Due by Wednesday, February 8, 2023 at 11:59pm onQ

#1. Consider the following first-price, sealed-bid private value auction. There are 5 bidders. Each bidder's valuation $(v_i \text{ for bidder } i)$ for the object follows the standard uniform distribution U[0,1]. These valuations are distributed independently. Suppose that the seller sets a minimum price (i.e., reserve price) r. Find the symmetric Bayesian equilibrium bidding function $b_i = B(v_i)$ in this auction.

#2. Consider the following two-player simultaneous-move game played repeatedly with discount factor δ .

(a) If this game is played two times. Find all subgame perfect equilibria in that game.

(b) Now suppose it is played infinitely many times. In a figure, identify the players' payoffs which can be sustained as the average per-period payoffs in a subgame perfect equilibrium when δ approaches 1.

	C	D		
A	1, 2	0, 0		
B	2, 1	3, 2		

#3. Consider the following simultaneous-move game played infinitely many times between two players. Draw the area for the feasible and individually rational payoffs for the two players in a figure.

	C	D			
A	1, 2	3,0			
B	2, 1	1, 0			

#4. Consider the following 2-player simultaneous-move game with asymmetric information. Player 1 knows which game they are playing. Player 2 only knows that with probability q, game (1) is played; with probability 1 - q, game (2) is played. Find all pure-strategy Bayesian equilibria in this game.

		C	D			C	D
game(1)	A	1,1	1, 3	$game \ (2)$	A	2, 1	2,3
	B	2, 4	2, 2		B	1,4	1, 2