
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Figure 4: Naive visualization of the probability weighting functions (left two panels) and the
loss aversion parameter, λ (rightmost panel) for lotteries and mirrors. Notes: The first two panels plot

a naive estimate of the probability weighting function (following Tversky & Kahneman (1992)) by plotting the ratio of the

certainty/simplicity equivalent to the non-zero payment amount as a function of the probability of the non-zero payoff amount.

Under the lens of prospect theory, the estimate is naive in that it doesn’t correct for possible value function curvature. The

final panel plots the absolute value of the ratio of the negative payment Y and positive payment X in the lottery treated as

equivalently valuable to a sure payment of 0. This is a naive estimate of the λ parameter of loss aversion – naive because it

does not correct for potential asymmetries in the probability weighting function (which we see little evidence of) or in the value

function in gains versus losses (which the prior literature tends to show little evidence of).

(i.e., C/E(v)) on the y-axis. The results produce a naive non-parameteric estimate of the prospect

theory probability weighting function,24 and the results we observe are typical: subjects value low

probability lotteries as if they are more likely and high probability lotteries as if they are less likely

than they really are.

Figure 3 also shows our main finding: the pattern appears in a virtually identical fashion in

subjects’ valuations of mirrors. Indeed, Figure 3 shows that the entire fourfold pattern arises in

simplicity equivalents, including each of the distinctive reversals in apparent risk posture it predicts.

Subjects over- and under-value mirrors in such as way to produce apparent risk postures (though

there is no risk) that reverse precisely when their source lotteries do. Likewise, Figure 4 shows

strong evidence of “probability weighting” in mirrors (though there are no probabilities). What’s

24Under the lens of prospect theory, these are naive estimates of probability weighting in the sense that they

implicitly assume a piecewise-linear value function (whose curvature isn’t separately measured in this dataset). This

is consistent with typical findings of near-linearity in the value function in much of the literature.
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more, the size of these effects and the deviations from expected value they produce in mirrors are

roughly of the same magnitude as those in lotteries.

Result 1 The fourfold pattern of risk arises in settings without risk. Apparent probability weighting

arises in settings without probabilities.

For loss aversion (LA) lists, we plot in Figure 3 the difference between 0 and the expected value

of the lottery which the subject evaluates as equivalent to a sure payoff of zero on the y-axis: values

below zero are evidence of loss aversion. Once again, in lotteries we find evidence consistent with

standard loss aversion: subjects require lotteries with positive payoffs strictly larger (in absolute

value) than the negative payoffs they are mixed with to be indifferent to a payoff of $0. In the

third panel of Figure 4 we plot the same data in the standard way by calculating naive estimates of

λ: the excess weight attached to losses relative to gains in evaluating mixtures between the two.25

Here we find estimates of λ in lotteries that vary across our two lists but average to λ = 1.77 –

within the typical range reported in meta-analysis of estimates from the literature (Brown et al.

(2022)).

Again, our main finding here is that we also observe strong evidence of “loss aversion” in mirrors

even though there are no losses possible in the relevant region of the choice space in mirrors.

Estimates of λ, pictured in Figure 4, are clearly somewhat smaller in mirrors than in lotteries

(though this difference is much smaller than the differences in λ we observe between elicitations,

i.e., between L10 and L15). Nonetheless our estimate of λ = 1.68 for the LA10 mirror is close to

the median estimate in the literature as reported in a recent metanalysis (Brown et al. 2022), and

our estimate of 1.32 in the LA15 mirror is roughly equal to the modal aggregate estimate (and is

within the overall interquartile range).

Result 2 Apparent loss aversion occurs in settings without risk of loss.

Wilcoxon signed rank tests confirm that valuations are significantly different from EvMax (at

the 1% level) for all of our core lists for both lotteries and mirrors. Paired Wilcoxon tests reveal

statistically significant differences between lottery and mirror choices in only half of the lists (and

in one of these cases, G25, EvMax deviations are statistically greater in mirrors than in lotteries).

However, none of the treatment differences are terribly economically significant: in every one of

our core lists, the median within-subject difference between lottery and mirror valuations is zero.

We can summarize the relative severity of the pattern in the two types of problems by comparing

the degree to which the deviations from EvMax characteristic of the pattern that occur in lotteries

also occur in mirrors. Normalizing deviations so that they are positive if they run in the direction

25Here we follow the literature by assuming that λ is a linear weight on negative payments. Thus we calculate it

as the ratio -X/Y for the lottery/mirror the subject values as equivalent to $0. In prospect theory, this is a naive

estimate in that it assumes symmetric probability weighting in gains and losses at p = 0.5 (which is roughly true in

most datasets including ours) and symmetric curvature of the value function in gains and losses (which is unmeasured

in our data but is found true in many previous investigations, e.g., Tversky & Kahneman (1992)).
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Figure 5: Deviations from expected value maximizing choices (in core lists) in mirrors (x-axis)
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who were initially assigned lotteries (Mirror First is the reverse). The left panel plots “error” (mean absolute deviations from

EvMax); the right panel plots mean “bias” (mean deviations normalized to be positive if they are in the direction of the classical

pattern).

of the fourfold pattern and loss aversion and summing, we find that for fourfold lists valuation bias

is 97% as severe in Mirrors as in Lotteries (s.e. 5 percentage points) and for loss aversion lists they

are 64% as severe (s.e. 9.5 percentage points).26 Overall, pattern-consistent bias is 91% as severe

in mirrors as in lotteries (s.e. 4 percentage points), suggesting that the vast majority of the pattern

that appears in risky valuation occurs also in merely complex (but riskless) valuation.

Result 3 Overall, 91% of the bias in the direction of the classical pattern that occurs in lotteries

occurs also in mirrors.

4.2 Relationship Between Risky and Riskless Valuations

We find very similar evidence of the classical pattern in lotteries and mirrors and a first, natural

question is whether this similarity is coincidental. After all, it is possible that distinct behavioral

mechanisms underlie the appearance of the pattern in risky and riskless settings and that the

apparent relationship between the two is therefore an illusion. It was with this possibility in mind

that we used a within-subjects design in our experiment. Using this design, we can determine

26Standard errors are derived from subject-wise calculations of the ratio of normalized deviations in mirrors and

lotteries, Winsorized at 5% and 95%.
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whether the magnitude of the pattern in mirrors predicts it’s magnitude in lotteries. To the degree

the two phenomena are correlated across subjects in this way, there is reason to believe the two

appearances of the pattern derive from a similar or closely related behavioral mechanism.

The left panel of Figure 5 plots a separate dot for each subject, with the x-axis representing

that subject’s mean error (mean absolute deviation from EvMax) in our core mirrors and the y-axis

the mean error in our core lotteries. The plot shows a great deal of heterogeneity in the magnitude

of errors across subjects, but a strikingly strong correlation between lottery and mirror errors of

0.65 (p < 0.001): errors in mirrors strongly predict errors in lotteries. The right panel of the same

Figure instead examines mean pattern-consistent bias (deviations normalized to be positive if they

run in the direction of the classical pattern), again plotting the mean value for mirrors on the x-axis

and for lotteries on the y-axis. We make three observations. First, virtually all bias is concentrated

in the northeast quadrant suggesting that subjects make highly asymmetric errors on net in the

distinctive direction of the pattern in both lotteries and mirrors. Second, although the severity of

this bias is highly heterogeneous, there is again a very strong correlation (0.6, p < 0.001) between

mirror and lottery bias, suggesting the two biases likely derive from a related behavioral mechanism.

Finally, the correlation is virtually identical when subjects began in the Mirror treatment and move

on to the Lottery treatment and vice versa.27,28,29

Result 4 The severity of the pattern in mirrors strongly predicts the severity of the pattern in

lotteries.

In Online Appendix B.1 , we present separate versions of Figure 5 for lists measuring the fourfold

pattern and for lists measuring loss aversion. We find strong and highly significant correlations

between lotteries and mirrors for both the fourfold pattern (ρ = 0.62) and loss aversion (ρ = 0.41).30

At the end of the experiment, we asked subjects to report whether they used completely/mostly

different strategies in lotteries and mirrors or identical/mostly similar strategies. 77% of subjects

reported using identical or mostly similar strategies in the two treatments, strongly matching our

behavioral findings.

27For error (the left panel) the correlation is 0.62 when mirrors come first and 0.68 when lotteries come first; for

bias (the right panel) it is 0.57 when mirrors come first and 0.61 when lotteries come first.
28This analysis uses subject-wise means to focus on subject-level tendencies. We find a similarly strong correlation

between lottery and mirror deviations when using disaggregated individual choices instead (ρ = 0.57).
29These subject-wise estimates are likely noisily estimated and therefore suffer from measurement error (Gillen

et al. 2019). Distortions in magnitudes resulting from this are of minimal concern for us because our main purpose

is to compare lotteries and mirrors which are arguably similarly afflicted by measurement error. However, we should

expect measurement error to artificially weaken correlations between mirrors and lotteries. We therefore should view

the correlations reported in this section as lower bound estimates of the relationship between the appearance of the

pattern in the two cases.
30The weaker correlation we find for loss aversion may signify a weaker latent relationship or may, instead, reflect

greater attenuation due to increased measurement error (bias for the fourfold pattern is measured using eight choices,

while bias for loss aversion is measured only using two).
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4.3 Complexity Sensitivity and Risk Sensitivity

To better understand subject heterogeneity and how it relates to our main motivating question (the

relative role of complexity and risk in driving valuation anomalies), we propose a simple taxonomy

of subjects that, again, makes use of our within-subjects design. We classify each subject in our

dataset according to each of the following two criteria:

• Complexity Sensitive/Insensitive: We say a subject is “complexity sensitive” if she shows

evidence of the classical pattern (deviates in the direction of the pattern by at least one

row of the price list) in her average mirror valuation. Otherwise we classify the subject as

“complexity insensitive.”

• Risk Sensitive/Insensitive: We say a subject is “risk sensitive” if she shows additional

evidence of the classical pattern (deviates in the direction of the pattern by at least one row

more in lotteries than in mirrors) in her average lottery decision than in her average mirror

decision. Otherwise we classify the subject as “risk insensitive.”

This produces a simple 2x2 taxonomy of subject types that focuses on the relative role of our
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two key lottery characteristics – complexity and risk – in driving the pattern. While mirrors are

only complex (in the sense discussed in Section 2), lotteries are both risky and complex. Evidence

that a subject shows some systematic evidence of the pattern in mirrors is evidence that complexity

is sufficient to drive her to express the pattern. On the other hand, a systematic intensification of

the pattern in lotteries relative to mirrors is evidence that, for that subject, risk has an additional

role (above and beyond complexity) in rationalizing the pattern.

Figure 6 plots the proportions of each type in this taxonomy using dark gray bars. The results

show that nearly 80% of subjects are complexity sensitive in our data, while less than half as

many (37%) are risk sensitive. What’s more, over half of subjects (55%) are only complexity

sensitive, showing no more evidence of the pattern in Lotteries than in Mirrors. By contrast only

1/4 as many subjects (13%) are purely risk sensitive (i.e., complexity-insensitive/risk-sensitive),

complying with the standard interpretation of the pattern as a pure response to risk. Most risk

sensitive subjects (65%) are also complexity sensitive but most complexity sensitive subjects (70%)

are not additionally risk sensitive. A minority of subjects (8%) are sensitive to neither complexity

nor risk (i.e., show little evidence of the pattern).31

In light gray we overlay the same taxonomy calculated only for subjects who were assigned

mirrors (marked with ‘M’) or lotteries (marked with ‘L’) in their first treatment. The results show

that these relative sensitivities are only minorly affected by the order in which subjects experience

the treatments. This symmetry strongly suggests that these conclusions about the relative role of

risk and complexity in driving the pattern is not an artifact of our within-subjects design.

Result 5 Subjects are more than twice as likely to be complexity-sensitive as risk-sensitive in dis-

playing the pattern. Most subjects that are complexity sensitive are not risk sensitive, while most

subjects that are risk sensitive are also complexity sensitive. Subjects are four times more likely to

be purely complexity-sensitive than to be purely risk-sensitive.

4.4 Robustness: Cross-Treatment Contagion

One natural concern about these results is that they may be a consequence of contagion between

mirrors and lotteries resulting from our within-subjects design. Perhaps subjects re-use heuristics

they first employ in lotteries in their later mirror decisions or vice versa, causing behavior in the

two treatments to be similar on average for reasons artificial to our design.

We can evaluate this interpretation simply by restricting attention to subjects facing the first

of the two treatments they are assigned, transforming our within-subjects design (with potential

contamination) into a between-subjects design (without scope for contamination). This transfor-

31As we might expect given the analyses in the preceding sections, these results are much stronger for the fourfold

pattern than for loss aversion. If we repeat the exercise using only loss aversion elicitations, we find that subjects

are equally likely to be classified as “risk sensitive” and “complexity sensitive,” rather than overwhelmingly more

complexity sensitive.
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Figure 7: The pattern in between-subjects comparison (left panel) and student lab sample (right
panel). Notes: Details of the Figure are as described in caption to Figure 3.

mation is credible because subjects facing their first treatment (Mirror or Lottery) were not aware

that they would later be facing the other treatment (Lottery or Mirror), removing scope for even

prospective contamination. The left panel of Figure 7 reconstructs Figure 3 using only this subset

of the data and produces nearly identical qualitative results, suggesting that these results are not

an artifact of cross-treatment contamination. Subjects continue to display very similar evidence of

the pattern in mirrors and lotteries even when they have not yet experienced (or even learned of

the existence of) the other treatment. Valuations continue to deviate significantly (at the 1% level

via Wilcoxon tests) from expected value in the direction of the pattern in both lotteries and mirrors

for all lists, and we continue to find using Wilcoxon tests that for most lists these deviations are

not significantly greater in lotteries than in mirrors at conventional levels.32

A related concern is that the correlations between lotteries and mirrors visualized in Figure 5

are driven by subjects carrying over their behavior from the first treatment into the second, rather

than by a deep connection in behavioral mechanism between the two treatments. A reason to

doubt this interpretation is that (i) as just discussed, nearly identical initial behavior occurs across

the two treatments before subjects know the other treatment exists and (ii) as discussed above,

the correlations between the two treatments in Figure 5 are also nearly identical regardless of the

order of treatments. Since contagion doesn’t seem to be a first order driver of behavior and the

correlations between treatments are not affected by order, the correlations are instead likely to be

driven by subjects using similar valuation strategies in the two different treatments in the first

32The only exceptions are the two LA lists where deviations are greater for lotteries than for mirrors.
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place.

Thus our evidence suggests that our results are not an artifact of order effects or cross-treatment

contagion.

Result 6 The pattern continues to arise in both mirrors and lotteries in between-subjects compar-

isons. There is little evidence of contagion or order effects in the data.

A subtler version of the same concern is that, for reasons that have little do with contagion,

subjects might be drawn to heuristics usually reserved for interpreting (or valuing) probabilities

when valuing riskless mirrors. For instance, it may be that subjects apply risk preferences or distort

probabilities in mirrors simply because they contain probabilities and subjects are acccustomed to

responding to probabilities in a distorted way whenever they see them. However, it is important

to emphasize that we deliberately attempted to rule this out in our design by framing the entire

exercise in frequentist terms. Mirrors were described entirely as a “box opening” exercise in order

to allow us to completely avoid mention of probabilities, likelihoods or randomness in our framing

and instructions of this treatment. Consequently, subjects who were initially assigned mirrors (and

who, recall, were not told that they would later be assigned lotteries) had no basis for importing

lottery-like responses to the deterministic weights we assigned in these valuation tasks. The fact

that (as Figure 7 shows) these subjects continue to display the pattern strongly suggests that such

“mis-importation” of probabilistic behavior is unlikely to account for our results. If subjects apply

probabilistic reasoning to these frequentist problems, arguably we should equally expect them to

do so in virtually any other deterministic valuation task in economics as well.

4.5 Robustness: Stakes and Subject Pool

A second potential concern is that these results might be a consequence of implementation choices

such as (i) our use of an online subject pool rather than a conventional student pool, (ii) limitations

in training of subjects forced by our online implementation, or (iii) the scale of incentives we used

in our design (recall we only pay subjects based on their choices with 20% chance). Perhaps our

results are artifacts of unsophisticated subjects, insufficient trading or weak incentives – any of

which could plausibly exaggerate noisy and biased behavior.

We ran a nearly identical version of our main design using 113 undergraduate students at UC

Santa Barbara in a manner that removes (or at least reduces) these concerns by using more in-

tensive training and stronger incentives. First, this experiment used undergraduate students at a

selective university rather than an online subject pool. Experiments were run on Zoom in con-

ventional, fixed experimental sessions monitored by the experimenter, allowing subjects to ask the

experimenter clarifying questions in real time before and during the experiment. Second, this ex-

periment featured more intensive training than in our main design. Specifically, we quadrupled the

number of comprehension questions subjects were asked immediately before each of the treatments.

These questions were designed to highlight for subjects the differences between the incentives of
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lotteries vs. mirrors in order to remove the possibility that subjects mistook one payoff rule for the

other. Finally, this experiment quintupled the incentives in the main experiment by paying subjects

based on a random lottery with certainty (rather than with 20% chance). Additional details on

this experiment and minor differences between it and our main treatment are provided in Online

Appendix C.

The right hand panel of Figure 7 plots the results of these sessions and they strongly suggest

that these features of the implementation are not driving our results. The plot shows continued

evidence that the full classical pattern appears in mirrors and to a similar degree as in lotteries; we

can reject the hypothesis that subjects choose EvMax in every list for both lotteries and mirrors

(at the 1% level by Wilcoxon tests). We also continue to find a similarly strong correlation between

the pattern in the two cases (ρ = 0.64 for absolute deviations and ρ = 0.5 for deviations normalized

in the direction of the pattern). The main difference in this sample is that there is a somewhat

larger “gap” between the strength of the pattern in mirrors and lotteries: errors in the direction of

the pattern are overall 75% as large in Mirrors as Lotteries (compared to 91% in the main dataset).

Recalculating the taxonomy from Section 4.3, we find that the difference is driven by a modest

decrease in subjects’ sensitivity to complexity and a modest increase in sensitivity to risk in this

sample. Slightly fewer (66% of subjects, down from 80%) are typed as complexity-sensitive, and

slightly more (48%, up from 36%) are risk-sensitive, producing an increase in the gap between the

severity of the pattern in lotteries and mirrors. Nonetheless, our main finding – that the pattern

arises with strength in mirrors and that this predicts the pattern in lotteries – continues to hold in

this sample.

Result 7 A robustness sample of university students with increased training and quintupled incen-

tives produces results similar to those in the main dataset.

4.6 Robustness: Computational Difficulty

A third explanation for our results is that they are an artifact of the computational difficulty of

evaluating the specific set of lotteries/mirrors we implemented in the main design. For instance,

we describe lotteries/mirrors using 100 states (i.e., 100 boxes) and perhaps it is difficult to reason

about this many outcomes. Likewise, the non-zero payment in our fourfold lists was $25 which

does not produce whole-number expected values in any of our lotteries – perhaps this makes it

unnecessarily difficult to assess true value in mirrors and the expected value in lotteries.

To evaluate the role this kind of computational difficulty plays in driving our results, we ran a

robustness treatment we call “Easier” (with 90 subjects, details are provided in Online Appendix C)

in which we reduce or remove these mathematical difficulties. First, in our main dataset likelihoods

are described using 100 boxes, each of which contains a dollar amount, and non-zero payments are

described as appearing in 10, 25, 50, 75 or 90 of the boxes. In the Easier treatment we shrink

the state space from 100 boxes to 4 boxes without changing the underlying probabilities. Doing
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Figure 8: Results from the Easier treatment, overlaid on on results from the main sample. Notes:

Separate panels are provided for Lotteries and Mirrors. Details of the Figure are as described in caption to Figure 3.

this allows us to express payoffs occurring with 0.25, 0.5 and 0.75 probabilities as dollar amounts

contained in 1,2 or 3 of the boxes instead of 25, 50 or 75 of the boxes, plausibly making the

problem easier to reason about and mathematical calculations easier to conduct. Thus, in the

Easier treatment we repeat the G25, G50, G75, L25, L50, L75 and LA10 lists but describe them

using 4 boxes instead of 100.33

Figure 8 plots the results. It includes one panel for lotteries and another for mirrors and in

these panels repeats the data pictured in Figure 3 using solid dots (100 box data), for reference.

On each of these panels we overlay, using hollow dots, data from 4-box versions G25, G50, G75,

L25, L50, L75 and LA10 lists from the Easier treatment. We make two observations. First, the

pattern continues to arise (for both lotteries and mirrors) under this simplified framing – Wilcoxon

tests continue to allow us to reject the hypothesis of valuation at EvMax for both Lotteries and

Mirrors (p < 0.01 throughout). Second, valuations change little in either lotteries or mirrors when

we move from 100-box to 4-box frames – Wilcoxon tests allow us to reject the hypothesis of identical

valuation in 100-box and 4-box lists for only one of the ten comparisons (L25 mirrors). We conclude

that the number of “states” has at most a secondary effect on the appearance and severity of the

33It is important to highlight that this treatment does not make lotteries/mirrors any less disaggregated (the

lottery’s support continues to contain two elements) and therefore it does not make it any less complex in the sense

of Bernheim & Sprenger (2020), Puri (2020) and Fudenberg & Puri (2022). This treatment holds the amount of

information that has to be processed (the number of elements that must be aggregated) constant but attempts to

reduce the mathematical difficulty of that processing.
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pattern.

A second potential source of computational difficulties in the main dataset is the use of a non-

zero payoff of $25 in the fourfold lists, which may be more difficult to reason about than a rounder

number that is more easily multiplied by the relevant probabilities/weights in the task. To examine

this we added to the Easier treatment a repetition of lists L25 and G75 but with a payoff of $20

instead of $25. We ran this also with the 4-box (rather than 100-box) design, making intuitive

calculations of expected value particularly easy ($20 in 2 or 3 boxes is easily seen to imply expected

values of $10 or $15 through simple whole-number division). We call these lists sL25 and sG75

and plot valuations from these lists in Figure 8. We find no overall reduction in the severity of the

pattern. Indeed the largest difference is a slight worsening of the pattern in sL25 lotteries relative

to L25 lotteries. Again, this suggests that mere mathematical difficulty has little power to explain

our results.

Together, these treatment interventions (combined with our already maximally simple 2-outcome

setting, featuring a zero-outcome in one of the two outcomes) produce perhaps the computation-

ally simplest possible lotteries in which the pattern can be measured. Our $20 lists ask subjects to

value lotteries that have the minimal possible number of outcomes (for a true lottery), one of these

outcomes pays nothing and can be ignored in computation, the numbers describing the likelihoods

are small and the non-zero payoff is calibrated to allow for whole-number computations of expected

value by simple division. Nonetheless, we continue to find strong evidence of the pattern both in

lotteries and their mirrors even in these maximally simple valuation tasks.

Result 8 Making valuation tasks computationally easier has only minor effects on the severity of

the pattern in mirrors or lotteries.

4.7 Correlates of the Pattern

We hypothesize that the reason that computational difficulty has so little effect on the severity of

the pattern is that subjects are not attempting precise computation in the first place. Subjects, in-

stead, make errors because formally processing the information in a lottery (or mirror) is generically

costly (or difficult), and many subjects respond to these costs by substituting to casual, intuitive,

error-prone approaches to evaluation instead. For instance, instead of calculating expected value

precisely (a relatively mentally laborious task), many subjects instead intuitively approximate the

relative value of the lottery/mirror and the menu of certainty/simplicity equivalents they are asked

to consider. Recent work provides direct evidence that complexity produces these kinds of sub-

stitutions to simpler procedures: Oprea (2020) shows that humans, indeed, suffer significant costs

from implementing formal decision procedures, and Banovetz & Oprea (2022) provides evidence

that decision makers respond sensitively to these costs by abandoning relatively complex optimal

procedures in favor of simpler-than-optimal alternative procedures.

In Online Appendix B.2, we report an exploratory analysis of auxiliary behavioral data, post-
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experiment questions and demographic data that provides some provisional support for this broad

interpretation of our findings. There we show that subjects make highly noisy valuations (as

measured by inconsistent valuations across repetitions of the same task) and that variation in this

noisiness across subjects strongly predicts the severity with which they display the classical pattern.

Likewise, measures of inattentiveness (i.e., poor performance in cognitive reflection tests); hasty

decision making (i.e., short response times) and high private costs of conducting precise calculation

(i.e., relatively weak technical backgrounds) are all positively correlated with the severity of the

pattern. Finally, evidence from unincentivized post-experiment questions suggest that subjects

are aware of (and perhaps even deliberately choose) these imprecise methods of valuation, and

this awareness too predicts prospect-theoretic behavior. Self-reported measures of (i) cognitive

uncertainty (uncertainty about the optimality of choices made in Mirrors, Enke & Graeber (2021)),

(ii) use of intuitive (rather than precise) valuation strategies (measured using a 100-point Likert

scale) and (iii) imperfect attention to probabilities in the descriptions of lotteries/mirrors (again

using a 100-point Likert scale) are significantly correlated with the magnitude of the pattern.

Together, these findings suggest that subjects display the pattern in both lotteries and mirrors

in large part because they economize on information processing costs by using imprecise, inattentive

and noisy valuation strategies. Importantly we find strikingly similar evidence of this substitution

in lotteries and mirrors: the correlation of correlation coefficients between pattern-consistent bias

and the 13 measures we examine in Online Appendix B.2 in lotteries and mirrors is 0.93, reinforcing

our conclusion that the pattern occurs in the two settings due to the same mechanism.

Result 9 Analysis of auxiliary data suggests that the pattern arises due to subjects’ (possibly de-

liberate) use of informal, imprecise procedures for valuing lotteries and mirrors.

Of course, this leaves open the question of what exact procedures subjects use to produce

the systematic distortions of the classical pattern. Here we reach the limits of what our data can

decisively tell us, but as Section 2.2 details, the literature suggests a number of possibilities. Among

these, particularly promising-seeming given our auxiliary findings is a class of recently proposed

(and so far empirically successful) “noisy coding” models in which agents (i) imprecisely “encode”

(i.e., represent) numerical quantities when casually assessing them and (ii) compensate for this noise

efficiently by shading valuations towards prior beliefs when “decoding” them again to inform choice,

producing (iii) systematic evaluative biases that can resemble phenomena like probability weighting,

the fourfold pattern and, even, loss aversion (e.g., Khaw et al. (2021), Steiner & Stewart (2016),

Vieider (2022), Enke & Graeber (2021), Frydman & Jin (2021), Glimcher (2022)). Because this class

of models explains the pattern as a direct outgrowth of evaluative noise, it seems consistent with

our finding that (in both lotteries and mirrors) the pattern is strongly correlated with valuation-

noise and and other indices of noisy behavior. However, we caution that (as Section 2.2 suggests)

there are other noise-based explanations available and we conclude that further research is needed

to fully understand the mechanism by which complexity produces these twin distortions in lotteries

and mirrors.
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5 Discussion

We can view our results through three equivalent lenses. First, if we remove risk from a lottery

but retain its other characteristics, the distinctive empirical fingerprint of prospect theory remains.

Thus, risk is not a necessary ingredient for producing prospect-theoretic behavior. Second, when

we disaggregate a deterministic monetary amount so that the information processing required to

evaluate it is like that of a lottery, we find strong evidence of the fourfold pattern and loss aversion.

Thus, complexity (the information processing required for valuation) is a sufficient ingredient

for producing prospect-theoretic behavior. Finally, when we conduct a standard risk-preference

elicitation experiment but use standard experimental tools to induce risk-neutral preferences, the

signature empirical anomalies usually rationalized by prospect theory continue to arise. Thus, we

should expect to find significant prospect-theoretic behavior even in perfectly risk neutral decision

makers.

Our results therefore suggest that complexity (the information processing required in valuation),

rather than risk, is the primary driver of the most important lottery valuation anomalies we’ve

uncovered in behavioral economics. Decomposing the data, we find that the vast majority (91%)

of the anomalous valuation occurring in lotteries (which are both risky and complex) occurs also

in deterministic mirrors (which are only complex).34 What’s more, the intensity of this pattern

covaries strongly between lotteries and mirrors, suggesting that they derive (in large part) from a

common source. That common source cannot be risk, which is absent in mirrors, and therefore

must be the complexity of information processing, the characteristic the two valuation tasks have

in common.35

The methodological idea behind our experiment has the advantage that it can crisply benchmark

the relative role complexity plays in driving lottery anomalies without committing to a specific

34It is possible that this small excess severity of the pattern in lotteries relative to mirrors is evidence of some

secondary role for, e.g., risk preferences in driving the pattern. However, as we discuss in Section 2.3, there is

good reason to think that this decomposition provides only a lower bound estimate of the role complexity plays in

these anomalies. Recent evidence (Martinez-Marquina et al. (2019)) suggests that stochasticity makes information

processing more difficult and the task of valuation therefore more complex. To the degree this is true, the residual

excess severity of the pattern we find in lotteries relative to mirrors may in fact be a consequence of the fact that risk

itself introduces additional complexity to the task of valuation.
35A natural question is whether we should expect our findings regarding anomalies in lottery valuation to extend to

anomalies in other types of lottery choice (e.g., in binary choices between lotteries). Our data does not tell us directly,

but two considerations suggest that we should expect complexity to be similarly implicated in, e.g., binary choice

anomalies. First, the method of valuation we use (price lists) are nothing other than collections of binary lottery

choices, presented together in an orderly way. Allowing subjects to simultaneously evaluate lottery pairs in this way

seems likely (if anything) to reduce the scope for boundedly rationality decision-making because it makes it easier to

make consistent choices across lottery pairs. Second, and consistent with this, there is evidence that binary lottery

choices produce noisier behavior than elicited valuations (McGranaghan et al. 2022) – a tendency that would seem

to suggest that complexity has no smaller effect on behavior in these settings than in elicited valuation. Nonetheless,

extending our methods to directly study how complexity impacts other types of lottery choice seems like a natural

next step in this line of research.
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model of complexity. But the model-agnosticity of this method also means it is not well-suited to

identifying the precise mechanism by which complexity produces systematic lottery anomalies – a

task we leave largely to future work. Nonetheless, our data provides some clues, suggesting that

subjects consciously (perhaps even deliberately) use intuitive, error-prone evaluation procedures

instead of the precise, deliberate evaluation we often assume in economics – and that evidence

of the use of such procedures is predictive of the severity of prospect-theoretic behavior. Strong

correlations between (i) apparent prospect-theoretic behavior and (ii) indices of behavioral noise are

highly suggestive of a recent (and, so far, empirically fruitful) class of “noisy coding” models but we

emphasize that further research is needed to pin down the exact mechanism by which complexity

induces these common patterns in risky and riskless settings.

Regardless of the precise mechanism at work, there are two important direct implications of

our findings.

First, because our results suggest that these anomalies are mostly not driven by risk, they also

suggest they are unlikely to be expressions of true risk preferences – a finding with obvious welfare

implications. To the degree they are outgrowths of complexity, behaviors like probability weighting

and reference dependence do not primarily reveal the structure of subjects’ preferences for risk

but instead their aversion to (or incapacity for) careful information processing. Indeed, our results

directly suggest that we should expect these kinds of behaviors to arise even for vanilla risk neutral

decision makers due purely to the distorting influence of complexity.36 This suggests that policies

designed to accommodate these types of behaviors likely enshrine mistakes rather than respond in

a welfare-enhancing way to preferences. It also suggests that cognitively-inspired interventions that

manage to remove these types of behaviors from risky choice would likely be welfare-enhancing.37

Second, the anomalies we’ve uncovered in lottery valuation in recent decades and the descriptive

theories we’ve built to explain them likely have a far broader scope of application than we’ve so

36Strictly speaking, our methods induce not only risk-neutral preferences but also loss-neutral preferences in mirrors.

Thus, one interpretation of our finding of loss aversion in mirrors is that loss aversion (like, e.g., probability weighting)

is not a preference, but instead a complexity-derived valuation mistake. This interpretation is certainly consistent with

recent evidence suggesting that directly-measured loss aversion is uncorrelated with key anomalies often explained

by loss averse preferences like the endowment effect (Chapman et al. 2021). However, interestingly, there are some

aggregation mistakes that might allow true distaste for loss to contribute to the errors we observe in mirrors. Suppose

the mistake subjects make in our loss aversion mirrors is to assess the value as 0.5v(X) + 0.5v(y) (where v is a loss-

averse value function) rather than v(0.5X + 0.5Y ), as is optimal. This is an error in aggregation but it is one that

will cause subjects to mistakenly express actual loss averse preferences (actual excess distaste for losses relative to

gains) even in settings in which there is no risk of loss. We cannot rule out this alternative possibility, meaning that

while it is possible to read our results as evidence against the existence of latent loss-averse preferences, we should

be cautious in drawing such conclusions based on our evidence alone.
37Of course, our results do not (and are not meant to) rule out the existence of risk preferences or a role for them in

explaining choice, particularly at the much larger stakes sizes at which we should expect expected utility preferences

to begin to apply (Rabin (2000). Rather, our results show how strongly complexity influences risky choice and that

it is this complexity, rather than non-standard preferences, that likely produces many of the most important lottery

anomalies we’ve discovered in our efforts to measure human responses to risk.
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far recognized. Valuation of disaggregated objects is, in some sense, the primordial cognitive act

described by economic theory, applying in settings ranging from simple consumer choice (where

disaggregated bundles have to be compressed into indices of value) to strategic interaction (where

disaggregated contingencies need to be similarly compressed) to lottery choice (where it is states

that have to be aggregated). Our finding that it is this disaggregation (not risk) that drives

anomalous lottery valuations, suggests that systematic distortions like those we’ve documented in

lotteries over the last half century may be generic in economic behavior, applying across many

deterministic choice domains as well. It may, in other words, be that the descriptive theories we’ve

built of human evaluation of risk in the last few decades are, to a large extent, in fact first steps

in the task of building descriptive models of human evaluation of complex things. As such, their

value to economics may be more significant than we’ve so far appereciated.
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Online Appendices
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A Instructions to Subjects

A.1 Beginning of Instructions

The first part of the instructions are given at the beginning of the session, regardless of whether

subjects are assigned ,irrors or lotteries first.
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A.2 Treatment Instructions

Next, one of the following two pages of instructions is given, depending on whether subjects are

assigned mirrors or lotteries first. After subjects have completed making choices the first treatment

(Mirror or Lottery), they are given the other page from the Treatment Instructions, below.
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A.3 Comprehension Questions

Regardless of treatment, subjects are given 4 comprehension questions like the following which

they must answer correctly before moving on. Crucially, although the questions are identical

regardless of treatment, the correct answers to these questions depend on whether subjects are

about to enter the Mirror or Lottery treatment. After subjects have completed the first treatment

(Mirror or Lottery) and have read instructions for the next treatment, they are given the same 4
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comprehension questions, now with different correct answers. This makes the difference between the

payment schemes especially salient to subjects and is designed to prevent subjects from confusing

payoffs in the two treatments.
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A.4 Final Part of Instructions
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B Additional Analysis

B.1 More on Correlations Between Lotteries and Mirrors

Figure 9 repeats the analysis reported in the right-hand panel of Figure 5 separately for the fourfold

pattern and loss aversion. In particular, the left hand panel plots mean bias measured in “fourfold
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Figure 9: Deviations from expected value maximizing choices (in core lists) in mirrors (x-axis)
versus lotteries (y-axis), by subject. Notes: Each dot represents a subject. “Lottery First” designates subjects who

were initially assigned lotteries (Mirror First is the reverse). The left panel plots mean “bias” (mean deviations normalized to

be positive if they are in the direction of the classical pattern) for “fourfold lists” (G10, G25, G75, G90, L10, L25, L75, L90)

while the right hand panel plots the same for “loss aversion lists” (LA10 and LA15).

lists” (G10, G25, G75, G90, L10, L25, L75, L90) for mirrors and lotteries (each dot, again, is an

individual subject). In the right hand panel we do the same for biases from “loss aversion lists”

(LA10 and LA15). For fourfold lists (left hand panel) we measure a lottery-mirror correlation of

ρ = 0.62 (p < 0.001) and for loss aversion (right hand panel) we measure ρ = 0.40 (p < 0.001).

B.2 Correlates of the Pattern

In order to get gather some clues as to the common mechanisms that drive the pattern in both

lotteries and mirrors, we collected a number of auxiliary measures and here we study to what

degree these measures predict the severity of the pattern in both cases. We gathered three types of

measures and we conduct a primarily exploratory analysis of how they relate to the incidence and

severity of the classical pattern in our main treatment.

First, we gathered several behavioral measures. Most importantly, we repeated the G50 and

L50 lists in both lotteries and mirrors (for half of our subjects), allowing us to measure re-test

consistency of choices in identical problems. The mean absolute difference in valuation between

identical problems gives us a direct measure of noise in subjects’ decision making. Next, we

measured the average response time for each subject’s choices – a commonly used (though difficult

to interpret) measure of effort. Similarly, we studied how many revisions subjects made (the

47



-0.2 0.0 0.2 0.4

-0
.2

0.
0

0.
2

0.
4

Mirror Correlations (w/ Normalized Error)

Lo
tte

ry
 C

or
re

la
tio

ns
 (w

/ N
or

m
al

iz
ed

 E
rr

or
)

noise

time
cog. ref.

revisions

uncert.

imprecision

inattn. prob.

inattn. pay

similarity

math

stem

econ

female

Behavioral Measures
Self Report
Education
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lotteries (y-axis). Notes: Each dot is a different predictor and the x- and y-axes show the correlation of each predictor

with pattern-consistent bias in mirrors and lotteries, respectively.

number of times they changed their decision before submission) in the average task, a possible

behavioral measure of the care subjects took in decision-making. Finally, after the main experiment

we administered a three-question cognitive reflection test (Frederick (2005)), commonly used to

measure how strongly subjects lean on intuitive vs. careful decision making.

Second, we administered several post-experiment questions that asked subjects to reflect on

their choices. For instance, we informed subjects that one choice in each Mirror task was optimal

in that it maximized earnings and we asked subjects how confident they were (in percentage terms)

that they made this payoff-maximizing choice. Measures of cognitive uncertainty like this have

proved predictive of the fourfold pattern and other anomalies in recent work (e.g., Enke & Graeber

(2021)).38 We also asked subjects (separately for lotteries and mirrors) to report on a 100-point

Likert scale how much attention they paid (0 for little attention, 100 for a lot of attention) to

the number of boxes (i.e., to the probabilities) and to the dollar amounts (i.e., payoffs) when

38We also included a question about subjects’ cognitive uncertainty about lottery choices, but unavoidably this

was a much more vaguely worded question. Instead of asking whether subjects chose a payoff-maximizing decision (a

relatively objective question), we had to ask them the chances they made the “best choice.” Unsurprisingly perhaps,

we found this was a much noisier measure and much more weakly predictive of behavior in both lotteries and mirrors

and so we do not make use of that question here.
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evaluating lotteries/mirrors. This gives us measures of inattention to payoffs and inattention

to probabilities for each subjects for both lotteries and mirrors. Likewise we asked subjects to

use a 100-point Likert scale to estimate the degree to which they “guessed” (0) versus “made a

precise (exact) decision” in their valuations, again for both lotteries and mirrors. This gives us a

self-reported measure of imprecision of decisions.39 Finally, we include a four point Likert scale

(discussed in the paper) describing how similar subjects’ strategies were in lotteries and mirrors.

Third, we gathered several demographic measures, focused on measures that proxy for cogni-

tive sophistication and perhaps subjects’ ability to, e.g., set up and compute an expected value

calculation. We asked subjects to report their highest level of math education, coding subjects as

1 (relatively advanced mathematical training) if they had taken any college-level math and 0 other-

wise. We asked a similar question about whether subjects had any college-level economics training.

We also asked subjects their college major, coding them as STEM if they reported majoring in

Science, Mathematics or Business. Finally, we asked for the subject’s gender which is of interest

because of debates in the literature about whether risk preferences are related to gender.

In Figure 10, we estimate the Pearson correlation between each measure and the mean pattern-

consistent bias (errors coded to be positive if they run in a prospect-theoretic direction and negative

otherwise) in mirrors and lotteries, plotting the correlation coefficient ρ for (i) mirrors on the x-axis

and (ii) lotteries on the y-axis. We make several observations.

First and perhaps most importantly, there is a strikingly strong relationship between the corre-

lates of the pattern in mirrors and lotteries. Correlation coefficients hover around the 45 degree line

and there is a ρ =0.93 correlation between correlation estimates across the two valuation problems

This relationship strongly reinforces our conclusion that the two types of behavior are driven by the

same underlying behavioral mechanisms and that the driver of the pattern in lotteries is therefore

likely not special to risk.

Result 10 There is a strong similarity in the predictors of the pattern in lotteries and mirrors.

Second, the strongest and most consistent predictor of the pattern in lotteries and mirrors is

simply the noisiness of subjects’ own decisions in a separate valuation task. The mean subject

makes valuations that are $2.60 different on average when repeating the same valuation choice in

lotteries L50 and G50, suggesting that the average subject makes noisy, imprecise valuations. This

is remarkable given that 50/50 lotteries seem particularly computationally simple and this seems

to point to the deliberate use of intuitive rather than explicit valuation strategies. The degree

of this noise (the mean size of the absolute deviation between choices in identical tasks) strongly

predicts the severity of the pattern. Indeed, as Figure 10 shows, subjects who on average make more

inconsistent choices in identical problems are significantly more likely to display prospect-theoretic

39A coding error caused the sliders in this task to be mislabeled “Little Attention” for choices of 0 and “A Lot

of Attention” for choices of 100. However the instructions above the slider are very clear that scores towards zero

represent guesses and to the right precise decisions, meaning subjects were unlikely to be confused. Nonetheless this

mislabeling is worth bearing in mind in interpreting the results.
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behavior in both mirrors and lotteries. (Importantly, this is an out-of-sample test – our measure

of prospect-theoretic error does not include data from the L50 and G50 lists.)

Third, there is evidence from other behavioral measures that this noisy behavior may be a con-

sequence of the use of intuitive or inattentive (rather than precise, deliberate) valuation strategies.

Performance on the cognitive reflection test – which is meant to measure deliberative over intuitive

decision making – is significantly negatively correlated to the intensity of the pattern: careful,

reflective subjects are less prospect-theoretic. Moreover, subjects who make slower choices (higher

response time) display the pattern less intensively, perhaps suggesting that the pattern derives from

the use of lower effort valuation strategies.

Fourth, Figure 10 shows that self-reported imperfection and imprecision in choice is strongly

predictive of the pattern in both lotteries and mirrors. The average subject believes there is a 43%

chance she made a valuation mistake in the average mirror, but there is great variation in this

cognitive uncertainty measure and this variation is strongly related to the pattern in both lotteries

and mirrors. This suggests that subjects are not only using error-prone strategies, but they also

seem to be aware of this fact and this knowledge too is correlated with prospect-theoretic behavior.

Similarly, there is evidence that subjects knowingly use imperfectly precise strategies in valuation

and that they rely on intuitive guesswork to some degree in their decision-making. On a 100-point

scale between “guessed” and “made a precise (exact) decision” the average subject described her

decisions as only 76% as precise as they might have been in lotteries (80% in mirrors). Variation in

this self-report of precision of valuations is significantly predictive of prospect-theoretic behavior,

with more imprecise subjects more severely prospect-theoretic in both lotteries and mirrors. To-

gether these results suggest that many subjects are aware of imperfections in their choice and may

even be using imperfectly precise strategies deliberately.

Fifth, subjects’ qualitative reports of the amount of attention they paid to probabilities in

lotteries is significantly negatively correlated with the severity of the pattern. However, the rela-

tionship is much weaker and not statistically significant for self-reported “attention to payments.”

This suggests that inattention is a potentially important driver of prospect-theoretic behavior and

that careless attention to variation in probabilities may be the more consequential inattention.

Finally, we find that mathematically sophisticated people – people who majored in technical

STEM fields or who were exposed to college-level mathematical training – are less likely to show

evidence of the pattern in both lotteries and mirrors. Such subjects may be better practiced at and

therefore suffer lower costs from implementing precise mathematical evaluations of lotteries and

mirrors, influencing the decision to use these strategies rather than intuitive valuation strategies.

By contrast, economics training has no significant predictive power. Likewise, gender, the similarity

of choices subjects make across lotteries and mirrors and the number of revisions subjects made in

the choice process have little predictive power.

We summarize the results of this correlational analysis as a further result:
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Result 11 Noise in decision making is the strongest predictor of the pattern in both lotteries and

mirrors. Subjects’ self reports suggest that beliefs about one’s decision quality, imprecision in sub-

jects’ decision-making strategy and inattention to probabilities the pattern in both lotteries and

mirrors. Mathematically sophisticated subjects are less likely to show evidence of the pattern in

both lotteries and mirrors.

Together, these results seem consistent with the idea that subjects knowingly use imprecise,

intuitive strategies to value disaggregated objects like lotteries and mirrors and that this is decision

is an important driver of the classical pattern.
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C Robustness Treatments

C.1 UCSB Student Sessions

The UCSB sessions were conducted in February and March 2021 using 113 subjects from the subject

pool of the Laboratory for the Integration of Theory and Experiments at UC Santa Barbara.

Because of the Covid-19 pandemic, the physical laboratory was closed at this time so the five

sessions of data collection were held remotely on Zoom. In each session no more than 25 subjects

from the undergraduate population at UC Santa Barbara were invited by email to log into our

Zoom account at a pre-specified time. They were then given a link to the experimental software

and were allowed to ask the experimenter questions throughout the session.

As highlighted in the body of the paper, relative to the main sessions run on Prolific, the UC

Santa Barbara sessions differed in three major respects:

• The main sessions conducted on Prolific were more demographically diverse, drawing subjects

from throughout the United States and included largely non-student subjects. By contrast,

the UCSB sessions included only students from the University of California, Santa Barbara,

a selective public university.

• As the instructions in Online Appendix A discuss, we gave subjects four identical quiz ques-

tions concerning the nature of payments immediately prior to the Lottery treatment and again

prior to the Mirror treatments in the Prolific sessions. Because the answers to these ques-

tions differed across the two treatments, these questions allowed us to make payoff differences

across treatments salient to subjects. In the UCSB sessions we quadrupled the number of

questions, adding additional questions in both the gain and loss domain. Thus these sessions

intensified subjects’ training.

• In the Prolific sessions we gave subjects a $6 fixed payment for participation and paid 20%

of subjects (randomly selected, ex post) a bonus based on their decision in a random price

list and row. By contrast, in the UCSB sessions we paid subjects a $5 fixed payment and,

in addition, paid all subjects a bonus based on their decision in a random price list and row.

Incentives were therefore substantially larger in the UCSB sessions.

Additionally, the sessions differed in two respects that are less likely to have influenced the

results reported in the paper:

• In the Prolific sessions, we asked subjects a number of unincentivized questions at the end

of the experiment about their decision-making (reviewed in Online Appendix B.2). In the

UCSB sessions, we included only the cognitive reflection test and a single cognitive uncertainty

measure.
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• The UCSB sessions included four additional price lists not included in the Prolific sessions.

These were rather more complex lotteries designed to gather non-parametric measures of

prospect-theoretic value function curvature using methods suggested by Wakker & Deneffe

(1996). These lists, intriguingly, produced evidence of similar degree of value function cur-

vature in Mirrors and Lotteries, but the results were extremely noisy and sensitive to speci-

fication. For this reason (and because these results are only of secondary importance to our

main motivating questions), we did not use these lists in our main Prolific sessions.

In all other respects, including instructions, software and decision tasks the UCSB sessions were

identical to the main sessions.

C.2 Easier Treatment

The Easier treatment was conducted in May of 2022 using 90 subjects on Prolific. The treatment

repeated Lotteries G25, G50, G75, L25, L50, L75 and LA10. The reason we did not include

G10, G90, L10 and L90 is because the main idea of the treatment is to describe probabilities in

frequentist terms using four states (four “boxes”) instead of 100. While 25%, 50% and 75% odds

can be described using this coarse of a state space, clearly 10% and 90% cannot. The treatment

also included (i) a repetition of L50 and G50 and (ii) treatments sG75 and sL25 which replaced

the non-zero payment of $25 in G75 and L25 with $20.

The instructions, implementation and payoff rules from the Easier treatment were identical to

those in the main treatment except for the descriptions of frequencies. Instead of describing 25%,

50%, 75% and 100% as payouts contained in 25 out of 100, 50 out of 100, 75 out of 100 and 100

out of 100 boxes (as in the rest of the dataset), we described them as being contained in 1 out of 4,

2 out of 4, 3 out of 4 and 4 out of 4 boxes. Figure 11 gives an example of how this framing looked

on decision screens by providing a screenshot from the G75 list.
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Figure 11: Screenshot from a Mirror task (list G75) in the Easier treatment. Notes: In Lottery tasks,

the screen is identical except for the text in green which would instead read “...plus the value of one of the boxes from the Set

you selected, randomly chosen by the computer.”
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