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Abstract

We develop a new approach to measuring the correlation between the types of

matched workers and firms. Our approach is accurate in data sets with many workers

and firms, but a small number of independent observations for each. Using administra-

tive data from Austria, we find that the correlation lies between 0.4 and 0.6. We use

artificial data sets with correlated worker and firm types to show that our estimator is

accurate. In contrast, the Abowd, Kramarz and Margolis (1999) fixed effects estimator

suggests no correlation between types in our data set. We show both theoretically and

empirically that this reflects an incidental parameter problem.

1 Introduction

There is sorting everywhere in the economy. Wealthier, more educated, more attractive

men on average marry wealthier, more educated, more attractive women (Becker, 1973).

Higher income households reside in distinct neighborhoods and send their children to different

schools than low income households (Tiebout, 1956). Elite universities enroll the most

qualified undergraduates (Solomon, 1975). The one place where it has been hard to find

evidence of sorting is in the labor market. A fair summary of an extensive literature following

Abowd, Kramarz and Margolis (1999) (hereafter AKM) is that the correlation between the

*We are grateful for comments from John Abowd, Fernando Alvarez, Stephane Bonhomme, Jaroslav
Borovička, Thibaut Lamadon, Rasmus Lentz, Ilse Lindenlaub, Elena Manresa, Derek Neal and Martin
Rotemberg, as well as participants in various seminars. Any remaining errors are our own. This material
is based in part on work supported by the National Science Foundation under grant numbers SES-1559225
and SES-1559459.
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fixed characteristics of workers and their employers is close to zero and sometimes negative.1

This is often interpreted as saying that there is no evidence that high wage workers work for

high wage firms and is used to justify theoretical models in which there is no sorting between

workers and firms (Postel-Vinay and Robin, 2002; Christensen, Lentz, Mortensen, Neumann

and Werwatz, 2005).

This paper argues that this conclusion is unmerited. The finding that there is no sorting is

a consequence of a well-known statistical problem with the fixed effects estimator proposed by

AKM, a version of the incidental parameter problem which is often dubbed “limited mobility

bias” (Abowd, Kramarz, Lengermann and Pérez-Duarte, 2004; Andrews, Gill, Schank and

Upward, 2008). We propose a novel, simple, and accurate measure of the extent of sorting

in the labor market and apply it to Austrian data. We find that the correlation between

the unobserved types of workers and their employers is at least 0.4, probably above 0.5,

and possibly as high as 0.6. In contrast, the AKM fixed effects estimator delivers a biased

estimate of the correlation that is close to zero in our data set.

Measuring the correlation between types requires a cardinal measure of type. We define

a worker’s type to be the expected log wage she receives in an employment relationship,

conditional on taking the job. That is, if we could observe a worker for a very long period of

time, her type would be the average log wage she receives. Similarly, a firm’s type is defined

to be the expected log wage that it pays to an employee, conditional on hiring the worker,

or equivalently the average log wage paid in a very long time series. This definition of type

differs from the AKM fixed effects, but under natural distributional assumptions that we

spell out in the body of the paper, the correlation between our notion of types is the same as

the correlation between the AKM fixed effects, assuming both are measured without error.2

That is, the difference between our results and those based on the AKM approach is not

conceptual, but rather due to measurement issues.

The important difference between the two approaches is that real world data sets have few

conditionally independent wage observations for most workers and firms. Our approach, in

contrast to AKM, is well-suited to this type of environment. Wages are highly autocorrelated

within worker-firm matches, so we think of the relevant unit of observation as being at the

match level. In our data set we observe 4.1 million Austrian men working at 0.7 million

1In addition to the original study on French data by AKM, see Abowd, Creecy and Kramarz (2002) for
Washington State, Iranzo, Schivardi and Tosetti (2008) for Italy, Gruetter and Lalive (2009) for Austria,
Card, Heining and Kline (2013) for Germany, Bagger, Sørensen and Vejlin (2013) and Bagger, Fontaine,
Postel-Vinay and Robin (2014) for Denmark, and Lopes de Melo (forthcoming) for Brazil, among others.

2Our definition of type is closer to Christensen, Lentz, Mortensen, Neumann and Werwatz (2005), who
define a firm’s type to be equal to the average wage (in levels rather than logs) it pays. It is worth noting
that both AKM’s and our definition of firm type is consistent with high type firms being either high or low
productivity firms, for the reasons discussed in Eeckhout and Kircher (2011).
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firms between 1972 and 2007. The median worker has two employers and the median firm

has three employees over the entire time it is in the sample, although a few firms employ

many more workers. It follows that the empirical average log wage is a noisy measure of a

worker’s or firm’s type even with 36 years of data.

We therefore seek a measure of the correlation between types when we have a large

number of workers and firms but the number of conditionally independent observations for

each worker and firm is small. Our approach is to measure the correlation without measuring

the type of any particular worker or firm, an important distinction from the AKM fixed

effects approach. We assume that there is some underlying joint distribution of the types

of matched workers and firms with finite first and second moments and we use a variance

decomposition to recover those moments. This is similar to random effects, except we do not

need to make any functional form assumptions on the joint distribution of matched types,

beyond the finite second moment restriction.

Our approach allows the number of conditionally independent observations to be small

but not too small. Our key identifying assumption is that for each worker, we have two

or more observations of the actual wage received which are independently and identically

distributed conditional on the worker’s type; and for each firm, we have two or more observa-

tions of the actual wage paid which are independently and identically distributed conditional

on the firm’s type. Our measured correlation then pertains to the sample of workers and

firms for whom this is true.

We first measure the correlation between types using annual wage data and find it is

about 0.6 for both men and women. However, we recognize that annual wage observations

might not be independent conditional on type, particularly for workers who do not switch

employers. To construct conditionally independent observations, we rely on economic theory.

First, we average all our wage data to the worker-firm match level. In simple search models

without on-the-job search, such as Shimer and Smith (2000), wages in any two employment

relationships are independent conditional on the worker’s type. This suggests that we can

use match-level data on all workers who have at least two jobs and all firms that have at

least two employees in our data set. Second, in a more realistic search model with on-

the-job search, such as Burdett and Mortensen (1998) and Postel-Vinay and Robin (2002),

the wage in any two jobs which are separated by an unemployment spell are independent

conditional on the worker’s type. We define the time between registered unemployment

spells as an employment spell and further trim the data to keep only the longest job during

each employment spell for each worker. Our numerical results depend on which data set we

use, and our preferred estimates use the last approach, with one observation per employment

spell per worker. Using this data set, we estimate that the correlation between worker and
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firm types is 0.49 for men and 0.43 for women.

A realistic model might also recognize that types change over time for reasons that we

cannot observe. Because our approach is amenable to estimation using short time series, we

can estimate the correlation between worker and firm types using only a single year’s data,

which should reduce the importance of time-varying types. Consistent with the hypothesis

of time-varying types, our year-by-year estimates of the correlation are somewhat larger than

our pooled estimates, averaging 0.53 for men and 0.47 for women.

We also estimate our model for each age and use a synthetic cohort approach to see how

sorting evolves over the life cycle. We find a substantially rising correlation between worker

and firm types for men, from 0.4 for men younger than 25 to above 0.6 for men in their

thirties, finally approaching 0.8 for men older than 45. This is consistent with the view that

learning about types takes time, but once types are known, the labor market sorts the high

wage workers into high wage firms. The pattern for women is more complicated, possibly

reflecting the exit and reentry of women from the labor force during years of peak fertility.

Finally, we allow workers’ and firms’ types to vary depending on the partners’ observable

characteristic. For example, we let firms have different types when matched with workers

with different education levels. This raises the estimated correlation to 0.60 for men and 0.53

for women. We get similar results when we allow for variation in both workers’ and firms’

types depending on whether the job is blue or white collar and when we allow for variation

in workers’ types depending on the firm’s industry.

Our results differ from the existing literature based on AKM because our method for

measuring the correlation differs. The key difference is that the AKM approach requires

estimating a fixed effect for each worker and firm, a huge number of parameters. These

estimates are consistent only in the limit when the number of workers, the number of firms,

and the number of independent observations for each worker and firm all go to infinity.

With a finite number of observations per worker and firm, the estimated fixed effects are

noisy measures of the true types. Moreover, this noise is negatively correlated across matched

workers and firms, biasing down or even negative the estimated correlation between matched

worker and firm fixed effects. In contrast, our approach only requires two independent

observations for each worker and firm.

We perform three exercises to show that this incidental parameter problem drives the

estimated correlation between fixed effects. First, we show that the estimated correlation

using our approach and using the fixed effects approach differs dramatically even when

estimated on the same data set. Second, using Monte Carlo on artificial data sets that

match the statistical properties of real-world data, we verify that our approach accurately

measures the correlation between types while the fixed effects approach is biased. Third,
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we construct a simple matching model where we can measure the bias in the fixed effects

estimator analytically. The model explains about half of the difference between our estimates

and the fixed effects estimates given (i) our estimates of the first and second moments of the

joint distribution of worker and firm types and (ii) the mean number of jobs held by each

worker and the mean number of workers who work at each firm. Much of the remaining

difference between the two estimators seems to reflect the fact that our model understates

clustering in the matching graph, i.e. the fact that a worker’s coworkers in one job are

much more likely than other similar workers to be coworkers at another job. This leads our

model to overstate the number of independent observations for each worker and firm and

hence understate the bias in the AKM approach. We conjecture that violations of AKM’s

“exogenous mobility” assumption, that errors in the wage equation are orthogonal to worker

and firm identities, may be important for explaining the remaining difference between the

estimators.

Our main contribution lies in developing a simple and accurate measure of the correlation

between worker and firm types. As previously noted, we are not the first to observe the bias

of the AKM fixed effects estimator. Andrews, Gill, Schank and Upward (2008) propose

estimating the AKM correlation and then applying a bias correction. Andrews, Gill, Schank

and Upward (2012) instead suggest estimating the AKM correlation using a subsample of

workers, which worsens the bias, and then extrapolating to estimate the true correlation.

Jochmans and Weidner (2017) propose bounds on the variance of the fixed effects estimator

and use those to analyze the bias in the AKM correlation. Our approach avoids the need

for bias corrections, extrapolation, or bounds.

? offer a complementary approach to examining sorting patterns in the data. They

propose a two-step estimator where firms are first classified into bins before estimating fixed

effects. One advantage of our approach is its simplicity and transparency. We only need to

estimate variances and covariances, while they need to first group firms into bins. A side

effect of this is that our estimates appear to be more accurate. Using Monte Carlo, we show

that we are able to recover the correlation and obtain tight confidence intervals using our

approach in artificial data sets. In contrast, the estimator proposed by ? appears to be

biased and their confidence intervals are wider; see their Table 3. On the other hand, ? are

able to answer questions that we cannot address, in particular how a worker’s wage depends

on her employer’s type.

A third approach is to think of the AKM correlation as a moment to match in a structural

model. Two recent examples are Hagedorn, Law and Manovskii (2017) and Lopes de Melo

(forthcoming).3 Our assumption that the wages in jobs separated by an unemployment spell

3Lopes de Melo (forthcoming) shows that the correlation between a worker’s AKM fixed effect and the
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are independent conditional on a worker’s type is satisfied in the models in both of those

papers, and so our approach imposes fewer theoretical restrictions. The drawback to these

structural approaches is that all the results, including the correlation between types, may

be sensitive to the additional assumptions in the model. The payoff from the structural

approach is that these papers can discuss issues that are beyond the scope of this paper.

For example, Hagedorn, Law and Manovskii (2017) estimate the output of any worker in

any firm, while we have nothing to say about the production function, only about measured

sorting between high wage workers and high wage firms.

The remainder of the paper proceeds as follows. Section 2 defines our measure of the

correlation between worker and firm types. In Section 3, we use several models as our

laboratories to study how our measures the extent of sorting and compare it to the AKM

measure of correlation. We propose an estimator in Section 4 and implement it on Austrian

dataset, described in Section 5. Section 6 gives our main empirical results, showing that the

correlation between worker and firm types lies between 0.4 and 0.6. Section 8 concludes.

2 Measuring Sorting in Theory

2.1 The Economy

We consider a cross-section of an economy with a fixed measure of employed workers and a

fixed measure of firms. Workers and firms are distinguished by their characteristics, x ∈ X
and y ∈ Y , respectively. Let F (x) denote the distribution of workers’ characteristics. Let

Φx(y) denote the distribution of the employer’s characteristics conditional on the worker’s

characteristics. We treat F and Φx as primitives in our environment and view them as

coming from a snapshot of a structural dynamic model such as Burdett and Mortensen

(1998), Shimer and Smith (2000), or Postel-Vinay and Robin (2002). That is, F is the

cross-sectional distribution of employed workers’ characteristics and Φx is the cross-sectional

conditional distribution of their employers’ characteristics. In such a model, differences in

Φ across x might reflect the fact that different workers find or accept different jobs with

different probabilities or that they have different patterns of job-to-job mobility.

Define

G(y) ≡
∫
X

Φx(y)dF (x)

to be the unconditional distribution of the characteristics of jobs in the economy. This is

AKM fixed effect of her coworkers is a useful moment in estimating his structural model. This moment is
related to one we use, the correlation between a worker’s log wage in her other jobs and the log wage of her
coworkers in this job.
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distinct from the distribution of the characteristics of firms to the extent that firms with

different characteristics employ different numbers of workers. We also define Ψy(x) to be the

conditional distribution of the worker’s characteristics given the firm’s characteristics. Using

Bayes rule, we have Φx(y)F (x) ≡ Ψy(x)G(y) for all x and y.

We assume that a worker with characteristics x matched to a firm with characteristics

y earns a wage that possibly depends on both vectors of characteristics and on a shock.

Let w(x, y, z) denote the zth quantile of the log wage distribution in an (x, y) match.4 In

competitive environments, the wage depends only on x, but the presence of search fric-

tions, compensating differentials, or measurement error in x all imply that the wage may be

correlated with y and other features (such as alternative job opportunities) captured by z.

2.2 A New Measure of Sorting

We are interested in measuring the correlation between matched workers and firms in an em-

ployment relationship. To do this, we need a cardinal, unidimensional measure of workers’

and firms’ types. Workers’ and firms’ characteristics x and y may be vector-valued and in

any case do not have even an ordinal interpretation.5 We therefore propose measuring the

correlation between the expected log wage received by a worker conditional on her charac-

teristics and the expected log wage paid by her employer conditional on its characteristics.

That is, we are interested in understanding whether high wage workers typically work in

high wage firms.

For now we assume that we know the distributions F , Φ, G, and Ψ, as well as the wage

function w. Of course, this is not true in real world data sets, and so Section 4 explains how

we can estimate the correlation between expected log wages using the limited wage data that

is available. Here we simply define expected log wages and the correlation between worker

and firm types. Let

λ(x) ≡
∫
Y

∫ 1

0

w(x, y, z) dz dΦx(y)

and µ(y) ≡
∫
X

∫ 1

0

w(x, y, z) dz dΨy(x)

denote the expected log wage received by a worker with characteristics y and the expected

4This is the distribution of log wages in matches that actually occur. If x and y reject some wage draws
or turnover is higher following some wage draws, that is reflected in the matching distributions Φ and Ψ,
not in the log wage distribution.

5Lindenlaub and Postel-Vinay (2017) study a model with multidimensional characteristics and examine
the conditions under which there is positively assortative matching dimension-by-dimension. It is impossible
to measure this stronger notion of sorting using wage data alone.
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log wage paid by a firm with characteristics y, respectively. From now on, we identify a

worker by her expected log wage and call λ(x) her type. Symmetrically, we identify a firm

by the expected log wage it pays and call µ(y) its type.

We want to measure the correlation between the type of a worker and the type of her

job in the cross-section of matches at a point in time,

ρ ≡ c

σλσµ
,

where

w̄ ≡
∫
X

∫
Y

∫ 1

0

w(x, y, z) dz dΦx(y) dF (x) =

∫
X

λ(x)dF (x) =

∫
Y

µ(y)dG(y)

is the mean log wage, also equal to both the mean worker type and the mean job type;

σλ ≡
√∫

X

(λ(x)− w̄)2 dF (x) and σµ ≡
√∫

Y

(µ(y)− w̄)2 dG(y)

are the cross-sectional standard deviations of worker types and job types; and

c ≡
∫
X

∫
Y

(λ(x)− w̄)(µ(y)− w̄) dΦx(y) dF (x)

is the covariance between worker and job types in an employment relationship. We assume

throughout that all of these first and second moments are finite.

We highlight the special case where Φx(y) = Φ(y) for all x and y. For example, each

worker may be equally likely to work in every job, in which case G(y) = Φ(y). In this case,

we can rewrite the covariance as

c ≡
∫
X

(λ(x)− w̄)

(∫
Y

µ(y) dG(y)− w̄
)
dF (x).

The term in the inner parenthesis is zero by the definition of w̄, hence the covariance is zero.

Since the variance of worker and firm types is still generally positive, the correlation between

types is zero. This example emphasizes that there is nothing in our definition of types which

pushes us towards a positive correlation. Later we offer examples where the correlation can

be negative. The correlation depends on whether high wage workers are particularly likely

to work at high wage firms.
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2.3 The AKM Measure of Sorting

We contrast our measure of sorting with a common alternative due to Abowd, Kramarz and

Margolis (1999) (AKM). The authors’ starting point is the assumption that the log wage in

a match between worker i with characteristics xi and firm j with characteristics yj is linear

in the worker’s and firm’s fixed effects,

w(xi, yj, z) = αi + ψj + η (1)

where αi = α(xi) is the worker fixed effect, ψj = ψ(yj) is the firm fixed effect, and z ≡ ζi,j(η)

is an error term where the distribution ζi,j has mean zero for all (i, j) pairs.6 An important

goal in that research agenda is measuring the correlation between αi and ψj among matched

worker-firm pairs (i, j), which we denote ρAKM .

If the AKM model is correctly specified and we had infinitely much data for each pair

(x, y), we could recover α(x) and ψ(y) by integrating over the mean zero error term. This

gives us a system of linear equations,∫ 1

0

w(x, y, z)dz = α(x) + ψ(y),

which determine α and ψ up to an additive constant. If the model is misspecified, we define

the fixed effects in a structural model as the solution to the following moment conditions,

α(xi) =

∫
Y

∫ 1

0

(w(xi, y, z)− ψ(y)) dz dΦxi(y)

ψ(yj) =

∫
X

∫ 1

0

(w(x, yj, z)− α(x)) dz dΨyj(x),

which is equivalent to running OLS on data containing all matched firms. Again, α and ψ

are uniquely defined up to an additive constant if (and only if) there is no way to partition

the workers and firms into two sets A and B such that workers and firms in set A (B) only

match with firms and workers in set A (B).

6Abowd, Kramarz and Margolis (1999) also allow for time-varying observable worker and firm character-
istics. We suppress those for expositional simplicity.
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We then compute the correlation ρAKM in the matched pairs as

ᾱ ≡
∫
X

α(x) dF (x), ψ̄ ≡
∫
Y

ψ(y) dG(y),

σα ≡
√∫

X

(α(x)− ᾱ)2 dF (x), σψ ≡
√∫

Y

(ψ(y)− ψ̄)2 dG(y)

ρAKM ≡
∫
X

∫
Y

(α(x)− ᾱ)(ψ(y)− ψ̄) dΦx(y) dF (x)

σασψ
.

We do not focus here on how to estimate ρAKM ; there are well-known statistical problem

with the fixed effects estimator often called “limited mobility bias.” Instead, we assume

that we know the distributions F , Φ, G, and Ψ, as well as the wage function w and recover

the idealized moments that one would get with infinitely much data and infinitely many

switchers.

3 Models as Laboratories for Measuring Correlation

This section develops simple structural models to explore how the two proposed measures

of sorting, ρ and ρAKM , behave in environments where we have a strong sense of whether

there is sorting. We start with a simple model in which AKM is correctly specified. We

then turn to a discrete choice model and finally look at a search model based on Shimer

and Smith (2000), extended to include match productivity shocks (Goussé, Jacquemet and

Robin, 2017).

3.1 AKM is Correctly Specified

We start with an important special case in which the AKM correlation and our correlation

coincide. Assume the AKM wage equation (1) is correctly specified and the joint density of

matched worker and firm pairs, ξ(α, ψ), is elliptical7 with the variance-covariance matrix(
σ2
α ρAKMσασψ

ρAKMσασψ σ2
ψ

)
.

7The joint distribution is elliptical if the associated density function ξ can be expressed as

ξ(α,ψ) = ξ̃

(
(α− ᾱ)2

σ2
α

− 2ρAKM (α− ᾱ)(ψ − ψ̄)

σασψ
+

(ψ − ψ̄)2

σ2
ψ

)

for some function ξ̃, i.e. if the level curves of the density functions are ellipses. The bivariate normal and
the bivariate t-distributions satisfy this property.
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We prove in the appendix that in this case, the conditional expected value of ψj in a match

is linear in αi,
∫
Y
ψ(y)dGxi(y) = κ0 + κ1α(xi) for all i. The definition of λ and the wage

equation (1) then imply

λi =

∫
Y

(α(xi) + ψ(y))dΦxi(y) = κ0 + (1 + κ1)αi.

Symmetrically, the conditional expected value of αi in a match is linear in ψj,
∫
X
α(x)dΨyj(x) =

θ0 + θ1ψ(yj) for all j, and

µj =

∫
X

(α(x) + ψ(yj))dΨyj(x) = θ0 + (1 + θ1)ψj.

The magnitude of the correlation coefficient between two random variables is unaffected by a

linear transformation, though it may change sign if one of the transformations is decreasing,

i.e. either κ1 < −1 or θ1 < −1. However, κ1 and θ1 can be expressed in terms of variance-

covariance matrix of α, ψ and hence we can detect the sign flip.

The following Proposition summarizes this result.

Proposition 1 Assume that the joint distribution of α and ψ is elliptical and ρAKM ∈
(−1, 1). Then λ and µ are linear transformations of α and ψ with correlation ρ and standard

deviations σλ = |σα + ρAKMσψ| and σµ = |σψ + ρAKMσα|. Moreover,

(σα + ρAKMσψ)(σψ + ρAKMσα) R 0⇒


ρ = ρAKM and (σλ − ρσµ)(σµ − ρσλ) > 0

ρ is undefined

ρ = −ρAKM and (σλ − ρσµ)(σµ − ρσλ) < 0.

The proof in Appendix A.1 establishes linearity of conditional expected values for elliptical

distributions and finds conditions, both in terms of variance-covariance matrix of (α, ψ) and

(λ, µ), under which both transformations are increasing.

We view this statistical model as an important benchmark case. Our approach defines

a worker’s type λi to be equal to her expected log wage and a firm’s type µj to be equal to

the expected log wage it pays. AKM define the units of types αi and ψj to be that which

boosts the expected log wage by a unit holding fixed the partner’s type. While these two

measures are distinct, the Proposition establishes conditions under which they are equal.

Any structural model with an equilibrium satisfying the above properties would feature the

same magnitude of ρ and ρAKM .
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3.2 Shimer and Smith (2000) with Match Productivity

We next examine search model with two-sided heterogeneity and match-specific heterogene-

ity, as in Goussé, Jacquemet and Robin (2017). The match-specific productivity shocks en-

sure that any worker and firm have a positive probability of matching, but different matches

use a different threshold for the idiosyncratic shock. It also implies that the wage is not

pinned down by the worker and firm types, but instead depends on the idiosyncratic shock

as well.

The model is formulated in continuous time. There is measure 1 of workers and measure

1 of firms. Each worker is characterized by his productivity x, distributed in the population

according F (x). Similarly, each firm is described by its productivity type y, distributed

according to G(y).

Search is random and only unmatched firms and workers can search. Let u(x) be the

unemployment rate among workers of type x, and v(y) vacancy rate among firms with type

y. An unemployed worker meets a vacancy at the rate θ and the firm type is randomly drawn

from the distribution G. If the firm has a filled job, it is as if the meeting never happened.8 If

it has a vacancy, with probability v(y), the pair draws the match specific productivity z ≥ 0

from distribution ζ and decides whether to match and produce flow zH(x, y). Match specific

productivity is independently and identically distributed across matches and is fixed for the

duration of the match. They split the surplus according to Nash bargaining, with worker’s

bargaining power γ. Assume H(x, y) is strictly positive for almost all x and y. Matches

randomly separate at the rate δ. Agents discount future at the rate r.

Let U(x) and V (y) be the value of being an unemployed worker and a vacant firm,

respectively. The surplus of a match between x and y is S(x, y, z) = zH(x, y)−rU(x)−rV (y).

The decision to match is described by a threshold rule: a match is formed if z ≥ z(x, y)

where z(x, y) is such that S(x, y, z(x, y)) = 0. The system of equations which fully describe

the model are in Appendix A.2, here we focus on analysis of wages. The wage setting implies

that

w(x, y, z) = γ(zH(x, y)− rU(x)− rV (y)) + rU(x),

and hence the expectation of the log wage in an (x, y) match is

w(x, y) =
1

1− ζ(z(x, y))

∫
z≥z(x,y)

log
(
γ
(
zH(x, y)− rU(x)− rV (y)

)
+ rU(x)

)
dζ(z).

If the distribution of match productivity is exponential, we can prove that the expected log

8This is the quadratic technology is Shimer-Smith. A more standard assumption that unemployed workers
only meet vacant firms is equivalent (for the purposes of this paper) to a rescaling of θ.
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wage in a match (x, y) is monotone in H(x, y) for given x. That is, if higher y matches are

more productive, they also pay higher expected log wages conditional on matching.9 This is

in contrast to Shimer and Smith (2000), where a given x’s wage is maximized at some value

of y, typically an interior point, even if H is strictly increasing.

Another difference from Shimer and Smith (2000) is that all matches can be created as

long as the match specific productivity is high enough. For example, with enough comple-

mentarity in the production function, a worker with the lowest type would never match with

the highest type firm in Shimer and Smith (2000). In this model, we observe such a match

if the match specific productivity is high enough. Still, high draws are rare and therefore we

observe low type worker employed by low type firms most of the time.

We solve the model for discrete number of types n, distributed uniformly on X = Y =

{1−0.5
n
, 2−0.5

n
, . . . n−0.5

n
} and so dF (x) = dG(y) = 1

n
. We use the CES production function

H(x, y) = (ax
c−1
c + (1− a)y

c−1
c )

c
c−1 ,

where c ≥ 0 is the elasticity of substitution and a ∈ [0, 1] is worker’s share in production. We

assume that the distribution of match productivity shocks is Pareto, with some minimum

value and variance σ2
z .

10 Our benchmark uses the following parameter values: r = 1, δ =

10, θ = 104, γ = 0.5, a = 0.5, c = 1, σ2
z = 0.1,min(z) = 1, n = 500.

We are interested in exploring how two measures of sorting ρ and ρAKM vary as we

change the meeting rate, the bargaining power, variance of the match specific shocks, and

the elasticity of substitution in the production function. In each experiment, we compare

ρ and ρAKM with the correlation between x and y, an intuitive measure of the extent of

sorting that is generally not feasible in real-world data but that can easily be computed in

the model.

Figure 1 shows results from these experiments. In the top left panel, we vary the meeting

rate θ. When θ low, it is hard for workers to meet vacancies and thus they tend to accept

any offer they receive, conditional on a favorable match specific shock. As match acceptance

thresholds are similar for different types x and y, we see little sorting. As θ → ∞, workers

receive offers very quickly, become selective at which offer to accept and sorting increases.

The correlation between x and y (red) is increasing in θ, and our measure of correlation

(blue) as well as the AKM correlation (green) capture this pattern properly.

We change the value of the bargaining power in our second experiment. As γ converges

9Numerically we find this to be true for Pareto distribution as well.
10We choose Pareto rather than the exponential distribution because it allows us to change the variance

of the shocks. With the exponential distribution, doubling its parameter only doubles value functions but
has no impact on the matching probabilities, unemployment rates and vacancy rates.
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Figure 1: Comparative statics exercise in the Shimer and Smith (2000) model extended
to include match specific productivity draws. The figures show correlation between three
different measures of types: (x, y) (red lines), (λ, µ) (blue lines), (α, ψ) (green lines) in the
matched pairs for different parameter values. In each experiment, we keep parameters at
their benchmark values, r = 1, δ = 10, θ = 104, γ = 0.5, a = 0.5, c = 1, σ2

z = 0.1,min(z) =
1, n = 500, and only vary one parameter at a time.
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to 0 or 1, workers (or firms) are paid only their outside option regardless of who they match

with, and sorting becomes weaker. The correlation between x, y is hump-shaped, see the top

right in Figure 1, and again our correlation as well as the AKM correlation properly capture

the extend of sorting.

In our third comparative static exercise, we vary the variance of the match productivity

shocks. As the variance increases, match specific productivity, rather than worker and firm

characteristics, plays a more important role and sorting becomes weaker. The left bottom

panel of Figure 1 shows that starting from a large enough variance, all three measures of

sorting decrease as the variance increases further. However, for small values of the variance,

the AKM correlation suggests that sorting is weaker for small leves of the variance even

though the extent of sorting is barely affected. With small variance of the shocks, the model

gets closer to the original Shimer and Smith (2000) model where the wage function is a

non-linear function of the worker and firm type. As a result, the AKM wage equation is

misspecified and the AKM correlation becomes a poor measure of sorting.

Finally, we turn to the elasticity of substitution in the production function. The pro-

duction function is Leontief for c = 0 and linear for c → ∞. The bottom right panel of

Figure 1 shows correlations for c ∈ [0.1, 10]. Our measure properly captures the strength of

sorting when the production function features enough complementarity between inputs. As

we move towards the perfect substitution case, our measure recovers a positive correlation

despite the fact that the correlation between x and y is negative. In this economy, high x

workers tend to work for low y firms, but low y firms actually pay high wages. Hence, high

wage workers work for high wage firms, a pattern which is picked up by our measure. From

the wages alone, we are not able to say that the high paying firms are actually those with

the low productivity and hence in fact there is negative sorting. This point had been made

before by Eeckhout and Kircher (2011). Using Proposition 1, we propose a test to detect

the “sign flip”. Proposition 1 states that when (σλ − ρσµ)(σµ − ρσλ) < 0, then ρ and ρAKM

have the opposite sign. The blue dotted line shows the correlation adjusted for the flip sign,

meaning that we plot −ρ when this condition is satisfied. All three correlations depicted in

the top right panel of Figure 1 have the similar pattern.

These experiments illustrate that our proposed measure of sorting reflects the extent of

sorting in the model economy. The AKM correlation also reflects changes in sorting well.

The reason is that expected log wages are close to log-linear in the worker and firm types,

and hence AKM wage restrictions are close to being satisfied.
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3.3 Discrete Choice Model

We next examine a static discrete choice model. There are is a fixed number of workers

indexed by i and a fixed number of firms indexed by j. Each worker is characterized by x

distributed according to F (x) and each firm is characterized by y distributed according to

G(y). There is no search in this model. Instead, each worker chooses a firm he wants to work

for so as to maximize his utility. Workers’ utility is the sum of log wage w and amenity value

ε. The log wage depends on worker’s and firm’s characteristics. Worker i sees the amenity

value he would get at each firm and chooses to work for firm j∗ such that

j∗ = arg max
j

(w(xi, yj) + εi,j) .

We assume that the wage function is bounded above and that amenities are drawn from

an exponential distribution with mean (and hence standard deviation) s. This ensures

that workers’ choice of yj has a non-trivial limit when the number of firms goes to infinity

(Malmberg, 2013). In the limit, the probability that a worker with characteristics x chooses

a firm with characterisitics y is

Φx(y) ∼ exp

(
w(x, y)

s

)
dG(y).

Thus workers are more likely to choose high wage jobs, but the wage becomes less important

when the standard deviation of the amenity shock, s, increases.

We again use this model as a laboratory to study performance of our correlation measure.

We assume that log wage is given by

w(x, y) = cxx+ cyy − (
√
cxxx−

√
cyyy)2

with cx, cy, cxx, cyy positive. Then, log wage of worker x is maximized at firm y∗ such that

y∗(x) =
cy + 2

√
cxxcyyx

2cyy
.

However, workers with type x will not always choose to work at firms with type y∗(x) since

their utility depends on amenity value as well.

When the types x and y are distributed normally, then the joint distribution of match is

normal and we obtain closed form expressions the types λ(x), µ(y), AKM types α(x), ψ(y)

as well as their correlation ρ and ρAKM . We show some formulas in Appendix A.3.

For our benchmark, we choose the following parameter values: x ∼ N(mx, σx) and
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G ∼ N(my, σy) with mx = my = 1, σx = σy = 1, s = 1 and cx = 1, cy = 0, cxx = cyy = 1/a2

so effectively the wage function is w(x, y) = x − (x − y)2/a. We again conduct several

experiments by varying parameters of the model and measuring how sorting changes. We do

comparative static exercise with respect to s, a, mx −my and σx. It turns out that varying

parameters of the wage function is isomorphic to varying parameters of x and y distributions,

and hence we do not focus on it.11

The top left panel of Figure 2 shows the comparative static exercise with respect to

standard deviation of amenity. When it is zero, amenity does not play any role in worker’s

decision and each worker x chooses the firm y∗(x). As a result, firm y∗(x) employs only

workers of type x, and hence the correlation between x and y is one. As the standard

deviation increases, the role of wage, hence types x and y, decreases. As a result, sorting

weakens and the correlation between (x, y) declines to zero. We observe that the correlation

between λ(x) and ψ(y) exhibits the same pattern as the correlation between x and y – it is

one in the case of perfect sorting, and then monotonically declines toward zero as sorting

weakens. The correlation between α(x) and ψ(y) follows a very different pattern. At s = 0,

the AKM correlation is zero even though there is perfect sorting in the economy. The reason

is that AKM attributes all wage variation to the worker fixed effects and no variation to the

firm fixed effects, generating zero covariance between the types.12 As the standard deviation

increases, the AKM correlation becomes negative but remains close to zero. The correlation

is not defined at s = 2 because σψ = 0. In this experiment, the AKM correlation does not

reflect changes in sorting in the underlying economy.

The results are qualitatively very similar in the experiment where we change a. As a→ 0,

the penalty from not taking the right job goes to infinity and hence we get perfect sorting

with workers of type x choosing y∗(x). The correlation between x and y, as well as between

λ and µ, is one. As a increases, worker’s wage depends less and less on firm type, sorting

weakens and eventually converges to to no sorting as a→∞. The correlation between x and

y declines from 1 to 0 in this experiment, and so does the correlation between λ and µ. We

thus conclude that our measure of sorting properly captures changes in sorting. As in the

previous experiment, the AKM correlation fails to capture the extent of sorting, especially

in the region with perfect sorting.

In the next experiment, we vary the difference in means mx−my. The extent of sorting as

measured by the correlation between x and y does not change. Loosely speaking, increasing

11This is achieved through the following transformation: x̃(x) = y∗(x), ỹ(y) = − 1
4 (2cxcy/

√
cxxcyy +

c2y/cyy) + (cy + cxcyy/
√
cxxcyy)y, and w(x, y) = w̃(x̃, ỹ) = x̃ − (x̃ − ỹ)2/ã, with ã = (cxcyy +

cy
√
cxxcyy)2/(cxxc

2
yy).

12To be precise, in this case the covariance between α,ψ is zero and the standard deviation of ψ is zero so
the correlation is undefined. However, the limit of the correlation as s→ 0 is well defined.
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Figure 2: Comparative statics exercise in discrete choice model. The figures show correlation
between three different measures of types: (x, y) (red lines), (λ, µ) (blue lines), (α, ψ) (green
lines) in the matched pairs for different parameter values. In each experiment, we keep
parameters at their benchmark values, a = 1, s = 1,mx = 0,my = 0, σx = 1, σy = 1, and
only vary one parameter at a time.
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the mean of y relative to x only makes workers choose higher y but this increase is the same

across x. Therefore, the correlation is not affected. The correlation between λ and µ (and

also between α, ψ) depends on differences in means. As the mean of y increases relative to

the mean of x, it becomes difficult to find the right firm since there are very few of them.

This misalignment between which firms workers want to work at and which firms exist, is

larger for low-type workers. As a result, high x workers work on average in high y firms, but

high y firms pay lower average wages because of the large wage penalty incurred by the low

x types employed by these firms. This is the reason for why our measure recovers negative

correlation – high wage workers tend to work in low wage firms. Again, from the wage data

alone, without the knowledge of the structure of the economy, it is not possible to make the

inference that firms which pay low average wages are actually high type firms. This exercise

also illustrates that the correlation between λ, µ can be negative.

In the last experiment, we increase the variance of worker types while keeping the variance

of firm types unchanged. In the extreme case of σy = 0, all firms have the same type, hence

there is no sorting. As the variance increases, more and more workers will have “the best

firm y∗(x)” in their choice set and sorting increases. However, increasing the variance too

much beyond the variance of worker types will not bring any additional improvement of

sorting since the extreme type firms are not chosen by any worker. We indeed see that the

correlation between x, y starts at zero when σy = 0, and then increases steeply until around

σy = 1, after which it flattens. The correlation between λ, µ follows the same pattern, while

the AKM correlation again fails to capture changes in sorting.

To summarize, in the discrete choice model, our measure of sorting properly captures

sorting patterns but the AKM correlation does not. Maybe the most striking finding is that

the AKM correlation is zero in two situations with perfect sorting, s→ 0 and a→∞. In this

model, the true wage equation is non-monotone in types and hence the AKM wage equation

is misspecified. Even thought if can potentially be a useful first order approximation, our

calculations reveal that in this case the AKM correlation fails as a measure of sorting.

4 An Estimator of the Measure of Sorting

We return now to the cross-sectional correlation between λ and µ. A structural model

determines sorting patterns, together with the wage and duration of each match. If we

observed many conditionally independent matches, described by wage and duration, for

each worker and firm, we could accurately measure λ and µ for everyone and hence directly

measure their correlation. Unfortunately, in practice we have very few observations for most

workers and most firms. This section proposes a strategy for measuring the correlation
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between λ and µ in realistic data sets. We start by defining a statistical model which

encompasses and extends the structural models in Section 3. We then propose an estimator

and show it is consistent in the statistical model. Finally we examine small sample properties

of the estimator by looking at artificial data sets generated by our structural models.

4.1 A Dynamic Statistical Model

Our starting point is to imagine a dynamic economy which embeds the snapshot we described

in Section 2.1. To start, we imagine a finite set of possible characteristics X of workers and

Y of firms and one or more workers and firms with each characteristic. Let Ix denote the

number of workers with characteristic x and I ≡∑x∈X Ix denote the total number of workers.

Similarly, let Jy denote the number of firms with characteristics y and J ≡∑y∈Y Jy the total

number of firms. We later consider replicating this economy so there are τIx workers with

characteristic x and τJy firms with characteristic y for some positive integer τ . We are

interested in constructing an estimator of the variance-covariance matrix of matched pairs

that is consistent in the limit as τ goes to infinity.

A worker’s or firm’s characteristics determines the probability of matching with every

other firm and worker, the wage in each match, how long each match lasts, and how long

we observe the worker or firm in the data set. More precisely, a typical worker i with char-

acteristic xi has Mi ∈ {2, . . . , M̄} matches indexed by m = 1, . . . ,Mi. Let wwi,m denote the

average log wage in i’s mth match, twi,m denote the duration of the match, and yi,m denote the

firm characteristics for that match. We assume that the worker’s characteristics determines

the distribution of Mi as well as the joint distribution of {wwi,m, twi,m, yi,m}Mi
m=1. When a worker

matches with a firm with characteristics y, there is some unspecified probability of matching

with each such firm. For example, a worker may draw randomly with or without recall. We

let ji,m denote the identity of the employer. It will be convenient to define Twi ≡
∑Mi

m=1 t
w
i,m,

the total time that we observe worker i employed, and denote its expected value conditional

on the worker’s characteristics by T̄wx . We assume throughout that Twi has a finite upper

bound and M̄ , the maximum number of matches a worker can have, is also finite.

Symmetrically, a typical firm j with characteristic yj has Nj ∈ {2, . . . , N̄} matches in-

dexed by n = 1, . . . , Nj. Let wfj,n denote the average log wage in j’s nth match, tfj,n de-

note the duration of the match, and xj,n denote the worker characteristic for that match.

Again, the firm’s characteristic determines the distribution of Nj and the joint distribution

of {wfj,n, tfj,n, xj,n}
Nj
n=1. When a firm matches with a worker with characteristic x, it is equally

likely to match with any such worker and we let ij,n denote the identity of the worker. Again,

we define T fj ≡
∑Nj

n=1 t
f
j,n, the total time that firm j employs workers, and denote its expected
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value conditional on the firm’s characteristics as T̄ fy . We again assume T fj has a finite upper

bound and N̄ is finite.

Worker and firm observations are necessarily linked. Suppose firm j employs worker i in

her mth match, i.e. j = ji,m. We let ni,m denote the firm’s corresponding match number.

Symmetrically, mj,n is the match number for worker ii,m corresponding for firm j’s nth match.

This implies wwi,m = wfji,m,ni,m , wfj,n = wwij,n,mj,n
, twi,m = tfji,m,ni,m , and tfj,n = twij,n,mj,n

. With this

notation, we can equivalently think about the observations from the perspective of either

the worker or the firm.

Building on this notation, the average log wage that worker i with characteristic xi earns

during his lifetime and the average log wage that firm j with characteristics yj pays are

λ(xi) =
Exi
∑Mi

m=1 t
w
i,mw

w
i,m

T̄wxi
and µ(yj) =

Eyj
∑Nj

n=1 t
f
j,nw

f
j,n

T̄ fyj
.

Here the expectations operators Exi and Eyj indicate probabilities taken with respect to the

joint distribution of wages, durations, and numbers of matches conditional on characteristic

xi and yj. Weighting by spell duration defines the types to be the expected earnings at a

typical point in time.

We can also compute the population mean and variance of λ and µ:

λ̄ ≡
∑

x∈X IxT̄
w
x λ(x)∑

x∈X IxT̄
w
x

and µ̄ ≡
∑

y∈Y JyT̄
f
y µ(y)∑

y∈Y JyT̄
f
y

,

σ2
λ ≡

∑
x∈X IxT̄

w
x (λ(x)− λ̄)2∑

x∈X IxT̄
w
x

and σ2
µ ≡

∑
y∈Y JyT̄

f
y (µ(y)− µ̄)2∑

y∈Y JyT̄
f
y

.

Worker types are weighted by the population frequency Ix and the amount of time they are

employed T̄wx to capture the likelihood the worker is employed in any given cross-section.

Similarly firm types are weighted by the amount of time they employ a worker. It is straight-

forward to prove that λ̄ = µ̄, although the variances may be different.

Finally, we can compute the covariance between λ and µ in matched pairs:

c ≡
∑

x∈X IxEx
∑Mi

m=1 t
w
i,m(λ(x)− λ̄)(µ(yi,m)− µ̄)∑
x∈X IxT̄

w
x

=

∑
x∈X IxEx

∑Mi

m=1 t
w
i,mλ(x)µ(yi,m)∑

x∈X IxT̄
w
x

− λ̄µ̄.

For a characteristic x worker, we compute the expected value of the weighted average product

of the deviations of the worker’s type from the population mean and her employer’s type
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from the population mean. The weight attached to each match is the duration of the match,

and hence the total weight attached to each characteristic x worker is T̄wx . Equivalently, we

can look at this from the perspective of firms and write this as

c =

∑
y∈Y JyEy

∑Nj
n=1 t

f
j,nλ(xj,n)µ(y)∑

y∈Y JyT̄
f
y

− λ̄µ̄.

This shows that the weight attached to each characteristic y firm is T̄ fy .

4.2 Auxiliary Assumptions and an Estimator

We now introduce some auxiliary assumptions and then define estimators of σ2
λ, σ

2
µ, and

c. Our main result in this section is that the estimators are consistent under the auxiliary

assumptions.

1. For worker i with characteristic xi, w
w
i,m = w̄wxi + εwi,m and εwi,m is independently and

identically distributed across m = {1, . . . ,Mi} with mean zero and a finite standard

deviation σwxi . Moreover, twi,m and εwi,m′ are independent for all (m,m′) ∈ {1, . . . ,Mi}2.

2. For firm j with characteristic yj, w
f
j,n = w̄fyj + εfj,n and εfj,n is independently and

identically distributed across n = {1, . . . , Nj} with mean zero and a finite standard

deviation σfyj . Moreover, tfj,n and εfj,n′ are independent for all (n, n′) ∈ {1, . . . , Nj}2.

3. For any worker i with characteristic xi and all m ∈ {1, . . . ,Mi}, w̄wxi and εwi,m′ are

independent of εfji,m,n′ for all m′ 6= m and all n′ 6= ni,m. Moreover, for any firm j with

characteristic yj and all n ∈ {1, . . . , Nj}, w̄fyj is independent of εwij,n,m′ for all m′ 6= mj,n.

4. For all i 6= i′, m, and m′, εwi,m and εwi′,m′ are independent, as are twi,m and twi′,m′ . For all

j 6= j′, n, and n′, εfj,n and εfj,n′ are independent, as are tfj,n and tfj,n′

The first auxiliary assumption consists of two pieces. First, a worker’s wages in different

matches are independently identically distributed with a characteristic-specific mean and

variance. Second, wage draws and durations are uncorrelated conditional on the worker’s

characteristic. The second auxiliary assumption imposes the same restrictions on firms. We

recognize that these assumptions are restrictive, and so in Section ?? we develop approaches

to handling real-world data that are designed to satisfy these assumptions.

The third auxiliary assumption imposes that if a worker and a firm are matched at some

point in time, the error terms in their other matches are independent of each other. It also

imposes that the error in the worker’s wage equation in one match is independent of the
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employer type in other matches and symmetrically for the error in the firm’s wage equation

in one match and the employee type in other matches. We stress that this assumption allows

the error terms to be correlated within a match, and indeed this will typically be the case.13

The first three auxiliary assumptions are useful for finding individual-level unbiased es-

timators of worker and firm types and the covariance between them. The fourth auxiliary

assumption gives us a law of large numbers, ensuring that the average of these unbiased

estimators is consistent as the economy grows large. This assumption rules out the possi-

bility of correlated shocks. In the data, we handle aggregate shocks by deflating wages by

the economy-wide average wage, but other correlation, e.g. within region or industry, may

matter in practice.

Armed with these assumptions, we relate the worker and firm type to the means in the

auxiliary wage equations:

Proposition 2 A worker with characteristic x has type λ(x) = w̄wx . A firm with character-

istic y has type µ(y) = w̄fy .

We relegate the proof of this and all other propositions in this section to Appendix B.1.

Next we construct consistent estimators of the variance-covariance matrix of λ and µ in

matched pairs, i.e. of σ2
λ, σ

2
µ, and c. Start with the variance of worker types. Define

λ̂i ≡
∑Mi

m=1w
w
i,m

Mi

and λ̂2
i ≡

∑Mi

m=1

∑
m′ 6=mw

w
i,mw

w
i,m′

Mi(Mi − 1)
.

We show in the proof of Proposition 3 that these are unbiased estimators of λ(xi) and λ(xi)
2

and use that to find an estimator of the variance

Proposition 3 A consistent estimator of the variance of worker types is σ2
λ is

σ̂2
λ ≡

∑τI
i=1 T

w
i λ̂

2
i∑τI

i=1 T
w
i

−
(∑τI

i=1 T
w
i λ̂i∑τI

i=1 T
w
i

)2

.

The consistency proof is a standard law of large numbers argument.

The logic for firms is identical. Define

µ̂j ≡
∑Nj

n=1w
f
j,n

Nj

and µ̂2
j ≡

∑Nj
n=1

∑
n′ 6=nw

f
j,nw

f
j,n′

Nj(Nj − 1)
,

13One situation where the third auxiliary assumption would be problematic is if a worker and firm are
matched together multiple times, since in this case, the errors would naturally be correlated within all
matches. In our model, we can avoid this possibility if M̄ ≤ miny∈Y Jy and N̄ ≤ minx∈X Ix by assuming
that workers and firms sample partners without recall. In the data, we treat multiple spells with the same
employer as a single match.
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unbiased estimators of µ(yj) and µ(yj)
2. Then

Proposition 4 A consistent estimator of the variance of firm types σ2
µ is

σ̂2
µ ≡

∑τJ
j=1 T

f
j µ̂

2
j∑τJ

j=1 T
f
j

−
(∑τJ

j=1 T
f
j µ̂j∑τJ

j=1 T
f
j

)2

.

We omit the proof, since it is isomorphic to the proof of Proposition 3.

Finally, we turn to an estimator of the product of worker and firm types. Let

ĉi,m ≡
∑

m′ 6=mw
w
i,m′

Mi − 1

∑
n′ 6=ni,m

wfji,m,n′

Nji,m − 1
.

Each of the wwi,m′ is an unbiased estimator of λ(xi) and each of the wfji,m,n′ is an unbiased

estimator of µ(yji,m). Moreover, the third auxiliary assumption implies the two estimators are

independent and hence the product is an unbiased estimator of λ(xi)µ(yyi,m). We leverage

this insight to get a consistent estimator of the covariance:

Proposition 5 A consistent estimator of the covariance c is
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i,mĉi,m∑τI

i=1 T
w
i

−
(∑τI

i=1 T
w
i λ̂i∑τI

i=1 T
w
i

)2

.

Armed with consistent estimators of the covariance and two variances, it is straightforward

to construct an estimator of the correlation as ĉ/

√
σ̂2
λσ̂

2
µ. Assuming the variances of worker

and firm types are both positive, this estimator is consistent.

4.3 Small Sample Properties of the Estimators

We next examine small sample properties of the estimator. We create artificial datasets from

the structural models introduced in the previous section. We choose different values of I, J

to see how the estimator performs in datasets of different sizes. Importantly, in each dataset

we keep number of observations deliberately small, 3.8 on average. For each choice of I, we

choose J = I/5, which guarantees that the number of observations per firm is also small,

consistent with real world data.14

For each model, we create B = 500 artificial samples. We start with I ∈ {2500, 104, 105}
and J = I/5. The actual number of firms and workers in each sample can be smaller because

14We use distributions of observations per worker as is observed in the Austrian data, in the sample
corresponding to Table 2, column (3).
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descriptive statistics distribution of ρ̂b − ρb
I J M N ρ 5% mean 95%

Shimer, Smith
2,412 500 3.9 18.7 0.754 -0.007 -0.002 0.006
9,662 2,000 3.9 18.8 0.770 -0.003 0.000 0.003

96,620 20,000 3.9 18.8 0.775 -0.001 0.000 0.001
Discrete choice model

2,496 500 3.9 19.7 0.743 -0.009 -0.001 0.006
9,996 1,999 4.0 19.8 0.748 -0.004 0.000 0.004

100,000 20,000 4.0 19.5 0.775 -0.001 0.000 0.001

Table 1: Monte Carlo simulations in Shimer and Smith (2000) model with match specific
productivity shocks and discrete choice model. For each choice of I, J , we create B = 500
artificial data sets as described in the main text. First five columns show several descriptive
statistics computed as means across samples – number of workers I, number of firms J ,
number of job per worker M , number of workers per firm N and true sample correlation ρ.
The last three columns show the mean, the 5th and 95th quartile of the error distribution,
ρ̂b − ρb.

we drop firms and workers with less than two observations. For each sample b, we compute

the true correlation between λ and µ using formulas in Section 2; we call this object ρb. We

then use sample’s wage and duration data to estimate ρ̂b using formulas in 4.2. We report

the mean value of ρb across samples and the distribution of error ρ̂b−ρb for Shimer and Smith

(2000) and the discrete choice models in Tables 1. Both these models satisfy our identifying

assumptions.

We parametrize Shimer and Smith (2000) model such that the correlation between λ

and µ in the infinite economy is 0.776. The realized correlation ρb varies across samples

reflecting randomness in the matching process, and is on average lower than in the infinite

economy due to finite number of agents, see the fifth column in Table 1. We observe that

our estimator performs well even with I = 1, 000 workers and J = 500 which is orders of

magnitude smaller sample than a typical real world dataset. As the number of workers and

firms increases, the error becomes smaller. In this model, the duration of the match is an

exponentially distributed random variable which is uncorrelated with wage or workers’ and

firms’ types. Therefore, each match is equally informative about the correlation and an

efficient estimator would weigh all matches equally. We nevertheless weigh each worker by

the total duration to use exactly the estimator we proposed.

Table 1 summarizes the results for the discrete choice model. With the chosen parameter

values, the correlation in an infinite sample is 0.749. This is a repeated static model and

as such it has no prediction for the duration of the match, and we therefore assume that
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each match lasts one period. As in the previous model, the correlation in each particular

sample is different and typically lower than one corresponding to an infinite economy due to

finite number of workers and firms. We again observe that the error in the estimator is very

small, even in the sample with I = 1, 000 workers and J = 200 firms. We point out that

the average number of observations per worker is small, consistent with a typical real world

dataset.

We conclude this estimator performs well in small samples. Even in samples orders of

magnitude smaller than a typical real world data set, the error is on the third decimal place.

5 Data

5.1 Data Description

We measure the correlation between workers and jobs using two panel data sets from the

Austrian social security registry (Zweimuller, Winter-Ebmer, Lalive, Kuhn, Wuellrich, Ruf

and Buchi, 2009), ASSD and AMDB. The ASSD covers the universe of workers in the

private sector from 1972 to 2007, the AMDB dataset from 1997 to 2017. Even though

these two data sets cover the universe of Austrian labor force, we treat them as independent

and report results separately for each data set. For each worker, each data set contains

information about every job they hold. More precisely, in every calendar year and for every

worker-firm pair,15 we observe earnings and days worked during the year.16 We also have

some limited demographic information on workers, including their birth year and sex. After

1986, we observe registered unemployment spells, which we use in much of our analysis. We

also observe the education of most workers who experience a registered unemployment spell.

Finally, we have some information about jobs, including region, industry, and whether the

position is blue or white collar.

Following Card, Heining and Kline (2013), we focus on workers age 20–60. We look both

at men and women, but recognize that selection into employment may be a more serious

issue for women. We drop marginal jobs (less than 10 hours a week) and data that include

an apprenticeship. We note that this dataset does not have an indicator of part-time jobs.

While this might not be a serious concern for men, part-time work is prevalent among women.

15Formally, a firm is identified using its employer identification number (EIN). Some firms may have
multiple EINs.

16Earnings are top-coded at the maximum social security contribution level, which rises over time. For
example, in 2007, the cap is e3840 per month. The fraction of male worker-firm observations affected by
top-coding fell from a peak of 25.3 percent in 1974 to 13.5 percent in 2007. Top-coding affects far fewer
female worker-firm observations, varying from 3.6 to 6.5 percent during our sample period. We discuss the
importance of top-coding for our results in Section 6.4.
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Over the period 1994–2007, on average 4.7 percent of employed men and 34.0 of employed

women worked part-time.17 We take this into account when we interpret the results for

women.

For each worker-firm-year, we first construct a measure of the log daily wage by taking the

difference between log earnings and log days worked. We then regress this on time-varying

observable characteristics. These always include a full set of dummies for the calendar year

and age. The first set of dummies captures the effects of aggregate nominal wage growth,

while the second removes a standard age-earnings profile. In some specifications, we also

include controls for realized experience. Our analysis focuses on these wage residuals.

5.2 Independence Assumptions

The identifying assumption A.W(a) and A.F(a) specify that we need each wage observation

to be independent conditional on the worker identifier and conditional on the firm identifier

and we recognize that this might not be always satisfied in the data. We approach this in

several ways, always motivated by economic theories such as Burdett and Mortensen (1998),

Shimer and Smith (2000), and Postel-Vinay and Robin (2002). These theories tell us that

this condition is easily satisfied for firms but not always for workers. In this section we

explain how we select a sample of workers where the conditional independence assumption

is likely to be satisfied.

We start by selecting all workers for whom we have at least two wage observations during

the 36 years of data. This includes workers who are employed in at least two years, as well

as workers who work for two different employers in the same calendar year. We treat the

annual residual wage observations as independent and measure the correlation accordingly.

We call this independence assumption I.

The advantage to measuring the correlation using independence assumption I is that we

minimize sample selection issues, since we only drop workers with a single employer in a

single year. The disadvantage is that a worker’s wage at a single employer is likely to be

serially correlated, a violation of the conditional independence assumption. We therefore

take a weighted average of the residual wage at the level of the worker-firm match, weighting

by days worked, and treat this as a single observation.18 We then select all workers who are

employed by at least two employers and measure the correlation. We call this independence

assumption II: wages are independent across matches.

We recognize that, due to job-to-job movements, residual wages might be correlated

17These statistics come from the Statistical office of Austria, https://www.statistik.at.
18Recalls are common in the Austrian labor market (Pichelmann and Riedel, 1992). We treat all instances

where a worker is employed by a firm as a single observation.
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across employment relationships. To understand the problem, consider the job ladder model

from Burdett and Mortensen (1998). There, an employed worker accepts a job offer from

another firm if and only if it pays a higher wage. This means that the wage in jobs held before

and after the job-to-job transition are correlated. According to this model, an unemployment

spell breaks this correlation and so wages in two employment relationships separated by an

unemployment spell are independent. Guided by these insights, we select all workers with

at least two employment spells separated by a spell of registered unemployment and take

the longest job during each employment spell.19 This is independence assumption III: wages

across employment spells are independent.

According to Burdett and Mortensen (1998) and Postel-Vinay and Robin (2002), the

wage in any two jobs during different employment spells are conditionally independent;

however, they are not necessarily identically distributed. For example, the first accepted

wage out of unemployment comes from a lower distribution than subsequent wages. To

address this concern, we select only workers with at least three employment spells (that is,

workers with EUEUE transitions, where E represents an employment spell and U a registered

unemployment spell). For these workers, we look alternatively at the first job, last job, and

longest job during each employment spell. We call this independence assumption IV.

Our approach requires us to measure within and between wage inequality for both workers

and firms, and so we need at least two observations for each. After making the inial selection

of workers, as described above, we trim our data set by first dropping any firm that only

employs a single worker in the data set. If this leaves any of the workers with a single wage

observation, we drop her from the data as well. We repeat. This process necessarily stops

in a finite number of steps, either with an empty data set or with a data set containing

only workers with multiple employers and employers with multiple workers. In our case the

resulting data set is always non-empty.

6 Results

6.1 Main Results

Table 2 shows the main results for men and women. We estimate the correlation and

covariance between matched worker and firm types, as well as the variance of types and

of log wages. Different columns correspond to different independence assumptions.

Column (1) of Table 2 uses independence assumption I to construct the correlation with

19If a worker is ever recalled back to an old employer, we drop any intervening spells of unemployment
from our analysis and so treat the entire episode as a single employment spell.

28



Estimated Correlation and Variances

(1) (2) (3) (4) (5) (6)
Men

correlation of matched types ρ̂ 0.632 0.480 0.439 0.429 0.451 0.425
covariance of matched types ĉ 0.044 0.024 0.019 0.018 0.021 0.019
variance of worker types σ̂2

λ 0.073 0.047 0.039 0.038 0.042 0.039
variance of job types σ̂2

µ 0.066 0.055 0.049 0.048 0.052 0.049

number of workers (thousands) 3,672 2,811 1,101 676 650 652
number of firms (thousands) 672 499 234 206 179 180
number of observations (thousands) 63,198 16,131 4,376 3,505 2,810 2,815
share of observations top-coded 0.186 0.134 0.078 0.060 0.033 0.041

Women
correlation of matched types ρ̂ 0.608 0.390 0.418 0.424 0.457 0.435
covariance of matched types ĉ 0.087 0.036 0.028 0.027 0.032 0.028
variance of worker types σ̂2

λ 0.157 0.082 0.061 0.059 0.065 0.060
variance of job types σ̂2

µ 0.130 0.104 0.075 0.071 0.074 0.071

number of workers (thousands) 3,128 2,359 951 540 503 504
number of firms (thousands) 760 522 238 196 160 162
number of observations (thousands) 46,635 11,103 3,190 2,336 1,771 1,773
share of observations top-coded 0.050 0.043 0.026 0.020 0.012 0.013

independence assumption I II III IV IV IV
observations included all all longest longest first last
first year of sample 1972 1972 1986 1986 1986 1986

Table 2: Estimates of correlations, covariances, and variances between matched workers’ and
firms’ types for men. All columns use residual log wages, obtained by regressing log wages
on year and age dummies. Columns (2)–(6) aggregate residual wages to the worker-firm
match level by taking a weighted average of wages within the match across years. Before
applying our method, we iteratively drop firms and workers with a single wage observation.
Each column uses a different sample to estimate the correlation. For the näıve concept,
we include all workers in the data. Independence assumption I includes workers with at
least two firm-year wage observations and treats each year as an independent observation.
Independence assumption II includes workers with at least two distinct employers and treats
each employer as an independent observation. Independence assumption III includes workers
with at least two employment spells and treats the longest jobs during each employment spell
as independent observations. Independence assumption IV includes workers with at least
three employment spells and treats either the longest (4), first (5), or last (6) job during
each employment spell as independent observations. The last row in the table indicates the
first year of the sample. The sample always ends in 2007.
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our approach. This treats any two firm-year observations for a given worker as independent.

We see that the correlation is high, above 0.6 for both men and women.

Column (2) uses the more plausible independence assumption II to construct the correla-

tion, aggregating wage observations to the level of the worker-firm match. Each component

of the correlation drops sharply, and so does the correlation. There are two potential ex-

planations for this drop. On the one hand, we expect that independence assumption I is

incorrect and so the resulting correlation in column (1) is biased. On the other hand, we lose

a substantial number of workers going from column (1) to column (2) and so the drop can

reflect the changing sample. To evaluate importance of these two explanations, we do the

following experiment. We take firms and workers from column (2) and impose independence

assumption I, that is, we again treat any two firm-year observations for a given worker as

independent. We find that the correlation is 0.600 for men and 0.571 for women. This

suggests that changes in the sample are not important and the difference between columns

(1) and (2) is driven by the independence assumption and we therefore prefer estimates in

column (2).

We next turn to independence assumption III, which treats wage observations as inde-

pendent only if they are drawn from different employment spells, as in standard theories of

on-the-job search. Column (3) shows a drop in the estimated correlation for men, and an

increase for women but both changes are small which can reflect the combination of selection

and bias. A first obvious difference is that the sample in (3) is shorter, and indeed this makes

a difference. Estimating (2) on a sample covering years 1986–2007 gives the correlation of

0.539 for men and 0.439 for women. Furthermore, we take the sample of workers and firms

from (3) and impose independence assumption II, that is, we use all matches of these work-

ers. We find the correlation 0.461 for men and 0.432 for women. Thus, selection seems to

play a more important role for men20 (0.539 versus 0.461 versus 0.439) and bias for women

(0.439 versus 0.432 versus 0.418), even though for women the effects are small.

Finally, we look at independence assumption IV, which recognizes that wage observations

at different points during different employment spells are independent but not identically

distributed. Columns (4), (5), and (6) look at the longest, first, and last job during multiple

employment spells. From the perspective of Burdett and Mortensen (1998), the results in

column (5) can be understood as measuring the correlation in the sampling distribution of

wages, while those in column (6) should reflect the steady state distribution. These estimates

are remarkably similar to the correlation in column (3), both for men and women.

20We want to explain the difference between 0.539 under II and 0.439 under III. Keeping the sample from
column (3) and imposing the independence assumption II increases the correlation to 0.461 – this is the
difference attributable to the bias from violating independence assumption. The rest, i.e. the difference
between 0.539 and 0.461 can be attributed to sample selection.
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In summary, the estimated correlation between types ranges from 0.425 to 0.632 for men,

and from 0.390 to 0.608 for women. The exact number depends on the independence assump-

tion. As we move from the independence assumption I to IV, the identifying assumption of

conditionally independent and identically distributed wage observations is more likely to be

satisfied. The downside is that each concept imposes additional restrictions on the sample.

We choose to focus on the results in column (3) because we believe those are likely to satisfy

the independence assumption while minimizing the sample selection issues in the last three

columns. We recognize that sample selection probably biases the measured correlation down.

Column (3) shows that the standard deviation of worker types is 0.197 for men. The

associated standard deviation of firm types is somewhat higher, 0.221. It follows that σ̂λ >

ρ̂σ̂µ and σ̂µ > ρ̂σ̂λ and so Proposition 1 implies we are in the case where our correlation and

the AKM correlation are equal. For women, both standard deviations are larger, 0.247 for

workers and 0.274 for firms, but the conclusion is the same, ρAKM = ρ. This result holds in

every specification in Table 2.

6.2 Confidence Intervals

We use a parametric bootstrap procedure to construct confidence intervals and examine

the precision and accuracy of our estimator. Our main approach to the bootstrap involves

constructing artificial data sets which differ from the actual data in terms of the exact number

of workers and firms, the exact number of matches for each worker and firm, who matches

with whom, and the wage paid in each match. The artificial data sets match the moments

reported in Tables 2, including the variances of worker and firm types, the covariance of

matched workers’ and firms’ types, the variance of log wages, the distribution of the number

of matches per worker and firm, and the joint distribution across matches of the durations

of workers’ jobs. See Appendix C for details on the construction of the artificial data sets.

We construct B = 500 artificial data sets. For each data set b = 1, . . . , B, we know

each worker’s and firm’s type and so we can compare the actual correlation between types,

ρb, with the correlation estimated using our approach, ρ̂b, which relies only on individual

identifiers, wage data, and durations. We construct confidence intervals using the difference

ρb − ρ̂b. We find that this difference is typically small and is centered around zero, as one

would expect for a consistent and unbiased estimator. For example, in Table 2, column (3),

the estimated correlation for men is ρ̂ = 0.4912, and the 95 percent confidence interval is

[0.4886, 0.4935]. For women, the estimated correlation is ρ̂ = 0.4290 and the 95 percent

confidence interval is [0.4259, 0.4319]. The results in the other columns are similar.

A drawback of this bootstrap procedure is that the network structure in the artificial
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and real-world data differ in some important dimensions. For example, in the real-world

data, about 3 percent of a typical worker’s coworkers at one employer are also coworkers at

another one of her employers. In our artificial data, this happens about 0.1 percent of the

time.

To capture this, we use an alternative bootstrap procedure which holds the set of matches

fixed. Given the set of matches, we draw types for each worker and firm. We then draw wages

for each match in a manner that is consistent with the definition of types. Unfortunately,

generating types that are consistent with the real world correlation structure requires drawing

a correlated random vector of dimension I+J . This is computationally infeasible.21 Instead,

we ask what we would measure if the correlation between types were zero. If the true value

of ρ were zero, 95 percent of the time our approach would have generated estimates of ρ̂ for

men between −0.0098 and 0.0080. It is extremely unlikely that our data was generated from

an economy without sorting.

6.3 Other Observable Characteristics

We now examine how controlling for fixed observable characteristics of workers and firms

affects the estimated correlation. We start by reconsidering the assumption that the firm

type is the same for all workers. Instead, imagine that a firm hires a collection of workers

with different skills and the relevant firm type for a high skilled worker is potentially different

than for a low type worker. Our approach effectively breaks a firm into different types for

different skill levels and estimates the correlation on this adjusted data set. This differs

from our approach in the time series and life cycle analysis, where we constructed a separate

sample for each year or age. Although we could adopt that approach here, measuring the

correlation within skill levels, this approach feels more natural to us when characteristics are

fixed over time.

We start by treating a firm j as a cross between a firm identifier and an education level.

We use five different education categories: no completed education, middle school, technical

secondary school, academic secondary school, and college. We start with the same data

set as in Table ??(3), i.e. using independence assumption III. We lose about ten percent

of workers because they are missing education data, despite experiencing an unemployment

spell.22 We then drop some firms × education observations because they only appear once

21In the AKM fixed effects approach, types are known from the OLS estimates and only wages need to be
generated for the bootstrap. This makes the bootstrap with a fixed network easy to perform. Confidence
intervals are typically not reported in the literature, possibly because the AKM estimates are biased.

22Missing education data is not random, even conditional on unemployment. Those men (women) without
education data earn a residual log wage that is 0.19 (0.16) standard deviation higher than the average
residual log wage of workers with recorded education. Furthermore, workers with missing education have

32



in the data set. This in turn forces us to drop some workers, etc. We then measure the

correlation between the remaining worker and firm × education types.

Table 3 column (1) shows the results. Allowing firm types to differ by educational

category raises the variance of firm types for both men and women. The bigger impact

is on the covariance, and hence the correlation between matched types increases from 0.439

to 0.521 for men and from 0.418 to 0.505 for women. This is consistent with the view

that firms are a collection of heterogeneous jobs. Ignoring that heterogeneity causes us to

underestimate the true correlation.

We proceed in a similar way with the type of position, treating a firm identifier as distinct

for white and blue collar jobs. Even though the type of position is a permanent characteristic

for the majority of workers, some do hold both blue and white collar jobs, and thus we treat

an individual at different positions as a different worker as well. This leads to an estimate

of the correlation of 0.525 for men and 0.523 for women (Table 3 column (2)). Again, we

interpret this as evidence that firms are collections of heterogeneous jobs and sorting occurs

both across firms and across job categories within firms.

Finally, we investigate the role of industry. We use ten one-digit SIC industry categories,

which are fixed at the firm level. We treat an individual with jobs in different industries

as different workers. Even though we start from the same set of workers and firms, we lose

observations when the worker does not hold two jobs in the same industry, ultimately about

38 percent of the observations for men and 37 percent for women. The correlation between

the remaining matched workers and jobs is again higher, 0.580 for men and 0.527 for women

(Table 3 column (3)).

6.4 Robustness

We first examine the sensitivity of our results to including work experience as an additional

control when constructing the residual wages. We focus on results using independence as-

sumption III. We construct work experience using the total number of days worked in the

previous 14 years, taking advantage of data from before 1986 to get an accurate work his-

tory.23 We then include a quartic polynomial in experience in addition to age and year

dummies when we calculate the residual log wages. Column (1) of Table 4 shows the results

for men and women. These are little changed from the corresponding results in column (4)

of Table 2.

We next study the role of top-coding. In our baseline results, top-coding affects 7.8

fewer employment spells on average, 2.4 compared to 4.1 for men, and 2.3 compared to 3.4 for women.
23For example, in 1986, we measure experience as the number of days worked between 1972 and 1985.
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Impact of Observables

(1) (2) (3)
men

correlation of matched types ρ̂ 0.521 0.525 0.580
covariance of matched types ĉ 0.023 0.024 0.028
variance of worker types σ̂2

λ 0.039 0.041 0.049
variance of job types σ̂2

µ 0.052 0.052 0.047

number of workers (thousands) 949 1,045∗ 917∗

number of firms (thousands) 337∗ 247∗ 181
number of observations (thousands) 3,895 3,975 2,706
share of observations top-coded 0.071 0.074 0.070

women
correlation of matched types ρ̂ 0.505 0.523 0.527
covariance of matched types ĉ 0.036 0.040 0.038
variance of worker types σ̂2

λ 0.061 0.066 0.072
variance of job types σ̂2

µ 0.083 0.088 0.072

number of workers (thousands) 786 895∗ 646∗

number of firms (thousands) 315∗ 241∗ 163
number of observations (thousands) 2,660 2,757 1,787
share of observations top-coded 0.024 0.028 0.022

independence assumption III III III
education yes no no
white/blue collar no yes no
industry no no yes

Table 3: Results controlling for education, job classification, and industry. All columns use
residual log wages, aggregated to the worker-firm match level by taking a weighted average of
wages within the match across years. All columns use independence assumption III, treating
the longest jobs during each employment spell as independent observations. In column (1),
we treat each firm × education category as a separate firm. In column (2), we treat each
worker × job position and firm × job position as different workers and firms. In column
(3), we treat each worker × industry as different workers. The sample always runs from
1986–2007.
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Robustness Results

(1) (2) (3)
men

correlation of matched types ρ̂ 0.405 0.439 0.417
covariance of mtched types ĉ 0.015 0.017 0.021
variance of worker types σ̂2

λ 0.031 0.034 0.043
variance of job types σ̂2

µ 0.042 0.046 0.057

number of workers (thousands) 1,101 1,101 1,101
number of firms (thousands) 234 234 234
number of observations (thousands) 4,376 4,376 4,376
share of observations top-coded 0.078 0.117 0.078

women
correlation of matched types ρ̂ 0.413 0.416 0.411
covariance of mtched types ĉ 0.026 0.027 0.027
variance of worker types σ̂2

λ 0.056 0.059 0.057
variance of job types σ̂2

µ 0.069 0.073 0.075

number of workers (thousands) 951 951 951
number of firms (thousands) 238 238 238
number of observations (thousands) 3,190 3,190 3,190
share of observations top-coded 0.026 0.041 0.026

independence assumption III III III
quartic in experience yes no no
more severe top-code no yes no
observations weighted equally no no yes

Table 4: Robustness results for men and women. All columns use residual log wages, ag-
gregated to the worker-firm match level by taking a weighted average of wages within the
match across years. In column (1) , we regress log wages on year, age, and a polynomial for
work experience. Column (2) only regress log wages on year and age, but first reduce the
top code by ten percent in each year. Column (3) again regresses log wages on year and age,
but weighs all worker-firm observations equally by setting twi,m = tfj,n = 1 for all i, j,m, n. All
columns use independence assumption III, treating the longest jobs during each employment
spell as independent observations. The sample always runs from 1986–2007.
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percent of men’s observations and 2.6 percent of women.24 We ask here what would have

happened if the top-coding threshold had been ten percent lower in every year, increasing

the share of top-coded observations to 11.7 percent for men and 4.1 percent for women.25

Columns (2) of Table 4 show that more severe top-coding reduces the total variance

of log wages as well as the estimated variance of both worker and firm types. It scarcely

affects the estimated correlation ρ̂ for women and mildly increases it for men. Appendix D

examines what happens at other top-coding thresholds. We find that for men, the estimated

correlation is nearly independent of the share of top-coded observations. For women, the

estimated correlation is a decreasing function of the share observations that are top-coded,

which suggests that in the absence of top-coding, the estimated correlation would be slightly

higher.

Finally, instead of weighting each worker by his total duration, we weight all worker-firm

matches equally. This corresponds to setting twi,m = 1 for all i = 1, . . . , I and m = 1, . . . ,Mi

and tfj,n = 1 for all j = 1, . . . , J and n = 1, . . . , Nj. Column (3) of Table 4 show that equally

weighting all observations modestly reduces the estimated correlation. This is consistent

with a higher correlation between worker and firm types in matches that last longer.

6.5 Time Series

Our approach is amenable to time series analysis. To see this, we redo all of our analysis

using only a single year’s data at a time. That is, we measure the average log wage for a

worker-firm pair using only wage information from the considered year, even if the match

exists in other years. We focus throughout on independence assumption III, selecting the

last job before the unemployment spell and the first job after the unemployment spell.26

Using only those workers who switch employers after an unemployment spell within a

year reduces our sample size from 1.1 million workers to an average of 56 thousand workers

per year for men, and from 1.0 million to 29 thousand for women. This is still sufficiently

large to estimate the annual correlation between worker and firm types. Figure 3 shows that

the correlation between worker and firm types increased slightly for men, from an initial

24We consider the log wage for a worker-firm pair to be top-coded if at least one annual wage observation
for that worker-firm pair is top-coded, and report the share of such worker-firm pair observations. The
share of top-coded observations doubles to 17.5 percent for men and 5.4 percent for women if we weigh each
observation by its duration.

25The usual approach to dealing with top-coded data involves imputing values to the top-coded observa-
tions (see for example, Card, Heining and Kline, 2013). Interpreting either approach requires an assumption
that the behavior of top-coded observations is similar to the behavior of other high wages. We believe our
approach is more transparent and easier to implement.

26Appendix ?? shows the estimated time series correlation on data constructed using independence as-
sumption II. This allows us to study the full time period from 1972–2007. The pattern for years 1986–2007
is similar, but it also reveals a large increase in the correlation in years 1972–1986 for men.
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Figure 3: Correlation between worker and firm types using residual log wages under inde-
pendence assumption III. Solid lines are computed year-by-year and shaded areas are boot-
strapped 95 percent confidence intervals. For each year, the sample considers all workers
who switched employers after an unemployment spell within that year, and includes one job
for each employment spell of these workers. The sample only includes the wage observations
for that year, even if the match continued in other years. Dashed lines are computed using
the full sample, reported in Table 2, column (3).

0.46 in 1986 to around 0.55 in 1997, where it stayed until the last two years of the sample.

The figure also shows that the correlation for women fluctuated over time, peaking at 0.52

in 2001 and then falling thereafter. In both cases, the bootstrapped 95 percent confidence

intervals are small in every year. The stability of these estimates from year-to-year provides

additional support for our methodology.

Interestingly, the annual correlations average 0.53 for men and 0.47 for women, signifi-

cantly more than the correlations of 0.49 and 0.43 reported in column (4) of Table 2using the

full sample. We see two possible reasons for this. First, the sample of workers is different,

since for the time series analysis we use workers who have multiple employment spells within

a year, while some workers may have multiple spells, but only in different years. To address

this, we pool the samples from the time series analysis and estimate a single correlation,

0.425 for men and 0.420 for women.27 Sample differences are unimportant for women and

27In this pooled sample, we aggregate all worker-firm-year residual wages back to the worker-firm level by
computing an average log wage over years. We then keep only the longest match in each employment spell.
The sample contains 624,917 men and 408,614 women.
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actually enlarge the gap between the average annual correlation and the pooled correlation

for men.

The second possibility is that types gradually change over time, so a worker’s expected

log wage when young is not the same as when old, even after accounting for the usual effect of

aging on wages. This effectively makes λ and µ into noisy measures of the worker’s and firm’s

types at a point in time, reducing the measured correlation; see Appendix E for details. This

logic suggests that the annual observations more accurately reflect the correlation between

worker and firm types at a point in time.

One possible concern with the results in this section is that, although the wage in the

first and last job within an employment spell are independent, they are not drawn from the

same distribution. Indeed, there are level differences in wages within a spell: the mean log

wage in the first job after unemployment is lower than the mean log wage in the second job,

which is lower than in the third job, etc.. There are two reasons why we believe that this is

not a major issue. First, the estimated correlation using only first jobs or only last jobs in

each employment spell is very similar; see columns (5) and (6) in Table 2.

7 Comparison with the AKM Correlation

The standard method of measuring whether high wage workers take high wage jobs is due

to Abowd, Kramarz and Margolis (1999). The authors propose running a linear regression

of log wages against a worker fixed effect α and a firm fixed effect ψ,

ωwi,m = x′i,mβ + αi + ψki,m + vi,m, (2)

where xi,m is a vector of match-varying observable characteristics for worker i and ki,m is

the identifier of the firm that employs i in her mth match. This gives them estimates of

each fixed effect, α̂i for all i and ψ̂j for all j. They then compute the correlation between

α̂i and ψ̂j in matched pairs. As we mentioned in the introduction, a fair summary of the

extensive literature that follows that paper is that the estimated correlation is close to zero

and sometimes negative.

Table 5 verify that this finding holds in our data as well. We use the same approach as in

Table 2, with one difference: the AKM correlation is only identified on the largest connected

set of workers and firms. We estimate our correlation on this set. Comparing results in

Tables 2 and 5 we see that this has little impact on estimates of the correlation using our

approach.

Columns in Tables 5 correspond to the data sets used in Table 2, with the additional
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Comparison with AKM

(1) (2) (3) (4) (5) (6)
Men
ρ̂ 0.622 0.480 0.439 0.429 0.451 0.425
ρ̂AKM 0.035 0.057 0.033 0.033 0.015 -0.002

number of workers (thousands) 3,651 2,810 1,100 676 650 652
number of firms (thousands) 650 498 234 206 179 180
number of observations (thousands) 63,043 16,129 4,375 3,505 2,810 2,815
share of observations top-coded 0.186 0.134 0.078 0.060 0.033 0.041

Women
ρ̂ 0.597 0.389 0.418 0.424 0.457 0.435
ρ̂AKM 0.007 0.068 0.037 0.067 0.055 0.038

number of workers (thousands) 3,088 2,358 951 540 503 504
number of firms (thousands) 716 522 238 196 160 162
number of observations (thousands) 46,275 11,101 3,190 2,336 1,771 1,773
share of observations top-coded 0.050 0.043 0.026 0.020 0.012 0.013

independence assumption I II III IV IV IV
observations included all all longest longest first last
first year of the sample 1972 1972 1986 1986 1986 1986

Table 5: Comparison of our estimates of correlation and AKM fixed effects estimates for
men. The AKM correlation as well as correlation estimated using our method are estimated
on the largest connected set. All columns use residual log wages, obtained by regressing log
wages on year and age dummies. Columns (2)–(6) aggregate residual wages to the worker-
firm match level by taking a weighted average of wages within the match across years. Before
applying our method, we iteratively drop firms and workers with a single wage observation.
Each column uses a different sample to estimate the correlation. For the näıve concept,
we include all workers in the data. Independence assumption I includes workers with at
least two firm-year wage observations and treats each year as an independent observation.
Independence assumption II includes workers with at least two distinct employers and treats
each employer as an independent observation. Independence assumption III includes workers
with at least two employment spells and treats the longest jobs during each employment spell
as independent observations. Independence assumption IV includes workers with at least
three employment spells and treats either the longest (4), first (5), or last (6) job during
each employment spell as independent observations. The last row in the table indicates the
first year of the sample. The sample always ends in 2007. The asterix indicates that these
are preliminary results.
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restriction to the largest connected set. Using the fixed effects approach, the estimated

correlation lies between -0.002 and 0.057 for men and 0.007 and 0.068 for women. Across the

seven columns, the fixed effects correlation is about 0.50 below our estimate of the correlation

for men and 0.45 below our estimate of the correlation for women.

Why is the estimated correlation between the AKM fixed effects so much smaller than the

estimated correlation between our measure of types? We can think of three possible reasons.

First, the two measures are conceptually different and hence could give different answers.

Proposition 1 establishes that if the joint distribution of AKM fixed effects is elliptical, then

our correlation should be equal to the true AKM correlation. Moreover, Section 3.2 showed

that even in models where the joint distribution is not necessarily elliptical but the identifying

assumptions of AKM are (almost) satisfied, our correlation and AKM correlation are close.

Nevertheless, Section 3.3 gives an example of a model where the measures of correlation are

very different. This may explain some of what is happening.

Second, identifying assumptions in the AKM approach are violated. This could be either

because the wage equation is misspecified or because there is an “endogenous mobility”

problem. We believe that the endogenous mobility assumption might not be very important,

though. In the version of Shimer and Smith (2000) with match specific productivity shock

this assumption is violated due to a selection problem: some matches are only formed if

the match specific shock is high while other matches are formed with a bigger set of shocks.

Nevertheless, Figure 1 shows that in practice this might not have a big impact.

On the other hand, misspecification of the wage equation might have tremendous impact

on results. The discrete choice model examined in Section 3.3 shows how AKM correlation

might not be a good measure of sorting when the wage equation is misspecified. If the

Austrian data are not generated from an economy with (almost) log-linear wage equation,

this is likely to be an important factor explaining the difference.

Finally, even if the identifying assumptions in the AKM approach are valid, the estimator

of the AKM correlation is consistent only in the limit as the number of observations per

worker and firm goes to infinity holding fixed the number of workers and firms (Postel-

Vinay and Robin, 2006; Andrews, Gill, Schank and Upward, 2008). This is not a natural

feature of real-world data sets. For example, even using 36 years of Austrian data, we

find that the median worker has two employers and the median firm has three employees.

This creates an incidental parameter problem which causes bias and inconsistency in the

measurement of the correlation between the AKM fixed effects. Andrews, Gill, Schank

and Upward (2008) derive a bias correction for the AKM correlation under some auxiliary

assumptions, e.g. homoskedasticity of the error term in the wage equation.28 We evaluate

28We use formulas (18), (20), (24), and (25) in Andrews, Gill, Schank and Upward (2008). These formulas
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this formula using the samples from columns (3)–(6) of Table 5 and find that the results

are barely affected for men and increase to about correlation of 0.1 for women. We cannot

calculate the correction for columns (1)–(2) due to the sample size. Some authors suggest

that the reason for a small bias correction is the assumption of homoscedastic errors Andrews,

Gill, Schank and Upward (2008). Kline, Saggio and Sølvsten (2019) derive a bias correction

when errors are heteroscedastic and find larger corrections, but unfortunately this correction

is not implementable in datasets of our size.

8 Conclusion

This paper proposes and implements a simple, precise, and accurate approach to measuring

whether high wage workers work for high wage firms. Using Austrian data, we find that they

do. The correlation between a worker’s type and her employer’s type lies between 0.4 and 0.6

and is reasonably stable over time. We contrast our results with the existing literature based

on the AKM fixed effects estimator. We show that the AKM estimator is significantly biased

even in data sets with many worker and firm observations, due to the incidental parameter

problem. This has led the previous literature to the incorrect conclusion that there is little

sorting of high wage workers into high wage jobs.

Is a correlation of 0.4 to 0.6 large? This is a quantitative question that goes beyond

the scope of this paper. Still, there are reasons to think that the true correlation is even

larger. We have previously noted three reasons why our approach likely understates the

true correlation: we focus only on workers who experience unemployment, while those who

are continuously employed appear to have a higher correlation; workers’ types change over

time, arguably more dramatically during a spell of registered unemployment (Ljungqvist

and Sargent, 1998); and firms are collections of heterogeneous jobs at a point in time and so

there is not really a single firm type that is applicable to all workers. Even in a frictionless

environment, one would not expect to see many firms that only hire high wage workers, since

real-world production processes and hierarchies utilize a mix of skills (Garicano, 2000). Our

estimated correlations therefore suggest that the labor market is very effective at getting the

highest wage workers working together at the highest wage firms.

depend on the variance of the error term in the AKM wage equation, σ2
η, and one needs to plug in a consistent

estimate for the bias correction to work. We do not use the usual estimator of the variance based on the
residuals from the AKM equation, because it is not consistent again due to incidental parameter problem.
Instead, we use that equation (1) implies V ar[wi,j ] = V ar[αi] + 2Cov[αi, ψj ] + V ar[ψj ] + σ2

ηi,j . A consistent

(bias-corrected) estimators of the first three terms on the right-hand side are linear in unknown σ2
η. We can

thus easily solve this equation for σ2
η and use it as our estimate of the error variance in the formulas for the

bias correction. Using Monte-Carlo simulations we verified that bias-corrected correlation calculated this
way is unbiased.
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A Details of Structural Models

A.1 A Statistical Model

We provide the proof of Proposition 1 omitted from the main text.

Proof of Proposition 1. Assume that the joint distribution of α and ψ is elliptical, that

is, the associated density function ξ can be expressed as

ξ(α, ψ) = ξ̃

(
(α− ᾱ)2

σ2
α

− 2ρAKM (α− ᾱ)(ψ − ψ̄)

σασψ
+

(ψ − ψ̄)2

σ2
ψ

)

for some function ξ̃.

We first prove that the expected value of α conditional on ψ is θ0+θ1ψ, where θ0 = ᾱ−ζψ̄,

θ1 = ζ, and ζ ≡ ρσα/σψ. Towards this end, take any point (α1, ψ) and let α2 ≡ 2
(
ᾱ+ ζ(ψ−
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ψ̄)
)
−α1, so the mean of α1 and α2 is ᾱ+ζ(ψ− ψ̄). The definition of an elliptical distribution

implies ξ(α1, ψ) = ξ(α2, ψ). Using this, the conditional expected value satisfies

∫∞
−∞ αξ(α, ψ)dα∫∞
−∞ ξ(α, ψ)dα

=

∫ ᾱ+ζ(ψ−ψ̄)

−∞ αξ(α, ψ)dα +
∫∞
ᾱ+ζ(ψ−ψ̄)

αξ(α, ψ)dα∫ ᾱ+ζ(ψ−ψ̄)

−∞ ξ(α, ψ)dα +
∫∞
ᾱ+ζ(ψ−ψ̄)

ξ(α, ψ)dα

=

∫ ᾱ+ζ(ψ−ψ̄)

−∞ αξ(α, ψ)dα +
∫ ᾱ+ζ(ψ−ψ̄)

−∞
(
2
(
ᾱ + ζ(ψ − ψ̄)

)
− α

)
ξ(α, ψ)dα

2
∫ ᾱ+ζ(ψ−ψ̄)

−∞ ξ(α, ψ)dα

=

∫ ᾱ+ζ(ψ−ψ̄)

−∞ 2
(
ᾱ + ζ(ψ − ψ̄)

)
ξ(α, ψ)dα

2
∫ ᾱ+ζ(ψ−ψ̄)

−∞ ξ(α, ψ)dα
= ᾱ + ζ(ψ − ψ̄)

The first expression defines the conditional expectation. The first equality breaks the inte-

grals into two terms. The second equality uses the key property of the elliptical distribution,

ξ(α, ψ) = ξ(2(ᾱ − ζ(ψ − ψ̄)) − α, ψ), which allows us to change the variable of integration

in the second integral in both the numerator and denominator. The third equation adds to

the two integrands in the numerator. The fourth equation uses the fact that the integrand

is constant.

A symmetric proof implies that the expected value of ψ conditional on α is ψ̄ +
ρσψ
σα

(α−
ᾱ) = κ0 + κ1α. The logic in the body of the paper then implies λ = κ0 + (1 + κ1)α and

µ = θ0 + (1 + θ1)ψ, with the coefficients given in equations (3) and (4),

λi = ψ̄ − ρAKMσψ
σα

ᾱ +

(
1 +

ρAKMσψ
σα

)
αi, (3)

µj = ᾱ− ρAKMσα
σψ

ψ̄ +

(
1 +

ρAKMσα
σψ

)
ψj. (4)

If σα+ρAKMσψ and σψ+ρAKMσα are both positive, then λi is a linearly increasing function

of αi and µj is a linearly increasing function of ψj. Therefore the correlation between λ and µ

is the same as the correlation between α and ψ, ρ = ρAKM . Moreover, equations (3) and (4)

imply that the standard deviations of λ and ψ are σλ = σα+ρAKMσψ and σµ = σψ+ρAKMσα,

both positive by the assumption at the start of this paragraph. Using this and ρ = ρAKM

gives us σλ − ρσµ = σα(1 − ρ2
AKM ) > 0, and σµ − ρσλ = σψ(1 − ρ2

AKM ) > 0. Hence indeed

(σλ − ρσµ)(σµ − ρσλ) > 0.

Now suppose that σα + ρAKMσψ > 0 > σψ + ρAKMσα. Then λi is a linearly increasing

function of αi and µj is a linearly decreasing function of ψj. Therefore ρ = −ρAKM . Equa-

tions (3) and (4) imply that the standard deviations of λ and ψ are σλ = σα + ρAKMσψ and

σµ = −(σψ + ρAKMσα). Using this and ρ = −ρAKM gives us σλ − ρσµ = σα(1 − ρ2
AKM ) > 0

and σµ − ρσλ = −σψ(1− ρ2
AKM ) < 0. This proves (σλ − ρσµ)(σµ − ρσλ) < 0. The case with
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σψ + ρAKMσα > 0 > σα + ρAKMσψ is analogous.

Finally, if σα + ρAKMσψ = 0, equations (3) and (4) imply σλ = 0. If σψ + ρAKMσα = 0,

then σµ = 0. In either case, the correlation between λ and µ is undefined.

A.2 Shimer and Smith (2000) with Match Specific Shocks

We formulate equations for value functions U(x), V (y) and steady state conditions for u(x), v(y).

Since it will become useful, define notation for conditional expected value ω and survivor

function p as

ω(k) =

∫∞
k
zdζ(z)

1− ζ(k)
if ζ(k) < 1, ω(k) = k otherwise

p(k) = 1− ζ(k).

The value of being unemployed then is

rU(x) = θ

∫
Y

(∫
z≥z(x,y)

γ

r + δ

(
zH(x, y)− rU(x)− rV (y)

)
dζ(z)

)
v(y)dG(y)

=
θγ

r + δ

∫
Y

p(z(x, y))
(
ω(z(x, y))H(x, y)− rU(x)− rV (y)

)
v(y)dG(y).

Similarly, the value of a vacant firm is

rV (y) =
θ(1− γ)

r + δ

∫
X

p(z(x, y))
(
ω(z(x, y))H(x, y)− rU(x)− rV (y)

)
u(x)dF (x).

Finally, the steady state conditions for unemployment and vacancy rate are

δ(1− u(x)) = θu(x)

∫
Y

p(z(x, y))v(y)dG(y),

δ(1− v(y)) = θv(y)

∫
X

p(z(x, y))u(x)dF (x).

The fraction of firm y’s matches that are with worker x is proportional to p(z(x, y))u(x)dF (x).

Thus the likelihood ratio of y and y′ matching with x is proportional to p(z(x,y))
p(z(x,y′))

. With an ex-

ponential distribution, ζ(z) = 1−exp(−z/s), the log-likelihood ratio is (z(x, y′)−z(x, y))/s,

increasing in z(x, y′)− z(x, y) = rU(x)+rV (y′)
H(x,y′)

− rU(x)+rV (y)
H(x,y)

. There is no general monotonicity

of this expression, i.e. it may be the case that some firms hire disproportionately many low

productivity workers and others hire disproportionately many high productivity workers.
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The expectation of the log wage in an (x, y) match is

w(x, y) =

∫
z≥z(x,y)

log
(
γ
(
zH(x, y)− rU(x)− rV (y)

)
+ rU(x)

)
dζ(z)/p(z(x, y)).

If ζ has an exponential distribution, this is

e
rU(x)

γsH(x,y)

∫ ∞
rU(x)

γsH(x,y)

1

tet
dt+ log(rU(x)),

which is increasing in H(x, y). Thus if the production technology is monotonic in y, the

expected log wage is also monotonic in y for fixed x.29 The model therefore breaks the link

between the probability of matching and the expected log wage.

A.3 Discrete Choice Model

We have closed-form formulas for all object of interest when the distributions of worker and

firm characteristics are normal, x ∼ N(mx, σ
2
x) and y ∼ N(my, σ

2
y). Here we show formulas

for the standard normal distributions, mx = my = 0 and σ2
x = σ2

y = 1.

The result in Malmberg (2013) implies that the distribution of firm types y conditional

on worker’s type x is

Φx(y) =
1

k1

exp

(
w(x, y)

s

)
dG(y),

where k1 is the normalization which assures that
∫ 1

0
dΦx(y) = 1. Under the assumption that

y is standard normal distribution, we get that Φx(y) is also normal

y|x ∼ N

(
2ax

s+ 2a
,

s

s+ 2a

)
.

We use Bayes formula to find the distribution of x conditional on y, dΨy(x) ∼ dΦx(y)dF (x),

which turns out to be again normal,

x|y ∼ N

(
2a(s+ 2a)y

s2 + 2as+ 4a2
,

s2 + 2as

s2 + 2as+ 4a2

)
.

The knowledge of conditional distribution allows us to compute the types λ(x), µ(y) as well

as AKM types α(x), ψ(y).

Finally, we need the joint distribution of (x, y) to compute the correlation between types.

The joint distribution is the product of the conditional distribution dΦx(y) and the marginal

29The same is true for the expected wage.
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dF (x). Since both of these are normal, it follows that the joint is also normal.

B Properties of Estimators

B.1 Consistency

Proof of Proposition 2. Take worker i with characteristics xi:

λ(xi) =
Exi
∑Mi

m=1 t
w
i,mw

w
i,m

T̄wx
= w̄wxi +

Ex
∑Mi

m=1 t
w
i,mε

w
i,m

ExiTwi
= w̄wxi .

The first equation is the definition of λ as the expected daily log earnings. The second uses

the auxiliary assumption that wwi,m = w̄wxi + εwi,m. The third uses the auxiliary assumption

that the expected value of twi,mε
w
i,m is zero. The proof for firms is identical.

Proof of Proposition 3. We start by proving that 1
τI

∑τI
i=1 T

w
i λ̂i is a consistent estimator

of 1
I

∑
x∈X IxT̄

w
x λ(x), i.e. the product of worker type and time spent matched. We do this in

two steps. First, for any given worker i with characteristic xi,

Twi λ̂i =
Twi
∑Mi

m=1 w
w
i,m

Mi

= Twi w̄
w
xi

+

∑Mi

m=1

∑Mi

m′=1 t
w
i,m′ε

w
i,m

Mi

= Twi λ(xi) + υ1,i

where υ1,i ≡ 1
Mi

∑Mi

m=1

∑Mi

m′=1 t
w
i,m′ε

w
i,m. The first equation uses the definition of λ̂i. The

second uses the auxiliary assumption that wwi,m = w̄wxi+ε
w
i,m and also writes Twi =

∑Mi

m′=1 t
w
i,m′ .

The third uses λ(xi) = w̄wxi (Proposition 2) and defines the error term υ1,i. Since twi,m and

εwi,m′ are independent for all m and m′ and εi,m′ has mean zero, υ1,i also has mean zero for

each i. It also has a finite characteristic-dependent variance, say σ2
υ1,xi

< ∞, since σwxi is

finite and durations are bounded.

Summing these up implies that the expected value of 1
τI

∑τI
i=1 T

w
i λ̂i is 1

I

∑
x∈X IxT̄

w
x λ(x).

Next, the fourth auxiliary assumption implies that the error terms υ1,i are independent.

Thus the variance of 1
τI

∑τI
i=1 T

w
i λ̂i is 1

τI2

∑
x∈X Ixσ

2
υ,x. This converges to zero when τ goes

to infinity and so consistency follows from Chebyshev’s inequality, a law of large numbers.

A similar argument implies that 1
τI

∑τI
i=1 T

w
i is a consistent estimator of 1

I

∑
x∈X IxT̄

w
x

since Twi an unbiased estimator of T̄wx with a finite variance and durations are independent

across workers conditional on type. Since the ratio of two consistent estimators is consistent,

it follows that
∑τI
i=1 T

w
i λ̂i∑τI

i=1 T
w
i

is a consistent estimator of λ̄ ≡
∑
x∈X IxT̄wx λ(x)∑
x∈X IxT̄wx

.
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Turn next to the second moment. As above, for worker i with characteristic xi,

Twi λ̂
2
i =

Twi
∑Mi

m=1

∑
m′ 6=mw

w
i,mw

w
i,m′

Mi(Mi − 1)

= Twi (w̄wxi)
2 +

2w̄wxi
∑Mi

m=1

∑Mi

m′=1 t
w
i,m′ε

w
i,m

Mi

+

∑Mi

m=1

∑
m′ 6=m

∑Mi

m′′=1 t
w
i,m′′ε

w
i,mε

w
i,m′

Mi(Mi − 1)

= Twi λ(xi)
2 + υ2,i

where υ2,i is the sum of the last two terms on the previous line. The logic is very similar

to the first moment. The first equation uses the definition of λ̂i
2
, the second uses the

auxiliary assumption that wwi,m = w̄wxi + εwi,m and also writes Twi =
∑Mi

m′=1 t
w
i,m′ . The third

uses λ(xi) = w̄wxi and defines another error term for each worker. For each worker, the

expected value of υ2,i is zero because of the same assumptions as for the first moment, as

well as the assumption that εwi,m and εwi,m′ are independent for m 6= m′. Moreover, the

variance of the error term is characteristic dependent but finite, σ2
υ2,xi

< ∞, since σwxi is

finite and durations are bounded.

We can then sum up these objects, getting that the expected value of 1
τI

∑τI
i=1 T

w
i λ̂

2
i is

1
I

∑
x∈X IxT̄

w
x λ(x)2. Consistency again follows from the fourth auxiliary assumption, since

this ensures that the error terms υ2,i are independent across workers. Again, since the ratio of

two consistent estimators is consistent,
∑τI
i=1 T

w
i λ̂

2
i∑τI

i=1 T
w
i

is a consistent estimator of
∑
x∈X IxT̄wx λ(x)2∑

x∈X IxT̄wx
,

the second moment of λ.

Finally, the difference between a consistent estimator of the second moment and the

square of a consistent estimator of the first moment is a consistent estimator of the variance

σ2
λ.

Proof of Proposition 5. We start by expanding the definition of ĉi,m using wwi,m′ =

w̄wxi + εwi,m′ and wfj,n′ = w̄fyj + εfj,n′ with j = ji,m:

ĉi,m = w̄wxiw̄
f
yi,m

+ w̄fyi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1
+ w̄wxi

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1
+

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1
.
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Now compute the average of this across all matches:

1

τI

τI∑
i=1

Mi∑
m=1

twi,mĉi,m =
1

τI

τI∑
i=1

(
w̄wxi

Mi∑
m=1

twi,mw̄
f
yi,m

+

Mi∑
m=1

twi,mw̄
f
yi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

+

Mi∑
m=1

twi,mw̄
w
xi

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1
+

Mi∑
m=1

twi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1

)

=
1

τI

(
τI∑
i=1

w̄wxi

Mi∑
m=1

twi,mw̄
f
yi,m

+
τI∑
i=1

Mi∑
m=1

εwi,m

∑
m′ 6=m t

w
i,m′w̄

f
yi,m′

Mi − 1

+
τJ∑
j=1

Nj∑
n=1

εfj,n

∑
n′ 6=ni,m

tfj,n′w̄
w
xj,n′

Nj − 1
+

τI∑
i=1

Mi∑
m=1

twi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfj,n′

Nji,m − 1

)

The first equation uses the definition of ĉi,m, while the second regroups terms. In particular,

in the second term, we switch the order of summation, while in the third term we first view

objects from the perspective of the firm and then switch the order of the summations. The

first three auxiliary assumptions imply that the last three terms all have zero expected value

and so the expected value of this expression is 1
I

∑
x∈X IxEx

∑Mi

i=1 t
w
i,mλ(x)µ(yi,m).

To compute the variance of the estimator, we leverage the fourth auxiliary assumption,

which implies that when we square the last three terms, the only parts with a non-zero

expected value are the direct squares within each term and within each worker or firm. That

is, the variance of 1
τI

∑τI
i=1

∑Mi

m=1 t
w
i,mĉi,m is

1

τI2

∑
x∈X

IxEx

( Mi∑
m=1

εwi,m

∑
m′ 6=m t

w
i,m′w̄

f
yi,m′

Mi − 1

)2

+

(
Mi∑
m=1

twi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfj,n′

Nji,m − 1

)2


+
∑
y∈Y

JyEy

 Nj∑
n=1

εfj,n

∑
n′ 6=ni,m

tfj,n′w̄
w
xj,n′

Nj − 1

2
This is inversely proportional to τ and so the variance of the estimator converges to zero

when τ goes to infinity, i.e. the estimator is consistent.

To finish the proof, we use the fact that 1
τI

∑τI
i=1 T

w
i is a consistent estimator of 1

I

∑
x∈X IxT̄

w
x

(see the proof of Proposition 3) and take ratios to prove that
∑τI
i=1

∑Mi
m=1 t

w
i,mĉi,m∑τI

i=1 T
w
i

is a consis-

tent estimator of
∑
x∈X IxEx

∑Mi
m=1 t

w
i,mλ(x)µ(yi,m)∑

x∈X IxT̄wx
. Finally, we have already shown in the proof of

Proposition 3 that
∑τI
i=1 T

w
i λ̂i∑τI

i=1 T
w
i

is a consistent estimator of λ̄. Since λ̄ = µ̄, it is a consistent

estimator for this as well.
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B.2 Finite Sample Properties

B.2.1 Construction of Artificial Datasets

We generate artificial datasets from two structural models, Shimer and Smith (2000) with

match specific shocks and the discrete choice model.

In Shimer and Smith (2000), we proceed as follows. We solve the steady state of the

model and use steady state decision rules, value functions and distribution of unemployed

and vacancies to create an artificial dataset. We choose the number of worker and firms, I, J ,

and assign each worker and firm its type according to unconditional distribution of types F,G.

We start the economy with some workers employed and some unemployed, respecting their

type-specific unemployment rates. For each unemployed worker, we determine whether he

gets an opportunity to meet a vacant firm. If so, firm’s type y is drawn from the distribution

of vacancies v(·). The worker-firm pair then draws a match specific productivity from ζ(·)
and determines whether to create a match or not using the steady state decision rule. If they

decide to create a match, we assign firm’s name to this match according to how many firms

of that type exist in the economy. If there are K firm with that type, then each firm gets

this worker with probability 1/K. Every match breaks at the rate δ, in which case worker

become unemployed. We repeat this sequence of step for each period. We repeat these steps

for several periods; we choose number of periods so that the median worker holds 4.9 jobs.

We proceed a little differently in the discrete choice model. We choose number of workers

and firms, I, J and draw the type for each of them from the unconditional distributions F,G,

respectively. For each worker, we further draw number of jobs he will hold, using the actual

distribution of jobs per worker in our dataset. We draw the firm type from the worker’s

conditional distribution of jobs. We assume that each match has the same duration.

In both cases, if a worker ends up having multiple jobs with the same firm, we keep only

one. We drop all workers and firms with only one observations. In the final dataset, we

compute the “true correlation” using the types λ and µ computed in the infinite (steady

state) economy and then also estimate the correlation using only the wage data. We report

the distribution of the error.

B.2.2 Parametric Bootstrap

We construct artificial datasets from the structural models as described above.

For each set of parameters, we construct B = 100 samples. In each sample, we compute

the realized correlation ρb as well as its estimate ρ̂b. Let eb = ρ̂b − ρb be the error in sample
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b. We find values e and ē such that

P (eb ≤ e) = 0.025 and P (eb > ē) = 0.025.

The 95-percent confidence interval for ρ is [ρ+ e, ρ+ ē]. Note that the interval does not have

to be centered. We use I = 10, 000 workers and J = 2, 000 firms for data creation, so rather

conservative values. Nevertheless, we observe that the confidence intervals are centered and

very tight.

We should be precise in saying that we start the economy with I workers and J firms,

but the number of workers and firms in the resulting sample might be lower. To apply our

estimator, we only keep workers and firms with at least observations, which means that some

of the initial workers and/or firms might have to be dropped.

Figure 4 shows the confidence intervals in the Shimer, Smith model with match produc-

tivity shocks. We see that intervals are very tight for across the entire range of parameter

values we consider.

Figure 5 shows the confidence intervals in discrete choice model. The confidence intervals

are again very tight, with the exception of when the difference in means mx−my exceeds 1.5.

The reason is the size of the sample. Even though we start off simulations with I = 10, 000

workers and J = 2, 000 firms, the types of workers and firms are so different that most firms

end up with one or zero workers, and many workers have multiple jobs at the same firm. Our

estimator requires that each worker in the dataset has at least two distinct employers and

each firm employs at least two distinct workers. In this environment, only very few workers

and firms satisfy this requirement, and hence we end up with samples of approximately

I = 2, 000 workers and J = 10 firms, and those seem to be also highly selected.

C Standard Errors

We use bootstrap to construct standard errors.

C.1 Constructing Artificial Data

We construct artificial data sets that match a few key moments: the correlation between

matched worker and firm types ρ, the standard deviation of worker and firm types σλ and σµ,

the standard deviation of log wages σ, the number of workers and firms, and the distribution

of the number of matches per worker Mi, the number of matches per firm Nj and the joint

distribution of durations twi,·. We draw these from our estimates, e.g. in Tables ?? and ??,

and we take distributions of M,N, twi,· directly from the data.
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Figure 4: Confidence intervals in Shimer and Smith (2000) with match specific shocks. We
plot the correlation between λ and µ in an infinite sample (blue line) and the bootstrapped
confidence intervals. For the given set of parameter values, we create B = 100 artificial
samples from the discrete choice model with I = 10, 000 workers and J = 2, 000 firms.
In each sample we compute the error, the difference between the estimated and realized
correlation, and use the 2.5% and 97.5% quantile of the error distribution to construct the
confidence interval.
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Figure 5: Confidence intervals in the discrete choice model. We plot the correlation between
λ and µ in an infinite sample (blue line) and the bootstrapped confidence intervals. For the
given set of parameter values, we create B = 100 artificial samples from the discrete choice
model with I = 10, 000 workers and J = 2, 000 firms. In each sample we compute the error,
the difference between the estimated and realized correlation, and use the 2.5% and 97.5%
quantile of the error distribution to construct the confidence interval.
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In each iteration of the bootstrap b ∈ {1, . . . , B}, we construct an artificial data set that

replicates these moments, use it to measure the correlation between λ and µ in matches, ρb,

and then use it to estimate the correlation using our procedure, giving us ρ̂b. In practice, ρ,

ρb, and ρ̂b will not be the same. The difference between the first two reflects the fact that

the artificial data set is finite. The difference between the latter two reflects limitations in

our estimator. We focus on this difference.

We proceed as follows:

1. We choose the number of workers Ĩ and firms J̃ as in the data.

2. For each worker i ∈ {1, . . . , Ĩ} we draw Mi and twi,1, . . . t
w
i,Mi

, the number firms a worker

works for and durations of each of his job directly from the data. For each j ∈
{1, . . . , J̃}, we draw the number of employees Nj. We use the distribution of N from

the data. The model imposes the restriction that
∑

iMi =
∑

j Nj. We start with large

Ĩ and J̃ and add workers (if
∑

iMi <
∑

j Nj) or firms (if
∑

iMi >
∑

j Nj) until we

achieve balance. We end up with I ≥ Ĩ workers and J ≥ J̃ firms.

3. For each worker i (firm j), we choose a random λi (µj) from a normal distribution with

mean 0 and variance σ2
λ (σ2

µ).

4. We order the firms so that µ1 < µ2 < · · · < µJ .

5. For each worker i, we choose Mi values χi,m, distributed normally with mean λiρσµ
σλ

and

variance σ2
µ(1− ρ2). We rank these values. The N1 lowest values are assigned to firm

1. The next N2 values are assigned to firm 2, etc. This gives us our matched pairs.

6. We drop any duplicate matches between i and j. If this leaves us with any workers or

firms with a single match, we drop those as well.

7. We measure correlation ρb using types λ and µ, and the job durations tw.

8. We compute the log wage. For worker i’s mth job, the log wage is ωwi,m = aλi+ bµki,m +

vi,m, where vi,m is an i.i.d. normal shock with mean 0 and standard deviation σv. The

constants a and b satisfy

a =
σλ − ρσµ
σλ(1− ρ2)

and b =
σµ − ρσλ
σµ(1− ρ2)

,

and the variance of the log wage shock satisfies

σ2
v = σ2 − σ2

λ + σ2
µ − 2ρσλσµ

1− ρ2
.
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9. We estimate ρ̂b using our approach (as described in the text).

10. We find the largest connected set and keep only workers and firms in this set. We

estimate ρ̂AKM,b following AKM methodology.

11. We are primarily interested in δb = ρ̂b − ρb and δAKM,b = ρ̂AKM,b − ρb, the difference

between the estimated and true correlation in the bth sample.

We construct B = 500 samples and find values δ and δ̄ such that

P (δb ≤ δ) = 0.025 and P (δb > δ̄) = 0.025.

The 95 percent confidence interval for ρ is [ρ+ δ, ρ+ δ̄]. Note that this will not be centered

around ρ if the estimator is biased. In our case, it is centered and the difference δ̄ − δ is

small.

We similarly construct confidence intervals using δAKM,b. These turn out not to be

centered around ρ, reflecting the bias in the AKM estimate of the correlation between fixed

effects.

Finally, we can use the same procedure to bootstrap confidence intervals around other

parameters, e.g. σλ and σµ.

Our procedure assumes that worker and firm types are homoscedastic but it is straight-

forward to relax this assumption. We have constructed artificial data sets where types are

correlated with the number of observations. In particular, we assume that the worker types

λi are distributed normally with a mean and variance that depends on Mi, and that the firm

types µj are distributed normally with a mean and variance that depends on Nj. We measure

the conditional distributions directly from the data, following the approach in Section ??.

Our estimated confidence interval for ρ is robust to this assumption.

C.2 Properties of the Artificial Data

This section shows that ρb, constructed as described above, is equal to ρ in an infinitely large

data set. We do this by finding all the first and second moments:

1. The unconditional mean of χi,m is 0 by the law of iterated expectations.

2. The expected value of χ2
i,m conditional on λi is the conditional variance plus the square

of the mean, σ2
µ(1− ρ2) +

λ2i ρ
2σ2
µ

σ2
λ

. Thus the unconditional expectation of χ2
i,m is

σ2
µ(1− ρ2) + ρ2σ2

µ = σ2
µ.
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Thus the distribution of χi,m and µj are the same and hence µi,m = µki,m , the type of

the firm that employs i in her mth match.

3. The expected value of λµ conditional on λ is λ2ρσµ/σλ. Thus the unconditional ex-

pected value is ρσµσλ. This is the covariance between λ and µ.

4. The correlation is the ratio of the covariance to the product of the two standard

deviations, and hence is ρ.

D Impact of Top-Coding on Estimated Correlation

We study the impact of top-coding on our estimates by varying the share of top-coded wages

in the data set. Starting from the wage cap as in the data, we decrease it gradually by

2 percent, 4 percent,. . . , and up to 40 percent. We then censor wages at the wage cap,

construct data using Concept III as described in the main text and estimate the correlation

and variances.

Figure 6 shows the results. In the top row, we display the estimated correlation ρ̂ for

data sets with different top-coding as a function of the share of top-coded observations. For

women, the correlation varies very mildly, staying around 0.43 even when almost 20 percent

of observations are top-coded.

Top-coding matters for men. Setting the maximum wage to 40 percent of what it is in

Austria increases the share of top-coded observations from 7.8 percent to 43.5 percent, and

results in an increase of the correlation from 0.491 to 0.864.

Our intuition is that the impact of top-coding on estimated correlation depends on the

correlation in the group affected by top-coding relative to the correlation among the rest. If

the correlation is similar to the rest of the sample, then top-coding does not have a significant

impact. However, if the correlation in the top-coded group is stronger, the correlation

decreases after top-coding the data. Viewed through this lens, the correlation among high-

wage women is similar to the rest. For men, it is useful to think about the components of the

correlation separately. The covariance (not plotted) decreases with top coding from initial

0.018 to 0.007 when top code is 40 percent of the top wage in Austria. This suggests that

the covariance is stronger among high-wage workers. We see in Figure 6 that the correlation

increases with severity of top-code, which is driven by the sharp decline in the variance of

worker types.

The standard deviation of log wages declines with severity of top-coding. The drop over

the depicted range of top-coding is significant for all three standard deviations. The decline is

similar for men and women: increasing the share of top-coded observations by 10 percentage
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Figure 6: Impact of top-coding on estimated correlation and standard deviation of wages
for men and women. Each dot corresponds to a sample where we decreased the top-code by
0, 2, 4, . . . 40 percent every year and truncated all wages at this new top-code. The sample
of workers and firms is chosen according to Concept III, so the numbers are comparable
to Column (3) of Table 2. We plot the results as a function of the share of top-coded
observations in the sample. An observation is considered top-coded if at least one wage
observation of the job is top-coded.
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points decreases σ̂, σ̂λ, and σ̂µ by 7.9 percent, 12.1 percent and 8.7 percent, respectively, for

men and 6.9 percent, 11.9 percent, 8.0 percent, respectively, for women.

E Time-Varying Types

Consider a variant of the model where both workers’ and firms’ types change over time,

and hence across matches. We are interested in understanding what our estimator would

measure in this environment.

Assume that the mth log wage observation for worker i is ωwi,m = λi,m + εi,m. Conditional

independence of wage draws implies that εi,m is independently distributed with mean 0 and

a distribution that may depend on the time-varying type λi,m. Similarly, the nth log wage

observation for firm j is ωfj,n = µj,n + ηj,n, where ηj,n is independently distributed with mean

0 and a distribution that may depend on the time-varying type µj,n.

Types themselves are autocorrelated. Assume λi,m+1 = rλi,m + υi,m+1 and µj,n+1 =

sµj,n + νj,n+1, where r ∈ [0, 1), s ∈ [0, 1) and υ and ν are independent mean zero normal

shocks with fixed variances σ2
υ and σ2

ν , respectively. The cross-sectional distribution of λ and

µ is invariant across matches. Since υ and ν are normal, the stationary distributions of λ

and µ are also normal, with zero means and variances σ2
λ = σ2

υ/(1−r2) and σ2
µ = σ2

ν/(1−s2).

Since λ and µ are stationary normal processes, Theorem 1 in Weiss (1975) implies that

they are time-reversible. That is, we can write λi,m = rλi,m+1 + υ̃i,m and similarly µj,n =

sµj,n+1 + ν̃j,n where υ̃ and ν̃ are independent mean zero normal shocks with variances σ2
υ

and σ2
ν , respectively. We will use this property to simplify the expression for the estimated

covariance.

Finally, assume that there is measure I of workers, and to simplify the algebra, assume

that all workers and firms have 2 matches, each of duration 1.

Our estimate of the variance of worker types in this environment is

σ̂2
λ =

1

2I

∫ I

0

(
(ωwi,1 − w̄)2 + (ωwi,2 − w̄)2 −

(
ωwi,1 − ωwi,2

)2 )
di

=
1

I

∫ I

0

ωwi,1ω
w
i,2di−

(
1

I

∫ I

0

ωwi,1 + ωwi,2
2

di

)2

=
1

I

∫ I

0

(λi,1 + εi,1)(rλi,1 + υi,2 + εi,2)di−
(

1

I

∫ I

0

(1 + r)λi,1 + εi,1 + υi,2 + εi,2
2

di

)2

= rσ2
λ.

The first line uses the assumption that twi,m = 1 and Mi = 2 to derive the Bessel correction
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factor βwi = 2. It also eliminates λ̂i using its definition 1
2
(ωwi,1 + ωwi,2). The second line uses

the definition of w̄ = 1
2I

∫ I
0

(ωwi,1 + ωwi,2)di and expands all the squares. The third line uses

the distributional assumptions to express ωwi,m in terms of λi,1 and shocks. The last line

leverages the independence of the shocks to get that the measured variance is biased down

by the autocorrelation.

Similarly, we can use the formula in Section 4 to show that σ̂2
µ = sσ2

µ.

Finally, our estimate of the covariance is

ĉ =
1

2I

∫ I

0

(
(ωwi,2 − w̄)(ωfki,1,2 − w̄) + (ωwi,1 − w̄)(ωfki,2,1 − w̄)

)
di

=
1

2I

∫ 1

0

(
(λi,2 + εi,2)(µki,1,2 + ηki,1,2) + (λi,1 + εi,1)(µki,2,1 + ηki,2,1)

)
di

=
1

2I

∫ 1

0

(rλi,1 + υi,2 + εi,2)(sµki,1,1 + νki,1,2 + ηki,1,2)di

+
1

2I

∫ 1

0

(rλi,2 + υ̃i,1 + εi,1)(sµki,2,2 + ν̃ki,2,1 + ηki,2,1)di

= rsρσλσµ.

The first line again uses the assumption that twi,m = 1 and Mi = Nj = 2 to simplify the

expression. We also order workers and firms so that if firm j is worker i’s mth employer,

worker i is firm j’s mth employee. Since the average wage w̄ is zero, we can drop that from

subsequent lines. The second line rewrites wages as the sum of time-varying types and i.i.d.

shocks. The third line writes the time-varying types in terms of the types in the period when

the worker and firm are matched, taking advantage of time-reversibility in the case where

the two are matched in the second period but we are looking at wages in the first period.

The final line again uses independence of shocks to get that the measured covariance is also

biased down.

Combining these results, the estimated correlation would be ĉ/(σ̂λσ̂µ) = ρ
√
rs < ρ. Thus

to the extent that types vary over time, our approach underestimates the correlation between

types at a point in time.

It may be possible to extend our approach to handle time-varying types. Identification

results would build on the ideas in Arellano and Bonhomme (2011), using workers and

firms with three or more observations, to distinguish between time-varying types and a low

correlation between types in matched pairs.
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