
Bidding for Contracts under Uncertain Demand:

Skewed Bidding and Risk Sharing

Yao Luo* Hidenori Takahashi�

August 14, 2019

Abstract

Procurement contracts often involve substantial uncertainty in project outcomes at the time of bid-

ding. Whether the procurer of a contract bears such project risk depends on the specific contractual

agreement. Using data from the Florida Department of Transportation, we document evidence that i)

the procurer’s choice over the type of contract depends on unobserved project heterogeneity, and ii)

potential contractors behave opportunistically via skewed bidding for contracts wherein the contractor

bears the project risk. We develop and estimate a model of bidding for contracts that captures the

bidder’s tradeoff between skewed bidding and risk exposure. Both efficient and inefficient bidders bid

aggressively via skewed bidding. Counterfactual experiments suggest that the onus of bearing project

risk should fall on the procurer (contractor) when project risk is large (small).
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1 Introduction

Infrastructure projects often involve significant risk, such as ex-post adjustments to inputs during project

implementation. Which contracting party should be held responsible for such risk is a topic of heated

debate.1 On the one hand, a contractor who undertakes the project risk may demand a sizable risk

premium in compensation. On the other hand, a procurer who undertakes the project risk may suffer

from excessive cost overruns triggered by opportunistic contractors. Despite the empirical relevance of

risk-allocation in contracts with uncertain demand, the empirical literature on this issue has been scarce.2

We study fixed-price (FP) contracts and unit-price (UP) contracts, collected by the Florida Department

of Transportation (FDOT), to investigate the role of risk allocation via contractual arrangements on firm

behavior and contracting outcomes.3 Projects are procured through auctions. Costs associated with

input adjustments are covered by the contractor under FP contracts and by the procurer under UP

contracts. Contractual arrangements affect competition outcomes through shaping the effective project

risk and incentives to behave opportunistically, which in turn affect potential contractors’ bidding and

participation decisions in competition for a contract.4

For UP contracts, engineers at FDOT’s procurement office first estimate the quantity of each in-

put/item required to complete the project, and prospective contractors bid with a list of unit-prices that

their firm intends to charge for each item.5 Then, FDOT determines a score for each bidder by multiplying

its quantity estimates by the bidder’s unit prices, summing across all inputs. The bidder with the lowest

score wins the contract and receives payment in the amount of its bidder score upon the completion of the

project if the estimated inputs are actually used during project implementation. If there is any adjustment

to any of the contracted items – i.e., the items specified by FDOT and bid on at the time of bidding –

1Resulting cost overruns could reach millions – if not billions – of dollars. For example, the Boeing Dreamliner program,
announced in 2003, was supposed to cost $6 billion, but the final bill was about $32 billion. Another example is the
construction of Berlin Brandenburg Airport, which was estimated to cost ¿1 billion initially, but ended up costing ¿6 billion.

2We use “project risk” and “uncertain demand” interchangeably in this paper.
3FP contracts are widely used in public procurements, including procurement of public transport, operation of water

facilities, and electricity. UP contracts are more prevalent for construction procurements, including highway contracting,
pipeline construction, defense procurement, and procurement projects supported by the World Bank. UP contracts are also
used in timber auctions, as in Athey and Levin (2001).

4FDOT procures small infrastructure projects through either UP or FP contracts. Large projects are procured via
so-called Design-Build Auctions.

5Construction items are measured in different units and are contracted in various forms. For example, labor is contracted
on per-day basis and the quantity estimate is given in terms of the duration of the project.
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the contractor is obliged to make input adjustments at the unit price.6 Under FP contracts, prospective

contractors submit a single-price bid to the FDOT procurement office for an entire project. The con-

tracting firm with the lowest bid price wins the contract and receives its own price bid upon completion.7

That is, inputs are provided at the cost of the contractor, regardless of the quantities required for project

implementation.

We contribute to the empirical literature on contracts and auctions on various dimensions. First, we

provide evidence suggesting that choice of the type of contract depends on unobserved project hetero-

geneity. The literature on procurement auctions has largely ignored unobserved differences between FP

and UP contracts. Observations from auctions on the two contract types are often pooled, based on an

OLS comparison that does not suggest any significant differences in bidding strategies. We provide the

first evidence, to the best of our knowledge, that these two contract types are used for distinct purposes.

Second, we show evidence of opportunistic behavior by bidders. UP contracts mitigate costly ex-post

renegotiation by fixing the price of items ex-ante, but prospective contractors strategically choose their

unit-price bids. We document skewed bidding in our data – i.e., it is expected that contracting firms will

bid high on items that are likely to overrun in order to obtain compensation in expectation, and conversely,

bid low on items with no pay adjustments. Lastly, we construct, identify, and estimate a model of bidding

for contracts, which nests the two contract types and allows for a variety of counterfactual experiments.

Our model is simple and tractable despite the highly nonlinear payoff functions introduced by bidder

risk-aversion and project risk. We adopt a finite mixture model to account for the presence of unobserved

project heterogeneities and estimate via indirect inference approach. To the best of our knowledge, our

paper is among the first to identify and estimate a structural model of UP contracts in the presence of

skewing incentive.8

We provide evidence that the contract choice of project managers at FDOT’s procurement office

depends on unobserved project heterogeneity in a way that is consistent with FDOT’s belief: FP (UP)

6In case of quantity changes on uncontracted items: the contracting parties renegotiate the prices of items not specified
at the time of bidding and not bid on, for both FP and UP contracts. UP contracts differ from cost-plus contracts in that
pay adjustment due to changes in the plan is fixed at the time of auction, and therefore leave no room for renegotiation on
contracted items.

7Quantity estimates are also provided in FP contract.
8A recent work of Bolotnyy and Vasserman (2019) adopts a different model, which we compare with ours in the next

subsection.
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contracts should be employed for projects with small (large) project risk.9 Although OLS results show

no significant differences between the two contract types, the endogeneity of contract choice obscures

their differences. That is, an FDOT project manager is more likely to employ a UP contract for projects

entailing significant project risk, which likely increases contractor costs, and may not be fully captured

by the observables in the data. We resolve this endogeneity issue using variation in contract choice due

to FDOT’s caseload. As UP contracts require appreciably more FDOT personnel to keep track of inputs

used during project implementation, adoption of the UP contract is less likely when FDOT has many

projects to deal with. Our empirical results suggest that while the adoption of FP contracts is negatively

correlated with bidder scores, the adoption of UP contracts is insignificantly correlated with these scores.

The above findings are consistent with a hypothesis that contractors’ unobserved costs are increasing in

project risk under FP contracts, while UP contracts are robust to project risk. We further document that

bidders submit substantially different compositions of unit-price bids under UP contracts, which suggests

that bidders hedge against project risk through forming portfolios of unit-price bids.

We further show suggestive evidence that UP contracts induce bidders to behave opportunistically

through skewed bidding. A bidder has an incentive to bid high on underestimated items and bid low on

overestimated items, since positive ex-post adjustments increase bidder revenue, while negative ex-post

adjustments reduce bidder revenue. Since bidders differ from each other in terms of their input estimates,

the bidder with the highest estimate has the largest incentive to win the contract. In the unique setting

of UP contracts, bidders behave strategically at the time of bidding rather than ex-post, in which the

econometrician does not observe how non-winning bidders would have behaved. This allows us to directly

control for unobserved project heterogeneity in showing evidence of skewed bidding, and we find that

bidders who skew their unit-price bids are much more likely to win the contract than those who do not.

To quantify the effects of demand uncertainty, we construct a model of bidding for a contract, nesting

both UP and FP contracts. The model captures the key tradeoff that the procurer faces in choosing

the type of contract given the degree of project risk. On the one hand, UP contracts allow bidders to

hedge against uncertain demand by forming a portfolio of unit-price bids while FP contracts do not.

On the other hand, UP contracts induce skewed bidding which may result in higher procurement costs

9FDOT’s project guidelines explicitly list the tasks suited for FP and UP contracts. See Figure 1.
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through the selection of inefficient contractors. Our model extends that of Ewerhart and Fieseler (2003) by

introducing multidimensional bidder heterogeneity, risk aversion, and endogenous entry. From an empirical

standpoint, it is difficult to rationalize the observed distribution of bids in the framework of unidimensional

bidder heterogeneity, since multidimensional bidding strategies would be a function of unidimensional type.

Risk aversion explains why bidders do not completely skew their bids and rationalizes FDOT’s beliefs.10

Endogenizing the entry decision of bidders is important, as altering contractual arrangements affects not

only bidding behavior but also the level of competition through entry. In particular, UP contracts bring in

more competition than FP contracts, since the UP contractual arrangement incentivizes bidders to earn

profit through the choice of portfolio of unit-price bids as a tool to hedge against project risk and to make

profit through cost overruns, none of which exist under the FP contractual arrangement.

We demonstrate that the model is semiparametrically identified from UP contracts, accounting for

unobserved project heterogeneity in cost and risk. The estimated model is consistent with empirical

findings in that i) the UP contract is robust to project risk, ii) bidder scores are much more dispersed with

FP versus UP contracts, iii) the composition of unit-price bids exhibits a substantial amount of within-

auction heterogeneity, iv) bidders who skew their bids are more likely to win the contract. Structural

estimates show a large amount of unobserved heterogeneity in both costs and project risk. Based on

the estimated model, we numerically demonstrate that FP (UP) contracts perform well for projects with

low (high) project risk and show that our model is consistent with empirical findings i)-iv) listed above.

Counterfactual experiments suggest that UP contracts perform well, at least for those projects in the

data that were procured through UP contract. Switching from UP to FP contracting would significantly

increase the procurement cost.

Despite practical relevance, empirical work on evaluating the performance of contractual arrangements

remain scarce. One of few related empirical works is Decarolis (2014), which compares contracts awarded

via first-price auctions and average-price auctions. First-price auctions are found to have a perverse

effect on ex-post contract performance relative to average-price auctions. Bajari, Houghton, and Tadelis

(2014), which also investigates UP contracts, shows that skewed bidding is not economically significant,

which contradicts our finding. This empirical discrepancy is likely due to institutional differences across

10On theoretical grounds, bidder risk aversion is explained by imperfect capital markets so that procurement-specific risks
matter to bidders (Samuelson, 1986).
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state departments of transportation. Bajari, Houghton, and Tadelis (2014) uses procurement data from

the California Department of Transportation, where the contracting price can be renegotiated if quantity

adjustments exceed 25% of the original estimated quantity, which contrasts sharply with FDOT’s threshold

of 125%.11 In addition to allowing for comparison of FP with UP contracts, our model differs from Bajari,

Houghton, and Tadelis (2014) in that we allow for the expected quantity of work items to differ across

bidders and bidders face uncertainty in the actual quantity of work items. Relaxing these assumptions

explains not only why the composition of unit-price bids varies considerably in any given auction, but also

why bidders do not completely skew their bids to hedge against project risk.

The rest of the paper is organized as follows. Section 2 presents the related literature. Section 3

describes the data and the procurement procedures under both FP and UP contracts. Section 4 provides

evidence that the procurer’s choice of contract depends on unobserved project risk, together with evidence

of skewed bidding. Section 5 presents the model of bidding for a contract. Section 6 shows semiparametric

identification of the model. Section 7 provides estimation steps together with the results. Section 8

provides counterfactual experiments and shows that UP works better than FP when project risk is large,

while FP works better than UP when project risk is small. Section 9 concludes.

2 Related Literature

Skewed bidding has received considerable attention in the auction literature. Athey and Levin (2001)

finds evidence of skewed bidding in the U.S. forest service timber auctions. They also find that bidders

do not completely skew their bids, which is consistent with bidder risk-aversion. Our model differs from

Athey and Levin (2001) in that we apply a private value framework while they assume a common value

framework.

The most closely related work to ours is Ewerhart and Fieseler (2003), who study bidder behavior in

a UP contract in independent private value framework. In their framework, uncertainty in ex-post item

quantity does not matter to bidders as bidders are assumed to be risk-neutral. They show that bidders

with a large estimate on the ex-post quantity has a larger incentive to win the contract and therefore,

11FDOT also reserves the right to reject any non-responsive bid. For details, see Section 3 and 4 at
http://mcraemetcalf.com/wp-content/uploads/2016/07/FDOT-2016eBook-Standard-Specifications.pdf
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bid more aggressively to win the contract, which results in skewed bidding. We introduce bidder risk-

aversion and endogenous entry decision into the framework of Ewerhart and Fieseler (2003) as bidders

do not completely skew their bids empirically, and contract formats significantly affects bidders’ expected

payoffs, which in turn influences bidders’ entry decisions.

This paper is more broadly related to the literature on contracting via auctions. The seminal work

paper in the literature on procurement contracts through auction is McAfee and McMillan (1986), which

compares the performance of fixed-price contracts and cost-plus contracts in an incomplete contract set-

ting. The authors show that the optimal incentive contract is linear in bid and ex-post realized costs.

Bajari, Houghton, and Tadelis (2014) structurally estimates a model of UP contracts in an incomplete

contract setting, since the majority of ex-post adjustments originate from uncontracted items in their

environment. Our framework differs from this strand of incomplete contracts literature in that we con-

sider a complete contract setting, given that the majority of ex-post adjustments in Florida originate from

adjustments on contracted items. Lewis and Bajari (2014) looks empirically at the tradeoff between effort

and risk in the procurement setting. An and Tang (2017) considers the incomplete contracting setting,

in which buyers endogenously specify the initial contract. Decarolis (2014) finds a perverse effect of first-

price auctions on infrastructure procurement projects in Italy. A recent paper Bolotnyy and Vasserman

(2019) also study unit price contracts with risk averse bidders. They adopt a framework similar to Bajari,

Houghton, and Tadelis (2014): bidders observe a common signal about (ex-ante unknown) actual item

quantities and individual scalar private information on costs. In contrast, bidders in our model have

multidimensional private information on actual item quantities, which explains substantial heterogeneity

in bid skewness among bidders.

Our work is also related to the vast literature on the identification and estimation of auction models

with risk-averse bidders and endogenous entry.12 Guerre, Perrigne, and Vuong (2009) shows that risk-

averse bidder utility functions and private value distributions can be nonparametrically identified via

an exclusion restriction and observed bids from first-price auctions. Campo, Guerre, Perrigne, Vuong

(2011) shows that risk-averse bidders’ utility function and private value distribution are semiparametrically

12Bidding behavior consistent with risk-aversion is confirmed in both experimental and non-experimental studies (e.g.,
Cox, Smith, and Walker, 1988; Athey and Levin, 2001; Goeree, Holt, and Palfrey, 2002). Bajari and Hortacsu (2005) also
show that a structural model with risk aversion provides the best fit to some experimental data among a set of competing
models.
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identified under a conditional quantile restriction on the distribution of bidder private valuation and a

parametrization of the bidder utility function. Luo, Perrigne, and Vuong (2018) develop a structural

model with risk-averse bidders to analyze FP auctions subject to ex-post uncertainty. They derive the

model restrictions and study identification under exogenous and endogenous participation. Li and Zheng

(2009) estimates three competing endogenous entry models in procurement auctions and finds that the

model with a common entry cost where bidders draw their private costs upon entry best fits the data.

3 Institutional Details and Data

This section describes the procurement procedure, overviews FDOT’s project guidelines, and provides

descriptive statistics of the data. Description of the auction procedure specifies who makes what decisions

at what point in time. FDOT’s project guidelines shed light on why one should be concerned about

endogeneity of contract type. Lastly, we provide an OLS comparison of bidders’ behavior and project

outcomes across the two types of contractual arrangements.

3.1 Procurement Procedure

FDOT consists of seven district offices that procure infrastructure projects independently. Each district

office announces a list of projects every month. The set of procured projects in any month is determined

by FDOT’s project managers and various department personnel. The procurement procedure can be

decomposed into a design phase, followed by an auction phase, and finally, a construction phase.

In the design stage, FDOT’s in-house engineers specify the plan of a project – namely, estimates of the

quantity needed for each construction item and project cost. The project manager then decides whether to

procure the project by FP or UP contract. A project guideline published by the FDOT explicitly states

that FP contracts should be employed for “projects with low risk of unforeseen conditions.”13 Figure

1, extracted from the guideline, lists the project types for which FP contracts are and are not suited.

Essentially, the guideline states that FP contracts should be used for simple projects, and UP contracts,

otherwise. One to two months prior to project letting, the FDOT posts an advertisement online which lists

information about project location, description of work, expected contract duration, and an engineer’s

13Lump-Sum Project Guideline is found at https://www.fdot.gov/roadway/PPMManual/2017PPM.shtm.
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estimate of the project cost.

Next, the project enters the auction phase. If a project is procured through a UP contract, every

prospective contractor submits a list of unit prices on their bid form for each item given in the FDOT

project plan quantity estimates. For example, if FDOT’s project plan indicates that 10 units of electronic

message signs need be implemented, each bidder must submit a dollar amount for how much their con-

tracting firm intends to charge for one of 10 message signs. FDOT then determines a score for each bidder

by multiplying its planned quantities with the bidder’s unit-prices and summing across all construction

items. Participating bidders are then ranked by their score, and the bidder with the lowest score wins the

UP contract. The contracting firm is then obligated to provide the contracted items at the unit prices

stated in their bid form. If the project were to be procured through an FP contract, on the other hand,

prospective contractors would instead submit a single-price bid, which would also be their bidder score

under FP, and the bidder with the lowest bid price would win the contract. The contracting firm would

be obligated to implement the project at its bid price amount, unless significant changes are made to the

contract during the construction phase.14

The auction phase is followed by the construction phase. Project implementation is closely monitored

by an FDOT construction engineering inspector. If no changes are made to the construction plan, the

contracting firm receives its own bid price upon delivery of the project under both UP and FP contracts.

If the FDOT project manager finds a need to adjust the construction plan under a UP contract, contractor

payment is adjusted based on FDOT’s quantity adjustment(s) and the contractor bid form list of unit-

prices. For example, if FDOT requires any additional days of construction work, and labour is contracted

on a daily basis, then FDOT compensates the contractor by the number of additional days multiplied

by the contractor’s daily labour rate. More than 95% of these adjustments are initiated by FDOT, and

not the contractors. Under an FP contract, no adjustments in payment would be made for changes to

contracted items.

Adjustments could also occur on uncontracted items. For example, storms during construction may

damage construction materials, and repairs may be needed. In this case, the FDOT project manager

files a claim, describing the extra work needed, the reason for the change, the associated cost, and the

14Quantity estimates are also provided in FP contracts.
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time extension required to implement the change. These additional uncontracted tasks could involve

negotiation, and the compensation for these uncontracted tasks is determined the same way for FP and

UP contracts. Table 1 shows the distribution of the share of adjustments on contracted items out of total

ex-post adjustments.

Table 1: Share of Contracted Item Adjustments in Ex-post Adjustments under UP contracts

Mean 5pctl 25pctl 50pctl 75pctl 95pctl

.801 .158 .608 1 1 1

We conduct a simple simulation exercise to demonstrate the extent of ex-post adjustments on the

winner selection process. To implement the simulation, we assume that (i) bidders’ behavior is fixed (i.e.,

unit-price bids are given by the data), (ii) exactly the same ex-post quantity adjustments are imposed on

the project, regardless of which bidder wins the contract, and (iii) the auctioneer selects the winner based

on the final payment, rather than bidder score – that is, the auctioneer is assumed to foresee the ultimate

quantities required for project completion at the time of auction. We find that 10.3% of UP contracts

in the data would have had a different winner if the auctioneer had been able to select the winner based

on the final payment to the contractor.15 We relax assumptions (i)-(iii) later in the structural modeling

section, but this simple exercise demonstrates the extent of inefficiency introduced by ex-post adjustments.

A typical concern raised in the analysis of cost overrun is the possibility of default. Contractor default

is particularly relevant in this context, since FP contracts may involve more frequent default than UP

contracts if contractors are unable to supply extra work or items required to complete the project. During

the sample period, 25 projects (1.3% of the sample size) that were procured through either FP or UP

contracts defaulted.16 The majority of these defaults were not due to adjustments in the project plan

but due to contractors failing to perform work in accordance with the terms of the contract. Another

possibility for default is binding FDOT district office project budget constraints. If a district office is

unable to make additional payments for extra work or items under UP contracts, then project managers

may decide not to complete the project due to insufficient funds. It turns out that the FDOT district

15The probability of winner switch under FP contracts is not affected by this experiment, by construction.
16Our sample contains 22 of the 25 defaulted projects, of which 13 projects (9 projects) were procured through UP (FP)

contract.
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offices pool their annual budget across projects to ensure that all procured projects are completed.17

Figure 1: Excerpt from FDOT Project Guidelines

17FDOT requires every bidder to submit a surety bond, specifying a firm that would take over an incomplete project in
case of contractor default. FDOT project managers state that every project is completed without exception. We also control
for annual district budget amounts in the following regression analyses.
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Bidder submits bid form of unit-prices

Bidder with the lowest score
(unit-price bids × estimates) wins

Change in project plan

Contractor receives payment 
(score + adjustments)

Time

Bidder 𝑖 submits a lump-sum bid

Bidder with the lowest 
lump-sum bid wins

Contractor receives its 
lump-sum bid

Time

In case of UP contract

In case of FP contract

Change in project plan

Figure 2: Timeline of Events

3.2 Data and Descriptive Analyses

We investigate a sample of infrastructure projects procured by FDOT under FP or UP contracts between

the years 2004 and 2014.18 The data contain rich information, including all participating bidders’ bid

prices (every unit-price bid for UP contracts), FDOT engineers’ cost estimates, quantity estimates for UP

contracts, final payment to contractors, project location, description of work, and identities of both par-

ticipating and non-participating bidders. We define participating bidders as plan holders that submitted

bids and non-participating bidders as those that did not.

FDOT’s procurement office determines cost estimates based on historical unit-price bids.19 There is

no difference in the way the estimates are determined between FP and UP contracts. Work description

provides information about the nature of the project (i.e., road repair, bridge construction, etc); as

descriptions vary significantly across projects, we extract the tasks from these work descriptions and

define project type as a linear combination of these tasks.20

18The sample consists of relatively small projects since FDOT uses another mechanism, the so-called Design-Build auction,
for large projects. The average contracting price for Design-Build auctions during the sample period is about $14 million.

19Engineer’s cost estimate and expected contract duration are explicitly given in the advertisement of a project, and
therefore these project characteristics are known to bidders at the time of bidding.

20We create an indicator variable for each task. For example, we set an indicator variable equal to one if a work description
contains the word “milling”, another indicator variable equal to one if a work description contains the word “widening”, and
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Table 2: Summary Statistics of Fixed-Price and Unit-Price Contracts

FP UP

Variable Mean Std. Min. Max. N Mean Std. Min. Max. N

Winning Score ($1,000) 1591 2065 14.0 14500 590 3806 6313 7.51 148000 1208

Engineer’s Cost Estimates ($1,000) 1879 2338 23.3 16600 590 4638 7943 12.7 164000 1208

Expected Contract Duration (# of Days) 117 67.8 30 550 590 236 196 15 2034 1208

Final Payment to Contractor ($1,000) 1642 2138 14.3 14400 590 3977 6798 7.50 159000 1208

Ex-Post Pay Adjustment ($1,000) 51.0 177 -1640 1851 590 185 750 -2000 11200 1208

# of Participating Bidders / Auction 4.36 2.41 1 15 590 5.03 2.69 1 19 1208

# of Plan Holders / Auction 38.3 15.8 2 82 590 43.3 23.6 1 159 1208

Winning score is the winner’s bid price for FP and the sum of unit-price multiplied by estimated quantity for UP, in thousands of
dollars.

Table 2 presents summary statistics of key variables under UP and FP contracts. On average, fewer

bidders participate in FP versus UP auctions. UP contracts are used for relatively large projects with

longer expected time to completion than those of FP contracts. We also see that FP projects are less

susceptible to cost overruns, and the average cost overrun of UP projects is 3.5 times greater than that of

FP projects.

Table 3 presents OLS outcomes. We consider four dependent variables: entry, log(score), winner’s

log(score), and log(final payment). A potential bidder is considered to enter an auction if a plan holder

submits a bid. For FP contracts, bidder score is equivalent to bid price for FP contracts; conversely, for

UP contracts, the score is determined by bidder unit prices multiplied by FDOT quantity estimates and

summed across all items. We find that bidders score 2% lower under FP versus UP contracting, despite

no statistically significant differences in entry, winning score, and final payment to contractors across the

two contract types.

Consistent with the procurement auction literature, we find that most of the variation in score and final

payments are explained by the variation in FDOT engineer cost estimates. An additional participating

rival bidder is associated with a 1% reduction in bidder score on average, suggesting that competition

drives down price.21

so on. In total, we found 18 tasks with which to characterize project type.
21The strong negative correlation between the score and the number of participating bidders suggests that bidders are

competing in a private value paradigm rather than a common value paradigm.
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Table 3: OLS Comparison of Contract Formats, Bidder Behavior, and Auction Outcomes

Dependent Variable entry ln(score) winner′s ln(score) ln(final payment)

FP (=0 if UP, =1 if FP) .00140 -.0176 -.0235 -.00699 -.0194 .00332 -.00708
(.0035) (.0072) (.0072) (.013) (.013) (.014) (.014)

log(engineer’s cost estimate) -.00941 .974 .973 .983 .982 .998 .997
(.0018) (.0030) (.0030) (.0064) (.0062) (.0069) (.0068)

# of pariticipating bidders -.0102 -.0255 -.0246
(.0011) (.0025) (.0028)

# of plan holders -.000701 .000166 .000721 .000272 .00133 .000441 .00149
(.00012) (.00018) (.00019) (.00043) (.00043) (.00046) (.00047)

log(district office budget) -.00174 .00561 .0135 .0469 .0626 .0363 .0515
(.0063) (.015) (.015) (.030) (.029) (.033) (.032)

District FE yes yes yes yes yes yes yes
Year FE yes yes yes yes yes yes yes
Month FE yes yes yes yes yes yes yes
Bidder FE yes yes yes yes yes yes yes
Project Type FE yes yes yes yes yes yes yes

R2 .533 .975 .975 .979 .980 .976 977
N 75714 8654 8654 1798 1798 1798 1798

Project type is defined as a linear combination of tasks, which are extracted from work descriptions of bid tabs. Bid-
ders that win less than one percent of the total value of projects during the sample period are grouped together as fringe
contractors and treated as the same bidder when controlling for bidder fixed effect. Standard errors are clustered at
project/auction level and presented in parentheses.

4 Unobserved Project Heterogeneity and Skewed Bidding

Institutional facts indicate that contract choice is unlikely to be random and could therefore confound

the effects of contractual arrangements on project outcomes. If FDOT project managers follow FDOT

project guidelines, then bids could be low in FP versus UP contracts, simply because simple projects

are procured via FP contracting and more complex projects via UP contracting. Furthermore, if FP

contracts indeed reduce procurement cost for simple projects, while UP contracts are well suited for

projects with greater project risk, then the effects of FP relative to UP contracting depend on unobserved

project heterogeneity: project heterogeneity observable to the bidders and FDOT project managers, but

unobservable to the econometrician. We show that the FDOT project manager’s contract choice indeed

depends on unobserved project heterogeneity in a way that is consistent with FDOT’s belief that UP

contracts are well suited for projects involving much uncertainty.
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UP contracts, however, may induce bidders to behave opportunistically through changing in the com-

position of unit-prices on their bid form. As UP contracts compensate for cost overruns, bidders have

much incentive to bid aggressively to obtain compensation, in expectation, through cost overruns. We

show that the composition of unit-price bids varies substantially within a given auction, and that the

unit-price composition is strongly related to the bidder’s likelihood of winning.

4.1 Endogeneity of Unobserved Project Heterogeneity

While the OLS comparison in Table 3 suggests there is little difference in project outcomes and bid-

der behavior across UP and FP contracts, contract choice is likely not exogenous. Here, we provide a

simple framework based on the Heckman (1976) selection model to test whether the FP/UP contract

choice depends on unobserved project heterogeneity via correlation of contract format choices and bidding

strategies.

Let X be a vector of project and bidder characteristics, and let Z ⊃ X be a vector of exogenous

observables relevant to the FDOT’s project manager’s contract choice, denoted by V . Let scoref and

scoreu denote bidder score under FP and UP contracts, respectively. Then, we consider:

V = Zγ + εp

ln(scoref ) = Xβf + εf

ln(scoreu) = Xβu + εu

and the FDOT project manager’s choice between FP and UP is governed by:

FP =


1 if V ≥ 0

0 if V < 0

where γ, βf , and βu are vectors of parameters. We assume εp, εf , and εu are trivariate normal random

unobservables with Var(εf ) ≡ σ2
f , Var(εu) ≡ σ2

u, corr(εp, εf ) ≡ ρf , and corr(εp, εu) ≡ ρu. We normalize

Var(εp) to 1. Unobservables are assumed to be independent of Z.

14



The expected bidder score, given contract format j ∈ {f, u} and observables Z is given by:

E [ln(scorej)|FP = 1, Z] = Xβj + ρjσj
φ(Zγ)
Φ(Zγ)

(1)

E [ln(scorej)|FP = 0, Z] = Xβj − ρjσj φ(Zγ)
1−Φ(Zγ) for j ∈ {f, u} (2)

where φ(.) and Φ(.) are the PDF and CDF of a standard normal random variable, respectively. We test

H0 : ρj = 0 against HA : ρj 6= 0 for j ∈ {f, u}.

The intuition behind the test is as follows. If FDOT project managers are following FDOT project

guidelines, recall that project managers should be less likely to employ FP contracts when project risk

is high. Additionally, if project risk is not fully captured by the observables, then unobservable εp cap-

tures unobserved project risk. We also expect unobserved project risk to be captured by εf as bidders’

unobserved costs are likely increasing in unobserved project risk. Thus, adoption of FP contracts and

bidding strategy on FP projects are negatively correlated with project risk (i.e., ρf < 0) via project risk.

Similarly, we would expect a weak correlation between the adoption of UP contracts and bidding strategy

on UP projects if UP contracts are robust to project risk: bidders’ unobserved costs are weakly related to

project risk.

To provide identification of ρj without purely relying on functional form assumptions, we now introduce

excluded variables in Z that affect FP/UP contract choice but do not enter X. We now turn to the

description of our excluded variables.

4.2 Excluded Variables

Our excluded variables capture the extent of backlog experienced by the relevant parties of the auction

process. First, for each FDOT district office, backlog is measured by the total dollar value of unfinished

projects that the district office has at the time of procurement. Since UP contracts involve a large

administrative cost – as FDOT would need considerably more personnel to keep track of the number of

units of all materials used during the construction phase of a UP project – an FDOT project manager

would therefore be more likely to employ FP contracts when the office is heavily backlogged. Second,

since prospective contractors are also likely backlogged when district offices are backlogged, we construct
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bidder backlog in the same manner and directly control for it. That is, we argue that the level of backlog

at an FDOT district office has nothing to do with prospective contractor bidding strategies (e.g., bidders’

unobserved costs), conditional on bidders’ backlogs. We construct backlog for each of FP and UP contracts,

as the level of backlog depends on contract format.

4.3 Estimation Results

Table 4 indicates a strong negative correlation between εp and εf , consistent with anecdotal evidence.22

When project risk is large, project managers are less likely to adopt the FP contract and prospective

contractors’ costs tend to be high, which is passed onto their scores, i.e., ρf < 0.

The weak insignificant correlation between εp and εu is also consistent with anecdotal evidence that

FDOT believes UP contracts are robust to project risk. If UP contracts are robust to project risk, then

bidder costs εu would be uncorrelated with project risk, since project risk does not translate into bidder

costs. Therefore, our estimation results are in line with FDOT’s belief that UP contracts should be used

for projects with greater project risk.23

One concern with our approach here is that the excluded variable may be correlated with unobserved

project heterogeneity. The exclusion restriction would be violated if the FDOT project managers can

anticipate the complexity of projects well before project letting, and accordingly, try to coordinate and

decide when to procure which project based on the complexity of projects. Ideally, we would like to

check if cost overruns are correlated with our excluded variables. However, we do not observe the actual

cost overrun under FP contracts, by construction. Thus, we instead test if time overruns are correlated

with our excluded variables.24 Statistically significant correlation between our excluded variables and

ex-post auction outcomes would cast doubt on the validity of our excluded variables. To implement this

idea, we regress the log-difference in completion time and expected contract duration on our excluded

variables together with exogenous project characteristics. We then run an F-test to check whether the

22The relevance of the excluded variables is tested in Table 13 in Appendix. We find that the backlog variables are
economically and statistically significant. One standard deviation increase in the natural log of district office backlog caused
by FP contracts increases the probability of using FP contact by one percentage point while the same increase in the natural
log of district office backlog caused by UP contracts increases the probability of using FP contract by five percentage points.

23The estimation results also suggest that σf > σu: scores are more dispersed under FP than UP contracts. Our model
is also consistent with this observation.

24Time overrun is defined as log-difference in actual construction days and expected contract days.
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coefficients on all excluded variables (district office backlog) are jointly zero, controlling for bidder and

project characteristics, and various fixed effects. Table 5 displays the relevant p-values. Given that the

p-values range from 20% to over 80% after controlling for time fixed effects, the correlation between FDOT

district office backlogs and time overrun is not statistically significant, even at confidence levels well below

90%. Therefore, we conclude that there is no evidence that our excluded variables are correlated with

project risk.

If UP contracts are robust to project risk and generate lower bidder scores than FP contracts, then

why would FDOT use FP contracts? One reason may be to avoid the high administrative costs associated

with UP contracts. In the following subsection, we illustrate another reason why the FDOT may wish to

avoid using UP contracts.

Table 4: Endogenous Switching Model: Estimation Results

Dependent Variable ln(scorej)
Specification (1) (2) (3) (4)
Regime FP UP FP UP FP UP FP UP

ρf , ρu -.754 .0790 -.688 .0897 -.792 .142 -.699 .131
(.081) (.074) (.14) (.054) (.060) (.051) (.16) (.049)

σf , σu .370 .237 .316 .212 .314 .207 .294 .206
(.025) (.0067) (.026) (.0064) (.022) (.0063) (.030) (.0062)

District Office Backlog yes yes yes yes yes yes yes yes
Project Characteristics yes yes yes yes yes yes yes yes
District FE yes yes yes yes yes yes yes yes
Year FE no no yes yes yes yes yes yes
Month FE no no yes yes yes yes yes yes
Bidder FE no no no no yes yes yes yes
Project Type FE no no no no no no yes yes

N 8654 8654 8654 8654 8654 8654 8654 8654

Standard errors are clustered at the district-year-month level. Project characteristics include engineer’s estimate of project
cost, number of plan holders, project type fixed effects, month fixed effects, year fixed effects, and district fixed effects.
Project types are defined as a linear combination of tasks, which are extracted from the work description of bid tabs. Bid-
der characteristics include bidder backlog from FP and UP contracts. Bidders that have won less than one percent of the
total value of projects during the sample period are grouped together as fringe firms and treated as the same bidder when
controlling for bidder fixed effects. District office backlog is calculated as the total dollar value of projects uncompleted
at the time of project letting.
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Table 5: Test of Endogeneity of Excluded Variable

Dependent Variable Time Overrun

F-Test (p−value) .000 .278 0.208 0.869 .806

Bidder Characteristics yes yes yes yes yes
Project Characteristics yes yes yes yes yes
District FE yes yes yes yes yes
Year FE no yes yes yes yes
Month FE no no yes yes yes
Bidder FE no no no yes yes
Project Type FE no no no no yes
N 1877 1877 1877 1877 1877

Time overrun is defined as log-difference in actual construction days
and expected contract days. The null hypothesis for the F-test is the
coefficients on all excluded variables (district office backlog) are jointly
zero.

4.4 Skewed Bidding

Table 6presents the top 10 most frequently used items in UP contracts. It turns out that contractual

arrangements differ across items. Indeed, some items are procured in a lump-sum manner; i.e., there

would be no adjustment in payment associated with any adjustments in these items.25 Figure 3 shows

the distribution of the sum of unit prices across lump-sum items as a share of bidder score, which clearly

exhibits considerable variation.

Table 7 shows the source of variation in non-lump-sum item values by decomposing the variance of

the share of bids on non-lump-sum items. It reveals that 30% of the total variance is within-auction. The

question here is why bidders differ so much in their composition of unit-price bids for any given auction.

Table 8 regresses bidder score and winning status on the share of non-lump-sum item bids. It shows

that bidders who place a large share of bids on non-lump-sum items bid much more aggressively than

those with a small non-lump-sum item bid share. We find that a bidder with one standard deviation

higher share of non-lump-sum bids attains a 3.4% lower bidder score, and is 7.3% more likely to win a UP

project, based on the specification with only auction fixed effect. The correlation is even stronger after

controlling for bidder fixed effect. These results pose the question: why do bidders with a higher share of

non-lump-sum bids have an incentive to bid more aggressively than others?

25Quantity estimate for lump-sum item is always set equal to one.
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Table 6: Contract Type of Top 10 Items in UP contracts

Item Category Contractual Frequency

Arrangement

Mobilization Lump-Sum 1241

Maintenance of Traffic Lump-Sum 1239

Work Zone Sign Per Day 1217

Temporary Barricade Per Day 1168

Advance Warning / Arrow Board Per Day 890

High Intensity Flashing Lights Per Day 1200

Temporary Retro-reflective Pavement Marker Each Unit 865

Portable Changeable Message Sign Per Day 1004

Clearing & Grubbing Lump-Sum 1067

Painted Pavement Markings Lump-Sum 788

The means are calculated using the lowest bidder’s unit-price bid from 1,341 unit-price auc-
tions. Quantity is estimated by FDOT prior to auction.

One plausible explanation here is that a bidder who anticipates a large cost overrun for non-lump-sum

item places a high unit-price bid on non-lump-sum item in expectation to get compensated through cost

overrun. Since the bidder with a large estimate for non-lump-sum item still needs to compete against

other bidders to win a contract, he/she places a low unit-price bid on lump-sum item, which is not

affected by either cost overrun or underrun. Those bidders with skewed distribution of unit-price bids

more aggressively to win a contract as they expect to get paid more from cost overruns.

One may suspect that more risk-averse bidders would want to place a larger share of bids on non-

lump-sum items and bid more aggressively than less risk-averse bidders if bidders are characterized by

decreasing absolute risk aversion.26 If this were the case, however, the inclusion of bidder fixed effects

should remove some of the confounding effects rather, than strengthen the result.

Figure 4 is a scatter plot showing a clearly positive relationship between cost overrun in UP contracts

and winners’ bids on non-lump-sum items in dollars. We find that cost overrun is increasing in bids on

non-lump-sum items on average, suggesting that skewed bidding is associated with larger cost overruns.

26This point is made by Phil Haile in Athey and Levin (2001).
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Figure 3: Distribution of the sum of unit prices across lump-sum items as a share of bidder score

Table 7: Variance Decomposition of Share of Non-Lump-Sum Bids

Std. Dev. Percentage

Between-Auction .130 70%
(.0027)

Within-Auction Between-Bidder .0560 30%
(.0005)

Standard errors in parentheses
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Table 8: Share of Non-Lump-Sum Bid and Bidding Strategy

Dependent Variable log(score) win

Share of Non-Lump-Sum Bid -.636 -.832 1.35 1.58
(.030) (.034) (.10) (.11)

Auction FE Yes Yes Yes Yes
Bidder FE No Yes No Yes
N 6373 6373 6373 6373

Standard errors in parentheses
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40

00
00

0

0 5000000 1.00e+07 1.50e+07
total dollar amount spent on non-lump-sum items

cost overrun Fitted values

Figure 4: Cost Overrun and Bids on Non-Lump-Sum Items
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5 Structural Model

The empirical evidence suggests that i) UP contracts are robust to project risk, ii) bidder scores are much

more dispersed in FP versus UP auctions, iii) bidders are substantially heterogeneous with regards to a

portfolio of unit-price bids, and iv) bidders who skew their bids towards non-lump-sum items are much

more likely to win a project. Motivated by these empirical findings, we construct a structural model of

bidding for contracts.

Our model nests both UP and FP contracts. UP contracts differ from FP contracts in that contractors

are compensated through cost overruns on contracted items, and that bidders can hedge against project

risk by forming a portfolio of unit-price bids. Since bidders may also differ in their quantity estimates, the

portfolio of unit-price bids also differs: bidders may submit high unit-prices for underestimated items and

low unit-prices for overestimated items. The bidder with the largest estimate has the greatest incentive to

win the contract, and therefore would want to bid aggressively to get compensated through cost overruns.

This incentive to skew unit-price bids dissipates with increasing project risk, since skewed bidding comes

with an increase in payoff uncertainty.27

We extend the model of Ewerhart and Fieseler (2003) on various dimensions to capture empirically

relevant features of the environment. First, we introduce multidimensional bidder heterogeneities to

add flexibility in multidimensional bidding strategies. Without multidimensional bidder heterogeneities,

multidimensional bidding strategies would be a function of a single type, which is restrictive and cannot

rationalize the observed distribution of unit-price bids in the data. Second, we introduce risk aversion to

account for the fact that complete skewing is not observed in the data. Lastly, we endogenize the entry

decision of bidders, since changes in contract format affect bidders’ incentive to participate in a given

auction. In particular, we will see that UP contracts induce more competition than FP contracts since,

all else equal, skewed bidding and risk hedging raise the expected return from entering an auction.

The timing of events is as follows.

1. Entry Stage: ConsiderN risk-averse potential bidders with constant absolute risk-aversion (CARA)

utility u(.), parametrized by α ≥ 0.28 Each of N potential bidders independently draws entry cost

27We abstract from the moral hazard problem as i) the construction process is closely monitored by FDOT employees,
and ii) most ex-post adjustments in the construction plan are initiated by FDOT project managers rather than contractors.

28The assumption of CARA may seem restrictive since projects are heterogeneous in project size and bidders may be
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ki, from a common distribution Fec(.). Bidders are privately informed about their own entry cost

and make their entry decision simultaneously. All participating bidders learn the number of actual

bidders n upon entry.29

2. Bidding Stage: A project involves J + 1 items: a lump-sum item and J non-lump-sum items. Let

θ0 and θ ≡ [θ1, θ2, ..., θJ ] denote a FDOT’s engineer’s cost estimate for providing a lump-sum and

non-lump-sum items at the FDOT’s quantity estimates, respectively. These costs are common to

all participating bidders.30 Upon entry, bidder i learns its own estimate of quantity, denoted by ej,i

for item j ∈ {0, 1, 2, ..., J}.31 Quantity estimate ej,i is the private information of bidder i, drawn

independently across bidders from a common joint distribution H. The distribution H has a smooth

density over a finite positive support. Assume that E [ej,i] = 1 and ej,i can be interpreted as the

bidder’s quantity estimate normalized against the FDOT’s quantity estimate. Given the quantity

estimates, all participating bidders simultaneously submit prices bj,i on item j. Let ι ≡ [1, 1, ..., 1]

be a 1×J vector of ones. Also, let bj,i ≡ b̃j,iqj be bidder i’s bid on item j where b̃j,i is the associated

unit-price bid and qj is the FDOT’s quantity estimate for item j ∈ {0, 1, 2, ...., J}. The bidder with

the lowest score si ≡ b0,i + biι
T , where bi ≡ [b1,i, b2,i, ..., bJ,i], wins the contract.

3. Implementation Stage: The FDOT project manager may make adjustments to the non-lump-

sum items, denoted by ε ≡ [ε1, ε2, ..., εJ ] which is independently drawn from a multivariate normal

distribution (i.e., ε ∼ N(0,Σ)).32 The demand shock affects the quantity of each non-lump-sum item

required to complete the project.33 The contractor receives payment based on the contract format.

more risk averse for larger projects. In order to allow for heterogeneity in the level of risk aversion, we allow risk aversion to
depend on project size (and project characteristics in general) later in the identification section.

29We assume that all the primitives that are common to all potential bidders are common knowledge at the time of entry.
30We assume that any given auction always has more than one participating bidder. The assumption that more than

one bidder enters is to prevent the unintuitive bidding strategy in which a bidder submits an infinitely high score when it is
revealed the bidder is the sole participant in the auction. There are only a few auctions with only one participating bidder
in the data. This assumption is also adopted in Li and Zheng (2009).

31Our model differs from Bajari, Houghton, and Tadelis (2014) in that we allow for the expected quantity of work items
to differ across bidders and for bidders to face uncertainty in actual item quantity. Relaxing these assumptions explains the
considerable variation in composition of unit-price bids in any given auction and also explains why bidders do not completely
skew their bids.

32It is possible to allow for correlation between bidders’ private information e2,i and ex-post shock ε, but this makes the
model significantly more notationally involved and turns out to be empirically not relevant. Thus, we present the model
where ex-post shock is independently distributed from private estimate e2,i.

33Since the demand shock on lump-sum items does not affect the characterization of equilibrium bidding strategy and its
dispersion is not identifiable, we set ε1 = 0. This abstraction of uncertainty in non-lump-sum item quantity is justified under
the CARA assumption, since bidders would adjust their bids by exactly the risk premium. See Eso and Whilte (2004) for
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Let us first consider UP contracts. The final payment to the winning bidder, denoted by pu,i, is given by:

pu,i = b0,i + bi(ei + ε)T , (3)

where there is no uncertainty in payment for the lump-sum item. The additive separability in private

information ei and demand shock ε implies common uncertainty across bidders in the sense that the

project risk does not depend on private information ei.

Note that the final payment to a contractor could differ for two reasons. First, the final payment

may differ from bidder score si due to ei. For example, suppose that there is a only one non-lump-sum

item involved in an auction, and the non-lump-sum item is contracted based on the number of work days.

That is, bi specifies how much contracting firm i receives if it completes the project on the auctioneer’s

expected completion date. In practice, contractors differ in terms of speed in delivering the project. Some

contractors are fast (ei < 1) while others are slow (ei > 1). Thus, the payment scheme implies that, all else

equal, fast contractors receive a smaller payment than slow contractors. Second, the final payment may

differ from score si due to demand shock ε. Bidder estimates are also imperfect and affected by unexpected

changes in the project plan. Demand shock ε captures unexpected delay in project implementation, and

Σ captures project risk.34

The total cost of implementing the project, tcu,i, is defined as:

tcu,i = θ0e0,i+θ(ei+ε)
T . (4)

Bidder i’s interim expected payoff upon entry, πu,i, is defined as:

πu,i = max
b0,i,bi

∫
E [u (pu,i − tcu,i) |I]dFtc,−i, (5)

where I ≡ {θ0, θ, α,Σ, e0,i, ei,Ftc, n}, E[.|I] is the expectation over the distribution of ε, and Ftc,−i is

the distribution of rival bidder types.

The bidder’s nested optimization problem consists of two parts: an inner loop to optimize portfolio

details.
34The model could also allow for possible correlation between e2,i and ε, but we abstract from this possibility for the sake

of simplicity and exposition.
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{b0,i, bi} given total bidder score si, and an outer loop to optimize the total bidder score si. Given the

normal distribution assumption on ε and CARA utility, the inner problem of a bidder can be written as:

max
bi

b0,i + bie
T
i − (θ0e0,i + θeTi )− α

2
(bi − θ)Σ(bi − θ)T

s.t. si = b0,i + biι
T ,

where α ≥ 0 represents the CARA risk-aversion coefficient. Solving this simple constrained optimization

problem gives:

b∗i = θ +
ei − ι
α

Σ−1 for j = 1, 2, ...., J (6)

as the interior solution for all non-lump-sum bids.35 Condition (6) shows an interesting relationship

between project risk Σ and bid skewness. Bidder i bids high on non-lump-sum items with a large estimate

while placing a low bid on items with a small estimate. For example, if a non-lump-sum item is contracted

on a daily basis, then a slow bidder would bid high on those non-lump-sum items. The extent of the

skewing, however, dissipates with the degree of project risk Σ.

Given b∗i , we have b∗0,i = si−
(
θ + ei−ι

α Σ−1
)
ιT and so plugging b∗0,i and b∗i into the certainty equivalent

payoff of bidder i gives:

u
(
b∗0,i + b∗i e

T
i − (θ0e0,i + θeTi )− α

2
(b∗i − θ)Σ(b∗i − θ)T

)
= u (si − cu,i)

where cu,i is the pseudo-type of bidder i defined as:

cu,i ≡ θ0e0,i + θιT − 1

2α
(ei − ι)Σ−1(ei − ι)T . (7)

Thus, bidder i’s problem reduces to one-dimensional choice problem, such that:

πu,i = max
si

∫
u(si − cu,i)dFu,−i, (8)

35We abstract from corner solutions as we observe neither completely skewed bids, i.e., corner solution, in the data.
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and dFu,−i is the distribution of rival bidders’ pseudo-types. Note that cu,i is inverse U-shaped in ei

centered at ei = ι, which implies that bidder score si is non-monotone in ei in a monotone equilibrium

where si is non-decreasing in cu,i. This means that for those bidders whose estimate on the non-lump-sum

items differs substantially from the auctioneer’s estimate would bid more aggressively than those whose

estimates are closer to the auctioneer’s estimate. Using the example of workdays, the model captures that

both efficient and inefficient bidders bid more aggressively than bidders who can deliver the project on

time as expected by the FDOT district office. While it is standard for efficient bidders to submit lower

bids in procurement auctions, UP contracts provide a unique incentive for inefficient bidders to do the

same, as inefficient bidders know that they would receive more payment if they win the contract. Thus,

less efficient contractors lower their bidder score by skewing their bids towards non-lump-sum items to get

compensated in expectation through ex-post adjustments on non-lump-sum items.

Since the remaining equilibrium characterization relates to the auction literature, we summarize it in

the following proposition.

Proposition 1. The unique symmetric, monotone, and differentiable equilibrium bidding strategy is char-

acterized by the following differential equation and the initial condition:

∂s(cu;n)

∂cu
= 1 +

(n− 1)fu(cu)

α(1− Fu(cu))
(exp {α(s(cu;n)− cu)} − 1) (9)

s(c̄u;n) = c̄u,

where Fu and fu are, respectively, the CDF and PDF of cu, which is continuous and bounded over [cu, c̄u].

Given the unique bidding strategy above, a potential bidder enters an auction if the expected profit from

entering outweighs the cost of entry. As shown in Krasnokutskaya and Seim (2011), the unique symmetric

equilibrium entry strategy is given by the entry threshold utility ū, which is determined by:

N∑
n

(
N − 1

n− 1

)
δ(ū(N))n−1(1− δ(ū(N)))N−n

∫
u (s(cu;n)− cu) dFu,n = ū(N) (10)

where the left-hand side of (10) is the equilibrium expected profit from entering an auction, and Fu,n is

the joint distributions of cu over all n entering bidders. The equilibrium entry probability is determined

by δ(ū(N)) ≡ Pr(u(−k) < ū(N)). That is, a bidder participates in an auction if the bidder’s entry cost k
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is below some threshold level which corresponds to the level of utility ū(N).

Now, let us consider the case of FP contracts. FP payment pf,i is given by:

pf,i = si (11)

where si is bidder i’s score in an FP auction. That is, the FP payment is the same as bidder i’s score,

which is equal to the bid submitted by bidder i. Therefore, the interim expected payoff of bidder i under

FP with CARA utility is given by:

πf,i ≡ max
si

∫
u (si − cf,i)dFf,−i (12)

where the pseudo-type of bidder i, cf,i ∈ [cf , c̄f ], is defined as:

cf,i ≡ θ0e0,i + θeTi +
α

2
θΣθT . (13)

The distributions of rival bidder pseudo-types is denoted by Ff,−i. The remainder of the FP equilibrium

characterization is similar to that of UP contracts.

5.1 Bidding Strategies and Contract Outcomes

We demonstrate the effect of contract type on the distribution of bidder pseudo-types and the expected

final payment under varying levels of project risk. The pseudo-types from UP and FP contracts indicate

that bidder cost structure changes endogenously with respect to the type of contractual arrangement. In

particular, the cost of project risk increases more slowly under UP versus FP contracts. Thus, we expect

UP contracts to be better suited than FP contracts for projects with large project risk. On the other hand,

UP contracts may suffer from the selection of inefficient contractors who are able to submit competitive

bids via skewed bidding and obtain compensation in expectation through cost overruns.

To see the effect of project risk on bidder pseudo-types under FP/UP contracts, we simulate the

distribution of pseudo-types under the two contract types and vary the level of project risk. Figure

5 shows that i) pseudo-cost increases faster in project risk under FP versus UP contracts, and ii) the
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distribution of bidder pseudo-types under FP is more dispersed than under UP contracts and shows

relatively lower costs when project risk is large. These differences in pseudo-costs are directly translated

into bidder scores, and hence inefficient bidders are able to outbid moderately efficient bidders. Figure 6

plots expected final payment against project risk. The expected final payment is lower under FP (UP)

contracts when project risk is low (high).

The intuition behind the results is best explained with an example. Suppose that the pay scheme

for the non-lump-sum item under UP is based on days required to complete the project. All else equal,

contractors that deliver a project quickly would be paid less than contractors who work more slowly.

Therefore, less efficient firms would have a larger incentive to win the contract and get compensated in

expectation through larger cost overruns than efficient firms. This leads to a selection towards less efficient

contractors with large cost overruns, because the more aggressive bidders are the ones that expect larger

cost overruns. Since there is a tradeoff between risk hedging and skewed bidding, the incentive to skew

bids decreases in project risk. Therefore, FP projects result in lower final payments than UP projects

when project risk is low, since FP contracts always select the most efficient contractor among the set of

bidders. UP outperforms FP contracts when project risk is high, since UP contracts allow bidders to

hedge against project risk and the incentive to skew bidding decreases with project risk.
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Figure 5: Distributions of Pseudo-cost Types under UP and FP Contracts
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Figure 6: Expected Final Payment and Project Risk in FP and UP Contracts
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6 Identification

First, this section specifies the information structure, the set of model primitives to be identified, and the

set of observables used to identify the model primitives. Then, we show that the model is semiparametri-

cally identified.

6.1 Observables, Primitives, and Information Structure

Let X denote a vector of exogenous project characteristics, and let W ⊂ X denote exogenous variables

that affect bidding strategy but not entry decision. The econometrician observes the number of potential

bidders N , the number of actual participating bidders n, bids on lump-sum and non-lump-sum items for

all participating bidders, {b0,i, bi}ni=1, and cost overruns from J non-lump-sum items ∆ ≡ [∆1,∆2, ...,∆J ]

in UP contracts. Without loss of generality, we rank bidders based on their score su,i = b0,i + biι
T , and

the winner of an auction is assigned i = 1.

The primitives to be identified are the joint distribution of bidder types H, common lump-sum cost

component, θ0(X), common non-lump-sum components θ(X), risk-aversion parameter α(X), project risk

Σ(X), and distribution of entry cost Fec. Let Ii denote bidder i’s state at the time of bidding. Identifying

Assumption 1 summarizes what bidders know at the time of bidding.

Identifying Assumption 1. At the time of bidding, state Ii of bidder i consists of auction hetero-

geneities, bidder i’s private information, the joint distribution of rival bidders’ private information,

the number of participating bidders, estimated costs, project risk, and the number of actual bidders:

Ii ≡ {θ0(X), θ(X), α(X),Σ(X), e0,i, ei, H, n}.

Identifying Assumption 1 is standard in the empirical auction literature. The assumption that the number

of actual bidders is common knowledge can be tested. We find that bidder scores, and thereby bidding

strategy, are strongly negatively correlated with the number of actual bidders, suggesting that auction

entrants know how many rivals they face at the time of bidding and bid more aggressively as the number

of participating bidders increases.

Identifying Assumption 2. Bidders’ private information is i.i.d. across bidders and also independently

distributed from entry cost, conditional on project characteristics. That is, the bid preparation cost is
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irrelevant of its productivity, conditional on project characteristics.

Identifying Assumption 2 is required for identifying the distribution of bidders’ private typesH. Intuitively,

the econometrician has no way of detecting which of bidders’ private information, e0,i or ei, is correlated

with its entry cost from the data, precluding the possibility of allowing for selective entry.

Identifying Assumption 3. Ex-post adjustments on non-lump-sum bids ε are independently distributed

from non-lump-sum bid.

Identifying Assumption 3 abstracts from the possibility that FDOT project manager’s demand for ex-

post adjustments are endogenous – i.e., FDOT project managers reduce (increase) demand for ex-post

adjustments when the contractor’s non-lump-sum bid is high (low). We argue that ex-post adjustments

are exogenous in this context based on two grounds. First, if FDOT does not commit, the point of

using UP contracts is jeopardized and bidders would adjust their beliefs about the distribution of ex-post

adjustments accordingly.36 Second, construction items and tasks are typically non-storable, so FDOT has

little incentive to purchase non-lump-sum items to store for later use, even if they are priced low.

Identifying Assumption 4. There is at least one variable W ⊂ X that affects project implementation

cost without affecting entry cost.

Identifying Assumption 4 required for identifying the entry cost distribution. Without variable W , all

we can identify is the probability of entry, and any distribution of entry cost can be rationalized by the

data.37 To this end, we assume that bid preparation costs are independent of project size, conditional on

project type.

6.2 Semiparametric identification

We show that the model primitives are identified from the data on UP contracts and do not rely on

variation in the use of contract formats.

36Based on private conversations with FDOT project managers, we confirm that this is indeed a concern of FDOT.
37 See the online appendix of Krasnokutskaya and Seim (2011) for details.
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Proposition 2. Under Identifying Assumption 1-4, all the model primitives are identified.

First, consider the non-lump-sum bidding strategy given in (6). It is straightforward to see that θ(X)

is directly identified from equation (6), such that:

E [bi|X] = θ(X), (14)

since E[ej,i] = 1. Given knowledge about θ(X), we identify α(X) and Σ(X) from the mean and covariance

matrix of cost overruns. Note here that cost overrun is defined as ∆ ≡ [∆1,∆2, ...,∆J ] and ∆j ≡

bj,1(ej,1 − 1j + εj) where bj,1 and ej,1 denotes the winning bidder’s non-lump-sum bid and estimate for

item j, respectively. Substituting the non-lump-sum bidding strategy given in (6) into cost overrun gives:

∆ιT = b1(e1 − 1 + ε) (15)

∆ιT = b1(α(X)(b1 − θ(X))Σ(X) + ε) (16)

where the second equality follows from the first-order inversion with respect to b1. Therefore, the extent of

bidder risk-aversion α(X) and project risk Σ(X) is identified from the mean and variance of cost overruns,

conditional on b1 and X.

Given knowledge about α(X), Σ(X), and θ(X), the distribution of ei can now be nonparametrically

identified from the solution to the bidders’ inner problem,

α(X)(bi − θ(X))Σ(X) + ι = ei (17)

Now, let Gn(.|X) and gn(.|X) denote, respectively, the CDF and PDF of score distributions with n

participating bidders conditional on observables X. Expressing the first-order optimality condition (9) in

terms of bid distributions gives:

E

[
su,i − θ(X)ιT − 1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
+
α(X)

2
(bi − θ(X))Σ(X)(bi − θ(X))T |bi, X

]
= θ0(X).(18)

See Appendix 10.3 for the derivation. Thus, we identify θ0(X). Given θ0(X), we can now identify the
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distribution of e0,i nonparametrically:

[
su,i − θ(X)ιT − 1

α(X)
ln

(
1 + α(X)

(1−Gn(su,i|X))

(n− 1)gn(su,i|X)

)
+
α(X)

2
(bi − θ(X))Σ(X)(bi − θ(X))T

]
/θ0(X) = e0,i,(19)

which corresponds to the first-order inversion of Guerre, Perrigne, and Vuong (2000). Equation (19),

together with (17), identify the joint distribution of bidder private information H.

Lastly, the entry cost k is identified from the equilibrium entry condition, given by equation (10).

Knowing θ0(X), θ(X), and H gives us the pseudo-type distribution Fu, as well as interim expected payoff∫
u (su − cu) dFu,n for each number of participating bidders n. In order to identify the distribution of

entry costs, we need an additional identifying assumption – specifically, we need a variable that affects

the expected payoff but not the entry cost of bidders.38

7 Structural Estimation

The econometrician needs to deal with some difficulties in estimating the model. First, nonparametric

estimation of the model would overfit and induce large standard errors. As we do not observe all con-

struction items repeatedly across projects and often a large number of items is involved in a construction

project, estimation of project risk for each construction item is not feasible. We address this issue by

aggregating non-lump-sum items and estimate a scalar project risk parameter, defined as σ.

Second, our reduced-form evidence suggests that the bid data contain a substantial degree of unob-

served heterogeneity in project risk. Therefore, the econometrician needs to address the possibility that

the extent of project risk may differ across projects in a way that is unobserved to the econometrician.

Lastly, the model is highly nonlinear due to the CARA assumption, which precludes simple decon-

volution approach in dealing with unobserved project heterogeneity.39 This means that the common

deconvolution approach to deal with unobserved project heterogeneity is not feasible here as additive

separability or multiplicative separability of project risk does not translate into additive separability or

38Without this exclusion restriction, we would only be able to identify entry probabilities which can be rationalized by
any continuous distribution of entry costs. See the online appendix in Krasnokutskaya and Seim (2011) for details.

39Applied works in the procurement auction literature often assume constant relative risk aversion (CRRA), rather than
CARA, due to its simplicity and goodness of fit. However, we assume CARA, because using CRRA would require the
approximation of certainty equivalent payoffs via Taylor expansion, which is valid only for small ex-post adjustments. Since the
data contain a large degree of ex-post uncertainty, we assume CARA together with normally distributed ex-post adjustments.
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multiplicative separability of scoring strategy.

To address the above problems, we estimate a finite mixture model that allows for a finite number of

discrete unobserved states in project risk as well as mean cost estimates. Our econometric specification

suggests an easy-to-estimate multi-step estimation procedure, which allows for the estimation of model

primitives, together with the distribution of unobserved project heterogeneity, via indirect inference. For

clarity, we introduce auction index a from here onwards.

7.1 Econometric Specification

We specify the model in a single-index framework. More specifically, we rescale all the model primitives

by observables Xa for a given auction a. Define:

θtj(Xa) = θtj exp{Xaβ} for j ∈ {0, 1}

σt(Xa) = σt (20)

α(Xa) = α/ exp{Xaβ}

where superscript t denotes the state of the world (unobserved to the econometrician) and captures un-

observed project heterogeneity in mean and variance parameters. That is, the mean cost estimate and

project risk are both allowed to differ across projects in a way that is unobserved to the econometrician.

The multiplicatively separable cost specification is commonly employed in the auction literature to ac-

count for project heterogeneity.40 Rescaling wealth in CARA utility requires normalization of the CARA

coefficient by observed project characteristics.41

One implication of the above econometric specification on the equilibrium bidding strategy is that

the scoring strategy, non-lump-sum bidding strategy, and cost overrun are all multiplicatively separable

in observables. To see this, let us make explicit the dependency of outcome variables on the primitives.

Let b1,ia ≡ b1 (θ1(Xa), σ(Xa), α(Xa), e1,ia), su,ia ≡ su (θ0(Xa), θ1(Xa), σ(Xa), α(Xa), e0,ia, e1,ia, n), and

∆a ≡ ∆ (θ1(Xa), σ(Xa), α(Xa), e1,1a, εa). Define b01,ia ≡ b1 (θ1(0), σ(0), α(0), e1,ia),

s0
u,ia ≡ su (θ0(0), θ1(0), σ(0), α(0), e0,ia, e1,ia, n), and ∆0

a ≡ ∆ (θ1(0), σ(0), α(0), e1,1a, εa) as “normalized”

40See Haile, Hong, and Shum (2003).
41See Theorem 1 in Raskin and Cochran (1986).
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non-lump-sum score, normalized score, and normalized cost overrun, respectively. This multiplicative

separability of project characteristics allows for the bid-homogenization approach in a setting with CARA

bidders and reduces computational burden by reducing the number of auctions the econometrician has to

solve.

Proposition 3. Given the econometric specification above, the unique equilibrium non-lump-sum bidding

strategy, scoring strategy, and cost overrun are all multiplicatively separable in project characteristics, such

that:

b1,ia = b01,ia exp {Xaβ}

su,ia = s0
u,ia exp {Xaβ}

∆a = ∆0
a exp {Xaβ} .

See Appendix 10.4 for the proof. Our econometric specification of the model can be interpreted as bidders

exhibiting “decreasing” absolute risk aversion in project size. That is, our econometric specification

captures the intuitive property that bidders care less about project risk as project size becomes large.

Suppose, for example, that there are two projects/auctions of different sizes with the same level of project

risk. If the econometrician assumes that bidders participating in these two auctions have the same CARA

coefficient (i.e., constant α), then bidders must also care about the project risk in exactly the same

way across the two projects. However, one can imagine that bidders participating in the auction for

a large project may care less about project risk, since by virtue of selection, these bidders tend to be

larger contracting firms with more diversified operations, i.e., care less about uncertainty. Normalizing

the CARA coefficient by project characteristics allows the above specification to incorporate the intuition

that bidders care less about project risk as the project size becomes larger.
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7.2 Estimation Steps

Step 1: Partial out the impact of project characteristics on the bidder scoring strategy by running a

log-regression of score b1,ia on the project characteristics:

ln b1,ia = Xaβ + ln b01,ia

Step 2: Estimate CARA parameter α, the distribution of unobserved mean cost estimate for non-

lump-sum item θt1, the distribution of unobserved project risk σt, and the marginal distribution of e1,ia,

by maximum likelihood using the following equations on the non-lump-sum bidding strategy and cost

overrun:

b01,ia = θt
′

1 +
e1,ia − 1

ασt

∆0
a

b01,1a
= ασt(b01,1a − θt

′
1 ) + εa

where t, t′ ∈ {L,H} and log-likelihood function l(Θ) to be maximized is:

l(Θ) =
∑
a

ln

 ∑
t,t′∈{L,H}

Ptt′
φ
(

∆̃tt′
a

)
(σt)1/2

∏
i∈Na

ασtφ
(
b̃tt

′
1,ia

)
(σe1)1/2

 ,

where Na is the set of participating bidders in auction a, φ(.) is standard normal PDF,

b̃1,ia ≡ ασt
(
b01,ia − θt

′
1

)
/ (σe1)1/2, and ∆̃tt′

a ≡
((

∆0
a/b

0
1,1a

)
− ασt

(
b01,1a − θt

′
1

))
/
(
σt
)1/2

.

Step 3: Given the estimates obtained from Steps 1 and 2, estimate the distribution of the lump-sum

item’s cost by indirect inference following Li (2010). To this end, we match the moments of the bidder

score distribution in the data with the moments of the scores generated via simulation. More specifically,

we:

1. Estimate the conditional moments of homogenized scores s0
u,ia by regressing the second, third, and

fourth moments of s0
u,ia on the project characteristics. Denote the resulting vector of estimated

coefficients by ψdata.

2. Guess the parameters of the lump-sum item’s cost distribution. Simulate the equilibrium scoring
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strategy, denoted by ssimu,ia , for each bidder in the data using the parameter estimates obtained from

the previous steps.

3. Following the first step, estimate the conditional moments of ssimu,ia by regressing the second, third,

and fourth moments of ssimu,ia on the project characteristics. Repeat this simulation many times and

take average of the estimates, denoted by ψsim.

4. Search for the structural parameter values of the primitives such that ψsim = ψdata.

Step 4: Given the parameter estimates obtained from Steps 1-3, and following the procedure analogous

to Step 3, estimate the distribution of entry costs by matching the moments of the entry decisions in the

data and the moments of entry decisions generated via simulation.

7.3 Estimation Results

A finite mixture model requires a priori knowledge about the number of unobserved states. To this end,

we conduct an elbow test based on the mean and variance of (normalized) non-lump-sum bids, b01,i. More

specifically, we apply K-means clustering on the mean and variance of b01,i for each number of potential

clusters, and determine the number of clusters where the sum of squared errors stops dropping radically.

The results of the elbow test are presented in Figure 7 and 8. The data seem to contain two unobserved

states in both mean and variance of b01,i. We interpret this as a suggestive evidence that the data contain

two unobserved states in the mean cost of lump-sum θt0, non-lump-sum items θt1, and the extent of project

risk σt.
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Figure 7: Elbow Test on The Mean of Nonlumpsum Bids
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Figure 8: Elbow Test on The Variance of Nonlumpsum Bids
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We parameterize the distribution of bidder types by bivariate normal: [e0,i, e1,i] ∼ N(1,Σ) with

correlation ρ ≡ corr(e0,i, e1,i) to allow for within-bidder correlation in types.42 There are four unobserved

states (i.e., all possible combinations of θt1 and σt for t ∈ {L,H}) and the probability distribution of each

state occuring is denoted by Prj for j ∈ {LL,LH,HL,HH} where PrHH = 1− PrLL−PrLH −PrHL .

As shown in Krasnokutskaya and Seim (2011), exclusion restrictions are needed for the identification

of the entry cost distribution.43 To this end, we assume that entry costs (or equivalently, bid preparation

costs) are independent of FDOT engineer estimates of project cost, which serve as a proxy for project

size, conditional on project types. To determine which project types are relevant to entry cost, we

regress the number of participating bidders on a linear combination of tasks (extracted from project work

descriptions), together with FDOT engineer cost estimates. We find that projects that involve at least

one of “milling” or “guardrail” are associated with lower bidder entry rates. We define a project that

involves at least one of these tasks as a “minor” project and estimate the distribution of entry costs for

minor and major (non-minor) projects.

Table 9 displays the estimation results. The CARA parameter is precisely estimated and largely in line

with estimates found in the literature. There is considerable unobserved heterogeneity in both mean cost

estimates θtj and project risk σt. An important observation here is that bidder types are highly positively

correlated (i.e., ρ = 0.5). This finding has an important implication for the effect of employing UP

contracts over FP. If bidder types (e0,iand e1,i) are highly correlated, winning bidders tend to be bidders

with low e1,i, since efficient bidders (i.e., those with estimate e1,i lower than 1) also bid aggressively.

Therefore, we expect increases in ρ to be associated with increases in allocative efficiency. That is, the

adverse effect of skewed bidding for UP versus FP contracts diminishes as ρ increases, and therefore, the

use of UP contracts can be justified, even when project risk is small.

42We truncate the top and bottom 1% of the distribution.
43Without such exclusion restriction, the econometrician can only recover the probability of entry, which can be rationalized

by any entry cost distribution.
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Table 9: Structural Estimation Results

Parameter α σL θL0 θL1 σH θH0 θH1 σe0 σe1 ρ

Estimate 0.716 0.0531 0.232 1.18 0.109 0.421 1.53 1.56 0.0134 0.510
Standard Error (0.13) (0.0031) (0.022) (0.055) (0.0032) (0.049) (0.054) (0.43) (0.0011) (0.098)

Parameter µ1
ec σ1

ec µ2
ec σ2

ec PrLL PrLH PrHL

Estimate 0.101 0.012 0.145 0.013 0.341 0.211 0.0564
Standard Error (0.034) (0.0042) (0.040) (0.0033) (0.017) (0.019) (0.010)

Block-bootstrapped standard errors are presented in parentheses. Auction level characteris-
tics include engineer estimates of project cost and project type. The engineer’s cost estimate
is an estimate of the winning bid price, as predicted by an FDOT engineer prior to auction.
Project type is assigned to each project based on the project description on bid tabs.

8 Does UP contract do well?

A natural question here is whether the UP contract is a mechanism that minimizes procurement costs.

In this section, we consider two hypothetical scenarios: i) switching from a UP contract to FP, and ii)

imposing a cap on non-lump-sum bids. FP contracts are an obvious alternative to UP contracts, especially

when project risk is relatively small.

We consider imposing a cap r on non-lump-sum bids (or equivalently, reserve price) at the estimated

mean cost of non-lump-sum item θt1. This experiment allows us to see how the performance of UP contracts

can be improved in a simple and costless manner.44 The intuition is simple but differs from its role of

reserve price for a typical first-price auction. A cap on the non-lump-sum bid at θt1 would preclude only

inefficient types (e1,i ≥ 1) from skewing their bids and continue to allow efficient types (e1,i < 1) to skew

their bids. Since cost overruns occur due to skewing of inefficient bidders, setting a cap r = θt1 reduces the

extent of cost overruns for inefficient types, which in turn limits their incentive to bid aggressively, and

results in efficient selection of contractors via UP contract. More specifically, a bidders’ non-lump-sum

bidding strategy under reserve price r is given by:

b1,i =


θt1 +

e1,i−1
ασ if e1,i < 1

θt1 if e1,i ≥ 1

44Item-wise reserve price is a very common practice in timber auctions, which generally employ UP contracts to select a
contractor. See Athey and Levin (2001), for example.
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and pseudo-cost of a bidder, cr, is given by:

cr,i =


θt0e0,i + θt1 −

(e1,i−1)2

2ασ if e1,i < 1

θt0e0,i + θt1 if e1,i ≥ 1

and the scoring strategy is a function of cr,i where cu,i in equation (9) is replaced by cr.

Table 10 presents the percentage change in the expected final payment by switching contract formats.

We find that switching from a UP contract to FP would increase the expected procurement cost in all

cases, rationalizing the use of UP contracts by FDOT. We also find that the cost saving effect of UP

contracts is larger when project risk is large, and that the cost of project risk is large when the mean

estimated cost of non-lump-sum item θt1 is large.

Table 11 shows the effect of the non-lump-sum reserve price on the expected final payment. We find

that the effect of the reserve price is surprisingly small. There are two explanations for this phenomenon.

First, since within-bidder type is highly positively correlated, winning contractors tend to be efficient (i.e.,

low e0,i and low e1,i) and thus, placing a cap on non-lump-sum bids does not do much in affecting the

final payment. Second, the scope of skewing is limited by large project risk. Risky projects shift the

attention of bidders from skewing to risk hedging, and therefore, leave little difference between efficient

and inefficient bidders in terms of non-lump-sum bids.
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Table 10: Effect of switching from UP to FP on final payment

State LL State LH State HL State HH
(θL0 , θL1 , σL) (θL0 , θL1 , σH) (θH0 , θH1 , σL) (θH0 , θH1 , σH)

Change in final payment 2.78% 5.17% 3.27% 6.89%

θL0 = .232, θL1 = 1.18, σL = .0531, θH0 = .421, θH1 = 1.53, σH = .109.

Table 11: Effect of reserve price on final payment in UP

State LL State LH State HL State HH
(θL0 , θL1 , σL) (θL0 , θL1 , σH) (θH0 , θH1 , σL) (θH0 , θH1 , σH)

Change in final payment -0.17% -0.06% -0.13% -0.06%

θL0 = .232, θL1 = 1.18, σL = .0531, θH0 = .421, θH1 = 1.53, σH = .109. Reserve price on non-
lumpsum bid is set at θt1.

9 Conclusion

This paper analyzes the performance of UP contracts relative to FP contracts and finds that procurer

choice of contract type depends on unobserved project heterogeneity, consistent with the Florida Depart-

ment of Transportation (FDOT)’s belief that UP contracts should be used for projects with larger project

risk. Skewed bidding for UP contracts is economically and statistically significant, suggesting that UP

projects may select inefficient contractors that expect extra payment for cost overruns. We build a simple

and estimable model of bidding for contracts, which is consistent with the empirical findings. Our em-

pirical specification of the model allows for unobserved project heterogeneity in both expected cost and

project risk. We find that UP (FP) contracts are ideal for projects with large (small) project risk, and

the estimated model rationalizes FDOT’s practice.
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10 Appendix

Table 12: Top 10 Contractors in FP and UP

Top Contractors in FP # of FP contracts Top Contractors in UP # of UP contracts

APAC-Southeast 73 Anderson Columbia Co 103
Anderson Columbia Co 70 Community Asphalt 101
AJAX Paving 47 APAC-Southeast 73
Lane Construction 33 Ranger Construction 72
Better Roads 31 Weekley Asphalt Paving 71
L-J Construction Co 23 Hubbard Construction 51
C.W. Roberts Contracting 21 C.W. Roberts Contracting 47
Ranger Construction 19 General Asphalt Co 38
Hubbard Construction 16 AJAX Paving 34
D.A.B. Constructors 14 P&S Paving 32

10.1 State Dependence in Contract Formats

There is also a large amount of heterogeneity in the use of these two contractual arrangements across

the district offices of the FDOT. Figure 9 plots the varying level of intensity in the use of FP relative

to UP for the seven district offices across time. As a district office procures multiple projects at a time,

the intensity of FP use is measured by the share of all FP projects over the sum of FP and UP projects

procured during a year.
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Figure 9: Use of FP over UP at each FDOT’s district office

Two observations can be made from Figure 9. First, there is state dependency in the use of FP

over UP while exhibiting much variation across time, which could be a product of turnover in project

managers. Second, there is a common sharp increase in the use of FP over UP for the year following the

financial crisis in 2008. In February 2009, the American Recovery and Reinvestment Act was signed into

law. This stimulus package had an emphasis on infrastructure investment, which raised the number of

procurements significantly. If the FDOT is capacity constrained, then the FDOT may choose to procure

those additional projects via FP. UP could involve a higher transaction costs in order to estimate quantity

of each construction item, and keep track of materials used. Indeed, the FDOT engineer mentions that

the bulk of the administrative costs associated with UP comes from keeping track of materials used.
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10.2 Relevance of excluded variables

Table 13: Endogenous Switching Model: Relevance of Excluded Variables

Dependent Variable FP (=1 if FP, =0 if UP)
Specification (1) (2) (3)

log(backlogf ) .00994 .00936 .00920
(.0018) (.0020) (.0020)

log(backlogu) .00918 .0531 .0532
(.012) (.016) (.015)

District Office Backlog yes yes yes
Project Characteristics yes yes yes
District FE yes yes yes
Year FE no yes yes
Month FE no yes yes
Project Type FE no no yes

N 1864 1864 1864

Standard errors are clustered at the district-year-month level. Project characteristics include engineer’s estimate of project
cost, number of plan holders, project type fixed effects, month fixed effects, year fixed effects, and district fixed effects.
Project types are defined as a linear combination of tasks, which are extracted from the work description of bid tabs.
District office backlog is calculated as the total dollar value of projects uncompleted at the time of project letting.

10.3 Derivation of (18)

A bidder’s utility maximization problem in UP contract, who has a pseudo-cost cu, is given by:

max
su

[1−Gn(su,i|X)]n−1 u (su,i − cu,i|X) ,

where u(.) is CARA utility function.

The first order optimality condition gives:

u(su,i − cu,i|X)

u′(su,i − cu,i|X)
=

1−Gn(su,i|X)

(n− 1)gn(su,i|X)
.

Rewriting the left hand side of the above equation explicitly, we have:

u(su,i − cu,i|X)

u′(su,i − cu,i|X)
=

1

α(X)
(exp {α(su,i − cu,i)} − 1) .
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Rearranging the above first order condition, we have:

su,i −
1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
= cu,i.

Since we know that bi = θ(X) + ei−ι
α(X)Σ−1 and cu,i = θ0(X)e0,i + θ(X)ιT − 1

2α(X)(ei − ι)Σ−1(X)(ei − ι)T ,

we have:

su,i − θ(X)ιT − 1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
+
α(X)

2
(bi − θ(X))Σ(X)(bi − θ(X))T = θ0(X)e0,i.

Therefore, we have:

E

[
su,i − θ(X)ιT − 1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
+
α(X)

2
(bi − θ(X))Σ(X)(bi − θ(X))T |bi, X

]
= θ0(X).

10.4 Proof of (3)

We show that the unique equilibrium bidding strategies and cost overruns are multiplicatively separable

in project characteristics X given the econometric specification in (20). First, consider non-lump-sum

bidding strategy b1,i ≡ b1,i(θ1(X), σ(X), α(X), e1,i). We know that:

b1,i(θ1(X), σ(X), α(X), e1,i) = θ1(X) +
e1,i − 1

α(X)σ(X)

=

(
θ1 +

e1,i − 1

ασ

)
exp{Xβ}

= b01,i exp{Xβ},

where the second line follows directly from the normalization assumption (20). Thus, non-lump-sum

bidding strategy is multiplicatively separable in X.

Second, we show that scoring strategy is multiplicatively separable in X. To see this, let us first consider

the pseudo-cost cu,i ≡ θ0(X)e0,i + θ1(X)− 1
2α(X)σ(X)(e1,i − 1)2 and c0

u,i ≡ cu,i(0). We have:

cu,i =

(
θ0e0,i + θ1 −

(e1,i − 1)2

2ασ

)
exp{Xβ}

= c0
u,i exp{Xβ},
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and thus, pseudo-cost is multiplicatively separable inX. Now, conjecture that su,i ≡ su,i(θ0(X), θ1(X), σ(X), α(X), e0,i, e1,i) =

s0
u,i exp{Xβ} constitutes an equilibrium scoring strategy. Consider first order condition with respect to

score given by:

su,i −
1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
= cu,i

s0
u,i −

1

α
ln

(
1 + α

1−Gn(s0
u,i|X = 0)

(n− 1)gn(s0
u,i|X = 0)

)
exp{Xβ} = c0

u,i exp{Xβ}

s0
u,i −

1

α
ln

(
1 + α

1−Gn(s0
u,i|X = 0)

(n− 1)gn(s0
u,i|X = 0)

)
= c0

u,i

where the second line follows because Gn is homogeneous of degree 0 while gn is homogeneous of degree

-1. Therefore, su,i = s0
u,i exp{Xβ} constitutes an equilibrium scoring strategy if s0

u,i is the equilibrium

scoring strategy corresponding to pseudo-cost c0
u,i. Since we know that the equilibrium is unique, su,i =

s0
u,i exp{Xβ} is the unique equilibrium scoring strategy with X 6= 0.

Lastly, it is straightforward to see that ∆ = ∆0 exp{Xβ} from the cost overrun equation.

∆ = b1,1(e1,1 − 1 + ε)

= b01,1(e1,1 − 1 + ε) exp{Xβ}

= ∆0 exp{Xβ}

This completes the proof.
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