
Privacy, Transparency, and Policing

Shota Ichihashi∗

January 9, 2023

Abstract

Citizens face heterogeneous returns to crime, or their types, and decide whether to

commit a crime. Police acquire information about citizens’ types and search them to

deter and uncover crimes. If the police can covertly acquire information, the police

fail to deter any crime in equilibrium because their ability to identify criminals erodes

the deterrent effect of policing. If information acquisition is publicly observable, the

police will acquire partial information that prevents the police from identifying those

with high returns to crime. The result underscores the importance of transparency in

data collection by law enforcement agencies.
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1 Introduction

Law enforcement agencies are increasingly relying on data and algorithms to predict and

prevent crimes (Perry, 2013). They use a variety of data sources, such as criminal records,

social media posts, financial records, and local environmental information. Private vendors,

such as Palantir and PredPol, also offer predictive algorithms to police departments. This

trend has raised a number of concerns, which include concerns about privacy and trans-

parency: The use of data and algorithms by law enforcement can lead to data collection

and prediction at individual-level, and it is often unclear what kinds of data, algorithms,

and technologies are being used by law enforcement agencies (Hvistendahl, 2016; Robertson,

Khoo, and Song, 2020).

This paper investigates the relationship between privacy, transparency, and the effective-

ness of law enforcement. To do so, I study a model of endogenous information acquisition by

police. In the model, there are police and a unit mass of citizens. At the outset, the police

collect information about citizens’ private types that capture their heterogeneous returns to

crime. Formally, I model information acquisition as the choice of a signal, which reveals for

each citizen a signal realization whose distribution depends on the citizen’s type. The police

can acquire any information at zero cost: For example, the police may collect full information

or whether the type of each citizen exceeds some threshold. Given the information collected,

the police allocate search resources across citizens, and simultaneously, each citizen decides

whether to commit a crime. I assume that the police care about deterring and uncovering

crimes.

To examine the impact of transparency in data collection, I study two versions of the

game. One is the private regime, in which information acquired by the police is unobservable

to citizens. In this regime, the police can deviate and collect any information without being

observed by citizens. In equilibrium, each citizen anticipates only the distribution of signal

realizations given his type. The other is the public regime, in which information acquired by

the police is publicly observable. In this regime, every citizen knows what information (i.e.,

a posterior belief) the police have about him, both on and off the equilibrium paths.

First, I show that in any equilibrium of the private regime, the police fail to deter any
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crimes. Intuitively, when the police have limited search resources and can covertly acquire

information, they will identify and search citizens who are most likely to commit crimes.

Such a policing strategy turns out to maximize crime rate: Each citizen is not searched at

all and thus commits crime, or the citizen is searched but still commits a crime because the

returns to crime exceed the cost of being caught. As a result, the lack of transparency in

data collection erodes the deterrence role of policing.

In contrast, in the public regime, the police commit to collecting partial information that

minimizes a crime rate across all signals. This signal, which I call the crime-minimizing

signal, has the following “truth or noise” structure: If a citizen’s type (i.e., his returns to

crime) is below some cutoff, the realized signal coincides with his true type; otherwise, the

realized signal is a noise. For example, suppose that types are uniformly distributed on

the unit interval [0, 1], and consider the crime-minimizing signal with cutoff 0.5. For type

x ≤ 0.5, the signal draws realization s = x with probability 1. For any type x > 0.5, the

signal draws a realization uniformly randomly from [0, 0.5]. If the police observe realization

s for a given citizen, they believe that the citizen’s type is either equal to s or uniformly

distributed on [0.5, 1]. However, the police cannot distinguish the two events.

The crime-minimizing signal captures the dual role of information for policing: The signal

prevents the police from identifying individuals who face high returns to crime, so that the

police will not target search resources only to them. At the same time, the realized signals

differ in the lowest possible types, which enables the police to tailor search probabilities

to those who face low returns to crime. In the above example, the signal keeps the police

uninformed about whether types are above or below cutoff 0.5, i.e., the two cases are equally

likely conditional on any realized signal. However, the signal enables the police to tailor

search probabilities to types below 0.5.

The equilibrium in the public regime leads to the following comparative statics: If the

environment is prone to crime—e.g., if the police have a lower search capacity or citizens face

stochastically higher returns to crime—then the police collect less information. This result

counters the intuition that data-driven policing is especially valuable in an environment that

is prone to crime. Instead, in such a situation the police may need to restrict the use of

information.
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The equilibrium analysis of the private and public regimes lead to two main insights.

First, the lack of transparency in data collection can reduce the effectiveness of law enforce-

ment. This result holds even if the private regime does not involve excessive information

collection. In fact, the lack of transparency may result in a high crime rate in equilibrium

without affecting the police’s behavior: There are equilibria in both regimes where the police

behave the same way, but the crime rate is maximized in the private regime and minimized

in the public regime.

Second, the equilibrium signal in the public regime—or the crime-minimizing signal—is

an antithesis of predictive policing algorithms described in the public debate. This argument

rests on two informational properties. First, the crime-minimizing signal prevents the police

from identifying individuals whose returns to crime are above a cutoff. In contrast, predictive

policing is typically described as a way to identify individuals or places that are prone to crime

(Perry, 2013; Lau, 2020). Second, under the crime-minimizing signal, the realized signals are

fully informative about the types of “innocents” but uninformative about “criminals.” This

property appears to be the opposite of information contained in past crime data, which are

the primary inputs for predictive policing algorithms.

Finally, I extend the baseline model in two ways. First, I allow the police to increase

search capacity at cost. In this case, citizens are on average exposed to more policing but

also more likely to commit crimes in the private regime than the public regime. Second, I

show that the crime-minimizing signal renders policing “unfair,” i.e., if citizens in one group

tend to face lower incomes (i.e., higher net returns to crime) than citizens in the other group,

the lower-income group is exposed to higher average search intensities. The result implies

that the tension between fairness and effectiveness of policing generally exists once we focus

on the information structure that is most effective at deterring crimes.

Before proceeding, I clarify what this paper is not about: Even without the economic

forces described in this paper, the use of data and algorithms may result in undesirable

outcomes when the quality of data is bad, e.g., data suffer from econometric endogeneity

problem (Cowgill and Tucker, 2020; Ludwig and Mullainathan, 2021). In this paper, I

abstract away from this concern and focus on problems caused by the police’s strategic

incentives. In particular, the model abstracts away from an often criticized feature of data-
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driven policing—that if police use data that are generated by past policing decisions, they

may exacerbate existing bias in policing (Ensign et al., 2018).

Related work. First, the paper relates to the economic literature on crime and policing,

which starts from Becker (1968). My paper builds closely on Persico (2002), who studies

whether requiring the police to behave more fairly reduces crime. Although Persico (2002)

considers the impact of restricting the police’s behavior to be fair, we can also view his

paper as examining the impact of providing the police with a signal that has two signal

realizations (i.e., each citizen’s race). I highlight the transparency of data collection as a key

variable that affects the impact of the police’s ability to acquire information. The question

of what information about citizens should (not) be used for policing is often discussed in

the context of racial profiling (Knowles, Persico, and Todd, 2001; Persico and Todd, 2005;

Bjerk, 2007; Persico, 2009). Law enforcement agencies will likely be collecting data that

go beyond citizens’ coarse characteristics, which renders it important to consider rich in-

formation structures. To focus on the role of information in policing, the model abstracts

away from other important considerations, such as the design of judicial systems and richer

responses by potential criminals and victims (e.g., Curry and Klumpp 2009; Cotton and Li

2015; Vasquez 2022).

Second, the paper relates to the literature on Bayesian persuasion and information de-

sign (see Kamenica (2019) and Bergemann and Morris (2019) for surveys). Papers such as

Lazear (2006), Rabinovich, Jiang, Jain, and Xu (2015), and Hernández and Neeman (2022)

use Bayesian persuasion and related tools to study what information to provide to agents

who may take socially undesirable actions. In my paper the police disclose information to

themselves, i.e, they choose what information to acquire about agents. The information

design literature provides conditions under which an optimal signal takes a tractable form,

such as monotone partitional signals, censorship policies, and nested intervals (e.g., Guo and

Shmaya 2019; Dworczak and Martini 2019; Kolotilin, Mylovanov, and Zapechelnyuk 2022).

The equilibrium signal in the public regime does not belong to these classes of signals, and

to the best of my knowledge, the standard techniques to solve Bayesian persuasion do not

apply to my model. The paper also relates to the computer science and economic literature
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on algorithmic fairness. Jung, Kannan, Lee, Pai, Roth, and Vohra (2020) relate algorith-

mic fairness to policing, and Liang, Lu, and Mu (2022) study the general trade-off between

fairness and accuracy for the design of classification algorithms.

Finally, the paper contributes to the literature on the economic of privacy. The pri-

mary focus of the theoretical literature on privacy, reviewed by Acquisti, Brandimarte, and

Loewenstein (2015), has been the ability of sellers and platforms to use consumer informa-

tion for more profitable price discrimination, product matching, and service improvement.

My paper contributes to the growing study of privacy in non-market contexts, such as mass

surveillance (Tirole, 2021)

2 Model

This section sets up the model of policing with endogenous information acquisition. Citizens

face heterogeneous returns to crime, which are their private types. The game has two

stages. In the data collection stage, the police collect information about citizens’ types. In

the policing stage, the police allocate a finite search capacity, and simultaneously, citizens

decide whether to commit a crime. We compare two versions of the game that differ in

whether citizens observe what the police learn about their types.

2.1 Setup

There are police and a unit mass of citizens. Each citizen is privately informed of his returns

to crime, or type, x ∈ [0, 1]. Types are distributed across the population according to a

distribution function F0, which has a positive density f0 and is known to the police.

The game consists of the data collection stage and the policing stage. In the data collection

stage, the police acquire information about citizens’ types, which we model as the choice of

a signal. A signal (S, π) is a pair of the set S of signal realizations and the collection

π = {π(·|x)}x∈[0,1] of conditional probability distributions on S for each possible type. For

simplicity we write a signal as π. If the police choose signal π, then for each citizen who

has type x, the police observe a signal realization s ∈ S drawn according to distribution

π(·|x) ∈ ∆(S). Conditional on types, signal realizations are independent across citizens.
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The police can choose any signal at no cost. For example, the police can choose the

fully informative signal, which assigns signal realization s = x to a citizen if only if his

type is x. The police will then perfectly learn the type of every citizen from his signal

realization. Alternatively, the police may acquire a signal that draws signal realization s0

or s1 if x ≤ x∗ or x > x∗, respectively. The police will then learn whether the type of

each citizen exceeds threshold x∗. The police could also choose to acquire no information by

selecting an uninformative signal such that π(·|x) is independent of x.

At the end of the data collection stage, the types and signal realizations are jointly

distributed across the population. Specifically, the mass of citizens whose types are in

X ⊂ [0, 1] and signal realizations are in S ′ is deterministic and equal to
∫
X′ π(S

′|x)F0(dx).

We study two versions of the game that differ in what citizens observe in the data

collection stage: In the public regime, every citizen observes the signal chosen by the police

and the signal realization assigned to him. In the private regime, the citizens observe neither

the signal nor signal realizations. The two regimes differ in whether the citizens observe

what the police learn about citizens. We compare the equilibria of the two regimes to study

the impact of transparency regarding data collection.

Both in the private and the public regimes, the data collection stage is followed by

the policing stage. In the policing stage, citizens decide whether to commit a crime, and

simultaneously, the police allocate search resources. Specifically, the police choose a search

strategy σ : S → [0, 1], where the police search citizens with signal realization s ∈ S with

probability σ(s). The police has a measure P ∈ (0, 1) of searches to allocate; thus the police

can choose a search strategy σ if and only if

∫ 1

0

∫
S

σ(s)π(ds|x)F0(dx) ≤ P . (1)

Without observing the police’s search strategy, each citizen decides whether to commit a

crime.

A citizen’s payoff of committing a crime is x−σL, where x is the citizen’s type, σ ∈ [0, 1]

is the probability with which the police search the citizen, and L > 1 is an exogenous

cost of being caught. We normalize a citizen’s payoff of not committing a crime to zero
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by interpreting type x as including the opportunity cost of crime such as legal earning

opportunities. Because x ∈ [0, 1] and L > 1, any citizen will commit a crime for a sufficiently

low search probability σ and will not commit a crime for a sufficiently high σ.

To define the police’s payoffs, we introduce several notations. First, abusing notation, let

π(·|s) ∈ ∆([0, 1]) denote the posterior distribution of types conditional on signal realization

s drawn according to signal π given prior F0. Take any strategy profile, and let c(x, s) denote

the probability with which a citizen with type x and signal realization s commits a crime.

The mass of citizens who commit crimes, which we call the crime rate, is defined as

r ≜
∫ 1

0

(∫
S

c(x, s)π(ds|x)F0(dx)

)
.

We later use the crime rate for signal realization s, which is

r(s) ≜
∫ 1

0

c(x, s)π(dx|s).

The mass of citizens who commit a crime and are searched by the police, which we call the

mass of successful searches, is defined as

a ≜
∫ 1

0

∫
S

c(x, s)σ(s)π(ds|x)F0(dx).

With these notations, the police’s payoff is written as λr− a for some λ ∈ (0, 1). This speci-

fication implies that the police care about reducing and uncovering crimes. The assumption

λ < 1 implies that the police prioritize reducing crimes, which excludes, for example, the

preferences such that the police prefer a high crime rate because there are more crimes to

uncover.

The timing of the game is summarized as follows. First, the police choose a signal, then

nature draws the types of citizens and signal realizations. Citizens privately observe their

types, and the police observe the signal realization of each citizen. In the public regime,

each citizen also observes the chosen signal and his signal realization. Then the police

choose a search strategy and citizens decide whether to commit a crime. Finally, the payoffs

are realized. The solution concept is perfect Bayesian equilibrium, which we refer to as
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equilibrium. Finally, we focus on primitives that satisfy the following:

Assumption 1. The primitives satisfy P <
EF0

[x]

L
.

The assumption is necessary and sufficient for the public and private regimes to have

different equilibrium outcomes.1 The assumption is more likely to hold if the search capacity

P and the cost L of being caught is lower, and the average returns EF0 [x] to crime is higher.

Section 4.1 shows that the main insights continue to hold without Assumption 1 if the police

can endogenously choose search capacity P .

2.2 Interpretation as Location-Based Predictive Policing

According to Lau (2020), place-based predictive policing aims to identify places that have a

high risk of crime. While I describe the model as a model of data collection on individuals,

we can also interpret the model in the following way. There is a unit mass of locations.

Each location ℓ ∈ [0, 1] is associated with a location-specific return to crime, xℓ, which is

distributed according to F0. There are homogeneous citizens, and the crime opportunity at

each location is discovered by exactly one citizen, who decides whether to commit a crime

at that location. The police learn information about (xℓ)ℓ∈[0,1] and decides the probability

to search each location. Given this interpretation, the model also captures place-based

predictive policing.

3 Equilibrium

If the police do not have additional information beyond prior type distribution F0, they

will randomly search citizens with probability P . A citizen will then commit a crime if his

type x exceeds the expected cost of being caught, PL. Thus the equilibrium crime rate is

1 − F0(PL). Compared to this no information benchmark, the police’s data collection can

increase or decrease crime depending on its transparency.

1If P ≥ EF0
[x]

L then both regimes have an equilibrium in which the police search type x with probability
x
L , and no citizen commits a crime.
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3.1 The Private Regime

The following result shows that the police that can privately collect any information about

citizens will fail to deter any crime.

Theorem 1. In the private regime, in any equilibrium, almost all citizens commit a crime.

Proof. Take any equilibrium. A citizen with type x is indifferent between committing a

crime and not if he is searched with probability σ(x) ≜ x
L
. Thus to attain crime rate 0, the

police need a search capacity of at least P̂ ≜
EF0

[x]

L
. However, Assumption 1 implies that

the police’s search capacity is less than P̂ . As a result, there is a positive mass of types,

denoted by X∗, who commit a crime with probability 1. Also, let Y ∗ be the set of types who

commit a crime with probability strictly less than 1. The police can profitably deviate by

learning the type of every citizen, then shift search probabilities from types in Y ∗ to types

in X∗. The deviation does not change the crime rate because the citizens do not observe

it. At the same time, the deviation enables the police to catch more criminals and increases

their payoffs. Therefore Y ∗ has measure zero, i.e., almost all citizens commit a crime.

Proposition 1 states that the police’s ability to covertly gather information about citizens

will eliminate the deterrent effect of policing: In order for policing to deter a citizen from

committing a crime, the police must search the citizen with a positive probability even if

the citizen does not commit a crime in equilibrium. However, the police have limited search

resources and care about catching criminals. Moreover, in the private regime the police can

secretly identify criminals without affecting the citizens’ behavior. In this situation, instead

of searching citizens who are unlikely to commit a crime, the police prefer to identify and

search citizens who commit a crime. However, if citizens are not searched, they will also

commit a crime. This leads to an equilibrium in which everyone commits a crime.

Proposition 1 states that the equilibrium crime rate is always 1. However, the equilibrium

is not necessarily unique. In particular, the police may not acquire full information in

equilibrium. To illustrate this point, I first present a necessary and sufficient condition for

the police’s choice to be part of an equilibrium. To state the result, let suppπ(·|s) ⊆ [0, 1]

denote the support of posterior distribution π(·|s) conditional on signal realization s. Then

9



inf suppπ(·|s) ∈ [0, 1] denotes the infimum of the support, i.e., the lowest type that can have

signal realization s.

Lemma 1. A pair of signal π and search strategy σ is a part of some equilibrium if and only

if the pair satisfies the police’s resource constraint (1) with equality and σ(s) ≤ inf suppπ(·|s)
L

for almost all s ∈ S.

Proof. To show the “if” direction, take any pair (π, σ) that satisfies the two conditions. We

have σ(s) ≤ inf suppπ(·|s)
L

. Thus for almost all s ∈ S, for any type x ∈ suppπ(·|s), we have

x − Lσ(s) ≥ 0, i.e., it is optimal for almost all citizens to commit a crime. The police are

then indifferent between any search strategies that satisfy the resource constraint (1) with

equality. As a result, (π, σ) is part of an equilibrium. Conversely, take any (π, σ). If the

police’s resource constraint (1) holds with strict inequality in equilibrium, the police can

profitably deviate by searching more citizens who commit a crime with probability 1. If we

have σ(s) > inf suppπ(·|s)
L

for a positive mass of s, then a positive mass of citizens will prefer

not to commit a crime, which contradicts Proposition 1.

Lemma 1 implies that any strategy of the police that exhausts the search capacity and

leads all citizens to commit a crime can be a part of an equilibrium. This condition does not

place many restrictions on the equilibrium signals: In some equilibria, the police may collect

full information, while in others they may collect less information such as a signal with two

signal realizations.

Corollary 1. In the private regime, there is no equilibrium in which the police collect no

information, and there is an equilibrium in which the police collect full information. If

P < 1
L
max
x∈[0,1]

x[1 − F0(x)], there is an equilibrium in which the police learn whether citizens’

types exceed cutoff x∗ that satisfies P = 1
L
x∗[1− F0(x

∗)].

Proof. To show the first part, suppose to the contrary that the police choose an uninformative

signal. Then for any possible signal realization, we have inf suppπ(·|s)
L

= 0. Lemma 1 then

implies that σ(s) = 0 for all s, which contradicts the resource constraint holding with

equality.

10



To show the second part, consider a fully informative signal that sends signal realization

s = x for each type x ∈ [0, 1]. Let xF satisfy P =

∫ 1
xF

xF0(dx)

L
, and consider search strategy

such that σ(x) = 1 if x ≥ xF and σ(x) = 0 if x < xF . The police’s strategy satisfies the

condition in Lemma 1 and thus can be part of an equilibrium.

Finally, suppose that P < 1
L
max
x∈[0,1]

x[1 − F0(x)]. Define R(x) = x
L
[1 − F0(x)]. Because

R(0) = R(1) = 0 < P , there is some type x∗ such that P = 1
L
x∗[1−F0(x

∗)], i.e., the police’s

resource constraint holds with equality if they search every type x ≥ x∗ with probability x∗

L
.

The police’s search strategy and the signal that reveals whether citizens’ types exceed x∗

satisfy the condition in Lemma 1 and thus can be part of an equilibrium.

Theorem 1 relies on the assumption that the police can potentially collect full informa-

tion about citizens’ types. Corollary 1 suggests, however, that the undesirable equilibrium

outcome in the private regime does not necessarily manifest as intensive data collection on

the equilibrium path. Indeed, we will later show that the private regime may not distort

data collection at all, in that the private and public regimes have equilibria in which the

police behave the same way on the equilibrium path.

3.2 The Public Regime

We have shown that the lack of transparency regarding data collection—or equivalently, the

police’s inability to commit to not collect certain information—leads to an extreme outcome

where every citizen commits a crime. We now turn to the public regime, in which the police

can publicly commit to an information policy upfront. We first define a class of signals that

contains an equilibrium signal.

Definition 1. For any z ∈ (0, 1), define signal (Sz, πz) as follows: The set of signal realiza-

tions is Sz = [0, z]. If a citizen’s type is x ≤ z, πz(·|x) draws signal realization s = x with

probability 1. If x > z, πz(·|x) draws signal realization s ∈ [0, z] according to conditional

distribution F0(·|x ≤ z).

Any signal πz has a “truth or noise” structure: If the signal realization comes from types

below z, it coincides with the true type. If the signal realization comes from types above
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z, it is a noise. The police cannot differentiate between these two events, so signal πz is

neither fully informative nor uninformative. Signal πz is similar to the “truth or noise”

signals described in Lewis and Sappington (1994), but here the distinction between truth

and noise depends on one’s type. Signal πz is also different from an upper-censorship signal,

which pools the types above a cutoff and reveals the types below the cutoff (Kolotilin et al.,

2022).

To gain some intuition, consider the distribution of types conditional on each signal

realization drawn from signal πz. Figure 1 depicts two such conditional distributions, Gs

and Gs′ , which correspond to signal realizations s and s′. The conditional distributions

have two features: First, they contain the same mass 1 − F0(z) of citizens whose types are

distributed according to F0(·|x > z). Second, the conditional distributions differ in the

remaining mass F0(z) of citizens, who have the identical type, i.e., distribution Gs induced

by signal realization s contains point mass F0(z) of type s. As a result, each conditional

distribution has a non-convex support and has neither a density nor a probability mass

function. Distributions {Gs}s∈[0,z] themselves are distributed according to F0(·|x ≤ z), which

ensures that they average to the prior type distribution, F0.

Prior F0

0 z 1
type x

Gs

x = s

mass F0(z)
x ∼ F0(·|x > z)

Gs′
x = s′

Figure 1: Distributions of types conditional on signal realizations s and s′ under signal πz.

The following result states that in the public regime, the police choose signal πz with a

suitably chosen cutoff z. This signal minimizes a crime rate across all signals, and moreover,

the equilibrium outcome is unique (see Appendix A for the proof).

Theorem 2. The public regime has an equilibrium in which the police choose signal πz∗,
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where z∗ ∈ (0, 1) solves

P =
EF0 [x|x ≤ z∗]

L
. (2)

In the equilibrium, a citizen commits a crime if and only if x > z∗, and the crime rate is

1 − F0(z
∗). No signal attains a strictly lower crime rate than 1 − F0(z

∗). Moreover, the

equilibrium outcome is unique: Any two equilibria have the same set of types committing a

crime and the same search strategy, except with respect to a measure zero set of types.

I describe how the equilibrium in the theorem looks like, then provide intuitions for why

signal πz∗ minimizes a crime rate and why police choose such a signal in equilibrium. In

an equilibrium of the public regime, the police choose signal πz∗ , which has the space of

realizations [0, z∗]. Consider the set of citizens with signal realization x ∈ [0, z∗]. Recall that

in this set, mass F0(z
∗) of citizens have type x, and mass 1 − F0(z

∗) of citizens have types

above x (see Figure 1). The police search any citizen with signal realization x with probability

σ∗(x) ≜ x
L
, which makes it optimal for type x to not commit a crime and types above x

to commit a crime. As a result, the crime rate for every signal realization is 1 − F0(z
∗).

The police’s search strategy {σ∗(x)}x∈[0,1] is optimal, because every signal realization has

the same crime rate, and equation (2) ensures that the search strategy satisfies the capacity

constraint with equality.

Theorem 2 states that signal πz∗ also minimizes the crime rate across all signals. Signal

πz∗ effectively deters crime by preventing the police from identifying high types, who commit

a crime in equilibrium, while still allowing the police to learn about low types, who choose

not to commit a crime. Intuitively, to attain a low crime rate the police should deter crimes

by low types, who would choose not to commit a crime at a low search probability. However,

if the police knew that low types do not commit a crime whereas other higher types do,

then the police would instead allocate search efforts to high types, which prevents the police

from deterring a crime by low types. In order to incentivize the police to search low types,

signal πz∗ pools low types, who respond to policing, with high types (i.e., types above z∗),

who will commit a crime in equilibrium. At the same time, signal realizations drawn from

πz∗ differ in the values of the lowest possible types. In equilibrium, the police search citizens

with signal realization x with a probability that just deters type x from committing crime.
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Overall, signal πz∗ renders policing more effective by garbling information to maintain its

deterrence effect while providing information that guides the allocation of search resources.

In our model, the police care not only about deterring crimes but also uncovering them.

Thus we cannot immediately conclude that the police choose the crime-minimizing signal

πz∗ in equilibrium. For example, there might be a signal that leads to a slightly higher crime

rate than signal πz∗ but enables the police to catch many criminals. However, the police

indeed choose signal πz∗ in equilibrium. This result relies on the observation—which slightly

extends a condition provided in Persico (2002)—that in any equilibrium of the policing

subgame that follows any signal, the crime rate for every signal realization is equalized (see

Lemma 2 in Appendix A).2 Thus if some signal π leads to crime rate r(π), then the crime

rate for every signal realization is r(π), which implies that the mass of successful searches

is rP . Consequently, the police’s payoff becomes λr(π)P − r(π) = −(1 − λP )r(π), which

implies that the police choose a signal that minimizes crime rate r(π), e.g., signal πz∗ .

The above argument has a caveat: Given a signal, there may be multiple equilibria in the

policing stage that differ in crime rates, and depending on which equilibrium is played, the

police may choose a different signal. This concern is relevant to the crime-minimizing signal,

because there are indeed multiple equilibria: For any p ∈ [0, 1], the policing stage that follows

signal πz∗ has an equilibrium in which all types below z∗ commits a crime with probability

p and all types above z∗ commits a crime with probability 1.3 To show the uniqueness of

the equilibrium outcome, in the proof, I construct a signal such that the subsequent policing

stage has a unique equilibrium and the crime rate is arbitrarily close to the minimum crime

rate, 1−F0(z
∗). Therefore the equilibrium outcomes, such as the set of citizens who commit

a crime, will be unique.

Given the analysis so far, we may think that the private regime leads to a high crime rate

by changing what information the police acquire and how they allocate search resources.

This intuition is not precise, because the private regime has an equilibrium in which the

2The police care about catching criminals and will not search a citizen whose signal realization indicates
a lower likelihood of crime. However, if the police do not search some citizens, they will commit a crime
with probability 1. Thus in equilibrium all signal realizations have the same crime rate.

3In this equilibrium, the police still search citizens with signal realization s with probability s
L , so that any

citizen with type x ≤ z∗ randomizes between committing and not committing a crime because of indifference.
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police behave the same way as in the public regime: Lemma 1 and Definition 2 imply that

in the private regime, there is an equilibrium in which the police choose signal πz∗ and

search any citizen who has realization s ∈ [0, z∗] with probability s
L
, which coincides with

the police’s behavior in the public regime. At the same time, by Theorem 1 and Theorem

2, all citizens commit crimes in the private regime, but only types above z∗ commit crimes

in the public regime. The following result summarizes these observations:

Corollary 2 (Crime-Minimizing Signal in the Private Regime). The private regime

has an equilibrium in which the police choose the same signal (i.e., signal πz∗) and adopt the

same search strategy as in the public regime.

The result implies that the undesirable impact of the lack of transparency in data collec-

tion may not manifest in the police’s strategy but only in the citizens’ behavior.

3.3 Comparative Statics in the Public Regime

Theorem 2 enables us to examine how the equilibrium signal and crime rate respond to

a change in parameters. First, consider a change in search capacity P or cost L of being

caught. According to equation (2), if PL increases, then cutoff z∗, above which citizens

commit a crime in the public regime, decreases. The decrease in z∗ expands the set of types

that commit a crime, leading to a higher crime rate. Moreover, the decrease in z∗ leads to

a less informative signal in equilibrium. Indeed, Definition 2 implies that if z > z, signal πz

is more informative than signal πz in the sense of Blackwell (1951, 1953): We can replicate

signal πz by garbling signal πz so that whenever the signal realization drawn from signal

πz belongs to (z, z], we redraw signal s ∈ [0, z] randomly from distribution F0(·|x ≤ z).

Thus the police will collect less information and more people commit a crime if the police’s

resource P is limited or the cost L of being caught is smaller, or more generally, if PL is

smaller.

Corollary 3 (Comparative statics regarding (P ,L)). Consider the equilibrium in The-

orem 2. A higher PL leads to a higher crime rate and a less informative signal in the sense

of Blackwell (1951, 1953).
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Corollary 3 contrasts with the intuition that the police benefit from information especially

when they face limited search resources—e.g., a police chief quoted in Pearsall (2010) says

that a predictive policing algorithm “is the perfect tool to help departments become more

efficient as budgets continue to be reduced.” On the contrary, the corollary states that if the

police have limited resources, they may need to commit to using less information. Intuitively,

if the police have a low search capacity, more people will commit crimes. The increase in

the crime rate will exacerbate the distortion described in Proposition 1 by incentivizing

the police to catch criminals rather than deterring crimes. To mitigate this distortion, the

crime-minimizing signal reveals less information to the police and makes it harder for them

to identify citizens who commit crimes.

We now turn to comparative statics regarding the prior distribution of returns to crime,

F0. In the benchmark of no information, the police can only search citizens randomly with

probability P , so the expected cost of committing a crime is PL. The equilibrium crime

rate is thus 1 − F0(PL). As a result, a greater F0 in the sense of the first-order stochastic

dominance leads to a higher crime rate in equilibrium.

A similar comparative statics no longer holds when the police can endogenously acquire

information—i.e., for some parameters, the first-order stochastic increase in the distribution

of returns to crime can decrease a crime rate. Figure 2 presents such an example. Type

distribution G0 first-order stochastically dominates F0, so the equilibrium crime rate under

no information is higher under G0. At the same time, conditional distribution F0(·|x ≤ z)

dominates G0(·|x ≤ z) for any z ≤ 0.5, and thus we have EF0 [x|x ≤ z] > EG0 [x|x ≤ z] for

every z ∈ (0.25, 0.5].4 If PL is between EF0 [x|x ≤ 0.25] and EF0 [x|x ≤ 0.5], cutoff z∗ that

solves equation (2) is lower under F0 than G0. As a result, the equilibrium crime rate is

lower under G0 than F0.

4For any z ∈ (0.25, 0.5], G0(·|x ≤ z) is the uniform distribution on [0, z]. Distribution F0(·|x ≤ z) is
uniform on each of the intervals [0, 0.25] and [0.25, z] and has a higher density on interval [0.25, z]. Thus
conditional on x ≤ z, F0 dominates G0 in the first-order stochastic sense.
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Figure 2: Reversal of the first-order stochastic dominance under truncation: Cumulative
distribution function G0 dominates F0, but for any z ≤ 0.5, F0(·|x ≤ z) dominates G0(·|x ≤
z).

Comparative statics based on the usual stochastic dominance fails because it can be

reversed conditional on realized signals. A stronger condition, such as the likelihood ratio

order, preserves the first-order stochastic dominance conditional on any event, so that we

can establish a comparative statics with respect to the type distribution.5 The following

result summarizes the discussion:

Corollary 4 (Comparative statics regarding F0). Consider the equilibrium in Theorem

2. The following hold:

1. A greater F0 in the sense of the likelihood ratio order results in a higher crime rate and

a less informative signal.

2. There exist parameters, P ,L, F0, and G0, such that G0 first-order stochastically domi-

nates F0, but the equilibrium crime rate in the public regime is lower under F0.

5If G0 dominates F0 in the likelihood ratio order—that is, if g0/f0 is increasing—then G0(·|x ≤ z) first-
order stochastically dominates F0(·|x ≤ z) for any z ∈ [0, 1]. Because we only consider truncations from G0

and F0 from above as opposed to general conditional distributions, a weaker ordering, such as the reverse
hazard rate order, suffices for Corollary 4. See Shaked and Shanthikumar (2007) for the relation between
these stochastic orderings.
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3.4 The Crime-Minimizing Signal vs. Predictive Policing

In this section, I highlight two informational properties of the crime-minimizing signal and

argue that it is an antithesis of predictive policing. First, the crime-minimizing signal pre-

vents the police from identifying citizens who face high returns to crime: Any realized signal

pools types above and below z∗, so that their relative fraction remains the same. This

property seems to contrast with predictive policing, which is typically described as a way to

identify individuals or places that are prone to crime (Perry, 2013; Lau, 2020). Indeed, some

equilibria in the private regime capture this property. For example, the private regime has

an equilibrium in which the police learn whether the types of citizens are above some cutoff

or an equilibrium in which the police fully learn types above some cutoff and nothing below

the cutoff.

Second, under the crime-minimizing signal, the signal realizations are fully informative

about “innocents,” who face low returns to crimes and do not commit crimes in equilibrium.

In contrast, the realized signals are uninformative about “criminals,” who face high returns

to crime and commit crimes in equilibrium. To see this, suppose that the police learn that a

citizen does not commit a crime in equilibrium. Conditional on this information, his realized

signal reveals the exact type of the citizen, because each realized signal has a unique type

that does not commit a crime. In contrast, suppose that the police learns that a given citizen

committed a crime. Conditional on this information, his realized signal reveals no additional

information, because the distribution of signal realizations are independent of types among

criminals. This property is unlikely to arise from past crime data so long as the data contain

more information about those with high returns to crimes.

Overall, even though the crime-minimizing signal might be “too complicated” to im-

plement in practice, the result shows that the kind of predictive policing programs de-

scribed in the public debate may lack desirable informational properties capture by the

crime-minimizing signal.
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4 Extensions

4.1 Endogenous Search Capacity

In this extension, the police can increase their search capacity at a cost. This extension results

in two main differences. First, we no longer need exogenous restrictions on parameters, such

as Assumption 1. Second, the extension highlights that the lack of transparency in data

collection renders policing more intensive.

To accommodate endogenous search capacity, we modify the game as follows: The police

choose a search capacity P at cost C(P ), which is strictly increasing, strictly convex, smooth,

and satisfies C(0) = 0. In the policing stage, the police choose a search capacity and a search

strategy at once, and simultaneously, citizens choose whether to commit a crime. The police’s

payoff is their original payoff minus cost, i.e., λr − a− C(P ).

Proposition 1. Suppose that the police can increase search capacity P at cost. Then the

public and private regimes have equilibria that satisfy the following.

1. In the public regime, the police choose signal πz for some z ∈ (0, 1).

2. In the private regime, there is an equilibrium in which the police choose a higher search

capacity and more citizens commit crimes than in the public regime.

The result follows from the supply and demand interpretation of the model, where we

interpret search capacity P as quantity and crime rate r as price (see Figure 3). First, we

consider the “supply” side. The same argument as Lemma 5 implies that in any equilibrium,

the crime rate is equalized across all realized signals. Thus if the equilibrium crime rate is

r, the police must be choosing search capacity P to maximize λrP −C(P ), which gives the

first-order condition λr = C ′(P ). Let rS(P ) ≜ 1
λ
C ′(P ) denote the inverse supply curve,

which is increasing because C(·) is convex.

For the “demand” side, if the equilibrium search capacity is P , the crime rate rD(P )

is determined as the equilibrium crime rate of the original model with exogenous search

19



capacity P .6 Note that rD(P ) implicitly depends on the chosen signal.

r

P
O

rS(P ) = 1
λ
C ′(P )

full information
rD(P )minimized

crime rate rD(P )

public regime

private regime

Figure 3: Equilibria with endogenous search capacity.

Any crossing point of the inverse supply curve rS(P ) and the inverse demand curve rD(P )

is an equilibrium of the game with endogenous P , provided that the police has no incentive

to deviate from the signal that generates rD(P ) in the data collection stage. To find the

equilibrium of the public regime in Proposition 1, we define rD(P ) as the minimized crime

rate of the original public regime with search capacity P . For any P , crime rate rD(P ) is

generated by signal πz for some z in Definition 2. Because rD(P ) is strictly decreasing and

hits 0 at P =
EF0

[x]

L
whereas rS(P ) is strictly increasing, the unique crossing point (P

∗
, r∗)

satisfies r∗ > 0 and P
∗
<

EF0
[x]

L
. The corresponding signal is signal πF−1

0 (1−r∗). The police

have no incentive to deviate from signal πF−1
0 (1−r∗) in the data collection stage, because any

deviation shifts the inverse demand curve upwards, which leads to a higher crime rate and

a lower payoff.

For the private regime, we define rD(P ) as the crime rate(s) in equilibrium of the policing

stage when the police have full information and search capacity P . Specifically, rD(P ) equals

1 if P <
EF0

[x]

L
, can take any value in [0, 1] if P =

EF0
[x]

L
, and equals 0 if P >

EF0
[x]

L
. The

crossing point of the inverse supply and demand curve again gives an equilibrium. In this

6At search capacity P =
EF0

[x]

L , the private regime has a continuum of equilibria because for any given
p ∈ [0, 1], there is an equilibrium in which the police collect full information and search type x with probability
x
L , and every citizen commits a crime with probability p. As a result, rD

(
EF0

[x]

L

)
= [0, 1].
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case, the police have no incentive to deviate in the data collection stage because collecting

less than full information only reduces the police’s payoffs in the policing stage without

affecting citizens’ behavior.

Overall, as we move from the public regime to the private regime, the inverse demand

curve shifts upwards whereas the inverse supply curve remain the same. Consequently, the

equilibrium in the private regime has a higher crime rate and a higher search capacity than

in the public regime.

4.2 Implication on the Fairness of Policing

Theorem 2 implies that the police that can commit to an information policy upfront can deter

crime more effectively by collecting partial information. However, the resulting equilibrium

is “unfair” in the sense that the equilibrium search strategy exposes different groups to

different search intensities. To illustrate the idea, we introduce the group identity of each

citizen into the model Each citizen is now endowed with his group identity that takes values

r or b. For each group g ∈ {r, b}, let pg ∈ (0, 1) denote the fraction of the overall population

that belongs to group g, and let Fg denote the type distribution across the citizens in group

g, so that we have pbFb + prFr = F0. Distribution function Fg has a positive density, fg.

Throughout this section, we assume the following:

Assumption 2. Distribution Fr is greater than Fb in the likelihood ratio order.

If distribution Fr is greater than Fb in the likelihood ratio order, then Fr first-order

stochastically dominates Fb. We need a condition stronger than the first-order stochastic

dominance because we will compare the conditional distributions of Fr and Fb in terms of the

first-order stochastic dominance. Interpreting type x as a fixed return to crime minus one’s

legal earning opportunity, the first part of the assumption implies that group r’s income

distribution is stochastically lower than group b, so that group r tends to face higher net

returns to crime.

Because the group identity does not affect payoffs, the public regime continues to have

an equilibrium described in Theorem 2. In this equilibrium, type x ≤ z∗ will receive signal

realization x and be searched with probability x
L
. Any type x > z∗ will receive signal
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realization that is randomly drawn from F0(·|x ≤ z∗). Consequently, the expected search

probability for type x > z∗ is P . Overall, the expected search probability σ∗(x) for type

x is non-monotone in types: Compared to no information, where everyone is searched with

probability P , types below PL will be searched with a lower probability; types in [PL, z∗] will

be searched with a higher probability; and types above z∗ faces the same search probability.

Even though the police do not learn group identity, it is correlated with types. As a result,

the two groups will be searched with different probabilities on average:

Proposition 2. In the equilibrium of the public regime described in Theorem 2, the following

holds.

1. Group r is exposed to more policing than group b on average:

∫ 1

0

σ∗(x)Fr(dx) ≥
∫ 1

0

σ∗(x)Fb(dx). (3)

2. Across the citizens who do not commit crime, group r is exposed to more policing than

group b on average:

∫ 1

0

σ∗(x)Fr(dx|x ≤ z∗) ≥
∫ 1

0

σ∗(x)Fb(dx|x ≤ z∗).

Part 1 uses the notion of fairness in Persico (2002), and Part 2 uses the notion of “fairness

in the treatment of innocents” in Durlauf (2006).7 Persico (2002) finds that an equilibrium

crime rate may be lower when the police is required to search all citizens with equal prob-

ability than when the police bases search probabilities on group identity. In other words,

there may be no trade-off between fairness and effectiveness of policing. Proposition 2 states

that once we consider the set of all information structures, the trade-off generally exists, in

the sense that the information structure that minimizes the equilibrium crime rate is unfair.

7The counterpart of Part 2 for “criminals” does not hold: The equilibrium is “fair among criminals”
because any citizen who commits a crime faces search probability P .
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5 Conclusion

This paper studies a model in which police collect information about citizens in order to deter

and uncover crimes. The paper highlights the importance of transparency in data collection:

Opaque data collection leads to more crime and possibly more intensive policing. The police

benefit from committing to not collect certain information. The resulting information policy,

which prevents the police from identifying individuals and places that are prone to crime,

starkly contrasts with predictive policing discussed in the public debate.
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Appendix

A Proof of Theorem 2: Equilibrium in the Public Regime

We begin with a series of lemmata. The following lemma generalizes an equilibrium condition

in Persico (2002).

Lemma 2. Take any signal. In any equilibrium of the subsequent policing stage, almost all

signal realizations have the same crime rate.

Proof. Suppose to the contrary that for some signal and some equilibrium in the policing

stage, there are sets of signal realizations, SH , SL ⊂ S, such that they can arise with positive

probabilities and r(s) > r(s′) for all s ∈ SH and s′ ∈ SL. If the police search a citizen with

probability σ ∈ [0, 1], the net benefit of committing a crime is x − σL with L ≥ 1. Thus if

σ = 1, no citizen commits a crime for any type x. If σ = 0, all citizens with x < 1 commit

crime. Crime rates in SH being positive implies that the average search probability across

the realizations in SH is strictly less than 1. Crime rates in SL being less than 1 implies

that the average search probability across the realizations in SL is positive. Thus the police

can profitably deviate by allocating search probabilities from signal realizations in SL to

realizations in SH , which is a contradiction. As a result, almost all signal realizations must

have the same crime rate.

Lemma 2 implies that for any signal, if the equilibrium crime rate is r, every signal

realization has crime rate r. The mass of successful searches will then be rP and the police’s

payoff will be λrP − r = −(1− λP )r.
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Lemma 3. Take any signal and any equilibrium of the corresponding policing stage. If the

crime rate is r, the mass of successful searches is rP and the police’s payoff is −(1− λP )r.

Because 1− λP > 0, the police’s payoff is decreasing in the crime rate. The lemma then

implies that in the data collection stage, the police choose a signal that minimizes the crime

rate. To formalize the idea, we define the crime-minimizing signal. Let R(π) denote the set

of all possible equilibrium crime rates in the policing stage that follows signal π.

Definition 2. Signal π is a crime-minimizing signal if minR(π) exists and for any signal π′

and crime rate r′ ∈ R(π′), we have minR(π) ≤ r′.

Lemma 4. In some equilibrium of the public regime, the police choose a crime-minimizing

signal whenever it exists.

Proof. Construct a strategy profile as follows: If the police choose a crime-minimizing signal

π, the equilibrium with crime rate minR(π) is played. If the police choose any other signal, an

arbitrary equilibrium of the subgame is played. Lemma 3 implies that this is an equilibrium

strategy profile.

To prove that signal πz∗ is a crime-minimizing signal, we show the following:

Lemma 5. If a signal attains crime rate r ∈ [0, 1], we have

P ≥ EF0 [x|x ≤ F−1
0 (1− r)]

L
. (4)

Proof. Throughout the proof, we fix a signal and an equilibrium in the policing stage. We

define probability measure µnc as follows: For each measurable set A ⊂ [0, 1]×S, let µnc(A)

be the fraction of citizens whose type x and signal realization s belong to A, among the mass

1− r of all citizens who do not commit a crime in the equilibrium. In particular, µnc(X×S)

is the fraction of citizens whose types are in X ⊂ [0, 1] among all citizens who do not commit

a crime. Let Gs denote the posterior distribution on types conditional on realization s. Let

σ(x, s) denote the equilibrium search probability for type x ∈ suppGs.
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A citizen with type x ∈ suppGs does not commit a crime only if x ≤ Lσ(x, s). We then

have

x ≤ Lσ(x, s)

⇒

∫
[0,1]×S

xdµnc

L
≤

∫
[0,1]×S

σ(x, s)dµnc. (5)

The search intensity allocated to citizens who do not commit a crime is

P
nc

≜ (1− r)

∫
[0,1]×S

σ(x, s)dµnc. (6)

However, the crime rate is r for almost all signal realizations. Thus for every citizen with

type x ∈ suppGs who does not commit a crime, there are r
1−r

citizens who have realization

s, commit a crime, and face search probability σ(x, s). By equation (6), the total search

intensity in equilibrium is

P
nc

+
r

1− r
P

nc
=

∫
[0,1]×S

σ(x, s)dµnc.

As a result, if the equilibrium crime rate is r, the total search capacity P must be at least

the left-hand side of inequality (5).

Finally, because the mass of citizens who do not commit a crime is 1− r, we have

E[x|x ≤ F−1
0 (1− r)] ≤

∫
[0,1]×S

xdµnc.

Combining this inequality with inequality (5), we conclude that

P ≥
∫
[0,1]×S

σ(x, s)dµnc ≥ E[x|x ≤ F−1
0 (1− r)]

L
.

Lemma 6. Signal πz∗ with cutoff z∗ ∈ (0, 1) that solves equation (2) (i.e., P =
EF0

[x|x≤z∗]

L
)

is a crime-minimizing signal.
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Proof. Lemma 5 implies that given search capacity P , the crime rate is at least r∗, where

P =
1− EF0 [x|x ≤ F−1

0 (1− r∗)]

L
(7)

Indeed, if the equilibrium crime rate is r < r∗ then the total search capacity must be at least

EF0 [x|x ≤ F−1
0 (1− r)]

L
>

EF0 [x|x ≤ F−1
0 (r∗)]

L
= P ,

which is a contradiction. As crime rate r increases from 0 to 1,
EF0

[x|x≤F−1
0 (1−r)]

L
continuously

and strictly decreases from
EF0

[x]

L
> P (by Assumption 1) to 0 < P . Thus equation (7) has

a unique solution r∗ ∈ (0, 1).

We show that in the public regime, signal πz∗ with z∗ ≜ F−1
0 (1−r∗) attains the equilibrium

crime rate r∗. Let σ(x) ≜ x
L
be the search probability that makes type x indifferent between

committing and not committing a crime. If the police allocate search probability σ(x) to

signal realization x, citizens with type x (weakly) prefer not to commit a crime, whereas any

other citizens, whose types are above x, will commit a crime. As a result, the crime rate

for any signal realization will be 1 − F0(z
∗). Under such a search strategy, the total search

intensity is ∫ z∗

0

σ(x)F0(dx|x ≤ z∗) =
EF0 [x|x ≤ z∗]

L
= P .

The first equality is by the definition of σ(x) and that of signal πz∗ (see Definition 1), and

the second equality follows from the definition of z∗ (see equation (2)). According to the

strategy profile constructed above, the police exhausts her search capacity P and the crime

rates for all signal realizations are equalized. Thus the police is indifferent between any

search strategy. By construction, each citizen maximizes his payoffs. As a result, we have

an equilibrium with crime rate r∗.

To show the uniqueness of the equilibrium outcome, we prove the following lemma:

Lemma 7. Let r∗ ≜ 1 − F0(z
∗) denote the minimized crime rate with z∗ solving equation

(2). For any ϵ > 0, there is a signal π such that the corresponding policing stage has a unique

equilibrium, which attains crime rate r ∈ (r∗ − ϵ, r∗].
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Proof. Take any positive integer N . Define signal (SN , πN
z∗) as follows: The set of signal

realizations is SN = {s1, ..., sN}. If a type is x ∈ [n−1
N

z∗, n
N
z∗) for some n = 1, ..., N , πN

z∗(·|x)

draws signal realization sn with probability 1. If a type is x ≥ z∗, distribution πN
z∗(·|x) draws

signal realization sn with probability
F0(

n
N
z∗)−F0(

n−1
N

z∗)

F0(z∗)
.

We show that signal πN
z∗ leads to a unique equilibrium in the policing stage. Lemma

3 implies that in equilibrium, all the signal realizations have the same crime rate. Let rN

denote the crime rate. For ease of exposition we use the mass of innocents, tN = 1 − rN ,

instead of crime rate. Given t, the set of types who receive realization sn and do not commit

a crime is [n−1
N

z∗, xN(t)] where xN(t) solves

t =
F0(x

N(t))− F0(
n−1
N

z∗)

F0(
n
N
z∗)− F0(

n−1
N

z∗) + 1− F0(z∗)
.

To attain mass t of innocents—or equivalently, to deter types in ∪N
n=1[

n−1
N

z∗, xN(t)] from

committing a crime—the police need to search any citizens with realization sn, who have

mass F0(
n
N
z∗)− F0(

n−1
N

z∗) + 1− F0(z
∗), with probability xN (t)

L
. Thus the police need search

capacity

PN(t) ≜
N∑

n=1

[
xN(t)

L
·
F0(

n
N
z∗)− F0(

n−1
N

z∗)

F0(z∗)

]
. (8)

Search capacity PN(t) satisfies PN(0) = 0 and PN(F0(z
∗)) > P , and PN(t) is continuous

and strictly increasing. Thus there is a unique tN that satisfies equation (8) with equality.

By construction, the unique equilibrium crime rate following signal πN
z∗ is rN = 1− tN .

We show that rN can be arbitrarily close to r∗ = 1 − F0(z
∗) for a large N . To deter all

types below z∗ from crime, the police need search capacity

PN(F0(z
∗)) ≜

N∑
n=1

[
nz∗

N
· L ·

F0(
n
N
z∗)− F0(

n−1
N

z∗)

F0(z∗)
,

]
(9)

which converges to
EF0

[x|x≤z∗]

L
= P as N → ∞. Thus by taking N sufficiently large, the police

can use signal πN
z∗ to attain crime rate arbitrarily close to 1−F0(z

∗) as a unique equilibrium

outcome.

Proof of Theorem 2. Lemma 4 and Lemma 6 imply that there is an equilibrium in which
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the police choose signal πz∗ and citizens commit a crime if and only if x > z∗. Moreover,

there is no equilibrium in which the crime rate r is strictly greater than r∗ = 1 − F0(z
∗),

because by Lemma 7 the police can then profitably deviate to a signal with crime rate

r′ ∈ [r∗, r). As a result any equilibrium has crime rate r∗. Finally, take any equilibrium with

crime rate r∗. The proof of Lemma 5 implies that if the probability measure of types across

citizens who do not commit crime is given by µ ∈ ∆([0, 1]) then we have
∫ 1
0 xµ(dx)

L
≤ P . If

measure µ is different from F0(·|x ≤ z∗) then we have
EF0

[x|x≤z∗]

L
<

∫ 1
0 xµ(dx)

L
≤ P , which is a

contradiction.

B Proof of Proposition 2

Proof. We have

σ∗(x) =


x
L

if x ≤ z∗

P if x > z∗.

Because Fr dominates Fb in the hazard rate order, Fr(·|x ≤ z∗) is greater than Fb(·|x ≤ z∗)

in the first-order stochastic dominance (Shaked and Shanthikumar, 2007). We then obtain

Part 2 of the proposition, because σ∗(x) is increasing in x ≤ z∗. To show Part 1, note that

P =
EF0

(x|x≤z∗)

L
implies

EFr(x|x ≤ z∗)

L
> P >

EFb
(x|x ≤ z∗)

L
. (10)

The average search probability for group b is

[1− Fb(z
∗)]P + Fb(z

∗)
EFb

(x|x ≤ z∗)

L
< P. (11)

The average search probability for group b is

[1− Fr(z
∗)]P + Fr(z

∗)
EFr(x|x ≤ z∗)

L
> P. (12)
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Combining these inequalities, we conclude that group r faces a higher search probability

than group b on average.
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