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Abstract. We study an alternating offer bargaining over heterogeneous pie with N

parts, with one-sided uncertainty about the preferences over different parts of the pie.

Players can offer general mechanisms to determine the allocation. When N = 2 and

offers are frequent, there is a unique limit of Perfect Bayesian Equilibrium outcomes:

the uninformed player proposes the optimal screening menu subject to the constraint

that each of the types of the informed player gets at least her complete information

payoff. When N > 2, there is an equilibrium in which the informed player may receive

strictly less than her complete information benchmark.

1. Introduction

Incomplete information about preferences is an important feature of many bargaining

situations. Its presence in the game-theoretic models of bargaining typically leads to

two problems. Due to a screening problem, a player’s offer may be acceptable for some,

but not for all types of the opponent. This may lead to a delay, and a new offer for the

remaining types, which may change the incentives to accept the original one. Due to

a signaling problem, an agent may accept or make an unfavorable offer because of the
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threat of being punished with beliefs that lead to a very bad continuation payoff. The

signaling problem typically leads to the multiplicity of equilibria that can sometimes

be resolved by looking at equilibrium refinements.

In this paper, we show that both screening and signaling problem have a satisfactory

solution when the incomplete information is about relative value of the components

of the bargaining object and players have enough flexibility in choosing offers. Two

players, Alice and Bob, want to divide a heterogeneous pie with N ≥ 2 parts. Bob’s

preferences over the relative value of different parts of the pie are known. Bob has

arbitrary beliefs about Alice’s preferences. In alternating periods, each player offers a

procedure, or a mechanism to determine an allocation, which the other player accepts

or rejects. If the offer is rejected, the game moves to the next period, with the other

player making an offer. When the offer is accepted, the mechanism is implemented.

A mechanism is defined as an arbitrary finite (extensive-form) game with perfectly

observable actions, where players choices determine final allocations. Examples include

single allocations, menus, or menus of menus, where one of the player chooses a menu

of acceptable allocations for the other player. A well-known example of the latter is “I

divide and you choose”.

The inclusion of general mechanisms in a strategic bargaining is an important con-

tribution of this paper. (Mechanisms have been considered as the natural object of

bargaining under uncertainty in the axiomatic theory since Harsanyi and Selten (1972)

and Myerson (1984).) Sophisticated offers like menus or proposals to move to arbitra-

tion are common tools in the real world bargaining.1 From the theoretical perspective,
1See Jackson et al. (2018) for real-world and experimental examples. The author of this study had an
opportunity to observe the bargaining over a pension plan reform that took place in 2016-18 between
three Ontario universities and the representatives of faculty and staff. Among others, the parties
negotiated the size of the spousal benefit, early retirement options, inflation indexation, etc. It was
understood that the universities care only about the total actuarial cost, but the preferences of the
labor side were uncertain, mostly due to the heterogeneity of the labor side (for instance, the staff, but
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the mechanisms expand the set of outcomes beyond what is achievable under a stan-

dard bargaining protocol. Due to the Myerson’s Inscrutability Principle, mechanisms

allow to condition the allocation on private information without making the agents

worry about strategic consequences of information revelation.

An important assumption of our model is that players cannot commit to any offer in

the subsequent periods2, but once the mechanism is offered and accepted, the players

are committed to its implementation. Thus, our assumption resembles the recent lit-

erature on the dynamic mechanism design without commitment (Skreta (2006), Doval

and Skreta (2018), and others). There are two differences. First, we do not allow for

a renegotiation of an inefficient outcome, whereas in Skreta (2006), if a good is not

traded in one period, it can be traded in future. Second, we allow both the uninformed

and the informed player to offer mechanisms. As far as we know, ours is the first

paper that studies the informed principal problem in the dynamic setting with limited

commitment.

Our main result shows that, when N = 2, and players become patient, there is

a unique limit of outcomes in perfect Bayesian equilibria (PBE): Bob proposes the

optimal (for him) screening menu m∗ subject to the constraint that each of Alice’s

types receives at least her complete information payoff. The final allocation is ex

ante, but not ex post efficient. The solution has natural comparative statics with

respect to information: Bob is better off when his information improves. When Bob’s

beliefs converge to certainty, the outcome converges to the complete information Nash

solution.
not the faculty, valued the early retirement more than the spousal benefit). In the end, the universities
proposed a menu of options, and the labor side chose an option from this menu.
2More precisely, they cannot commit to any future offer unless that commitment is accepted by the
opponent. In principle, the space of mechanisms is rich enough so that a player can offer to alter the
bargaining protocol in an arbitrary way; if such offer is accepted, it is implemented. For example, the
players may agree to settle the division of one part of the pie first and divide the other part later.
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The proof has two parts: first, we show that any Bob’s offer that gives Alice types

their Nash payoffs is going to be accepted, and second, we show that each Alice type

can ensure the Nash payoff. Two types of mechanisms play role in the proof. Bob’s

ability to offer menus (of allocations, for Alice to choose) allows him to screen among

Alice’s types without them worrying about revealing information. On the other hand,

by offering menus (for Bob to choose) of menus (of allocations, for Alice to choose),

Alice can protect herself from “punishments with beliefs”.

The main result can be contrasted with the Coase conjecture, which predicts that the

informed player has all the advantage of the interaction, the equilibrium is efficient and

it corresponds to the worst outcome for the uniformed player across all possible types

of the informed player. A companion paper Peski (2019) studies a war-of-attrition

bargaining in a similar environment, but where players have additional ability to com-

mit to their offers due to the reputational types. (There are other differences as well;

including the fact that players can only propose menus rather than arbitrary mecha-

nisms.) Interestingly, more commitment leads to a Coasian-type result: in the unique

(limit) equilibrium, Bob proposes a menu m1/2 of all allocations that give him his worst

possible Nash payoff (equal to 1
2). Bob is typically strictly worse-off than under m∗;

Alice types are better-off, some of them strictly.

If N > 2, the main result does not hold. We construct an equilibrium, where some

Alice types receive a payoff strictly lower than her Nash payoff. This is of interest in

itself, as Maskin and Tirole (1990) claim that, in the private value case, the informed

principal must benefit from incomplete information due to the collapse of the agent

incentive and individual rationality constraints3. They mention that this observation

3I am grateful to V Bhaskar for this observation.
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may fail with interdependent values. Although we work with private values, in the dy-

namic setting, the continuation payoffs typically depend on the belief of the uninformed

agent and there is an endogenous interdependence.

The uniqueness of equilibrium outcome without any equilibrium refinement is a

surprising result in the informed principal literature, where, typically, there are many

equilibria supported by the belief punishment threats. The type of the uncertainty

considered here is very important. Because there no best or worst types, but simply

different, the threat of being punished with beliefs can be tested by mechanism that

are acceptable for both Bob with his punishment beliefs and the true Alice’s type.

The availability of sophisticated offers plays an important role. If players are only able

to offer simple allocations, there might multiple equilibria, including an Anti-Coasian

one, where each of Alice’s types receives her worst possible payoff across all possible

(probability 1) Bob’s beliefs about Alice; Bob receives his best possible payoff. The

construction of such an equilibrium involves punishing Alice’s deviations with beliefs

that she is the worst (for her, but best for Bob) type.

Almost all related papers work with two dimensions and two types. Sen 2000 studies

an alternating offer game with two types, where players can offer menus, but not general

mechanisms. The author shows that there is a unique PBE subject to relatively weak

refinement (perfect sequential equilibrium due to Grossman and Perry (1986)). The

equilibrium depends on whether the high type prefers her own complete information

Nash payoff, or the one of the low type (the incentives of the low type go in the right

direction). Inderst 2003 studies a similar setting, but assumes that the two types have

incentives to separate to complete information payoffs. In the context of the Coasian

bargaining, Wang 1998 studies a similar bargaining environment with two types for

Alice, and with Bob making all offers. He shows that, in the unique equilibrium, Bob
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separates the two-type of Alice with an optimal screening contract. In particular, the

Coase conjecture fails as Bob keeps all power subject to the incentive compatibility

constraints. More recently, Strulovici 2017 assumes that, instead of ending the game,

any accepted offer becomes a status quo for future bargaining. In this setting, the Coase

conjecture holds and the uninformed player is unable to offer an inefficient payoff to

type u′1 in order to screen out the more extreme type u′′1.

2. Model

2.1. Bargaining. Two players, Alice and Bob, bargain over a heterogeneous pie with

N ≥ 2 parts. An allocation is defined as a tuple x = (xi,n) ∈ X =
{
x ∈ [0, 1]2N : ∑i,n xi,n ≤ 1

}
,

where xi,n is player i’s share of the nth part of the pie. We allow for allocations with

waste, but it does not affect our results. The main result is about case N = 2, in which

case, we refer to the two parts of the pie as chocolate and strawberry, n = c, s. (We

comment on the case N > 2 in Section 4.2.)

Each player i has a linear preference over allocations ui (x) = ui · xi, where ui ∈

U =
{
u ∈ [0, 1]N : ∑un = 1

}
. We normalize the preferences so that the coefficients

add up to 1; because the multiplication of payoffs by a constant does not change the

strategic behavior, the normalization is w.l.o.g.. The extreme preferences are denoted

as ωn ∈ U , where ωnm = 1n=m for each n,m. Bob’s preferences, denoted as v, are

commonly known. Alice’s preferences, denoted as u, are privately known by her; Bob’s

beliefs are denoted by µ ∈ ∆U .

In alternating periods, one player offers to choose an allocation with a mechanism

m; the other player either accepts or reject. The first offer is made by player j. If

the offer is accepted, the mechanism m is implemented, the allocation is determined

in a continuation equilibrium, and the game ends with players receiving payoffs from
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the allocation. If the offer is rejected, the game moves to the next period, with the

other player making an offer. A mechanism is formally defined as an extensive form,

finite-horizon game with observable actions m =
(
(Sti )

t≤T
i=A,B , χ

)
, where T < ∞ is a

finite length, Sti is a finite set of actions for player i in period t, , and χ : ∏T
i S

t
i → X

is an allocation function.4 Let

MF =
⋃

T<∞,(Sti)t≤Ti=A,b
:finite Sti⊆N

X
∏T

i
Sti

denote the space of all mechanisms. We do not allow for transfers, but otherwise we

allow for arbitrary (finite) mechanisms, including:

• simple offers: T = |S1
A| = |S1

B| = 1. Each simple offer can be identified with a

single allocation χ ∈ X,

• (Alice’s )menus: T = 1 = |S1
B|. Each menu m is characterized by a finite set

of allocations Ym = {χ (sA) : sA ∈ S1
A} ∈ CX, where CX is the space of closed

subsets of X with Hausdorff distance.

• (Bob’s) menus of (Alice’s) menus: T = 2, |S1
A| = |S2

B| = 1. Menu m of

menus are characterized by a finite set of finite sets of allocations: Wm =

{Y (sB) : sB ∈ S1
B} ∈ C2X, where Y (sB) = {χ (sA, sB) : sA ∈ S2

A}. Here, first

Bob chooses a menu Y ∈ W , and then Alice chooses an allocation in Y . An

example is “Bob divides, Alice chooses” mechanism.

All the results go through as long as the space of available mechanisms contains menus

and menus of menus.
4Nothing would change if we allow mechanisms with possibly infinite length T = ∞ as long as the
allocation function is continuous in the Tychonoff topology on

∏T
i St

i (for example, a player could
offer to continue bargaining under an altered protocol). In principle, because each extensive-form
can be presented as a normal form, nothing would change if we restricted the mechanisms to T = 1.
However, the latter restriction would complicate the statement of the finite approximations below; for
this reason, we do not use it.
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Because we do not have the existence of equilibrium for infinite action games, we

choose to work with finite approximations.5 BecauseMF is separable (as a countable

union of closed subsets of Euclidean spaces), it can be approximated with an increasing

sequence of finite subsetsMk ⊆ Mk+1 ⊆ ...MF such that cl⋃kMk =MF . We write

Mk →MF .

The players discount with a common factor δ < 1. We are interested in the case of

frequent offers, or δ → 1. For some results (that we explicitly state), we assume that

the players observe the outcome of a public randomization device before taking any

action. Let Γj (δ,Mk, µ) denote the bargaining game in which player j makes the first

offer, Bob’s initial beliefs are given by µ, and the players choose their offers from set

Mk.

2.2. Strategies and equilibrium. Let Tj = {t ∈ N : t odd} be the periods in which

the initial player j makes the offer. Let T−j = {t ∈ N : t even}. For t ≥ 1, let Ht =

Mt−1
k be the set of histories in the beginning of period t. A (complete information) pure

strategy of player i is a tuple σ =
(
σM , σD, σm

)
, where σM : ⋃t∈Ti Ht → ∆Mk describes

the choice of mechanism when player imakes an offer, σD : ⋃t∈T−i Ht×Mk → ∆ {A,R}

is the decision about player −i’s offer , and σm : ⋃tHt → ∆Σm
i describes the behavior

in the proposed and accepted mechanism m. Here, Σm is the set of pure strategies in

the mechanism m. Let Σi be the set of complete information strategies of player i.

An assessment is defined as a tuple of (σA, σB, µ), where measurable mapping σA :

U → ∆ΣA is Alice’s strategy, σB ∈ ∆ΣB is Bob’s strategy, and µt : ⋃t∈TA Ht ×Mk ∪⋃
t∈TB Ht ×Mk × {A,R} → ∆U is a belief function that specifies Bob’s beliefs about

5There are two main reasons for the lack of existence result in our model. First, the space of mech-
anisms is not compact, hence, the existence of a best response is not guaranteed. More importantly,
there are well-known problems with the existence of sequential equilibrium in signaling games with
infinitely many actions (Myerson and Reny (2015)).
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Alice’s types either after she offers a mechanism or after she makes a decision about

Bob’s offer. The implicit restriction is that the beliefs get updated only after Alice’s

actions.

A Perfect Bayesian equilibrium (or, simply, equilibrium) is an assessment such that

(a) the players best respond to their strategies and the beliefs, and (b) µ = µ0 and the

beliefs are updated through Bayes formula after each Alice’s decision (mechanism choice

or acceptance) that has a positive probability given history and strategies. Because

the action choices are finite at each decision node, the PBE exists by the standard

argument due to Selten (1975).

An equilibrium outcome is a pair of (measurable) function eA : U → [0, 1] and a

payoff eB ∈ [0, 1], with the interpretation that eA (u) is the expected payoff of type u

of Alice, and eB is the expected Bob’s payoff. Let Ej (δ,Mk, µ) be the set of expected

equilibrium outcomes in game Γj (δ;Mk, µ). We are interested in the equilibrium

outcomes as, first, the space of mechanism becomes well approximated as k →∞, and

next, the offers become more and more frequent as δ → 1:

Ej (δ, µ) = sup
(Mk):Mk→MF

lim sup
k→∞

Ej (δ,Mk, µ) =
⋃

(Mk):Mk→MF

⋂
n

cl
⋃
k≥n

Ej (δ,Mk, µ) ,

Ej (µ) = lim sup
δ→1

Ej (δ, µ) =
⋂
n

cl
⋃

δ≥1− 1
n

Ej (δ, µ) .

The closure is taken with respect to the topology of uniform convergence. We show

below (see the comment after Lemma 2) that each of the closed sets in the above

definitions is compact, and the intersections of compact sets are not empty.

3. Main result

In this section, we assume that N = 2.



10 MARCIN PĘSKI

uc

payoffs
1

1
2

vc

100 vc1
2

Alice

Bob

0A

1A

chocolate

strawberry

(1
2 ,

1
2)

v

u

X

YZ

Figure 1. Nash payoffs and allocations.

3.1. Complete information benchmark. A special case of our model is when Al-

ice’s preferences are commonly known to be u. The argument from Rubinstein (1985)

implies that our game has a unique subgame perfect equilibrium payoffs
(
Rj,δ
A (u) , Rj,δ

B (u)
)
∈

[0, 1]2 of Alice type u and Bob. When δ → 1, the payoffs converge to the Nash bar-

gaining payoffs of the two agent with preferences (u, v):

(
Rj,δ
A (u) , Rj,δ

B (u)
)
→ (NA (u) ,NB (u)) .

When vc ≥ vv, the Nash payoffs are given by function

NA (uc, us) = max
( 1

2vc
uc,

1
2 ,

1
2 (1− uc)

)
. (1)

The Nash payoffs and allocations are illustrated on Figure 1. Bob likes strawberry,

but he prefers chocolate. If Alice likes chocolate more, she is going to get her favorite

allocation subject to the constraint that Bob’s payoff is at least 1
2 (allocation X).

Bob’s payoff is 1
2 ; Alice gets higher payoff. If Alice has the same preference as Bob,

allocation
(

1
2 ,

1
2

)
or any other allocation which gives both of them payoff of 1

2 is a Nash

allocation. If Alice prefers chocolate to strawberry, but she likes chocolate less than
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Bob likes chocolate, Bob receives his favorite allocation subject to the constraint that

Alice’s payoff is at least 1
2 (allocation Y if Alice preferences are u). The allocation and

Bob’s payoff depends on Alice’s preference; Alice’s payoff is 1
2 . Finally, if Alice likes

strawberry more, each player receives his or her favorite part of the pie (allocation Z).

Figure 1 makes clear that Alice does not always have incentives to honestly reveal

her type. If she likes strawberry than Bob likes it, she is best-off if Bob thinks that

she her preferences are as close to his as possible.

3.2. Menus. Finite and infinite (Alice’s) menus play an important role in the analysis.

Formally, a menu is any compact subset Y ∈ CX. Each menu has its dual characteriza-

tion through the payoff function y (u;Y ) = maxx∈Y u (x). Any payoff function obtained

from a menu is called a menu function. Let Y be the set of all menu functions.

For each u, and payoff function y : U → [0, 1], letDuy be the set of all affine functions

l : U → [0, 1] such that l (u) = y (u) and ∀u′y (u′) ≥ l (u′).

Lemma 1. Payoff function y is a menu function if and only if y is convex, continuous,

and for each u ∈ U , Duy is non-empty and closed. The set of menu functions Y is

compact under the topology of the uniform convergence.

In the dual approach, the “derivative” set Duy can be interpreted as the set of

optimal choices l for Alice type u, where Alice’s share of the nth part of the pie is

equal to l (ωn). Given Alice’s choice l, Bob’s payoff is equal to 1 − l (v). This leads

to a tight upper bound on Bob’s expected payoff in a menu associated with a payoff

function y: for each belief µ, let

Π (y, µ) =
∫ (

max
l∈Duy

(1− l (v))
)
dµ (u) = 1−

∫ (
min
l∈Duy

l (v)
)
dµ (u) .
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Lemma 2. For each δ, µ, k, if (eA, eB) ∈ Ej (δ,Mk, µ) is an equilibrium outcome,

then eA is a menu function, and eB ≤ Π (eA, µ).

The Lemma implies that Ej (δ,Mk, µ) ⊆ Y× [0, 1]. Because of standard arguments,

the set of equilibrium outcomes is closed under the uniform topology. Hence, the

equilibrium payoffs sets are closed subsets of a compact space. In particular, for each

sequence ek ∈ Ej (δ,Mk, µ), there exists a convergent subsequence with a limit ek →

e ∈ Ej (δ, µ). Similarly, for each sequence eδk ∈ Ej (δk, µ) st. δk → 1, there exists a

convergent subsequence with a limit ek → e ∈ Ej (µ).

3.3. Equilibrium payoffs. For each belief µ and each function c : U → [0, 1], define

Πopt (c, µ) = max
y∈Y,y≥c

Π (y, µ) andMopt (c, µ) = arg max
y∈Y,y≥c

Π (y, µ) .

Here, Πopt (c, µ) is the largest payoff that Bob can attain with a menu that ensures

that each Alice’s type u gets at least c (u). Because of the compactness of Y , the set

of optimal menus Mopt (c, µ) is non-empty. The optimal menu is unique for generic

beliefs.

We can state the main result of this paper.

Theorem 1. Suppose that N = 2. Then, Ej (µ) ⊆Mopt (NA, µ)× {Πopt (NA, µ)} .

In the limit, as the space of mechanisms available becomes dense, and the offers

become more and more frequent, regardless who makes the first offer, Bob’s equilibrium

payoff is equal to the expected payoff from the optimal screening menu subject to the

constraint that each type of Alice receives her Nash (i.e., her complete information)

payoff. If the optimal screening menu is unique, the payoff of each type of Alice is

also unique. The outcome is ex ante efficient, but not ex post efficient. Bob’s payoff
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Figure 2. Payoffs and allocations in the constrained optimal menu.

is equal to the payoff that he would obtain if he was able to commit to an optimal

mechanism (subject to the complete information constraint). This opposite to what

one could expect from the literature on the Coase conjecture.

The optimal menu is illustrated on Figure 2. If Alice likes chocolate more than Bob,

or if Alice likes only strawberry, the equilibrium allocation is equal to the complete

information Nash Allocation. Otherwise, for generic beliefs, she receives a higher payoff.

We are not able to construct any equilibrium in this game, and in particular, no

equilibrium with payoffs close to the limit. However, because the optimal screening

menu significantly depends on Bob’s beliefs, the equilibrium behavior cannot be too

much different than as if Bob offered the optimal screening menu, and Alice accepted

it. In particular, the mechanisms must be accepted without too much delay, and, prior

to that moment, there cannot be any substantial revelation of information.

Bob’s optimal payoff,Mopt (NA, µ), is convex in µ, which implies that it has a natural

comparative statics with respect to information: Bob is better-off if his information

improves. When µ → δu for some Alice’s type, Bob’s payoff converges to the Nash

outcome of bargaining against type u, NB (u).

We briefly explain the structure of the proof, with the emphasis on the roles of

mechanisms. The proof has two parts. In the first part, we show that if the payoffs
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of Alice are too large (in a certain sense defined below), then Bob has a profitable

deviation in the form of a menu mechanism. The deviation is chosen so that Bob

prefers to wait until it is accepted, and Alice prefers to accept it rather than wait for

an opportunity to return to her original proposal. In order to find such a deviation,

it is important that Bob has access to a sufficiently large set of menus. In general, it

is not possible to find an optimal deviation in the form of a simpler mechanisms, like

single-offers. The reason is that, typically, a single offer is not acceptable to some of

the types.

In the second part, we show that Alice’s equilibrium payoffs cannot be significantly

lower than the Nash payoffs. If not, then in the game in which Bob makes the first

offer, each type u of Alice has a deviation to reject the Bob’s offer, and propose a

new mechanism in the next period. We choose such a deviation so that it be accepted

by Bob, and that it improves type u’s payoffs. In the proof, Alice’s counteroffer is a

particular menu of menus: for each yu ∈ [0, 1], let

Wu,yu = {all menus with menu functions y st. y (u) ≥ yu} . (2)

An offer of Wu,yu can be interpreted as Alice’s request to Bob: “I am type u. You

can design any menu as long as type u gets at least yu.” Formally, Wu,yu consists of

infinitely many menus, hence it is not a mechanism in the sense of our definitions.

However, we show that as k → ∞, Wu,yu can be well-approximated by a sequence of

menus of menus W k
u,yu ∈Mk.

The menu of menus helps Alice to address the signaling problem. When Alice de-

viates from the equilibrium path (first by rejecting, and then, possibly, by making a

particular counteroffer), Bob’s beliefs are not constrained by the solution concept. In

fact, his beliefs may maximize his incentives to reject the deviation. By offering an
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approximate version of Wu,yu , Alice allows Bob to choose an acceptable mechanism

(subject to the constraint y (u) ≥ yu), whatever are his beliefs. There is a simple intu-

ition. If Bob’s believes that Alice’s type is u, he will accept Wu,yu as long as yu is not

higher than Alice’s complete information payoff. If he believes that her type is u′ 6= u,

he will find a menu in Wu,yu that extracts as much payoff form the u′ as possible,

If the set of mechanisms that Alice chooses from is small enough, it is possible that

any counteroffer can be “punished” with Bob’s beliefs that make waiting for the next

period continuation equilibrium more attractive. (We discuss this issue in a more detail

in Section 4.1.)

As the above argument makes clear, the Theorem holds as long as the limit set

of available mechanisms M contains all menus and menus of menus. As we argue in

Section 4.1, the thesis of the Theorem fails, ifMcontains only simple offers. We do not

know if the Theorem holds ifM contains menus, but not menus of menus. However,

in such a case, one can show that Πopt (NA, µ) is a lower bound on Bob’s equilibrium

payoffs.

4. Comments

4.1. Simple offers. We consider a special case of our model, when players are only

allowed to make simple offers. Let S ⊆ M be the collection of all single-offer mecha-

nisms (all mechanisms in which no player chooses any action). Any such a mechanism

can be identified with a single allocation x. Let X (S) be the collection of all such

offers. Let S1 ⊆ S2 ⊆ ... ⊆ S be an approximation sequence with finite sets, where

Sk → S in the Hausdorff distance sense.

Proposition 1. Suppose that vc > vs. Fix u∗ ∈ U st. u∗c < vc. There exists δ0 and

k0 such that for each δ ≥ δ0, k ≥ k0, and any belief µ st. u∗c = inf {uc : uc ∈ suppµ},
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Figure 3. Allocations in the Anti-Coasian equilibrium.

there is (eA, eB) ∈ EB (δ,Sk, µ0) such that ∀ueA (u) ≤ maxx:v(x)≥δNB(u∗) u (x) and eB ≥

δNB (u∗)

Let u∗ be the type with the strongest preference for strawberry in the support of

the type distribution. If players are sufficiently patient, then there is an equilibrium,

in which Bob receives his complete information payoff NB (u∗) as if facing the type u∗,

regardless of his beliefs. This is also his best complete information payoff across all

types in Alice’s support. Alice types receive the best payoffs subject to the constraint

that Bob’s payoff is at least NB (u∗). The Lemma is illustrated on Figure 3. The Nash

allocation of type u∗ gives her the strawberry part of the pie; the chocolate goes to

Bob (allocation x) . The blue line is Bob’s indifference curve. Alice types, generically

choose between two allocation: x and y.

The proof constructs such an equilibrium with required properties. The idea is that,

roughly, Alice must offer either the allocations x or y (or anything in-between). If she

deviates, she is punished with a belief that she is type u∗. From now on, Bob expects

nothing less than allocation x.
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The punishment with beliefs has been always available in our equilibrium construc-

tions. However, if mechanisms like (2) are available, the “punishment” can be chal-

lenged by Alice by a sophisticated counter-offer.

The equilibrium has Anti-Coasian flavor, as Bob receives his best possible complete

information payoff across all Alice’s types. A positive fraction of Alice types (including,

among others, all types that like chocolate more than Bob) is strictly worse than under

complete information; the other types are not better-off. Alice would benefit from being

able to credibly reveal her type. This observation might be surprising to the reader

familiar with the informed principal literature. Maskin and Tirole (1990) claim that, in

the private value case, the informed principal must benefit from incomplete information

due to the collapse of the agent incentive and individual rationality constraints. This

observation does not necessarily hold with interdependent values. We work with private

values, but, in the dynamic setting, the continuation value depends on the belief of the

uninformed agent. Hence, there is endogenous interdependence.

There are potentially other equilibria. For some beliefs, it is easy to extend the

construction from Proposition 1, in which Alice’s types that like strawberry receive

allocation x and the types that like chocolate receive allocation with more chocolate

than y.

4.2. Case N > 2. The thesis of Theorem 1 does not hold whenN = 3. We show it with

an example. Let v =
(

1
3 ,

1
3 ,

1
3

)
. Figure 4 presents the Nash payoffs for all types who only

care about the first two dimensions. Let τ1 =
(

2
3 ,

1
3 , 0

)
, τ =

(
1
2 ,

1
2 , 0

)
, τ2 =

(
1
3 ,

2
3 , 0

)
be

three distinguished types of Alice. We have NA (τ1) = NA (τ2) = 2
3 and NA (τ) = 3

4 .

Notice that the Nash payoffs are not convex.
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(uc, 1− uc, 0),

payoffs
1

0
(1, 0, 0)(0, 1, 0)

Alice all strawberry all strawberry
some chocolate

some strawberry
all chocolate all chocolate

Figure 4. Nash payoffs when N = 3.

Proposition 2. Fix δ < 1, and suppose that players have an access to a public ran-

domization. Suppose that M′ ⊆ M is a finite set of mechanisms that contains two

menus:

Y B =
{

(1, 0, 0) ,
(2

3 ,
2
3 , 0

)
, (0, 1, 0)

}
,

Y A =
{(

1, 21− δ
δ

, 0
)
,
(1
δ

2
3 ,

1
δ

2
3 , 0

)
,

(
21− δ

δ
, 1, 0

)}
.

(The tuples in the menus correspond to Alice shares; Bob receives the complementary

shares.) Then, for any belief ∆ {τ1, τ2, τ} that assigns a strictly positive probability to

types τ1, τ2, there exists
(
ejA.e

j
B

)
∈ Ej (δ,M′, µ) such that eAA (τ) = 1

δ
2
3 , e

B
A (τ) = 2

3 . In

particular, if δ < 1 is sufficiently high, type τ receives a payoff substantially lower than

her Nash payoff of 3
4 .

We construct a (sequential) equilibrium with the required features. In the equilib-

rium, player j always offers menu Y j, and the offer is accepted. If Alice proposes some

other mechanism (as a possible deviation), we show that there are Bob’s beliefs such

that either the mechanism has an equilibrium where all Alice’s types receive payoffs

smaller than 1
δ

2
3 , or Bob’s payoffs are smaller than the discounted continuation equilib-

rium payoff of δ 2
3 , in which case Bob rejects it. Similarly, we show that if Bob deviates,
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his proposal either has an equilibrium that gives him a payoff less that his equilibrium

payoff of eBB = 2
3 , or it gives less than

2
3 to all types of Alice, in which case Alice rejects

it.

Although we are not able to fully characterize the set of payoffs when N ≥ 3, we

have the following bound.

Theorem 2. Suppose that N ≥ 2. Then, for any j = A,B, any belief µ ∈ ∆U , any

limit payoff (eA, eB) ∈ Ej (µ), any type u ∈ U , we have eA (u) ≥ 1
2 and eB ≥ 1

2 .

In any limit of equilibria, Bob and each type of Alice receive higher payoff than their

worst possible complete information payoff (in case of Alice types, the worst possible

across all Bob’s preferences v).

5. Proof of Theorem 1

The proof is divided into two parts. In the first part, we show that any menu that

with payoffs for each Alice’s type strictly above her complete information payoffs is

going to be accepted. In the second part, we show that each type of Alice will reject a

menu that gives her less than her complete information payoff.

5.1. Upper bound. We show that if Alice’s payoffs when she makes the first offer are

too high, then Bob has a profitable deviation.

We proceed in two steps. The first step can be understood as a generalization of

the method from Rubinstein (1982) to situations when player’s payoffs are described

by a function rather than a single number. We define a property of a payoff function,

and we show that the payoff of any Alice’s type in the belief support cannot be larger

than a value of a payoff function with the property. Take any γ < 1 and δ < 1. We

say that menu function h : U → [0, 1] has UB (γ, δ)-property if infh > 0 and, for each
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menu function y ≥ h, each belief µ, there exists a menu function y′ such that

y′ ≥suppµ (1− γ (1− δ)) y and γδΠ (y′, µ) ≥ Π (y, µ) .

Lemma 3. For all γ, δ0 < 1, there exists k0 such that if function h has UB (γ, δ)-

property, then if (eA, eB) ∈ EA (δ,Mk, µ) for some k ≥ k0 and µ, then infu∈suppµ eA (u) <

h (u) .

The Lemma says that for any equilibrium, there must be an Alice’s type in the

belief support such that her payoff is strictly smaller than the value of a function with

UB-property. The proof goes by contradiction. Suppose that there is an equilibrium

with Alice’s payoffs above h. We show that we can find maximal equilibrium payoffs

which such a property. Let y be Alice’s payoff function in such an equilibrium. Because

y is larger than h, the UB-property implies the existence of a menu function y′ such

that each Alice’s type receives more than δy and such that Bob receives more that
1
δ
Π (y, δ), or (by Lemma 2), more than 1

δ
times his equilibrium payoff. If Bob rejects

the current Alice’s offer, and proposes menu with payoffs y′, such an offer is accepted

by all types in the support. (If not, because payoffs y are maximal, some rejecting

types have to receive less than y in the continuation equilibrium, and the rejection of

more than y′ > δy is not profitable.) Because the deviation leads to payoffs that are

higher than 1
δ
times the current equilibrium payoff, this contradicts the existence of

equilibrium with payoffs y.

The need to use γ < 1 in the above definition and the result is due to the fact that

we work with approximate spaces of mechanisms rather than all mechanisms.

Lemma 4. Suppose that function h has property UB (γ, δ) for some γ, δ < 1. Then,

if (eA, eB) ∈ EB (δ, µ), then eB ≥ Πopt (δh, µ).
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Proof. We present the proof here, because it is short and intuitive. Let k0 be as in

Lemma 3 . We are going to show that, in game ΓB (δ,Mk, µ) for any k ≥ k0, Alice

accepts any menu m ∈ Mk with payoffs strictly higher than δh for each type in the

support with probability 1. On the contrary, if a positive probability set of types

rejects such a menu, in the next period they face a continuation equilibrium described

in Lemma 3. By Lemma 3, at least some of those types receive a continuation payoff

that is strictly lower than h. But then, their rejection of m could not have been a best

response.

For each k ≥ k0, let M∗
k ⊆ Mk be the set of such menus. The argument implies

that, if (eA, eB) ∈ EB (δ, µ,Mk), it must that eB ≥ maxm∈Mk:m Π (ym, µ) . By the ap-

proximation results (Lemma 12 from the Appendix), the RHS off the above inequality

converges to Πopt (δh, µ) as k →∞. �

In the second step, we show that an approximation to the Nash payoffs has the

UB-property.

Lemma 5. Suppose that N = 2. Then, for each ε > 0, there is a function h such that

supu |h (u)−NA (u)| ≤ ε and γ, δ0 < 1 such that h has property UB (γ, δ) for each

δ ≥ δ0.

We sketch the intuition. We want to show that menu function h > NA has the

UB-property. Suppose that y > h is a menu function associated with menu Y and

such that y > h. Let x (u) ∈ arg maxx∈Y u (x) be an optimal choice of type u in menu

Y . We divide the space of allocations. into the area below and above the 45° diagonal.

For each u such that x (u) is below the diagonal, define a wasteless allocation x′ (u) so

that

x′A (u) = δxA (u) + (1− δ)xA (u) .
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Similarly, for each u such that xY (u) is above diagonal, define a waste-less allocation

x′ (u) so that

x′A (u) = xA (u) + ρ (xA (u)− 1A) ,

where constant ρ = (1− δ) α
1−α is chosen so that the two definitions agree for u∗ st.

x (u∗) = α1A + (1− α) 0A lies exactly on the diagonal. (See Figure 5). Because

y > NA, we check that α > 1
2 , and ρ > 1− δ. (In the latter case, so defined x′ (u) will

exist if x (u) is sufficiently inside X; or, alternatively, if 1− δ is small and u (x (u)) ≥

h (u) is bounded away from NA (u). The details can be found in the Appendix.)

Let Y ′ = {x′ (u) : u ∈ U} . Because the new allocations are obtained by (partially)

linear operations, it is easy to show that x′ (u) is the optimal choice of type u in

menu Y ′. Further, we check by direct calculations that u (x′ (u)) ≥ δu (x (u)) and

δv (x′ (u)) ≥ v (x (u)) for each u. For instance, suppose that x (u) is below the diagonal.

Then, the second inequality follows easily from the fact that ρ > 1. For the first

inequality, notice that

u (x′ (u))− δu (x (u)) = (1 + ρ− δ)u (x (u))− ρ

= (1− δ) 1
1− α (u (x (u))− α) ≥ (1− δ) 1

1− α (u (x (u∗))− α) = 0,

where the inequality comes from the fact that x (u∗) is one of the choices available for

type u. The two inequalities imply that the menu function y′ satisfies y′ ≥ δy and

δΠ (y′, µ) ≥ Π (y, µ).

5.2. Lower bound. As in the upper bound case, we begin with a certain generalization

of the Rubinstein’s method. For γ, δ < 1, say that payoff function h : U → [0, 1] has
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0A

1A

chocolate

strawberry

menu Y
menu Y ′

Figure 5. Menus Y and Y ′.

LB (γ, δ)-property if for each type w, each constant yw ≤ h (w), any belief ψ ∈ ∆U ,

Πopt

((
1
γδ
yw

)
1.=w, ψ

)
≥ (1− γ (1− δ)) Πopt (yw 1.=w, ψ) . (3)

Here, c 1.=w for some constant c ∈ R is a function of types defined as c 1u=w =
c, if u = w

0, otherwise
.

Lemma 6. For all γ, δ < 1, there exists k0 <∞ such that if h has LB (γ, δ)-property,

then for each k ≥ k0, µ ∈ ∆U , if (eA, eB) ∈ EB (δ,Mk, µ), then, eA ≥ h.

To see the intuition, take an arbitrary type w ∈ U of Alice. Let yw be the minimum

of the equilibrium payoffs of type w across all equilibria and all beliefs in a game where

Bob makes the first offer; we assume for simplicity that such an minimum is attained

in some equilibrium. Suppose that yw < h. Given such an equilibrium with payoffs

yw = eA (w), we consider Alice’s deviation to reject any offer in the first period and to

propose menu of menus Ww, 1
γδ
yw

in the next period. Such an offer induces equilibrium

(possibly, off-path) beliefs ψ. Bob’s payoff from accepting the menu is equal to the
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left-hand side of (3). On the other hand, if Bob rejects Alice’s offer, the continuation

equilibrium in the next period yields at least yw to Alice’s type yw. Thus, Bob’s

expected and discounted continuation payoff is equal to δΠopt (1.=w yw, ψ). Inequality

(3) implies that Bob prefers to accept the menu of menus. But, such a menu of menus

leads to a payoff of 1
γδ
yw for Alice type w. Hence, the deviation is profitable, which

contradicts the existence of equilibrium with payoffs yw.

Lemma 7. For any ε > 0, there exist γ, δ < 1 such that the following functions h have

LB (γ, δ)-property:

(1) h0 (u) = (1− ε) 1
2 ,

(2) hk (u) = (1− ε) min
(
1, 1

2vk

)
uk for any k = c, s.

In both cases, we take arbitrary menu function y such that y (w) ≥ yw, where

yw ≤ h (w), and use it to construct a menu function y′ such that y′ (w) ≥ 1
γδ
yw and

such that the expected payoffs of Bob with beliefs ψ from accepting menu y′ are higher

than waiting for the next period and menu y, Π (y′, ψ) ≥ δΠ (y, ψ). For the first claim,

it is enough to replace y by y′ = δy+ 1− δ, or, in other words, replace menu associated

with y by its convex combination with allocation 1A with weight 1 − δ on the latter.

Similarly, in the case of the second claim, we also replace the original menu, but with

an appropriate convex combination with an allocation that gives the entire part k of

the pie to Alice.

5.3. Proof of Theorem 1. Assume w.l.o.g. that vc ≥ vs, or that Bob likes chocolate

more. It follows from Corollary 4 and Lemma 5 that if (eA, eB) ∈ EB (µ), then eB ≥

Πopt (NA, µ). Similarly, it follows from Lemmas 6 and 7 that for each (eA, eB) ∈ EB (µ),
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it must be that

eA (u) ≥ max
(1

2 ,min
(

1, 1
2vc

)
uc,min

(
1, 1

2vs

)
us

)
= max

(1
2 ,

1
2vc

uc, us

)
= NA (u) ,

where the last equality is consequence of (1). The result follows from the definition of

the value Πopt (.) and the solutionMopt (.) to Bob’s optimization problem.

Appendix A. Menu functions

A.1. Menu functions.

Lemma 8. Suppose that N = 2. Suppose that y is a convex function and types u, u′ ∈ U

such that uc < u′c. If Duy and Du′y are non-empty, then Dwy is non-empty for any

type w such that uc < wc < u′c.

Proof. Because y is convex, for any u, u′ ∈ U st. uc < u′c, and any l ∈ Duy, l
′ ∈ Du′y,

we have l (0) > l′ (0), and l (1) < l′ (1). �

Lemma 9. For each menu function y0, each belief µ, each α ∈ [0, 1], we have

Πopt (αy0 + (1− α) 1, µ) ≥ αΠopt (y0, µ) .

Proof. Observe that if y ∈ Mopt (y0, µ), then y′ = αy + (1− α) 1 ≥ αy0 + (1− α) 1.

Because Duy
′ = {αl (.) + 1− α : l ∈ Duy}, we have

Π (y′, µ) = 1−
∫ (

max
l∈Du(αy+(1−α)1)

l (v)
)
dµ (u) = 1−

∫ (
max

l∈Du(αy+(1−α)1)
(αl (v) + 1− α)

)
dµ (u)

= α− α
∫ (

max
l∈Du(αy+(1−α)1)

l (v)
)
dµ (u) = αΠ (y0, µ) .

�

Lemma 10. For any two menu functions y, y′ ∈ Y, max (y, y′) is also a menu function.
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Proof. The convexity and the payoff restriction are immediate. For the derivative

bound, notice that Du max (y, y′) ⊆ Duy ∪Duy
′. �

A.2. Payoff-dominance. For each menu function y, each u ∈ U , let

d (y, u) = max
l∈Duy

l (v) .

Say that menu y is payoff-dominated by menu y′, y ≤d y′ if and only if d (y, .) ≥U

d (y′, .). It is an obvious consequence of the definitions that if y ≤d y′ for two menu

functions y, y′, then Π (y, µ) ≤ Π (y′, µ) for any belief µ ∈ ∆U .

A.3. Proof of Lemma 1. For the “only if” direction, notice that

Duy =
{
l : ∀u′l (u′) = u′ (x) for some x ∈ arg max

z∈Y
u (z)

}
.

For the “if” direction, for each affine function l : U → [0, 1] define an allocation x (l)

such that xA,n (l) = l (ωn) and xB,n (l) = 1 − xA,n (l). Let Y = cl {x (l) : l ∈ ⋃uDuy} .

Then, y is the payoff function for menu Y .

Because of the characterization, each menu function is Lipschitz with bounded pay-

offs. Hence, the set Y is equicontinuous, and the Arzelà–Ascoli theorem implies that

it is precompact under the topology of the uniform convergence. Let yn ∈ Y be a

convergent sequence and, for each u, let lun ∈ Duyn be a supporting affine function.

A.4. Proof of Lemma 2. Any profile of (complete information) strategies σ ∈ ∏i Σi

induces a probability distribution µ (σ) ∈ ∆ (N×X ∪ {∞}), with the interpretation

that µ (t, A|σ) for measurable A ⊆ X is the probability that the game ends in period

t with outcome in A, and µ (∞|σ) is the probability that the bargaining never ends.

Let x (σ) ∈ X be defined so that xi (σ) = (1− δ)∑ δt
∫
xiµ (t, dx) is the expected and

discounted award to player i.
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Suppose that (σA, σB, µ) is an equilibrium with payoffs (eA, eB) ∈ Ej (δ,Mk, µ). For

each u, let xu = x (σA (u) , σB) be the expected and discounted equilibrium allocation.

Then, u (xu′) is the expected payoff of Alice’s type u from mimicking the strategy of

type u′. For each u, define an affine lu : U → [0, 1] so that lu (u′) = u′ (xu). The

incentive compatibility implies that for each u and u′, eA (u′) = lu′ (u′) ≥ lu (u′). It

follows that eA is convex (as it is a supremum over affine functions lu), and lu ∈ DueA.

By Lemma 1, eA is a menu function. Moreover,

eB =
∫
v (x (u)) dµ (u) ≤

∫
(1− lu (v)) dµ (u) ≤ Π (eA, µ) .

Appendix B. Mechanisms and approximations

This part of the Appendix is devoted to approximations of mechanisms.

Let Mmenu denote the class of menu mechanisms, and let Mmenu (n) denote the

subset of menus with n actions for Alice. LetMmmenu denote the class of (Bob’s) menus

of (Alice’s menus) and let Mmmenu (nB, nA) denote the subset of such mechanisms

with ni actions for player i. Let dCX and dC2X be the Hausdorff distances on spaces,

respectively, CX and C2X induced by the Euclidean distance on X. In the interest of

transparency, we drop the subscripts in the definition of the distance.

For any mechanism m, any beliefs µ ∈ ∆U , let E (m,µ) ⊆ Y × [0, 1] denote the set

of outcomes (eA, eB) that can be obtained in equilibrium.

B.1. Menus. For each menu Y , each η > 0, define menu

Y η = {(1− η)x+ ηv (x) 1A +η (1− v (x)) 0A : x ∈ Y } .

Lemma 11. For each η > 0, there exists ε > 0 such that for each menu Y , each

menu Y ′ such that d (Y η, Y ′) ≤ ε, for each u ∈ U , if x ∈ arg maxx∈Y u (x) and x′ ∈
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arg maxx∈Y ′ u (x), then

u (x′) ≥ u (x)− 2η and v (x′) ≥ v (x)− 2η. (4)

Proof. Choose ε > 0 such that η > ε and η (η − ε) > 2ε. Take any two menus Y and

Y ′ such that d (Y η, Y ′) ≤ ε. Fix u.

For the first inequality in (4), notice that for each x ∈ Y , there exists x′ ∈ Y ′ such

that ‖(1− η)x+ η (1− v (x)) 0A +ηv (x) 1A−x′‖ ≤ ε. But

u (x′) ≥ u ((1− η)x+ η (1− v (x)) 0A +ηv (x) 1A)− ε

= u (x) + η (v (x)− u (x))− ε ≥ u (x)− 2η,

where the last inequality comes from the choice of ε. Hence, if x′ ∈ Y ′ (u), it must be

that u (x′) ≥ u (x)− 2η.

For the second inequality in (4), suppose on the contrary that there is x ∈ arg maxx∈Y u (x)

and x′ ∈ arg maxx∈Y ′ u (x) such that v (x′) < v (x) − 2η. Because x′ ∈ Y ′ and

d (Y η, Y ′) ≤ ε, there exists x0 ∈ Y η such that ‖x′ − x0‖ ≤ ε, which implies that

u (x′) ≤ u (x0) + ε and v (x0) ≤ v (x′) + ε ≤ v (x) − 2η + ε. Because x0 ∈ Y η, there

exists x1 ∈ Y such that

x0 = (1− η)x1 + η (1− v (x1)) 0A +ηv (x1) 1A .

Recall that v (0A) = 1 = 1− v (1A). Hence,

v (x1) ≤ v (x1) + η (1− 2v (x1)) + η = v (x0) + η ≤ v (x)− η + ε.
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(The first inequality comes from the fact that v (x1) ≤ 1; the second from v (x0) ≤

v (x)− 2η.)Moreover, because x ∈ Y (u), we have u (x1) ≤ u (x), which implies

u (x′) ≤ u (x0) + ε = u ((1− η)x1 + η (1− v (x1)) 0A +ηv (x1) 1A) + ε

= (1− η)u (x1) + ηv (x1) + ε ≤ (1− η)u (x1) + η (v (x)− η + ε) + ε

≤ (1− η)u (x) + ηv (x)− η (η − ε) + ε. (5)

On the other hand, because d (Y η, Y ′) ≤ ε, there is x2 ∈ Y ′ such that

u (x2) ≥ u ((1− η)x+ η (1− v (x)) 0A +ηv (x) 1A)− ε

= (1− η)u (x) + ηv (x)− ε. (6)

Because of the choice of ε, inequalities (5) and (6) contradict that x′ ∈ arg maxx∈Y ′ u (x).

The contradiction demonstrates that v (x′) ≥ v (x)− 2η. �

Lemma 12. For each η > 0, there exists k0 such that for each k ≥ k0, each y ∈ Y,

there is a mechanism m ∈ Mk such that for each µ ∈ ∆U , each (eA, eB) ∈ E (m,µ),

we have eA (u) ≥ y (u)− η for each u, and eB ≥ Π (y, µ)− η.

Proof. Because CX is compact in the Hausdorff metric, and finite menus form a dense

subset, there is n (ε) <∞ such that for each Y ∈ CX, there exists m ∈Mmenu (n (ε))

such that d (Y, Ym) ≤ 1
2ε. Further, because Mmenu (n (ε)) is a compact subset of

Euclidean space, for each ε > 0, there exists k0 (ε) such that for any k ≥ k0 (ε), any

m ∈ Mmenu (n (ε)), there exists m′ ∈ Mk ∩Mmenu (n (ε)) such that d (Ym, Ym′) ≤ 1
2ε.

It follows that for each k ≥ k0 (ε), any Y ⊆ X, there is m ∈ Mk ∩Mmenu (n (ε)) such

that d (Y, Ym) ≤ ε.
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Let ε > 0 be small enough so that the thesis of Lemma 11 holds for 1
2η. Take

arbitrary menu function y and the associated menu Y . Find mechanism m such that

d
(
Y

1
2η, Ym

)
≤ ε. The claim follows from Lemma 11. �

B.2. Menus of menus.

Lemma 13. For each η > 0, there exists k0 such that for each k ≥ k0, each (u, yu) ∈

U × [0, 1], there is a mechanism m ∈ Mk such that for each µ ∈ ∆U , each (eA, eB) ∈

E (m,µ), we have eA (u) ≥ yu − η, and eB ≥ maxy∈Y:y(u)≥yu Π (y, µ)− η.

Proof. Because the space of all menus of menus C2X is compact in the Hausdorff

metric, and finite menus of menus form a dense subset, there is nB (ε) < ∞ such

that for each W ∈ C2X, there exists m ∈ Mmmenu (nB (ε) , n (ε)) (where n (ε) is

as in the proof of Lemma 12) such that d (W,Wm) ≤ 1
2ε. Further, because the

Mmenu (nB (ε) , n (ε)) is a compact subset of Euclidean space, for each ε > 0, there

exists k0 (ε) such that for any k ≥ k0 (ε), any m ∈Mmmenu (nB (ε) , n (ε)), there exists

m′ ∈Mk∩Mmmenu (nB (ε) , n (ε)) such that d (Wm,Wm′) ≤ 1
2ε. It follows that for each

k ≥ k0 (ε), any W ⊆ C2X, there is m ∈Mk such that d (W,Wm) ≤ ε.

Let ε > 0 be small enough so that the thesis of Lemma 11 holds for 1
2η. Fix k ≥ k0 (ε).

Take arbitrary (u, yu) ∈ U× [0, 1]. Construct menu of menusWu,yu of all menus Y such

that for each associated menu function y (u) ≥ yu. Further, construct menu of menus

W η
u,yu =

{
Y

1
2η : Y ∈ Wu,yu

}
. Find mechanism m ∈ Mk such that d (W η,Wm) ≤ ε.

The latter means that:

• for each sB ∈ S1
B (m), there exists Y ∈ Wu,yu such that d

(
Y

1
2η, Ym (sB)

)
≤ ε. If

y is the menu function associated with Y and ym (sB) is associated with Ym (sB),

then by Lemma 11, we have that for any sB, ym (u; sB) ≥ y (u)− η ≥ yu − η,
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• for each Y ∈ Wu,yu , there exists sB ∈ S1
B (m) such that d

(
Y

1
2η, Ym (sB)

)
≤ ε,

and, if y is the menu function associated with Y and ym (sB) is associated with

Ym (sB), then by Lemma 11, we have that Π (ym (sB) , µ) ≥ Π (y, µ)− η for any

belief µ ∈ ∆U . Therefore, maxsB Π (ym (sB) , µ) ≥ maxy∈Y:y(u)≥yu Π (y, µ)− η.

�

Appendix C. Proofs of upper bound of Theorem 1

C.1. Basic equilibrium bound.

Lemma 14. For each δ, k,

• eA (u) ≥ 1− δ, eB ≥ δ (1− δ) for each u and each (eA, eB) ∈ EA (δ,Mk, µ) ,

• eA (u) ≥ δ (1− δ) , eB ≥ 1− δ for each u and each (eA, eB) ∈ EB (δ,Mk, µ) .

Proof. Notice that Alice is going to accept menu δ 1A + (1− δ) 0A, which puts the lower

bound on Bob’s payoff. Anticipating that, Bob is going to reject any continuation

equilibrium that gives him less that δ (1− δ). The other case is analogous. �

C.2. Proof of Lemma 3. Let η = 1
5 (inf h) (1− γ) (1− δ) > 0. Let k0 be such that

Lemma 12 holds. Suppose that h has UB (γ, δ) property. Fix a belief µ.

Let E =
{

(eA, µ) : (eA, eB) ∈ EA (δ,Mk, µ)
}
. Suppose that there exists (eA, eB, µ) ∈

E such that ∀u∈suppµeA (u) ≥ h (u). By the remark after Lemma 2, E is compact, and

we can find the equilibrium payoffs and the beliefs (eA, µ) that are undominated in

E the following sense: there is no (e′A, µ′) such that eA (u) + η < e′A (u) for some

u ∈ suppµ′ ⊆ suppµ. Let y = max (h, eA) and notice that y is a menu function by

Lemma 10. Also, y (u) = eA (u) for each u ∈ suppµ, and, by Lemma 14, Π (y, µ) =

Π (eA, µ) ≥ eB ≥ δ (1− δ) .
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By the definition of the UB-property, there exists a menu function y′ such that

y′ ≥ (1− γ (1− δ)) y ≥ (1− γ (1− δ)) eA, (7)

and

γδΠ (y′, µ) ≥ Π (y, µ) = Π (eA, µ) . (8)

By Lemma 12, there exists a mechanism m such that for any µ ∈ ∆U , each µ′, each

(e′A, e′B) ∈ E (m,µ′), each u, we have

e′A (u) ≥ y′ (u)− η ≥ (1− γ (1− δ)) eA (u)− η ≥
(

1−
(

1− 1
2 (1− γ)

)
(1− δ)

)
eA (u)− η.

The last inequality follows from the choice of

η ≤ 1
4 (1− γ) (1− δ)h (u) ≤ 1

4 (1− γ) (1− δ) eA (u) .

Additionally, we have

e′B ≥ Π (y′, µ)− η ≥ 1
γδ

Π (eA, µ)− η = 1
δ

Π (eA, µ) +
(

1− γ
γ

)
1
δ

Π (eA, µ)− η > 1
δ

Π (eA, µ) ,

where the choice of η implies that 1−γ
γ

Π(eA,µ)
δ
≥ 1−γ

γ
(1− δ) > η.

Consider an equilibrium that supports an outcome (eA, µ). Let (f, ψ) be an continu-

ation equilibrium outcome with beliefs starting from period 3 after a history such that

in period 1, Bob rejects; in period 2, Bob proposes mechanism m with continuation

payoffs (e′A, e′B) ∈ E (m,µ′) that is rejected by Alice. (Here, µ′ is a belief after the

mechanism m is accepted.) Let AR ⊆ suppµ be the set of Alice’s types for whom the

rejection in period 2 is a (possibly, weak) best response. For each u ∈ AR, it must be

that

f (u) ≥ 1
δ
e′A (u) . (9)
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Suppose that the rejection in period 2 occurs with a positive probability. If so, then

ψ is absolutely continuous wrt. µ, and, in particular, suppψ ⊆ AR ⊆ suppµ. Because

(eA, µ) is undominated in E, there must be u0 ∈ suppψ such that y (u0) ≥ f (u0)− 2η.

By (7) and (9) ,

eA (u0) ≥ f (u0)− 2η ≥ 1
δ
e′A (u0)− 2η ≥ 1

δ

(
1−

(
1− 1

2 (1− γ)
)

(1− δ)
)
eA (u0)− 2η

≥ eA (u0) + 1
δ

1
2 (1− γ) (1− δ) eA (u0)− 2η

≥ eA (u0) + (1− γ) (1− δ)
[1
2eA (u0)− 2

5 (inf h)
]
> eA (u0) ,

where the last inequality follows from the fact that eA (u0) ≥ h (u0). The contradiction

shows that period 2 offer of m is accepted with probability 1. By Lemma 2, eB ≤

Π (eA, µ). On the other hand, Bob’s strategy to reject any offer in period 1 and propose

m leads to the expected discounted payoff of δe′B > Π (eA, µ). But this leads to a

contradiction with a choice of (y, µ) as an equilibrium.

C.3. Proof of Lemma 5. We assume w.l.o.g. that vc ≥ vs. We consider the following

two cases separately:

• vc > vs, or Bob likes chocolate more than strawberry; this case is further divided

into two sub-cases that depend on the offered menu,

• vc = vs, or Bob is indifferent between chocolate and strawberry.

Because we work with N = 2, it is possible and convenient to redefine any function of

type u = (uc, 1− uc) (i.e., l (u), NA (u), etc.) as a function of the first coordinate (i.e.,

l (uc), NA (uc), etc.)

C.3.1. Case A: vc > vs. Assume that ε > 0 is sufficiently small that

NA (1) (1 + ε) = 1
2vc

(1 + ε) ≤ 1 and vc >
1

2− ε. (10)
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Define function h as

h (uc) =


(1− ε)NA (uc) + ε, if uc ≤ 1

2

NA (1) (1 + ε) , if uc ≥ 1
2 .

Notice that function h is continuous due to the fact that NA
(

1
2

)
= 1

2 .

Find δ0 such that for all δ ≥ δ0 and all γ ≥ δ, we have

γ2δ (1− δ)
1− γδ ≥ 1− ε

1 + ε
,

ε2

1 + ε
> γ (1− δ) , vc ≥

1
2− ε+ 1

ε
γ (1− δ) , and ε >

1− γδ
γδ

.

(11)

Take any menu function y ≥ h. Find u∗c ∈ arg minu∈U y (uc) and take y∗ := y (u∗c) ≥

inf h = 1
2 (1 + ε). We consider separately two sub-cases:

Subcase A1 : y∗ < 1− 1
ε
γ (1− δ). Construct function

y′ (uc) =


1−

(
1 + y∗

1−y∗γ (1− δ)
)

(1− y (uc)) , if uc ≤ u∗c ,

(1− γ (1− δ)) y (uc) , if uc ≥ u∗c .

We are going to show that (a) y′ is a menu function, (b) y′ ≥ (1− γ (1− δ)) y and (c)

for each type u,

γδ (1− d (uc, y′)) ≥ 1− d (uc, y) . (12)

(Recall the definition of d (u, y) from Section A.2.) That shall verify that h has

UB (γ, δ0) property.

Ad (a). We start by checking that function y′ is convex. First, notice that function

y′ is continuous at u∗c , and, as y, minimized at u∗c . It follows that for each a ≤ u∗c ≤ b,
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we have y′ (u∗c) ≤
b−u∗c
b−a y

′ (a) + u∗c−a
b−a y

′ (b). Further, for any α < b−u∗c
b−a , we have

y′ (αa+ (1− α) b)

≤αa+ (1− α) b− u∗c
b− u∗c

y′ (b) + b− αa+ (1− α) b
b− u∗c

y′ (u∗c)

≤αa+ (1− α) b− u∗c
b− u∗c

y′ (b) + b− αa+ (1− α) b
b− u∗c

[
b− u∗c
b− a

y′ (a) + u∗c − a
b− a

y′ (b)
]

=
(
αa+ (1− α) b− u∗c

b− u∗c
+ b− αa+ (1− α) b

b− u∗c
u∗c − a
b− a

)
y′ (b) + b− αa+ (1− α) b

b− a
y′ (a)

= 1
b− u∗c

(
(αa+ (1− α) b) (b− u∗c)− u∗ca− ba

b− a

)
y′ (b) + b− αa+ (1− α) b

b− a
y′ (a)

=αa+ (1− α) b− a
b− a

y′ (b) + b− αa+ (1− α) b
b− a

y′ (a) .

An analogous calculation shows the same inequality when α > b−u∗c
b−a . Finally, if a, b ≤ u∗c

and a, b ≥ u∗c , then y′ (αa+ (1− α) b) ≤ αy′ (a) + (1− α) y′ (b) for any α ∈ [0, 1], due

to the construction of y′ as a piecewise-linear transformation of convex y.

Because y′ is convex, Duy
′ is closed for each u. We show that it is non-empty. By

Lemma 8, it is enough to check the non-emptiness for uc = 0, 1.

• For any l ∈ D1y, we have (1− γ (1− δ)) l ∈ D1y. To see it, observe that the

derivative of the convex function is multiplied by a constant (1− γ (1− δ)) ∈

(0, 1) and so obtained affine function satisfy the payoff restriction.

• Let l ∈ D0y. Because 1 ≥ y ≥ h and h (0) = 1, it must be that y (0) =

l (0) = 1 and l (1) ≥ ∆0h (1), where ∆0h is the affine function tangent to h at

0. By the definition of h, we have ∆0h (1) = ε. Consider affine l′ defined by

l′ (uc) = 1−
(
1 + y∗

1−y∗γ (1− δ)
)

(1− l (uc)). Clearly, l′ supports y′ at 0. By the
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construction, l′ (0) = 1, and

1 ≥ l′ (1) ≥ 1−
(

1 + y∗

1− y∗γ (1− δ)
)

(1− ε) .

Because we work with the case y∗ < 1− 1
ε
γ (1− δ), the above is not larger than

≥ 1− (1 + ε− γ (1− δ)) (1− ε) ≥ 1− (1 + ε) (1− ε) ≥ 0.

Lemma 1 implies that y′ is a proper menu function.

Ad (b). For uc ≤ u∗c , we have

1−
(

1 + y∗

1− y∗γ (1− δ)
)

(1− y (uc))− (1− γ (1− δ)) y (uc)

=1−
(

1 + y∗

1− y∗γ (1− δ)
)

+
(

1 + y∗

1− y∗γ (1− δ)− 1 + γ (1− δ)
)
y (uc)

=γ (1− δ)
[
y (u)− y∗

1− y∗

]
≥ 0.

The claim is immediate for uc ≥ u∗c .

Ad (c). We have

d (uc, y′) =


1−

(
1 + y∗

1−y∗γ (1− δ)
)

(1− d (uc, y)) , if uc ≤ u∗c ,

(1− γ (1− δ)) d (uc, y) , if uc ≥ u∗c .

For uc ≤ uc, we check that

γδ

(
1 + y∗

1− y∗γ (1− δ)
)

(1− d (uc, y))− (1− d (uc, y))

=
(

y∗

1− y∗γ
2δ (1− δ)− (1− γδ)

)
(1− d (uc, y))

= (1− γδ)
(

y∗

1− y∗
γ2δ (1− δ)

1− γδ − 1
)

(1− d (uc, y)) ≥ 0,
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where the last inequality follows from the fact that d (uc, y) ≤ 1, y∗

1−y∗ ≥
1+ε
1−ε and

inequality (11).

For uc ≥ u∗c , notice first that d (uc, y) ≤ min (d (u∗c) , d (1)) due to the fact that

function d (., y) is increasing below vc and decreasing above vc. Moreover, d (u∗c , y) =

y∗ ≥ 1
2 (1 + ε) and,

d (1, y) ≥ vcy (1) ≥ vc (1 + ε)NA (1) = 1
2 (1 + ε) .

(See (1).) Therefore,

γδ (1− (1− γ (1− δ)) d (uc, y))− (1− d (uc, y)) = d (uc, y) (1− γδ (1− γ (1− δ)))− (1− γδ)

= (1− γδ)
((

1 + γ2δ (1− δ)
1− γδ

)
d (uc, y)− 1

)
≥ (1− γδ)

((
1 + 1− ε

1 + ε

) 1
2 (1 + ε)− 1

)
≥ 0.

Subcase A2: y∗ ≥ 1− 1
ε
γ (1− δ). Construct function y′ (uc) = y (uc)− 1−γδ

γδ
(1− ε)uc.

As in the subcase A1 above, we are going to establish (a), (b), and (c).

Ad (a) Notice that function y′ is convex because it is a sum of convex y and an affine

function. We check that sets Ducy
′ are non-empty for each uc. Let luc ∈ Ducy and

define l′uc (u) = luc (u)− 1−γδ
γδ

(1− ε)uc. Notice that l′uc (0) = luc (0) ∈ [0, 1]. Moreover,

l′uc (1) ≤ luc (1) ≤ 1 and l′uc (1) ≥ l′0 (1). As in the sub-case A1, we determine that

l0 (1) ≥ ∆0h (1) = ε. Hence, due to (11), we have

l′uc (1) ≥ ε− 1− γδ
γδ

(1− ε) ≥ ε− 1− γδ
γδ

> 0.
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Ad (b). We have

y′ (uc)− (1− γ (1− δ)) y (uc) = y (uc) γ (1− δ)− 1− γδ
γδ

(1− ε)uc

≥
(

1− 1
ε
γ (1− δ)

)
γ (1− δ)− 1− γδ

γδ
(1− ε) = γ (1− δ)

[
1− 1

ε
γ (1− δ)− 1− γδ

γ2δ (1− δ) (1− ε)
]

≥γ (1− δ)
[
1− 1

ε
γ (1− δ)− 1

1 + ε

]
≥ γ (1− δ)

ε

[
ε2

1 + ε
− γ (1− δ)

]
≥ 0.

where we used the fact that y (uc) ≥ y∗ ≥ 1− 1
ε
γ (1− δ), and inequalities (11).

Ad (c). Because d (uc, y) is initially increasing and, then, decreasing, we have

d (uc, y) ≥ min (d (0, y) , d (1, y)) .Notice that d (1, y) ≥ vcy
∗ and d (0, y) ≥ 1−vc (1− ε) .

(For the first inequality, notice that if l ∈ D1y, then it must be that l (1) ≥ y∗ and

l (0) ≥ 0. For the second inequality, notice that if l ∈ D0y, then l (0) = 1 and, as in

part (a) of this case, l (1) ≥ ∆uh = ε.) Because of (11), we have

vcy
∗ − (1− vc (1− ε)) ≥ vc

(
1− 1

ε
γ (1− δ) + (1− ε)

)
− 1

≥vc
(

2− 1
ε
γ (1− δ)− ε

)
− 1 ≥ 0.

Hence, d (uc, y) ≥ 1− vc (1− ε) . Because

d (uc, y′) = d (uc, y)− 1− γδ
γδ

(1− ε) vc,

we have

γδ (1− d (uc, y′))− (1− d (uc, y)) = γδ

(
1− d (uc, y) + 1− γδ

γδ
(1− ε) vc

)
− (1− d (uc, y))

= (1− γδ) (1− ε) vc − (1− d (uc, y)) (1− γδ) ≥ (1− γδ) (1− ε) vc − vc (1− ε) (1− γδ) ≥ 0.
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C.3.2. Case B: vc = vs = 1
2 . In such a case, we define h (uc) = (1− ε)NA (uc) + ε.

Find γ, δ < 1 such that

ε > 1− γδ, γ
2δ (1− δ)
1− γδ ≥ 1− ε

1 + ε
. (13)

Take any menu function y ≥ h. Then, for each uc

y (uc) ≥ (1− ε) 1
2 + ε = 1

2 (1 + ε) . (14)

Let

y′ (uc) = 1− 1
γδ

(1− y (uc)) = 1
γδ
y (uc)−

1− γδ
γδ

.

As in above cases, we are going to show (a), (b), and (c).

Ad (a). Function y′ is trivially convex as the sum of a (scaled-up) convex function

y and a constant. We check that sets Ducy
′ are non-empty for each uc. By Lemma

8, it is enough to check for uc = 0, 1. Let luc ∈ Ducy and define l′uc (u) = 1
γδ
luc (u) −

1−γδ
γδ

. We check that affine l′uc satisfies the required payoff restriction. Notice that

l′uc (u) ≤ luc (u) ≤ 1 for each u, including u = 0, 1. Because y is convex, luc (0) ≥ l1 (0)

and luc (1) ≤ l0 (1) . Becuase 1 ≥ y ≥ h and h (0) = h (1) = 1, it must be that

y (0) = y (1) = 1 as well. It follows that l0 (1) , l1 (0) ≥ ∆0h (1) = ∆1h (0), where ∆xh

is the affine function tangent to h at x. By the definition of h, we have ∆0h (1) = ε.

To summarize, luc (0) , luc (1) ≥ ε, and

1 ≥ l′uc (1) ≥ 1
γδ
ε− 1− γδ

γδ
= 1
γδ

(ε− (1− γδ)) ≥ 0,

where the last inequality comes from (11). Lemma 1 implies that y′ is a proper menu

function.
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Ad (b). Notice that

y′ (uc)− (1− γ (1− δ)) y (uc) =
(

1
γδ
− (1− γ (1− δ))

)
y (uc)−

1− γδ
γδ

=1− γδ
γδ

[(
1 + γ2δ (1− δ)

1− γδ

)
y (uc)− 1

]
≥ 1− γδ

γδ

[(
1 + 1− ε

1 + ε

) 1
2 (1 + ε)− 1

]
≥ 0,

where we used (14) and (13).

Ad (c). Fix uc and notice that d (uc, y′) = 1
γδ
d (uc, y)− 1−γδ

γδ
. Hence,

γδ (1− d (uc, y′))− (1− d (uc)) = γδ

(
1− 1

γδ
d (uc) + 1− γδ

γδ

)
− (1− d (uc)) = 0.

Appendix D. Proofs of lower bound case of Theorem 1

D.1. Proof of Lemma 6. Let

η < min
(

5
11

1− γ
γ

1− δ
δ

,
1
2 (1− γ) δ (1− δ)2

)
> 0. (15)

Let k0 be such that Lemma 13 holds for η. Fix k ≥ k0, and δ ≥ δ0. Define functions:

for each u ∈ U and ψ ∈ ∆U ,

• emin
A (u) = limk→∞ inf(eA,eB)∈EB(δ,Mk,µ) for some µ eA (u) be the lowest equilibrium

payoff of type u across equilibria for any beliefs,

• g (u, ψ, yu) = Πopt (emin
A (u) 1.=u, ψ) be the largest possible Bob’s payoff given

beliefs ψ and subject to the constraint that Alice type u receives at least emin
A (u).

By Lemma 14, for any ψ and (fA, fB) ∈ EB (δ,Mk, ψ), we have

1− δ ≤ fB ≤ g (u, ψ, yu) , and δ (1− δ) ≤ emin
A (u) ≤ fA (u) . (16)

Suppose that h (u) > emin
A (u) for some type u. Find a belief µ and equilibrium

outcome (eA, eB) ∈ EB (δ,Mk, µ) such that eA (u) < min
(
emin
A (u) + 1

10η, h (u)
)
. By
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Lemma 13, there exists a mechanism m ∈Mk such that for each ψ and each (pA, pB) ∈

E (m,ψ),

pA (u) ≥ 1
γδ
emin
A (u)− η ≥ 1

γδ

(
eA (u)− 1

10η
)
− η (17)

= 1
δ
eA (u) + 1− γ

γ

1
δ
eA (u)− 11

10η >
1
δ
eA (u) ,

where the last inequality follows from (15) and (16), and

pB ≥ max
y′∈Y:y′(u)≥ 1

γδ
emin
A (u)

Π (y′, ψ)− η = Πopt

(
1
γδ
emin
A (u) 1.=u, ψ

)
− η (18)

≥ (1− γ (1− δ)) Πopt
(
emin
A (u) 1.=u, µ

)
− η = δg (u, ψ, yu) + (1− γ) (1− δ) g (u, ψ, yu)− η > δg (u, ψ, yu) ,

where the last inequality follows from (15) and (16).

Given an equilibrium with payoffs (eA, eB) ∈ EB (δ,Mk, µ), consider a deviation

by Alice, where she rejects whatever was Bob’s offer in the first period and pro-

poses mechanism m in the subsequent period. Let ψ be the continuation beliefs and

(fA, fB) ∈ EB (δ,Mk, ψ) be the period 3 continuation equilibrium outcome after Bob

rejects Alice’s offer. By (16), the period 2 present value of rejection is not larger than

δfB ≤ δg (u, ψ, yu), which, by (18), is strictly smaller than the payoff pB from accepting

m. Hence, in equilibrium, Bob is going to accept m. But then, period 1 discounted

Alice’s payoff from her deviation to m is, by (17), strictly higher than her equilibrium

payoff eA (u). This contradicts the definition of the equilibrium. The contradiction

concludes the proof of the lemma.

D.2. Proof of Lemma 7. Choose γ, δ < 1 so that

1− γδ
γδ

, 2vk
1− γδ
γδ

≤ ε,
γ2δ (1− δ)

1− γδ ≥ 1− ε
1 + ε

. (19)
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We consider the two cases separately. In each case, we take menu function y, type

w st. y (w) ≤ h (w) and a belief µ ∈ ∆U ,and we define a new function y′ such that (a)

y′ is a menu function, (b) γδy′ (w) ≥ y (w), and (c) Π (y′, µ) ≥ (1− γ (1− δ)) Π (y, µ).

Part 1: h (u) = (1− ε) 1
2 . Take any w and any menu function such that y (w) ≤

1
2 (1− ε). We can assume that Π (y, µ) ≥ 1 − y (w); otherwise, we can replace y by

ŷ (u) = y (w) for each u ∈ U . Define y′: for each u,

y′ (u) = 1− (1− γ (1− δ)) (1− y (u)) = (1− γ (1− δ)) y (u) + γ (1− δ)

Ad (a). y′ is convex as an affine transformation of a convex function Let lu ∈ Duy

and define l′u (u′) = (1− γ (1− δ)) lu (u′)+γ (1− δ) for each u′. Because lu (0) , lu (1) ∈

[0, 1], and because γ (1− δ) ∈ (0, 1), we have l′u (0) , l′u (1) ∈ [0, 1]. It follows that

l′u ∈ Duy
′ and the sets Duy

′ are non-empty.

Ad (b) Observe that γδy′ (u)− y (u) = γ (1− δ) [1− y (u)] ≥ 0.

Ad (c). We have d (y′, u) = (1− γ (1− δ)) d (y, u) + γ (1− δ) . Hence,

Π (y′, µ)− (1− γ (1− δ)) Π (y, µ)

=
∫

[1− ((1− γ (1− δ)) d (y, u) + γ (1− δ))− (1− γ (1− δ)) (1− d (y, u))] dµ (u) = 0.

Part 2: h (u) = (1− ε) min
(

1
2vk
, 1
)
uk for some k. Take menu function y and type

w st. y (w) ≤ h (w) . We can assume that

Π (y, w) ≥ 1− (1− ε) min
( 1

2vk
, 1
)
vk = 1− (1− ε) min

(1
2 , 1

)
≥ 1

2 (1 + ε) ;

otherwise, we can replace y by ŷ (u) = h (u). Define function y′ (u) = y (u)+1−γδ
γδ

y (w)uk

for each u.
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Ad (a). y′ is convex as a sum of convex y and an affine function. We check that

sets Duy
′ are non-empty. Let l ∈ Duy and define l′ (x) = l (x) + 1−γδ

γδ
y (w)xk. Clearly,

l′ (u) = y′ (u) and l′ (x) ≤ y′ (x) for each x ∈ U . We check that affine l′ satisfies

the restriction l′ (ωn) ∈ [0, 1] for each n. Clearly, l′ (ωn) ≥ 0. Notice that l′ (ωn) =

l (ωn) + 1−γδ
γδ

y (w) 1n=k . Thus it is enough to show the claim for n = k. But then,

l′
(
ωk
)

= l
(
ωk
)

+ 1− γδ
γδ

y (w) ≤ y
(
ωk
)

+ 1− γδ
γδ

≤ 1− ε+ 1− γδ
γδ

≤ 1.

Ad (b) Immediate.

Ad (c). Notice that for each belief µ, Π (y′, µ) = Π (y, µ) − 1−γδ
γδ

y (w) vk. Hence,

because y (w) ≤ (1− ε) min
(

1
2vk
, 1
)
wk ≤ 1

2 (b1− ε) and because of (19),

Π (y′, µ)− (1− γ (1− δ)) Π (y, µ) = γ (1− δ)
(

Π (y, µ)− 1− γδ
γ2δ (1− δ)y (w) vk

)

≥γ (1− δ)
(1

2 (1 + ε)− 1 + ε

1− ε (1− ε) min
(1

2 , vk
)
wk

)
≥ γ (1− δ)

(1
2 (1 + ε)− 1

2 (1 + ε)
)

= 0.

Appendix E. Proofs of Section 4

E.1. Proof of Proposition 1. The proof has three parts. The first part develops

notation. The second part contains two intermediary steps. The last part constructs

an equilibrium and verifies the equilibrium condition.

E.1.1. Preliminaries. Let ηk = d (X,X (Sk)) be the quality of approximation of the

space of simple offers with Sk. Let
(
xj,δ

)
be the Rubinstein’s allocation for type u∗,

i.e., the outcome of the complete information game of Bob and Alice type u∗ with

unrestricted (simple) offers Γj (δ,S, δu∗). Let
(
xj,k,δ

)
be the Rubinstein’s allocation

in the restricted game Γj (δ,Sk, δu∗). Then, xA,k,δ ∈ arg maxx∈Sk:v(x)≥δv(xB,k,δ) u
∗ (x)
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and xB,k,δ ∈ arg maxx∈Sk:u∗(x)≥δu∗(xA,k,δ) v (x)and limk→∞ x
j,k,δ = xj,δ. It follows that

limk v
(
xB,k,δ

)
= RB,δ

B (u∗) ≥ δNB (u∗) .

We are going to construct an equilibrium in which Bob accepts any offer of Alice

that gives him at least δv
(
xB,k,δ

)
. Let Ak,δ =

{
x ∈ Sk : v (x) ≥ δv

(
xB,k,δ

)}
be the set

of allocations that are acceptable for Bob. For each u, each µ ∈ U , let

• eA,k,δA (u) = maxx∈Ak,δ u (x) be the best payoff of Alice type u among all accept-

able allocations,

• xA,k,δ (u) = arg maxx∈Sk:u(x)≥eA,k,δA (u) v (x) be the Bob’s optimal allocation among

Alice’s optimal choices,

• eA,k,δB (u) = v
(
xA,k,δ (u)

)
the associated Bob’s payoff given Alice type u, and

• eA,k,δB (µ) =
∫
eA,k,δB (u) dµ (u) be the expected Bob’s payoff given beliefs µ.

When Bob makes offer x in his turn, this offer is going to be rejected by each type

u of Alice such that u (x) < δeA,k,δA (u). For each belief µ, each x, let px,k (µ) =

µ
({
u : u (x) < δeA,k,δA (u)

})
and µx,k = µ

(
.|u : u (x) < δeA,k,δA (u)

)
be respectively,the

probability of rejection, and the updated belief after offer x is rejected. Let

• eB (x) = px,k (µ) δeA,k,δB (µx)+
(
1− px,k (µ)

)
v (x) be Bob’s expected payoff from

making offer x that can be rejected, in which case, he gets continuation payoff

δeA,k,δB (µx),

• xB,k,δ (µ) = arg maxx∈Sk eB (x) be the payoff-maximizing Bob’s offer, and

• eB,k,δB (µ) = maxx∈Sk eB (x) be the optimal payoff.

E.1.2. Intermediary steps.

Lemma 15. Fix k, δ and r ∈ [0, 1] , ρ > 0. Let x0 be the solution to equations v (x0) = r

and x0
A,c

x0
A,s

= ρ. Then, for each type u such that uc ≤ vc, x0 ∈ arg max
x:v(x)≥r,

xA,c
xA,s

≥ρ u (x) .
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Proof. The result has a simple intuition. Because Alice’s u likes chocolate less than

Bob, her optimal payoff is achieved when Bob’s constrain binds, and the allocation is

the least chocolatey as possible. �

The next result shows that Bob’s optimal payoff is smaller than v
(
xB,k,δ

)
. In par-

ticular, when Alice makes an offer with an expected payoff that is not smaller than

δv
(
xB,k,δ

)
, Bob will prefer to accept such an offer rather than wait for his period and

receive v
(
xB,k,δ

)

Lemma 16. For sufficiently high k, any belief µ, eB,k,δB (µ) ≤ v
(
xB,k,δ

)
.

Proof. To shorten the notation, we denote xA = xA,k,δ, xB = xB,k,δ. Notice that

limk supu∈U
∣∣∣eA,k,δB (u)− δv

(
xB
)∣∣∣ = 0. Let k be high enough so that supu∈U e

A,k,δ
B (u) ≤

v
(
xB
)
.

We are going to show that, if k is sufficiently large than, for any offer x ∈ Sk,

eB (x) ≤ v
(
xB
)
. First, suppose that v (x) ≤ v

(
xB
)
.Then, by the choice of k,

eB (x) ≤ px,k (µ) δeA,k,δB (µx) +
(
1− px,k (µ)

)
v (x) ≤ v

(
xB
)
.

Next, suppose that v (x) > v
(
xB
)
. We are going to show below that, in such a case,

px,k (µ) = 1, or the offer x is rejected µ-almost surely. If so, eB (x) ≤ δeA,k,δB (µx) ≤

v
(
xB
)
.

Recall that the offer is rejected by type u if u (x) < δeA,k,δA (u) = δu
(
xA,k,δ (u)

)
. Let

ρA = xAA,c
xAA,s

be the ratio of chocolate to strawberry in Alice’s part of allocation xA.

• Because u∗ (x) < δu∗
(
xA
)
(recall that xB was the largest Bob’s payoff from

an allocation that led to the payoff of at least δu∗
(
xA
)
for type u∗), offer x is

rejected by type u∗.
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• Take any u such that u∗c ≤ uc (which implies u∗s ≥ us ) and suppose that x is

less chocolatey for Alice than xA:

ρ = xA,c
xA,s

≤ ρA. (20)

Then, we check that

u (x)
δeA,k,δA (u)

≤ u (x)
δu (xA) ≤

u∗ (x)
δu∗ (xA) < 1.

(Indeed, the first inequality comes from the fact that eA,k,δA (u) ≥ u
(
xA
)
. The

second inequality is a consequence of the fact that u∗likes chocolate less than

u: after some algebra, it is equivalent to

u∗c
u∗s
ρ+ uc

us
ρA +

(
uc
us

u∗c
u∗s
ρρA + 1

)
≥ u∗c
u∗s
ρ′ + uc

us
ρ+

(
uc
us

u∗c
u∗s
ρρA + 1

)
.

After subtracting the terms in the bracket, we obtain u∗c
u∗s
ρ+ uc

us
ρA ≥ u∗c

u∗s
ρA + uc

us
ρ

which holds due to the fact that 0 ≤ u∗c
u∗s
< uc

us
.) It follows that type u rejects x.

• From now on, we assume that x is strictly more chocolatey than xA. Consider

the case uc ≤ vc, i.e., Alice likes chocolate less than Bob. Let x0 be the solution

to equations v (x0) = v
(
xB
)
and x0

A,c

x0
A,s

= ρA. Then, v (x) ≥ v
(
xB
)

and xA,c
xA,s

>

ρA, and, by Lemma 15, we have u (x) ≤ u (x0). But, then, u (x) ≤ u (x0) ≤

δeA,k,δA (u) due to the fact that x0 satisfies (20), and it falls under the previous

case.

• Finally, consider the case uc ≥ vc, Alice likes chocolate more than Bob. Then,

for all sufficiently high k, δv
(
xB
)

= v
(
xA
)

+ O
(
ηk
)
> 1

2 . In the same
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time, because types A receive substantially less than their Rubinstein’s pay-

offs, ˙limk→∞
max

x:v(x)≥v(xB) u(x)
max

x:v(x)≥v(xA) u(x) < δ. It follows that fur sufficiently high k, u (x) <

δeA,k,δA (u) (uniformly across u st. uc ≥ vc).

�

E.1.3. Equilibrium. Let ∆∗ be the set of beliefs µ such that u∗s = arg maxu∈suppµ us.

Then, δu∗ ∈ ∆∗.For each µ ∈ ∆∗, we are going to construct equilibrium with payoffs

(eA, eB) ∈ EB (δ,Mk, µ) such that eB (u) ≥ δv
(
xB,k,δ

)
, and eA (u) ≤ maxx∈Sk:v(x)≥δv(xB,k,δ) u (x).

For any belief µ ∈ ∆∗, we construct the following strategies and belief-updating, and

we verify that they form an equilibrium using the one-shot deviation strategy:

• We say that a history is good if Alice has always proposed in set Ak,δ. After

a not good history, Bob’s beliefs are fixed at δu∗ . The continuation behavior is

expected to be as in the equilibrium of the complete information game against

type u∗:

– If Alice’s turn to make an offer, the expected payoffs are
(
eA,k,δA (.) , v

(
xA,k,δ

))
.

– If Bob’s turn to make an offer, the expected payoffs are
((

max
(
xB,k,δ, δeA,k,δA (.)

))
u∈U

, v
(
xB,k,δ

))
.

– Alice always proposes in Ak,δ. Any other offer is rejected. Type u of Alice

rejects Bob’s offer only if she strictly prefers to wait to the next period and

receive δeA,k,δA (u). (In particular, type u∗ accepts the offer). Bob always

accepts offer in Ak,δ.

– Clearly, the behavior in the continuation game after not good history is an

equilibrium.

• Let µ (h) be a belief after some good history h.

– If it is his turn, Bob offers xB,k,δ (µ (h)).

∗ The expected payoffs from offer x are px,k (µ) δeA,k,δB (µx)+
(
1− px,k (µ)

)
v
(
xB,k,δB

)
.

Hence, the choice of xB,k,δ (µ (h)) as the maximum is a best response.
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– After Bob’s offer x, Alice type u accepts it only if u (x) ≤ δeA,k,δB (u). If

she rejects the offer, the beliefs are updated to µx (h).

∗ The expected payoffs after she accepts are u (x). If she rejects, the

payoffs are δeA,k,δB (u). Hence, her choice is a best response.

– If her turn, Alice type u makes an offer xA,k,δ (u).

∗ the expected payoff from offer x ∈ Ak,δ is u (x).

∗ the expected payoff from offer x /∈ Ak,δ are δu
(
xB,k,δ

)
< u

(
xB,k,δ

)
≤

maxx∈Ak,δ u (x) . Hence, it is a best response for any type of Alice to

choose (one of) the best(s) outcome in Ak,δ.

∗ If Alice’s chooses x /∈ Ak,δ, the beliefs change to δu∗ (this can be

justified in a sequential equilibrium by appropriately chosen

– Bob accepts any offer in Ak,δ and rejects any other offer.

∗ The expected payoff from accepting offer x ∈ Ak,δ are v (x) ≥ δv
(
xB,k,δ

)
,

and the beliefs are potentially updated to µ (h, x) following Alice’s

choice. The expected payoff from rejecting the offer is δeB,k,δB (µ (h, x)).

By Lemma 16, the latter is smaller than the former, and accepting

is a best response.

∗ The expected payoffs from accepting an offer x /∈ Ak,δ are v (x) <

δv
(
xB,k,δ

)
. Because any such an offer leads to beliefs δu∗ , the left-

hand side of the inequality is equal to the expected and discounted

payoff from waiting till the next period. Thus, rejecting x is a best

response.

E.2. Proof of Theorem 2. The lower bound on Alice payoffs is a consequence of

Lemma 7.
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We show the bound on Bob’s payoff. For each Alice type u, define u (υ) = maxx:v(u)≥υ u (x)

be the largest payoff of type u that is consistent with Bob receiving at least υ. For

each υ ∈ [0, 1], let Y (υ) be a menu Y (υ) = {x : v (x) ≥ υ} .

The approximationMk →M ensures that

ηk := sup
Y ∈Mmenu

min
Yk∈Mmenu∩Mk

d (Y, Yk)→ 0.

Let Yk ∈ Mk ∩Mmenu be the sequences of menus chosen in the minimum part of the

above expression.

Let

eA,k,δB = inf
{
eB : (eA, eB) ∈ EA (δ,Mk, µ) for any µ ∈ ∆U

}
.

be the lowest equilibrium payoff across all possible beliefs in the game in which Alice

makes the first offer. We are going to show that for each ε > 0, there is k0 sufficiently

high so that for all k ≥ k0, eA,k,δB ≥ 1
1+δ − ε.

In any equilibrium of the game where Alice makes the first offer, Bob’s expected

payoff is not lower than eA,k,δB . It cannot be that all Alice’s types u receive payoffs that

are strictly higher than u
(
eA,k,δB

)
. Hence, a positive-measure fraction of them must

accept any Bob’s offer that is strictly higher than δu
(
eA,k,δB

)
. But, in a similar fashion

to the proof of Lemma 4, we can show that all Alice types should accept any menu

with payoffs described by menu function y (u) > δu
(
eA,k,δB

)
. (If it is rejected by some

types, than positive fraction of them would receive tomorrow’s payoffs that are lower
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than u
(
eA,k,δB

)
. But then, a rejection would not be a best response. ) Due to linearity,

δu
(
eA,k,δB

)
= δ max

x:υ(x)≥eA,k,δB

u (x) = max
x:υ(x)≥eA,k,δB

u (δx+ (1− δ) 0A)

= max
x:υ(δx+(1−δ)0A)≥δeA,k,δB +1−δ

u (δx+ (1− δ) 0A)

≤ max
x:υ(x)≥δeA,k,δB +1−δ

u (x) = u
(
δeA,k,δB + 1− δ

)
.

(The inequality comes from the fact that the set of allocations is convex, and for each

x ∈ X, δx+ (1− δ) 0A ∈ X.) We conclude that Alice accepts any menu that contains

menu Y
(
δeA,k,δB + 1− δ

)
in its interior.

On the contrary, suppose that eA,k,δB < 1
1+δ − ε . Then, there exists an equilibrium of

the game where Alice makes the first offer with Bob’s expected payoffs eB ≤ eA,k,δB +ηk.

Consider a deviation, where Bob rejects any Alice’s offer, and, instead, proposes a

menu Yk (x). The above paragraph implies that such menu is accepted for sure if

x ≥ δeA,k,δB + 1− δ − 2ηk. Bob’s deviation is profitable if δ (x− ηk) ≥ eB ≥ eA,k,δB + ηk.

The two inequalities can be satisfied simultaneously if eA,k,δB ≤ δ
1+δ − 3 1

1−δ2ηk. Take k0

such that for all k ≥ k0, ηk (1− δ)2 ≤ ε.

E.3. Proof of Proposition 2.

E.3.1. Preliminary observations.

Lemma 17. For each y ∈ Y and µ ∈ ∆ {τ1, τ2}, if Π (y, µ) > 2
3 , then there is i such

that y (τi) ≤ 2
3 and if Π (y, µ) > δ 2

3 , then, there is i such that y (τi) ≤ 1
δ

2
3 .

Proof. Let b (a, u) = maxx∈X:u(x)≥a v (x) be the maximal payoff of Bob given that Alice

type y gets payoff a. Then, b (., u) is concave and decreasing and b
(

2
3 , τi

)
= 2

3 for each

i and b
(

2
3 , τ

)
= 1 − 4

9 . Also, Π (y, µ) ≤ ∑
u µ (u) b (y (u) , u) .The first claim follows
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from the fact that, if µ ∈ ∆ {τ1, τ2}, and y (τi) ≥ 2
3 for both i, then the above implies

that Π (y, µ) ≤ 2
3 . The second claim is analogous. �

Lemma 18. For each y ∈ Y, if y (τi) ≤ 2
3 for i = 1, 2, then y (τ) ≤ 2

3 . Similarly, if

y (τi) ≤ 1
δ

2
3 for i = 1, 2, then y (τ) ≤ 1

δ
2
3 .

Proof. The claims follow from the fact that, due to the concavity of menu function y,

we have y (τ) ≤ 1
2 (y (τ1) + y (τ2)). �

Recall that E (m, .) : ∆U ⇒ Y× [0, 1] is the correspondence of equilibrium outcomes

(eA, eB) ∈ E (µ;m) of m with initial beliefs µ. Standard arguments show that E (m, .)

is a non-empty-valued, and u.h.c. correspondence. Additionally, because of the public

randomization, E (m,µ) is convex. Hence, E (m, .) is a Kakutani correspondence.

The next two result presents two binary divisions of the space of all mechanisms.

Lemma 19. For each mechanismm, there are µA (m) ∈ ∆ {τ1, τ2} and
(
eAA (m) , eAB (m)

)
∈

E (m,µ (m)) such that either

(1) eAB (m) ≤ δ 2
3 , or

(2) eAA (τ1;m) , eAA (τ ;m) , eAA (τ2;m) ≤ 1
δ

2
3 .

LetMA
1 ⊆M denote the set of mechanisms that satisfy the first condition.

Proof. Take mechanism m /∈ MA
1 , and define set E ⊆ ∆ {τ1, τ2} × Y × [0, 1] of tuples

(µ, eA, eB) such that (eA, eB) ∈ E (m,µ). Set E is compact and connected as a graph

of a Kakutani correspondence. Let Pi ⊆ E be the set of all tuples (µ, eA, eB) ∈ E

such that eA (τi) ≤ 1
δ

2
3 . Set Pi is a closed subset of a compact set, hence compact.

Moreover, by the first part of Lemma 17, E = P1 ∪ P2. Because E is connected,

the intersection of the two sets is non-empty. Take (µ, eA, eB) ∈ P1 ∩ P2. By the

construction, eA (τ1) , eA (τ2) ≤ 1
δ

2
3 . Lemma 18 implies that e (τ) ≤ 1

δ
2
3 . �
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Lemma 20. For each mechanism m and each belief µ ∈ ∆ {τ1, τ, τ2}, there is an accep-

tance probability αB (m,µ), beliefs µBα (m,µ) , µBr (m,µ) ∈ ∆ {τ1, τ, τ2} and
(
eBA (m,µ) , eBB (m,µ)

)
∈

E (m,µα (m,µ)) such that αBµBα +
(
1− αB

)
µBr = µ, and for each u ∈ {τ1, τ, τ2},

(1) if eBA (u;m,µ) > 2
3 ,then

(
1− αB (m,µ)

)
µr (u;m,µ) = 0,

(2) if eBA (u;m,µ) < 2
3 ,then α

B (m,µ)µα (u;m,µ) = 0.

Proof. Consider a mechanism m′ in which, first, Alice chooses whether to play mech-

anism m or menu Y B, and second, the chosen mechanism is implemented. Such a

mechanism has an equilibrium strategies. The probability of choosing m is denoted as

αB (m,µ). Let µBα denote the conditional beliefs after choosing m, and let µBr denote

the conditional beliefs after choosing Y B. Finally, let
(
eBA (.) , eBB

)
denote the payoffs

in the (sub) mechanism m. �

E.3.2. Proof of Proposition 2. We describe the equilibrium, and beliefs. We need to

consider four type of histories h. In each case, we denote the beliefs as µ (h):

• Alice turn to make an offer:

– In equilibrium, Alice offers Y A. The continuation payoffs are 1
δ

2
3 for each

type of Alice u ∈ {t1, τ, τ2}, and
(
µ (τ1, τ2|h) 1

δ
2
3 + µ (τ |h)

(
1− 1

δ
4
9

))
for

Bob.

– If Alice offers a mechanism m 6= Y A,m /∈ MA
1 , the beliefs are updated to

µ (m). The continuation payoffs are eAA (.|m) ≤ 1
δ

2
3 for all types of Alice.

– In all other cases, the beliefs are updated to µ (m) and Alice’s continuation

payoffs are δ 2
3 <

1
δ

2
3 .

– Hence, offeringY A is Alice’s best response.

• Bob’s turn to accept:
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– If Alice proposed Y A, Bob accepts with continuation payoffs 1
δ

2
3 for each

type of Alice u ∈ {t1, τ, τ2}, and
(
µ (τ1, τ2|h) 1

δ
2
3 + µ (τ |h)

(
1− 1

δ
4
9

))
for

Bob.

∗ If Bob rejects, his discounted continuation payoffs are equal to µ (τ1, τ2|h) 2
3+

µ (τ |h) δ
(
1− 4

9

)
. Notice that δ

(
1− 4

9

)
< 1− 1

δ
4
9 for sufficiently high

δ. Hence, Bob’s behavior is a best response.

– If Alice proposes a mechanism m 6= Y A,m /∈ MA
1 , Bob accepts and the

continuation equilibrium has payoffs eAA (.|m) for types of Alice and eAB ≥ δ 2
3

for Bob.

∗ If Bob rejects, his discounted continuation payoffs from the game

with beliefs µ (m) are equal to δ 2
3 . Hence, Bob’s behavior is a best

response.

– In all other cases, Bob rejects the offer, which leads to the discounted

payoffs δ 2
3 .

∗ If Bob accepts m, an arbitrary equilibrium of m is played, which

leads to payoffs eB ≤ δ 2
3 . Thus, accepting is a best response.

• Bob’s turn to make an offer:

– In equilibrium, Bob offers Y B. The continuation payoffs are 2
3 for each

type of Alice u ∈ {t1, τ, τ2}, and
(
µ (τ1, τ2|h) 2

3 + µ (τ |h)
(
1− 4

9

))
for Bob.

– If Bob offers a mechanism m 6= Y B, the continuation payoffs are for Alice

are y (u) = max
(

2
3 , e

B
A (u;m,µ (h))

)
for each u ∈ {τ1, τ, τ2} and note more

than Π (y, µ) for Bob. By the first part of Lemma 17, Π (y, µ) ≤ 2
3 .

– Hence, offeringY B is Bob’s best response.

• Alice’s turn to accept:
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– If Bob proposed Y B, Alice accepts it with continuation payoffs 2
3 for each

type of Alice u ∈ {t1, τ, τ2}, and
(
µ (τ1, τ2|h) 2

3 + µ (τ |h)
(
1− 4

9

))
for Bob.

∗ If Alice rejects, the discounted continuation payoffs are 2
3 for each of

her type. Hence, accepting is a best response.

– If Bob proposes a mechanism m 6= Y B, each type of Alice decides whether

to accept or reject, depending on which choice maximizes her payoffs. If

she accepts, the beliefs are updated to µ (m,µ (h)) and an equilibrium of

m with payoffs
(
eBA (m,µ (h)) , eBB (m,µ (h))

)
is played. If she rejects, her

discounted continuation payoffs are equal to 2
3 for each type. Thus, her

best response payoffs are equal to max
(

2
3 , e

B
A (u;m,µ (h))

)
.
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