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Abstract: We study estimation of factor models in a fixed-T panel data setting and

significantly relax the common correlated effects (CCE) assumptions pioneered by Pesaran

(2006) and used in dozens of papers since. In the simplest case, we model the unobserved

factors as functions of the cross-sectional averages of the explanatory variables and show that

this is implied by Pesaran’s assumptions when the number of factors does not exceed the

number of explanatory variables. Our approach allows discrete explanatory variables and

flexible functional forms in the covariates. Plus, it extends to a framework that easily

incorporates general functions of cross-sectional moments, in addition to heterogeneous

intercepts and time trends. Our proposed estimators include Pesaran’s pooled correlated

common effects (CCEP) estimator as a special case. We also show that in the presence of

heterogeneous slopes our estimator is consistent under assumptions much weaker than those

previously used. We derive the fixed-T asymptotic normality of a general estimator and show

how to adjust for estimation of the population moments in the factor loading equation.

Keywords: Factor Models; Correlated Common Effects; Correlated Random Coefficients;

Fixed Effects; Heterogenous Trends
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1. Introduction

The common correlated effects (CCE) approach to linear panel data models with common

factors has become very influential both in the theoretical panel data literature and in empirical

applications. Introduced by Pesaran (2006) – which has almost 4,000 Google Scholar citations

– the CCE model includes an equation of interest, in which the error has a factor structure, and

a reduced form equation in which the explanatory variables are linear functions of the same

factors appearing in the main equation. CCE then treats the cross-sectional averages of the

response and explanatory variables as fixed effects, eliminating (asymptotically) the

unobserved heterogeneity. Consistency and asymptotic normality of the pooled CCE (CCEP)

estimator was originally proved for the case of homogeneous slopes when both the number of

units, N, and the number of time periods, T, tend to infinity such that T/N → 0.

Since Pesaran’s pioneering work, pooled CCE estimation and related estimators have been

extensively studied in the context of large-T panels. Theoretical papers that examine both

robustness properties and extensions of CCE estimation, with T → , include Chudik, Pesaran,

and Tosetti (2011), Westerlund and Urbain (2013, 2015), Chudik and Pesaran (2015), Neal

(2015), Karabiyik, Reese, and Westerlund (2017) [hereafter, KRW (2017)], Westerlund

(2018), Chen and Yan (2019), De Vos and Westerlund (2019), Karabiyik, Urbain, and

Westerlund (2019), De Vos and Everaert (2021), Norkute, Sarafidis, Yamagata, and Cui

(2021), and Kapetanios, Serlenga, and Shin (2021). Hahn, Kuersteiner, and Mazzocco (2020)

provide several examples of economic models, including models of portfolio choice and firm

production functions, where incorporating aggregate shocks is important. They discuss

estimation and inference in a large-T setting.

Despite positive results in simulation studies from Chudik, Pesaran, and Tosetti (2011),
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Chudik and Pesaran (2015), Westerlund and Urbain (2015), and Breitung and Hansen (2020),

comparatively less is known about the fixed-T theoretical properties of CCE. Pesaran (2006)

showed that the mean group CCE estimator is asymptotically unbiased (not consistent) for

fixed T, but he made strong rank and independence assumptions. Pesaran’s (2006) asymptotic

normality result requires T →  along with N. Westerlund, Petrova, and Norkute (2019)

[hereafter, WPN (2019)] proved fixed-T asymptotic normality of the CCEP under Pesaran’s

(2006) assumptions. De Vos and Everaert (2021) provide an analytic inconsistency correction

for CCEP in dynamic models when T is fixed, but asymptotic normality requires T to grow to

infinity. In addition, heteroskedasticity is ruled out, as is serial correlation in static and

distributed lag models.

Collectively, the papers summarized in the previous paragraph open the door for

microeconometric applications of CCEP, but they all impose stringent restrictions on the

stochastic components of the model. First, they assume a factor structure for the explanatory

variables, ruling out many staples of microeconometric applications such as dummy

explanatory variables and interaction effects among explanatory variables. Second, the factor

structure is assumed independent of all idiosyncratic errors, as well as the loadings associated

with the factor structure of the covariates. Third, the assumptions are very restrictive

concerning the idiosyncratic errors over time, essentially requiring stationarity and

independence. Fourth, the current fixed-T literature assumes homogeneity of the slope

coefficients – something not assumed in the large-T Pesaran (2006) setting. In this paper we

substantially relax all of these assumptions in a constant coefficients model and also relax the

assumptions under which CCEP, and the extensions we propose, is consistent and

asymptotically normal in a model with heterogeneous slopes.
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For the purposes of this paper, there is another important feature of current approaches to

common factor models that limit their applicability to small-T settings. Namely, if the slope

coefficients are constant and the covariates satisfy a pure factor structure, as in Pesaran (2006)

and WPN (2019), the T  k matrix of cross-sectional expectations, X, is generally

rank-deficient: rankX  k. Due to this degeneracy, the asymptotic analysis of CCE

estimators is complicated and cumbersome; see KRW (2017). Pesaran (2006) noted that the

deficient rank problem disappears when slopes are allowed to be heterogeneous, but it is

undesirable that such an important component of the analysis depends on the existence of

heterogeneous slopes. Why should a rank condition on the covariates depend on the nature of

the model that is generating the outcome variable, yit?

Aside from the difficulties it implies for asymptotic analysis, we find degeneracy in

rankX unappealing. Conceptually, even with somewhat small T, there is no reason to think

the cross sectional averages of the covariates would be perfectly linearly related – regardless of

the model generating yit. Moreover, deficient rank is not seen in microeconometric

applications – something we explore further in Section 2. Instead, we propose an alternative

assumption in the context of a linear factor model, which is that the factors are linear functions

of X and possibly the T  1 vector of cross-sectional means of the dependent variable, y. We

show that Pesaran’s CCE setup implies our preferred assumption. Unlike Pesaran (2006) and

WPN (2019), X always has full rank regardless of the model generating yit. Our

representation is much easier to work with and more realistic. We can easily handle situations

where nonlinear functions of explanatory variables appear, or discrete explanatory variables,

without change. We can incorporate other functions of cross-sectional means and even other

cross-sectional moments. Because we need not worry about deficient rank of X we are only
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limited by how large T is relative to the number of moments we include to proxy for the

unobserved factors. As in Pesaran (2006), we can also include standard forms of heterogeneity,

such as unit-specific intercepts and unit-specific time trends.

To summarize, in this paper we provide a framework for applying the CCEP estimator, and

extensions, to panels where the number of time periods is small (fixed in the asymptotic

analysis) compared to the number of cross-sectional units. We significantly relax the

restrictions on the stochastic elements of the model. Our factor structure allows linear and

nonlinear functions of cross-sectional means and other moments as well as unobserved effects

or unit-specific trends in addition to cross-sectional averages. Consequently, the framework

provides a unification and extension of Wooldridge (2005) and Pesaran (2006) in the fixed-T

setting. We also derive conditions under which the mean value of heterogeneous slopes, also

called “average partial effects,” can be consistently estimated. Our assumptions are

substantially weaker than those in Pesaran (2006), and this extension has not been previously

addressed in the fixed-T literature. Our asymptotic normality result and asymptotic variance

matrix estimator are straightforward and apply to all cases without modification. A key

contribution is that we explicitly address the sampling variation that arises from estimating the

cross-sectional moments. We also clarify the role of observed, deterministic variables in the

equation of interest. In particular, we show that including variables that change only across

time do not affect estimation of the parameters of interest provided the extended CCEP

estimator includes the cross-sectional averages of the explanatory variables.

The remainder of the paper is organized as follows. In Section 2 we introduce the basic

model proposed by Pesaran (2006), discuss the CCE structure, and discuss alternative

identification assumptions. We show that, under the fixed-T assumptions used in WPN (2019),
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the unobserved factors can be written as linear functions of the cross-sectional means of the

explanatory variables or as linear functions of the cross-sectional means of the explanatory

variables and the response variable. In Section 3 we impose a full rank condition on the matrix

of cross-sectional means and sketch consistency of the CCEP estimator under assumptions

much weaker than those imposed in the literature. We study the consequences of adding

known deterministic factors in Section 4. Interestingly, whenever the cross-sectional averages

of the explanatory variables are included in any CCEP-type estimator the estimated

coefficients on the explanatory variables do not change. This appears to be a novel result. In

Section 5 we provide a more general framework where the factors can be related to estimable

functions of the moments beyond linear functions of the cross sectional means. We also allow

deterministic factors. In this general framework we formally prove consistency of an extended

CCEP (ECCEP) estimator that allows general serial correlation and nonstationarity in

underlying shocks. Section 6 extends the consistency of the ECCEP estimator when the slopes

are heterogeneous, using a generalization of an assumption in Wooldridge (2005). In Section 7

we derive a fixed-T asymptotic normality result for the ECCEP estimator that applies to the

basic model and the model with heterogeneous slopes. Section 8 provides a simple, consistent

estimator of the asymptotic variance that imposes none of the restrictive assumptions used in

previous work. For our asymptotic analysis we assume random sampling in the cross section

with fixed T and N → . Therefore, the asymptotic theory is standard, and so we do not state

moment conditions underlying the law of large numbers and central limit theorem.

In Section 9 we discuss some practical aspects of implementing CCEP, including the

decision to include only the cross-sectional averages of the explanatory variables or adding the

averages of the outcome variable. Section 10 contains concluding remarks.
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2. The Basic Model with Constant Slopes

We begin with a model having homogeneous slope coefficients, as in WPN (2019). For a

random draw i from the cross section,

yit  xit  fti  eit, t  1, . . . ,T     (2.1)

The fixed k  1 vector of parameters, , is of interest. The factors in the 1  p row vector ft are

not random but they are unobserved; therefore, p is not known, either. Robertson and Sarafidis

(2015) also take the ft to be nonrandom. Other fixed-T approaches, particularly WPN (2019),

view the ft as random variables. In the fixed-T setting the results are typically obtained by first

conditioning on ft : t  1, . . . ,T, resulting in the same inference as treating the ft as

nonrandom. Our view is that the ft play the same role as an intercept and linear trend in a

heterogenous trend model; the difference is that we do not directly observe ft.

All other variables in equation (2.1), including the factor loadings, i, are random. We

observe only yit and xit. The vector xit does not include known, deterministic factors such as an

overall intercept or time period dummies. In Section 4 we discuss including such variables.

The eit : t  1, . . . ,T are the idiosyncratic errors. Many treatments of the unobserved

effects model in (2.1) impose strong restrictions on the stationarity and dependence properties

of eit : t  1, . . . ,T. Other than finite moment conditions, we impose no substantive

restrictions in this paper.

Stacking across t for a cross-sectional unit i we can write

yi  Xi  Fi  e i,     (2.2)

where yi is T  1, Xi is T  k, F is T  p, and e i is T  1. The factor literature assumes that

rankF  p, which simply means there are no redundant factors. Below we propose a setting
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where the value of p and the rank of F are essentially irrelevant.

In the large-T case, Pesaran (2006) added a factor structure to the matrix of regressors:

Xi  FΓi  Vi,     (2.3)

so that Xi depends linearly on the same factors that appear in equation (2.2). Taken together,

(2.2) and (2.3) constitute a “common correlated effects” (CCE) model in the terminology of

Pesaran (2006). The equations in (2.3) are not of particular interest – they act as a kind of

reduced form – but Pesaran added them in the large-T case in order to estimate . The same

structure has been used by WPN (2019) in the fixed-T case. We call (2.3) the “strong common

factor” (SCF) assumption.

Combined with assumptions about the elements of Γi and Vi that are usually imposed, the

SCF assumption is very restrictive. For example, Pesaran (2006) assumes Γi and Vi are

independent, which effectively rules out discreteness in the elements of Xi. This precludes any

policy analysis defined by discrete interventions, such as in difference-in-differences designs.

Moreover, as discussed by De Vos and Westerlund (2019), (2.3) cannot be justified when the

covariates include functional forms – such as squares and interactions of underlying

explanatory variables – that are staples of applied econometrics. Independence of the vit across

t is also commonly assumed, implying that all serial dependence in xit is due to the

heterogeneity, Γi. Again, this is a strong assumption that seems unlikely to be true. For

example, if the xit are inputs in a production function it seems unrealistic that inputs for a

given firm would be independent over time. Nevertheless, SCF has been routinely imposed

even in the recent small-T factor model literature; see, for example, WPN (2019).

Pesaran (2006) (T → ) and WPN (2019) (fixed T) assume p ≤ k  1 in (2.2) and (2.3). In

this section we assume p ≤ k, although we relax this later. Most microeconometric studies
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include several covariates; consequently, this restriction on the number of factors still allows

for substantial heterogeneity. The standard model with a single additive heterogeneity has

ft  1 and then p  1.

If we make the traditional, unrestrictive assumption EVi  0, SCF implies

EXi  FEΓi ≡ FΓ,     (2.4)

where Γ is a p  k nonrandom matrix with rankΓ  p ≤ k. Note that the zero mean

assumption on Vi imposes no assumptions on the relationship between Vi and Γi or among any

of the unobservables in (2.2) and (2.3). Let X be the T  k matrix of means,

X ≡ EXi,     (2.5)

so that the tth row of X is t
x ≡ Exit. Then we can write (2.5) as

X  FΓ     (2.6)

We call (2.6) the “weak common factor” (WCF) assumption because it imposes none of the

strong restrictions typically imposed on the stochastic elements in (2.3).

Even the WCF assumption is unappealing from both practical and theoretical perspectives.

For one, it implies that if p  k then X has rank less than k, a peculiar restriction that fails in

basic models and has little, if any, empirical support. As a simple example, take T  3 and

p  1, and assume we have a staggered policy intervention, with t  1 denoting a control

period where no units are subjected to the intervention (or “treatment”). Let xit1 and xit2 denote

the binary intervention indicators, where some units are treated in both periods two and three

(indicated by xit1  1, t  2,3) and others are treated only in period three (xit2  1, t  3). The

matrix of cross-sectional means is
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X 

0 0

1 0

1 2

,

where 1 is the fraction of population units subjected to the intervention in the early period and

2 is the fraction of treated units first treated in period three. In no reasonable scenario does X

have rank less than two, and yet this is implied by (2.6) if there is only a single factor. In other

words, none of the existing factor model literature applies to this standard policy intervention

setting with a single source of heterogeneity.

If p  k in (2.6) and we make the standard assumption rankF  p then X has rank k and

the deficient rank implication of WCF (and SCF) disappears. Moreover, we can write

F  XΓ
−1, so the factors are a nonsingular linear combinations of the means. Our proposal is

to replace WCF with an assumption that models the factors as linear functions of EXi even

when p  k:

F  XX,     (2.7)

where X is a k  p matrix of unknown parameters. We (somewhat immodestly) refer to this as

assumption BSW. Importantly, if we start with (2.7) then we do not need to know or estimate

the number of factors, p, and we need not restrict rankF.

When p  k, WCF [with rankΓ  p] and BSW are clearly equivalent. When p  k, BSW

is strictly weaker than WCF. To see this, assume (2.6). Because Γ has rank p, we can partition

Γ as Γ1|Γ2, where Γ1is p  p and nonsingular. Therefore, X  FΓ1|FΓ2 and we can write

F  XX, X ≡
Γ1
−1

0
.
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[Clearly rankX  k when p  k.] To see that BSW does not imply WCF, note that WCF

requires X to have rank less than k when p  k and BSW has no such implication. (BSW does

not even require X to have full rank.) If we start with (2.7) and p  k, X may or may not

have full column rank and F may or may not have full column rank. Our view is that assuming

rankX  k is much more realistic than the WCF implication that rankX  k.

Continuing with the previous simple example, suppose ft
′  0,0, f3. This setup would

apply when aggregate shocks that have differing affects across units are nonexistent until

period three, which is the second period of the intervention. (Our general framework below

allows unrestricted shocks with common effects across i.) By choosing X′   11 0  it is

easily seen that ft  XX is satisfied with f3  111; because 11 can be any real number,

the value of f3 is unrestricted. In other words, assumption BSW holds. By contrast, there is no

way to write 2 ≡ Exi32 in terms of ft, and so WCF fails. We know failure is possible from

the general argument above; this simple example shows one does not have to look far for cases

where BSW holds and WCF does not.

If we start with (2.7) and add the empirically relevant assumption rankX  k then there

is no reason to consider the possibility that p  k. If (2.7) holds then rankF ≤ k. Suppose that

F has the largest possible rank, rankF  k. Then we can write write F  F1,F2 where F1 is

T  k with rankF1  k and F2  F1A for some A of dimension T  p − k. It follows that

Fi  F1i1  F2i2  F1i1  F1Ai2  F1i1  Ai2,     (2.8)

which is a factor structure with p  k.

To summarize, we have shown that (2.6) and (2.7) are equivalent when p  k and the BSW

assumption (2.7) is strictly weaker when p  k. In addition to being weaker than WCF
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assumptions – and much weaker than implementations of SCF – there are other substantial

benefits to starting with the representation in (2.7). For one, it allows augmenting the means t
x

with observed factors that are staples of the microeconometric panel data literature. One

simple, attractive extension is to define a row vector as

t  1,t
x     (2.9)

so that a standard additive effect, i1, appears in (2.1). Provided T is sufficiently large, we can

add a linear trend to the factors as t  1, t,t
x, which leads to a heterogeneous (or

“random”) trend model. These possibilities are allowed starting with Pesaran (2006) but under

SCF or similarly strong assumptions. As mentioned earlier, such assumptions make the

asymptotic analysis of CCEP estimators, with or without observed factors, very difficult; in

our view, unnecessarily so.

In Section 5 we study a general extension that includes (2.7) by assuming

F  ,     (2.10)

where  is a T  m matrix of rank m that includes t
x, possibly t

y, known factors, and possible

other unknown moments.

3. CCEP Estimation in the Model with Constant Slopes

We now turn to estimation of  in the context of equation (2.2). We do not include

observed deterministic variables – such as an overall intercept, time trends, or time dummies –

in the estimation. In Section 4 we show that including such variables does not affect estimation

of . For the asymptotic derivations in this section, which are purposefully informal, we

assume random sampling in the cross-sectional dimension and assume that all necessary

moments are finite. A formal, more general, result is given in Section 5.
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3.1. CCEP using Covariate Averages

Given the discussion in Section 2, it is natural to consider estimation of  in (2.2) under

(2.7) when EXi has full column rank. Plugging (2.7) into (2.2) gives

yi  Xi  Xi  e i

X  EXi, rankX  k

i ≡ Xi

    (3.1)

    (3.2)

    (3.3)

In order to allow i (equivalently, i) to be arbitrarily correlated with Xi, we would like to

sweep away the term Xi. If we knew X, we could pre-multiply (3.1) by the residual making

matrixMX  IT − XX
′ X

−1X
′ . Instead, CCEP replaces X with the cross-sectional sample

averages,

X̄  N−1∑
i1

N

Xi 

x̄1

x̄2



x̄T

.     (3.4)

By the law of large numbers

X̄
p
→ X as N → ;     (3.5)

given the rank condition (3.2), X̄′X̄ is nonsingular with probability approaching one (WPA1).

Therefore, define (WPA1)

MX̄  IT − X̄ X̄′X̄
−1
X̄′,     (3.6)

the residual-making matrix from regressing onto X̄. The resulting CCEP estimator can be

written as
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̂CCEPX̄  ∑
i1

N

Xi′MX̄Xi

−1

∑
i1

N

Xi′MX̄yi ,     (3.7)

where CCEPX̄ indicates that we sweep away the elements of X̄ in the unit-specific

regressions. Technically, we should define ̂CCEPX̄ when X̄′X̄ is singular, but any such

definition has no impact on the asymptotic analysis. A necessary condition for (3.7) to exist is

T  k; otherwiseMX̄Xi  0.

Mechanically, ̂CCEPX̄ can be obtained as follows. First, for each unit i, run the

multivariate regression

xit on x̄t, t  1, . . . ,T     (3.8)

and obtain the 1  k residuals, ẍit. Second, obtain ̂CCEPX̄ as the pooled OLS estimator from

the regression

yit on ẍit, t  1, . . . ,T; i  1, . . . ,N.     (3.9)

The estimator is unchanged if we also use the unit-specific regressions

yit on x̄t, t  1, . . . ,T

and obtain residuals ÿit and use these in place of yit in (3.9).

To further understand the nature of the CCEP estimator, note that if in (3.7) we replace x̄t

with unity then the POLS regression (3.8) produces the usual within (fixed effects) estimator.

If we use 1, t in place of x̄t then we obtain an estimator that removes unit-specific linear time

trends, as in the general framework of Chamberlain (1992) and studied explicitly in

Wooldridge (2005). We discuss extensions of the CCEP estimator that allow for heterogenous

coefficients in Section 5.
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To obtain additional assumptions needed for consistency, plug (3.1) into (3.7) and use

simple algebra to write

̂CCEPX̄    N−1∑
i1

N

Xi′MX̄Xi

−1

N−1∑
i1

N

Xi′MX̄Xi  N−1∑
i1

N

Xi′MX̄e i .     (3.10)

By (3.5) and Slutsky’s Theorem,MX̄
p
→ MX . By standard arguments, which we formulate

more generally in Section 5, for consistency we can effectively replace the random matrixMX̄

with its nonrandom plim,MX . Then we can apply the LLN to each of the three averages:

N−1∑
i1

N

Xi′MX̄Xi
p
→ EXi′MXXi

N−1∑
i1

N

Xi′MX̄Xi
p
→ EXi′MXXi

N−1∑
i1

N

Xi′MX̄e i
p
→ EXi′MXe i

The second expectation is zero becauseMXX  0. Therefore, for consistency of ̂CCEP for

fixed T, N → , it suffices to assume EXi′MXXi is nonsingular and EXi′MXe i  0. The

former is a standard rank condition, which requires sufficient variation in xit : t  1, . . . ,T

after partialling out X; we will have more to say about it in a more general setting in Section

5. The latter assumption can be written as

E Ẋi
′
e i  E Ẋi

′
ė i  0     (3.11)

where Ẋi ≡ MXXi and ė i ≡ MXe i. A sufficient but not necessary condition for (3.11) is that

xit : t  1, . . . ,T is strictly exogenous with respect to eit : t  1, . . . ,T, a standard

assumption in the factor model literature in general, including CCE.

The asymptotic distribution of N ̂CCEPX̄ −  is complicated by the fact that it
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generally depends on the asymptotic distribution of N MX̄ −MX , something that has been

thus far ignored in the CCE literature. Ignoring the sampling error in X̄ generally leads to

incorrect calculation of standard errors and test statistics. In Sections 5 and 6 we will show

consistency of an estimator in more general settings and obtain its N -asymptotically normal

distribution in Section 7.

3.2. Adding ȳ in CCEP

Pesaran (2006) proposed a version of CCEP that includes the cross-sectional averages of

the outcome variable, and this estimator has been studied in the small-T literature under SCF.

By extending the previous analysis we can derive its consistency under much weaker

assumptions than those imposed in WPN (2019). Define

ȳ  N−1∑
i1

N

yi 

ȳ1

ȳ2



ȳT

    (3.12)

and

Z̄  ȳ, X̄.     (3.13)

Assume that the T  k  1 matrix Z  y,X has rank k  1 and that EXi′MZXi is

nonsingular; necessary is T  k  1. This version of the CCE estimator is

̂CCEPZ̄  ∑
i1

N

Xi′MZ̄Xi

−1

∑
i1

N

Xi′MZ̄yi     (3.14)

Consistency of ̂CCEPZ̄ follows from essentially the same argument in Section 3.

The CCEP estimator with ȳ included imposes a cost in terms of a lost degree of freedom.
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Nevertheless, there is a situation, covered in WPN (2019) in the fixed T case, that warrants

inclusion of ȳ in approximating the factors. This is the case p  k  1 in the Pesaran (2006)

and WPN (2019) frameworks, which means there is one more factor than there are regressors.

Under the WPN (2019) assumptions, rankF  k  1. (We will discuss the rank condition on

F further in Section 9.) Given (2.2), yi  Xi  Fi  e i, Ee i  0, and the WCF assumption

(2.6), we have

y  X  F

X  FΓ

    (3.15)

    (3.16)

where  ≡ Ei. [WPN (2019) actually impose SCF, but the analysis here shows those strong

assumptions are not needed.] This implies we can write

y,X  FCQ     (3.17)

where

C ≡ ,Γ

Q ≡
1 0

 Ik

    (3.18)

    (3.19)

Letting Z ≡ y,X , with tth row t
z ≡ t

y,t
x, and  ≡ CQ, we can write

Z  F     (3.20)

The matrix Q is always nonsingular. Further, nonsingularity of C is assumed in WPN (2019)

and it is a natural assumption. Therefore, we can write

F  Z
−1

or
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F  ZZ     (3.21)

The representation in (3.21) is the natural counterpart to the earlier BSW assumption (2.7). Of

course (3.21) nests (2.7), but that does not mean we can or want to include ȳ in the CCEP

estimation. We face a tradeoff between having more estimable proxies for the factors ft and

reducing the remaining variation in xit : t  1, . . . ,T. And, including ȳ is not even possible if

T  k  1, a case of some interest when T is small.

We have shown that under (2.2) with p  k  1 and C nonsingular, (3.20) and (3.21) are

equivalent. Because these assumptions imply rankZ  k  1, ̂CCEPZ̄ is defined WPA1 and

it is consistent for ; we need not worry about difficulties caused by degeneracies.

4. Adding Observed Deterministic Variables

A natural extension of model (2.2) is to add a (row) vector of known variables dt (1  r),

which can include an overall intercept, time period dummies, and other variables that change

only across t. Then (3.1) gets replaced with

yi  D  Xi  Xi  e i     (4.1)

where D is a T  r matrix with tth row dt. When ȳ is included in CCEP the relevant model,

reusing notation, is

yi  D  Xi  Zi  e i     (4.2)

However, whether any particular model holds is irrelevant as the following results are purely

algebraic.

THEOREM 1: (i) Let Ẍ be the NT  k matrix obtained by stacking Ẍi ≡ MX̄Xi over i and

assume rankẌ  k. Further, assume that the T  r matrix D̈ ≡ MX̄D has rank r. Let ̂ and ̂
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be the OLS estimators obtained by partialling out X̄ at the unit level. Then ̂  ̂CCEPX̄.

(ii) Now let Ẍi  MZ̄Xi and D̈  MZ̄D and assume rankẌ  k and rankD̈  r. If ̂ and

̂ are obtained by partialling out Z̄ at the unit level then ̂  ̂CCEPZ̄ and ̂  0.

(iii) In the setting of part (ii), the residuals,

ü i ≡ ÿi − Ẍi̂, are the same as the residuals

from the CCEPZ̄ regression.

Proof: (i) By definition, the OLS estimates ̂ and ̂ are obtained from the system OLS

regression

ÿi on D̈, Ẍi, i  1, . . . ,N,     (4.3)

where ÿi ≡ MX̄yi. [See Wooldridge (2010, Section 7.3.2 for the equivalence between pooled

OLS and system OLS.] By the rank conditions and the algebra of partitioned least squares, this

long regression gives the same coefficients on Ẍi in the short (CCEP) regression if

∑ i1
N D̈

′
Ẍi  0. But

∑
i1

N

D̈
′
Ẍi  D̈

′∑
i1

N

Ẍi  D̈
′∑
i1

N

MX̄Xi  D̈
′
NMX̄X̄  0.     (4.4)

Because D̈
′
Ẍi  D′Ẍi, it is irrelevant whether we partial X̄ out of D: the estimate ̂CCEPX̄ is

also obtained from ÿi on D, Ẍi, i  1, . . . ,N.

(ii) ̂ and ̂ are still obtained from (4.3) but where now ÿi ≡ MZ̄yi, D̈ ≡ MZ̄D, and

Ẍi ≡ MZ̄Xi. Because the columns of Z̄ include X̄,MZ̄X̄  0. Therefore, (4.4) still holds,which

implies ̂  ̂CCEPZ̄ and

̂  ∑
i1

N

D̈
′
D̈

−1

∑
i1

N

D̈
′
ÿi .
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Now, usingMZ̄ȳ  0,

∑
i1

N

D̈
′
ÿi  D̈

′∑
i1

N

ÿi  D̈
′∑
i1

N

MZ̄yi  D̈
′
NMZ̄ȳ  0,

which implies ̂  0.

(iii) This follows immediately from part (ii) because the residuals are


ü i ≡ ÿi − D̈̂ − Ẍi̂  ÿi − Ẍi̂CCEPZ̄. 

Theorem 1(i) shows that once the x̄t have been netted out of the xit no other aggregate

factors matter for estimation of . One interpretation is that these are the only relevant factors

for estimating the effects of the xit. Commonly used estimators in small-T settings, such as the

standard fixed effects (or within) estimator, are not invariant to the inclusion of D. In fact,

there are often notable differences between the FE estimator that excludes time effects and the

FE estimator that includes a full set of time dummies – the latter of which is often called the

“two-way fixed effects” (TWFE) estimator. Part (ii) of Theorem 1 shows that if ȳ is included

in CCEP then we can say more: the coefficients on any regressors dt are identically zero.

Consequently, when the unit-specific partialling out is done on Z̄, the residuals obtained from

(4.3) are the same residuals obtained from the CCEPZ̄ regression.

5. Consistency of an Extended CCEP Estimator under a
General Factor Structure

In Section 3 we sketched the consistency of the versions of CCEP that use X̄ or ȳ, X̄

under fixed-T asymptotics under conditions substantially weaker than WPN (2019). For

̂CCEPX̄, we simply require that X has rank k. Likewise, for ̂CCEPZ̄ we only require that

y,X has rank k  1. In Section 4 we showed that, in either case, estimation of  is
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invariant to the inclusion of deterministic variables dt in the equation of interest.

There is still a shortcoming of the CCEP estimators in Sections 3 and 4 for

microeconometric application: they rule out staples of empirical applications of small-T panel

data analysis, such as unit-specific intercepts. Some microeconometric applications also allow

for unit-specific time trends. Therefore, as in Pesaran (2006) and WPN (2019), in this section

we study consistency of a class of estimators that includes both versions of the CCEP

estimators as well as extensions of CCEP that allow for additive heterogeneity and

heterogenous trends (linear or otherwise). These can be viewed as hybrids between standard

FE-type estimators and CCEP.

We also extend the framework to allow for other estimable quantities to appear in the

factor structure. For example, with enough time periods we can allow squares and interactions

among elements in X,y , something that has not been previously allowed (probably

because both SCF and WCF rule out this possibility). Moreover, we can include

cross-sectional second moments of xit,yit : i  1, . . . ,N as additional proxies for the

factors.

In Section 4 we saw that inclusion of variables that change only across t does not change

either of the CCEP estimates. This is not the same as saying the estimators that omit these

variables are consistent for  in a more general model. Therefore, in this section we explicitly

allow for a vector of variables dt in the model and show that ignoring these factors results in

consistent estimation.

The model is now assumed to be

yit  dt  xit  fti  eit, t  1, . . . ,T     (5.1)

21



or, stacking over time,

yi  D  Xi  Fi  e i     (5.2)

where D is T  r (and nonrandom), Xi is T  k, and F is T  p (and nonrandom). We now

assume the factors are determined by

F  ,     (5.3)

where  is T  m with rank  m and  is m  p and includes at least X.

Combining (5.2) and (5.3) we can write

yit  dt  xit  ti  eit, t  1, . . . ,T     (5.4)

or

yi  D  Xi  i  e i     (5.5)

where

i ≡ i     (5.6)

As can be seen from (5.5), the matrix  is key: it contains either known constants or

consistently estimable parameters that determine the unknown factors F. We assume

throughout that X is included in , which may also include y. Moreover,  can include

observed, deterministic functions (such as unity or functions of time). Because we choose 

we are necessarily choosing m. The number of factors, p, is unknown and unimportant to our

approach – a significant advantage over other approaches to factor models.

It may seem that one way of allowing heterogeneous slopes and trends in CCEP is to

simply include unity and functions of t in xit. But this will always cause degeneracies because

those elements of xit will be swept away in the partialling out used by CCEP. Rather than deal
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with deficient rank situations, we adopt the large-T approach in Pesaran (2006) and include in

xit only variables that have some variation across i and t. We allow more flexibility than basic

CCE framework in Sections 2 and 3 by choosing  appropriately.

One natural extension of the CCEP estimator that projects out the cross-sectional averages

of the explanatory variables is to take

t  1,t
x,     (5.7)

a possibility allowed in Pesaran (2006) in the large-T setting under much stronger assumptions

than we make here. In the fixed-T setting, WPN (2019) mention such possibilities but do not

provide a formal analysis; in any case, the assumptions they impose without working through

the details are much stronger than we impose here. By choosing t as in (5.7) we allow for a

heterogeneous intercept in (5.4), i1 – in addition to allowing the factors to depend

heterogeneously on t
x. We obtain a kind of hybrid between the usual additive unobserved

effects model and a version of the CCE model (without imposing the strong common factor

assumption). Choosing t in (5.7) requires T  k  1  dimxit  1, whereas the CCEP

estimator that projects onto X (actually, its sample analog, X̄) only requires T  k.

Adding unit-specific linear trends to CCEPX̄ means taking

t  1, t,t
x,     (5.8)

and then we require T  k  2. Naturally, there is a tradeoff between the amount of

heterogeneity allowed and the required number of time periods. If we were to drop t
x then we

obtain the heterogenous trend model studied in Wooldridge (2005). Here we only consider

cases where t
x is included in t. We can also add t

y to t in (5.7) or (5.8) and then we require

an additional time period. With large enough T, more flexibility is obtained by including, say,
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t
x ⊗ t

x, t
x ⊗ t

y, or even second moments of xit,yit. If squares and interactions appear in xit

then cross-sectional second moments are already included in t
x, which is itself an extension

from the previous frameworks that impose SCF. By directly specifying (5.7), we are not

limited in what we can include in t by the restrictive SCF or WCF assumptions; we are only

limited by the number of time periods.

In what follows, we assume Xi,yi : i  1,2, . . . ,N are independent and identically

distributed. As in Section 3, the asymptotic analysis is for fixed T with N → , and so we do

not need restrictions on the distributions across time or the amount of time dependence. In

order to focus on substantive assumptions, we are not explicit about moment conditions that

ensure the basic convergence results. These conditions are standard and add nothing to the

analysis.

Assumption 1 (Factor Model): For a random draw i, the model is given by equation (5.2)

where D (T  r) and F (T  p) are nonrandom, as are the parameters  (r  1) and  (k  1). 

Importantly, we put no restrictions on how many elements of i are correlated with

elements of Xi. It could be all elements of i or none. In other approaches to estimating  in

(5.2) the the number of factors is defined to be number of heterogeneity terms correlated with

Xi, and this integer value needs to be known or estimated. See, for example, Ahn, Lee, and

Schmidt (2013).

Assumption 2 (Factor Restriction): The T  p matrix of factors F is given by F   for

some T  m matrix  with X ∈  and rank  m. 

As discussed earlier, a leading case of Assumption 2 is when   X. Assumption 2

allows one to include y in  as well as a constant and time trends. One can even include other
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cross sectional moments, such as standard deviations of the elements of xit. Because  at least

includes X it is necessarily true that m ≥ k. Importantly, once we have chosen  the column

dimension of F, p, plays no role, and neither does the matrix . This is in contrast to other

fixed-T approaches, notably WPN (2019). The assumption rank  m seems reasonable and

empirically relevant, and makes the asymptotic analysis relatively straightforward.

Given the algebraic equivalences in Theorem 1, if interest lies in only estimating  then we

could ignore the presence of D. Nevertheless, in some cases it is useful to know that  is

consistently estimable, especially when one wants to obtain suitable residuals.

Assumption 3 (Rank Condition): Define

M ≡ IT − ′−1′.     (5.9)

Then (i) E Ẋi
′
Ẋi ≡ EXi′MXi is nonsingular and (ii) Ḋ

′
Ḋ ≡ D′MD is nonsingular. 

The first part of Assumption serves to identify  and the second part is needed only to

identify . Combined with Assumption 2, Assumption 3(i) requires T  m  dimt – which

we can think of as an order condition – so that projecting Xi onto  (in the population) does

not result in a perfect fit. The order condition is a natural restriction as it simply says that the

number of (estimable) quantities determining the factors is less than the number of time

periods. Moreover, this condition is entirely consistent with what is required in simpler fixed

effects and heterogeneous trend settings. In order to satisfy Assumption 3(ii), the choice of D

is restricted by our choice of  because rankD̈ ≤ rankM  T − m. Therefore, there is no

point in putting more than T − m elements in D. Typically, each row dt would include time

period dummy variables, but some time period dummies will be redundant. Remember,

whatever we put in D does not affect estimation of , but generally it will be difficult to
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interpret ̂.

As discussed previously, useful extensions of the basic CCEP estimator are obtained by

choosing

t  gt,t
x,     (5.10)

where gt includes known factors, such as unity (the leading case) and functions of time. No

matter what is in gt, we still need T  dimt  m; otherwiseMXi  0.

If we know  then we can premultiply (5.5) byM to remove i:

Myi  MD MXi Me i

or

ẏi  Ḋ  Ẋi  ė i     (5.11)

where the “” denotes residuals from regressing onto . The extended CCEP estimator with

known  is the system OLS estimator applied to (5.11).

Assumption 4 (Exogeneity): With Ẋi ≡ MXi,

Eė i  0

E Ẋi
′
e i  0. 

    (5.12)

    (5.13)

Because D can include an intercept and time dummies the assumption Eė i  0 is for free. In

any case, (5.12) only has implications for estimating . To see why, if we define e ≡ Ee i

then

E Ẋi
′
e i − e  E Ẋi

′
e i − E Ẋi

′ e  E Ẋi
′
e i − X

′ Me  E Ẋi
′
e i

because X
′ M  0 when X ∈ . Therefore, the exogeneity assumption (5.13), which is the

one relevant for identification of , holds without (5.12).
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Condition (5.13) is implied by the strict exogeneity assumption

Covxis,eit  0, s, t  1, . . . ,T,     (5.14)

which is a common assumption in the CCE literature. Condition (5.13) allows some features of

Xi, which are swept away by applyingM, to be correlated with e i, but it does not apply to

situations where xit includes yi,t−1 or in feedback cases where elements of xi,t1 are correlated

with eit.

As a preamble to establishing consistency of a feasible estimator, it is useful to begin by

assuming  is known. Then, it is useful to write

yi  Wi  i  e i     (5.15)

where

Wi ≡ D,Xi,  ≡ ′,′
′.

The system OLS estimator from (5.11) can be written as

̂  ∑
i1

N

Ẇi
′
Ẇi

−1

∑
i1

N

Ẇi
′
ẏi  ∑

i1

N

Wi
′MWi

−1

∑
i1

N

Wi
′Myi

   N−1∑
i1

N

Wi
′MWi

−1

N−1∑
i1

N

Wi
′Me i

where we useM  0. By the law of large numbers and E Ḋ
′
Ẋi  Ḋ′

EẊi  0,

N−1∑
i1

N

Wi
′MWi

p
→ EWi

′MWi 
Ḋ
′
Ḋ 0

0 E Ẋi
′
Ẋi

,

which is nonsingular by Assumption 3. (This shows that ̂ exists WPA1.) Next, by the LLN,
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N−1∑
i1

N

Wi
′Me i  N−1∑

i1

N

Ẇi
′
e i

p
→

Ḋ
′
Ee i

E Ẋi
′
e i

 0

by Assumption 4. We have shown that, with known , the CCEP estimator is consistent for 

and  with fixed T, N →  under Assumptions 1 through 4.

We now turn to a formal consistency result for a feasible estimator that replaces unknown

elements in  with consistent estimators.

Assumption 5 (Consistent Estimation of ): For an estimator ̂,

̂
p
→  as N → .      (5.16)

Because X ∈ , X̄ would be included in ̂. Therefore, by the same reasoning as at the

end of Section 3, the feasible estimator is invariant to the inclusion of D. Nevertheless, we

show consistency of the estimator of  along with that of . When ̂  X̄, ȳ we obtain the

version of the CCEP estimator that includes ȳ. If t is chosen as in (5.10), ̂  G, X̄, where

G is a T  q matrix of deterministic functions of t. As mentioned previously, other choices are

possible, such as including cross-sectional variances and covariances of the elements of xit,

although this would require a fairly large T in most cases.

Intuitively, it is clear that, under Assumptions 1 through 5, replacingM with

M̂  IT − ̂ ̂
′
̂

−1
̂

′
    (5.17)

will not affect consistency of the estimator, which is now written

̂  ∑
i1

N

Wi
′M̂Wi

−1

∑
i1

N

Wi
′M̂yi ≡ ∑

i1

N

Ẅi
′
Ẅi

−1

∑
i1

N

Ẅi
′
yi     (5.18)

Ẅi ≡ M̂Xi  D̈|Ẍi.     (5.19)
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Nevertheless, we state a formal result that covers many cases of interest, including any of the

CCEP estimators.

THEOREM 2: Under Assumptions 1 through 5 and standard moment conditions, ̂
p
→  as

N → . 

Proof: By Assumptions 2 and 5,M̂ exists WPA1. Moreover, by Slutsky’s Theorem,

M̂
p
→ M. It follows that

vec N−1∑
i1

N

Wi
′M̂Wi − N−1∑

i1

N

Wi
′MWi  N−1∑

i1

N

Wi
′ ⊗Wi

′ vecM̂ −M

 Op1op1  op1

because N−1∑ i1
N Wi

′ ⊗Wi
′ converges in probability to EWi

′ ⊗Wi
′. It follows by the law

of large numbers applied to N−1∑ i1
N Wi

′MWi that

N−1∑
i1

N

Wi
′M̂Wi

p
→ EWi

′MWi,     (5.20)

which is nonsingular by Assumption 3.

Next, plug in for yi:

̂  N−1∑
i1

N

Ẅi
′
Ẅi

−1

N−1∑
i1

N

Ẅi
′
yi  N−1∑

i1

N

Ẅi
′
Ẅi

−1

N−1∑
i1

N

Ẅi
′
Wi  e i

   N−1∑
i1

N

Ẅi
′
Ẅi

−1

N−1∑
i1

N

Ẅi
′
e i

because Ẅi
′
Ẅi  Ẅi

′
Wi.

But
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N−1∑
i1

N

Ẅi
′
e i  N−1∑

i1

N

Ẇi
′
e i  N−1∑

i1

N

Wi
′M̂ −Me i

 N−1∑
i1

N

Ẇi
′
e i  N−1∑

i1

N

e i′ ⊗Wi
′ vecM̂ −M     (5.21)

As we showed earlier, under Assumption 4, N−1∑ i1
N Ẇi

′
e i  op1. Moreover, we assume

Ee i′ ⊗Wi
′ exists, and so N−1∑ i1

N e i′ ⊗Wi
′  Op1. By Assumption 5,

vecM̂ −M  op1. We have shown that

N−1∑
i1

N

Ẅi
′
e i  op1  Op1  op1  op1     (5.22)

and this completes the proof. 

As we saw in Section 3, a leading case of Theorem 2 is

M̂  MX̄  IT − X̄ X̄′X̄
−1
X̄′,     (5.23)

and necessary for the rank condition is T  k. If we add the averages ȳ  N−1∑ i1
N yi then

necessary for the rank condition is T  k  1.

Theorem 2 applies to CCEP estimators with known deterministic variables , such as

̂t  1, x̄t,     (5.24)

which seems particularly attractive provided T  k  1. With this choice of ̂t we effectively

encompass the usual within estimator and allow much more heterogeneity. Another attractive

choice is

̂t  1, t, x̄t,     (5.25)

which requires T  k  2. In both cases, only some of the elements of ̂ are estimated.

In the general case, no restrictions are placed on the covariances between elements of Xi
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and i, which is what gives the analysis a fixed effects flavor. We only require that Xi is

exogenous with respect to the idiosyncratic errors, e i.

6. Consistency with Random Slopes

Without much additional effort, we can extend the consistency result in Section 5 to a

model with slope heterogeneity.

Assumption 1′ (Factor Model): For a random draw i,

yit  dti  xiti  fti  eit, t  1, . . . ,T     (6.1)

where D  d1
′ ,d2

′ , . . . ,dT
′  ′ (T  r) and F  f1

′ , f2
′ , . . . , fT

′ 
′
(T  p) are nonrandom and i

(r  1) and i (k  1) are random vectors. 

In (6.1), both the covariates of interest, xit, and the known deterministic factors, dt, can

have heterogeneous coefficients. We can decompose i and i into their means and

unit-specific deviations as

i    ai, Eai  0

i    bi, Ebi  0

    (6.2)

    (6.3)

and then , and especially , become the parameters of interest. The elements in the vector 

are often called “average partial effects.”

Stacking across t and substituting gives

yi  Di  Xii  Fi  e i

 D  Xi  i  e i  Dai  Xibi,     (6.4)

where, as before, F   and i  i. Compared with equation (5.5), equation (6.4) has the

extra (unobserved) term Dai  Xibi. Because of the small-T framework, we ignore this term in

estimation. To ensure we still obtain consistent estimators of the average effects, , we add an
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exogeneity assumption similar to Wooldridge (2005).

Assumption 6 (Exogeneity with Respect to Slopes): With ai and bi as in (6.2) and (6.3),

respectively,

E Ẋi
′ ⊗ ai  E ∑

t1

T

ẋit′ ai  0     (6.5)

E Ẋi
′ ⊗ bi  E ∑

t1

T

ẋit′ bi  0     (6.6)

E Ẋi
′
Ẋibi  E ∑

t1

T

ẋit′ ẋit bi  0.      (6.7)

Wooldridge (2005) used a version of Assumption 6 where ẋit is the unit-specific deviations

from the time averages, x̄i  T−1∑ t1
T xit, in which case (6.5) and (6.6) require that the

unit-specific deviations from means are uncorrelated with i and i, respectively. It turns out

that (6.6) is not used in the consistency proof, but has a natural interpretation and it implies

that a certain composite error term has a mean of zero, which simplifies some calculations in

Section 7. Condition (6.7) implies that the unit-specific variances and covariances of

xit : t  1, . . . ,T are uncorrelated with i. Wooldridge (2005) also allowed for deviations

from unit-specific detrending, where xit is regressed on, say, 1, t. Here, we can choose  to

allow those possibilities while also partialling out of the cross-sectional averages, as is done

with CCEP. A related point is that if (6.5) is suspected of being false for some elements of D

then those elements can be moved to  and we net them out of Xi. (As always, this requires T

to be sufficiently large.) The idea is that we choose  in a way that includes what we think are

the relevant variables to partial out, and then anything omitted from  is in D.
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Pesaran (2006) did not study the CCEP estimator with heterogeneous slopes and fixed T.

Instead, under assumptions much stronger than Assumption 6, he proved that the so-called

mean group CCE estimator is consistent with fixed T, N → . However, Pesaran assumed, at a

minimum, that xit and i,i are independent, so that any systematic heterogeneity in xit is

independent of the heterogeneity on the factors dt and the slopes on the covariates of interest.

As a simple example of what (6.5) and (6.6) allow when t  1,t
x, suppose xit  hi  ait.

Then hi can be arbitrarily correlated with i,i whereas Pesaran’s (2006) analysis of the

mean group estimator does not allow that.

Under Assumption 6, the consistency result is a straightforward extension of Theorem 2.

As far as we know, this is the first demonstration of consistency of CCEP-type estimators with

fixed T and heterogenous slopes – and we need not make strong independence assumptions

used to show consistency of other estimators.

THEOREM 3: Make the assumptions in Theorem 2 with Assumption 1′ in place of

Assumption 1. In addition, make Assumption 6. Then ̂
p
→  as N → .

Proof: Define a new error term by

ui ≡ e i  Dai  Xibi     (6.8)

By Theorem 2, it suffices to show that Eu̇i  0 and E Ẋi
′
u̇i  0. But

Eu̇i  Eė i  ḊEai  EẊibi

and each term is zero by (5.12), Eai  0 by construction, and (6.6), respectively.

Next,

E Ẋi
′
u̇i  E Ẋi

′
ė i  E Ẋi

′
Ḋai  E Ẋi

′
Ẋibi  0
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because each term is zero by (5.13), (6.5), and (6.7), respectively. 

7. Asymptotic Normality

We now derive the asymptotic normality of the extended CCEP estimator in a setting that

allows for constant or random slopes, with and without factors dt. A single theorem applies to

all cases – unlike in previous analyses. We do not consider the asymptotic distribution of

estimators of  but focus on the coefficients  of interest. Recall that, in the current setting

with X̄ included in ̂, the estimator ̂ is the same whether or not we include D.

Assumption 1
′′

(Linear Model): For a random draw i,

yi  D  Xi  ui     (7.1)

where yi is T  1, Xi is T  k, and ui is T  1. 

In the model from Section 6,

ui ≡ i  e i  Dai  Xibi,

and in the model of Section 5, Dai  Xibi can be dropped. In this section, we will not assume

any special structure for ui.

Assumption 2′ (Factor Structure):  is a T  m matrix with X ∈  and rank  m.



Recall that the matrix  is the population version of the factors we want to remove from

Xi, at the unit level, in order to consistently estimate . Given Assumption 2′, we can define

M  IT − ′−1′, as before. We use the same rank condition as in the consistency

result:

Assumption 3′ (Rank Condition): A ≡ EXi′MXi is nonsingular. 

We state the exogeneity assumption in a way that covers the previous examples while
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allowing a simple, general derivation of asymptotic normality:

Assumption 4′ (Exogeneity): With u̇i  Mui and Ẋi  MXi,

Eu̇i  0     (7.2)

and

E Ẋi
′
ui  E Ẋi

′
u̇i  0.      (7.3)

Assumption 4′ holds for the models in Section 5 (under Assumption 4) and Section 6

(under Assumptions 4 and 6). While Eu̇i  0 is not necessary for consistency or asymptotic

normality, it does simplify the first-order representation of N ̂ −  in a useful way. [By

contrast, Eui  0 is too strong and does not hold in the settings of Sections 5 and 6.]

Assumption 5′ (Asymptotic Normality of ̂): For an estimator ̂ that includes X̄ in its

columns,

vec N ̂ −   N−1/2∑
i1

N

qi  op1     (7.4)

where

Eqi  0.      (7.5)

Naturally, Assumption 5
′
implies Assumption 5. Define the estimator of  as

̂  ∑
i1

N

Ẍi
′
Ẍi

−1

∑
i1

N

Ẍi
′
yi ,

where Ẍi is the T  k matrix of residuals

Ẍi  M̂Xi.

To derive asymptotic normality, note that∑ i1
N Ẍi

′
D  0 and so
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N ̂ −   N−1∑
i1

N

Ẍi
′
Ẍi

−1

N−1/2∑
i1

N

Ẍi
′
ui .     (7.6)

From the consistency proof, we already know that

N−1∑
i1

N

Ẍi
′
Ẍi  A  op1

A ≡ EXi′MXi     (7.7)

Along the way, we will show that

N−1/2∑
i1

N

Ẍi
′
ui  Op1

and so, by the asymptotic equivalence lemma,

N ̂ −   A−1 N−1/2∑
i1

N

Ẍi
′
ui  op1     (7.8)

Therefore, as usual in these contexts, we can replace the average N−1∑ i1
N Ẍi

′
Ẍi with its

nonrandom probability limit without affecting the limiting distribution.

Unless we make additional assumptions, the asymptotic distribution of N−1/2∑ i1
N Ẍi

′
ui is

not the same as that of N−1/2∑ i1
N Ẋi

′
ui. In other words, estimation of  generally affects the

asymptotic distribution of N ̂ −  . To see this, write

N−1/2∑
i1

N

Ẍi
′
ui  N−1/2∑

i1

N

Xi − X̄
′M̂ui,

which follows fromM̂
′ X̄  0. Next, write
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N−1/2∑
i1

N

Xi − X̄
′M̂ui  N

−1/2∑
i1

N

Xi − X̄
′Mui  N−1/2∑

i1

N

Xi − X̄
′M̂ −Mui

 N−1/2∑
i1

N

Ẋi
′
ui − N−1/2∑

i1

N

X̄′Mui

 N−1/2∑
i1

N

Xi − X̄
′M̂ −Mui

    (7.9)

The middle term can be written as

N−1/2∑
i1

N

X̄′Mui  X̄
′M N−1/2∑

i1

N

Mui  X̄′M N−1/2∑
i1

N

u̇i     (7.10)

By (7.2) and the CLT, N−1/2∑ i1
N u̇i  Op1. By the LLN and Slutsky’s Theorem,

X̄′M
p
→ X

′ M  0. Therefore, the middle term is op1 and does not contribute to the

asymptotic distribution of N ̂ −  . For the final term, write it as

N−1/2∑
i1

N

Xi − X̄
′M̂ −Mui  N−1∑

i1

N

ui ⊗ Xi − X̄
′

vec N M̂ −M     (7.11)

Now

vec N M̂ −M  Op1

and

N−1∑
i1

N

ui ⊗ Xi − X̄  N−1∑
i1

N

ui ⊗ Xi − X  N−1∑
i1

N

ui ⊗ X − X̄

 N−1∑
i1

N

ui ⊗ Xi − X  Op1  op1

So we have shown
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N−1/2∑
i1

N

Ẍi
′
ui  N−1/2∑

i1

N

Ẋi
′
ui  N−1∑

i1

N

ui ⊗ Xi − X
′

vec N M̂ −M  op1     (7.12)

and by the LLN,

N−1/2∑
i1

N

Ẍi
′
ui  N−1/2∑

i1

N

Ẋi
′
ui  G ′vec N M̂ −M  op1     (7.13)

where

G ≡ Eui ⊗ Xi − X     (7.14)

is G is T2  k. Equation (7.13) shows that the asymptotic distribution of vec N M̂ −M

generally affects the asymptotic distribution of N ̂ −  . From equation (7.14), this is not

the case when each element of Xi is uncorrelated with each element of ui because then G  0.

This is a strong requirement. For example, in the basic constant coefficient model in equation

(7.2), we would require EXi − X ⊗ i   0, which means that each element of Xi is

uncorrelated with the heterogeneity (and not just the idiosyncratic shocks). This kind of

exogeneity is tantamount to a standard “random effects” assumption and is needed neither for

consistency nor asymptotic normality of ̂.

The next step is to apply the delta method to find the asymptotic variance of

vec N M̂ −M . According to Abadir and Magnus (2005, Exercise 13.24), the Jacobian

of vecM with respect to vec is

IT2  KT2  ′−1 ⊗M ,     (7.15)

where KT2 is the T2  T2 commutation matrix [see Abadir and Magnus (2005, page 299)]. It

follows from (7.13), (7.15), and the delta method that
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N−1/2∑
i1

N

Xi′M̂ −Mui  G ′IT2  KT2  ′−1 ⊗M vec N ̂ −   op1     (7.16)

For the basic CCEP estimator without deterministic factors in xit,

̂  N−1∑
i1

N

Xi  X̄,

and then the CLT applies directly. If we want to remove unit-specific averages or time trends,

some elements of ̂ are not random. Generally, assume the representation (7.4). The

variance-covariance matrix of qi may be singular, as occurs when some elements of  are

not estimated, but this causes no difficulties. Dropping the dependence of qi on , define

si ≡ Ẋi
′
ui  G ′IT2  KT2  ′−1 ⊗M qi     (7.17)

Under Assumptions 1′ through 5′ – whether or not we have random slopes – Esi  0, and so

we can apply the CLT:

N−1/2∑
i1

N

si
d
→ Normal0,B     (7.18)

B ≡ Varsi  Esisi′     (7.19)

We now have the representation

N ̂ −   A−1 N−1/2∑
i1

N

si  op1     (7.20)

and so, by the asymptotic equivalence lemma,

N ̂ − 
d
→ Normal0,A−1BA−1     (7.21)

We have proven the following result.
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THEOREM 4: (i) Under Assumption 1
′′

and Assumptions 2
′
through 5′ (and standard

regularity conditions), (7.21) holds with B given by (7.19) and A given in (7.7). (ii) If, in

addition,

Eui ⊗ Xi − X  0     (7.22)

then AVar N ̂ −  does not depend on the asymptotic variance of vec N ̂ −  . 

Theorem 4 considerably expands the scope of CCEP-type estimators to include the two

commonly used versions of CCEP as well as hybrids of standard fixed effects estimators and

CCEP. The result allows for substantial heterogeneity correlated with xit provided the choice

of  eliminates the heterogeneity. Arbitary serial correlation and heteroskedasticity is allowed

in uit : t  1, . . . ,T, allowing for the standard model with fixed coefficients and serially

correlated eit : t  1, . . . ,T as well as the random slopes models discussed in Section 6.

When applied to the special case of the CCEPZ̄ estimator, (7.21) differs from that in

WPN (2019) because the latter does not account for sampling variation in Z̄. Here, we

explicitly account for the first-stage estimation error under assumptions much weaker than

WPN (2019). As a special case, assumption (7.22) then provides the strong condition under

which that sampling variation can be ignored. and has nothing to do with, say, the time series

properties of eit : t  1, . . . ,T.

8. Estimating the Asymptotic Variance

A consistent estimator of

AVar N ̂ −   A−1BA−1     (8.1)

is obtained by consistently estimating A and B. We have a consistent estimator of A under the

assumptions of Theorem 4:
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Â  N−1∑
i1

N

Ẍi
′
Ẍi  N−1∑

i1

N

Xi′M̂Xi.     (8.2)

For B, we need to estimate the variance of si in (7.17). Under weak regularity conditions – we

will not state a formal result because the conditions are standard extensions of the assumptions

in Theorem 4 – we can replace all unknown parameters with consistent estimators and replace

population means with sample averages. In obtaining the residuals, there is a somewhat subtle

issue. Namely, the expression for B in (7.19) we should obtain residuals that correspond to the

model, (7.1). To this end, generally define

ûi  yi − D̂ − Xi̂,     (8.3)

so that the residuals net out D as well as Xi. From Theorem 1, if ȳ ∈ ̂ along with X̄, ̂  0. In

most cases it will be true that the sample analog of (7.2) holds: N−1∑ i1
N M̂ûi  0.

With these residuals, define

Ĝ  N−1∑
i1

N

ûi ⊗ Xi − X̄

q̂i  qi ̂

    (8.4)

    (8.5)

Next, define the k  1 vector

ŝi ≡ Ẍi
′
ûi  Ĝ

′
IT2  KT2  ̂ ̂

′
̂

−1
⊗M̂ q̂i     (8.6)

and the k  k matrix

B̂  N−1∑
i1

N

ŝiŝi
′     (8.7)

From (8.1) a consistent estimator of AVar N ̂ −  is Â
−1
B̂Â

−1
. As usual, the asymptotic
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standard errors of the ̂j are obtained as the square roots of the diagonal elements of

Â
−1
B̂Â

−1
/N.

For the CCEP estimators we have

q̂i  vecXi − X̄

or

q̂i  vecXi − X̄,yi − ȳ

If t contains known elements, such as unity or 1, t, then some of the elements of q̂i are

identically zero.

9. Practical Considerations

Given the widespread popularity of the TWFE estimator in the microeconometrics

literature and the popularity of CCEP in the large-T literature, it seems natural, with enough

time periods, to have the best of both worlds and use the estimator that nets out

̂t ≡ 1, x̄t

from xit : t  1, . . . ,T, unit by unit. Recall from Section 3 that including x̄t makes the

inclusion of any aggregate variables dt – specifically, time dummies or observed macro

variables with constant coefficients – irrelevant for obtaining ̂. Given that ̂t has k  1

elements, a requirement on the number of time periods is T  k  1. (The usual TWFE

estimator requires only T ≥ 2.) There is no basis for thinking that the matrix jT,X, where jT

is the T  1 vector of ones, has rank less than k  1, and so we are comfortable imposing

Assumption 2′. Also, under the assumptions in Sections 6 and 7, the underlying model can

have heterogeneity in the coefficients on xit and on deterministic variables, dt, and we still
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consistently estimate the average partial effects,   Ei. For obtaining the asymptotic

variance estimator of ̂, as many aggregate time dummies as allowable should be included to

ensure the residuals have, in sample, the same property as (7.2) in the population.

A popular “robustness check” in many panel data applications is to allow unit-specific

linear trends, in which case t gets added to ̂t. Now we require T  k  2 but, if the time

periods are available, partialling out 1, t, x̄t sets a pretty high bar for estimation of .

With more time periods one can partial out 1, x̄t, ȳt or even 1, t, x̄t, ȳt in the extended

CCEP estimator. One should expect the precision of ̂ to suffer because even more variation is

removed from xit : t  1, . . . ,T. Adding ȳ along with X̄ is allowed provided y is not

perfectly collinear with X. We showed in Section 4 that in the traditional CCE framework,

when p  k  1 and we use X̄, ȳ in the CCEP estimation, the estimator is consistent. [This is

also a special case of Theorem 1, which is derived under much weaker assumptions than WPN

(2019).]

There is one case that falls through the cracks of our framework. Namely, when we use

CCEPX̄, ȳ (or its extensions) and the rank condition fails. In the WPN (2019) setting, this

can only happen when p  k  1 and there are no deterministic variables in the main equation.

Then

y  X  F

and, along with (2.7),

y  X  XX  X  X,

which shows that y is a linear function of X. The link between y and X is broken if

deterministic factors appear in the main equation or if there is heterogeneity in the slopes, i.
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Our view is that situations where one chooses to include ȳ while wanting to allow rank

deficiency are relatively unimportant.

If we take the empirically relevant case where X,y has rank k  1 (full rank), then we

can show, under some strong assumptions, that including ȳ generally increases the asymptotic

variance. Suppose we start with the equation

yi  D  Xi  ui

Assume EMZui  0 and Eui ⊗ Xi − X  0, so that estimation of X and y does not

affect the asymptotic distribution of CCEPX̄ or CCEPX̄, ȳ (Theorem 4). Now add an

“ideal” set of assumptions that rules out general heteroskedasticity and serial correlation in

uit : t  1, . . . ,T:

E Ẋi
′
uiui′Ẋi  u2E Ẋi

′
Ẋi

E X̆i
′
uiui′X̆i  u2E X̆i

′
X̆i

where Ẋi  MXXi and X̆i  MZXi. Applying Theorem 3, it is straightforward to show that

AVar N ̂CCEPX̄ −   u2 E Ẋi
′
Ẋi

−1
    (9.1)

and

AVar N ̂CCEPX̄,ȳ −   u2 E X̆i
′
X̆i

−1
    (9.2)

Furthermore, because X̆i nets out Z from Xi whereas Ẋi nets out only X,

E Ẋi
′
Ẋi − E X̆i

′
X̆i is positive semi-definite, which in turn implies

E X̆i
′
X̆i

−1
− E Ẋi

′
Ẋi

−1

is PSD. In other words, under an ideal set of assumptions CCEPX̄ is asymptotically more
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efficient than CCEPX̄, ȳ. Because this efficiency claim holds only under strong assumptions,

we prefer to argue for ̂CCEPX̄, and extended versions, based mainly on its being more natural

and already allowing much more heterogeneity than usual.

10. Concluding Remarks

We have proposed an alternative formulation of factor models in the case of small-T panel

data settings. In the simplest case, we assume that the unobserved factors, F, can be expressed

as linear functions of X, the means of the explanatory variables. Our framework is more

natural and, in relevant cases, the assumptions are more general than currently available

frameworks. Plus, we show how to extend the basic CCEP estimator to account for staples of

applied microeconomics such as heterogenous intercepts and trends. Estimation is

straightforward, and we prove consistency under weak assumptions. Idiosyncratic errors are

allowed to be arbitrarily serially correlated and both idiosyncratic errors and unobserved

heterogeneity can be arbitrarily heteroskedastic. We also provide sufficient conditions under

which the presence of heterogeneous slopes does not affect consistency of the (extended)

CCEP estimator of the average partial effects. Our asymptotic normality result applies to a

broad class of extended CCEP estimators, and our proposed estimator of the asymptotic

variance is straightforward.

Further work could relax the strict exogeneity assumption on the explanatory variables,

although allowing for a lot of unobserved heterogeneity makes strict exogeneity more realistic.

Nevertheless, the methods in this paper do not apply to models with lagged dependent

variables or other situations where shocks today affect explanatory variables either

contemporaneously or with a lag.
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