
The Consequences of Sorting for

Understanding School Quality

Jesse Bruhn?

Job Market Paper

January 1, 2019
Click for most recent version

Abstract

I study the sorting of students to school districts using new lottery data from an inter-
district school choice program in Massachusetts. I �nd that moving to a more preferred
school district increases student math scores by 0.16 standard deviations. The program
also generates positive e�ects on coursework quality, high-school graduation, and col-
lege attendance. Motivated by these �ndings, I develop a rich model of treatment e�ect
heterogeneity and estimate it using a new empirical-Bayes-type procedure that leverages
non-experimental data to increase precision in quasi-experimental designs. The estima-
tor I propose is a weighted average of experimental and non-experimental variation, with
the weights chosen according to the correlation of the heterogeneous e�ects across sam-
ples. I use the heterogeneous e�ects to examine Roy selection into the choice program.
Students who would be negatively impacted by the program are both less likely to apply
and, conditional on taking up an o�er to enroll, are more likely to subsequently return to
their home district. I �nd that this selection drives almost all of the program evaluation
treatment e�ect identi�ed with the lottery. The fact that families sort students to school
districts according to potential bene�t suggests that research relying on school choice
lotteries to learn about di�erences in school quality may lack any broad claim to external
validity.
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Introduction

There is now a well documented causal link between educational inputs, test scores, and later
life outcomes. Whether it is the size of a kindergarten classroom, the value added of a middle
school teacher, or the type of high school a student attends, educational interventions have far
reaching consequences for outcomes like teen pregnancy, incarceration, college attendance,
and adult earnings (Cullen, Jacob & Levitt 2006, Chetty et al. 2011, Angrist et al. 2012, Chetty,
Friedman & Rocko� 2014, Deming et al. 2014, Dobbie & Fryer 2015, Angrist et al. 2016). Thus
understanding school quality is important for e�ectively targeting educational investments.

Recent work on school e�ectiveness leverages randomization in the school assignment
process to generate estimates of quality di�erences across institutions. Since the results of
the lottery are random, estimates of school quality based on comparisons between school
choice lottery winners and school choice lottery losers are not confounded by higher ability
or better-resourced students choosing to attend better schools. For this reason, researchers
have used lottery estimates of school quality to construct novel measures of value added,
to validate observational methods of ranking schools, and to estimate the relation between
school e�ectiveness and educational inputs (Angrist, Pathak & Walters 2013, Dobbie & Fryer
2013, Deming et al. 2014, Abdulkadiroglu et al. 2017, Angrist et al. 2017).

While school choice lotteries may seem like an attractive tool for learning about e�ective-
ness, individual students may nonetheless experiences test score gains by switching schools
even in the absence of di�erences in average school quality. If students use choice programs to
sort to schools on the basis of idiosyncratic bene�t, then the gains identi�ed by a comparison
of lottery winners to losers have no straightforward connection to quality. More generally,
school choice lottery estimates will not be externally valid in the presence of Roy selection
(Walters 2017). Thus knowing whether and to what degree lottery identi�ed test score gains
are driven by sorting versus di�erences in quality is necessary for understanding the practical
policy relevance of this body of work.

In this paper, I use random admission o�ers from an inter-district school choice program
in Massachusetts to study the consequences of sorting for understanding school quality. I
provide three main contributions. The �rst contribution is a causal evaluation of the impact of
inter-district school choice on student outcomes using new, hand-collected lottery data. The
second contribution is an examination of the role that Roy selection plays in generating the
causal bene�ts of inter-district choice. The third contribution is a new method for estimating
treatment e�ect heterogeneity that uses non-experimental data to increase precision in quasi-
experimental designs.
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I start with a program evaluation of inter-district school choice. I �nd that moving to a
more preferred district increases student math scores by 0.16 standard deviations, with no
e�ect on English Language Arts. The impact on math is large. The unadjusted 10th grade
black-white math score gap in Massachusetts is 0.56 standard deviations. This result also
stands in contrast to prior estimates of the e�ects of school choice in the traditional public
school sector, which �nd little to no impact on test scores (for examples see Cullen, Jacob &
Levitt 2006, Hastings, Neilson & Zimmerman 2012, Deming et al. 2014). I �nd that students
who participate in the inter-district choice program are more likely to take advanced place-
ment and other advanced classes. I also �nd positive e�ects on the probability that students
who participate in the program graduate from high school and go on to attend a four-year
college.

The �ndings from this evaluation are interesting because they represent the �rst lottery
evaluation of a state-wide inter-district choice program. Such programs are common in the
United States (Wixom 2016) and also controversial. Critics argue that because funding typi-
cally follows the student, inter-district choice drains educational resources from underprivi-
leged communities (O’Connell 2017). Thus understanding the causal impact of inter-district
choice is important for policy. Prior work has been limited to examining the consequences of
within-district urban assignment mechanisms, choice to charter schools, the impact of private
school vouchers, and race-based desegregation programs.1

Next I analyze the role that Roy selection plays in generating test score gains. I accomplish
this by estimating a model of treatment e�ect heterogeneity that incorporates a rich set of
student observables: lagged test scores, subsidized lunch recipiency, race/ethnicity, gender,
and measures of student behavior. I �nd that the observed heterogeneity predicts student
take-up behavior in a way that is consistent with Roy selection. Students who would be
negatively impacted by the program are much less likely to apply; conditional on applying,
negatively impacted students are less likely to take up a randomly assigned o�er to enroll;
and once enrolled, negatively impacted students are less likely to continue on in the program
after their �rst year.

This �nding is signi�cant because selection on potential bene�t drives a wedge between
the local average e�ect identi�ed by the lottery and the average treatment e�ect of interest:

1For recent examples of choice among traditional public schools, see Cullen, Jacob & Levitt (2006), Hastings,
Neilson & Zimmerman (2012), Deming et al. (2014), and Abdulkadiroglu et al. (2017). For recent examples of
choice to the charter sector, see Hoxby & Murarka (2009), Abdulkadiroglu et al. (2011), Dobbie & Fryer (2011),
Angrist et al. (2012), and Angrist et al. (2016). For examples of the impact of private school vouchers, see Howell
et al. (2002), Wolf et al. (2008), Mills & Wolf (2017), and Abdulkadiroglu, Pathak & Walters (2018). For race based
programs, see Angrist & Lang (2004) or Bergman (2018).
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school quality. To get a sense of the bias this selection induces, I use the observed hetero-
geneity to extrapolate the average treatment e�ect for the treated, the applicants and the
non-applicants. I �nd that 38% of the treatment e�ect for the treated comes from post-lottery
selection into enrollment and that 78% of the treatment e�ect for applicants is driven by pre-
lottery selection into the applicant pool. Almost none of the local average e�ect identi�ed
with the lottery is the result of quality di�erences across districts. The fact that families sort
students to school districts according to potential bene�t suggests that research relying on
school choice lotteries to learn about di�erences in school quality may lack any broad claim to
external validity. These �ndings also add to a recent literature examining the relationship be-
tween selection and heterogeneity for understanding optimal policy (Walters 2017, Mogstad,
Santos & Torgovitsky 2018, Hull 2018).

The �nal contribution of this paper is a new estimator that leverages non-experimental
data to e�ciently estimate heterogeneous treatment e�ect models in quasi-experimental de-
signs. In order to study the sorting of students to districts on the basis of potential bene�t, I
must �rst �t a rich heterogeneous e�ects model using an instrumental variables (IV) strategy.
Unfortunately, IV designs are notoriously noisy (Young 2017). This makes precise estima-
tion of the heterogenous e�ects di�cult with the lottery sample at my disposal. However, I
show that corresponding estimates using observational data on the universe of public school
students in Massachusetts are highly correlated with the estimates from the experimental
sample. This suggests that the non-experimental data contains information that is useful for
pinning down the local average e�ects identi�ed by the IV design. I formalize this intuition
by combining the experimental and non-experimental estimates within a hierarchical model.
The estimator is consistent under the same conditions as IV and, under the assumption that
the heterogeneous e�ects are normally distributed, it is more e�cient.

The estimator I propose adds to an emerging literature in Economics that uses random-
e�ects and other bayesian or quasi-bayesian methods to synthesize information from multiple
sources (e.g. Hull 2018, Meager 2017, Meager 2018). In particular, the method outlined in
Angrist et al. (2017) is closely related. The authors of that paper use a simulated method
of moments approach that combines non-experimental and lottery identi�ed value added
in a hierarchical model to generate a complete quality ranking across oversubscribed and
undersubscribed schools in Boston. The method I develop is similar in spirit to the just-
identi�ed version of their model; however, because I am only interested in e�ciency gains,
whereas Angrist et al. (2017) use the non-experimental data to solve an otherwise under-
identi�ed model, I do not need to model the �rst stage, reduced form, and least square’s bias
jointly within the parent distribution. This allows me to �nd a closed form solution with
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simple, transparent intuition. And unlike Angrist et al. (2017), this approach allows for the
possibility that the local average treatment e�ect identi�ed by the lottery is di�erent from the
average treatment e�ect in the population.

This econometric method also o�ers a partial answer to a recent critique of instrumental
variable designs. Young (2017) argues that due to their lack of precision, the typical IV design
in economics generates no increase in knowledge beyond what is learned from the corre-
sponding least squares regression. However, the decision about whether to use IV or least
squares need not be binary. Provided the econometrician cares about a collection of param-
eters beyond the average treatment e�ect, the estimator I propose o�ers a principled way to
average the IV and least squares estimates and thus fully leverage the available information.

1 Increasing Access with District Choice

The purpose of inter-district choice in Massachusetts is to weaken the link between geogra-
phy and access to a high quality education. The program was originally established in 1993
as one portion of a broader set of education reforms known as the Massachusetts Educational
Reform Act (MERA). Broadly speaking, the reforms centered around three areas: school fund-
ing, accountability, and access. To further the latter objective, MERA established provisions
allowing for both charter schools and inter-district choice (Chester 2014). Between 2001 and
2016, over 70,000 students enrolled in a school outside their home district via the inter-district
choice program. To put this number in context, over the same time span the charter sector
in Massachusetts enrolled around 119,000 students.2 Figure 1 shows enrollment in the inter-
district choice and the charter sector over time.

At the district level, the program operates in several stages that may or may not culminate
in a lottery for admission. By default, every public school district in Massachusetts partici-
pates in the program. However, each year the local school board may vote to opt out. If the
school board votes to opt out, the district is not required to enroll students from other dis-
tricts; however, voting to opt out does not preclude local students from using the program.
The law then requires that participating districts project capacity and enrollment and make
excess seats available to any student in the state. The projection methods are determined
locally. Since 2001, nearly 200 districts out of approximately 295 traditional public school dis-
tricts3 in Massachusetts have enrolled at least one student via the program, with 156 districts

2Both calculations are my own and were made using administrative student micro-data provided by the
Massachusetts Department of Elementary and Secondary Education.

3Over this period, some districts consolidated into regional districts.
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Figure 1: Enrollment in Inter-district Choice and Charter Schools Over Time

participating in an average year. Figure 2 shows the geospatial distribution of choice districts
as of 2016. When the number of students who apply exceeds the number of seats available,
the district is required to allocate the seats via lottery. Once a student is o�ered a spot in the
district and accepts, she becomes a full public school student of the district until she graduates
or leaves voluntarily. However, transportation is the responsibility of the family.4 The send-
ing district is then required to pay the receiving district the lesser of 75% of average per-pupil
expenditures in the sending district or $5,000. However, the sending district must pay the full
cost of any special education services as determined by the state funding formula. In practice,
the $5,000 cap is binding for non-special education students.

The way the program is implemented in practice sometimes di�ers substantially from the
text of the law. For example, an advisory memo from the Massachusetts O�ce of General
Counsel concluded that the non-discrimination language in the law was so strong that even
sibling preference should not be considered when administering lotteries for admissions pur-
poses (Moody 1994). In practice, nearly every district o�ers some form of sibling preference.5

In addition, there are a number of districts which are regularly oversubscribed yet conduct
admissions on a �rst-come �rst-serve basis.6 Finally, there are some portions of the law which

4There are some exceptions to this rule for students with disabilities.
5This assertion is based on conversations I had with state level program o�cials and district level adminis-

trators while collecting data.
6While collecting data, at least �ve districts indicated this to me, but not all districts o�ered this information

when responding to my emails.
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Figure 2: Inter-district Choice in 2016

simply never made it in to practice. For example, the original bill asked participating districts
to submit their enrollment and capacity projections to the Massachusetts Department of Ele-
mentary and Secondary Education (DESE). I learned from my conversations with state level
program administrators that, in practice, this information has never been collected.

2 Collecting District Choice Data in Massachusetts

The data I use for this project come from several sources. I start with hand collected lottery
records from school districts in Massachusetts. I then match and merge these lottery records
to administrative data on the universe of public school students in Massachusetts. These
administrative data include information on standardized test scores, teachers and coursework,
as well as data on college outcomes via an extract from the National Student Clearinghouse. I
also make use of of several spreadsheets provided to me by DESE which describe information
such as which districts were open to choice in a given year, how the structure and coverage
of districts has changed over time, and the within district distribution of education spending.
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Finally, I augment these sources with publicly available data on property values from the
Massachusetts Department of Revenue and district level data on the parental characteristics
of public school students from the Census’ Education and Geographic Estimates project. I
will now brie�y discuss each of these data sources in turn. For a complete characterization of
the data matching and cleaning process, see the online appendix.

2.1 New Lottery Data

In May of 2016, I contacted every public school district in the state of Massachusetts that had
ever enrolled a student via inter-district choice and asked them to share their lottery records
with me.7 Of the districts I contacted, approximately 75% responded. Of the districts that
responded, 36% con�rmed that they had ever conducted a lottery. Typically, districts that
did not conduct a lottery were not over-subscribed. A small number of districts accepted
new students using a �rst-come �rst-serve procedure despite being over-subscribed. Of the
districts that had ever conducted a lottery, 38% had maintained records that they were willing
to share with me. By far the most common reason for not sharing data was poor record
keeping. Some districts elected not to participate out of privacy concerns. Of the records I
collected, a substantial portion were unusable due to insu�cient documentation of the lottery
process. Ultimately, I was left with approximately 3,000 student level lottery records from 203
lotteries across 14 districts.

Districts used a variety of randomization mechanisms to conduct the lotteries. The most
common randomization method involved having a secretary or administrator randomly select
some subset of the applicants to receive o�ers of admission. I code these random o�ers as
a binary “initial o�er” instrument. This randomization procedure was used in 91% of the
lotteries in my sample. Typically, the remaining applicants were then randomly assigned a
waitlist number. When available, I also code these numbers as a “waitlist number” instrument.
There was one district which, for a single year in my data, randomly chose students from a
waitlist pool instead of assigning them lottery numbers. I code these random o�ers as a binary
“waitlist o�er” instrument and include it for completeness. There was also one small district
whose records consisted of randomly assigned lottery numbers, with no indication as to who
actually received an o�er of admission. For this district, I code the raw number as a “lottery
number” instrument. In practice, all the lottery results I present in this paper are driven by
initial o�ers.

7A number of these districts were vocational districts, internet based learning programs, or other non-
traditional programs that I subsequently learned were not required to use a lottery based admissions process.
For this reason, I don’t count these districts when calculating response rates.
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Figure 3: Distribution of Lotteries by Grade

The typical lottery in my sample is small. The average number of students I view in a
single lottery is 9.6; the median is 7. The lotteries also span a considerable time-period. The
earliest lottery in my data occurs in academic year 2002-2003; the latest occurs in academic
year 2016-2017. None of the 2016-2017 lotteries are included in my estimation sample since,
as of the time the analysis was conducted, the necessary outcome variables were unavailable
post-lottery. Finally, I will note that the lotteries in my sample span all grade levels. However,
as can be seen in �gure 3, the lotteries are clustered at grades which are typically within-
district, cross-school transition points for students.8 For more detailed descriptive statistics
regarding the raw lottery data, see the online appendix.

I merge these student lottery records to the data provided by DESE by looking for exact
�rst and last name matches within the implied application grade / year. When available, I
break ties using middle names / initials, home-town and date of birth. When town of residence
is unavailable and I am otherwise unable to break a tie, I choose individuals that live within
the empirical distribution of towns that lose students to the receiving district via choice. If I
am unable to break a tie in this way, I consider the student un-matched and drop her from the
sample. When this procedure fails to �nd any exact match, I repeat it using fuzzy �rst and last

8For example, students often move from grammar to middle school in the �fth, sixth, or seventh grade, and
from middle to high-school in ninth grade.
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name matching. For this reason, all of my speci�cations will include indicators for whether a
student was matched via the exact or fuzzy version of the algorithm. Overall, I obtain an 89%
match rate.

I will note here that my lottery sample exhibits some imbalance along predetermined
characteristics. Figure 4 presents point estimates and two standard deviation intervals from a
within-lottery regression9 of all baseline observable and otherwise exogenous characteristics
on the initial o�er indicator for the sub-sample of students where I observe at least one test
score prior to the lottery. The joint F-statistic across all pre-determined characteristics is 1.64.
Of particular concern is the fact that the coe�cient for black students is negative and the 2
standard deviation interval does not include zero. However, the administrators conducting
the lottery could not directly observe race,10 the magnitude of the coe�cient is small, white
students also have a negative point estimate, and the point estimate for black students is not
signi�cantly di�erent than the point estimate for white students (or any other racial group).
For these reasons, it seems unlikely that racial discrimination is the culprit. In the online
appendix, I consider the possibility that this imbalance is driven by di�erential attrition and
conclude that this is also unlikely to be the case.

While it is possible that the covariate imbalance is due to some form of cheating on the
part of districts, I believe this is unlikely for two reasons. First, all of the districts that pro-
vided lottery data to me did so voluntarily and described to me in detail the process they
used for randomization. Second, cheating would open the district up to potentially serious
liability. As I discussed in section 1, the legal o�ce in the department of education in Mas-
sachusetts concluded that the anti-discrimination language in the inter-district choice law
was even stronger than that used in the charter sector. Further, there was no consequence for
opting not to share data with me. Thus if a district was cheating, they had strong incentive
to not provide me with data. One explanation for the imbalance is the possibility that some
of the lottery records I obtained did not track things like sibling preference or late applica-
tions properly. Another potential explanation is that this imbalance is simply the product of
sampling variation. In any event, I show in the online appendix that conditioning on earlier
pre-lottery test scores increases my precision substantially and, more importantly, that such
speci�cations pass all of the standard falsi�cation tests used in lottery designs. For this rea-
son, every speci�cation in this paper using the lottery variation is restricted to the sample of

9Within lottery is the level of variation at which the instrument is randomly assigned. In practice, I do this
by including lottery �xed e�ects. I also drop all students from this regression that received sibling preference
or were indicated as applying late.

10Of course, it is possible that lottery administrators were able to infer race from student or parent names or
that they were able to observe race if a student or her family dropped the application form o� in person.
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Figure 4: Covariate Balance by Initial O�er Status

students for whom I observe at least one test score prior to the lottery year and will include
baseline test scores as controls.

2.2 Administrative Student Records and Other Data Sources

For this project, the state of Massachusetts provided me with data on the universe of pub-
lic school students. I retrieved demographic and socioeconomic information from the Stu-
dent Information Management System (SIMS) spanning academic years 2001-2002 through
2016-2017. This included variables related to race / ethnicity, gender, attendance, discipline,
disability, and whether the student received a subsidized lunch, as well as the variables nec-
essary for matching. It also includes administrative information on the district, school, and
grade-level where students are assigned in a given year, including an indicator for whether
a student was enrolled in a district via inter-district choice. I drop observations appearing in
adult education programs, collaborative or special education schools, online schools, charter
schools, and vocational schools.

I retrieve test scores from the Massachusetts Comprehensive Assessment System (MCAS)
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spanning academic years 2001-2002 through 2016-2017. I standardize the test scores at the
grade, year, and test-type11 level to have mean zero and standard deviation one. I retrieve
coursework taken by students from Student Course Schedule (SCS) data spanning academic
years 2010-2011 through 2016-2017. I also use data on college attendance contained in an
extract from the National Student Clearinghouse purchased by DESE.

For some auxiliary regressions, I make use of additional spreadsheets provided to me by
the state level o�cials who administer the program. These spreadsheets describe district �-
nances, as well as the outcome of the annual district level votes on choice status spanning
academic years 2007-2008 to 2016-2017. I also make use of district level socio-economic and
demographic data on parents of public school students from the Census’ Education, Demo-
graphic and Geographic Estimates (EDGE) project, as well as data on property values which
I downloaded from the Massachusetts Department of Revenue.

For further description of the various data sources along with a detailed break-down of
the cleaning process, see the online appendix.

3 Program Take-up by Students and Districts

Students in my lottery sample are positively selected both relative to the state as a whole
and relative to their home district peers. Table 1 illustrates this fact. The column labeled
“All Districts,” provides averages of observables across the entire state for students in test
taking grades in academic years 2001-2002 through 2016-2017. The column labeled “Choice
Students” restricts the state-wide sample to observations where a student is currently partici-
pating in inter-district choice. The column labeled “Sending Districts” restricts the state-wide
sample to districts that lose a student to choice via a lottery I observe in my data. The column
labeled “Lottery Sample” includes students found in my lottery data as observed at baseline.12

The column labeled “Compliers” uses the method of Abadie & Kennedy (2003) to re-weight
the lottery sample such that the averages re�ect those of initial o�er lottery compliers.

Compared to their home district peers, the lottery sample is disproportionately white, less
likely to receive a subsidized lunch, less likely to be identi�ed as limited English pro�ciency,

11The state transitioned testing regimes from the original MCAS exam to the Partnership for Assessment and
Readiness for College Careers (PARCC) exam over the course of my sample frame. There are 3 years in my data
where the old and new examinations appear simultaneously. For this reason, all regressions will also include
test-type �xed e�ects.

12There are ≈ 80 students involved in lotteries that did not use an initial o�er mechanism and that I do not
include here. Including them does not meaningfully change the averages in this column, and excluding them
facilitates calculating the complier averages in column four. To view the averages for the entire estimation
sample, see the online appendix.

11

https://sites.google.com/site/jessebruhn3/jesse_bruhn_jmp_online_appendix.pdf
https://sites.google.com/site/jessebruhn3/jesse_bruhn_jmp_online_appendix.pdf


Table 1: Student Selection into Inter-District Choice

All Students Choice Students Sending Districts Lottery Sample Compliers

Math 0.02σ 0σ -0.21σ 0.11σ 0.05σ
ELA 0.02σ 0.04σ -0.21σ 0.14σ 0.11σ

White 83% 93% 68% 90% 87%
Black 11% 6% 29% 10% 12%

Hispanic 15% 8% 27% 5% 3%
Male 51% 48% 51% 46% 47%

Subsidized Lunch 33% 28% 55% 21% 21%
Limited English 6% 1% 11% 0% 1%

Disability 12% 12% 13% 11% 12%
Days Attended 165.12 163.5 161.68 167.91 168.66
Observations 3,879,633 56,440 178,458 881 881

less likely to be diagnosed with a disability, and has higher average test scores. However,
when compared to the state as a whole, the di�erences are smaller. One notable pattern is
the enormous di�erence in subsidized lunch recipiency across sub-samples. This is likely due
to the fact that transportation to the new district is the responsibility of the family. For this
reason, we should expect families with the resources to transport their children long distances
to be more likely to apply to the program and subsequently accept lottery o�ers.

At the district level, the decision not to opt out of inter-district choice is typically deter-
mined by a desire to supplement revenue. When a district observes that it has extra space in
a classroom, in the sense that it is below the target student to teacher ratio in a given grade
level, the district will use the program as a source of additional funds. However, in the greater
Boston area, participation is quite low. This is likely due to the fact that many suburban dis-
tricts in the Boston area participate in the METCO program. As discussed in Angrist & Lang
(2004), METCO is the nation’s oldest voluntary school desegregation program. It provides a
separate mechanism for �lling excess seats whereby predominantly white suburban districts
enroll minority students from Boston. Thus METCO leads to a crowding out of inter-district
choice.

These explanations are supported both by informal discussions I have had with district
o�cials and by suggestive regressions in my data. Table 2 displays select coe�cients from a
joint regression of district characteristics on an indicator that takes a value of one in years
when a district did not vote to opt out of inter-district choice. Column (1) displays select
results from the joint regression estimated via OLS. Column (2) displays select results from the
variables chosen when estimation is done using post-Lasso. Column (3) displays select results
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Table 2: Select Predictors of District Participation

Accepting New Choice Students

(1) (2) (3)

Student-Teacher Ratio −0.07 −0.07 −0.002
(0.02) (0.02) (0.01)

Per-Pupil-Spending: Pupil Services 0.15 0.23 0.03
(0.08) (0.07) (0.05)

Metco Students (tens) −0.01 −0.01 0.01
(0.005) (0.005) (0.02)

Estimation Method OLS Post-Lasso OLS
District/Year Fixed E�ects No No Yes
Dependent Variable Mean 0.55 0.55 0.55
Observations 2,280 2,280 2,280
Observations (Districts) 285 285 285
Adjusted R2 0.34 0.31 0.88

from a joint regression that also includes district and year �xed e�ects; in e�ect, column (3)
asks whether trends in the independent variables are predictive of changes in participation
status. In levels, the student teacher ratio, various per-pupil expenditure categories, and the
number of METCO students are predictive of the decision to participate. Other observables,
such as the district demographic composition and urbanicity, are not. And almost none of
the variables considered exhibit trends which predict changes in participation status. See the
online appendix for complete results including the variables not displayed in table 2.

Finally, I note that as a result of this participation disparity, the net student gain / loss to
choice is not evenly distributed across the state. Figure 5 shows the geographic distribution
of the net gains and losses. The largest net winners and losers are concentrated in the middle
and western regions. The winners tend to be suburbs and large regionalized school districts.
The losers tend to be urban and rural.

4 Program Evaluation

In this section, I evaluate the bene�ts of inter-district choice for students that participate.
For identi�cation, I examine applicants to oversubscribed districts and compare the district
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Figure 5: Net Student Gain/Loss to Inter-district Choice in 2016

choice lottery winners to the district choice lottery losers within a two-stage least squares
framework. I �nd that participating in district choice causes large test score gains in math. I
�nd no e�ect on English Language Arts scores. I also �nd that participating in district choice
increases the quality of the coursework that students take. Finally, I provide evidence that
participating in district choice increases the probability a student will graduate from high-
school and attend a four-year college.

4.1 Identi�cation and Estimation

Consider the following two-stage least squares framework:

yit = δ0 + βdi + δ` + γWi + ϵit (1)

dit = δ
′
0 + ΠZi + δ

′
` + γ

′Wi + ηit (2)

Where yit denotes the outcome of student i during a post-lottery period of time t (typically
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an academic year), dit is an indicator for whether student i was enrolled out of district via the
choice program at time t , δ` is a lottery �xed e�ect,13 δ0 is a reference lottery,Wi are covariates
observed at baseline,14 and Zi denotes the vector of four lottery instruments15 discussed in
section 2.

The parameter β identi�es a local average treatment e�ect (LATE) speci�c to the instru-
ment vector Zi under a standard set of instrument-by-instrument conditions: exclusion, ran-
dom assignment, �rst stage, and monotonicity (Imbens & Angrist 1994). Exclusion requires
that the result of the lottery a�ect potential outcomes only via takeup of the treatment. Ran-
dom assignment requires that within each lottery the results are, in fact, random. First stage
requires that the results of the lottery change take-up behavior for some subset of the popula-
tion (i.e. that Π > 0 for some element ofZi ). Monotonicity is a restriction on the heterogeneity
of potential treatment status permitted in the �rst stage; it requires that all individuals whose
behavior is changed by the results of the lottery behave consistently with respect to take-up.
Provided these four conditions are satis�ed, β is properly interpreted as the average treat-
ment e�ect of moving to a more preferred school district for lottery compliers who applied
to over-subscribed districts that maintained and were willing to share high quality lottery
records. I save a discussion of heterogeneity and external validity for section 5.

I restrict the sample to the set of students appearing in my lottery data such that I observe
at least one pre and one post lottery test score. I drop students who received sibling preference
or applied late. When students apply to lotteries in multiple years, I randomly choose which
observation to use. I also drop all students involved in a lottery if I am unable to match at
least one student who receives a lottery o�er and one student who does not; otherwise, the
lottery would contribute no identifying variation to the estimate. Finally, I restrict the data
to the set of student-year observations occurring after the lottery randomization.

For the standard errors, I follow the design based approach of Abadie et al. (2017) and
cluster at the level at which treatment is assigned (i.e. the student). Other sensible approaches

13To be precise, a lottery is de�ned as the interaction of the grade, application district, and year where the
student appears in my lottery data.

14All speci�cations will include an average of all test scores observed prior to the lottery year; academic year
and grade �xed e�ects; indicators for PARCC testing; and indicators for whether or not a student was matched
to the state data via an exact or fuzzy process. One district asked students who were not given a random initial
o�er whether or not they wanted to be included on the waitlist before assigning them a random waitlist number;
I include an indicator where this happens in my data. However, the results are not sensitive to dropping these
observations. I also had a district that, for one lottery, indicated “admission rounds” in their lottery spreadsheet
without further explanation. For this reason, I also include indicators for these admissions rounds. The results
are not sensitive to dropping this lottery. See the online appendix for more detail.

15These include random initial o�ers of attendance, random o�ers from the waitlist, lottery numbers, and
waitlist numbers. However, 91% of the students in my estimation sample were involved in lotteries that used an
initial o�er mechanism. In practice, this instrument drives virtually all of the results I will present.
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Table 3: Test Score Results

Math English Language Arts
OLS RF FS 2SLS OLS RF FS 2SLS

Choice −0.005 0.16 −0.05 −0.01
(0.04) (0.08) (0.04) (0.08)

Initial O�er 0.08 0.51 0.001 0.51
(0.04) (0.03) (0.04) (0.03)

Waitlist O�er −0.10 0.96 −0.19 0.96
(0.13) (0.05) (0.21) (0.05)

Lottery Number −0.004 0.01 0.004 0.01
(0.004) (0.004) (0.004) (0.004)

Waitlist Number 0.01 0.02 0.01 0.02
(0.01) (0.01) (0.01) (0.01)

F-Stat Excluded Instruments 120.9 120.9 120.1 120.1
Observations 1705 1705 1705 1705 1705 1705 1705 1705
Observations (students) 966 966 966 966 969 969 969 969
Adjusted R2 0.67 0.67 0.33 0.66 0.56 0.56 0.33 0.56

would be to cluster at the school-by-grade level, as in Angrist, Pathak & Walters (2013) or at
the level of the lottery. In practice, neither of these alternatives materially change the standard
errors.

4.2 District Choice Bene�ts the Average Student who Participates

I begin with results on test scores. Table 3 shows ordinary least squares, reduced form, �rst
stage and two-stage least squares results side-by-side for my baseline speci�cation. The two-
stage least squares estimates imply that the causal e�ect of moving to a more preferred district
is to increase math test scores by 0.16 standard deviations. There is no detectable impact on
English Language Arts.

The e�ects in table 3 are large in both absolute terms and relative to the existing liter-
ature on choice between traditional public schools. The unadjusted black-white test score
gap in Massachusetts in 2016 was 0.56σ ; hence the point estimate from inter-district choice
represents approximately 30% of that gap. Prior lottery evaluations of choice between tra-
ditional public schools have examined the impact that attending a student’s most preferred
school has on test scores within the context of large, urban district assignment algorithms. In
that environment, attending a most preferred school in does not typically impact test scores
(Cullen, Jacob & Levitt 2006, Hastings, Neilson & Zimmerman 2012, Deming et al. 2014). For
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Table 4: Coursework Results

Class Type Indicator
AP Remedial General Advanced

Choice 0.14 −0.07 0.01 0.20
(0.06) (0.03) (0.01) (0.05)

Mean Dependent Variable 0.19 0.09 0.99 0.28
Observations 809 2,418 2,418 2,418
Observations (students) 470 933 933 933
Adjusted R2 0.26 0.12 0.04 0.36

additional speci�cations where I include pre-determined student level controls, as well as ro-
bustness checks using student �xed e�ects to achieve identi�cation via trend changes across
lottery winners and losers, see the online appendix.

Next I examine the impact that moving to a more preferred district has on coursework. For
the coursework regressions, I am forced to drop a small number of students that only appear
in the sample frame prior to the �rst year MA DESE kept student level records on courses
taken. Table 4 presents results from the baseline two stage least squares using as an outcome
indicators for whether the student was enrolled in coursework labeled as Advanced Place-
ment (AP), Remedial, General, or Advanced. AP classes consist of a nationally recognized
curriculum known for rigor and college preparedness. Remedial, General, and Advanced are
designations from the state of Massachusetts. When examining AP coursework, I restrict the
sample to years when students appear in grades 11 and 12, since access to AP coursework is
uncommon at earlier grades.

Table 4 tells a consistent story: moving to a more preferred district increases the quality
of coursework that a student takes. There is a substantial increase in the probability that
students enroll in advanced and AP coursework, and a moderate decrease in the probability
that a student enrolls in a remedial class. In the online appendix, I present additional results on
coursework using intensive margin variation which suggests that the pattern of substitution
moves children from remedial to general coursework, and from general to advanced.

Finally, I present results pertaining to the impact of inter-district choice on graduation and
college attendance. For table 5, I restrict the data to the sample of students whose on-time
graduation date relative to their lottery grade-year is 2016 or prior. Since the estimates are
imprecise, I present both the reduced form and two-stage least squares estimates. The point
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Table 5: Post-Secondary Outcomes Results

Post-Secondary Outcome
Graduate Attend-2yr Attend-4yr

Initial O�er 0.02 −0.05 0.04
(0.03) (0.05) (0.04)

Choice 0.03 −0.08 0.06
(0.05) (0.08) (0.07)

Observations (Students) 518 518 518 518 518 518
F-Stat Exluded Instruments 226.75 226.75 226.75
Dependent Variable Mean 0.88 0.88 0.39 0.39 0.61 0.61
Adjusted R2 0.05 0.05 0.06 0.06 0.21 0.21

estimates from table 5 suggest that students who participate in inter-district choice are more
likely to graduate from high-school and less likely to attend a two-year college. However, the
decline in two-year attendance is approximately compensated for by an increase in four-year
college attendance. This suggests that lottery winners are substituting four year college for
two year college. Combined with the results on coursework, it is tempting to conclude that
this is coming from the increase in college application competitiveness that access to advanced
and AP coursework bestows upon lottery winners. However, this is purely speculative. It is
not possible to rule out other potential mechanisms or even the absence of an e�ect.

5 School Quality and External Validity

A minimum de�nition of school quality is that it is equal to the expected test score gain a
student randomly selected from the population would experience if sent to that institution.16

It follows that to credibly relate estimates of test score gains from choice lotteries to school
quality, we need to know if the local average treatment e�ect (LATE) identi�ed with the lot-
tery is equal to the average treatment e�ect (ATE) for the relevant student population. Thus
whether, and to what degree, the program evaluation results presented in section 4 commu-
nicate information about school quality is at its core a question about externally validity.

16I call this a minimum criterion because, in the presence of treatment e�ect heterogeneity, it is not obvious
how to properly de�ne school quality. A stronger, but somewhat more natural, criterion would be that a school
is higher quality if it bene�ts every student in the population relative to the reference school; however, the
weaker criterion is still a reasonable measure for many practical applications despite the fact that optimal policy
should, to the greatest degree possible, account for observed heterogeneity rather than rely on averages.
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Of particular concern for the external validity of choice lottery estimates is the potential
for test score gains to emerge from Roy selection. Simple models of economic behavior would
predict that families should use inter-district choice to sort students to schools on the basis of
potential bene�t (Hoxby 2000). This selection on gains will drive a wedge between the LATE
and the ATE by ensuring that students with higher average bene�t are disproportionately
likely to apply for inter-district choice, accept admissions o�ers, and subsequently remain in
the program. Thus school choice can generate positive test score gains even when there are
no quality di�erences across schools.

It is possible to test for this sorting under weak conditions. Consider the following simple
version of the potential outcome framework:

yi = diy
1
i + (1 − di )y0i = βidi + y

0
i (3)

Were yi is the observable test score of student i , di is a treatment indicator denoting whether
the student accepted an o�er to switch schools, (y1i ,y

0
i ) represents the student’s test score in

the treated and control state respectively, and βi = y
1
i − y

0
i is the bene�t of the program to

student i . Let τi denote an indicator for whether or not a student applied to the program.
Then a necessary condition for the LATE to be externally valid is that application and

take-up behavior are unrelated to potential bene�t:

βi ⊥ (di ,τi ) (4)

In general, a linear extrapolation is appropriate to any sub-sample of the population where
this condition holds. Hence, I will refer to condition (4) as weak linearity.

With a rich model of heterogeneity, I can test weak linearity under weak conditions. With-
out loss of generality, suppose I am interested in testing for selection on post-lottery take-up
behavior (di ). Then weak linearity implies that E(βidi ) = 0; however, βi is unknowable and
hence we cannot test this implication directly. Instead, let k = k (Xi ) be an injective mapping
between covariates and student types as indexed by k . Suppose βi = βk + vi where βk is the
treatment e�ect for students of type k . Now I can test whether:

E(βkdi ) = 0 (5)
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A �nding that E(βkdi ) , 0 would imply a violation of weak linearity except in the knife-
edge case where the correlation between take-up behavior and the observable heterogeneity
is exactly o�-set by the correlation between take-up and the unobserved heterogeneity.17 In
practice, this is the test I will take to my data in section 7. In order to implement it, however,
I will �rst need to estimate the observable heterogeneity (βk ).

6 Estimating Treatment E�ect Heterogeneity

In order to understand the relation between potential bene�t, application, and take-up behav-
ior, I need to estimate a rich model of treatment e�ect heterogeneity. However, my estimation
sample is only moderately sized (≈ 1, 000 students), and I am using a noisy estimation pro-
cedure (two-stage least squares). This makes it di�cult to precisely estimate the necessary
number of interaction terms.

To overcome this technical challenge, I develop a new empirical-Bayes type estimator that
uses non-experimental data to increase the precision of quasi-experimental estimates. The
model assumes a hierarchical structure for the heterogeneity. This allows the posterior mean
of the experimental estimates to incorporate information from the non-experimental data.
The resulting estimator swaps noisy experimental variation for precise non-experimental
variation according to the correlation of the heterogeneous e�ects across samples. The esti-
mator is consistent under the same conditions as IV and, under the joint normality assumption
required for the hierarchical model, it is more e�cient. I also provide simulation evidence that
the estimation procedure dominates standard methods on mean squared error.

6.1 A Hierarchical Model of Heterogeneous E�ects

Suppose that we wish to estimate treatment e�ect heterogeneity in a population with I ob-
servations. Further, assume that a subset of size E from this population are exposed to some
quasi-experiment, while the remaining N = I − E are not. Let k = k (Xi ) be an injective
mapping between covariates Xi and a student’s type as indexed by k .

Suppose we are interested in estimating the following model:
17More precisely, E(βkdi ) = −E(vidi ) implies that it is possible to �nd E(βkdi ) , 0 even when the data

generating process exhibits no selection on gains.
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yi = βidi + ui (6)

βi = βk +vi (7)

Here, βk is the local average treatment e�ect for individuals of type k identi�ed via the quasi-
experiment (e.g. a lottery design). Let β̂e

k
denote the estimate of βk from the quasi-experiment,

and let β̂n
k

denote an estimate using only observational data (e.g. a lagged test score model
using the N observations not exposed to the experiment). Let the joint asymptotic distribution
of the estimators be given by:



β̂e
k

β̂n
k


a
∼ N *

,



βk

βk + bk


,Ωk

+
-

(8)

Where bk is the di�erence between the local average treatment e�ect βk identi�ed by the
quasi-experiment and the estimand of the observational design. Note that up to this point,
we have not assumed anything beyond what is ordinarily required for identi�cation and in-
ference.

In general, the econometrician may prefer the experimental estimates because with a com-
pelling quasi-experiment these should be unbiased (or at least consistent) for the local average
e�ect of interest. However, if the experimental sample E is small, or if the quasi-experiment
requires a noisy technique such as IV (or both), the estimated heterogenous e�ects may still
be far from the local average e�ect due to sampling variation. At the same time, the non-
experimental estimates will be inconsistent for the local average e�ect in general. Despite
this fact, the non-experimental estimates can still contain valuable information useful for
pinning down the heterogeneous e�ects in the experimental sample. Intuitively, realizations
of the estimators (β̂e

k
, β̂n

k
) that are highly correlated are unlikely to emerge from chance alone.

Hence such a realization should give the econometrician more con�dence that the point es-
timates from the experiment are close to the local average e�ect of interest. The following
model formalizes this intuition.

Assume a hierarchical model for the estimands of the experimental and non-experimental
designs:
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βk

βk + bk


∼ N *

,



β0

β0 + b0


, Σ+

-
(9)

Where β0 is the center of the distribution of the heterogeneous e�ects identi�ed by the exper-
iment, and b0 is the di�erence between the centers of the experimental and non-experimental
distributions. The assumption that the estimands are jointly normal induces a Bayesian struc-
ture:

P *
,



βk

βk + bk



����



β̂e
k

β̂n
k


+
-
∝ P *

,



β̂e
k

β̂n
k



����



βk

βk + bk


+
-
P *

,



β0

β0 + b0


+
-

(10)

With the parent distribution from the hierarchical model taking on the role of the prior. Spec-
ifying the joint distribution of the estimands in this way allows the posterior mode of the
experimentally identi�ed heterogeneous e�ects to be in�uenced by the realization from the
non-experimental sample in a way that I will make precise later. First, I discuss identi�cation.

Observe that in order to operationalize this model empirically, I will need values for Ωk ,
Σ and (β0, β0 + bk ). One option would be to specify a prior on these parameters and esti-
mate the model in a fully Bayesian framework. Another option, and the one I pursue in this
paper, is to estimate these quantities from the data and thus implement the model via an
empirical-Bayes procedure. The main advantage of this approach is that I will be able to pro-
vide a simple analytical representation of the resulting estimator that makes transparent how
the non-experimental variation is used to inform the posterior mode. The center of the joint
distribution (β0, β0 + bk ) is identi�ed via the corresponding pooled regressions that assume
no heterogeneity (i.e. βk = β). The population covariance matrix Σ is identi�ed by calcu-
lating the cross-design variance-covariance matrix: cov (β̂e , β̂n ). And the joint asymptotic
covariance matrix is calculated from the residuals of the experimental and non-experimental
heterogeneous e�ects regressions.18 For more detail, see the online appendix.

From equation (10), we can use standard properties of the multi-variate normal distribu-
tion to calculate the posterior-mode of βk as follows:

18When the quasi-experimental estimates are generated via ordinary least squares (as opposed to IV or 2SLS),
this is analogous to estimating the covariance matrix of a seemingly unrelated regression model via Zellner
(1962).
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βsk = β0 + αk (β̂
e
k − β0) + δk (β̂

n
k − β0 − b0) (11)

Equation (11) consists of three terms. The �rst term (β0) anchors the estimator to the cen-
ter of the experimental distribution. The next two terms consist of a weighted average of
the experimental variation in the heterogeneous e�ects (β̂e

k
− β0) and the non-experimental

variation (β̂n
k
− β0 − b0). For now, assume the o�-diagonal elements of Ωk are zero as would

typically be the case when the observations in the experimental data are not also included in
the non-experimental data.19 The weights are given by:

αk =
ϕkn − ρ

2

ϕknϕ
k
e − ρ2

(12)

δk =
ρ
(ωk

e )
2

σeσn

ϕknϕ
k
e − ρ2

(13)

Where ρ ≡ corr (βk , βk+bk ) is the correlation between the experimental and non-experimental

estimands and ϕkj ≡
σ 2
j +(ω

k
j )

2

σ 2
j

is the inverse of a standard empirical Bayes weight,20 commonly

referred to as the signal to noise ratio. The parameters (ωk
e ,ω

k
n ,σe ,σn ) come from the diagonals

of Ωk and Σ. When ρ = 0, the system decouples and equation (11) reduces to a standard
empirical-Bayes estimator applied to the experimental data alone. Otherwise, the resulting
estimate is a mixture of the two sources of variation. I show in the online appendix that after
plugging in the empirical counterparts for (αk ,δk , β0, β0 + b0), the resulting posterior modes
are consistent under the same conditions as IV21 and, under the normality assumption on
the parent distribution, more precise than standard two-stage least squares. I also provide
simulation evidence that the consensus estimates using all the data dominate the individual
estimators (and their decoupled empirical-Bayes counterparts) on mean squared error. See
the online appendix for more detail.

19For a more general expression, see the online appendix.
20Here j = e and j = n refer to the experimental and non-experimental weights respectively
21While this is true, a better model for the large sample behavior of this estimator might be to �x the ratio of

the sample size between the experimental and non-experimental data. This should slow the rate of convergence
for the experimental sample and thus preserve the experimental / non-experimental sample size disparity in the
limit. However, this is left for future work.
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6.2 Estimating Student Heterogeneity in Practice

In practice, I want to estimate a rich model of student level treatment e�ect heterogeneity
using all of the available covariates at my disposal. However, some of these covariates are
continuous or have many support points. Thus constructing indicators for student types
based on their full interaction is infeasible. For this reason, I assume the heterogeneity takes
the following form:

βit = βk (Xit ) +vit = α0 + αXit +vit (14)

The vector Xit includes student age, indicators for race / ethnicity; lagged values for atten-
dance, days suspended, and test scores; and lagged indicators for whether the student received
a subsidized lunch or was diagnosed with a disability.

Moving to a two-stage least squares framework, this yields the following model for the
experimental data:

yit = δ0 + δ` + βkdit + γwWi + γxXit + ϵit (15)

βk = α
e
0 + α

eXit +vit (16)

dit = δ
′
0 + δ

′
` + π0Zit + πXitZit + γ

′
wWi + γ

′
xXit + ηit (17)

Note that in equation (16), I have added the superscript e to distinguish the important param-
eters estimated from the experimental data from those estimated using the non-experimental
data (which I will superscript by n). In practice, I plug equation (16) into equation (15) and
proceed with two-stage least squares to estimate (αe0,α

e ) via the corresponding interaction
terms.

For the non-experimental data, I consider the following model:

yit = δh + δд + δt + βkdit + θxXit + uit (18)

βk = α
n
0 + α

nXit +v
′
it (19)

Where δh , δд, and δt are home district, grade, and academic year �xed e�ects respectively.
In practice, I plug equation (19) into equation (18) and proceed with ordinary least squares
to estimate (αn0 ,α

n ) via the corresponding interaction terms. Thus the comparison I have
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Table 6: Comparison of Pooled Models

Standardized Math Test Score
2SLS OLS

Choice 0.19 0.08
(0.08) (0.003)

F-Stat Excluded Instruments 149.79
Observations 1,705 6,549,952
Observations (Students) 966 1,784,770
Adjusted R2 0.68 0.44

in mind with equation (18) is between two children who would by default be assigned to the
same grade and district during academic year t and who have similar values for the covariates
Xit ; however, the �rst child has left the home district via inter-district choice (dit = 1), while
the second has not (dit = 0). Note that I drop all students used in the quasi-experiment to
estimate (αe0,α

e ) from the observational sample used to estimate (αn0 ,α
n ).

Before proceeding to the fully heterogeneous models, I �rst present a comparison of es-
timates from the fully pooled versions that assume no heterogeneity (i.e. αe = αn = 0). The
coe�cients on the treatment indicator from these pooled regressions are the estimates of β0
and β0 + b0 that I use in the parent distribution when estimating the cross-design posterior-
modes. Table 6 contains the results. Note that the estimate of β0 here using two-stage least
squares is di�erent from the estimate of β0 found in the program evaluation due to the inclu-
sion of the vector Xit in equation (15). The non-experimental estimate appears to indicate a
moderate bene�t to participating in inter-district choice. However, the point estimates across
designs are quite far apart.

Next I estimate the fully heterogeneous models. Figure 6 plots the predicted treatment
e�ects from the non-experimental model against the predicted treatment e�ects from the
experimental model over the support points ofXit contained in the experimental data.22 While
the two sets of estimated treatment e�ects are not one to one, there is still a moderately strong
relationship between them. The correlation between the two sets of estimates is 0.35. This
suggests that knowledge of the heterogeneous e�ects from the non-experimental model is
informative about the value we would expect in the experimental model. Hence, it seems

22To be precise, the experimental treatment e�ect is given by β̂ek = α̂e0 + α̂
eXit and the non-experimental

treatment e�ect is given by β̂nk = α̂
n
0 + α̂

nXit where Xit comes from an observation in the lottery sample.
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Figure 6: Correlation Across Experimental and Non-Experimental Models

reasonable to use a hierarchical model to incorporate information from the non-experimental
data into the estimates.

Next I estimate the consensus posterior-modes. Figure 7 provides a visualization of how
the estimator mixes the two sources of information in practice. For each support point Xit

in the experimental data, �gure 7 plots its rank in the distribution of experimental treatment
e�ects against the predicted treatment e�ect from the experimental model (denoted by purple
circles), the non-experimental model (denoted by green triangles), and the consensus poste-
rior mode (denoted by yellow squares).23 Thus we can observe directly, for each observation
in the data, how much mixing occurs between the experimental and non-experimental pre-
dicted values.

Finally, I will note here that in principle is also possible to extract implied consensus re-
gression coe�cients from the estimated posterior modes.24 Thus it is also possible to see
directly how much of the consensus estimate is driven by the underlying sources of hetero-
geneity. This is useful when the sources of heterogeneity are themselves relevant for policy. In

23I trim a small number of observations whose predicted value in the experimental sample would be less than
negative one. I do this to keep the scale of the y-axis small, which makes it easier to see in the �gure how the
consensus posterior modes mix the corresponding experimental and non-experimental estimates.

24These are just a linear combination of the posterior modes α̂ s = (X ′X )−1X ′β̂s and hence have a known
distribution.
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Figure 7: Visualizing Cross-Design Mixing

the online appendix, I provide simulation evidence that both the predicted heterogeneous ef-
fect and the implied consensus regression coe�cients do better than their IV, OLS, or standard
empirical-Bayes counterparts on mean squared error relative to the corresponding population
values. For a more detailed examination of the factors driving the observed heterogeneity in
my data, see the online appendix.

7 Inter-district Choice and Roy Selection

In this section, I examine the consequences that Roy selection has for the interpretation of
the program evaluation LATE identi�ed with the lottery. To test for selection on gains, I
examine three phases of the admissions process and, in each case, I �nd that treatment e�ect
heterogeneity is predictive of the take-up decision. First I examine the sub-population of
students who have already taken up o�ers to switch districts. I �nd that students who are
negatively impacted by the program are more likely to subsequently return to their home
district. Second, I re-examine the �rst stage of the two-stage least squares estimates from the
program evaluation. I �nd that holding constant the outcome of the lottery, students who are
negatively impacted by the program are less likely to take-up treatment. Third, I extrapolate
treatment e�ects to the pool of students who were eligible to apply for the school choice slots
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in my lottery data. I �nd that students who would be negatively impacted by the program are
less likely to apply.

I conclude by using observed heterogeneity to extrapolate the average bene�t of inter-
district choice to students that took up o�ers of treatment, to students that applied, and to
students that did not apply. I �nd that 38% of the treatment e�ect for the treated comes from
post-lottery selection into enrollment and that 78% of the treatment e�ect for applicants is
driven by pre-lottery selection into the applicant pool. Almost none of the lottery LATE is
attributable to di�erences in average quality across districts.

7.1 Testing for Selection on Gains

Recall from section 5 that for a lottery estimate to identify educational quality di�erences, it
must be the case that weak linearity holds: individual bene�t (βi ) is unrelated to both pre-
lottery application behavior (τi ) and post-lottery take-up behavior (di ). Hence we should
expect to �nd patterns of treatment e�ect heterogeneity that are consistent with no selection
on gains: E(diβi ) = E(τiβi ) = 0. Since individual potential bene�t (βi ) is unobserved, I cannot
test for selection on gains directly. Instead, I will test E(βkdi ) = 0 and E(βkτi ) = 0, where
βk is the observable heterogeneity. This is a valid test for selection on gains provided we
rule out the knife edge case where the correlation between take-up behavior and unobserved
heterogeneity exactly o�-sets the correlation between take-up behavior and the observed
heterogeneity.

This discussion motivates tests of weak linearity via models of the following form:

di = α + ρβk + ϵi (20)

Where ρ , 0 indicates a failure of weak linearity, and ρ > 0 implies Roy selection. However,
the parameter ρ is di�cult to interpret directly since βk is measured in units of standardized
test score gains.

Another natural test of selection on gains is to ask whether students who would be neg-
atively impacted by the treatment are less likely to apply or to take it up. This motivates
models of the following form:

di = α + ρ1(βk < 0) + ϵi (21)

Here ρ , 0 implies a violation of weak linearity, with ρ < 0 indicating Roy selection. Speci-
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�cations like (21) have the advantage of a straightforward interpretation.

7.2 Assessing the Impact of Roy Selection

First, I restrict the sample to students that I use for lottery estimation and who also accept an
o�er to enroll in a district outside of their home district. I then restrict the data to student-
years after the �rst post-lottery year and estimate the following model:

dit = δд + δd + δt + ρβ̂k + ϵit (22)

Where δд, δd and δt are grade, district, and academic year �xed e�ects; dit is an indicator
for whether student i participated in choice in year t ; and β̂k is the estimated heterogeneous
treatment e�ect. With model (22), the comparison I have in mind is between two students
who accepted lottery o�ers and are now attending school under the choice program in the
same grade, district and year. The parameter ρ tells me whether students with high potential
test score gains are more likely to remain in the program relative to those with low potential
test score gains.

To look at the participation decision, I use the entire lottery estimation sample and revisit
the �rst stage of the two-stage least squares, but now including β̂k as a predictor:

dit = δ
′
0 + δ

′
` + ρβ̂k + πZit + γ

′
wWi + ηit (23)

The comparison I have in mind with model (23) is between two students who entered the
same lottery and had a similar lottery outcome. The parameter ρ tells me whether students
with high potential bene�t are more likely to take up treatment than those with low potential
bene�t.

Finally, I wish to compare the potential bene�t of students who applied to the inter-district
choice program to those who were eligible to apply but did not. In theory, every student in
the state is eligible to enter every lottery. In practice, commuting costs make it unreasonable
for students to apply to choice spots far away from their home. To �nd a reasonable group of
comparison students, I use the empirical distribution of home districts for each lottery25 and
only consider students in the relevant grades / districts. Since the pool of eligible students

25In other words, if only students from districts A and B appear in lottery 1, I only consider students from
districts A and B as lottery eligible for the purposes of �nding a comparison group.
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is large, I use a randomly chosen 1% sub-sample within grade, year, and district. I consider
all students that appear in my lottery estimation sample as having applied.26 I then estimate
models of the following form:

τi = δд + δd + δt + ρβ̂k + ϵi (24)

Where δд, δd and δt are grade, district, and year �xed e�ects and τi is an indicator for whether
student i did, in fact, enter the lottery for which they were eligible. With model (24), the
comparison I have in mind is between two students currently in the same grade, district, and
year who are eligible to enter one of the lotteries in my sample. The parameter ρ tells me
whether the students with high potential bene�t are more likely to apply.

For all three models, I also estimate speci�cations where I replace β̂k with an indicator
for negative potential bene�t 1(β̂k < 0). As I argued in the previous section, the magnitudes
in these models are easier to interpret. For a general discussion of the procedure I used to
estimate β̂k , see section 6. To ensure there is no mechanical correlation between the partici-
pation indicators (dit ,τi ) and the estimated heterogeneity (β̂k ), I calculate the heterogeneous
e�ects for these models using a leave-lottery out jack-knife procedure (in the case of the ob-
servations in the lottery data) or a split sample procedure (in the case of the non-experimental
observations). See the online appendix for more detail. I calculate asymptotic standard er-
rors clustered at the student level and, to account for the increased variability introduced by
the generated regressor, I also calculate standard errors using the parametric bootstrap by
resampling from the distribution of β̂k . In all cases, I choose the most conservative value.

Table 7 reveals important selection at each stage of the admissions and enrollment process.
Students with a negative predicted treatment e�ect are 17% less likely to apply. Conditional on
applying and receiving a randomly assigned o�er, they are 5% less likely to enroll. Conditional
on enrolling, they are 8% less likely to continue in the program. These results continue to hold
in the reduced form linear speci�cation.

Taken together, the results in table 7 suggest it is unlikely that potential bene�t is un-
related to application and take-up. This implies that the program evaluation LATE is not
externally valid and hence unrelated to school quality. However, if the component of selec-
tion on gains that is driven by the sorting of students to schools is small, it is possible that
the LATE identi�ed by the lottery is still “close” to the quantity of interest in the sense that

26I continue to exclude students that received preferences in the lottery or applied late, and I also continue to
exclude students that were missing a baseline test score since I am unable to calculate the necessary heteroge-
neous e�ect.
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Table 7: Testing for Selection on Gains

Take-up Indicator
Continue Participate Apply

Heterogeneous E�ect 0.10 0.15 0.32
(0.07) (0.10) (0.05)

Heterogeneous E�ect < 0 −0.08 −0.05 −0.17
(0.03) (0.04) (0.02)

Subsample Ever-Enrolled Ever-Enrolled Applicants Applicants Eligible Eligible
Observations 860 860 1,621 1,621 2,730 2,730
Observations (students) 395 395 894 894 2,730 2,730
Dependent Variable Mean 0.85 0.85 0.46 0.46 0.38 0.38
Adjusted R2 0.38 0.38 0.32 0.32 0.21 0.22

the majority of the estimated e�ect could still be driven by average quality di�erences across
schools.

To quantify the magnitude of the wedge induced by the Roy selection, I average the pre-
dicted heterogeneous e�ects for three sub-populations: the treated, the applicants, and the
non-applicants. For this exercise to be valid, the extrapolation from the complier population
to the applicants and non-applicants must be accurate conditional on the observed hetero-
geneity. This will be the case when there is no selection on the unobserved heterogeneity:
vi ⊥ (di ,τi ) = 0. This assumption is unlikely to be true. However, I note that this assumption
is strictly weaker than the stronger weak linearity assumption that implicitly drives much of
the interpretation of lottery estimates in the literature. Thus the exercise generates value by
demonstrating in practice how far from the truth estimates that do not account for hetero-
geneity can be.

I �nd that virtually all of the test score gains generated by inter-district choice are driven
by selection. The average treatment e�ect on the treated27 is .11σ , the average treatment
e�ect for applicants is .08σ , and the average treatment e�ect on non-applicants .02σ . This
suggest that 38% of the treatment on the treated comes from post-lottery selection into the
program, and that 78% of the treatment e�ect for applicants is driven by selection into the
applicant pool.28 The point estimates suggest that at most 18% of the LATE can be attributed

27There are three possible explanations for why the estimate here is lower than the program evaluation LATE:
1) it is constructed with the consensus posterior modes and hence shrunk towards the non-experimental esti-
mate, 2) it is a student weighted average as opposed to a conditional variance weighted average, and 3) it includes
the extrapolated e�ect to always takers, instead of being solely based on compliers.

28There were over 170,000 eligible applicants which is large relative to the number that applied (≈ 1, 000).
Hence the treatment for the non-applicants is e�ectively the population average treatment e�ect in this case.
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to di�erences in average quality across sending and receiving districts.29 Finally, I will note
that if there is also selection on unobserved heterogeneity, we would expect the extrapolated
estimates presented here to be an upper bound. Thus I cannot rule out the possibility that the
entirety of the program evaluation LATE is the result of sorting.

8 What Can Lotteries Say About School Quality?

In this paper, I have shown how the sorting of students to school districts on the basis of
potential bene�t leads to lottery estimates of test score gains that have no straightforward
connection to school quality. I accomplish this in three steps. First, I document that the inter-
district choice program is substantially bene�cial to students who participate. Inter-district
choice increases math test scores and the quality of coursework students take as well as in-
creasing the probability a student graduates from high-school and goes on to attend a four
year college. Next, I provide a new method for estimating treatment e�ect heterogeneity.
This method leverages information contained in non-experimental data by positioning the
heterogeneity within a hierarchical model. The resulting estimator is a weighted average of
experimental and non-experimental variation, with the weights chosen according to the cor-
relation of the heterogeneous e�ects across samples. Finally, I show that the heterogeneous
treatment e�ects associated with inter-district choice predict student take-up behavior in a
manner that is consistent with Roy selection. I �nd that this Roy selection is responsible
for almost the entirety of the program evaluation treatment e�ect identi�ed with the lottery.
Taken together, these results suggest that research using lotteries to identify school quality
should exercise caution with regard to the external validity of their estimates.

The fact that families sort students to districts on the basis of potential bene�t �ts within
a broader pattern of facts in the literature which suggest that some of the gains to charter at-
tendance are conditional on initial selection into a large urban district. Within Boston, char-
ter takeovers and expansion generate lottery gains commensurate with already established
charters (Abdulkadiroglu et al. 2016, Cohodes, Setren & Walters 2018). This suggests that
the charter model generates a real quality di�erence for students within Boston. However,
the e�ect of charters in Massachusetts outside of urban areas is negative (Angrist, Pathak &
Walters 2013). Indeed, a recent meta-analysis of charter e�ectiveness found that controlling
for the quality of a student’s fall-back option attenuates much of the e�ect of factors associated
with the highly-touted set of charter teaching practices known as the “No Excuses” philoso-

29This is based on the ratio of the treatment for the treated and the ATE. If I use the program evaluation LATE
instead of the treatment on the treated, this number would change to 12.5%.

32



phy (Chabrier, Cohodes & Oreopoulos 2016). This is consistent with the idea that selection
across districts is an important mediator of e�ective educational practices. Why selection at
this more aggregate level leads to an equilibrium where some students in urban areas appear
to be so poorly served by the teaching methods of the traditional public education system
relative to charters is an open question.

Last, I will note that the patterns of heterogeneity and selection I �nd across districts
call into question the use of test scores for the purpose of evaluating and ranking schools.
As pointed out in Hoxby (2000), simple Tiebout models imply that in equilibrium students
should be sorted among districts based on school types and individual ability to bene�t. In a
world where test-score gains are driven by more aggregate levels of sorting, ranking schools
on the basis of test score gains is unlikely to be a useful exercise. Put simply, there are no
straightforward policy implications from the fact that Jane experiences smaller test score
gains at the school where she is best suited than Jill experiences at the school where she is
best suited. On the other hand, leveraging heterogeneity to design an education system that
provides students opportunities to better match with the education type that best suits them
seems like a promising area for future work.
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