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Abstract

We run a field experiment that monitors behavioral responses to nudges at a high fre-

quency during and post-treatment and varies the duration of treatment cycles. We document

asymmetry: treatment effects emerge immediately with nudges, neither grow nor wane with

continued treatment, and gradually decay after nudges stop, taking longer to decay the longer

the duration of treatment. To study the underlying behavioral mechanism for these dynamics,

we extend the traditional consumption-based model of habit formation to incorporate salience

and the possibility of state-dependent attention. We structurally estimate the model and find

that a dynamic attention-based mechanism best predicts consumption responses to nudges in

our context, both in and out of sample. Through counterfactual simulations, we illustrate the

importance of identifying the underlying behavioral mechanism by contrasting implications

of consumption- and attention-based habit formation when designing nudge interventions for

sustained behavioral change.

Keywords: Habit formation; Salience nudges; Attention; Randomized Control Trial; Struc-

tural Estimation; Water Consumption
∗Stefano DellaVigna, Ali Hortascu, Steve Tadelis, Antonio Penta and participants at numerous conferences and

seminars have provided helpful comments and suggestions. Edwin Chan, Zhi Hao, Rafi Kamsani, and Dorothy Ting
provided outstanding research assistance. Funding from the University of Melbourne FBE Faculty Research Grant
Scheme, Centre for Market Design, and German Research Foundation is gratefully acknowledged. Disclosures: AJ is
the household solutions program manager at South East Water. AM is project manager in South East Water’s strategic
and household program. Amphiro AG, Switzerland, developed the feedback device used in this study. SS is chief
technology officer of Amphiro. TS is chairman of the board of Amphiro. VT is a scientific advisor to Amphiro.
Author Contributions: DB, LG, and LM developed the final experimental design, implemented the field experiment,
built the structural model, analyzed the data, conducted the counterfactual policy analyses, and wrote the paper. AJ,
and AM managed recruitment and data collection at South East Water. SS implemented the design in the feedback
device and developed a cloud service for data handling. TS and VT with LG proposed an initial experimental design.
Human Research Ethics Approval ID 1544989 from the University of Melbourne governs this research. AEA RCT
Registry ID AEARCTR-0008720. All errors are our own. Corresponding authors: byrned@unimelb.edu.au (Byrne),
ecslfg@nus.edu.sg (Goette) and leslie.martin@unimelb.edu.au (Martin).

aDepartment of Economics, University of Melbourne
bDepartment of Economics, National University of Singapore
cSouth East Water Corporation
dDepartment of Information Systems and Applied Computer Science, University of Bamberg
eSchool of Business, Economics and Society, University of Erlangen-Nuremberg

https://www.socialscienceregistry.org/trials/8720
mailto:byrned@unimelb.edu.au
mailto:ecslfg@nus.edu.sg
mailto:leslie.martin@unimelb.edu.au


1 Introduction
Habits are ubiquitous in everyday life, shaping our daily routines, from diet and exercise to

our consumption of natural resources. Their importance underpins government interventions and
digital technologies such as mobile apps and wearables that help us build “good habits” (see, e.g.,
Wood and Neal, 2016; World Bank, 2014) via feedback and reminders.

This approach to spurring habit-formation reflects substantive evidence from economics and
psychology that individuals have limited attention and, as a consequence, fail to account for all
the costs and benefits of consumption decisions (Thaler and Sunstein, 2009; Chetty et al., 2009;
DellaVigna, 2009; Gabaix, 2019). By repeatedly drawing attention to the benefits of exercise or
the environmental cost of electricity use, policymakers and companies attempt to create lasting
changes in these behaviors. While existing research establishes nudges can have persistent effects,
little is known about the underlying structure of persistence and its implications for the design of
behavioral interventions.

This paper studies the micro dynamics of how nudges create habits. Specifically, we study
the habit-forming effects of nudges that provide real-time feedback on consumption costs. We
design and implement a field experiment that allows us to examine real-time behavioral responses
to feedback, focusing primarly on what happens when treatment stops. We observe that behavioral
responses to feedback occur immediately with they are provided, do not grow or wane as long as
they are provided, and gradually decay when feedback stops, taking longer to decay the longer
they were provided.

Inspired by these treatment effect dynamics, we develop a structural econometric framework
that incorporates salience into models of habit formation. We begin by combining standard be-
havioral economic models of limited attention (Chetty et al., 2009) and habit formation (Stigler
and Becker, 1977). In this model, persistence in feedback effects arises from complementarities
between current and past consumption. We then consider an alternative behavioral mechanism for
habit formation where we switch the source of persistence from consumption to attention. This
mechanism follows the Stigler and Becker (1977) formulation by specifying a time-varying stock
for attention that is motivated by extensive research in neuropsychology (Anderson, 2016). We
develop a methodology to structurally estimate the model under consumption-based and attention-
based habit formation mechanisms and find, in our context, that the attention-based mechanism
best predicts and explains dynamic consumption responses to feedback.

Lastly, we use the structural model to study policy design for creating behavioral change
through a series of counterfactual simulations. We show when feedback is costly to provide or
receive, a consumption-based mechanism for habit formation favors a long front-loaded feedback
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intervention. In contrast, an attention-based mechanism that better explains our experimental data
favors an intervention that initially provides a series of feedback to build an attention stock and
then cycles feedback on and off to maintain attention to the costs of resource use thereafter.

The paper bridges two substantive areas of research in behavioral economics on limited atten-
tion and habit formation. The idea that attention is time-varying connects to research that finds
that households exhibit short-term demand responses to intermittent bills (see, e.g., Ito et al., 2018;
Allcott and Rogers, 2014; Gilbert and Graff Zivin, 2014).1 We move beyond documenting persis-
tence in salience-reducing interventions by developing and estimating a habit formation model of
attention dynamics that can explain time-varying persistent feedback effects.

Research on habit formation is even more pervasive. Observational and experimental studies
have documented persistence in smoking (Chaloupka, 1991; Becker et al., 1994; Cameron, 2000;
Gruber and Kőszegi, 2001), coffee drinking (Olekalns and Bardsley, 1996), alcohol consumption
(Baltagi and Griffin, 2002), exercising (Charness and Gneezy, 2009; Royer et al., 2015), water
usage (Ferraro and Price, 2013), voting (Fujiwara et al., 2016), blood donations (Bruhin et al.,
2020), electricity usage (Ito et al., 2018), handwashing (Hussam et al., 2022), hospital hygiene
(Steiny Wellsjo, 2022), and social media usage (Allcott et al., 2022). Stigler and Becker (1977)’s
or Becker and Murphy (1988)’s consumption-based habit stock models with consumption comple-
mentarities over time are often the lens through which such persistence is interpreted.2

Our paper more closely relates to recent papers that design experiments to investigate micro-
foundations of habit formation. Hussam et al. (2022) test for intentionality and anticipation: they
randomize future rewards to show that people are more likely to form habits when they know that
in the future those habits will be helpful to have. Allcott et al. (2022) test for awareness of habit
formation, with a focus on self-control problems. And Camerer et al. (2020) and Steiny Wellsjo
(2022) develop and test automatic control models of habit formation, whereby habitual decisions
represent a “shortcut” to avoid costly deliberation in decision-making day-to-day.

In contrast, we focus on the interactions between limited attention and habit formation to ex-
plore transitions in behavior during and after cost salience treatments. A key feature of our study is
high-frequency data on consumption and feedback and our ability to manipulate cycles of repeated
feedback. We design our experiment to test two main hypotheses describing: (1) symmetry of be-
havioral responses to feedback and when feedback stops; and (2) the gradient between treatment
duration and post-treatment persistence. The richness of our data enable highly powered, model-

1See DellaVigna (2009) and Gabaix (2019) for overviews of inattention and salience bias research.
2Early studies on habit formation focus on physically addictive behaviors such as smoking (e.g., Becker et al.,

1994, 1991) that create such a complementarity through the metabolic properties of the good. However, other mech-
anisms can generate similar effects. Dal Bó and Terviö (2013) show that such complementarities can also arise in
a model of self-signaling: good actions today signal to the individual that she is likely a good type, thus creating a
complementarity with future good actions, in the spirit of Stigler and Becker (1977).
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free tests of these symmetry and persistence hypotheses. Our ability to test these hypotheses, in
turn, permit a quantitative evalution of competing mechanisms for habit formation in the presence
of limited attention. In particular, through a series of out-of-sample validation exercises, we find
that the attention stock mechanism best explains behavior in our setting, even when compared to
a consumption-based mechanism that flexibly allows for asymmetries in behavioral responses to
feedback.

The counterfactual policy simulations from our model also reveal a novel rule for optimal al-
location of feedback over time for an intervention where feedback must be rationed. In particular,
we uncover an (I,S,s) optimal feedback rule, whereby feedback is provided for an initial I pe-
riods, and behavioral change is then maintained for the remainder of the intervention through an
(S,s) rule. This finding creates new linkages between Scarf’s (1959) classic (S,s) rule for solv-
ing dynamic inventory management problems and the solution to dynamic attention management
problems, such as feedback-based behavioral interventions that help create “good” habits.3

We develop our study in six parts. Section 2 describes our experimental design and implemen-
tation, focusing on how we vary the duration of feedback exposure across individuals. Section 3
provides evidence of time-varying consumption effects with feedback and when feedback stops,
and how persistence in these effects depend on the duration of repeated feedback. Motivated by
the reduced-form evidence, Section 4 develops and estimates a structural model for explaining
persistence in treatment effects that allows for both a traditional consumption-based habit stock
mechanism and attention to salience, where attention is also modeled as a stock that may evolve
over time. We further exploit the richness of our data to rule out automatic control (Camerer et
al., 2020) and experimentation and learning (Larcom et al., 2017) as alternative behavioral mech-
anisms. Section 5 then turns to policy examining how the design of interventions affects behavior
change in the presence of time-varying attention stocks. Finally, in Section 6, we summarize our
results and discuss avenues for future research in identifying new mechanisms for habit formation
to inform policy design in behavioral interventions.

2 The field experiment
This section describes the experiment, its implementation, and the data that it creates. We also

present summary statistics to characterize the study’s internal and external validity.

3(S,s) rules emerge is various dynamic models that study nominal price rigidity (Sheshinkski and Weiss, 1977;
Caballero and Engel, 2007), consumer demand for durables (Eberly, 1994; Attanasio, 2000), markup dynamics (Aguir-
regabiria, 1999), and trade frictions and import pricing (Alessandria et al., 2010).
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Figure 1: Amphiro B1 Smart Shower Meter

Figure 2: Real-time Feedback Modes for the Amphiro B1

(a) Real-time Feedback On (b) Real-time Feedback Off

2.1 Design
The intervention we study in this paper provides real-time in-the-shower feedback on water

consumption. The smart shower meter that provides this salient feedback is the Amphiro B1
shown in Figure 1. The meter is mounted between the shower hose and a hand-held showerhead
and is powered by water flow.

During our experiment, participants’ Amphiro B1s are either in a feedback-on or feedback-off
mode, as illustrated in Figure 2. Panel (a) depicts the feedback-on mode where the meter displays
real-time feedback on liters of water used since the beginning of each shower and current water
temperature. The device also converts the cumulative water use into a melting-icecap visualization
and, at the end of the shower, provides an energy efficiency class rating. We also refer to this as
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Figure 3: Experimental Design
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our “treated” mode. Panel (b) shows the feedback-off mode where the meter only displays current
water temperature. This is our “control” mode. We display water temperature instead of a blank
screen in the feedback-off mode so that individuals experiencing that mode can be confident that
their Amphiro B1 is working. The meters collect data even when feedback is turned off.

We partnered with engineers that manufacture these meters to implement a research design that
cycles device features between these feedback-on and feedback-off modes according to set sched-
ules across various experimental conditions over a four-month study period. Our experimental
design is presented in Figure 3. There are seven experimental conditions labeled T1 to T7. In each
condition, the Amphiro B1 begins in the feedback-off mode and collects baseline shower usage
data for ten showers. The baseline period allows us to confirm balance on baseline shower usage
across our seven different experimental conditions and identify within-subject treatment effects.

After the baseline data collection period, the Amphiro B1s cycle between the feedback-on and
feedback-off modes at different frequencies across conditions T1 to T7. The first two conditions
provide benchmarks: in T1, feedback is always off (i.e., a pure “control” mode group), while in
T2 after the baseline period feedback is always on (i.e., a pure “treatment” mode group). From
T2 through T7, each subsequent treatment has progressively shorter feedback-on cycles: in T3
feedback is on for 48 showers, then off for 72 showers. In T4 it is on/off for 24/48 showers
in multiple cycles, in T5 on/off for 12/24, in T6 on/off for 6/12, and in T7 on/off for 3/15. In
T3 through T7, the periods of feedback-off are always longer than the periods of feedback-on,
reflecting our interest in examining what happens when feedback stops.
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2.2 Hypotheses
We designed the feedback cycles in the experiment to test two hypotheses that describe how

consumption may respond dynamically to feedback. They are:

Hypothesis 1 (Symmetry): Consumption falls and rises symmetrically when feedback is turned
on and off.

Hypothesis 2 (Persistence): The longer feedback is on, the longer it takes for consumption
to return to baseline levels when feedback is turned off. In other words, there is a positive
relationship between the duration of feedback being on and the persistence in treatment effects
when feedback is subsequently turned off.

Experimental arm T3 is crucial for testing Hypothesis 1 because it includes long cycles of
both feedback-on and feedback-off. This feature of our design helps ensure, a priori, that partic-
ipants have enough time to completely accumulate and subsequently depreciate any stock effects
associated with feedback or its removal. In other words, this treatment arm allows us to observe
transitions to and from long-run consumption levels with long durations of feedback being turned
on and off.

The combination of conditions T3 through T7 allows us to test Hypothesis 2. These treatment
arms provide variation across experimental conditions that allow us to check whether and, if ap-
plicable, measure the extent to which post-treatment persistence of feedback strengthens with the
duration of feedback. For example, under this hypothesis, we expect a slower rebound in con-
sumption during feedback-off periods in T3, after 48 showers of feedback, than in T7, with just 3
showers of feedback.

As we will see in Section 4 below, our ability to test these two main hypotheses is central to
empirically discerning underlying behavioral mechanisms for habit formation.

2.3 Context, recruitment, and implementation
We ran the experiment in 2017 with a large water utility, South East Water, based in Melbourne,

Australia. Between April and May 2017, we ran an online survey of randomly-selected households
and, from the respondents, identified those with the shower configuration required for the Amphiro
B1. We invited these households to express interest and, of those who did, randomly selected 700
customers for the trial.

Appendix A.1 contains details on the recruitment process, including the full Plain Language
Statement (PLS) provided to households. We framed the trial in terms of examining how real-time
feedback affects shower water usage. The PLS described the Amphiro B1 shower water meters and
explained that at different times during the trial period the meters would show different real-time
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indicators, including water temperature and, in some cases or at some times, water usage. The PLS
also asked participants to commit to mailing back the devices at the end of the trial for researchers
to extract anonymized water usage data and factory reset the devices to full-functionality. The
meters were then returned to participants to keep.

We mailed the Amphiro B1s to our experimental sample in late May 2017. We included paper
and online trial and installation instructions with the meters (reproduced in Appendix A.1) and
postage-paid return envelopes. As with the PLS, the instructions maintained neutral language and,
for treatment groups that would be observing different feedback on and off modes, did not explain
when or why the meters would have different display modes.

In October 2017, we emailed participants asking them to return their Amphiro B1s for data
extraction and factory reset. We explained that when reset to full functionality, the meters would
display the full range of features and become pairable to an app that allows users to view their
historical data.4

2.4 Data
We obtained anonymized pre-experiment billing and account data on quarterly household water

usage and bills, electronic-billing, hardship, and tenant status for all utility customers. The utility
also matched households to their Statistical Area 1 (SA1) 150-household census block from the
Australian Bureau of Statistics to obtain block demographics such as average household income,
age, education, and home size.5

Appendix A.1 describes the baseline survey sent to utility customers. This survey yields in-
formation on household characteristics, shower configurations, and shower habits, including esti-
mated shower water usage.

For the participants in the experiment, the Amphiro B1 provides us a time series of actual
shower data. The meter records shower number, total water used, the average water flow rate, and
average water temperature for each shower taken. Because the device does not have a battery, it
does not have an internal clock, which means it does not record a given shower’s date or time.
Therefore, in our reduced-form regressions below for testing Hypotheses 1 and 2, we can control
for shower count, but not date.

Our experiment includes both single and multi-person households. Single-person households
have feedback on and off cycles programmed on their Amphiro B1’s exactly as described in Figure
3. Multi-person households, primarily households with two adults, or households with two adults
and children who used a separate shower, have Amphiro B1’s programmed with twice as long

4During the experiment, online stores for the Amphiro B1 apps were shut down in the country to ensure households
could only access Amphiro B1 feedback shower-by-shower. The app stores were opened after the experiment ended.

5SA1’s contain approximately 150 households on average and are the most narrow census block available.
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baseline periods and feedback on and off cycles. In Appendix A.2 we demonstrate that all of our
results below hold when restricting our analysis to single-person households.

The meter’s internal memory saves a maximum of 245 consecutive showers-worth of data. Our
four-month experimental period (June-September 2017) corresponds to the upper bound for data
storage on an Amphiro B1 for a two-person household where each household member showers
once a day. We confirm in Appendix A.3 that there are no differences in the cumulative number
of showers taken by households, as recorded by the Amphiro B1, across conditions T1–T7 during
the trial. This result mitigates concerns such as differential attrition across conditions or that adults
in households with multiple showers selective switch to their child’s shower in response to or in
anticipation of experimental conditions.

Finally, we ran an endline survey with responses from 427 of the 555 households (77%) who
returned their Amphiro B1’s used with data at the end of the trial. Appendix A.1 also reproduces
this survey. This survey helps us confirm how and where households installed their Amphiro
B1 and the ease with which they could read feedback from the device. Although respondents
overwhelming claimed to prefer the feedback-on mode, reported satisfaction with the Amphiro
B1s was constant over the course of the experiment, regardless of feedback-on duration or cycle
frequency. Respondents also stated that they mainly focused their attention on the real-time metrics
of shower water temperature and water usage.

2.5 Summary statistics
Table 1 presents mean household water usage and characteristics across various samples from

South East Water’s database of 140,407 customers with email. We emailed our baseline survey to
a random subset of 45,685 (33%) of these customers. Comparing columns (2) and (3), households
who answered the survey are 14% less likely to be tenants, 19% more likely to have electronic
billing, and 13% more likely to have registered with South East Water’s online web portal for
managing their bills. There are no other statistically-significant differences in water usage or de-
mographics between survey respondents and non-respondents.

Among the 19,449 households that answered the baseline survey (43% response rate), 5,866
had a handheld shower that could mount the Amphiro B1 (30% eligible). We invited these house-
holds to the trial using the PLS described above. In total 1,201 households (20%) opted in, and of
those, we randomly selected 700 households for the experiment, stratifying the sample to prioritize
first single-person households, then two-person households, and then households where any extra
household members used a separate shower.

Columns (3) and (4) of Table 1 shows to what extent trial participants differ from survey re-
spondents. Trial households are more likely to have electronic billing and have registered for
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Table 1: Mean Household Characteristics for Different Subsamples from South East Water’s Cus-
tomer Base and by Device End-of-Trial Return Status

Sub-Sample

Device Returned
Households Emailed Answered Sent Accounted Device
with Email Survey Survey Device For with Data

(1) (2) (3) (4) (5) (6)

Jul-Sep 2016 Water Usage (L) 31.45 31.59 29.56 29.31 29.09 28.86
Oct-Dec 2016 Water Usage (L) 37.90 37.88 36.06 34.07 33.79 33.75
Jan-Mar 2017 Water Usage (L) 45.41 45.43 44.07 38.68 38.68 38.44
Apr-Jun 2017 Water Usage (L) 39.35 39.34 37.52 34.99 34.66 34.46
Annual HH Income (1000s) 53.26 53.22 52.55 51.75 51.93 51.86
Average Age 37.67 37.62 37.82 36.52 36.51 36.42
Share of High School Graduates 0.46 0.46 0.45 0.45 0.45 0.45
Number of Bedrooms in Home 2.94 2.95 2.97 3.04 3.04 3.05
Share of Tenants 0.34 0.33 0.19 0.19 0.18 0.19
Share of HHs with Electronic Billing 0.47 0.49 0.68 0.75 0.76 0.79
Share of HHs Registerd with Web Portal 0.38 0.39 0.52 0.64 0.65 0.66
Number of People Living at Home 2.67 2.64 2.60 2.60
Self-Reported Shower Time 6.47 6.90 6.84 6.88
Number of Leaks Checks per Year 2.30 2.26 2.25 2.21
Households 140407 45685 19449 700 653 555

Notes: Households with devices accounted for in column (5) correspond to households from Table 2 who returned their
Amphiro B1 used, uninstalled and unused, or who experience postal or device error. Quarterly water usage and customer
account information is from South East Water. Census block demographics are from the Australian Bureau of Statistics
and correspond to Statistical Area 1 census block averages in which a customer lives.

South East Water’s web portal. Otherwise, there are minimal differences in quarterly water usage
and other characteristics between survey respondents and trial households. By comparing columns
(4), (5) and (6) of Table 1, we check for selection effects in Amphiro B1 return status. We find
no differences in pre-treatment water use or any other household characteristic between the 700
households to whom we mailed a device, the 653 households whose Amphiro B1 we can account
for at the end of the trial, and the 555 households who successfully used and returned their device
for data extraction.

Table 2 describes the device return statuses in more detail and tabulates the data by experimen-
tal condition. There are four mutually exclusive groups: (1) device returned with shower usage
data; (2) devices returned unused, most frequently with the package unopened (i.e., having never
been installed);6 (3) postal error (e.g., return-to-sender) or technical error (e.g., the device had a
blank-screen faulty display); or (4) no response. Overall, we have very low non-response rate. For
instance, we obtain a minimum device return rate of 89% to 97% among working devices that were

6Some households included written reasons with their returned devices for non-installation. The most common
reasons given in our endline survey are vacations, forgetting, and suspected incompatibility with their shower head.
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Table 2: Amphiro B1 End-of-Trial Return Status by Experimental Condition

Experimental Condition

T1 T2 T3 T4 T5 T6 T7

End-of-trial device return status
Device returned used 77 84 79 86 78 76 75
Device returned uninstalled 12 8 10 9 12 10 18
Postal or device error 5 3 1 2 2 3 3
No response 6 5 10 3 8 11 4

Total devices sent 100 100 100 100 100 100 100

Percentage of devices returned used out of . . .
Total devices sent 77% 84% 79% 86% 78% 76% 75%
Total devices with no error and installed 93% 94% 89% 97% 91% 87% 95%

received and installed.7

Table 2 also shows that installation rates and device return rates do not vary significantly
across treatment groups. Most importantly, there is no evidence that households experiencing
more feedback-on or more frequent on/off cycles have lower device return rates. Appendix A.4
further confirms that there is no selection into returning devices based on households’ pre-trial
actual household water use or stated within-shower water use.

Table 3 presents mean characteristics for households across our experimental conditions. The
first three rows display mean shower water usage volume, flow rate, and shower length as reported
by the Amphiro B1. We construct these variables by computing household-specific means from
their initial 10-shower per person baseline phase with feedback off. In the table, we report the
sample mean of these characteristics across households within each condition.

Baseline shower water use, shower flow rates, and shower length are very similar across all
conditions. Indeed, none of the differences is jointly statistically-significant, nor do any pairwise
comparisons across groups yield statistically-significant differences. Likewise, all other house-
hold characteristics are statistically similar across all groups. In sum, our randomization achieves
balance on observables across our seven experimental conditions.

3 Symmetry and persistence in feedback effects
In this section we explore and formally test Hypotheses 1 and 2 to characterize empirically

how treatment effects build up when feedback is turned on and decay after feedback stops.

7These estimates are a lower bound because they assume that all non-responsive households received and installed
the devices.
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Table 3: Mean Household Characteristics by Experimental Condition

Experimental Condition

T1 T2 T3 T4 T5 T6 T7
0/120 120/0 48/72 24/48 12/24 6/12 3/15
on/off on/off on/off on/off on/off on/off on/off
(1) (2) (3) (4) (5) (6) (7)

Baseline water usage per shower
Shower Water Usage Volume (L) 55.12 55.76 55.73 55.97 54.19 54.92 56.83
Shower Flow Rate (L/sec) 8.35 8.29 8.58 8.25 8.65 7.88 8.36
Shower Length (min) 6.70 6.78 6.79 6.81 6.45 7.21 7.08

Quarterly household water usage
Jul-Sep 2016 Water Usage (L) 28.85 27.06 30.72 29.69 29.63 25.49 30.58
Oct-Dec 2016 Water Usage (L) 33.20 34.14 34.89 35.18 31.85 30.50 36.33
Jan-Mar 2017 Water Usage (L) 34.76 37.07 39.58 41.58 35.77 39.18 41.05
Apr-Jun 2017 Water Usage (L) 31.10 33.28 34.89 35.85 33.73 32.77 39.67

Census block demographics
Annual HH Income (1000s) 49.17 50.47 54.69 50.40 54.06 52.70 51.72
Average Age 35.77 37.09 37.60 35.23 35.74 36.83 36.75
Share of High School Graduates 0.43 0.45 0.45 0.44 0.45 0.46 0.47

Household billing account information
Number of Bedrooms in Home 3.06 3.00 3.11 3.11 3.15 2.98 2.94
Share of Tenants 0.19 0.24 0.21 0.13 0.18 0.15 0.20
Share of HHs with Electronic Billing 0.77 0.81 0.79 0.80 0.83 0.77 0.78
Share of HHs Registerd with Web Portal 0.70 0.64 0.63 0.79 0.64 0.58 0.64

Household survey information
Number of People Living at Home 2.47 2.53 2.77 2.64 2.54 2.66 2.61
Self-Reported Shower Time 6.47 6.92 6.42 7.39 6.46 6.68 7.77
Number of Leaks Checks per Year 2.08 2.22 2.24 2.38 2.17 2.22 2.18

Households 77 84 79 86 78 76 75

Notes: Individual shower usage is the sample mean during the baseline period by individual in the sample; see the
text for details. Quarterly water usage and customer account information is from South East Water. Census block
demographics are from the Australian Bureau of Statistics and correspond to Statistical Area 1 census block averages
in which a customer lives. See Figure 3 for details on the experimental conditions.

3.1 Graphical analysis
Figure 4 graphically describes time-varying, feedback-induced treatment effects from our ex-

periment. To construct these figures, we run regressions of the following form

yis = ηi +
B

∑
b=1

βb
(
T j ×1{s ∈ b}

)
+ τk + εis, (1)

where yis is shower volume for household i in shower s, T j equals one if household i is in experi-
mental condition T j ( j = 2, . . . ,7), 1{s ∈ b} is a dummy equaling one if shower s is within shower
block b (defined momentarily), ηi is a household fixed effect, τk is a fixed effect it being k showers
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per person in the household since the start of the experiment,8 and εit is the regression error.

We implement (1) such that βb quantifies the within-household change in consumption in
shower block b relative to household i’s mean baseline shower usage. We estimate βb for B = 36
shower blocks. For one-person households, these correspond to 3-shower blocks, while for multi-
person households, they correspond to 6-shower blocks. Blocking in this way reflects our dou-
bling of baseline and feedback on/off phases for multi-person households relative to single-person
households, as discussed in Section 2.4 above. The 36 blocks reduce noisiness in the time-varying
treatment effects, allowing us to visualize how they evolve. The precise alignment of the blocks
with when feedback turns on and off under our experimental design allows us to visually inspect
whether there are sharp or gradual changes in consumption immediately after feedback is turned
on and off.9

We estimate equation (1) separately for conditions j = 2, . . . ,7 where for a given condition we
use households in T1 (control) and T j in estimation. Plotting the coefficients estimates β̂1, j, β̂2, j, . . . , β̂B, j

visualizes the time path of treatment effect build up and decay when feedback is turned on and off
for condition j. In this way, the coefficients let the data speak to the symmetry and persistence in
feedback effects induced by our experiment, per Hypotheses 1 and 2. Panels (a)-(f) of Figure 4
plot the estimates for each condition.10

Five patterns of interest emerge in the figure. First, real-time feedback has an immediate and
stable effect on water use in showers. All panels reveal an immediate drop in shower water usage
when feedback is turned on after the baseline phase. Second, there is no evidence of a subsequent
downward trend in water usage following the initial drop in water usage after feedback is turned
on and kept on. Panels (a)-(c), with longer cycles of real-time feedback, most clearly reveal this
no-further-decrease pattern.

Third, there is clear evidence of persistence when real-time feedback is turned off. Water usage
does not immediately return to baseline once the water usage cost salience is removed. Fourth, in
all conditions, the persistence effect degrades over time: after feedback is turned off, water usage
gradually trends back to baseline levels. Panel (b), in particular, shows that consumption eventually
reaches baseline levels if feedback remains off for a sufficiently long period. This finding suggests
that our experimental design provided a long enough window without feedback to indeed reveal
a transition back to baseline water usage in the presence of decaying feedback effects. Together,

8For example τk enumerates 1,2,3 for one-person households, 1,1,2,2,3,3 for two-person households, and so
on. The τk fixed effects help control for seasonality in shower water usage as long as our treatment and control groups
are: (1) balanced on household size; and (2) install and use the devices at the same rate throughout our experiment.
We confirm the former in Table 3 and the latter in Appendix A.3. We cannot include weather-related controls in (1)
because the Amphiro B1 does not have an internal clock that records date of shower.

9Our results are unchanged if we plot βb with smaller or larger shower blocks that do not align as well with our
experimental design.

10For clarity, we do not report confidence intervals in Figure 4. We defer formally testing Hypotheses 1 and 2 to
Section 3.2 below.
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Figure 4: Time-Varying Treatment Effects by Experimental Condition

(a) T2 - 0/120 on/off (b) T3 - 48/72 on/off
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(c) T4 - 24/48 on/off (d) T5 - 12/24 on/off
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(e) T6 - 6/12 on/off (f) T7 - 3/15 on/off
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Notes: See Figure 3 for details on the experimental design and equation (2) and associated discussion in the text for
the regression equations used to generate these plots. For clarity, confidence intervals are not displayed.



the first four patterns of interest show that the build-up and decay of the treatment effect when
feedback is turned on and off is asymmetric, which is evidence against Hypothesis 1.

Finally, although persistence in feedback effects exists even following short feedback periods
(panels (e) and (f)) the strength of the persistence effect appears to scale with the duration of the
feedback. Comparing panels (e) and (f) to panel (b) we find shorter duration feedback cycles are
associated with less persistence. In panel (b), consumption gradually trends back to baseline when
feedback is turned off. In constrast, in panels (e) and (f) consumption exhibits an initial upward
jump when feedback is turned off and then begins trending back to baseline. These patterns provide
preliminary support for Hypothesis 2.

3.2 Treatment effects
We now formally test Hypotheses 1 and 2 using the following regression:

yis = ηi +β1ONis +β2PostONis +β3OFFis +β4PostOFFis + τk + εis, (2)

where yis is shower volume for household i in shower s, ONis is a dummy equaling one if feedback
is on for household i in shower s, PostONis is the number of showers since feedback was first
turned on within a current feedback-on spell, OFFis is a dummy equaling one if feedback is off
for household i in shower s and where s is after the baseline phase, and PostOFFis is the number
of showers since feedback was first turned off within a current feedback-off spell.11 All of our
regressions include household and shower fixed effects, ηi and τk. We identify feedback treatment
effects on water usage using within-household variation in consumption while simultaneously ac-
counting for confounding factors such as seasonality in shower water usage through the shower
fixed effects. The econometric error term, εit , is clustered at the household level, which is our level
of randomization.

Our analysis considers estimates from two regressions based on equation (2). The first restricts
β2 = 0 and β4 = 0, allowing us to test whether consumption returns to baseline after feedback is
turned off through the β3 estimate. We then examine estimates from the unrestricted regression in
(2), allowing us to examine how treatment effects build-up when feedback is turned on with β1 and
β2 and decay after feedback is turned off with β3 and β4.

Baseline results

Table 4 presents our empirical results. The top panel presents benchmark estimates from the
restricted regression while the bottom panel presents estimates from the unrestricted regression.

11To take a concrete example, consider treatment group T4 with a 24/48 on/off feedback cycle. As depicted in
panel (c) of Figure 3, this condition has two feedback-on and two feedback-off spells. Feedback is initially turned on
at shower 11, after the baseline phase. During the first feedback-on spell between showers 11 and 34, PostONis counts
up from 1,2, . . . ,24. After a 48-shower feedback-off spell between showers 35 and 83, a second feedback-on spell
starts at shower 84. During this second feedback-on spell , PostONis once again counts up from 1,2, . . . ,24 during
showers 84 to 108. PostOFFis similarly counts up during the feedback-off spells.
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Table 4: Treatment Effects by Experimental Condition

Experimental Conditions Included in the Sample

T1-T7 T1,T2 T1,T2,T3 T1,T2,T4 T1,T2,T5 T1,T2,T6 T1,T2,T7
120/0 48/72 24/48 12/24 6/12 3/15
on/off on/off on/off on/off on/off on/off

(1) (2) (3) (4) (5) (6) (7)

ON -7.31∗∗∗ -7.10∗∗∗ -7.49∗∗∗ -7.18∗∗∗ -7.21∗∗∗ -7.44∗∗∗ -7.00∗∗∗

(0.70) (1.39) (1.10) (1.06) (1.05) (1.09) (1.07)
OFF -3.81∗∗∗ -4.89∗∗∗ -4.19∗∗∗ -2.91∗∗ -4.07∗∗∗ -3.45∗∗∗

(0.72) (1.42) (1.23) (1.22) (1.06) (1.04)

R-Squared 0.43 0.44 0.42 0.44 0.43 0.45 0.44
Observations 86376 24648 37798 38286 36885 35862 36137

ON -7.39∗∗∗ -6.65∗∗∗ -7.31∗∗∗ -7.31∗∗∗ -7.13∗∗∗ -7.53∗∗∗ -6.96∗∗∗

(0.70) (1.39) (1.10) (1.06) (1.04) (1.09) (1.05)
PostON 0.01 -0.01 -0.01 0.00 -0.01 0.00 -0.00

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
OFF -4.85∗∗∗ -7.70∗∗∗ -5.44∗∗∗ -5.17∗∗∗ -4.68∗∗∗ -3.60∗∗∗

(0.73) (1.44) (1.28) (1.24) (1.22) (1.19)
PostOFF 0.08∗∗∗ 0.11∗∗∗ 0.07∗ 0.19∗∗∗ 0.08 0.02

(0.02) (0.04) (0.04) (0.06) (0.09) (0.07)

R-Squared 0.43 0.44 0.42 0.44 0.43 0.45 0.44
Observations 86376 24648 37798 38286 36885 35862 36137

Notes: Dependent variable is shower water usage volume with baseline mean of 57 L (s.d.=42 L). All regressions
include household and shower fixed effects. Within R-Squared reported for each model. See Figure 3 for details
on the experimental design and the feedback on/off spells for experimental conditions T1–T7. Standard errors are
clustered at household level. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1

The column (1) estimates pool data for all seven experimental conditions. Column (2) shows
the estimate of the feedback effect using observations from the control group (T1) and feedback
always-on condition (T2). Columns (3) to (7) estimate persistence effects from a sample that
includes T1 and T2 households and one of the T3 to T7 groups.

Column (1) in the top panel of the table shows that providing real-time feedback sharply lowers
water use during showers. The point estimate of -7.31L / shower represents a large 13% reduction
in shower water usage compared to baseline mean usage of 57 L. The estimates further yield,
across all conditions, statistically significant and economically meaningful β2 estimates on OFFis,
thereby revealing persistence effects. Remarkably, persistence effects arise even in condition T7,
where feedback is only given for 1/6th of the time in a 3/15 feedback on/off cycle. Nevertheless,
this leads to an estimated persistence effect of -3.45 when feedback is off, which is approximately
half of the -7.00 treatment effect when feedback is on.
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Symmetry in feedback effects

We now turn to the estimates in the bottom panel of Table 4. The results in column (1) strongly
reject Hypothesis 1 as they reveal stark asymmetry between feedback-on and feedback-off con-
sumption dynamics. Real-time feedback has an immediate and stable effect on consumption be-
havior. The -7.39 L/shower point estimate of the ONis coefficient reflects the impact of feedback
in the first episode of a feedback period. It is virtually identical to its corresponding -7.31 point
estimate in the top panel, suggesting that the entire effect occurs instantaneously. Moreover, the
interaction effect with the duration of exposure to feedback is a precisely estimated zero, as shown
by the 0.01 PostONis coefficient estimate, This finding implies stable treatment effects: they do not
grow or wane while feedback is kept on. In contrast, the effect of treatment post-feedback slowly
erodes, as revealed by the statistically significant 0.08 coefficient estimate on PostOFFis in col-
umn (1). This estimate implies that with every shower during a feedback-off phase, post-treatment
water use increases by 80 milliliters, gradually returning towards pre-treatment levels.12

Based on the column (1) specification in the bottom panel of Table 4, the predicted cumulative
water savings induced by T2 (120/0 on/off) over 120 showers is 814 liters.13 Conditions T3, T4 and
T5, comparable treatments that also have 48 of 120 showers with feedback on, have predicted cu-
mulative water usage reductions of 482, 580, and 629 L, respectively. These back-of-the-envelope
calculations highlight how, in the presence of asymmetric feedback effect build-up and decay, in-
termittent feedback throughout a trial (T4 and T5) can induce greater conservation than continuous
feedback from the start of a trial (T3). We formalize and examine feedback intermittency and in-
tervention design using our structural model in Section 5.3 below which, as we will see, better fits
our experimental data than simpler linear regression models.

Feedback duration and post-feedback persistence

The results in columns (3) to (7) of the bottom panel in Table 4 yield nearly identical stable
feedback effects. Indeed, the ON coefficients in columns (3)-(7) have similar magnitude, and the
PostON coefficients have precise zero estimates. Collectively, these results reaffirm that feedback
effects emerge immediately and remain stable while feedback is on, irrespective of duration.

Turning to persistence, accounting for the duration of off-periods in columns (3)-(7) allows a
clearer interpretation of the persistence effects as the effect in the first episode of an off-period. We
find monotonicity in the point estimates. In particular, in column (3), the point estimate of β3 is
-7.70L / shower after 48 periods of feedback and statistically indistinguishable from the feedback
effect itself. The estimates of β3 on OFFis in equation (2) monotonically decline as the duration of

12How many showers does it take until the water-conserving habit in consumption induced by feedback fully
decays? We quantify the potentially non-lineary decay rate and half-life for feedback persistence effects using our
structural model in Section 5.1 below.

13This water usage reduction equates to a $2.17 (or 1%) reduction in the average household’s water bill.

17



feedback phases becomes shorter, which again supports Hypothesis 2. Interestingly, column (7)
reveals statistically and economically significant persistence effects even in the T7 experimental
condition with the shortest feedback phase of just three showers.14

A particular cut of our data admits a direct test of Hypothesis 2. In particular, we estimate a
variation on equation (2),

yis = ηi +β1(T1 ×ONis)+
7

∑
j=3

[
β2 j(T j ×ONis)+β3 j(T j ×OFFis)

]
+ τk + εis, (3)

with a subsample that includes: (1) data for all households and showers in experimental conditions
T1 and T2; (2) all baseline showers and the first three showers with feedback on immediately after
the baseline for conditions T3–T7; and (3) the first 12 showers with feedback off following the
first feedback cycles in conditions T3–T7.15 Given our finding from Table 4 that feedback effects
emerge immediately and do not evolve while feedback is on, β2 j in effect quantifies the feedback
effect for condition T j.

The β3 j coefficient in equation (3) quantifies the level of consumption in the first 12 showers
with feedback off following condition T j’s first feedback cycle. Therefore, β3 j − β2 j quantifies
a persistence effect of feedback after the first feedback cycle ends. By examining this difference
between conditions T3–T7, we can non-parametrically plot the relationship between persistence
and feedback duration after 48 (T3), 24 (T4), 12 (T5), 6 (T6), and 3 (T7) showers of feedback.
Importantly, focusing on persistence effects following the first feedback cycles allows us to ab-
stract from spillovers in feedback effects across feedback cycles in conditions T4–T7. Examining
persistence from three showers with feedback in the first 12 showers without feedback allows us
to directly compare persistence effects across all five experimental conditions. In this way, our
estimates from (3) provide a data-driven test of how feedback-on duration affects the persistence
of treatment effects, leveraging our unique experimental design.

Figure 5 presents our results, plotting β̂3 j − β̂2 j for T3–T7 and the 95% confidence interval for
the difference in coefficient estimates. The results provide compelling evidence of the relationship
between feedback duration and post-feedback persistence, and hence Hypothesis 2. After 48
showers in T3, the feedback effect fully persists, with a 0 L/shower increase in water usage in
the first 12 showers with feedback off. In contrast, in conditions T4–T6, we estimate 3.6-4.3 L
increases (from a ≈ 7.5 L feedback effect) after 24, 12, and 6 showers feedback. Following just
3 showers of feedback in T7, we find a much larger 6.9 L increase in usage, and hence a much
smaller persistence effect.

14Notice also that each of the point estimates of β4 on PostOFFis is positive, though not always significant. The
relative imprecision in these estimates in columns (6) and (7) is partly due to the shorter feedback-off phases for
identifying persistence effects.

15From experimental design in Figure 3, accounting for the 10-shower baseline phase, the first 12 showers with
feedback off after the first feedback cycle are showers 59-70 (T3), 35-46 (T4), 23-34 (T5), 17-28 (T6), and 14-25 (T7).
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Figure 5: Feedback Duration and Post-Feedback Persistence
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Statistically, we reject the null that all post-feedback persistence effects in Figure 5 are jointly
equal (p = 0.02). Moreover, all pairwise tests of equality in persistence effects involving either
T2 or T7 with any other condition reject the null at the 5% level. That is, our ‘extreme’ experi-
mental conditions, T3 and T7, with 48 and 3 showers of feedback, reveal substantial differences in
persistence effects, which is directly in-line with Hypothesis 2. We cannot, however, distinguish
persistence effects among conditions T4–T6 with intermediate levels of feedback duration.

Summary

In sum, our reduced-form analyses reveal: (1) asymmetry in feedback effect build-up and de-
cay (rejecting Hypothesis 1); and (2) post-feedback persistence effects that become stronger with
longer feedback duration (supporting Hypothesis 2). These reduced-form results motivate our
structural analysis of feedback-based habit formation which seeks to identify the underlying behav-
ioral mechanism (Section 4) and examine implications for the design of feedback-based feedback
interventions (Section 5).

Importantly, Appendix A.2 shows our reduced-form results are robust to narrowing to sub-
samples containing households with just one person or one shower. Given this robustness, our
structural model builds from an individual decision-maker and is estimated on our entire sample.

4 A model of feedback-based habit formation
Inspired by the reduced form evidence, our structural analysis of habit formation begins by

combining two standard behavioral economic models: (1) Chetty et al. (2009)’s model of salience
bias, which allows individuals to be inattentive to resource use and only perceive a fraction of their
consumption cost; and (2) Stigler and Becker (1977)’s classic model of habit formation, which
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entails a consumption-based mechanism for persistence whereby the marginal utility of current
consumption depends on past consumption. Combining these models yields a baseline framework
for studying the dynamic consumption effects of salience-enhancing feedback. We can apply this
model to our experimental data, and in doing so, interpret feedback-induced consumption dynam-
ics as arising from state dependence in consumption.

We then consider an alternative mechanism where state-dependence arises not from consump-
tion but from attention. We mirror Stigler and Becker (1977)’s formulation of state-dependence by
allowing current attention to costs to depend, in a parallel way, on past levels of attention to such
costs.

Our analysis proceeds in seven parts. We describe the model set-up in Section 4.1 and charac-
terize optimal consumption decisions and the model’s steady states in Section 4.2. Section 4.3 de-
scribes how we empirically implement the model leveraging our experimental variation in salience-
enhancing feedback. Here, we consider estimation of two restricted versions of the model, one that
allows for consumption-based state dependence, and the other that allows for attention-based state
dependence. Given our empirical specifications, Section 4.4 describes model identification and es-
timation. We then compare the performance of these respective empirical specifications in terms of
within-sample fit in Section 4.5 and through an out-of-sample cross-validation analysis in Section
4.6. Finding strong empirical support for an attention-based mechanism, in Section 4.7 we discuss
and rule out other potential persistence mechanisms for feedback in our setting. These include
automatic control models of decision-making and experimentation and learning.

4.1 Model set-up
In period t an individual realizes utility Ut , which depends on their current consumption level

ct , an attention parameter θ, and exogenously–given per-unit price p:

Ut = u(ct)−θpct . (4)

In our setting, we interpret price as including an individual’s private water usage cost and their
moral cost from using the natural resource, following Allcott and Kessler (2019) and Levitt and
List (2007).

Limited attention

The parameter θ ∈ [0,1] is the individual’s level of attention to their resource use, and, hence
its associated cost. In our context, this entails the salience of incurring private and moral costs
from water usage, and how these costs rise with higher levels of usage. As in Chetty et al. (2009)
or DellaVigna (2009), we assume that individuals only give weight θ to their consumption, and
hence also their consumption expenditure pct , due to limited attention. The interpretation in our
research context is that while an individual immediately and correctly feels a shower’s pleasant
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sensation, the associated resource use is difficult to perceive. As θ → 1, the quantity and cost of
consumption is correctly perceived, and any associated salience bias in consumption (relative to
the fully attentive case) goes to 0. In the context of our experiment, we will interpret real-time
feedback from the smart shower meter (i.e., when the binary variable ONt = 1) as causing θ = 1.16

This specification for attention in a demand model is reduced-form as it does not specify a
deeper micro foundation. A plausible interpretation, along the lines of Enke and Graeber (2019),
is that individuals need to pay attention to perceive their true water use: they observe a signal
z = x+u, where x ≈ N(xD,σ2

x) is the distribution of their perceived water use, and u ≈ N(0,σ2
u,t)

is a perception error due to limited attention. Given a signal z, the individual rationally infers that
her water use x is E(x|z) = θx+θu︸ ︷︷ ︸

≡θz

+(1−θt)xD. Thus, the attention parameter can be thought of

as the signal-to-noise ratio θ =
σ2

x
σ2

x+σ2
u,t

, arising from this signal-extraction problem under limited
attention. It implies that an individual perceives a one-liter increase in actual water consumption
as only a θ ≤ 1 liter increase.

Consumption-based habit formation

To study persistence effects of salience-enhancing nudges, we combine the standard model of
salience bias above with Stigler and Becker (1977)’s canonical model of consumption-based habit
formation. Combining the models involves updating the utility function from (4) to

Ut = u(ct ,ht)−θpct , (5)

where ht is the consumption-based habit stock. We further keep with common applications of
Stigler and Becker (1977) and assume a quadratic utility function:17

u(ct ,ht) = (a+ γht)ct −
1
2

bc2
t , (6)

where a, b, and γ are parameters. The consumption-based habit stock ht summarizes past con-
sumption, which, like capital stock, can build up or decay over time

ht = δct−1 +(1−δ)ht−1, (7)

where δ is a parameter that governs the rate of change in the consumption-based habit stock ht and
hence the degree of consumption-based habit persistence. The stock ht changes more quickly as
δ → 1. The parameter γ in equation (6) governs how much a one-unit increase in ht changes the
marginal utility of consumption.

16We discuss parameter identification in Section 4.3 when describing how we empirically implement the model.
17Assuming quadratic utility for studying consumption-based habit formation dates back to e.g., Becker and Mur-

phy (1988) or Gruber and Kőszegi (2001), and has more recently been used by Allcott et al. (2022). This utility
specification is popular because of its tractibility. It may also be plausible that marginal utility is convex, i.e. that
marginal utility of water consumption drops much faster initially than for later units, which is often captured by a
constant absolute risk aversion (CARA) utility function. As we show in Appendix D, CARA utility lends itself to a
formulation of a consumption-based habit model that exhibits similar predictions regarding consumption responses to
salience-enhancing feeback.
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In sum, this model views habits as arising from long-term consumption complementarities,
which can in turn induce persistence in the effects of real-time feedback causing θ = 1 (i.e.,
when ONt = 1). Consumption complementarities in water usage can arise, for example, from
self-signaling behavior as in Dal Bó and Terviö (2013). In particular, an individual can develop an
introspective moral capital (or reputation) over time for “doing good” (e.g., taking shorter showers,
which helps the environment), which creates a predisposition to doing good in the future (e.g., con-
tinuing to take short showers). Likewise, past wrongdoing (e.g., taking longer showers) destroys
moral capital, leading to further wrongdoing.

Attention-based habit formation

Finally, we further allow for the possibility that feedback affects an individual’s habitual atten-
tiveness to consumption expenditures. We are motivated by research in neuropsychology, reviewed
by Anderson (2016), that documents persistence in attention even after salience-enhancing stimu-
lus is withdrawn. They also show that longer exposure leads to stronger post-exposure persistence
in attention. Mirroring Stigler and Becker (1977)’s formulation, we allow current attention to
expenditures to depend on past levels of attention. In other words, we consider the case where
attention, and not consumption, is the source of state-dependence.

Incorporating state-dependent attention involves two steps. First, we add a time subscript to
the attention parameter in (5), updating it to θt . Second, we specify θt in period t as follows :

θt =

{
1 if ONt = 1

ωt if ONt = 0,
(8)

When real-time feedback is turned on, i.e. when binary ONt = 1, attention is full: θt = 1. When
real-time feedback is off, i.e. when ONt == 0, attention is equal to ωt , the attention stock. We
formulate an attention stock process which, like the consumption-based habit stock, builds up and
decays,

ωt =

{
1 ·αON +(1−αON)ωt−1 if ONt = 1

θ ·αOFF +(1−αOFF)ωt−1 if ONt = 0,
(9)

where αON ,αOFF ∈ (0,1) govern attention stock build up and decay rates. The stock trends towards
1 when feedback is on, and decays towards a lower bound θ ∈ (0,1) when feedback is off.

In summary, our model nests three behavioral mechanisms that can shape how salient feedback
affect behavior. If the utility function does not depend on ht and has θ= θt for all t as in (4) then the
model corresponds to the standard non-dynamic salience framework of Chetty et al. (2009). Al-
lowing ht to affect utility as in (5) combines the Chetty et al. (2009) and Stigler and Becker (1977)
models to allow dynamic consumption responses to salience through state-dependent consumption
complementarities per (7). If θt is time-varying and evolves per (8) and (9), then state-dependent
attention can also shape consumption responses to feedback.
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4.2 Optimal consumption and steady state
We assume individuals maximize utility ignoring the impact of current consumption on future

habit and attention stocks. This amounts to assuming full projection bias as in Loewenstein et al.
(2003).18 The first order condition that determines the optimal level of consumption in period t is

∂U
∂ct

= a+ γht −bct −θt p = 0 ⇒ ct =
a+ γht −θt p

b
. (10)

Steady-state consumption, habit stock, and attention stock are then defined where

ct = ct−1 = c∗; ht = ht−1 = h∗; ωt = ωt−1 = ω
∗,

where ω∗ ∈ {θ,1}.

The model has two steady states of interest. First, consider the feedback-off (OFF) steady-
state, which corresponds to a setting where the individual makes consumption decisions in the
absence of feedback for a long time. In our research context, we envisage individuals being in
this steady-state at the start of our field experiment, before having a smart shower meter. At this
steady-state, salience bias is at its long-run level with θt = ω∗ = θ.

From the first-order condition and the habit and attention stock processes, the steady-state
values for consumption, the consumption-based habit stock, and attention stock are given by

c∗OFF =
a−θp
b− γ

; h∗OFF = c∗OFF; ω
∗
OFF = θ.

The second feedback-on (ON) steady state corresponds to the opposite scenario, namely when
the individual makes consumption decisions in the presence of feedback for a long-time. In our
field experiment, we anticipate that individuals reach this steady-state after showering with a smart
shower meter for months. Here, the individual’s consumption costs are fully salient such that
θt = 1. In this steady-state, consumption, the consumption-based habit stock, and attention stock
are given by

c∗ON =
a− p
b− γ

; h∗ON = c∗ON; ω
∗
ON = 1

4.3 Empirical model specifications
In this section we describe how we empirically implement the model using our experimental

data. Our goal is to compare the quantitative relevance of the consumption-based and attention-
based habit mechanisms in our setting. To this end, we consider two restricted versions of the

18A common assumption in consumption-based habit models is for individuals to be forward looking and correctly
anticipating how their current choices affect future habit stocks and, hence, behavior (Becker and Murphy, 1988;
Becker et al., 1994; Gruber and Kőszegi, 2001; Allcott et al., 2022). By contrast, projection bias implies that indi-
viduals underestimate the extent to which states change in the future. We consider the limiting case of full projection
bias, which amount to the individual maximizing the static utility function (6). We view this assumption as reasonable
in our context, as individuals did not know the feedback schedule they were facing, in contrast to other studies (e.g.,
Hussam et al., 2022).
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model that only have one of these two respective mechanisms driving consumption responses to
turning feedback on and off. Respectively, we will call these restricted models the consumption-

habit model and attention-based habit model. In what follows, we illustrate how the key parameters
underlying these models can be estimated.

Consumption-based habit model

Under consumption-based habit formation we set θit = θ when feedback is turned off for some
θ ∈ [0,1] and θit = 1 when feedback is turned on (i.e., when ONit = 1).19 The behavioral equations
are the first-order condition that governs individual i’s consumption in period t

cit =
ai −θp+ γhit

b
,

and the consumption-based habit stock accumulation and decay process

hit = δcit +(1−δ)hit−1.

In Appendix C we derive consumption paths for this model for arbitrary histories of feedback. We
show that while feedback is on, the difference between consumption in period t, ct , and the OFF
steady-state c∗i,OFF for individual i is

cit − c∗i,OFF =
θ−1

b
p+

γ

b
(hit −h∗i,OFF), (11)

where
hit −h∗i,OFF = δ(cit−1 − c∗i,OFF)+(1−δ)(hit−1 −h∗i,OFF). (12)

Intuitively, the first part of cit − c∗i,OFF corresponds to the initial change in consumption relative to
its OFF steady-state level when real-time feedback is turned on, θ1 = 1, and salience bias goes
away. The second part is the subsequent adjustment in consumption due to the impulse response
of the consumption-based habit stock.

Equation (11) highlights the consumption-based habit model’s key implication for feedback
persistence. An initial push to consumption from real-time feedback reduces consumption by
θ−1

b p. This leads to a subsequent drop in the consumption-based habit stock, now affecting the
change in consumption in the following period through the second term in (11). In the period after
that, consumption drops again, because of this secondary change in the consumption-based habit
stock, and so on. Thus, the consumption-based habit model predicts an initial jump, and then a
gradual reinforcement that converges to the new steady state c∗i,ON.

By contrast, turning off the feedback leads to the exact reverse process: an initial jump to a
higher consumption level, and then, through the accumulation effects in the habit stock, a gradual
convergence back to c∗i,OFF. With the common choice of a quadratic utility function, the adjustment

19We reintroduce an i subscript in this section as we develop the empirical model specifications.
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process is perfectly symmetric with reversed signs.20

We further show in Appendix C that these feedback-induced dynamics in cit − c∗i,OFF lends
themselves to a recursive formulation which enables us to bring the model to the data. Depending
on whether feedback is on (ONit = 1) or off (ONit = 0), the recursion can be written as

cit − c∗i,OFF =

{ (
1+ γ

bφt
)

θ−1
b p where φt = δ

(
1+ γ

bφt−1
)
+(1−δ)φt−1 if ONit = 1

γ

bφt
θ−1

b p where φt = δ
γ

bφt−1 +(1−δ)φt−1 if ONit = 0.
(13)

We build a (non-linear) estimating equation for the consumption-based habit model from this re-
cursion:

yis = ηi +
(

ONis +
γ

b
φis−1

(
γ

b
,δ,ONis

))
×ϕ+νs + εis, (14)

where we update the time index from t to shower s,21 ϕ = θ−1
b p, and we make the dependence of

φs on γ

b , δ, and ONis from (13) explicit. The individual fixed effect ηi has a structural interpreta-
tion as it corresponds to household i’s baseline OFF level of consumption, c∗i,OFF. The other two
shocks, νs and εis, are not structural and enter the equation additively. Previewing our discussion of
identification below, we assume that these other shocks that might persist through habit stock are
orthogonal to feedback-driven persistence from φs arising from experimentally-manipulated (and
hence exogenous) variation in ONis.

Note that we cannot separately identify the underlying γ and b parameters as they enter as a
ratio everywhere in (13) and (14). However, δ and γ

b are estimable and fully characterize persis-
tence effects under the consumption-based habit mechanism. This result allows us to evaluate the
consumption-bsaed habit model in predicting consumption responses to feedback without estimat-
ing all the consumption-based habit model parameters.

Asymmetric consumption-based habit model

To our knowledge, no form of asymmetry in consumption-based habit formation has been
previously examined. That said, given our evidence in Figure 4 and Table 4 against symmetry
per Hypothesis 1, we want to give the consumption-based habit model as favorable a treatment
as possible relative to the attention-based model. We therefore consider a variation on Stigler and
Becker (1977)’s model where we allow for asymmetric speed in the build-up and decay of the
habit stock, depending on whether feedback is on or off. While this model adds another parameter
for predicting consumption dynamics in response to exogenous feedback, it provides an important
comparison in our assessment of behavioral mechanisms below.

20In Appendix D, under CARA utility we obtain a nearly identical recursion characterizing how consumption
adjusts to feedback over time that is symmetric and linear in the habit stock. Thus, linearity of marginal utility is not
necessary to find the result of symmetric feedback effect accumulation and decay when feedback is turned on and off,
starting from steady state.

21Recall from Section 2.1 that our smart shower meters record shower count and not date because they do not have
an internal clock.
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In particular, we modify the habit stock accumulation equation to be

ht =

{
δONct−1 +(1−δON)ht−1 if ONt = 1

δOFFct−1 +(1−δOFF)ht−1 if ONt = 0,
(15)

where δON ,δOFF ∈ (0,1) govern the habit stock build-up and decay rates.22 Estimation of this
model is analogous to how we estimate the (symmetric) consumption-based habit model in equa-
tions (13) and (14). The only differences are that we respectively replace δ with δON and δOFF

when ONt = 1 and ONt = 0 in (13), and φis−1 becomes dependent on δON and δOFF in (14).

Attention-based habit model

Shutting down the influence of consumption-based habit formation (γ = 0), the behavioral
equations for the attention-habit model are the first-order condition

cit =
ai −θt p

b
and the attention stock accumulation and decay process

θt =

{
1
ωt

and ωt =

{
1 ·αON +(1−αON)ωt−1 if ONt = 1
θ ·αOFF +(1−αOFF)ωt−1 if ONt = 0,

where recall the attention stock can build and decay at different rates depending on whether real-
time feedback is on or off.23

In Appendix C, we also derive consumption paths for the model when feedback is turned on
and off for an arbitrary history of feedback. Importantly, we show that while feedback is on, the
difference between consumption in period t ct and its OFF steady-state level c∗i is

cit − c∗i,OFF =

{
θ−1

p if ONt = 1

λt(αON ,αOFF)
θ−1

p if ONt = 0
(16a)

λt(αON ,αOFF) =

{
αON +(1−αON)λt−1 if ONt = 1

(1−αOFF)λt−1 if ONt = 0.
(16b)

Equation (16a) highlights the key dynamics for persistence: the feedback intervention leads to
a stable response while the feedback is on (because no attention is required), and the attention
weight, λt(αON ,αOFF), builds according to (16b), starting from λ0 = 0. When feedback is turned
off, the attention stock becomes relevant for consumption, and gradually declines over time.24

22Keeping with the Dal Bó and Terviö (2013) self-signaling interpretation of consumption complementarities from
above, if, for example δON > δOFF , then households’ moral capital grows quicker from taking shorter showers when
feedback is on than the destruction of moral capital from taking longer showers when feedback is off.

23Note that we do not need different attention stock build-up and decay parameters to predict asymmetric con-
sumption responses to feedback being turned on and off. Allowing such differential build-up and decay puts the
consumption and attention-based habit models on equal footing in terms of their number of parameters. As a robust-
ness check below, we report attention-based habit model estimates under the constraint αON = αOFF .

24These recursions hold under our assumption of full projection bias, i.e. the individual fully ignoring the impact
of her choices on future habit stocks. Similar dynamics and symmetry arise for the forward-looking version of the
model, as our Monte-Carlo simulations for the forward-looking model show (not reported). Thus, the qualitative
feature of an initial jump followed by gradual adjustment, which is crucial to distinguishing between attention and

26



From this recursion, we can specify a non-linear estimating equation for this model specifica-
tion. Translating the model’s time index t to our data’s shower index s and consumption cit to our
shower water usage variable for household i yis, the estimating equation for the attention-based
habit model from the recursion in (16a) and (16b) is

yis = ηi +(ONis +OFFis ×λis−1 (αON ,αOFF ,ONis))ϕ+νs + εis, (17)

where ϕ = θ−1
p . Notice we make the dependence of λs on αON , αOFF , and ONis from (16b)

explicit, where the vector ONis contains the sequence of ONik values for household i for k ≤ s.

4.4 Identification and estimation
How does randomization of feedback on and off cycles, and hence ONis, help to identify the

consumption-based and attention-based habit models? Regarding the consumption-based habit
model, as mentioned above, the ηi fixed effect in its estimation equation (14) corresponds to indi-
vidual i’s baseline OFF steady state consumption c∗i,OFF. We then treat νs and εis as non-structural
shocks orthogonal to the process by which real-time feedback affects consumption through atten-
tion stock build-up and decay. Given this orthogonality assumption, exogenous variation in ONis

from our experiment allows us to identify ϕ, γ, and δ. In particular, ϕ is identified by the im-
mediate shifts in consumption when feedback is turned on (off). The parameter γ is identified by
the extent to which the new long-run consumption levels differ from the immediate shifts. The
parameter δON is identified by the speed with which the change in consumption nears the predicted
long-run treatment effect when feedback initially turned on (i.e., conditional on ϕ). Similarly, the
δOFF parameter is identified by the rate of decay back towards the baseline level of water use after
feedback had been turned off.

Given this orthogonality assumption, exogenous variation in ONis from our experiment allows
us to identify ϕ, γ, and δ. In particular, ϕ is identified by the immediate shift in consumption
when feedback is turned on. The parameter γ is identified by the extent to which the new long-run
consumption level with feedback differs from the immediate shift. Similarly, the δOFF parameter
is identified by the rate of decay back towards the baseline level of water use after feedback had
been turned off.

Identification of the attention-based habit model parameters ϕ, αON , αOFF in equation (17)
follows a similar argument. In particular, ϕ is identified by the immediate shift in consumption
when feedback is turned on across conditions T1–T7. The αON parameter, which recall governs
how fast the attention stock grows, is identified by the extent to which feedback effects are more
persistent in experimental conditions with longer feedback on cycles (e.g., as we illustrated in
Figure 5). Exogenous variation in feedback-on duration across conditions T3–T7 is thus crucial

consumption-based habit persistence mechanisms, is preserved with forward-looking households.
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for identifying αON . The αOFF parameter is identified by the rate at which consumption converges
back to baseline levels after feedback is turned off, conditional on the length of a given condition’s
previous feedback-on cycle.

Estimation and inference

We estimate the parameters in equations (14) and (17) by two-step non-linear least squares.
Consider first the attention-based habit model. With the consumption-based habit model, condi-
tional on the habit stock parameters γ

b and δ (or δON and δOFF in the asymmetric model), the
remaining parameters in (14) can be estimated by OLS after we forward-simulate φi,s−1 for each
individual given γ

b and δ (or δON and δOFF ). We then obtain estimates γ̂

b and δ̂ (or δ̂ON and δ̂OFF)

by finding the values that minimize the sum of squared residuals with OLS finding the remain-
ing parameters in (14) given γ̂

b and δ̂ (or δ̂ON and δ̂OFF). Likewise with the attention-based habit
model, given a candidate (αON ,αOFF) pair, we forward-simulate λis−1 and estimate the remain-
ing parameters in (17) by OLS. We then obtain α̂ON and α̂OFF estimates by searching for the
(αON ,αOFF) pair that minimizes the sum of squared residuals.

The two-step non-linear optimization routines for both models are stable and rapidly converge
to global optima. For inference, we use cluster bootstrap standard errors and hypothesis tests from
Cameron et al. (2008), sampling at the household level (our level of randomization) with 1000
bootstrap samples. Doing so accounts for our two-step non-linear least-squares procedure as well
as household-level persistence in εis in equations (14) and (17).

4.5 Parameter estimates and within-sample fit
Table 5 presents the parameter estimates for the consumption-based and attention-based habit

models. A comparison based on the RMSE of columns (1) and (2) rejects the symmetric consumption-
based habit model in favor of an asymmetric model. We obtain a noisy estimate of δ̂ = 0.087 in
column (1). In contrast, in column (2), the estimator drives the point estimated of δ̂ON to its bound-
ary 1.25 We therefore constrain the parameter δON = 1 for our preferred specification. Doing so,
we obtain a precisely estimated δ̂OFF = 0.058, and also substantially lower standard errors for the
other parameters.

For the attention-based habit model, columns (3) and (4) also reveal asymmetry in attention
stock build-up and decay. In column (3) we reject H0 : αON = αOFF in favor of H1 : αON ̸= αOFF

with p < 0.01. Therefore, our preferred specification for the attention-based habit model has
asymmetric attention stock build-up and decay.

We then compare the two asymmetric models. We compute the within-sample Root Mean

25Figure E.1 in Appendix E confirms that δ̂ON = 1 indeed yields a global minimum for the RMSE.
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Table 5: Consumption-Based and Attention-Based Habit Model Parameter Estimates

Consumption-Based Attention-Based
Habit Model Habit Model

(1) (2) (3) (4)

ϕ -3.491 -3.190 -5.623 -7.424
(0.349) (0.349) (0.448) (0.656)

[0.32]

δON = δOFF 0.087
(0.126)

δON 1.000
(0.394)

δOFF 0.058
(0.383)
[0.023]

γ/b 0.477 0.515
(0.099) (0.397)

[0.058]

αON = αOFF 0.052
(0.038)

αON 0.081
(0.025)

αOFF 0.021
(0.010)

Within-Sample RMSE 3.745 2.824 3.270 2.284

Notes: N = 86,376 (household, shower) observations in each sample consisting of 1078 individuals and 555 house-
holds. Dependent variable is shower water usage volume with baseline mean of 57 L (s.d.=42 L). All regressions
include household and shower fixed effects. Boostrap standard errors clustered at the household level reported. Stan-
dard errors for unconstrained models are in parentheses. The column (2) estimates constrain δON = 1 in estimation,
which thus does not have a standard error. Constrained standard errors for the other parameters are in brackets. See
the text for the calculation of within-sample RMSE.

Squared Error (RMSE) based on our time-varying treatment effects as

RMSE =

√
∑

39
b=4(β̃b,g − β̂b,g)2

36
, (18)

where β̂b,g is our time-varying treatment effect estimate for 3-shower block b for experimental
group g from equation (1) above, and β̃b,g is the model’s corresponding prediction for this time-
varying treatment effect. This RMSE thus quantifies the ability of a given model specification to
predict the path of time-varying treatment effects in panels (a)-(f) of Figure 4.26

26Importantly, this RMSE abstracts from the household and shower fixed effects in (17). The fixed effects are
important for identifying the time-varying treatment effects and improving their precision, but they are not per-se
important for comparing the relative performance of the consumption and attention-based habit models in fitting the
symmetry and persistence of feedback effects from turning feedback on and off. The RMSE measure in (18) focuses
precisely on this key aspect of the models’ predictive ability.
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The bottom panel of Table 5 shows that the attention-based habit model in column (4) is supe-
rior in terms of within-sample fit. In particular, the attention-based habit model in column (4) has
a 39% lower RMSE than the symmetric consumption-based habit model in column (1) and a 19%
lower RMSE than the asymmetric consumption-based habit model in column (2). We emphasize
that the attention-based habit model has better within-sample fit despite having one less parameter

than the consumption-based habit models.

As a robustness check, Table E.1 in Appendix E includes OFFis variable as a control to all
model specifications. Intuitively, this tests whether the model “leaves any persistence on the table”
that could be captured by the control. In all specifications of the consumption habit model, the
coefficient of OFF is statistically significant, as well as in the symmetric attention habit model.
However, for our preferred specification in column (4) of Table 5), the point estimate of the OFF

coefficient is small and not distinguishable from zero.

4.6 Predicting treatment effects out-of-sample
Our experimental data allows us to validate the attention-based and consumption-based habit

models out-of-sample by: (1) estimating each of the three models on six out of our seven ex-
perimental conditions; and (2) comparing each model’s predicted time-varying treatment effects
to the realized treatment effects for the left out condition. We undertake this validation for each
of the three models six times, for each of conditions T2–T7. This validation exercise illustrates
each model’s sensitivity to the estimation sample in predicting treatment effects out-of-sample. A
model that contains structural parameters governing behavior should robustly make accurate out-
of-sample predictions. Non-robust or inaccurate predictions indicate model misspecification.27

Figure 6 visualizes our results by reproducing the estimated time-varying treatment effects from
equation (2) for the left-out experimental condition (solid grey line) and each of the three models’
out-of-sample predictions for these time-varying treatment effects (darker solid and dashed lines
in black, red, and green). Table 6 reports the out-of-sample RMSE and parameter estimates.28

Our overall out-of-sample RMSE values in column (1) of Table 6 re-affirm our within-sample
RMSE results in Section 4.5. The attention-based habit model’s RMSE of 2.405 is 15% smaller
than the asymmetric consumption-based habit model’s RMSE of 2.837. Both models vastly out-

27Our validation approach follows Todd and Wolpin (2006) and Ferrall (2013) who use experimental variation
from large-scale randomized control trials in labor markets to validate structural models out-of-sample to establish
internally validity in identifying policy-invariant (i.e., structural) parameters.

28The overall RMSE in the table averages the out-of-sample RMSE across columns (2)-(7) in Table 6:

RMSE =

√
∑

7
g=2 ∑

39
b=4(β̃b,g − β̂b,g)2

6×36
,

where β̃b,g is the model’s predicted consumption in shower block b based on an estimation sample that includes all
experimental conditions except group Tg (i.e., the left-out condition for validating the model).
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Figure 6: Predicted and Actual Treatment Effects by Experimental Condition for the Consumption-
Based and Attention-Based Habit Models

(a) T2 out-of-sample - 120/0 on/off (b) T3 out-of-sample - 48/72 on/off
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(c) T4 out-of-sample - 24/48 on/off (d) T5 out-of-sample - 12/24 on/off
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(e) T6 out-of-sample - 6/12 on/off (f) T7 out-of-sample7 - 3/15 on/off
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Notes: See Figure 3 for details on the experimental design and equation (2) and associated discussion in the text for the regression equation used to
generate these plots. For brevity, confidence intervals are not displayed.



Table 6: Out-of-Sample Validation for the Consumption-Based and Attention-Based Habit Models

Leave-Out Experimental Condition for Validation

T2 T3 T4 T5 T6 T7
0/120 48/72 24/48 12/24 6/12 3/15
on/off on/off on/off on/off on/off on/off

(1) (2) (3) (4) (5) (6) (7)

Attention-Based Habit Model
φ –7.686 –7.279 –7.593 –7.382 –7.194 –7.731

αON 0.080 0.065 0.092 0.090 0.081 0.076
αOFF 0.019 0.015 0.023 0.019 0.023 0.021

Out-of-sample RMSE 2.474 2.144 2.297 2.350 2.689 2.440
Overall RMSE 2.405

Consumption-Based Habit Model (Symmetric)
φ –3.807 –3.573 –3.615 –3.332 –3.444 –3.366
δ 0.060 0.162 0.088 0.078 0.081 0.090
γ

b 0.689 0.402 0.468 0.479 0.490 0.498

Out-of-sample RMSE 3.573 4.156 4.025 3.198 4.765 3.791
Overall RMSE 3.948

Consumption-Based Habit Model (Asymmetric)
φ –3.248 –3.405 –3.351 –3.071 –3.090 –2.951

δON 1.000 1.000 1.000 1.000 1.000 1.000
δOFF 0.052 0.064 0.057 0.045 0.056 0.066

γ

b 0.533 0.487 0.520 0.535 0.530 0.557

Out-of-sample RMSE 2.387 3.347 3.143 2.183 3.313 2.405
Overall RMSE 2.837

Reduced-Form Regression
ON –7.697 –7.331 –7.481 –7.350 –7.369 –7.570

postON 0.027 0.009 0.009 0.012 0.009 0.011
OFF –4.941 –4.366 –4.876 –5.004 –4.970 –5.297

postOFF 0.083 0.072 0.092 0.079 0.082 0.090

Out-of-sample RMSE 2.541 2.773 2.842 2.232 2.645 2.445
Overall RMSE 2.588

Households within-sample 914 920 900 934 942 928
Households out-of-sample 108 102 103 117 94 84
Total Households 1022 1022 1003 1051 1036 1012

Notes: Dependent variable is shower water usage volume with baseline mean of 57 L (s.d.=42 L). All regressions
include household and shower fixed effects. For the sake of brevity in exposition, bootstrap standard errors are not
reported. See the text for the calculation of out-of-sample and overall RMSE.

perform the symmetric consumption-based habit model which has an RMSE of 3.948.

Figure 6 allows us to investigate what drives the differences in the RMSEs across the three
models. As expected, the symmetric consumption-based model fails to predict asymmetric con-
sumption responses to feedback being turned on and off. This finding is evident in Figure 6(b) for
T3: consumption does not fall fast enough with feedback on and rises too fast with feedback off.
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Figure 7: Predicted and Actual Treatment Effects for the First Feedback Cycle for Experimental
Conditions T3 and T7 for the Asymmetric Consumption-Based and Attention-Based Habit Models

(a) T3 out-of-sample - 48/72 on/off (Zoomed In) (b) T7 out-of-sample - 3/15 on/off (Zoomed In)
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We see similar patterns in the other conditions with shorter feedback on durations. In addition,
the model predicts too high an overall level of consumption. This overprediction occurs because
the model’s symmetry forces its prediction error-minimizing path to tradeoff the extent to which it
predicts the drop in consumption in feedback-on periods and the return in consumption to baseline
in feedback-off periods.29

The asymmetric consumption-based habit model yields a large improvement over to the sym-
metric consumption-based habit model in Table 6 and Figure 6. Driving δ̂ON = 1 enables the model
to match sharp reductions in consumption when feedback is turned on. The δ̂OFF ≈ 0.058 estimate
allows the model to better capture the sluggish return to baseline in the periods after feedback is
initially turned off, especially in conditions T5–T7. Moreover, panels (e) and (f) of Figure 6 show
that the model better predicts the overall price level after feedback starts cycling on and off, as well
as the reductions and rebounds in consumption in conditions T6 and T7 compared to the symmetric
consumption-based habit model.

However, the asymmetric consumption-based habit model has two key shortcomings. First,
Figure 6(b) reveals that the model predicts a large jump in consumption once feedback is turned
off after a long cycle of feedback-on, whereas the data exhibits a slow rise in consumption at

29More specifically, suppose that the model successfully predicts the large and sharp drops in consumption when
feedback is turned on. In this case, the model would predict a symmetric large and sharp jump in consumption
when feedback is turned off, creating a large squared prediction error as consumption gradually returns to baseline
when feedback is off in the data. In minimizing the squared prediction error, we thus obtain an estimated symmetric
consumption-habit model that introduces some, but not extreme error in predicting symmetric drops in consumption
with feedback on and jumps in consumption with feedback off. Because these predictions imply, relative to what
is observed, a drop in consumption with feedback on that is too small and return to baseline in consumption with
feedback off that is too fast, we end up with predicted overall consumption levels that are too high.
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those times. Figure 7(a) zooms in on the feedback cycle in condition T3, which applies a long
48-shower duration of feedback-on. Under this condition, the model reaches the ON steady state,
represented by the flat line between CD. The asymmetry created by the different δ̂ON and δ̂OFF

values can be seen by the differences in how consumption adjusts between BC and EF. But the
model also predicts instantaneous symmetric jumps between AB (feedback-on) and DE (feedback-
off). In steady state, lagged differences in consumption and the consumption-habit stock are zero,
so consumption has to change by the full salience effect when feedback is turned on or off.

Figure 7(b) highlights the second empirical challenge for the asymmetric consumption-habit
model. The figure zooms in on the first cycle of the shortest 3-shower feedback-on treatment from
Figure 6(f), expanding the x-axis to highlight the dynamics. The figure shows that if individuals
receive a short sequence of feedback then the consumption-based habit stock does not have enough
time to reach the ON steady state. In this case the post-feedback jump up in HI does not equal
the instantaneous salience effect of feedback in GH.30 The predicted magnitude of the jump in HI
when the habit stock has not yet reached its ON steady state depends the change in the habit stock
ht between GH. Intuitively, the full salience effect from removing feedback at H is tempered, with
a lag, by the state-dependence in consumption associated with GH. Therefore, HI is much smaller
than GH. Comparing across our experimental conditions, we see that the asymmetric consumption-
habit model predicts smaller post-feedback jumps the shorter the duration of feedback-on, which
goes against Hypothesis 2 and what we observe empirically.

In contrast, the attention-based habit model robustly predicts time-varying treatment effects
out-of-sample. In feedback-on periods, it successfully predicts immediate and stable changes in
consumption in response to salient feedback. And in feedback-off periods, asymmetric attention
stock build-up (through α̂ON) and decay (through α̂OFF ) successfuly predicts two key features of
post-feedback consumption: (1) differential jumps in consumption across conditions when feed-
back is turned off as a function of prior feedback-on duration; and (2) gradual trends in consump-
tion back to baseline if feedback is off for sufficiently long.

To see why the α̂ON parameter estimate enables the model to predict differential jumps, com-
pare the first feedback cycles in conditions T3 and T7 from Figure 7. In panel (a), after 48 showers
of feedback, the individual’s attention stock ωt is near the steady-state level of ω∗ = 1. Therefore,
when feedback is turned off at W and θt switches from one to the value of ωt the attention-based
habit model predicts a minimal change in consumption at WX. At the other extreme in panel (b)
there are only three showers of feedback-on, and hence the attention stock ωt is closer to its initial
value θ << 1 when feedback is turned off at Y. Therefore, when feedback is turned off and θt

30The small differences in the instantaneous salience effects predicted by the asymmetric consumption-habit model
between AB and GH in panels (a) and (b) of Figure 7 is due to the model being estimating on different sub-samples
across the figures, per our out-of-sample validation approach. Panels (a) and (b) respectively exclude conditions T3
and T7 from the estimation sample.
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switches from one to ωt , there is a large change in the individual’s attention to consumption costs,
and hence a large change in consumption at YZ. In sum, the differential predicted jumps at WX
and YZ illustrate how the duration of feedback-on and attention stock growth rate, which α̂ON

governs, enables the attention-habit model to reconcile the feedback-persistence gradient in the
data per Hypothesis 2.

Regarding gradual trends, conditional on α̂ON and associated post-feedback jumps in con-
sumption, our estimator finds the value of α̂OFF that gradually reduces the attention stock when
feedback is off to match the decay in post-feedback treatment effects in the data. Such gradual de-
cay, combined with the model’s prediction of immediate and stable changes in consumption with
feedback-on goes against Hypothesis 1 and aligns with the asymmetry observed in the data.31

Summary

In summary, a model that combines standard behavioral models of limited attention and consumption-
based habit formation is unable to predict the micro-dynamics of how consumption responds to
feedback from our field experiment. However, by switching the model’s source of state depen-
dence to attention in an intuitive way that is inspired by Stigler and Becker (1977)’s original habit-
formation mechanism and in-line with findings from neuropsychology, we obtain an attention-
based model of habit formation that accurately and robustly predicts consumption’s dynamic re-
sponse to feedback. These out-of-sample validation results indicate that the attention-habit model
captures structural econometric primitives that drive individual behavior.

Reduced-form model comparison

As a final validation exercise, we explore how the (non-linear) attention-based habit model
compares to the (linear) treatment effect regression in equation (2) in terms of out-of-sample fit.
The bottom panel of Table 6 produces an analogous set of out-of-sample RMSE results based on
our equation (2) estimates. In terms of overall RMSE, the attention-based habit model’s is 7%
lower than the regression’s. However, we find a large, 23% difference in column (2) when the
models predict feedback effects with long feedback on and off durations. These findings highlight
the value of the attention-based habit model in both predicting and interpretting non-linear decay
of feedback effects over longer horizons after a long duration of feedback being on.

4.7 Other persistence mechanisms
Overall, our reduced-form and structural analyses together establish the quantitative relevance

of time-varying attention as a key behavioral mechanism for persistent feedback effects. Before

31Notably, the attention-based habit model also captures treatment effect ‘action and backsliding’ that diminishes
with repeated feedback nudges, similar to that found by Allcott and Rogers (2014) in their study of repeated home
energy reports. These patterns are particularly visible in panels (e) and (f) of Figure 6, and our framework provides
an explanation for these patterns. In particular, with attention stocks that asymmetrically grow quickly and decay
sluggishly, there exist spillovers in individuals’ attention stocks across feedback cycles.
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examing associated implications for policy, we consider and rule out two additional potential mech-
anisms for feedback persistence in our setting.

Automatic control

Camerer et al. (2020) introduce automatic control models from neuropsychology as a behav-
ioral mechanism for habit formation. In their model, individuals use a fixed decision rule that
generates predicted and realized levels of consumption utility at any point in time. As long as
prediction errors are not too large, an individual will continue to use the rule. If, however, pre-
dicted utility starts departing from the realized utility, evidence begins to accumulate against the
behavioral rule. Should evidence against the current rule becomes sufficiently large, individuals
will, at a utility cost, re-optimize and update their fixed decision rule, resulting in a discrete shift
in behavior that persists thereafter.

In our experiment, the introduction and removal of feedback could create differences between
predicted and realized utility from showers of different lengths, inducing re-optimization with dis-
crete changes in shower usage. However, in Appendix F.1 we examine and fail to find discrete
shifts in consumption at the individual level after feedback is turned off. Moreover, allowing for
such jumps in consumption in our econometric models leaves our persistence effects estimates in
Section 3.2 unaffected. In sum, Camerer et al. (2020)’s automatic control model does not charac-
terize persistence observed in our setting.

Experimentation and learning

We also consider the potential for feedback-induced experimentation and learning. Here, we
have in mind persistence in behavioral change like that studied by Larcom et al. (2017) following
a 2014 London Tube strike. The strike temporarily forced individuals to experiment with and learn
about other forms of public transit. Some individuals stayed with new forms of transit after the
strike ended, underlining experimentation and learning as a potential mechanism for persistence.

In Appendix F.2, we conduct another series of auxiliary analyses using the feedback on/off
cycles from conditions T4–T7. We test for a permanent long-run shift in shower consumption
after individuals experience their first feedback cycle. Intuitively, the consumption response to
the first cycle potentially entails both salience and experimentation and learning effects, whereas
subsequent cycles primarly have salience effects. A learning mechanism implies that we should
find a permanent level shift in consumption after the first cycle. However, we find no evidence of
such permanent shifts in our data.
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5 Attention stocks, behavioral change, and intervention design
In light of our results in Section 4, we move forward with the attention-based model of habit

persistence to provide model-grounded estimates of habit formation and decay rates, and examine
implications for the design of feedback interventions.

5.1 Asymmetric habit formation and decay
We examine how attention stock build-up and decay affects consumption over time in panels

(a) and (b) of Figure 8. In particular, panel (a) plots the point estimate and 95% bootstrap confi-
dence interval for the persistence effect from feedback starting from the (baseline) ON steady-state
and turning feedback on for 120 consecutive showers.32 We estimate that it takes 18 showers to
reach the ON steady state. This duration is identified where the 95% confidence interval for the
persistence effect of feedback contains the ON steady-state persistence effect of -7.35 L/shower.33

The half-life for feedback persistence effect build-up relative to its ON steady-state level is just
nine showers [95% CI 6, 15].

Panel (b) of Figure 8 examines attention stock decay and the common question of “how long do
these habits last?”. Here, we plot the point estimate and 95% confidence interval for the persistence
effect of feedback starting from the ON steady-state and keeping feedback off for 240 consecutive
showers. Panel (b) shows that we are not able to reject persistence effects greater than -0.037
L/shower (e.g., 5% of the ON steady-state persistence effect of -7.35 L/shower) at the 5% level of
significance after 59 showers.34 In other words, if an individual takes one shower per day, starting
from the ON steady state, we estimate that shower water-conserving attention stock effects persist
for approximately two months.

Panels (a) and (b) of Figure 8 together highlight asymmetry in attention stock and persistence
effect build-up and decay. Whereas it takes 19 showers for the persistence effect converge to its ON
steady state level while feedback is on, it takes 59 showers without feedback for the persistence
effect to dissipate. Likewise, while the half-life for persistence effect build-up is nine showers
[95% CI 6, 15], the half-life for persistence effects in panel (b) is 33 showers [95% CI 15, 95]. In
sum, attention stocks and associated consumption effects build quickly and decay sluggishly.

32Formally, the persistence effect of feedback from equation (17) is λis−1 (αON ,αOFF ,ONis)ϕ. This effect quan-
tifies an individual’s change in consumption relative to their baseline level immediately after feedback is turned off.
For example, starting from the OFF steady state, after nine showers of feedback, an individual exhibits 3.68 L/shower
water savings relative to their OFF steady-state level if feedback is suddenly turned off. Panel (a) of Figure 8 illustrates
this persistence effect from nine showers of feedback.

33We identify the steady-state persistence effect at the point where ωt −ωt−1 < 0.01, that is, when the predicted
change in the attention stock based on our point estimates is less than 1% of the maximal attention stock value of one.
Using confidence intervals to identify habit persistence effect build-up and decay in panels (a) and (b) of Figure 8
aligns with reduced-form approaches for identifying the duration of habit persistence. See, for example, Charness and
Gneezy (2009) or Royer et al. (2015).

34We require a threshold rule for classifying “how long habits last” because the attention-based habit model’s
persistence effect never reaches exactly 0.
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Figure 8: Rates of Feedback Effect Build Up and Decay

(a) Feedback Effect Build-up (b) Feedback Effect Decay
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5.2 Feedback duration and persistence: simulation analysis
Our structural model allows us further to explore the relationship between feedback duration

and consumption persistence. Following on our approach to quantifying “how long habits last”
from panel (b) of Figure 8, we conduct a series of simulations, starting from the OFF steady-
state, where we: (1) provide feedback for k periods; (2) permanently turn feedback off; and (3)
determine how many periods it takes until we no longer statistically reject a persistence effect of
-0.037 L/shower at the 5% level of significance. Figure 9 plots the results from these simulations,
with k ∈ {1, . . . ,55} on the horizontal axis and the number of showers that a habit persists on
the vertical axis. In line with the short half-life for persistence effect build-up, the figure shows
attention-based persistence effects form rapidly. For example, our estimates imply that feedback
effects persist for up to 22 showers (e.g., ≈ three weeks) after feedback is turned off in our least
intensive feedback condition T7 with only three periods of feedback (e.g., ≈ three days).

Figure 9 also highlights a diminishing impact of feedback duration on persistence. The gradient
is relatively steep up to k = 15 showers of feedback and flattens after that. In other words, feedback
is valuable for inducing persistent behavioral change up to some point, beyond which the marginal
gains diminish substantially. What does diminishing marginal impacts of feedback on behavior
change imply for the design of feedback interventions? We now turn to addressing this question.

5.3 Feedback intervention design and behavioral change
In this final part of our structural analysis, we explore how feedback intervention design affects

total behavioral change and design implications of attention stock build-up and decay. The emer-
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Figure 9: Feedback Duration and Post-Feedback Persistence – Simulation Results
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gence of repeating, salience-enhancing feedback enabled by data and digital technology motivates
this analysis.

Specifically, we use our model to inform the following question: suppose a policymaker de-
signs a T period feedback intervention facing a K < T period feedback budget; how should they al-
locate the feedback over time to maximize behavioral change from the intervention?35 A feedback
budget can emerge if it is technologically infeasible to provide individuals with real-time feedback
at all times or if implementers worry about consumer backlash from constant feedback. While
feedback in our particular context is not overtly costly, our attention-based persistence mechanism
may be relevant elsewhere. Our structural model allows us to investigate how different optimal
policies can look when our attention-based mechanism shapes behavior in the presence of costly
feedback.36

Consider designing a T = 120 intervention under a K = 48 period feedback budget. This set-
up corresponds to experimental conditions T3-T5, which have 48 periods in total with feedback
is turned on.37 For non-negligible K and T values, finding the feedback sequence that maximizes
behavioral change faces a Curse of Dimensionality. For instance, in our set-up, there are more

35This policy objective is, of course, different from welfare maximization, particularly if individuals face utility
costs from feedback (Allcott and Kessler, 2019). We do not examine welfare maximization because we do not identify
all of the utility function parameters in equations (4) and (6). In practice, however, maximizing behavioral change
given a feedback budget is often the goal of feedback interventions, as was the case with our research partner.

36Separately, we also do not consider “attention budgets” in our analysis, whereby attention drawn toward the costs
of one behavior (shower water usage) reduces the amount of attention an individual has to expend on other decisions
during the day. See Shenhav et al. (2017) or Bronchetti et al. (2022) for overviews of research from neuropsychology
on attention spillovers across behaviors which, to our knowledge, has not been formalized and empirically examined
within an economic framework. Our counterfactual simulations complement this emerging research area by examining
the implications of attentional spillovers within a behavior (showering) across time and not across behaviors.

37Working with K = 48 and T = 120 ensures our counterfactuals stem from parameter estimates identified from
experimental variation in feedback and consumption from a similar intervention setting.
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Figure 10: Top-20 Treatment-Effect Maximizing Feedback Cycles
(from 1 trillion randomly-generated feedback cycles)
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than 1× 1095 permutations of feedback sequences to search over in finding the behavior change-
maximizing feedback structure.

We therefore undertake a Monte-Carlo study to guide our analysis. Specifically, we compute
the average per-period feedback effect predicted by our estimated attention-based habit model for
one trillion randomly-generated feedback on/off sequences. Figure 10 presents the top-20 treat-
ment effect-maximizing feedback structures from these simulations. The figure reveals a partic-
ular class of feedback structures involving an initial continuous sequence of feedback followed
by regular and intermittent feedback on impulses. Interestingly, these feedback structures can be
implemented by an (S,s)-type rule (Scarf, 1959), but which also involves an initial attention stock
build-up phase. We label our modified rule (I,S,s), with I defining the number of consecutive peri-
ods feedback is initially provided to build-up an individual’s attention stock. Formally, the (I,S,s)

rule is defined as

ONt =


1 if t ≤ I (attention build-up)
1 if t > I and [(ωt < s) or (ONt−1 == 1 and ωt < S)] (attention management)
0 otherwise.

Constraining our search to (I,S,s)-based feedback structures, we can solve for the feedback-
effect maximizing rule using a grid search. Based on our model point estimates, the optimal rule is
not unique with 50 slightly different (I,S,s)∈{{15}×{0.701,0.702, . . . ,0.719}×{0.700,0.701,0.702}}
generating a maximal per-period feedback effect of -5.97 L / shower. However, each of these rules
implement a unique optimal feedback structure, which the shaded areas in Figure 11 illustrate. The
figure also highlights the corresponding optimal attention build-up and management phases.
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Figure 11: Optimal Consumption and Attention Stocks
T = 120 Intevention Period, K = 48 Feedback Budget

Optimal Rule (I,S,s) = (17,0.74,0.7)
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To visualize how the (I,S,s) rule works, Figure 11 plots the unique optimal consumption and
attention stock paths implemented by one of the optimal (I,S,s) rules. The figure shows the atten-
tion stock ranges between 0.700 and 0.719. In other words, it is optimal to keep a consumer aware
of ≈ 70% of their consumption costs when feedback is turned off on average. In doing so, the
optimal (I,S,s) rule generates an average feedback effect of -5.97 L/shower [95% CI -4.73, -7.38].

A relevant benchmark for these optimal feedback effects is the implied average feedback effect
under the optimal feedback structure under Stigler and Becker (1977)’s commonly-used (sym-
metric) consumption-based habit model with quadratic utility. Their model’s symmetry of habit
formation and decay implies that a policymaker should immediately exhaust the K period feed-
back budget to maximize the average feedback effect. Under this rule, if we immediately exhaust
the K = 48 feedback budget, we obtain an average feedback effect of -5.18 L/shower from our
attention-based habit formatiom model, 15% lower than the average feedback effect under the op-
timal (I,S,s) rule. This contrast in optimal policy rules highlight yet another important difference
between the behavioral mechanisms for feedback persistence.

Lastly, how does the treatment effect from the optimal (I,S,s) rule vary with the feedback
budget K? Figure 12 answers the question by plotting the average treatment effect across T = 120
showers from the optimal (I,S,s) rule and unique feedback structure as a function of the feedback
budget. There is a convex relationship implying as K becomes large. For instance, the point
estimates imply that increasing a feedback budget from 20 to 40 periods increases the optimal
feedback effect by 50%, from -3.67 L/shower to -5.50 L/shower. An equivalent feedback budget
increase from 40 to 60 showers increases the optimal feedback effect by 18% to -6.50 L/shower.
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Figure 12: How Feedback Effect from the (I,S,s) Rule Varies with the Feedback Budget in a 120
Period Intervention

-8
-6

-4
-2

0
Fe

ed
ba

ck
 E

ffe
ct

 fr
om

 O
pt

im
al

 (I
,S

,s
) R

ul
e 

(L
/S

ho
we

r)

0 20 40 60 80 100 120
Feedback Budget (Showers)

 Feedback Effect
 95% CI

The figure also reveals similar average feedback effects under 80 and 120-period feedback budgets.

In sum, Figure 12 highlights the importance of thinking in terms of feeback budgets whenever
there is a marginal cost of providing or receiving feeback. In a setting where feeback is applied
strategically and have diminishing effects in generating behavioral change, even under constant
marginal cost, it is not optimal to provide feedback all the time.

6 Conclusion
By studying the micro-dynamics of behavioral responses to feedback, this paper has identified

a new mechanism for habit formation through state-dependent attention. We designed and imple-
mented a field experiment that uncovered asymmetry in behavioral responses to introducing and
removing repeated feedback, and a gradient between treatment duration and post-duration persis-

tence. Motivated by these reduced-form results, we developed and estimated a structural model
of habit formation that nests consumption- and attention-based habit mechanisms, and adds more
flexibility to the model specifications. Using the models, we validated the attention-based mech-
anism and uncovered a new (I,S,s) rule for optimizing feedback-based interventions to create
sustained behavioral change.

From a methodological perspective, integrating experimental and structural econometric anal-
yses of habit formation, as we have done, motivates and informs future research. While we have
examined a context that abstracts from metabolically-driven persistence, there are feedback inter-
ventions that target areas where metabolically-driven persistence may play a role, like programs
to reduce smoking or encourage physical activity. Similarly, while we designed our experiment to
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avoid forward-looking confounds, one could extend our model to interventions with a time profile
known to participants, as was done in Hussam et al. (2022). A structural approach, where exper-
imental variation identifies the model, can quantify the relative strengths of competing channels
for persistence in behavior change. Such quantitative results, in turn, directly inform the design of
nudge-based interventions to help individuals overcome “bad” habits and create “good” ones.
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Online Appendix

A Supplemental analyses and material

A.1 Sample recruitment, instructions, baseline, and endline surveys
As discussed in the paper, we recruited 700 customers for the trial. The following five steps

describe how we recruited these customers from South East Water’s customer base.

1. From the 700,000 household South East Water residential customer base, we identified
140,407 households that registered email addresses with the utility.

2. A year before the experiment, we emailed an online survey to 45,685 randomly selected
households from the 140,407. The survey asked about household characteristics, water us-
age, and shower type. Figure A.1 presents the baseline survey questions.

3. We received 19,449 survey responses. Of these households, 4,999 reported having a hand-
held shower nozzle in their primary bathroom, which is necessary for installing an Amphiro
B1 shower meter.

4. We sent a recruitment email and Plain Language Statement (PLS) to these 4,999 households
asking if they were (1) interested in participating in a trial involving the Amphiro B1 and (2)
intending to be at their current address for the duration of the study period. 1,200 households
expressed interest and availability. These households represent our eligible sample. Figure
A.2 presents the PLS.

5. From the 1,200 eligible households, we randomly selected 700 for the experiment and ran-
domly allocated 100 households to each experimental group T1–T7. We stratified allocation
by household size to prioritize all single-person households. The Amphiro B1s were then
mailed to households with the installation instructions in Figure A.3.

6. At the end of the trial, we emailed households an endline survey asking questions related
to how households felt the Amphiro B1 affected their behavior, focusing on salience effects
and habit formation. Figure A.5 presents the endline survey questions.

All 700 randomly selected households for the trial answered the baseline survey. From Table
2 in the paper, 653 (93%) households had their Amphiro B1’s accounted for at the end of the
trial, and 555 (79%) returned their devices used with data for extraction. 428 (61%) of households
answered the endline survey after the trial.
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Figure A.1: Baseline Survey

Baseline Survey Invitation Email 
 
Subject line: Your next water bill may be on us 
 
At South East Water, we’re looking for new ways to help you better manage your water usage. To do this, knowing a 
little more about your household’s water usage and lifestyle would be useful. 
 
Please take a few moments to complete our short survey with 25 multiple-choice questions. As a thank you, you will be 
automatically entered into the draw for a chance to win one of these prizes: 

• One prize of $1000 off your next water bills, 
• One iPad valued approximately at $1000, and 
• One prize of $1000 to be donated to a choice of charities in your name.  

 
[“Complete Survey” button here] 

 
Link to Terms and Conditions included at the bottom of email.  
 
Thank you for taking the time to complete our survey. Your answers will help shape develop tools to support customers.  
 
Questions 
 

1. How many people live in your home? 
[1, 2, 3, 4, 5, 6, 7, 8, 9+] 

 
2. How many household members are babies or toddlers (under age 5)? 

[0, 1, 2, 3, 4+] 
 

3. How many household members are children between the ages of 5 and 12? 
[0, 1, 2, 3, 4+] 
 

4. How many household members are teenagers (ages 13-19)? 
[0, 1, 2, 3, 4+] 

 
5. How many showers are in your home? 

[1, 2, 3, 4+] 
 

6. What best describes the shower that you use most of the time? 
[Hand-held shower, Wall or overhead shower, Combination] 
 

7. What best describes the showerhead that you use most of the time? 
[Low-flow or restricted-flow, Power or high-pressure, Traditional, Don’t know] 
 

8. How many minutes long is a typical shower in your home? 
[3 or less, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or more] 
 

9. What is your best guess water is used (in litres) during a typical shower in your home? 
[less than 10 L, 10-25 L, 25-50 L, 50-75 L, 75-100 L, 100-125 L, 125-150 L, more than 150 L] 
 

10. How do you heat your hot water? 
[Electricity, Gas, Don’t know] 
 

11. Are any of the toilets in your house dual-flush? 
[Yes, No, Don’t Know] 
 

12. How often do you run the dishwasher with a less-than-full load?  
[Every time, Often, Occasionally, Never, I don’t have a dishwasher] 
 

13. How often do you run your clothes washing machine with a less-than-full load? 
[Every time, Often, Occasionally, Never, I don’t have a washing machine] 
 

14. What best describes your clothes washing machine? 
[Top-loading, front-loading, I don’t have a washing machine] 
 

15. How long has it been since someone has checked for leaking taps or toilets in your home? 
[We have never checked, Several years, Several months, Several days] 
 

16. In your home, how much time typically goes by between noticing and fixing a leaking tap or toilet? 
[I have never had a leaky faucet or toilet, Several hours, Several days, Several weeks, Several months, Several 
years] 
 

17. How long has it been since the last major remodel of your home? 
[Home is brand new, 2-5 years, 5-10 years, 10-15 years, 15+ years or never remodeled, Don’t know] 
 

18. Which of the following do you have? [You can tick more than one answer.] 
[Balcony garden, Lawn grass, Vegetable garden, Native or drought-tolerant plants, Rainwater tank, Drip 
irrigation system, Swimming pool, Spa pool] 
 

19. How many minutes a week do you water your plants or garden in the summer?  
[0, 1-10, 10-15, 15-20, 20-30, 30+, Does Not Apply] 
 

20. How do you usually wash your car in the summer? 
[I don’t own a car, At a commercial car wash, At home with a hose, At home with a bucket, Other] 

 
21. Compared to water usage in homes with the same number of people as yours, what statement best describes 

your household’s water use?  
[High (top 20%), Above average (top 40%), Average, Below Average (bottom 40%), Low (bottom 20%)] 
 

22. What do you expect your next quarterly water bill to be?  
[$25, $50, $75, $100, $125, $150, $175, $200, $225, $250, $275, $300, $325, $350, $375, $400, $425, $450, 
$475, $500] 
 

23. Have you had any unexpectedly high water bills in the past year?  
[Yes, No] 
 

24. If yes, on average how much higher were the water bills than what you expected?  
[$25, $50, $75, $100, $125, $150, $175, $200, more than $200, Does not apply] 
 

25. If yes, can you recall which bills were unexpectedly high? Please check all that apply. 
[2015: Jul, Aug, Sep, Oct, Nov, Dec, 2016: Jan, Feb, Mar, Apr, May, Jun, Does not apply] 
  

Environment/Health/Social Donation Question 
 
Thank you for completing our survey. You are now in the draw to win the chance to donate $1000 in your name to a 
selection of charities. We have one donation prize to give away. Please indicate how you would like to split the money 
amongst the following charities should you win the prize: 

• Australian Red Cross [$0, $250, $500, $750, $1000] 
• World Wildlife Foundation [$0, $250, $500, $750, $1000] 
• National Breast Cancer Foundation [$0, $250, $500, $750, $1000] 
• Starlight Children’s Foundation [$0, $250, $500, $750, $1000] 

 
End of Survey 
 
Thank you for completing our survey. You are now in the draw. The draw will take place on [XX] date. Winners will be 
notified via email by [YY] date. 
 



Figure A.2: Plain Language Instructions Sent to Households During Recruitment

 
Plain Language Statement 

 
Project Title: Real-time Feedback and Shower Water Usage 

 
You are invited to participate in an anonymous four-month trial study. We are 
interested in understanding how customers respond to real-time feedback on 
shower water temperature and water use from Amphiro B1 personal shower 
displays. Dr David Byrne and Dr Leslie Martin from the Department of Economics 
at the University of Melbourne are the responsible researchers for this project. 
They are working with South East Water in conducting this trial study. 
 
The Faculty of Business and Economics Human Ethics Advisory Committee has 
approved this project. The Energy Markets Program in the Centre of Market Design 
is providing funding along with a Business and Economics Faculty Research Grant 
from The University of Melbourne, and South East Water. 
 
What you will need to do 
 
1. [NOW] INSTALL THE AMPHIRO B1. You will need to install your Amphiro B1 
in your primary shower in your home. This must be a detachable hose shower. We 
have included paper instructions that show you how to install the B1. This video 
also shows you how to install the B1: http://go.unimelb.edu.au/7g66. 
 
When you take your first shower after installing the B1 the display should activate 
automatically. It will display the current water temperature. As long as you see the 
temperature, you will know that your B1 is working.  
 
The B1 will always show you water temperature. From time-to-time during the four-
month trial period, the B1 may also show you water use, both in litres and via a 
polar bear animation.  
 
2. [SEPTEMBER] RETURN THE AMPHIRO B1. At the end of the four-month trial 
period you will need to uninstall the Amphiro B1 and return it to The University of 
Melbourne so that the researchers can extract the B1 data on shower water usage 
(in litres). No other data will be collected from the B1. You can uninstall the B1 by 
following the included paper instructions with the device. To return the device to 
The University of Melbourne, you simply place it in the self-addressed stamped 
envelope that we have included with the B1, and put it in your nearest mailbox 
(Please keep the self-addressed stamped envelope somewhere safe for the 
duration of the trial) If you wish to keep the Amphiro B1 for free, we will mail it back 
to you immediately after the shower usage data has been extracted.  
 

3. [SEPTEMBER] FOLLOW-UP SURVEY. After the B1 trial finishes, you will be 
invited to participate in a follow-up survey to provide feedback on how you used 
your B1.  
 
How will my confidentiality be protected? 
 
Your name, customer account, and location will be completely de-identified in all 
future publications that arise from this study. Customers involved in the trial will be 
labeled anonymously as “Customer 1”, “Customer 2”, and so on. All raw shower 
usage data and follow-up survey data will be stored securely at The University of 
Melbourne for a minimum of 5 years. South East Water will also securely store the 
follow-up survey data. Your participation is completely voluntary and you may 
withdraw consent to participate at any time.  
 
If, prior to processing the data, you do not wish for your data to be included in the 
project, you may request to have your data withdrawn from the project’s dataset. 
Once the research project is completed, the results from the anonymised data may 
be presented at academic conferences and published in academic journals.  
 
Where can I get further information? 
 
Should you require any further information, or have any concerns, please contact 
Dr David Byrne (byrned@unimelb.edu.au, 03 8344 3880) or Dr Leslie Martin 
(leslie.martin@unimelb.edu.au, 03 8344 5312). If you have any concerns about 
the conduct of the project, you are welcome to contact the Executive office, Human 
Research Ethics at The University of Melbourne (03 8344 2073 or 03 9347 6739 
(fax)). 
 
 
 
FHEAC No.: 1544989.1 
Date: 30/04/2017 
 

 
Department of Economics 

The University of Melbourne 
VIC 3010, Australia  

Tel: +61 03 8344 5289 
Fax: +61 03 8344 6899 

http://www.economics.unimelb.edu.au  
 

 
 

	
	
	
	

	
	
 



Figure A.3: Amphiro B1 Trial and Installation Instructions Mailed to Households

(a) Trial Description

Thank-you for participating in the Amphiro B1 trial. Please find enclosed the Amphiro B1 personal shower 
display, installation instructions, and details of the trial. Here is a summary of the four-month trial timeline: 

Step 1 (Now)
Install the Amphiro B1 in your 
home’s main handheld shower

Notes:
- Please keep the original Amphiro B1 box 
and self-addressed pre-paid envelope 
somewhere safe for the duration of the trial. 
- Installation video:  

http://go.unimelb.edu.au/7g66 

Step 2 (Sept. 2017)
Mail the Amphiro B1 back to  
The University of Melbourne

Notes:
- We will email you when the trial finishes. 
- Please mail back the Amphiro B1 in its 
original box using the self-addressed pre-
paid envelope.

Step 3 (Oct. 2017)
The University of Melbourne mails 

the Amphiro B1 back to you to 
keep for free, if you wish

Notes:
- We will record water usage data, reset the 
Amphiro B1 so it is no longer in ‘trial mode’, 
and send it back to you with extra features.

(b) Amphiro B1 Modes During the Trial

Mode 2: water and energy use 

On other days, your Amphiro b1 will display water use and 
energy use.  

We ask for your patience during this important study phase. When the 
study ends, you will have the opportunity to keep your Amphiro b1 with 
extra-added features.

Mode 1: water temperature 

On some days, your Amphiro b1 will display only water 
temperature. Water temperature has a large impact on your 
energy usage whilst showering. 

If problems occur or if you have any questions, suggestions, or comments, please 
contact us at customerprograms@sew.com.au or phone 03 9552 3681.

Amphiro b1 records water usage every time you take a shower. During this study, 
these data are recorded for research purposes and are only stored locally within the 
device. 

No batteries – powered by water 

Amphiro b1 does not use batteries. The device is powered only by water flow. Once 
the water flow stops, the device will turn off automatically after a few minutes. 
When on, it will run in one of two modes:

Act consciously and conserve precious resources. Every drop counts!



Figure A.4: Amphiro B1 Trial and Installation Instructions Mailed to Households (continued)

(c) Physical Installation Instructions

1. Unscrew the shower head from the hose.  

2. Remove the red adhesive tape at the 
bottom end of Amphiro b1 and ensure that 
the sieve stays in place. As shown in the 
picture, make sure the head of the sieve 
goes into the device. Screw the shower 
hose onto this connector with the sieve.  

3. Screw the shower head into the short hose 
attached to the Amphiro b1. Be sure to 
remove the white safety cap first and 
ensure that the sealing ring stays in place 
inside the hose.

For a video demonstrating how to install the Amphiro, please see 
http://go.unimelb.edu.au/7g66

Your personal 
shower display 

Save water and 
energy

Installation in three easy steps
This package contains 

The blue/shaded elements are part of this 
package: 

1. Shower head (part of your shower) 
2. Protective cap (blue, to be removed 

before installation) 
3. Sealing ring (underneath the blue cap 

at one end of the short hose) 
4. Short hose  
5. Amphiro b1 personal shower display 
6. Sieve with sealing gasket 
7. Shower hose (part of your shower) 

Taking care of your shower display 

• Do not submerge the device in water. Do not let it float in the bathtub. 
• Do not apply any decalcifiers or abrasive cleaning agents (scouring powder/

cream), as they may damage the display. 
• This device is not a toy and not suitable for small children. It contains small 

parts which may be swallowed. 
• Do not open the device. Doing so will irreparably damage it, as the 

compartment sealing will be compromised. 
• The device contains a strong permanent magnet as found for example in 

earphones or name tags. Individuals with a pacemaker should maintain an 
appropriate safety distance. 

• The displayed energy consumption does not account for the boiler/furnace 
efficiency or transportation losses. The values are therefore not suitable for 
billing purposes. 

Technical information 

You decide how much water and energy you use. With Amphiro b1, you can conserve 
water and energy in the shower, or simply get a sense of your personal resource use.



Figure A.5: Endline Survey

Follow-up Survey Invitation Email 
 
Subject line: Amphiro B1 End-of-Trial Survey 
 
Thank you for participating in the Amphiro B1 trial! You have now reached the final stage. Please share your experience 
of the personal shower display with us via the following online survey. 
 

[“Complete Survey” button here] 
 
Link to Terms and Conditions included at the bottom of email.  
 
If you have any additional feedback to share regarding your experience with the Amphiro B1 that is not addressed in our 
survey, plese contact us at [insert email]. 
 
Questions 
 

1. How many household members regularly used the Amphiro B1 each day?  
[1, 2, 3, 4, 5+] 

 
2. Which members of the household regularly used the Amphiro B1 each day? [Please select all that apply]  

[Only Myself, Other Adults, Teenagers (12-18), Children (under 12)] 
 

3. How easy was it for you to read the display once it was installed in your shower? 
[Very easy to read, Somewhat easy to read, Somewhat difficult to read, Difficult to read] 

 
4. Did you pay attention to the Amphiro display day-to-day? 

[Yes regardless of display mode, 
Yes but only when water usage/polar bear were displayed, 
Yes but only when temperature alone was displayed, 
Rarely, 
Never] 

 
5. Did your attentiveness to the device wane over time? 

[Yes, No, I don’t know or can’t remember] 
 

6. If you share the shower with a family member, did you compare shower times/energy efficiency ratings with 
each other? 
[Yes always, Yes often, Rarely, Never] 

 
7. When first using the device in the mode that displayed water consumption and energy efficiency, did you 

consciously set a goal to reduce your usage? If so, please provide details. 
[Yes, No] [Textbox provided for details if Yes] 
 

8. If you set a goal, did you adjust that goal over the course of the trial? 
[No, Yes, adjusted down (shorter showers), Yes, adjusted up (longer showers)] 
 

9. Some customers mentioned that the Amphiro device was only helpful for family members with short hair, i.e. 
who find it easier to take shorter showers. How many of the regular users of the Amphiro had long hair at the 
time of the experiment?  
[1, 2, 3, 4, 5+] 

 
10. Did sense that you took shorter showers when the device was in the mode that displayed the polar bear? 

[Yes definitely, I think so, I really could not tell, I don’t remember] 
 

11. Did your experience showering with the polar bear lead you to take shorter showers when the display was in 
temperature-only mode? 
[Yes definitely, I think so, I really could not tell, I don’t remember] 

 
12. How did your showering behaviour change after you removed the device and sent it to us? 

[No difference, I took longer showers without the display, I don’t know, I can’t remember] 
 

13. What best describes how you or your family’s attitude towards shower times has changed as a result of your 
participation in the Amphiro study? 
[Has not changed, 
We pay more attention to how much time we spend in the shower, 
We pay less attention to how much time we spend in the shower] 

 
14. Today, how many minutes long is a typical shower in your home? 

[3 or less, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or more] 
  

15. What is your best guess of how much water is used (in litres) during a typical shower in your home today? 
[less than 10 L, 10-25 L, 25-50 L, 50-75 L, 75-100 L, 100-125 L, 125-150 L, more than 150 L] 

 
16. Did you remove the device before the end of the trial? If so, please provide details. 

[Yes I removed the device early, No I only removed it at the end of the trial]  
[Textbox provided for details if Yes] 

 
17. Did you upgrade your showerhead at any point before the end of the trial? 

[No 
Yes I installed a more water-efficient showerhead 
Yes I installed a more powerful (less water-efficient) showerhead] 

 
18. Have you reinstalled the device since receiving it back? 

[Yes, No] 
 
 

 
 



A.2 Robustness to multi-person and multi-shower households
Our structural model focuses on a single individual using a single shower in the home (the

“main” shower, per our trial instructions). Yet our experimental data contains households with
multiple people and multiple showers. This appendix shows that our main reduced-form estimates
of habit build-up and decay are unchanged if we focus on subsamples containing households with
one person or one shower. We show this in Tables A.1 and A.2. These tables essentially replicate
the main results from Table 4 in the paper: (1) feedback effects emerge immediately and do not
evolve while feedback is on, and (2) feedback effects decay sluggishly at a similar rate to our main
estimates when feedback is turned off.∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1 indicates statistical sig-
nificance in all Appendix tables. Relative to our main results, we lose precision with our standard
errors in Tables A.1 and A.2, reflecting that we use smaller subsamples.

Table A.1: Treatment Effects by Experimental Condition

Subsample:
1 Person Households

Experimental Conditions Included in the Sample

T1-T7 T1,T2 T1,T2,T3 T1,T2,T4 T1,T2,T5 T1,T2,T6 T1,T2,T7
0/120 48/72 24/48 12/24 6/12 3/15
on/off on/off on/off on/off on/off on/off

(1) (2) (3) (4) (5) (6) (7)

ON -6.77∗∗∗ -8.96∗∗∗ -8.57∗∗∗ -8.70∗∗∗ -9.24∗∗∗ -6.36∗∗∗ -7.39∗∗∗

(1.18) (2.62) (1.97) (2.06) (1.72) (1.66) (1.97)
OFF -3.42∗∗∗ -9.17∗∗∗ -4.19∗ -5.43∗∗∗ -2.65 -3.73∗

(1.30) (2.99) (2.38) (1.98) (1.80) (2.13)

R-Squared 0.59 0.54 0.52 0.56 0.56 0.57 0.57
Observations 13853 4211 5879 5988 6065 6709 6056

ON -6.44∗∗∗ -6.31∗∗ -6.37∗∗∗ -7.91∗∗∗ -8.44∗∗∗ -5.22∗∗∗ -6.26∗∗∗

(1.16) (2.74) (1.92) (2.34) (1.72) (1.55) (1.88)
PostON -0.02 -0.07∗ -0.07∗ -0.03 -0.04 -0.07∗∗ -0.06∗

(0.02) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03)
OFF -4.74∗∗∗ -13.47∗∗∗ -6.11∗∗ -5.47∗∗∗ -3.39∗ -5.67∗∗

(1.42) (3.17) (2.90) (2.06) (1.85) (2.36)
PostOFF 0.08 0.13 0.07 0.01 0.09 0.16∗

(0.05) (0.09) (0.11) (0.09) (0.12) (0.09)

R-Squared 0.59 0.54 0.52 0.56 0.56 0.57 0.57
Observations 13853 4211 5879 5988 6065 6709 6056

A.3 Cumulative shower counts by experimental conditions
This appendix illustrates that the number of showers recorded by the Amphiro B1 during the

trial does not vary across experimental conditions. These findings provide evidence against house-
holds responding to the feedback cycles on the extensive margin (e.g., the number of showers taken
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Table A.2: Treatment Effects by Experimental Condition

Subsample:
1 Shower Households

Experimental Conditions Included in the Sample

T1-T7 T1,T2 T1,T2,T3 T1,T2,T4 T1,T2,T5 T1,T2,T6 T1,T2,T7
0/120 48/72 24/48 12/24 6/12 3/15
on/off on/off on/off on/off on/off on/off

(1) (2) (3) (4) (5) (6) (7)

ON -7.82∗∗∗ -6.13∗∗∗ -7.99∗∗∗ -7.33∗∗∗ -6.48∗∗∗ -6.71∗∗∗ -6.47∗∗∗

(1.25) (2.23) (1.84) (1.73) (1.94) (1.84) (1.69)
OFF -4.00∗∗∗ -4.77∗∗ -5.38∗∗ -3.37 -2.29 -2.24

(1.27) (2.28) (2.07) (2.04) (2.02) (1.63)

R-Squared 0.42 0.44 0.41 0.44 0.43 0.43 0.43
Observations 28298 8989 13132 13313 12032 12061 13716

ON -8.02∗∗∗ -6.31∗∗ -8.12∗∗∗ -8.23∗∗∗ -7.16∗∗∗ -7.18∗∗∗ -6.56∗∗∗

(1.25) (2.38) (1.95) (1.79) (2.03) (1.86) (1.75)
PostON 0.03 0.01 0.01 0.04∗ 0.03 0.02 0.00

(0.02) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03)
OFF -5.31∗∗∗ -8.98∗∗∗ -6.36∗∗∗ -6.31∗∗∗ -3.33 -2.28

(1.31) (2.42) (2.02) (2.26) (2.23) (1.87)
PostOFF 0.12∗∗∗ 0.19∗∗∗ 0.06 0.24∗∗ 0.13 0.00

(0.04) (0.05) (0.08) (0.11) (0.16) (0.13)

R-Squared 0.42 0.44 0.41 0.44 0.43 0.43 0.43
Observations 28298 8989 13132 13313 12032 12061 13716

in the “main” shower of the home that we instruct trial participants to install their Amphiro B1 in).
We examine this among the 555 of 700 households who successfully installed and returned the
device with shower meter data. To illustrate this, we estimate the following regression:

ni = β0 +
6

∑
j=1

β j1{T j ×1{i ∈ Tj}}+ εi, (A.1)

where ni is the cumulative total number of showers recorded by household i’s Amphiro B1 during
the trial, and 1{T j × 1{i ∈ Tj}} is a dummy equaling one if household i is randomly assigned to
experimental condition T j. Table A.3 presents the estimation results. Columns (1)-(3) reveal no
significant differences in cumulative shower counts across the experimental conditions in the entire
sample, among single-person or multi-person households. Respectively, based on the estimation
results in columns (1)-(3), joint tests of the null of an equal number of showers taken during the trial
across the trial groups fail to reject with F(5,548) = 0.93, p = 0.46, F(5,143) = 0.44, p = 0.82,
and F(5,398) = 0.70, p = 0.63.
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Table A.3: Number of Household Showers Taken Within Trial Period by Experimental Condition

All Single-Person Multi-Person
Households Households Households

(1) (2) (3)

T1 -7.76 0.97 -7.37
(11.77) (11.12) (13.37)

T2 1.90 -8.33 8.18
(11.44) (10.09) (12.16)

T3 11.64 -5.12 13.75
(11.46) (10.73) (11.94)

T4 3.01 0.47 0.17
(10.98) (10.01) (11.91)

T5 0.26 -11.13 6.32
(11.56) (9.76) (12.22)

T6 -10.37 -7.61 3.65
(11.91) (9.49) (13.50)

Constant 164.91∗∗∗ 100.89∗∗∗ 186.62∗∗∗

(8.24) (6.97) (9.11)

R-Squared 0.01 0.02 0.01
Observations 555 150 405

A.4 Selection into returning devices at the end of the trial
This Appendix examines household selection into returning their device at the end of the trial

with data based on pre-trial shower water usage. Recall from Table 2 that 555 of the 700 Amphiro
B1’s we mailed out were eventually returned used for data extraction. In our baseline survey in
Appendix A.1, we ask households How many minutes long is a typical shower in your home?

All 700 households who were mailed an Amphiro B1 answered the survey as part of opting into
the trial. We can explore selection on our dependent variable – shower usage – using these self-
reported shower lengths. To this end, we estimate the following Linear Probability Model:

1{Returned with Datai}= β0 +β1Pre-Trial-ShowerTimei + εi (A.2)

where 1{Returned with Datai} is a dummy variable equaling one if household i returns their device
at the end of the trial with data, and ShowerTimei is household i’s self-reported shower time.

Table A.4 presents the results. Column (1) shows our β1 estimate from (A.2) is a statistically
insignificant from 0. We find no evidence of selection into returning a device with data based on
stated pre-trial shower usage. In columns (2)-(8) of Table A.4, we estimate β1 based on seven
difference subsamples, wherein each we consider one of our seven experimental conditions. Here,
we find mixed coefficient estimates in terms of magnitudes (all small) and statistical significance.
These auxiliary results do not suggest any selection into device return based on the duration or
number of feedback cycles across the experimental conditions.
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Table A.4: Selection into Returning a Device Used with Data Based on Pre-Trial Water Usage

Experimental Condition Subsample

All T1 T2 T3 T4 T5 T6 T7

(1) (2) (3) (4) (5) (6) (7) (8)

Pre-Trial Shower Time -0.001 0.003 -0.003 -0.019 0.026∗∗∗ -0.028∗∗ -0.019 0.015
(0.005) (0.014) (0.013) (0.015) (0.007) (0.013) (0.014) (0.011)

Constant 0.803∗∗∗ 0.749∗∗∗ 0.864∗∗∗ 0.918∗∗∗ 0.676∗∗∗ 0.971∗∗∗ 0.891∗∗∗ 0.637∗∗∗

(0.036) (0.103) (0.097) (0.100) (0.082) (0.094) (0.098) (0.098)

R-Squared 0.000 0.001 0.001 0.019 0.070 0.048 0.018 0.017
Observations 700 100 100 100 100 100 100 100

A.5 Distribution of baseline shower usage by household size
Here, we show baseline shower water usage does not differ across households of different sizes.

Figure A.6 illustrates this by plotting the distributions of baseline shower water usage by household
size. We test for differences in mean water usage by household size using a regression:

yis = β11{HHsizei = 1}+β21{HHsizei = 2}+β31{HHsizei = 3}+β41{HHsizei ≥ 4}+ εis,

(A.3)
where yis is water usage in shower s by household i, 1{HHsize = 1} is a dummy equaling one if
household i has 1 person and 0 otherwise, and likewise for the other dummy variables. Noting we
omit the constant from the regression, the coefficients can be interpreted as mean shower water
usage levels by household size in a given sample. We estimate the model using baseline shower
data and present the results in column (1) of Table A.5. We find minimal differences in mean usage
by household size. A joint test that β1 = β2 = β3 = β4 fails to reject the null (F(3,554) = 0.91,
p = 0.436). Columns (2)-(4) of Table A.5 further confirm that pairwise tests of βi = β j for i, j ∈
{1,2,3,4} and i ̸= j likewise all fail to reject the null of equal baseline mean water usage between
different sized households.

A.6 Water flow rates do not change during the trial
The appendix shows that households’ water flow rates do not change during the trial period

in our experimental conditions. The results provide evidence against the notion that households
respond to feedback cycles by making technological investments, particularly low-flow shower
heads. Such investments are of first-order importance regarding potential investments households
can make to reduce their shower usage in response to personalized feedback permanently.

To investigate how water flow changes over the trial, we estimate the following regression:

fis = ηi +
6

∑
j=1

β j1{T js ×1{i ∈ Tjs}}+ τk + εis, (A.4)

where fis is the shower flow rate in terms of liters per minute in shower s for household i recorded
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Figure A.6: Distribution of Baseline Shower Water Usage by Household Size
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Table A.5: Mean Baseline Shower Water Usage by Household Size

Pairwise Tests of Differences in Means

(1) (2) (3) (4)

β̂1 52.284 β̂1 − β̂2 -3.606 β̂2 − β̂3 -.648 β̂3 − β̂4 4.408
( 2.199 ) ( 2.595 ) ( 3.3 ) ( 4.926 )

β̂2 55.89 β̂1 − β̂3 -4.254 β̂2 − β̂4 3.76
( 1.377 ) ( 3.719 ) ( 4.144 )

β̂2 56.538 β̂1 − β̂4 .154
( 2.999 ) ( 4.485 )

β̂2 52.13
( 3.909 )

R-Squared .715
Observations 9383

by the Amphiro B1. The dummy variable 1{T j ×1{i ∈ Tj}} equals one if household i is in exper-
imental condition T j and if shower s occurs after the baseline phase. ηi and τk are household and
shower count fixed effects. Given our within-subject experimental design, we can test whether the
flow rate changes within the feedback period in each experimental condition by testing whether
β j equals 0. A statistically significant negative β j would suggest a technology investment like
installing a low-flow shower head in response to feedback.

Table A.6 reports our results. Most coefficient estimates are statistically insignificant with
mixed signs. In terms of magnitude, they are all small relative to the baseline shower flow rate of
8.38 L/minute. Overall, there is no evidence of changing shower flow rates during our trial.
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Table A.6: Shower Flowrate (L/min) by Experimental Condition

All Single-Person Multi-Person
Households Households Households

(1) (2) (3)

T1 0.26∗∗ 0.22 0.19
(0.10) (0.21) (0.12)

T2 -0.01 0.11 -0.11
(0.11) (0.20) (0.13)

T3 0.07 -0.10 0.04
(0.11) (0.21) (0.14)

T4 -0.09 -0.05 -0.17
(0.11) (0.18) (0.14)

T5 -0.07 -0.19 -0.11
(0.10) (0.15) (0.13)

T6 0.02 -0.13 -0.03
(0.09) (0.16) (0.12)

T7 0.00 -0.10 -0.05
(0.10) (0.20) (0.12)

Constant 8.37∗∗∗ 7.88∗∗∗ 8.45∗∗∗

(0.06) (0.12) (0.07)

R-Squared 0.72 0.79 0.70
Observations 91496 14434 77062

B Steady state transitions

B.1 Steady state transitions predicted by the attention-based habit model
In the attention-based habit model, we shut down the influence of consumption-based habit by

setting γ = 0. Thus, by the first order condition in equation (10),

∆ct+1 =− p
b

∆θt+1. (B.1)

Jump in ct when feedback is first turned on (ONt = 1) and we depart OFF steady state

Suppose at t = 0 we are at OFF steady state, i.e., θ0 = w0 = θ. Further suppose that at t = 1
we switch ONt = 0 to ONt = 1. Then θ1 changes from θ to 1. By (B.1),

∆c1 =− p
b
(1−θ) =

θ−1
b

p,

and
∆c1 + c∗OFF =

a−θp
b

+
θ−1

b
p =

a− p
b

= c∗ON ,

implying that ct reaches its new steady state in one time period, without any further transition path.
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No jump in ct when feedback is first turned off (ONt = 0) and we leave the ON steady state

Suppose at t = 0 we are at ON steady state, i.e., θ0 = w0 = 1 and that at t = 1 we switch
ONt = 1 to ONt = 0. Then θ1 changes from 1 to w1. When ONt = 0, wt is defined recursively as

wt = θαON +(1−αON)wt−1

and θt = wt . This implies that θt , and by extension ct , transitions smoothly away from ON steady
state without any discrete jump.

Path of ct when feedback is left off (ONt = 0) and we converge to the OFF steady state

Suppose we leave ONt = 0 from t = 2 to t = T , at which point the OFF steady state is reached.
Recall that θt = wt so long as ONt = 0. At:

• t = 1: θ1 = θαON +(1−αON)

• t = 2: θ2 = θαON +(1−αON)[θαON +(1−αON)] = θ+(1−θ)(1−αON)
2

We can show by induction for 1 ≤ t ≤ T ,

θt = θ+(1−θ)(1−αON)
t . (B.2)

As shown above, θ1 = θαON +(1−αON), satisfying (B.2). Now suppose

θk = θ+(1−θ)(1−αON)
k,

1 ≤ k < T . Then

θk+1 = θαON +(1−αON)θk = θαON +(1−αON)
[
θ+(1−θ)(1−αON)

k
]

= θαON +θ+(1−θ)(1−αON)
k −θαON −αON(1−θ)(1−αON)

k

= θ+(1−θ)(1−αON)
k+1

as desired. With this general form for θt , we can express

∆θt = θ+(1−θ)(1−αON)
t −θ− (1−θ)(1−αON)

t−1 =−a(1−θ)(1−αON)
t−1

for t ≥ 1. By (B.5), the change in consumption along the transition path at t is ∆ct =− p
b ∆θt .

Consumption transition paths between steady states

Infinite sum of ∆ct toward OFF steady state. The transition path of ∆ct from the ON to OFF
steady state is described by a geometric sequence that takes the form xrk, where x = ap

b (1−θ),r =

1−αON , and k = t. Again, the general formula for an infinite sum of a geometric sequence is
∞

∑
k=0

xrk =
x

1− r
.

Hence, we can express the infinite sum of ∆ct from t = 1 to infinity as:
∞

∑
t=1

∆ct =
ap
b (1−θ)

1−1+αON
=

p
b
(1−θ), (B.3)
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which, when added to c∗ON = a−p
b , yields c∗OFF = a−θp

b .

Finite sum of ∆ct toward the OFF steady state. The general formula for a finite sum of a geometric
sequence is

n

∑
k=0

xrk = (1− rn)
x

1− r
= (1− rn)

∞

∑
k

xrk.

Hence, we can derive the finite sum of ∆ct over t = 1 . . .T from the infinite sum in (B.3):
T

∑
t=1

∆ct =
αT

ON p
b

(1−θ).

B.2 Steady state transitions predicted by the consumption-based habit model
To compute these transitions, we assume away transitions in salience levels and fix θt = θ if

ONt = 1, and θt = 1 if ONt = 0. This is Stigler and Becker (1977)’s consumption-based habit
model, combined with the (non-dynamic) price salience model of Chetty et al. (2009).

Consumption consumption-based habit ht+1 is given by

ht+1 = (1−δ)ct +δht ,

so ∆ht+1 is given by
∆ht+1 = (1−δ)∆ct +δ∆ht . (B.4)

The general form for optimal consumption choice ct from the first order condition is

ct =
a
b
+

γ

b
ht −

p
b

θt ,

so the general form for ∆ct+1 is

∆ct+1 =
γ

b
∆ht+1 −

p
b

∆θt+1. (B.5)

Jump in ct when feedback is first turned on and we initially depart from the OFF steady state

Suppose at t = 0 we are at the OFF steady state, i.e., θ0 = w0 = θ and h0 = c0. Suppose then
that at t = 1, we turn ONt = 1. Then by (B.4),

∆h1 = (1−δ)0+δ0 = 0, (B.6)

and θ1 changes from θ to 1. By (B.5), the jump in ct is computed as

∆c1 = 0− p
b
(1−θ) =

θ−1
b

p. (B.7)

Path of ct when feedback is left on (ONt = 1) and we converge to the ON steady state

Suppose we leave ONt = 1 from t = 2, . . . ,T at which point the ON steady state is reached.
With ON1 = 1 such that θt = 1 in period 1, so long as ONt = 1, ∆θt = 0 for t = 2, . . . ,T . So by
(B.5), ∆ct is driven only by ∆ht . The transitional dynamics of ∆ht can be computed as:

• t = 2: ∆h2 = (1−δ)∆c1 by (B.4) and (B.6), and ∆c2 =
γ

b∆h2 by (B.5).
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• t = 3: ∆h3 = (1−δ)∆c2 +δ∆h2 = (1−δ)
[
δ+ γ

b(1−δ)
]

∆c1, and ∆c3 =
γ

b∆h3.

We can thus show by induction that for 2 ≤ t ≤ T ,

∆ht = (1−δ)
[
δ+

γ

b
(1−δ)

]t−2
∆c1. (B.8)

By (B.4) and (B.6), ∆h2 = (1−δ)∆c1, which satisfies (B.8). Now suppose

∆hk = (1−δ)
[
δ+

γ

b
(1−δ)

]k−2
∆c1,

2 ≤ k < T . By (B.5), ∆ck =
γ

b∆hk. Then

∆hk+1 = (1−δ)∆ck +δ∆hk =
[
δ+

γ

b
(1−δ)

]
∆hk = (1−δ)

[
δ+

γ

b
(1−δ)

](k+1)−2
∆c1

as desired. By (B.5), the period t change in consumption along the transition is ∆ct =
γ

b∆ht .

Jump in ct when feedback is first turned off (ONt = 0) and we leave the ON steady state

Suppose instead that at t = 0 we are at ON steady state, i.e. θ0 = w0 = 1 and h0 = c0. Suppose
then that at t = 1, we turn feedback off (ONt = 0). Then by (B.4),

∆h1 = (1−δ)0+δ0 = 0. (B.9)

Further, w1 = θαON +(1−αON)θ = θ, implying that θ1 changes from 1 to θ. By (B.5),

∆c1 = 0− p
b
(θ−1) =

1−θ

b
p. (B.10)

which shows there is an initial jump when feedback is initially turned off (ONt = 0) and we depart
the ON steady state. Notice the size of the jump does not depend on prior feedback duration.

Path of ct when feedback is left off (ONt = 0) and we converge back to the OFF steady state

Suppose we leave ONt = 0 from t = 2, . . . ,T , at which point the OFF steady state is reached.
With θt = θ if ONt = 0, ∆θt = 0 for all t = 2, . . . ,T . By (B.4) and (B.9), ∆h2 = (1−δ)∆c1, which
satisifies (B.8). Through an identical induction step, we find that ∆ht follows the same transition
path described in (B.8). By (B.5), the change in consumption at t along the path is ∆ct =

γ

b∆ht .

Symmetry in jumps and transition paths

By (B.7) the magnitude of the first jump is θ−1
b p. By (B.10), the magnitude of the second jump

is 1−θ

b p. Hence the two jumps have equal magnitudes in opposite directions.

We further find that the transition path of consumption-based habit is described by (B.8):

∆ht = (1−δ)
[
δ+

γ

b
(1−δ)

]t−2
∆c1

for both the OFF → ON transition and the ON → OFF transition.

Consumption transition paths between steady states

Infinite sum of ∆ct . The transition path of ∆ct is described by a geometric sequence that takes the
form xrk, where x = γ

b(1− δ)∆c1,r = δ+ γ

b(1− δ), and k = t − 2. The general formula for an
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infinite sum of a geometric sequence is
∞

∑
k=0

xrk =
x

1− r
.

Hence we can express the infinite sum of ∆ct from t = 2 to infinity as:
∞

∑
t=2

∆ct =
γ

b(1−δ)

1−δ− γ

b(1−δ)
∆c1 =

γ

b

1− γ

b
∆c1 =

γ

b− γ
∆c1.

We can then add ∆c1 to obtain the infinite sum from t = 1 onwards. Suppose we transition from
the OFF to the ON steady state, i.e., ∆c1 is given by (B.7):

∞

∑
t=1

∆ct =
γ

b− γ
∆c1 +∆c1 =

(
1+

γ

b− γ

)
θ−1

b
p =

θp− p
b− γ

, (B.11)

which when added to c∗OFF = a−θp
b−γ

yields c∗ON = a−p
b−γ

. Similarly, adding the sum of ∆ct in the
opposite direction to the ON steady state yields the OFF steady state.

Finite sum of ∆ct . The formula for a finite sum of a geometric sequence is:
n

∑
k=0

xrk = (1− rn)
x

1− r
= (1− rn)

∞

∑
k

xrk.

Hence, we can derive the finite sum of ∆ct over t = 1 . . .T from the infinite sum in (B.11):
T

∑
t=1

∆ct =

(
1−

(
δ+

γ

b
(1−δ)

)T−2
)

γ

b− γ
∆c1 +∆c1.

B.3 General analytic expressions for the accumulation of wt

Here we compute general expressions of the accumulation of wt from any starting point (not
necessarily a steady state) when feedback is turned on (ONt = 1) or off (ONt = 1).

When Feedback is Turned On

When feedback is on (ONt = 1), wt = αON +(1−αON)wt−1. Suppose we turn ONt = 1 at time
t = 0, at which point wt takes an initial value of w0. Without loss of generality, let wt = ut + k,
where ut has some initial value u0, and k is the same in every time period t. Then

wt = αON +(1−αON)wt−1 =⇒ ut + k = αON +(1−αON)ut−1 +(1−αON)k.

Set k = αON +(1−αON)k, such that k = 1. We can then write

ut +1 = αON +(1−αON)ut−1 +1−αON =⇒ ut = (1−αON)ut−1 and ut = (1−αON)
tu0.

It follows that wt = ut + k = (1−αON)
tu0 +1. Since, by definition, u0 = w0 −1, we can rewrite

wt = (1−αON)
t(w0 −1)+1,

which guarantees that as t → ∞, wt goes to its ON steady state level of 1.
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When Feedback is Turned Off

When feedback is off (ONt = 0), wt = θαON +(1−αON)wt−1. The proof proceeds similarly.
Suppose ONt = 0 at t = 0, at which point wt takes on an initial value of w0. Let wt = ut +k, where
ut has some initial value u0, and k is the same in every time period t. Then

wt = θαON +(1−αON)wt−1 =⇒ ut + k = θαON +(1−αON)ut−1 +(1−αON)k.

Set k = θαON +(1−αON)k, such that k = θ. We can then write

ut +θ = αON +(1−αON)ut−1 +θ−αON =⇒ ut = (1−αON)
tu0 and wt = (1−αON)

t(w0 −θ)+θ,

which guarantees that as t → ∞, wt goes to its OFF steady state level of θ.

Feedback On and Off Cycles

These non-recursive expressions simplify the process of solving for wt after alternating periods
of feedback being on (ONt = 1) and off (ONt = 0). Let wt be in the OFF steady state at t = 0, i.e.,
w0 = θ. Suppose we turn feedback on for j periods, then turn feedback off for k periods. Then in
time period t = j,

w j = (1−αON)
j(θ−1)+1.

After feedback is switched off for k more periods, w j+k can be expressed as

w j+k = (1−αON)
k [w j −θ

]
+θ

= (1−αON)
k [(1−αON)

j(θ−1)+1−θ
]
+θ

=
[
(1−αON)

j+k − (1−αON)
k
]
(θ−1)+θ.

C Recursive implementations of the models

C.1 Attention-based habit formation model
We can re-write the recursive formula as follows:

ωt −θ =

{
αON · (1−θ)+(1−αON) · (ωt−1 −θ) if ONt = 1

(1−αON) · (ωt−1 −θ) if ONt = 0
(C.1)

Consider t = 1, 2, ..., k during which feedback is on (ONt = 1):

At t = 1: φ1(αON) · (1−θ) := ω1 −θ = αON(1−θ) =⇒ φ1(αON) = αON

At t = 2: φ2(αON) · (1−θ) := ω2 −θ = αON(1−θ)+αON(1−αON) · (1−θ)

=⇒ φ2(αON) = αON +(1−αON) ·φ1(αON)

We iterate the process to obtain

φk(αON) = αON +(1−αON) ·φk−1(αON)
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Consider t = k+1, k+2, ..., k+M during which feedback is off (ONt = 0):

At t = k+1:

φk+1(αON) · (1−θ) := ωk+1 −θ = (1−αON)(ωk −θ) = (1−θ) · (1−αON) ·φk(αON)

=⇒ φk+1(αON) = (1−αON) ·φk(αON)

At t = k+2:

φk+2(αON) · (1−θ) := ωk+2 −θ = (1−αON)(ωk+1 −θ) = (1−θ) · (1−αON) ·φk+1(αON)

=⇒ φk+2(αON) = (1−αON) ·φk+1(αON)

We iterate the process to obtain

φk+M(αON) = (1−αON) ·φk+M−1(αON)

Consider t = k+M+1, k+M+2, ... during which feedback is on (ONt = 1):

At t = k+M+1:

φK+M+1(αON) · (1−θ) := ωK+M+1 −θ = [αON +(1−αON) ·φK+M(αON)](1−θ)

=⇒ φK+M+1(αON) = αON +(1−αON) ·φK+M(αON)

At t = k+M+2:

φK+M+2(αON) · (1−θ) := ωK+M+2 −θ = [αON +(1−αON) ·φK+M+1(αON)](1−θ)

=⇒ φK+M+2(αON) = αON +(1−αON) ·φK+M+1(αON)

By induction, we can verify that

φt(αON) =


0 if t = 0

αON +(1−αON)φt−1 if ONt = 1

(1−αON)φt−1 if ONt = 0

(C.2)

We wish to formulate the attention-based habit model in the form

yit = ηi +(ONit +OFFitφit(αON))ϕ+δt + εit (C.3)

That is, we express the persistence effect as a fraction φit(αON) of the feedback effect ϕ, de-
pending on the parameter αON , as well as the feedback on and off-period history of individual i up
to period t. The rest of the model is linear so that it can be estimated by OLS conditional on αON

and the recursion for φit(αON).

It is straightforward to extend the model to allow for different rates of buildup (αON) and decay
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(αOFF ) of attention stock. The function φt then becomes

φt(αON ,αOFF) =


0 if t = 0

αON +OFFφt−1 if ONt = 1

OFFφt−1 if ONt = 0

(C.4)

C.2 Consumption-habit habit formation model
The level of consumption-based habit is:

ht = (1−δ)ht−1 +δct−1,

and the optimal level of consumption is given by:
∂U
∂ct

= 0 =⇒ ct =
a+ γht −θt p

b
And the model’s ON and OFF steady states are

c∗OFF =
a+ γh∗−θp

b
=⇒ c∗OFF =

a−θp
b− γ

c∗ON =
a+ γh∗− p

b
=⇒ c∗ON =

a− p
b− γ

It follows that the change in consumption from the OFF steady state (i.e., at baseline) is

ct − c∗OFF =
a+ γht −θt p

b
− a+ γh∗−θp

b
=

γ

b
(ht −h∗)+

θ−θt

b
p.

The corresponding change in the consumption-based habit stock is

ht −h∗ = (1−δ)ht−1 +δct−1 −h∗ = (1−δ)(ht−1 −h∗)+δ(ct−1 −h∗)

Consider t = 1, 2, . . . , k during which ONt = 1:

At t = 1:

h1 −h∗ = 0; c1 − c∗ =
γ

b
(0)+

θ−1
b

p︸ ︷︷ ︸
ϕ

At t = 2:

h2 −h∗ = (1−δ)(h1 −h∗)+δ(c1 −h∗) = δ︸︷︷︸
φ2

ϕ

c2 − c∗ =
γ

b
(h2 −h∗)+ϕ =

γ

b
φ2ϕ+ϕ

By iterating the above process, at t = k:

hk −h∗ = φkϕ; ck − c∗ =
γ

b
φkϕ+ϕ

Consider t = k+1, k+2, . . . , k+M during which ONt = 0:
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At t = k+1:

hk+1 −h∗ = φk+1ϕ

ck+1 − c∗ =
γ

b
(hk+1 −h∗)+

θ−θ

b
p =

γ

b
φk+1ϕ

At t = k+2:

hk+2 −h∗ = (1−δ)(hk+1 −h∗)+δ(ck+1 −h∗) =
[
(1−δ)φk+1 +δ(

γ

b
φk+1)

]
︸ ︷︷ ︸

φk+2

ϕ

ck+2 − c∗ =
γ

b
(hk+2 −h∗)+

θ−θ

b
p =

γ

b
φk+2ϕ

By iterating the above process, at t = k+M:

hk+M −h∗ = (1−δ)(hk+M−1 −h∗)+δ(ck+M−1 −h∗) = φK+Mϕ

ck+M − c∗ =
γ

b
(hk+M −h∗)+

θ−θ

b
p =

γ

b
φk+Mϕ

Consider t = k+M+1, k+M+2, . . . during which ONt = 1:

At t = k+M+1:

hk+M+1 −h∗ = (1−δ)(hk+M −h∗)+δ(ck+M −h∗) = φK+M+1ϕ

ck+M+1 − c∗ =
γ

b
(hk+M+1 −h∗)+

θ−1
b

p =
γ

b
φk+M+1ϕ+ϕ

At t = k+M+2:

hk+M+2 −h∗ = (1−δ)(hk+M+1 −h∗)+δ(ck+M+1 −h∗)

=
[
(1−δ)φk+M+1 +δ(

γ

b
φk+M+1 +1)

]
︸ ︷︷ ︸

φk+M+2

ϕ

ck+M+2 − c∗ =
γ

b
(hk+M+2 −h∗)+

θ−1
b

p =
γ

b
φk+M+2ϕ+ϕ

By induction, we can verify that

φt =



0 if t = 1

δ if t = 2

(1−δ)φt−1 +δ(
γ

b
φt−1 +1) if ONt−1 = 1, t ̸= 2

(1−δ)φt−1 +δ(
γ

b
φt−1) if ONt−1 = 1

(C.5)

ht −h∗ =

{
0 if t = 1

φtϕ if t > 1
(C.6)
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ct − c∗OFF =


γ

b
φtϕ+ϕ if ONt = 1

γ

b
φtϕ if ONt = 0

(C.7)

We want to formulate the consumption-based habit model in the form

yit = ηi +(ONit +
γ

b
φit−1(δ,

γ

b
))ϕ+δt + εit (C.8)

That is, we express the treatment effect in terms of ϕ, the immediate effect of feedback, de-
pending on the parameters δ and γ

b , as well as the feedback on-period history of individual i up to
period t. The rest of the model is linear so that it can be estimated by OLS conditional on δ and γ

b ,
and the recursion for φit(δ,

γ

b).

D Habit formation with CARA utility
Consider the constant absolute risk aversion (CARA) utility function

u(ct ,ht) = 1− e−act+γht

a
where a > 0, and ct , ht , and γ are defined as in Section 4 in the paper. The marginal utility of
consumption is

∂u
∂c

= e−ac+γh (D.1)

The utility function is concave as the second derivative is negative; marginal utility is convex, as
the third derivative is positive. Notice also that consumption is habit forming, as

∂2u
∂c∂h

= γ · e−ac+γh > 0

Consumption is given by

e−ac+γh = θt p ⇒ c∗t =
γ

a
ht −

1
a

[
log(θt)+ log(p)

]
(D.2)

Thus, equation (D.2), just like equation (10) in the paper, is linear in in the consumption-based
habit. Thus, this example shows that constant marginal utility of consumption is not necessary to
display symmetric and, in fact, linear, consumption-based habit effects on consumption.
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E Auxiliary Structural Model Results

Figure E.1: Asymmetric Consumption-Based Habit Model RMSE for all Possible δON Values
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Notes: The figure displays the estimated RMSE of the asymmetric consumption habit model
from column (2) of Table 5. We plot the RMSE for each possible value of δON and estimate all
other parameters conditionally on that value. The figure illustrates that the model’s RMSE is
minimized at δ̂ON = 1.
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Table E.1: Consumption-Based and Attention-Based Habit Model Parameter Estimates Including
the OFF Variable

Consumption-Based Attention-Based
Habit Model Habit Model

(1) (2) (3) (4)

ϕ –6.531 –5.322 –7.701 –7.623
(0.683) (0.769) (0.653) (0.663)

[0.746]

δON = δOFF 0.077
(0.260)

δON 1.000
(0.424)

δOFF 0.080
(0.073)
[0.069]

γ/b 0.279 0.326
(0.089) (0.100)

[0.076]

αON = αOFF 0.041
(0.368)

αON 0.062
(0.096)

αOFF 0.026
(0.039)

OFF –3.460 –2.649 –2.082 –0.871
(0.691) (0.735) (1.115) (1.077)

[0.771]

Within-Sample RSME 2.472 2.407 2.290 2.275

Notes: N = 86,376 (household, shower) observations in each sample consisting of 1078 individuals and 555 house-
holds. Dependent variable is shower water usage volume with baseline mean of 57 L (s.d.=42 L). All regressions
include household and shower fixed effects. Boostrap standard errors clustered at the household level reported. Stan-
dard errors for unconstrained models are in parentheses. The column (2) estimates constrain δON = 1 in estimation,
which thus does not have a standard error. Constrained standard errors for the other parameters are in brackets. See
the text for the calculation of within-sample RMSE.



F Other persistence mechanisms

F.1 Automatic control
Camerer, Landry and Webb (2020) develop a dual-systems model of habit involving default

decision-making when one’s decision-making environment is stable, and deliberation and infre-
quent updating of decision rules occurs when a decision-making environment changes sufficiently.
In our setting, the introduction and removal of feedback could represent a substantial change in
an individual’s decision-making environment such that feedback-induced changes in consumption
over time reflect discrete changes in default decision rules at the individual level.

Exploiting the richness of our data and within-subject experimental design, we directly look
for discrete jumps in households’ consumption after feedback is turned off, and see whether such
jumps explain post–feedback treatment effect decay. Specifically, we augment our baseline regres-
sion equation (2) as follows:

yis = ηi +β1ONis +β2PostONis +β3OFFis +β4PostOFFis +
N

∑
i

λiPostOFFis∗i + τk + εis, (F.1)

Through the inclusion of the new PostOFFis∗i regressors, we estimate a household-specific post-
feedback jump in water usage λi. We take a data-driven approach to identify when a house-
hold’s post-feedback shower the jump occurs, which we denote by s∗i . We iteratively construct
the PostOFFis∗i regressors and estimate λi and s∗i for all households as follows:

1. Initialize (F.1) for household i by setting PostOFFis∗i = PostOFFis×ηi, where ηi is a house-
hold i fixed effect. We construct these initial household–specific PostOFFis∗i variables for
all N households in conditions T3–T7 for whom we observe post–feedback showers. In ef-
fect, this initializes s∗i = 1 (1 shower since feedback has been turned off) for all i = 1, . . . ,N.
Starting from these initial values, we search household-by-household for the set of s∗i values
that best rationalize our data.

2. With the initialized PostOFFis∗i variables, run the regression in (F.1). This yields a distribu-
tion of household–specific post–feedback treatment effects λ̂1, λ̂2, . . . , λ̂N above and beyond
the common post–feedback treatment effect β4. Let i = 1 as the household with the smallest
device identifier in T3, and i = N as the household with the largest device identifier in T7.
To avoid perfect collinearity with PostOFFis, we drop one of the households in conditions
T3–T7 in estimating the coefficients in (F.1).

3. Iteratively test for household-specific post-feedback jumps in water usage. Starting with
household i = 1, test the following hypothesis based on the regression results from step 2:

H0 : λ1 = 0 vs. H1 : λ1 ̸= 0 (F.2)
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Denote the F-statistic from this test by F1,1, where the first “1” in the subscript corresponds
to household i = 1. The second “1” in the subscript corresponds to τ = 1 showers since
feedback was turned off for household 1.

4. Increment τ by 1 to τ = 2, and update PostOFF1t∗ such that it equals 0 if it has been less than
or equal to τ = 2 showers since feedback was turned off for household 1.

5. Run regression (F.1) and test the hypothesis in (F.2) again. Denote the corresponding F-
statistic for the test for i = 1 and τ = 2 by F1,2.

6. Iterate between steps 4 and 5 for household 1, each time incrementing τ by 1 and re-defining
PostOFF1s∗ such that it equals 0 if it has been less than or equal to τ showers since feedback
was turned off for household 1. Denote the F-statistic for the hypothesis test in (F.2) for
household i = 1 at iteration τ = j by F1, j.

7. Find the value of j that corresponds to the maximum F-statistic from F1,1,F1,2, . . . ,F1,J1 ,
where J1 is the maximum number of consecutive post–feedback showers for household 1.
Define s∗1 as the shower corresponding to this maximum F-statistic for household i = 1.
Shower s∗1 is our initial estimate of the timing of the post-feedback jump for household 1.

8. Move to household i = 2 and repeat steps 2–7, holding fixed s∗i at their current values for
all other households i ̸= 2, including s∗1 at the value previously found from steps 2–7 for
household 1. [. . .] Repeat steps 2–8 for households i = 3, . . . ,N. and find s∗k for household k

at iteration k holding fixed s∗i at their current values for all other households i ̸= k.

Once we have looped through all N households, we obtain estimates of the timing of the post–
feedback jumps s∗1,s

∗
2, . . . ,s

∗
N and their magnitudes λ̂1, λ̂2, . . . , λ̂N . We obtain the latter coefficients

by running the regression in (F.1) where each PostOFFis∗i regression corresponds to the s∗i value
from steps 1–8.

This iterative approach to computing F-statistics for each possible post-feedback breakpoint
s∗i for each household i corresponds to the Andrews (1993) supF test for finding structural breaks
with an unknown breakpoint. As with the supF test, we search for an unknown breakpoint in
consumption levels after feedback is turned off by searching over all possible post–feedback jumps.
This routine finds the breakpoint that delivers the largest F-statistic from a test of a null that a break
in the level of consumption exists at τ showers after feedback is turned off versus the alternative
that no breakpoint exists for that shower. The maximum of these F-statistics corresponds to the
breakpoint s∗i that best explains the timing and magnitude of the jump in household’s i consumption
after feedback is turned off. The estimated jump may be positive, near-zero, or negative, whatever
best explains the data.

70



Figure F.1: Examples: Identifying Structural Breaks with Individual Households

(a) Example Household 1 (b) Example Household 2
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Implementation

Various considerations exist in implementing this search for household-specific post-feedback
jumps. Households must have sufficiently many observations without feedback. We restrict house-
holds to having a minimum of 12 showers without feedback to implement our test. This leaves 328
of 394 households from conditions T3-T7 in our sample. We also use the 161 households from
conditions T1 and T2 in robustness checks.

In line with Andrews (1993), we check for s∗i values for a given household up until the last
20% of observations during the post-feedback phase. That is, we search for s∗i from showers
τ = 1, . . . ,0.8× Ji after feedback is turned off. This restriction helps ensure sufficient data after a
candidate s∗i to implement the F-test for testing for a structural break at each τ value.

After finding s∗1, . . . ,s
∗
N , we could iterate on steps 2–8, starting from the breakpoints found in

the first iteration. From there, we could continue iterating on steps 2–8 until the s∗1, . . . ,s
∗
N converge

according to some metric. In practice, however, when we iterate on steps 2–8 a second time, we
find virtually no difference in our coefficients of interest β4 below nor in the timing and magnitude
of jumps across households. Therefore, our results reflect just one iteration of steps 1–8.

Finally, as in the paper, we cluster standard errors at the household level.

Figure F.1 shows how our routine identifies household-specific post-feedback jumps in water
usage for two example households in condition T3. Visually, we see that water usage for Household
1 in panel (a) sharply drops and rises when feedback is turned on and off. Our routine identifies the
immediate 13.45 L/shower jump in consumption one shower after feedback is turned off for this
household. Likewise, for Household 2 in panel (b), our routine successfully identifies a delayed
11.34 L/shower jump in shower water usage eight showers after feedback is turned off.
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Results

Table F.1 presents our main findings. For reference, panel (a) of the table reproduces the bottom
panel of Table 4 from the paper. Panel (b) reports analogous estimates to panel (a) based on the 489
of 555 households for which we test for post-feedback jumps in consumption. We obtain similar
results across all columns by comparing panels (a) and (b). Thus, there is no evidence of sample
selection bias in the coefficient estimates from our conditioning on households with sufficiently
many post-feedback periods in testing for heterogeneous post-feedback jumps.

Panel (c) of Table F.1 presents our estimation results from equation (F.1), where we allow
for household-specific post-feedback jumps. Comparing Panels (b) and (c), we obtain similar
magnitude estimates on the PostOFFit coefficients. In other words, we estimate a similar reduce-
form decay rate in treatment effects when feedback is turned off, even if we allow household-
specific post–feedback jumps of arbitrary timing and magnitude. In this way, the persistence and
asymmetric results in Table F.1 support our attention-based theory of habit in favor of a habit–as–
automatic–control model in our particular research context.

F.2 Experimentation and learning
This section studies an experimentation and learning mechanism for consumption responses

to real-time feedback. Our motivation comes from Larcom et al. (2017), who examine persistent
changes in individuals’ commuting behavior after the 2014 London Tube Strike, which temporar-
ily force experimentation and learning about other forms of commuting. The analogue in our
setting is feedback-induced experimentation with shorter shower lengths by households who learn
about the costs and benefits of doing so, leading to permanent changes in shower length and water
consumption in the long run.

Converging to a new long-run consumption level

The time-varying persistence effects from experimental condition T3 provide a natural way to
test for permanent long-run changes in shower water usage from experimentation and learning.
We can test for this directly using the column (3) estimates from Table 4, which recall estimates
our treatment effects from the regression in equation (2) using experimental conditions T1–T3.
The following hypothesis test establishes whether there is a long-run shift in consumption from
feedback:

H0 : β3 +72×β4 = 0 vs. H1 : β3 +72×β4 ̸= 0

where recall β3 and β4 are the coefficients on OFFis and PostOFFis in (2). This test determines
whether there is a persistent effect from the feedback-on phase in the first 48 showers of condition
T3 after 72 showers at the end of the feedback-off phase in T3. Using our OLS estimates β3 =

−7.31 and β4 = 0.11, we obtain a minimal persistent effect of -0.22 L / shower after 72 showers,
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Table F.1: Treatment Effects by Conditions T1–T7 Accounting for Post-Feedback Jumps

T1-T7 T1,T2 T1,T2,T3 T1,T2,T4 T1,T2,T5 T1,T2,T6 T1,T2,T7
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Full Sample (Main Results from Paper)
ON -7.39∗∗∗ -6.65∗∗∗ -7.31∗∗∗ -7.31∗∗∗ -7.13∗∗∗ -7.53∗∗∗ -6.96∗∗∗

(0.70) (1.39) (1.10) (1.06) (1.04) (1.09) (1.05)
PostON 0.01 -0.01 -0.01 0.00 -0.01 0.00 -0.00

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
OFF -4.85∗∗∗ -7.70∗∗∗ -5.44∗∗∗ -5.17∗∗∗ -4.68∗∗∗ -3.60∗∗∗

(0.73) (1.44) (1.28) (1.24) (1.22) (1.19)
PostOFF 0.08∗∗∗ 0.11∗∗∗ 0.07∗ 0.19∗∗∗ 0.08 0.02

(0.02) (0.04) (0.04) (0.06) (0.09) (0.07)

R-Squared 0.43 0.44 0.42 0.44 0.43 0.45 0.44
Observations 86376 24648 37798 38286 36885 35862 36137

Panel (b): Jumps Sample
ON -7.20∗∗∗ -6.65∗∗∗ -8.13∗∗∗ -7.33∗∗∗ -7.07∗∗∗ -6.75∗∗∗ -6.68∗∗∗

(0.73) (1.39) (1.13) (1.06) (1.06) (1.08) (1.10)
PostON 0.01 -0.01 -0.01 0.00 -0.01 -0.00 -0.01

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
OFF -4.95∗∗∗ -8.17∗∗∗ -5.56∗∗∗ -5.05∗∗∗ -5.18∗∗∗ -3.60∗∗∗

(0.78) (1.45) (1.28) (1.26) (1.23) (1.34)
PostOFF 0.08∗∗∗ 0.10∗∗∗ 0.07∗∗ 0.18∗∗∗ 0.13 0.00

(0.02) (0.04) (0.04) (0.06) (0.09) (0.07)

R-Squared 0.43 0.44 0.42 0.44 0.43 0.46 0.45
Observations 79320 24648 35856 37849 36705 34435 33067

Panel (c): Jumps Sample (Controlling for Post–Feedback Jumps)
ON -7.28∗∗∗ -6.65∗∗∗ -8.05∗∗∗ -7.19∗∗∗ -6.96∗∗∗ -7.02∗∗∗ -6.71∗∗∗

(0.73) (1.39) (1.12) (1.06) (1.07) (1.08) (1.09)
PostON 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
OFF -5.04∗∗∗ -7.46∗∗∗ -4.63∗∗∗ -5.99∗∗∗ -4.90∗∗∗ -3.66∗∗∗

(0.80) (1.29) (1.17) (1.18) (1.22) (1.34)
PostOFF 0.10∗∗∗ 0.08∗∗∗ 0.15∗∗∗ 0.05 0.23∗∗∗ 0.16∗∗

(0.02) (0.03) (0.04) (0.05) (0.09) (0.07)

R-Squared 0.44 0.44 0.42 0.45 0.43 0.46 0.45
Observations 79320 24648 35856 37849 36705 34435 33067

which is just 0.4% of mean baseline shower usage of 57 L / shower. The hypothesis test implies
a statistically insignificant with F(1,239) = 0.02 and p = 0.90. There is no evidence of a long-
run level shift in consumption after feedback is turned off that an experimentation and learning
mechanism would imply.

Larger consumption responses in the first feedback cycle

We can also use experimental conditions T4-T7 and their feedback on/off cycles to test for
experimentation and learning effects. Suppose that an individual “learns” about a new optimal
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Table F.2: Treatment Effects by Condition T3–T7 for Experimentation and Learning

Panel (a): Main Results from Paper

T1,T2,T4 T1,T2,T5 T1,T2,T6 T1,T2,T7
24/48 12/24 6/12 3/15
on/off on/off on/off on/off
(1) (2) (3) (4)

ON -7.31∗∗∗ -7.13∗∗∗ -7.53∗∗∗ -6.96∗∗∗

(1.06) (1.04) (1.09) (1.05)
PostON 0.00 -0.01 0.00 -0.00

(0.02) (0.02) (0.02) (0.02)
OFF -5.44∗∗∗ -5.17∗∗∗ -4.68∗∗∗ -3.60∗∗∗

(1.28) (1.24) (1.22) (1.19)
PostOFF 0.07∗ 0.19∗∗∗ 0.08 0.02

(0.04) (0.06) (0.09) (0.07)

R-Squared 0.44 0.43 0.45 0.44
Observations 38286 36885 35862 36137

Panel (b): Results for Cycling Feedback
in T4–T7 Not Controlling for T2

ON -8.35∗∗∗ -7.98∗∗∗ -8.15∗∗∗ -6.62∗∗∗

(1.34) (1.59) (1.77) (1.87)
PostON 0.08∗ 0.06 -0.13 -0.35

(0.05) (0.12) (0.22) (0.68)
OFF -5.62∗∗∗ -4.95∗∗∗ -4.91∗∗∗ -3.61∗∗∗

(1.52) (1.46) (1.51) (1.33)
PostOFF 0.06∗ 0.15∗∗ 0.08 0.02

(0.04) (0.07) (0.09) (0.07)

R-Squared 0.46 0.45 0.48 0.46
Observations 24958 23557 22534 22809

Panel (c): Results for Cycling Feedback
in T4–T7 Not Controlling for T2,

Allowing the First Feedback Cycle
to Have a Differential ON Effect

ON -8.53∗∗∗ -7.60∗∗∗ -7.89∗∗∗ -5.96∗∗∗

(1.82) (2.04) (1.89) (2.06)
PostON 0.08 0.08 -0.12 -0.28

(0.05) (0.12) (0.21) (0.68)
OFF -5.66∗∗∗ -4.86∗∗∗ -4.82∗∗∗ -3.43∗∗

(1.58) (1.53) (1.54) (1.37)
PostOFF 0.06∗ 0.15∗∗ 0.08 0.02

(0.04) (0.07) (0.09) (0.07)
FirstON 0.26 -0.90 -0.99 -2.89∗

(1.52) (1.72) (1.45) (1.65)

R-Squared 0.46 0.45 0.48 0.46
Observations 24958 23557 22534 22809

level of shower water usage when provided feedback. Then, the first feedback-on phase in a given
experimental condition will have both a learning and salience effect. After experimentating and
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learning about a new optimal consumption level during the first feedback-on phase, subsequent
feedback-on phases will only entail salience effects. Therefore, to test for experimentation and
learning effects, we adapt our treatment effects regression from equation (2) as follows:

yis = ηi +β1ONis +β2PostONis +β3OFFis +β4PostOFFis +β5FirstONis + τk + εis, (F.3)

where FirstONis equals 1 if feedback is on and it is the first feedback-on cycle for household i,
where we consider households in experimental conditions T4-T7 with multiple feedback on/off
phases.The following test allows us to test for an experimentation and learning mechanism:

H0 : β5 = 0 vs. H1 : β5 ̸= 0

Panels (b) and (c) of Table F.2 present our test results. Panel (b) produces analogous estimates
to our primary treatment effects from the paper in panel (a), except we exclude including T2 in the
estimation samples in columns (4)-(7) of the table. Doing so allows us to focus on the differences
in feedback effects across the feedback-on phases within conditions T4-T7 at the cost of not con-
trolling for secular trends in feedback effects by including T2 households in the samples.38 Panel
(c) then adds the FirstONis regressor. Its coefficient estimate is statistically insignificant across
all columns. Moreover, comparing the ON coefficients in panels (b) and (c), we find little impact
on the estimates from including FirstONis in the regression. This finding implies that salience
effects identified by later feedback-on phases are robust to controlling for any experimentation and
learning during the first phase. In sum, as with the time-varying treatment effects from experi-
mental condition T3, our results in panels (b) and (c) of Table F.2 suggest minimal impacts of
experimentation and learning in our setting.

38Including T2 households in the samples has no impact on our results, but makes it harder to interpret the results
from the hypothesis tests regarding β5.

75


	Introduction
	The field experiment
	Design
	Hypotheses
	Context, recruitment, and implementation
	Data
	Summary statistics

	Symmetry and persistence in feedback effects
	Graphical analysis
	Treatment effects

	A model of feedback-based habit formation
	Model set-up
	Optimal consumption and steady state
	Empirical model specifications
	Identification and estimation
	Parameter estimates and within-sample fit
	Predicting treatment effects out-of-sample
	Other persistence mechanisms

	Attention stocks, behavioral change, and intervention design
	Asymmetric habit formation and decay 
	Feedback duration and persistence: simulation analysis
	Feedback intervention design and behavioral change

	Conclusion
	Supplemental analyses and material
	Sample recruitment, instructions, baseline, and endline surveys
	Robustness to multi-person and multi-shower households
	Cumulative shower counts by experimental conditions
	Selection into returning devices at the end of the trial
	Distribution of baseline shower usage by household size
	Water flow rates do not change during the trial

	Steady state transitions
	Steady state transitions predicted by the attention-based habit model
	Steady state transitions predicted by the consumption-based habit model
	General analytic expressions for the accumulation of wt

	Recursive implementations of the models
	Attention-based habit formation model
	Consumption-habit habit formation model

	Habit formation with CARA utility
	Auxiliary Structural Model Results
	Other persistence mechanisms
	Automatic control
	Experimentation and learning


