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Abstract

We consider a discrete time mixed proportional hazard (MPH) model of duration.
We prove that the baseline hazard and the frailty distribution of unobserved heterogene-
ity are nonparametrically identified using multiple-spell data, and use this to develop
a GMM estimator of the baseline hazard. Our approach imposes no restrictions on
the shape of the baseline hazard or the unobserved frailty distribution, allows for com-
peting risks and spell-specific observable characteristics, and applies to right-censored
data. The GMM specification is linear in the baseline hazard, which makes estimation
and inference straightforward. We also develop tests of whether the MPH model is the
data generating process.

We apply our estimation procedure to the duration of price spells in weekly store
data from IRI. Our setup allows us to integrate filters for sale prices into our statistical
model. In contrast to most of the existing literature, we find substantial unobserved
heterogeneity, accounting for a large fraction of the decrease in the Kaplan-Meier haz-
ard over time. The baseline hazard of regular price changes is mostly flat except for a
notable spike near one year duration.
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1 Introduction

We propose and analyze a discrete time mixed proportional hazard (MPH) model for duration

data (Cox, 1972; Lancaster, 1979). We develop a simple and robust method for estimating

and testing the model using the Generalized Method of Moments (GMM).

We then study the elapsed time between price changes in a large panel of retail prices at

the universal product code (UPC) level. Using our method, we find a decreasing hazard of

price changes at the product level, but one that is much flatter than is found with commonly-

used methods. This reflects the fact that our approach uncovers evidence of much more

unobserved heterogeneity.

To better understand the decreasing hazard, we extend our model and estimation method

to a competing risks framework with spell-specific observable characteristics, which allows

us to distinguish between whether a price spell starts and ends with a price increase or a

price decrease. We find that the baseline hazard for spells which start and end with a price

increase is initially decreasing and is flat after duration of 6 weeks; the baseline hazard for

spells that end with a price decrease are slowly declining; and the baseline hazard for spells

that start with a price decrease and end with a price increase is sharply decreasing. We

relate these findings to existing theories of price rigidities.

The Discrete Time MPH. We start with a general description of the discrete time MPH

model. We assume that the probability that a price changes t periods after the last price

change, conditional on not having changed earlier, is equal to θbt. The frailty parameter

θ is product-specific and fixed over time for a product. We refer to it as the product type

and assume throughout that it is unobserved. The value of bt is the baseline hazard. It is

common across products, but can vary arbitrarily with the elapsed time since the last price

change. The MPH model assumes that, conditional on the product type θ, the durations of

any two spells are independently and identically distributed. Thus the model is completely

specified by a value of bt for each duration t and a distribution G for the frailty parameter

θ. Finally, we assume that the hazard θbt is bounded strictly above zero, which ensures that

all spells end in finite time.

We do two standard exercises with the MPH model. First, we compare the shape of the

baseline hazard bt as a function of t with the shape of hazards obtained in theoretical models

for a given product. For example, in Calvo (1983), each product has a constant hazard, and

in Golosov and Lucas (2007) each product has an increasing hazard. Second, we quantify the

importance of unobserved heterogeneity in shaping the Kaplan-Meier survivor function. Let

Ht be the hazard of the Kaplan-Meier survivor function, hereafter the Kaplan-Meier hazard,
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of those products with duration t. Then Ht = btE[θ|t] where E[θ|t] is the mean frailty

parameter among those products that have survived with unchanged prices until duration t.

Moreover, E[θ|t] must be decreasing with duration t, and more so if the distribution among

surviving types has higher variance. Thus, heterogeneity in the frailty parameter necessarily

pushes down the Kaplan-Meier hazard over time.

Estimation and Testing. In our methodological contribution, we adapt and extend

known results from the continuous time MPH model to our discrete time setup. This allows

us to frame estimation and testing as a GMM problem. First, we assume that the MPH

model is correctly specified only for a range of durations {T, . . . , T̄}. Then we turn the proof

of identification in Honoré (1993) into a large set of moment conditions for the vector of

baseline hazards b ≡ {bT , . . . , bT̄}. The conditions are linear in b. We prove global identi-

fication of the parameters of interest, which implies that our GMM estimator is consistent.

Importantly, the moment conditions give us a computationally straightforward and robust

nonparametric estimator of the baseline hazard. Finally, we prove that if T̄ > T + 1, the

number of linearly independent moments conditions is greater than the number of parameters

in the vector b, so the model is overidentified.

We then extend the basic framework to allow for competing risks and spell-specific ob-

servable characteristics and again propose a GMM estimator for this richer model.

Our estimator allows that each product i is observed by the researcher for ci periods,

which is arbitrarily correlated with i’s unobserved type θ. Depending on the censoring time

ci and the random realized duration of spells, the researcher observes Ki spells for product

i, with the last spell right-censored. We apply our results to estimate the T̄ −T + 1 baseline

hazards in the vector b.

By casting estimation and testing as a GMM problem, inference becomes straightforward.

In particular, estimating the baseline hazards b and obtaining their standard errors is com-

putationally feasible for data sets of any size and for any number of periods T = T̄ − T + 1,

since the moment conditions are linear in the parameter vector b. This method is much

simpler and more robust than commonly-used maximum likelihood alternatives. In partic-

ular, it is simpler in that linear GMM is guaranteed to find the minimum of the objective

function, even with a large data set and large number of periods T . Also it is robust, in that

it does not require us to assume a functional form for the frailty distribution.

Furthermore, we implement two tests of the underlying assumptions of the MPH model.

First is the Sargan-Hansen J-test for over-identifying restrictions. Second, in the model

without competing risks, we test a vector of inequalities describing dynamic sorting condition,

i.e. that the average surviving type, defined as E[θ|t], is decreasing in the duration t. We
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implement the multiple inequality test using the statistic developed by Chen and Szroeter

(2014).

Data. For our benchmark estimation, we use the IRI weekly store data, which record

weekly average revenue and weekly quantities. We define a product as a combination of a

store and UPC code. This is a large data set, covering 30 categories of mostly packaged

products, e.g. razor blades, coffee, beer, and frozen pizza. We define a “price spell” as the

time between two price changes of a product. We also explore a data set from Cavallo (2018)

which, while much smaller in size (250,000 products), has daily frequencies and arguably

much less measurement error.

Results. Figure 1 shows that the baseline hazard bt drops sharply for the first ten weeks

before it starts to flatten. In contrast, the Kaplan-Meier hazard Ht is steeply decreasing

throughout the first 40 weeks. Both hazards show a jump at durations around one year. As

a result, the average type E[θ|t] = ht/bt, which we normalize to 1 at t = 2, steadily decreases

to about 0.2 after one year. The patterns for the baseline hazard is common in most product

categories, and the one for the average type holds for essentially all categories.

We implement the J-test for the overidentifying restrictions on the baseline hazard and

we reject them at any conventional significance level with our data set. While visually the

average type seems to be decreasing, we reject the hypothesis that it is decreasing at all

durations due to very tight standard errors.

We then estimate a richer model of price changes. We assume that there are four dif-

ferent baseline hazards, distinguishing between whether a price spell starts and ends with

a price increase or price decrease, and use the competing risks framework with observable

characteristic to estimate them. We find that the baseline hazard for two consecutive price

increases is decreasing until duration of 6 weeks, is flat between 7 and 45 weeks, and then

shows a spike at around one year. This is consistent with models of price plans where a firm

switches costlessly between prices of a given price plan but faces some rigidity for switching

the plans. The baseline hazard for two consecutive price decreases is mildly decreasing until

duration of 60 weeks. We interpret these two hazards as representing regular price changes.

Even though the J-test rejects the MPH structure for these two risks, rejection is much

milder than in the baseline model. We also examine whether there is a systematic violation

of moment conditions for these two hazards, failing to detect any, leading us to conclude

that the MPH framework useful tool to study the data.

We interpret the remaining two hazards, one associated with a price increase following a

price decrease and vice-versa, as representing temporary price changes, including sales. We
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find that these hazards are steeply declining. The J-test strongly rejects these hazards as

having an MPH structure, especially at short durations, and we are therefore cautious in

interpreting this finding within existing theories.

An advantage of our setup is that it allows us to integrate filters for sales prices into our

statistical model. The usual approach is to first drop all prices associated with sales from

the data and conduct analysis with the remaining data. However, there is a concern that

doing so affects estimated stochastic process for the remaining prices. Our framework allows

us to model sales as part of the data. Importantly, it is not necessary to assume that sales

have an MPH structure in order to get consistent estimates for the baseline hazard of regular

price changes.

Given our use of a discrete time model, it is natural to wonder whether the results are

sensitive to the length of the intervening time period. Figure 5 shows that in Cavallo’s (2018)

daily data set, there are large spikes in the hazard of price changes every seventh day, while

the hazard is very low on the other days. This means that time aggregation remains an

important feature of the data on the days when most prices change. Put differently, it is

natural to measure price spells at the same frequencies that firms use to adjust prices.

Related Literature. Lancaster (1990) is one of the pioneers in the analysis of the con-

tinuous time MPH model. The main contributions in terms of non-parametric identification

using single spell and covariates are Elbers and Ridder (1982); Heckman and Singer (1984)

and Heckman and Honoré (1989) for competing risks models. The main contribution on

the non-parametric identification using repeated spells is Honoré (1993). Abbring and Van

Den Berg (2003) then extend this result to the competing risks model. Based on Honoré

(1993)’s identification argument, Horowitz and Lee (2004) develop an estimator for two-spell

data, and show how to conduct inference for the case of continuous time and continuous mea-

surement. Their estimator, like ours, does not require specification of the frailty distribution

and can be applied to censored data. The advantage of our estimator is that it is formu-

lated for the data measured in discrete times, which is the usual format of duration datasets

and that due its linearity, can use more than two spells in the estimation and is simpler to

implement.

On the application of duration data to price spells we, like many others, follow the seminal

work of Bils and Klenow (2004). Our findings in the IRI data give much more importance

to unobserved heterogeneity than the existing literature. Perhaps the most careful analysis

of the shape of the baseline hazards in the presence of unobserved heterogeneity for price

changes is Fougere, Le Bihan, and Sevestre (2007) and Nakamura and Steinsson (2008).

Nakamura and Steinsson (2008) conclude that the baseline hazard is steeply declining and
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there is not much heterogeneity across products. Our results suggest that the difference

between their finding and ours is the estimation method. They use the likelihood function

of a continuous time MPH model, but do not account for time aggregation in their duration

data. We show in the last section that ignoring time aggregation would significantly bias

our results and lead to similar conclusions.

The closest paper in terms of application is Fougere, Le Bihan, and Sevestre (2007) who

estimate the baseline hazard for almost 400 product categories of similar aggregation as

ours. They find very little evidence of unobserved heterogeneity within these categories.

They test whether the baseline hazard is constant and fail to reject this hypothesis in more

than half of the categories. These results contrast with ours. We think the main reason is

the lower frequency of their data (their price data is gathered monthly while ours is gathered

weekly), and more importantly, much fewer price spells per category, roughly three orders

of magnitude less than us. Hence, they have less power to reject the null hypothesis of a

constant baseline hazard. Fougere, Le Bihan, and Sevestre (2007) also specify and estimate

a competing risks model where a price spell can end with a price increase or a price decrease.

Differently than in our case, they estimate this model without unobserved heterogeneity

and conclude that this extension barely affects the shape of the baseline hazard. Finally,

they note that they could not find estimates for the competing risks model with unobserved

heterogeneity, i.e. for the majority of the categories they fail to reach a maximum. Our

GMM estimator is linear in the baseline hazard even in the competing risks extension, and

hence it is ensured to converge, since its computation involves a simple matrix inversion.

2 Discrete Time MPH

2.1 Model

We consider a set of products with measure 1. Each product has a fixed type θ with

cumulative distribution function G(θ), also known as the frailty distribution. The fixed type

may be correlated with some observable individual characteristics, but we are interested in

cases where the econometrician does not observe θ perfectly. For expositional simplicity, we

focus on the case where the econometrician does not observe any individual characteristics.

Time is discrete and the amount of time between price changes is a random variable

taking values in the positive integers {1, 2, . . . }. We call this elapsed time the spell length.

The MPH model specifies that conditional on a spell length at least equal to t, the probability

that the length is exactly t, i.e. the hazard at duration t, is the product of two components,

the product’s type θ and the baseline hazard bt, which is common to all products. We assume
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that the frailty distribution G(θ) has a bounded support [θL, θH ] where θL ≥ 0 and θHbt < 1

for all t = 1, 2, . . . .

The primitives of the model are the sequence of baseline hazards {b1, b2 . . . } and the

frailty distribution G. Together they determine the distribution of spell lengths τ in the

population. The duration distribution can be described by its cumulative distribution func-

tion, or equivalently, by its survival function Φ(t) ≡ Pr[τ > t], given by

Φ(t) =

∫ t∏
s=0

(1− θbs)dG(θ),

where for notational convenience we define b0 = 0.

Only the product of the baseline hazard bt and the type θ enters the survival function.

This implies that the model is homogeneous in {bt} and θ. That is, we can multiply the

baseline hazard at all durations by a positive multiplicative constant λ and divide the type

of each product by λ without affect the probability of any outcome. In what follows, we

therefore identify the baseline hazard up to a multiplicative constant.

The Kaplan-Meier hazard is the probability that the spell length is exactly t conditional

on it being at least t, but not otherwise conditional on the product’s type:

Ht ≡
Pr[τ = t]

Pr[τ ≥ t]
=

Φ(t− 1)− Φ(t)

Φ(t− 1)
= bt

∫
θ
∏t−1

s=0(1− θbs)dG(θ)∫ ∏t−1
s=0(1− θbs)dG(θ)

. (1)

This is the baseline hazard bt times the average type among those products with spell length

at least t,
∫
θ
∏t−1
s=0(1−θbs)dG(θ)∫ ∏t−1
s=0(1−θbs)dG(θ)

. This gives a clear decomposition of the evolution of the Kaplan-

Meier hazard Ht into the component explained by structural duration dependence, captured

through the baseline hazard bt, and the component explained by dynamic selection of het-

erogeneous products, captured through changes in average type over time.

An implication of the MPH model is that the average type declines with duration:

Proposition 1 The ratio of the Kaplan-Meier hazard to the baseline hazard, Ht/bt, is de-

creasing in t.

Proof. We let g(θ|t) be the distribution of θ among those products whose duration is at

least t,

g(θ|t) =

∏t−1
s=0 (1− θbs) g(θ)∫ ∏t−1
s=0 (1− θ′bs) g(θ′)dθ′

.
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Consider the ratio of the densities at two values of θ for a given t:

g(θ2|t)
g(θ1|t)

=
g(θ2)

g(θ1)

∏t−1
s=0 (1− θ2bs)∏t−1
s=0 (1− θ1bs)

=
g(θ2)

g(θ1)

t−1∏
s=0

1− θ2bs
1− θ1bs

.

If θ1 < θ2, 1 − θ2bs < 1 − θ1bs and so this is decreasing in t. It follows that, as t increases,

the distribution function G(θ|t) shifts towards lower θ in the sense of first order stochastic

dominance and so its mean falls. Thus, the average type
∫
θ
∏t−1
s=0(1−θbs)dG(θ)∫ ∏t−1
s=0(1−θbs)dG(θ)

is decreasing in

t. Using equation (1), this is equal to Ht/bt, and hence that ratio must decrease with t as

well.

This result reflects dynamic sorting and is intuitive: products with a higher type have a

higher chance of changing their price early and thus exit the pool of surviving products. As

duration increases, products with lower type disproportionately remain. Lancaster (1979)

discusses the same point in a related continuous time setup.

2.2 Identification with Multi-Spell Data

We now show that the model is non-parametrically identified with data on two spells. Define

the survival function Φ(t1, t2) = Pr[τ1 > t1, τ2 > t2] as the probability that the first spell

length is greater than t1 and the second spell length is great than t2.1 The MPH model

implies that

Φ(t1, t2) =

∫ ( t1∏
s=0

(1− θbs)

)(
t2∏
s=0

(1− θbs)

)
dG(θ). (2)

This captures the assumption that the length of the two spells is independent conditional

on the product type θ.

We show how to recover the baseline hazard b ≡ {b1, b2, . . . } and the frailty distribution

G from the survivor function Φ(t1, t2) for all (t1, t2) ∈ {0, 1, . . . }2, up to the aforementioned

multiplicative constant. Our proof is an adaptation of the identification result of Honoré

(1993) to the discrete time model.

Proposition 2 Assume bt > 0 for all t. The baseline hazard b and the frailty distribution

G are identified up to a multiplicative constant using the survivor function Φ(t1, t2).

Proof. We first show how to identify the baseline hazard and then show how to identify the

frailty distribution.

1If the duration distribution is defective, limt→∞ Φ(t) ≥ 0, there is a positive probability that we would
not observe a second spell. Nevertheless, the model allows us to construct Φ(t1, t2), even if it cannot be
observed with infinitely much data. Our estimator handles defective duration distributions.
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Baseline Hazard. The definition of the survivor function in equation (2) implies

Φ(t1 − 1, t2 − 1)− Φ(t1, t2 − 1) = bt1

∫
θ

(
t1−1∏
s=0

(1− θbs)

)(
t2−1∏
s=0

(1− θbs)

)
dG(θ), (3)

and symmetrically for Φ(t1 − 1, t2 − 1) − Φ(t1 − 1, t2). Thus using (t1, t2) = (t, 1) for some

t > 1,

Φ(t− 1, 0)− Φ(t, 0)

Φ(t− 1, 0)− Φ(t− 1, 1)
=
bt
∫
θ
(∏t−1

s=0(1− θbs)
)
dG(θ)

b1

∫
θ
(∏t−1

s=0(1− θbs)
)
dG(θ)

=
bt
b1

, (4)

where we simply cancel the common nuisance term. This equation determines bt/b1 for any

t > 1. Thus we have found the baseline hazard up to a multiplicative constant.

Frailty Distribution. Let µk ≡
∫
θkdG(θ) denote the kth moment of the G distribution.

It exists since the distribution is bounded. Once we know the baseline hazard b up to a

multiplicative constant, the model implies that the probability τ = t is a known function of

µk with k = 1, . . . , t,

Pr[τ = t] = bt

∫
θ
t−1∏
s=0

(1− θbs)dG(θ) = bt

t−1∑
k=0

αk(t− 1; b)µk+1, (5)

where for all t, k ≥ 1, the coefficients αk(t; b) are defined recursively as follows:

αk(t; b) =


1 if k = 0

0 if k > t

αk(t− 1; b)− btαk−1(t− 1; b) if t ≥ k > 1

(6)

We know b. Setting t = 1 in equation (5) gives us an equation for µ1. Having found

µ1, . . . , µk−1, setting t = k in equation (5) gives us an equation for µk. Thus by induction

we can find all the moments µk of G. Since the support of G is a bounded interval [θL, θH ],

its moments uniquely determine distribution G.

Proposition 2 is behind our approach to estimation, where we convert this logic into

moment conditions for the case where we have measures of the survivor function from a

finite sample. We turn to that next.
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3 Estimation and Testing

In this section, we turn the identification result in Proposition 2 into moment conditions,

and use GMM to non-parametrically estimate the baseline hazard and moments of the frailty

distribution. We work in a more general environment, where there is an MPH data generating

process for t ∈ {T, . . . , T̄} but not necessarily for durations outside this interval. More

precisely, let ht(θ) be the hazard at duration t for a product with type θ. For t ∈ {T, . . . , T̄},
we assume ht(θ) = θbt, but we allow for arbitrary ht(θ) ∈ [0, 1] outside this interval. For

notational convenience, let h0(θ) = 0 for all θ.

Our estimator works with right-censored duration data. It also allows for the possibility

that the duration distribution only satisfies the proportional hazard assumption at some

durations, that the distribution may be defective, and that some products may have only

a single spell. On the other hand, it uses the information from more than two spells when

that is available. Each of these possibilities is important in our empirical application.

3.1 Measurement

We start by layering measurement assumptions on top of the duration model. If we ob-

served a product i with type θi for infinitely long, we would see a vector of durations

τ i = {τ i1, τ i2, . . . , τ iK̄i}, where K̄i is either a positive integer or infinite. This allows for

the possibility that the duration distribution is defective,
∏∞

t=1(1−ht(θi)) > 0, in which case

K̄i is almost surely finite and τ iKi =∞; otherwise, K̄i =∞. In any case, for j < K̄i, τ ij is a

strictly positive integer. Thus in either case,
∑K̄i

j=1 τ
i
j =∞.

In real-world data, we do not observe any product for infinitely long. Instead, we assume

that we observe product i for ci periods, where the censoring time ci is a random variable,

possibly correlated with the product type. We assume that the first spell starts when we

first observe the product and ends τ i1 periods later, while the second spell ends τ i1 +τ i2 periods

after we first observe the product, and so on.2

Since the censoring time ci is finite, we only observe a finite number of spells, Ki ≤ K̄i

satisfying
∑Ki−1

j=1 τ ij ≤ ci and
∑Ki

j=1 τ
i
j > ci, with Ki = 1 if τ i1 > ci. Then measured duration

is a Ki-vector ζi ≡ (ζ i1, . . . , ζ
i
Ki), where for j = 1, . . . , Ki − 1, ζ ij ≡ τ ij is the completed

duration of the jth spell, and ζ iKi ≡ ci −
∑Ki−1

j=1 τ ij + 1 is a lower bound on the duration of

the final spell. Since
∑Ki

j=1 τ
i
j > ci, ζ iKi ≤ τ iKi .

2Data may also be left-censored, with an in-progress spell when we first observe the product. Without
knowing the duration of that initial spell, we cannot make use of the data it generates. Instead, we redefine
ci by subtracting the measured duration of the initial left-censored spell, i.e. by acting as if we only observe
the product once the next spell starts.
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We let P (c) denote the cumulative distribution of censoring times and let Gc̄(θ) denote

the frailty distribution conditional on ci ≥ c̄ for any duration c̄. We stress that θi captures

all factors which affect the true duration of spells τ i, with
∏t

s=0(1 − hs(θ
i)) denoting the

probability that each spell’s duration strictly exceeds t given θi. The censoring time ci affects

the measured duration of spells ζi.

We assume that the baseline hazard b0 = {b0,T , . . . , b0,T̄} is nontrivial, b0 6= 0, and let

T0 is the smallest t ≥ T with b0,t > 0. We then impose the following rank condition which

ensures that we have variation to estimate the baseline hazard:

Assumption 1 ζ1 = T0 and ζ2 ≥ T̄ with positive probability.

This ensures we have variation in the data to compare bT̄ to bT0 . It holds if and only if

(
1− P (T0 + T̄ − 2)

) ∫ T̄−1∏
t=1

(1− ht(θ))dGT0+T̄−1(θ) > 0.

This requires that the censoring time is long enough to allow us to observe a product with two

spells, one of which is completed with duration T0 and the other has duration at least equal

to T̄ . If this were violated, we would be unable to estimate baseline hazard at duration

T̄ relative to T0. It also requires that there is a positive probability that a product with

censoring time at least equal to T0 + T̄ − 1 has a spell that lasts at least T̄ periods. If this

were violated, we would naturally be unable to estimate bT̄ .

When this combination of assumptions determines the distribution of measured duration

ζ and the rank condition is satisfied, we say that ζ is drawn from a right-censored MPH

model with baseline hazard b0.

3.2 Moment Conditions for the Baseline Hazard

We now construct a consistent estimate of the baseline hazard when measured duration ζ

is drawn from a right-censored MPH model with baseline hazard b, up to a multiplicative

constant reflecting the standard lack-of-identification in the MPH model.

In Section 2, we argued that for any duration t1, t2 the model implies

Pr[τ1 = t1, τ2 ≥ t2]bt2 = Pr[τ1 ≥ t1, τ2 = t2]bt1 .

If we observed two completed spells per product, it would be straightforward to turn this

result into a moment condition:

E
[
1τ i1=t1,τ i2≥t2bt2 − 1τ i1≥t1,τ i2=t2bt1

]
= 0,

10



since expected value of the indicator function is the probability of the corresponding event.

Censoring affects our ability to use such conditions since τ i1 and τ i2 are not always observed.

In particular, there is no function of data that is equivalent to 1τ i1≥t1,τ i2=t2 . To see why, take

a product with τ i1 > ci ≥ t1, so the first spell is right-censored. This record does not depend

at all on τ i2 and in particular does not depend on whether τ i2 = t2.

We use two key observations to circumvent this. Consider a product where we observe

at least two spells, Ki ≥ 2. First, if ci ≥ t1 + t2, we can evaluate whether the event

τ i1 = t1, τ
i
2 ≥ t2 occurred using objects we observe. This is because we see the product for

long enough to tell if the first spell lasts exactly t1 periods; and if it does, we see it long

enough to tell if the second spell lasts at least t2 periods. The second is that the model

implies probabilities are symmetric across the two spells, so the events τ i1 ≥ t1, τ
i
2 = t2 and

τ i1 = t2, τ
i
2 ≥ t1 are equally likely. While we cannot evaluate an indicator function for the

first event, we can evaluate one for the second event for all individuals with ci ≥ t1 + t2.

This motivates the following moment condition:

E
[
1Ki≥2,ζi1=t1,ζi2≥t2bt2 − 1Ki≥2,ζi1=t2,ζi2≥t1bt1

]
= 0.

Our main result formalizes these observations and shows how to develop a moment condition

that uses information from two arbitrary spells, not just the first two spells:

Proposition 3 Assume ζ is drawn from a right-censored MPH model with baseline hazard

b0. Define

f
[b]
t1,t2(ζ; b) ≡

∑
(j,k):1≤j<k≤K

(
bt21ζj=t1,ζk≥t2 − bt11ζj=t2,ζk≥t1

)
. (7)

Then E
[
f

[b]
t1,t2(ζ; b)

]
= 0 for all T ≤ t1 < t2 ≤ T̄ if and only if b = λb0 for some number λ.

We postpone the proof of this Proposition, since we can obtain it as a special case of Propo-

sition 5 below. See Appendix A for the proof of that proposition and the explanation for

why Proposition 3 is a special case.

We use Proposition 3 to build a GMM estimator of b0 for some strictly positive λ. Let

T = T̄ − T . We have T (T + 1)/2 moment conditions of the form E
[
f

[b]
t1,t2(ζ; b0)

]
= 0 for

some T ≤ t1 < t2 ≤ T̄ , each linear in the T + 1 vector b0. The basic idea of GMM is

to replace the expected value with the sample mean, so we have the moment condition
1
I

∑I
i=1 f

[b]
t1,t2(ζ

i; b) = 0. We estimate b0 by minimizing the quadratic form of the error in the

moment conditions, weighted by a positive-definite matrix W . The “if” part of Proposition 3

gives us the necessary condition for this estimator to be consistent, while the “only if” part

gives us sufficiency. We discuss further details of the GMM estimator in Appendix B. Here we
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highlight one important feature of our approach: since the moment conditions in equation (7)

are linear in the baseline hazard, we obtain the GMM estimator of b0 in closed form.

We can also build on the proof of Proposition 2 to find moment conditions for the moments

of the type distribution. Unfortunately, unless we impose that the proportional hazard

structure holds at the shortest duration, T = 1, and that censoring time ci and type θi are

independent, these conditions are difficult to interpret. We therefore do not report them.

3.3 Testing

We recognize that the multiplicative structure of the MPH model might be restrictive and

hence propose two tests of the model. First, Proposition 3 gives us T (T + 1)/2 moment

conditions to estimate T parameters, where we recognize the unidentified scaling factor

λ. For T ≥ 2, the model is thus overidentified. We conduct the J-test of overidentifying

restrictions for the empirical counterpart of the baseline hazard. These conditions come

from the structure of the model and the fact that we have more moment conditions than

parameters.

Second, Proposition 1 tells us that the ratio of the Kaplan-Meier hazard to the baseline

hazard, Ht/bt, is decreasing in t. We seek to test this prediction, but first must discuss how

we estimate Ht. While the baseline hazard bt is the same for all products, the Kaplan-Meier

hazard depends on the type distribution of the products we are examining. Here we define

the Kaplan-Meier hazard for all products whose censoring time is at least equal to some c̄,

i.e. for the type distribution Gc̄(θ).
3 This is defined as

H c̄
t ≡

Pr[τ = t|c ≥ c̄]

Pr[τ ≥ t|c ≥ c̄]
=

Pr[τ = t, c ≥ c̄]

Pr[τ ≥ t, c ≥ c̄]
.

The second equation uses the definition of a conditional probability.

Now define H c̄ = (H c̄
T , . . . , H

c̄
T̄

). We can construct a consistent estimator of the Kaplan-

Meier hazard H c̄ for any c̄ ≥ T̄ . In particular,

Proposition 4 Assume ζ = (ζ1, . . . , ζK) is drawn from a right-censored MPH model with

Kaplan-Meier hazard H T̄
0 . Define

f
[H]

t,T̄

(
ζ;H T̄

)
≡ H T̄

t 1ζ1≥t,c≥T̄ − 1ζ1=t,c≥T̄ (8)

where c =
∑K

j=1 ζj − 1. Then E
[
f

[H]

t,T̄

(
ζ;H T̄

)]
= 0 for all T ≤ t ≤ T̄ if and only if

H T̄ = H T̄
0 .

3If we assume that censoring time ci and type θi are independent, then H̄c1 = H̄c2 for all c1, c2.
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We omit the proof, which is straightforward once one recognizes that the restriction c ≥ T̄ ≥ t

implies that τ1 ≥ t if and only if ζ1 ≥ t.

Finally, we test monotonicity of the ratio H T̄
t /bt by looking at the inequalities(

logH T̄
t − log bt

)
−
(

logH T̄
t+1 − log bt+1

)
≥ 0 ∀t = T, . . . , T̄ − 1.

This gives us T inequalities, which we test jointly using Chen and Szroeder (2009).

4 Extensions

We now consider two extensions to our basic model, allowing for spell-specific observable

characteristics which affect the hazard, and permitting competing risks for why a spell ends.

In our empirical application, the spell-specific characteristic is whether the spell starts with

a price increase or decrease; and spells end for one of those reasons as well.

4.1 Setup

We assume that each product is characterized by an unobserved type vector θ with pop-

ulation distribution G(θ). In addition, we assume that each product has an observable

characteristic for the jth spell, χj ∈ {1, . . . , X}.
Both the observed and unobserved characteristics affect the joint distribution of the

duration of a spell and the reason why the spell ends. We let hrt (χj,θ) ≥ 0 denote the

probability that a spell with observable χj and unobservable θ ends at duration t ∈ {1, 2, . . . }
for reason r ∈ {1, . . . , R} conditional on not ending earlier. χj captures all observables that

affect the hazard, and so in particular conditioning on past observables is not useful for

forecasting the hazard.4 Let ht(x,θ) ≡
∑R

r=1 h
r
t (x,θ) denote the probability of a duration t

spell ending in period t. We assume ht(x,θ) < 1 for all t, x, and θ.

The initial observable characteristic χ1 is a random variable. Let π1(x|θ) ≥ 0 denote

the probability that χ1 = x given θ, with
∑X

x=1 π1(x|θ) = 1 for all θ. Thereafter, the

observable characteristic follows a first order Markov process. Let π(x|χj−1, ρj−1,θ) ≥ 0

denote the probability that χj = x conditional on the reason the previous spell ended

ρj−1 ∈ {1, . . . , R}, the observable characteristic of that spell χj−1 ∈ {1, . . . , X}, and the

unobserved type,5 with
∑X

x=1 π(x|χj−1, ρj−1,θ) = 1 for all χj−1, ρj−1, and θ. We note that

4To be precise, let ĥrt (χ1, . . . , χj ,θ) denote the probability that a spell with current and lagged observables
χ1, . . . , χj and unobservable θ ends at duration t ∈ {1, 2, . . . } for reason r ∈ {1, . . . , R} conditional on not

ending earlier. Then we assume hrt (χj ,θ) = ĥrt (χ1, . . . , χj ,θ). One can view this as a definition of the
observable state χj .

5We assume a Markovian structure for notational simplicity, but can easily relax this assumption.
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we assume that the duration of one spell does not directly affect the duration of later spells,

i.e. we assume that there is no lagged duration dependence. Still, we allow for the possibility

that the reason one spell ends can influence the duration of the next spell. This is important

in our empirical application.

For at least one observable characteristic x, reason r, and set of durations {T, . . . , T̄},
we assume that there is a proportional hazard representation, hrt (x,θ) = φ(θ)bt for all

T ≤ t ≤ T̄ , where φ(θ) is a scalar function of the unobserved type vector θ and bt ≥ 0 for all

t ∈ {T, . . . , T̄}. We focus throughout on this pair (x, r) and seek to estimate b = {bT , . . . , bT̄}
up to a multiplicative constant.

We do not impose any restrictions on hr
′
t (x′,θ) for (x′, r′) 6= (x, r). However, we allow

for the possibility that multiple hazards have a proportional hazard representation, with

potentially different scaling functions φ and different baseline hazards b. In this case, we can

jointly estimate all the baseline hazards. We note, however, that even if all the hazards have

a proportional hazard representation, the hazard of a spell with characteristic x ending for

any reason, ht(x,θ), generally does not have a proportional hazard representation. Thus we

may reject the MPH model but not fail to reject this more general specification.

4.2 Identification

Consider a product with two spells that both have observable characteristic x. Take a pair

of durations satisfying T ≤ t1 < t2 ≤ T̄ . Using hrt1(x,θ) = φ(θ)bt1 , the model implies that

the probability that the first spell ends exactly at duration t1 for risk r, the second spell

lasts at least t2 periods, and both spells have observable x is

Pr[τ1 = t1, τ2 ≥ t2, ρ1 = r, χ1 = χ2 = x]

= bt1

∫
φ(θ)π1(x|θ)π(x|x, r,θ)

t1−1∏
s=1

(1− hs(x,θ))

t2−1∏
s=1

(1− hs(x,θ)) dG(θ).

Reversing the role of t1 and t2 gives

Pr[τ1 = t2, τ2 ≥ t1, ρ1 = r, χ1 = χ2 = x]

= bt2

∫
φ(θ)π1(x|θ)π(x|x, r,θ)

t2−1∏
s=1

(1− hs(x,θ))

t1−1∏
s=1

(1− hs(x,θ)) dG(θ).

Combining these two we get

bt2 Pr[τ1 = t1, τ2 ≥ t2, ρ1 = r, χ1 = χ2 = x]− bt1 Pr[τ1 = t2, τ2 ≥ t1, ρ1 = r, χ1 = χ2 = x] = 0,
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and so an appropriate moment condition is

E [bt21τ1=t1,τ2≥t2,ρ1=r,χ1=χ2=x − bt11τ1=t2,τ2≥t1,ρ1=r,χ1=χ2=x] = 0.

Setting t1 = T and normalizing bT , we can then vary t2 to recover b. This generalizes the

identification argument in Proposition 2 to framework with observable characteristics and

competing risks.

We cannot use this moment condition for GMM in our setting because we have censored

data. Moreover, it does not make use of available data after the end of the second spell.

Still, we show how to adapt this insight to our framework using the approach in Section 3.2.

4.3 Measurement

As in the MPH model, we assume that we observe product i for ci periods, where the

censoring time ci may be correlated with the product’s type θi. We still let P (c) denote

the cumulative distribution of censoring times and Gc̄(θ) denote the frailty distribution

conditional on ci ≥ c̄ for any duration c̄.

As before, we let ζi = (ζ i1, . . . , ζ
i
Ki) be the vector of measured durations, with the last

spell right censored, so ci =
∑Ki

i=1 ζ
i
j−1. We also let χi = (χi1, . . . , χ

i
Ki) be a vector recording

the observable characteristic of each spell and ρi = (ρi1, . . . , ρ
i
Ki−1) be a vector recording the

risk that ended each spell. Since the last spell is right-censored, we do not observe why it

ended, and hence ρ is of length Ki − 1.

We assume that the baseline hazard b0 = {b0,T , . . . , b0,T̄} is nontrivial, b0 6= 0, and let T0

is the smallest t ≥ T with b0,t > 0. We then generalize the rank condition in Assumption 1

to the environment with observable characteristics and competing risks:

Assumption 2 With positive probability, there exists a 1 ≤ j < k ≤ K with ζj = T0,

ζk ≥ T̄ , ρj = r, and χj = χk = x.

This guarantees that we have variation in the data to compare bT̄ to bT0 . It holds, for

example, if

(
1− P (T0 + T̄ − 2)

) ∫
π1(x|θ)π(x|x, r,θ)

T̄−1∏
t=1

(1− ht(x,θ))dGT0+T̄−1(θ) > 0,

so there is a positive probability that the censoring time is at least T0 +T̄−1 and, conditional

on such a censoring time, the first two spells have observable x and a spell can last at least

T̄ periods.
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We highlight a few special cases in which this reduces to the rank condition in Assump-

tion 1. First, the observable may be degenerate, X = 1, so π(1|θ) = π(1|1, r,θ) = 1 for all

r and θ. Second, the observable distribution may have full support in each of the first two

spells for all r and θ. This is the case in our empirical analysis when x measures whether

the spell starts with a price increase or decrease and r measures whether it ends with a price

increase or decrease. Third, the observable may have full support in the first period and then

be degenerate, π(x|x, r,θ) = 1 for all x, r, and θ. This is the case in the empirical analysis

when the observable characteristic measures the product’s category. Of course, combinations

of these assumptions are consistent with Assumption 1 as well, e.g. we can observe both the

product’s category and whether the spell starts with a price increase or decrease.

When this set of assumptions determine the joint distribution of (ζ,χ,ρ) and the rank

condition holds, we say that (ζ,χ,ρ) is drawn from a right-censored competing-risk model

with baseline hazard b0 for observable characteristic x and risk r.

4.4 Moment Conditions

We now show how to estimate the baseline hazard, extending the approach in Proposition 3:

Proposition 5 Assume (ζ,χ,ρ) is drawn from a right-censored competing-risk model with

baseline hazard b0 for observable characteristic x and risk r. Define

f
[b,x,r]
t1,t2 (ζ,χ,ρ; b) ≡

∑
(j,k):1≤j<k≤K

(
btk1ζj=t1,ζk≥t2,ρj=r,χj=χk=x − btj1ζj=t2,ζk≥t1,ρj=r,χj=χk=x

)
.

(9)

Then E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ; b)

]
= 0 for all T ≤ t1 < t2 ≤ T̄ if and only if b = λb0 for some

number λ.

The proof is in Appendix A.

We turn next to the Kaplan-Meier hazard. Define the Kaplan-Meier hazard for observable

characteristic x and risk r, H c̄ = (H c̄
T , . . . , H

c̄
T̄

) where

H̄ c̄
t ≡

Pr(τ1 = t, χ1 = x, ρ1 = r, c ≥ c̄)

Pr(τ1 ≥ t, χ1 = x, c ≥ c̄)
.

This is the probability that the first spell ends at duration t for risk r conditional on lasting

at least t periods, having observable x, and the product’s time in the sample exceeding c̄.

Proposition 6 Assume (ζ,χ,ρ) is drawn from a right-censored competing-risk model with
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Kaplan-Meier hazard H T̄
0 for observable characteristic x and risk r. Define

f
[H,x,r]
t (ζ,χ,ρ;H) ≡ Ht1ζ1≥t,χ1=x,c≥T̄ − 1ζ1=t,χ1=x,ρ1=r,c≥T̄ (10)

Then E
[
f

[H,x,r]
t (ζ,χ,ρ;H)

]
= 0 for T ≤ t ≤ T̄ if and only if H = H T̄

0 .

We omit the straight-forward proof.

5 Data

In the empirical application, we use IRI weekly store data,6 described in Bronnenberg,

Kruger, and Mela (2008).

5.1 Construction of Price Spells

The IRI data set contains weekly revenue and quantity sold for a large number of products

in chain grocery and drug stores for years 2001–2011. The data cover 30 large product cat-

egories7 (coffee, carbonated beverages, detergents, for example) and include approximately

2.6 million distinct items defined by its barcode (Universal Product Code, UPC).

We define a product as a particular UPC in a particular store. We use revenue and

quantity sold to compute the average weekly price for each product. We turn data on price

levels into data on price spells by first computing the price changes and then defining the

price spell as the time elapsed between two price changes. In particular, suppose that price

changes occur at times t0, t1, . . . , tK−1 and that the last price observation is at time tK . Then

we construct ζj = tj− tj−1 for j = 1, . . . , K− 1, ζK = tK − tK−1 + 1, where the latter reflects

the fact that the earliest possible date when the last price can change is tK +1 and the hence

the price will be at least tK − tK−1 + 1 periods long. The censoring time is c = tK − t0.

We use price levels to determine whether the price spell follows a price decrease or

increase; we can determine this for every price spell. We further use prices to determine

whether a price spell ends with a price increase or decrease; we can construct such indicator

for every complete spell. We use this information to estimate a richer model with observable

characteristics and competing risks.

Missing observations are prevalent. For example, if the product has not been sold in

a given week, the store does not report quantity or revenue. We address this problem by

6All estimates and analyses in this paper based on Information Resources Inc. data are by the authors
and not by Information Resources Inc.

7There are 31 product categories in IRI but we exclude cigarettes from our analysis because their price
is regulated.
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selecting the longest period with no missing observations for a given product and use only

this interval to construct price spells.

We work with average weekly prices which brings in two issues for the spell construction.

First, some changes in average weekly price are due to the fact that some customers shop

with coupons, which we cannot directly observe. We impose a lower bound on the price

change of 0.1 percent to exclude such price changes. Second, if the product’s price changes

in the middle of a week, it generates a spurious spell of duration one week.8 We therefore

set T = 2 and do not estimate the baseline hazard in week 1.

Any price spell occurring before the first observed price change is left-censored. We

exclude such spell but we use the price level of this censored spell to determine whether the

first (not left-censored) price spell occurs after price increase or decrease.

Table 1 shows summary statistics of the price spells by product category, focusing on

price spells longer than T = 2 weeks. The pooled sample contains 21,717,549 products,

yielding 684,919,778 pairs of durations where both durations exceed T .

5.2 Choice of T and T̄

Since we observe average weekly prices, price changes occurring in the middle of the week

generate spurious price spells with duration one week. The one-week spells are thus not

generated by an MPH model and including them into estimation would bias estimates of the

baseline hazard at all durations. At the same time, we want to choose the lowest possible

value for T . Therefore, we set T = 2.

We provide further justification for this choice. An implication of any mixture model

where each product has two independent spell durations from its type-specific distribution,

and of the MPH model in particular, is that the autocorrelation of the duration of two

completed spells is non-negative, and strictly positive when there is heterogeneity in mean

duration. To understand why, note that conditional on a product’s type, the autocorrelation

of duration is zero by assumption. But with heterogeneity, the autocorrelation captures

differences in the type-specific means and is necessarily positive.

Inspired by this, we measure the autocorrelation of the duration of price spells in the data.

If we use all price spells, including one-week spells, we find correlation of 0.029 when spells

are measured in levels, and -0.042 when duration is measured in logs. Once we exclude spells

lasting one week, the correlation increases to 0.235 in levels and 0.233 when measured in

logs. These correlations increase further to 0.248 in levels and 0.256 in logs when we consider

8For example, suppose that the price of a product increases from $1 to $2 in the middle of a week. Then
we would measure average price of $1 in week 1, $1.5 in week 2 and $2 in week 3, which looks like as if there
were two price changes.
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number of products with number of percentiles of ci percentiles of ζ ij
K̃i ≥ 1 K̃i ≥ 2 pairs 50th 90th 50th 90th

Yoghurt 1,402,766 1,155,766 98,999,368 30 130 3 10
Carb. Beverage 1,819,607 1,321,762 90,836,025 24 129 3 8
Salty Snack 2,481,250 1,670,539 72,485,278 16 85 3 9
Frozen Dinner 2,272,888 1,693,017 70,495,598 15 74 3 8
Cold Cereal 1,429,028 1,038,096 56,080,465 21 117 4 12
Beer 701,604 470,815 37,454,496 17 114 3 11
Milk 549,261 426,316 34,036,391 36 165 4 14
Soup 1,286,921 897,080 33,873,770 17 92 4 14
Spaghetti Sauce 501,088 353,379 25,015,292 17 105 3 11
Frozen Pizza 711,065 519,293 24,984,150 14 74 3 8
Margarine 244,844 204,293 23,833,374 45 188 4 13
Hot Dog 213,598 172,031 19,603,427 27 143 3 9
Coffee 793,004 455,555 13,969,362 8 60 3 10
Toilet Tissue 412,746 312,604 10,791,034 25 99 3 11
Laundry Det. 804,837 489,482 9,993,575 9 50 3 9
Facial Tissue 250,134 185,450 9,557,189 24 108 3 11
Peanut Butter 203,380 150,692 9,255,148 25 130 4 13
Mayonnaise 186,392 136,585 7,992,048 25 138 4 14
Mus & Ketchup 217,559 143,485 7,659,886 19 124 4 16
Paper Towel 340,032 252,339 6,939,886 24 88 3 13
HH Cleaners 413,061 232,276 5,959,387 9 57 4 11
Toothpaste 716,457 322,194 4,615,305 5 30 3 8
Shampoo 1,134,428 352,570 2,483,449 3 14 3 7
Diapers 602,164 247,864 1,918,554 4 22 3 7
Sugar Sub. 94,528 56,644 1,818,682 12 95 4 17
Deodorant 972,970 291,558 1,633,620 3 13 3 6
Toothbrush 512,729 178,488 1,097,352 4 18 3 7
Blades 297,314 114,407 1,076,134 5 25 3 10
Photo 65,503 28,187 358,959 5 30 3 8
Razors 86,391 26,001 102,574 3 12 2 6

Table 1: Descriptive statistics by product category. For this table, we consider only spells
ζ ij ≥ T = 2 and use K̃i to denote the number of such spells for the product i. The first
column shows the number of products with at least one spell longer than T . The second
column reports the number of products with at least two such spells. The third column
reports the number of pairs of spells where both are longer than T . Columns 4 and 5 show
the median and 90th percentile value of the censoring time ci. The last two columns show
the median and 90th percentile value of the spell length.
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spells at least 3 weeks long. With all spells, both correlations very close to zero, and one is

even negative, suggesting that the data are not likely to be coming from a mixture model.

When we exclude one-week spells, the correlation is different from zero, which does not

change even after exluding two-week spells. Thus, there is a reason for excluding one-week

spells but not two-week spells, and hence we set T = 2.

The choice of T̄ is guided by the nature of the data and our need to balance two forces.

On the one hand, we want to choose a large value for T̄ to learn about the baseline hazard

at long durations. At the same time, the number of spells longer than T̄ decreases quickly

with T̄ . Indeed, Table 1 shows that depending on the product category, the median spell

duration is 2–4 weeks and the 90th percentile varies between 6 and 17 weeks and so data

are thin at durations longer than half a year. While this does not constitute a problem for

estimating the baseline hazard, smaller sample size will be reflected in larger standard errors,

the choice of T̄ affects our estimates of the Kaplan-Meier hazard at all durations because we

condition on c ≥ T̄ . Balancing these forces, we choose T̄ = 60 weeks, a little over a year,

because there is an interesting pattern in the hazard at 52 weeks. Figure 4 shows estimates

beyond 60 weeks. The estimates are noisy but follow the same trend from before T̄ = 60 so

our main results are for T̄ = 60.

6 Results

We start this section with a brief discussion of models of price adjustments and their impli-

cations for the shape of the hazard. The shape of the baseline hazard, that is the hazard

adjusted for heterogeneity, allows us to distinguish different models which have different

predictions for the monetary policy. We then present our estimates of the baseline hazard

for both the MPH model and the extension with competing risks of price increases and

decreases.

6.1 Models of Price Adjustment

The simplest model of price adjustment is Calvo (1983), where a firm has a constant prob-

ability of being able to adjust its price. Thus, for an individual firm, the hazard of price

adjustment as a function of duration is constant. If this probability differs across firms, then

the Kaplan-Meier hazard is decreasing.

With time-dependent pricing (Taylor, 1979, 1980), a firm changes its price after a fixed

number of periods. For an individual firm, the hazard of adjusting the price is zero prior to

that duration, one at that duration, and then undefined at longer durations.
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A large class of models assumes state-dependent prices, e.g. Golosov and Lucas (2007). In

their simplest form, the desired price follows a stochastic process and the firm can adjust its

price at any time by paying a fixed cost. Under some regularity conditions, a firm optimally

adjusts its price when the difference between the current and desired price is too high, and

the hazard of price changes is increasing in duration: the longer the elapsed time since the

last price adjustment, the more likely the firm is to adjust the price in the next period.

Eichenbaum, Jaimovich, and Rebelo (2011) and Alvarez and Lippi (2020) feature two

types of adjustments. A firm can adjust costlessly between a set of prices constituting a

“price plan,” but it has to pay a fixed cost to switch its price plan. For example, the price

plan may include a regular price and a sale price. In these models, the hazard of changing

the price may be decreasing. In particular, when a price plan containing two prices can be

modified with probability λ in each period, the hazard of changing the price is 1/(2t) + λ at

duration t.

We note that, with the exception of Calvo, these models do not have the MPH repre-

sentation. However, we have found that in quantitative versions of these models, the MPH

structure is a close approximation to the true amount of heterogeneity.

Many papers use sticky price models to explore the real effects of monetary policy. In Ap-

pendix C we solve a simple model where firms follow heterogeneous time-dependent pricing

rules and show how heterogeneity affects the path of average prices. To be concrete, suppose

that prices are strategic complements, so firms want to set a lower price when other firms

have low prices. We can then compare two economies with the same Kaplan-Meier hazard

but different individual hazards. We show that if firms have heterogeneous hazards, the

response of average prices to a monetary policy shock is dampened compared to an economy

where all firms have the same hazard. Conversely, given a particular Kaplan-Meier hazard,

the real effects of a monetary policy shock are larger when firms are heterogeneous.

Nakamura and Steinsson (2008) show that distinguishing between sales prices and regular

prices has important implications both for the frequency and hazard of price changes. In

particular, sales are more transient than regular price changes and are not typically related to

macroeconomic conditions. Following their pioneering work, most researchers have dropped

all price changes associated with sales from the data set before estimating the hazard of

regular price changes. We are concerned that doing so may affect the estimated stochastic

process for the regular price changes. In our case, this problem is particularly acute, since

we do not observe sales directly, but instead must infer them from the nature of the price

change, e.g. a short-lived low price between two higher prices. Even if one could directly

observe sales prices, dropping a subset of price changes can bias estimates of the hazard for

the remaining price changes, a standard issue in competing risk models.
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Our approach instead allows us to view sales as part of the data, albeit a part that

does not necessarily fit the MPH structure, e.g. because sales have a fixed duration that

varies across products. We propose circumventing sales by focusing on outcomes—that is,

competing risks—that represent regular price changes, and measure duration dependence for

only those risks. In this paper we focus on price increases following price increases and on

price decreases following price decreases, which we call price trends. Our approach can be

used to look at other risks, e.g. setting a price that has not been observed in the recent past.

In a data set with a reliable sales flag, one could use our competing risks framework to look

at price spells that neither start nor end with sales.

6.2 Baseline Hazard and Heterogeneity

We start with presenting the results for the baseline model with X = 1, R = 1 on the pooled

sample; see Figure 1. Appendix G shows results for each product category separately.

The left panel of Figure 1 shows Kaplan-Meier and baseline hazards. The Kaplan-Meier

hazard is steeply declining between weeks 2 and 45, especially so between weeks 2 and 12.

There is a pronounced peak at 52 weeks. In contrast to the Kaplan-Meier hazard, the

baseline hazard is constant until week 4, after which it declines modestly until week 45.

We observe a small increase between weeks 45 and 52, and then a subsequent drop. The

difference between the Kaplan-Meier and baseline hazard points to substantial unobserved

heterogeneity. Recall from equation (1) that

Ht = btE[θ|t]⇒ E[θ|t] =
Ht

bt
.

The average type at duration t, E[θ|t], reflects the extent of dynamic sorting in the economy.

A flat average type suggests that there is little dynamic sorting and hence little heterogeneity,

while a steeply declining average type suggests a lot of heterogeneity. The right panel of

Figure 1 shows that the average type is steeply declining, especially between weeks 2 and 12

when the average type drops by 70 percent. It then continues to decline until week 47, to the

trough of 0.23, but at a lower pace. The average type then increases at 52 weeks, reflecting

that the sharp increase in the Kaplan-Meier is not captured by the baseline hazard.

We now turn to the two tests of the model. The J-statistic is J = 10,498, while the critical

value of the χ2 distribution with M − T = 1,712 degrees of freedom is 1,749, implying that

we reject the model at any conventional significant level. However, recall the dimensionality

of our problem: we have M = 1,770 moment conditions and more than 21 million products.

It is common to fail the J-test in such a situation. In what follows, we investigate the source

of this rejection in more detail.
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Figure 1: Kaplan-Meier and baseline hazard for the pooled sample. The purple line shows
the Kaplan-Meier hazard, the blue line is the estimated baseline hazard. The red line shows
the “average type” at given duration, calculated as the ratio of Kaplan-Meier and baseline
hazards. Shaded regions show two standard error bands. Standard errors are clustered at the
store × product category level. The baseline hazard is normalized to equal the Kaplan-Meier
hazard at duration 2 weeks.

Our second test is whether the average type is decreasing. The right panel of Figure 1

shows a declining trend through durations 2 to 47 weeks, but a formal test rejects the null

hypothesis due to the very tight standard errors.

Our conclusion is that the baseline hazard is declining, although much less so than the

Kaplan-Meier hazard, suggesting the presence of substantial unobserved heterogeneity. We

find evidence for Taylor-type price setting, with a mild spike in the baseline hazard at week

52. Still, all of these results are tempered by the fact that the model fails the overidentifying

test as well as the test for dynamic sorting.

6.3 Hazard Rates for Price Increases and Price Decreases

We next estimate a richer model of price changes. Inspired by our discussion of theoretical

models, we distinguish spells based on whether they started with a price increase or price

decrease. Thus we set X = 2 and for mnemonic convenience let χij = + if the jth spell

of product i follows a price increase and χij = − if it follows a price decrease. We also

distinguish whether a spell ends with a price increase or decrease, R = 2, and let ρij = +

if the jth spell of product i ends with a price increase and ρij = − if it ends with a price

decrease. Spells with χij = ρij represent price trends, while other spells are price reversals.

We separately estimate four different baseline hazards, one for each possible combination
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of x and r. We use b++
t to denote the baseline hazard that a spell after a price increase

ends with a price increase at duration t; b+−
t the baseline hazard that a spell following a

price increase ends with a price decrease at duration t. Similarly, b−+
t denotes the baseline

hazard that a spell following a price decrease ends with a price increase at duration t and b−−t
denotes the baseline hazard that a spell following a price decrease ends with a price decrease

at duration t. We allow for four different functions determining unobserved heterogeneity,

φ++(θ), φ+−(θ) and φ−+(θ), φ−−(θ).

This richer model allows for the possibility that price trends have different dynamics

than price reversals. We estimate this richer model using the moment conditions specified

in Section 4. Figure 2 shows the results. The figure reveals interesting patterns. The

baseline hazards for price trends, b++
t and b−−t , are rather flat, especially the hazard for two

consecutive price increases. The baseline hazards for the price reversal are declining, with

b−+
t showing the sharpest decline. The Kaplan-Meier hazard shows a steeper decline in all

four cases, pointing to the presence of unobserved heterogeneity.

The right panel of Figure 2 shows the average type, the ratio of the Kaplan-Meier and

baseline hazard for the four cases. We note that in the competing risks model, the average

type does not have to be decreasing even if the model is correctly specified. Still, the average

type is informative about the degree of dynamic sorting. We recover substantial heterogeneity

in all four cases, but more so for price reversals than price trends. Different shapes for the

average type in the four panels suggest that functions φ++(θ), φ+−(θ), φ−+(θ), and φ−−(θ)

are different, and so we cannot reduce dimensionality of unobserved heterogeneity.

The model is over-identified and so we can again apply the J-test. We run a separate J-

test for each hazard. This is conceptually correct since each baseline hazard can be estimated

without assuming a MPH structure for the other competing hazards. The 5% critical value

is 1,749 for each risk, and the test statistics are J++ = 3,920, J+− = 8,737, J−+ = 7,910, and

J−− =3,401. Even though we still reject the model at the five percent level, the rejection is

“milder” than in the case of one baseline hazard, where we have J =10,498, and especially so

for the for price trends. Rejection is strongest for the case of sales, price decreases followed

by price increases.

We investigate the nature of the failure of proportional hazard assumption more sys-

tematically in the next subsection. We conclude that the dynamics of price trends is well

described by the MPH model and that the baseline hazard is fairly flat. On the other hand,

we conclude that MPH model is not a good description of the dynamics of price reversals.

A consequence of these findings is that the shape of the baseline hazard we recovered in

Figure 1 is primarily driven by price reversal, especially those associated with sales, where

the hazard is steeply declining. Price reversal are common in the data: 72.3 percent of spells
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Figure 2: Competing risks model. Blue lines show the baseline hazard, purple lines the
corresponding Kaplan-Meier hazard. b++

t is the baseline hazard for spell which begin and
end with a price increase; b−−t for spells which begin and end with a price decrease; b+−

t for
spells which begin with a price increase and end with a price decrease; and b−+

t for spells
which begin with a price decrease and end with a price increase. The bottom row shows the
average type for each case. The shaded regions show two standard error bands. Standard
errors are clustered at the store × product category level.
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starting with a price increase end with a price decrease, while 72.4 percent of spells starting

witha a price decrease end with a price increase.

6.4 Sensitivity of Results to the Choice of T and T̄

We examine the sensitivity of our results to the choice of T and T̄ . This allows us to see

if there is a systematic failure of the MPH assumption. The idea is the following. Suppose

we want to learn about the relative baseline hazards at duration 10 and 20, b10/b20. The

MPH model admits several ways of recovering the ratio. We can directly recover the ratio

b10/b20 from equation (9) by choosing t1 = 10 and t2 = 20. But there are other options

which use information on spells at other durations. Specifically, we can use this moment

condition to recover b10/bt and b20/ht for some t 6= 10, 20, and combine them to find b10/b20.

Our estimator uses all such conditions. If it is the case that the MPH model is not correctly

specified at t, then including t into estimation will affect the relative hazards b10/b20.

Let bt(T, T̄ ) denote the GMM estimate of the baseline hazard at duration t ∈ {T, . . . , T̄}
using some values T and T̄ . We first fix T̄ = 60 and estimate the model for different values

of T = 2, 3, . . . , 10. To help visualize the impact of T on the shape of the baseline hazard,

we normalize b2(2, 60) = 1 and then recursively set bT (T, 60) = bT (T − 1, 60) for T > 2. If

the model is correctly specified for t ∈ {T, . . . , T̄}, we should find that bt(T, T̄ ) = bt(T
′, T̄ )

for all T < T ′ < t ≤ T̄ . Substantial deviations from this indicate systematic violations of

the MPH assumption.

Figure 3 shows the results. The choice of T has little effect on the hazard of price trend,

b++ and b−−, consistent with a correctly-specified model, but it substantially affects the

hazard of price reversals, especially so b−+.

To analyze the role of T̄ , we fix T = 2 and estimate the model for T̄ ∈ {10, 20, . . . , 90}.
We now normalize b2(2, T̄ ) = 1 for each value of T̄ . Figure 4 shows that the choice of T̄ does

not affect the estimates.

This exercise does not reveal systematic violation of the MPH structure for b++ and b−−.

However, it brings up the concern that the hazards b+− and b−+ are not well described by

the MPH, at least at short durations. One hypothesis for the failure of the MPH model

is that the product type φ(θ) is not fixed over time. We investigate this by restricting the

censoring time to at most 80 weeks for every product. Figure 7 in Appendix D depicts the

results. With the shorter censoring time, the choice of T matters less for all four hazards.

The baseline hazards b++ or b−− are insensitive to the choice of T , supporting our conclusion

that these are well described by the MPH model. The estimates of b+− or b−+ still depend

on the choice of T , but much less so than in the case of unrestricted censoring time. This is
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Figure 3: Baseline hazard for the competing risks model, the pooled sample, estimated using
different values of T ∈ {2, . . . , 10} and T̄ = 60.
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consistent with time-varying types.

Based on these test results we believe that the richer model with competing risks and

observable characteristics is a useful framework to analyze the data. The baseline hazard for

two consecutive price increases is decreasing until week 6 which covers a substantial amount

of price changes: 76.8% of complete spells which start after a price increase last at most

6 weeks (among complete spells which start and end with a price increase, 76.7% last at

most 6 weeks). During first 6 weeks, the baseline hazard drops by almost 50%. The hazard

is then flat until week 45. This shape of the hazard is consistent with price plan models

with Calvo-type switching between plans. There is a pronounced spike at around one year,

consistent with Taylor-type pricing. The baseline hazard for two consecutive price decreases

is mildly decreasing over the examined range.

Our analysis suggests that price reversals are not well described by the MPH model. One

possible reason is that temporary changes might have fixed duration which does not fit into

the MPH framework.

6.5 Higher Frequency Data

We study the price data through the lens of a discrete time model and naturally wonder if the

frequency of the data affects our results. To explore this, we repeat our analysis using daily

Online Micro Price data, the open access data from the Billion Prices Project presented by

Cavallo (2018).9 In this data set, we observe daily posted prices for many products, which

we use to construct price spells.10

The top row of Figure 5 shows the estimates using daily data for T = 1 day and T̄ = 70

days (ten weeks). We observe that the hazard of changing the price spikes every seventh day.

This suggests that even though the data are daily, the decision to change prices is taken at

the weekly frequency and hence a week might be a natural time unit.

We then aggregate data to weekly frequency, that is, any spell lasting 1–7 days is recorded

as duration of 1 week, spells lasting 8–14 days as duration of 2 weeks, etc, and estimate the

model again. The bottom row of Figure 5 shows the results, with the solid lines depicting

estimates using weekly data and dashed line showing weekly averages of daily estimates.

The results are very similar, even though weekly data recover a little bit less heterogeneity

that the daily data.

9http://www.thebillionpricesproject.com/datasets/. We use the US store number 1.
10We observed posted price directly and hence we do not need to exclude price spells of length 1.
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Figure 5: Kaplan-Meier and baseline hazard for Online Micro Price Data using daily and
weekly data. The top row uses daily data, the bottom row daily data aggregated to weekly
frequency. The purple line shows the Kaplan-Meier hazard, the blue line is the estimated
baseline hazard. The red line shows the “average type” at given duration, calculated as the
ratio of Kaplan-Meier and baseline hazard. Shaded regions show two standard error bands.
The baseline hazard is normalized to be equal to the Kaplan-Meier hazard at duration 1 day
in the daily data, or 1 week in the weekly data. The dashed lines in the bottom row show
weekly averages of daily estimates, normalized to be equal to the weekly values at week 1.
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7 Comparison to Other Estimation Methods

The usual approach to estimating the MPH model is via maximum likelihood (ML) for the

continuous time model. Formulating the likelihood requires an assumption on the frailty

distribution. It is convenient to choose a gamma distribution with mean 1 and variance v,

and then estimate v together with the baseline hazard. There are two approaches how to

deal with the fact that the model is continuous but the data are measured discretely. One, as

in for example in Fougere, Le Bihan, and Sevestre (2007), is specify the likelihood so that the

probability of observing a discrete duration t means that the realization of the corresponding

continuous time variable τ was in the interval (t−1, t] and that the vector of baseline hazards

that can be estimated corresponds to bt ≡
∫ t
t−1

b(s)ds. We formulate likelihood for this

model in Appendix E, and refer to it as continuous-time discrete-measurement (CT-DM).

Another approach, as in Nakamura and Steinsson (2008), is to assume that the baseline

hazard is piece-wise constant, b(t + γ) = bt for all γ ∈ [0, 1), and observing discrete time

duration t means that the corresponding continuous time variable τ also reached this value,

τ = t. We call this continuous-time continuous-measurement (CT-CM) and develop the

model together with its likelihood in Appendix F. We note that this is the procedure which

is coded in Stata, although implementing this in Stata requires some tricks to allow for a

flexible baseline hazard. For comparison, we refer to the discrete time model formulated in

this paper as DT-DM (discrete-time discrete-measurement).

We make two simplifying assumptions when formulating likelihoods for CT-DM and CT-

CM models. First, in line with the literature, we assume that censoring time c is independent

of product’s types θ. Second, we use at most two spells per product which allows us to

represent the data in a simple way. For each combination of durations (t1, t2), with t1 ≥ 1

and t2 ≥ 0, it is enough to store the number of products with these measured durations and

the share of these with the right-censored first and/or second spell. Due to this simplification,

maximizing the likelihood is very fast but we are aware of the fact that usefulness of this

trick disappears in a general setup where different products have a different number of spells.

Figure 6 shows the results from such estimation using at most two spells per product. In

both CT-DM and CT-CM we assume that the baseline hazard after duration T̄ is constant.

The purple line shows the Kaplan-Meier hazard. Since we assume that censoring time and

product’s type are independent, we do not condition on c ≥ T̄ when estimating Kaplan-

Meier hazard and use all first spells of all products to estimate it. The blue line shows

the baseline hazard estimated from the discrete time model (DT-DM) using GMM. The

other solid lines show ML estimates for the continuous time model, either with discrete

measurement CT-DM(1) (black line) or continuous time measurement CT-CM(1) (green
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line). The CT-CM(1) baseline hazard is very close to the Kaplan-Meier hazard, implying it

recovers almost no heterogeneity. The CT-DM(1) model which properly takes into account

time aggregation, gives an estimate basically identical to our DT-DM model. In general,

CT-DM and DT-DM models are not the same and so we should not expect them to deliver

the same estimates. There is, however, an important special case when they are, which is

when the baseline hazard is constant.

Heckman and Singer (1984) pointed out that imposing a specific distribution for the ML

estimation can bias the estimates of the baseline hazard. We investigate whether misspecifi-

cation of the frailty distribution can explain the difference between CT-CM(1) and DT-DM.

We cannot formulate the likelihood without choosing a frailty distribution but we can choose

a more flexible distribution than a single gamma, for example a mixture of several gamma

distributions. In the CT-CM model, we could not find the second gamma distribution and

hence the estimates of CT-CM(1) and CT-CM(2) are identical. In the CT-DM model, mod-

eling the frailty as a mixture of distributions does not affect the baseline hazard as CT-DM(1)

and CT-DM(2) are very close. We therefore conclude that in this case, imposing a specific

functional form on the frailty distribution does not affect results.

The bottom line is that the estimates from CT-DM and DT-DM model are similar. Our

conclusion from this exercise is that the most important factor explaining the difference

between the CT-CM and DT-DM model is the failure of CT-CM to deal with discrete data.

In closing, we note that there are several advantages to using the DT-DM model and

the GMM estimator we developed over CT-DM. First, the estimator does not require us to

specify the frailty distribution. Second, it is linear in b and hence is very simple and fast

to solve. Third, we prove in Proposition 3 that we find a global maximum. In contrast,

the estimator for the CT-DM model is based on maximizing the likelihood and requires

choosing a frailty distribution. The log-likelihood is non-linear b and finding its maximum

can be slow. Importantly, there is no guarantee that we find a global maximum. Finally,

we showed that our method is easily extended to handle competing risks, something that is

extremely hard to handle in the CT-DM framework. Fougere, Le Bihan, and Sevestre (2007)

try to estimate competing risks model with unobserved heterogeneity but say on page 260

that “. . . convergence of the maximum likelihood procedure is very difficult to reach.”

8 Conclusion

We develop a new consistent estimator of the baseline hazard in the MPH model using

duration data with repeated observations. Our estimator has many desirable features: it is

linear in the baseline hazard and hence easy to implement; it does not require specifying
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Figure 6: Baseline hazard estimated using different methods (left panel) and the correspond-
ing average type (right panel), using two-spell data. The purple line is the Kaplan-Meier
hazard, the blue line is the discrete time model. The green lines correspond to continuous
time with continuous time measurement (CT-CM), where the frailty distribution is a single
gamma distribution (green solid line) or a mixture of 2 gamma distributions (green dashed
line). The black lines correspond to the continuous time, discrete measurement (CT-DM)
model, where the frailty distribution is a single gamma distribution (black solid line) or a
mixture of 2 gamma distributions (black dashed line). The right panel shows the “average
type” corresponding to the estimates, using the same color coding as in the left panel. The
average type is computed as a ratio of the Kaplan-Meier and baseline hazard.
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the frailty distribution; and it handles right-censored data, competing risks, and discrete

observable characteristics. Importantly, it works in an environment where duration takes on

one of a finite number of possible values, which is the format or real-world data. We further

propose and implement two tests of the MPH specification.

We treat the frailty distribution as a nuisance parameter. However, under two additional

assumptions, namely that T = 1 and that the censoring time c and type θ are independent,

it is straightforward to construct an estimator of the moments of the frailty distribution

using the logic in our identification proposition.

We also estimate the baseline hazard for price changes, distinguishing between price

trends, which we interpret as regular price changes, and price reversals, which include sales.

Our framework is general enough to handle different notions of sales. For example, we could

have defined a sale as a temporary cut in price from a “normal” price p to a sale price

p′ < p, followed by a reversal back to p. We could also include other variable into the

vector of observable characteristics, such as bins of marginal cost or of the average price of

competitors. All these options can be handled through appropriately defining observables x

and risks r in our framework.

The model and its estimator can also be applied in other fields. In the labor market, it can

be used to study duration dependence in transitions between employment, unemployment

and out of labor force. Worker’s current labor market status is an observable characteristic

and the next labor market status can be treated as a competing risk.

34



References

Abbring, Jaap H., and Gerard J. Van Den Berg, 2003. “The Identifiability of the Mixed

Proportional Hazards Competing Risks Model.” Journal of the Royal Statistical Society:

Series B (Statistical Methodology). 65 (3): 701–710.

Alvarez, Fernando, and Francesco Lippi, 2020. “Temporary Price Changes, Inflation

Regimes, and the Propagation of Monetary Shocks.” American Economic Journal:

Macroeconomics. 12 (1): 104–52.

Bils, Mark, and Pete Klenow, 2004. “Some Evidence on the Importance of Sticky Prices.”

Journal of Political Economy. 112 (5): 947–985.

Bronnenberg, Bart J., Michael W. Kruger, and Carl F. Mela, 2008. “Database paper: The

IRI marketing data set.” Marketing Science. 27 (4): 745–748.

Calvo, Guillermo A, 1983. “Staggered Prices in a Utility-Maximizing Framework.” Journal

of Monetary Economics. 12 (3): 383–398.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller, 2011. “Robust Inference With

Multiway Clustering.” Journal of Business and Economic Statistics. 29 (2): 238–249.

Cavallo, Alberto, 2018. “Scraped Data and Sticky Prices.” The Review of Economics and

Statistics. 100 (1): 105–119.

Chen, Le-Yu, and Jerzy Szroeter, 2014. “Testing multiple inequality hypotheses: A smoothed

indicator approach.” Journal of Econometrics. 178: 678 – 693.

Chen, Le-Yu Chen, and Jerzy Szroeder, 2009. “Hypothesis Testing of Multiple Inequalities:

The Method of Constraint Chaining..” Cemmap Working Paper CWP13/09.

Cox, David R., 1972. “Regression Models and Life-Tables.” Journal of the Royal Statistical

Society. Series B (Methodological). 34 (2): 187–220.

Eichenbaum, Martin, Nir Jaimovich, and Sergio Rebelo, 2011. “Reference Prices, Costs, and

Nominal Rigidities.” The American Economic Review. 101 (1): 234–262.

Elbers, Chris, and Geert Ridder, 1982. “True and Spurious Duration Dependence: The

Identifiability of the Proportional Hazard Model.” The Review of Economic Studies. 49

(3): 403–409.

35
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A Omitted Proofs

Since Proposition 3 is a special case of Proposition 5, we prove the latter proposition first

and then turn to the special case.

To simplify the exposition in this appendix, we introduce the following notation. For any

K vector ζ = (ζ1, . . . , ζK) and k ≤ K, we define ζk to be a vector consisting of the first k

elements of ζ, that is, ζk = (ζ1, . . . , ζk). For k > K, we construct ζk by adding k −K zeros

to the end of ζ to construct a k vector, ζk = (ζ1, . . . , ζK , 0, . . . , 0}. Next, for j < k we let

ζk/j denote the vector ζk without the jth element, that is, ζk/j ≡ (ζ1, . . . , ζj−1, ζj+1, . . . , ζk).

The key step in proving Proposition 5 is the statement and proof of Lemma 1.

Lemma 1 Assume ζ,χ,ρ are drawn from a right-censored competing-risk model with base-

line hazard b0 for observable characteristic x and risk r. Take any k > j ≥ 1 and vector

t = (t1, . . . , tk) ∈ {1, 2, . . . }k with tj, tk ∈ {T, . . . , T̄}. Also take any x ∈ {1, . . . , X}k with

xj = xk = x and r ∈ {1, . . . , R}k−1 with rj = r. Define

fj,k,t,x,r(ζ,χ,ρ; b) ≡

btk1K≥k,χk=x,ρk−1=r,ζk−1=tk−1,ζk≥tk − btj1K≥k,χk=x,ρk−1=r,ζk−1/j=tk−1/j ,ζj=tk,ζk≥tj . (11)

Then E [fj,k,t,x,r(ζ,χ,ρ; b0)] = 0.

Proof of Lemma 1. We first claim that the first indicator function in equation (11)

evaluates to 1 if and only if these conditions hold:

1. without censoring, the product has sufficiently many spells, K̄ ≥ k;

2. the observable characteristics for the first k spells is x, χk = x;

3. the risk for the first k − 1 spells is r, ρk−1 = r;

4. we observe the product for sufficiently long,
∑K

l=1 ζl ≥
∑k

l=1 tl;

5. the uncensored durations satisfy τk−1 = tk−1 and τk ≥ tk.

If the first condition failed, we could never observe k spells. The second and third conditions

ensure we observe the desired pattern of observable characteristics and risks. The fourth

condition ensures we observe the product sufficiently long to see ζk−1 = tk−1 and ζk ≥ tk.

Finally, if the last condition failed, we might observe k spells, but they would not satisfy

ζk−1 = tk−1 and ζk ≥ tk. On the other hand, if all five conditions are satisfied, we measure

K ≥ k, ζk−1 = τk−1, ζk ≥ tk, ρk−1 = r, and χk = x.
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Analogously, the second indicator function in equation (11) evaluates to 1 if and only if

the first four conditions hold and the uncensored durations satisfy τk−1/j = tk−1/j, τj = tk

and τk ≥ tj.

Next, we use the MPH model to compute the probability of a realization of the event in

the first indicator function, conditional on θ. This is

Pr[χk = x,ρk−1 = r, ζk−1 = tk−1, ζk ≥ tk|θ]

= π1(x1|θ)
k∏
l=1

(
π(xl|xl−1, rl−1,θ)1l 6=1hrltl (xl,θ)1l 6=k

tl−1∏
s=1

(1− hs(xl,θ))

)

= b0,tjφ(θ)π1(x1|θ)
k∏
l=1

(
π(xl|xl−1, rl−1,θ)1l 6=1hrltl (xl,θ)1l6=j,l 6=k

tl−1∏
s=1

(1− hs(xl,θ))

)
.

The first equation uses the structure of the model, in particular the fact that we are comput-

ing the probability of a particular sequence of observable characteristics and spell durations.

The second equation uses the fact that rj = r, xj = x, and hrtj(x,θ) = φ(θ)b0,tj since

tj ∈ {T, . . . , T̄}. Integrating across the distribution of θ conditional on censoring time equal

to at least
∑k

l=1 tl − 1 gives us

E
[
1K≥k,χk=x,ρk−1=r,ζk−1=tk−1,ζk≥tk

]
= ψ(tk−1/j, tj, tk,x, r; j, k)b0,tj , (12)

where

ψ(tk−1/j, tj, kj,x, r; j, k) ≡
(

1− P
( k∑

l=1

tl

))
×

∫
φ(θ)π1(x1|θ)

k∏
l=1

(
π(xl|xl−1, rl−1,θ)1l6=1hrltl (xl,θ)1l 6=j,l 6=k

tl−1∏
s=1

(1− hs(xl,θ))

)
dG∑k

l=1 tl−1(θ).

(13)

Now swap the role of tj and tk but leave tk−1/j, r, and x unchanged. The same logic

implies

E
[
1K≥k,χk=x,ρk−1=r,ζk−1/j=tk−1/j ,ζj=tk,ζk≥tj

]
= ψ(tk−1/j, tk, tj,x, r; j, k)b0,tk . (14)

Moreover, equation (13) and the commutative property of multiplication implies

ψ(tk−1/j, tk, tj,x, r; j, k) = ψ(tk−1/j, tj, tk,x, r; j, k). (15)
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The result then follows from equations (12), (14), and (15).

Proof of Proposition 5. We first prove that E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ;λb0)

]
= 0 for all T ≤ t1 <

t2 ≤ T̄ and λ (necessity). Then we prove E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ; b)

]
= 0 for all T ≤ t1 < t2 ≤ T̄

only if b = λb0 (sufficiency) for some λ.

Necessity: We show in two steps that function f
[b,x,r]
t1,t2 (ζ,χ,ρ; b) is the sum of functions

defined in Lemma 1, each of which have expected value zero. First, take 1 ≤ j < k, a

pair (tj, tk) with tj, tk ∈ {T, . . . , T̄}, an observable characteristic x, and a risk r. Define the

following function

fj,k,tj ,tk,x,r(ζ,χ,ρ; b) ≡ btk1K≥k,ζj=tj ,ζk≥tk,ρj=r,χj=χk=x − btj1K≥k,ζj=tk,ζk≥tj ,ρj=r,χj=χk=x.

Then let t be an arbitrary k vector of durations with jth element tj and kth element tk, x be

an arbitrary k vector of observables with jth and kth element x, and r be an arbitrary k− 1

vector of risks with jth element r. Summing across all such vectors, we get

fj,k,tj ,tk,x,r(ζ,χ,ρ; b) =
∑

tk−1/j ,xk−1/j ,rk−1/j

fj,k,t,x,r(ζ,χ,ρ; b),

where this follows directly from the definition of fj,k,t,x,r(ζ,χ,ρ; b) in equation (11). Lemma 1

states that the expected value of each component of the sum is zero for b = b0. Thus the

expected value of fj,k,tj ,tk,x,r(ζ,χ,ρ; b0) is zero.

Second, fix a pair of durations (t1, t2) with T ≤ t1 < t2 ≤ T̄ , an observable characteristic

x, and a risk r. Sum fj,k,t1,t2,x,r(ζ,χ,ρ; b) across all pairs of spells (j, k) with 1 ≤ j < k. By

equation (9), this gives us f
[b,x,r]
t1,t2 (ζ,χ,ρ; b). Since the expected value of each component of

this sum is zero, this implies E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ; b0)

]
= 0.

Finally, note that the function f
[b,x,r]
t1,t2 defined in equation (9) is linear in the base-

line hazard, f
[b,x,r]
t1,t2 (ζ,χ,ρ;λb) = λf

[b,x,r]
t1,t2 (ζ,χ,ρ; b) for all t1, t2, ζ,χ,ρ, b, and λ. Thus

E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ;λb)

]
= 0 as well.

Sufficiency: Recall that T0 is the smallest t ∈ {T, . . . , T̄} with b0,t > 0. We prove that

any solution must take the form b = λb0 where λ = bT0/b0,T0 .

Equation (9) implies that

bT0
∑

(j,k):1≤j<k≤K
E
[
1ζj=t,ζk≥T0,χj=χk=x,ρj=r

]
= bt

∑
(j,k):1≤j<k≤K

E
[
1ζj=T0,ζk≥t,χj=χk=x,ρj=r

]
.
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Assumption 2 states that E
[
1ζj′=T0,ζk′≥t,χj=χk=x,ρj=r

]
> 0 for some 1 ≤ j′ < k′ < K and any

t ≤ T̄ . Therefore the sum on the right hand side of this equation is strictly positive, allowing

us to pin down the ratio bt/bT0 :

bt
bT0

=

∑
(j,k):1≤j<k≤K E

[
1ζj=t,ζk≥T0,ρj=r,χj=χk=x

]∑
(j,k):1≤j<k≤K E

[
1ζj=T0,ζk≥t,ρj=r,χj=χk=x

] .
From the ‘necessity’ part of the proof, we know bt/bT0 = b0,t/b0,T0 solves this equation, so

this must be the only solution.

Proof of Proposition 3. Set X = R = 1. This implies π1(1|θ) = π(1|1, 1,θ) = 1, so

Assumption 1 is equivalent to Assumption 2 in this case. Then

f
[b,1,1]
t1,t2 (ζ,1,1; b) = f

[b]
t1,t2(ζ; b),

where 1 is a vector of 1’s, and so the results in Proposition 5 imply the proof of this propo-

sition.

B GMM Estimation

B.1 GMM Estimator

Proposition 3 gives us one moment condition for the choice t1, t2 such that T ≤ t1 < t2 ≤ T̄ :

E
[
f

[b]
t1,t2(ζ; b)

]
= 0.

Let Y (T, T̄ ) = {(t1, t2) : T ≤ t1 < t2 ≤ T̄}. This set has M = T (T + 1)/2 elements which

we index with m and refer to it as ym = (ym1 , ym2). Let f [b](ζ; b) be a vector function with

mth element corresponding to the choice ym ∈ Y (T, T̄ ), given by f
[b]
ym1 ,ym2

(ζ; b).

Since the baseline hazard is identified up to scale, we choose our normalization. Choose

T ∗ ∈ {T, T̄} to be the shortest for which there exists product i with at least two spells,

Ki ≥ 2, and 1 ≤ j < k ≤ Ki such that ζ ij = T0, ζ
i
k = t for any t ∈ {T0, T̄}.11 Without loss of

generality, we normalize bT0 = 1.

Let b·/T0 be the vector b without its component bT0 , that is, b·/T0 = (bT , . . . bT0−1, bT0+1, . . . bT̄ ).

11If no product with at least two spells has a complete spell of duration t, then we estimate b̂t = 0 and so
we cannot use it for normalization.
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Linearity of f
[b]
t1,t2(ζ; b) and normalization of bT0 implies that we can write

f [b](ζ; b) = U [b](ζ)b·/T0 − V [b](ζ),

where U [b] is M ×T matrix, and V [b](ζ) is a vector of length M . With this notation, we can

write

E
[
U [b](ζ)

]
b·/T0 − E

[
V [b](ζ)

]
= 0. (16)

Proposition 4 gives us one moment condition for each T ≤ t ≤ T̄ . Define f
[H]

T̄
as a

vector function, with mth element given by f
[H]

m+T−1,T̄
(ζ;H T̄ ) for m = 1, . . . , T + 1. Since

equation (8) is linear in H T̄ , we can write f
[H]

m+T−1,T̄
(ζ;H T̄ ) = U [H]H T̄ −V [H], where U [H] is

a (T + 1)× (T + 1) matrix and V [H] is a (T + 1)× 1 vector. With this notation, the moment

condition from Proposition 4 becomes

E
[
U [H](ζ)

]
H T̄ − E

[
V [H](ζ)

]
= 0. (17)

We stack these moment conditions for b and H T̄ . Define

β =

(
b·/T ∗

H T̄

)
,f(ζ;β) =

(
f [b](ζ; b)

f
[H]

T̄
(ζ;H T̄ )

)
, U =

(
U [b] 0

0 U [H]

)
, V =

(
V [b]

V [H]

)
.

Then the moment conditions are

E [U(ζ)]β − E [V (ζ)] = 0. (18)

To estimate the model, we replace expected values with sample means:

UI ≡
1

I

I∑
i=1

U(ζi), VI ≡
1

I

I∑
i=1

V (ζi).

The sample analog of (18) is UIβ−VI = 0. For a given positive-definite (M +T +1)× (M +

T + 1) weighting matrix W , the estimator β̂ ∈ R2T+1
+ solves

β̂ = arg min
β∈R2T+1

+

(UIβ − VI)′W (UIβ − VI) .

This is a linear-quadratic maximization problem and its solution is known in a closed form:

β̂ = (U ′I (W +W ′)UI)
−1
U ′I (W +W ′)VI .
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In practice, we choose the identity matrix as a weighting matrix.

Proposition 3 and 4 imply consistency of GMM without any other assumptions. In

particular, we do not need to impose that the space of possible parameters β is compact

since our estimator is linear; see Newey and McFadden (1994).12

B.2 Clustered Standard Errors

Recall that the GMM formula for the variance-covariance matrix of the parameter vector β

is

V AR ≡ 1

I
(F ′WF )−1F ′WΩW ′F (F ′W ′F )−1, (19)

where F is the score matrix F ≡ E[∇βf ] and Ω = E[ff ′]. To get an estimate of the

variance-covariance matrix, we replace F and Ω with its sample analogs FI and ΩI :

FI ≡
1

I

I∑
i=1

∇βf(ζi; β̂) = UI , ΩI ≡
1

I

I∑
i=1

f(ζi; β̂)f(ζi; β̂)′,

where β̂ is a GMM estimate of β.

To implement one-way clustering, we follow Cameron, Gelbach, and Miller (2011). For-

mula (19) still applies but with cluster-robust sample analog of Ω. Let Q denote the number

of clusters indexed by q = 1, . . . , Q. If a product i belongs to cluster q, we say 1i∈q = 1.

Define f̄q as the sum of the moment conditions across products in cluster q,

f̄q =
I∑
i=1

f(ζi; β̂)1i∈q.

Then

Ω
[cluster]
I =

Q

Q− 1

I − 1

I − (2T + 1)

1

I

Q∑
q=1

f̄qf̄
′
q,

where 2T+1 is the number of parameters. The term Q
Q−1

I−1
I−(2T+1)

is adjustment for the degrees

of freedom; without this adjustment, the clustered standard errors are biased downwards.

We obtain the variance-covariance matrix by substituting Ω
[cluster]
I into equation (19).

12Theorem 2.7 states conditions for consistency of estimators without compactness. Example 1.2 on page
2134 then shows that these conditions are satisfied for the linear GMM estimators.
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B.3 Practical Consideration

It is a known that in practice matrix ΩI (or Ω
[cluster]
I ) can be badly scaled, especially with a

large number of moments as we have. This is not necessarily an issue for estimating of the

variance-covariance matrix V AR but is for the J−test which requires inverting the matrix

ΩI (or Ω
[cluster]
I ).

Moreover, in our application, ΩI has some negative eigenvalues. This is a result of

numerical imprecisions; matrix ΩI as well Ω
[cluster]
I is positive semidefinite in any sample by

construction.

We address both of these issues in one step, following Cameron, Gelbach, and Miller

(2011) and Politis (2011). We construct matrix ΩI , compute its eigenvalues and replace

all negative one and those close to zero in absolute term, with a small positive number

ε to construct Ω+
I , a positive definite matrix. Specifically, we write ΩI = AΛA′, where

Λ = Diag(λ1, . . . , λK) are the eigenvalues of ΩI , and A is a matrix of eigenvectors. We

define λ+
j = max(ε, λj) and Λ+ = Diag(λ+

1 , . . . , λ
+
K). We then construct Ω+

I = AΛ+A′.

We need to balance two forces when choosing ε. It has to be small enough so that it does

not affect results as the sample size grows, and at the same time, it has to be big enough to

address the problem of ill-conditioned matrix. Politis (2011) suggests to choose ε = I−a for

a ∈ [1, 2]; we follow this suggestion and choose a = 1.5.

We find that ΩI with no clustering and Ω
[cluster]
I with one-way clustering has a small

share of negative eigenvalues, less than 2.5%, and that they are small in absolute value, of

the order of 10−18. This gives us confidence that these are indeed numerical imprecisions

which we correct with the above described procedure.

C Time-Dependent Pricing with Heterogeneous Firms

Consider a discrete time economy populated by heterogeneous firms indexed by a parameter

θ. All firms use time-dependent pricing rules. Let Φt(θ) be the probability that a type θ

firm does not adjust price within t periods of its last price change, with Φ0(θ) = 1. In the

MPH model, Φt(θ) =
∏t

s=0(1 − θbs) where b0 = 0 and bs, s ≥ 1, is the baseline hazard.

Let D(θ) ≡
∑∞

t=0 Φt(θ) =
∑∞

t=1 t(Φt−1(θ) − Φt(θ)) denote the expected time between price

changes, so D(θ) is decreasing in θ in the MPH model.

A firm with type θ that adjusts its price at time t chooses a price pt(θ) to minimize∑∞
s=0 Φs(θ)(pt(θ)− p∗t+s)2, where p∗t+s is the “target” price at time t+ s. This implies

pt(θ) ≡
∑∞

s=0 p
∗
t+sΦs(θ)∑∞

s=0 Φs(θ)
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is the price set by a type θ firm at t. In particular, if p∗t+s is increasing in s, then pt(θ) is

decreasing in θ in the MPH model.

Now let G(θ) denote the distribution of θ among the firms that change their price at an

arbitrary date t; for notational simplicity, we assume that this is constant over time. The

average price among firms that change their price at t is

p̄t ≡
∫
pt(θ)dG(θ). (20)

Similarly, the average duration of a price is

D̄ ≡
∫
D(θ)dG(θ). (21)

We could also compute the Kaplan-Meier survivor function at duration t among the price-

changing firms:

ΦKM
t =

∫
Φt(θ)dG(θ).

If there were a single firm with a time-dependent pricing rule with survivor function ΦKM
t ,

its optimal price would be

p̄KMt ≡
∑∞

s=0 p
∗
t+sΦ

KM
s (θ)∑∞

s=0 ΦKM
s (θ)

=

∑∞
s=0 p

∗
t+s

∫
Φs(θ)dG(θ)∑∞

s=0

∫
Φs(θ)dG(θ)

=

∫ (∑∞
s=0 p

∗
t+sΦs(θ)

)
dG(θ)∫ ∑∞

s=0 Φs(θ)dG(θ)

=

∫
pt(θ)D(θ)dG(θ)∫
D(θ)dG(θ)

, (22)

where the first equation uses the definition of ΦKM
s (θ), the second flips the order of summa-

tion and integration, and the third uses the definition of D(θ) and pt(θ).

Now compute the ratio of the covariance of a product’s price to the duration of the price,

divided by the mean duration of prices:

cov(pt(θ), D(θ))

D̄
=

∫
(pt(θ)− p̄t)(D(θ)− D̄)dG(θ)

D̄

=

∫
pt(θ)D(θ)dG(θ)

D̄
−
∫
pt(θ)dG(θ) = p̄KMt − p̄t.

The first equation is the definition of the covaraince, while the second expands the inte-
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grand in the numerator and simplifies. The last equation follows immediately from equa-

tions (20), (21), and (22). In the MPH model with an increasing sequence for target prices

p∗t , pt(θ) and D(θ) are both decreasing in θ. Thus the covariance is positive whenever the

type distribution is nondegenerate. This implies p̄KMt > p̄t, so ignoring heterogeneity across

firms would lead us to overstate average prices. The opposite happens when the sequence of

target prices is decreasing.

To see how this might matter in an equilibrium economy, suppose that there are strategic

complementarities in price setting, meaning that the target price is an increasing function of

the average price prevailing among all firms. Consider the impact of a one-time expansionary

(contractionary) monetary policy shock, which will lead to a gradual increase (decrease) in

the target price due to strategic complementarities and price stickiness. Given any such

sequence for the target price, our argument so far states that the average price among price

changers is higher (lower) when all firms have a common survivor function ΦKM
t than when

they are heterogeneous with individual survivor functions Φt(θ). Strategic complementarity

implies a feedback from this to the target price, with a higher (lower) target when firms

are homogeneous. That is, prices are less sticky when firms are homogeneous. That is,

ignoring heterogeneity in price stickiness minimizes price stickiness and hence minimizes the

real effects of the monetary policy shock.

D Additional Empirical Results

We report additional empirical results in this section. Figure 7 shows sensitivity of the

baseline hazard in the competing risks model using data with censoring time is bounded

from above by 80 weeks for each product.

E Continuous Time with Discrete Measurement

In this appendix we formulate a continuous time MPH model with discrete time measurement

(CT-DM), which is correctly specified in real-world data where durations are rounded to

integer values. We assume each product has a censoring time c ∈ R+ with continuous

cumulative distribution P and a type θ drawn from a Gamma distribution with mean m

and variance v. We later consider an extension to the case where the frailty distribution is

a mixture of Gamma distributions. In contrast to our GMM estimates of the discrete time

model, we impose that c and θ are independent random variables.

In the continuous time mixed proportional hazard model, we assume that for any t ∈ R+,

the probability that the true duration of a spell is at least t for a product with type θ is
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Figure 7: Baseline hazard for the competing risks model, pooled sample, estimated using
different values of T ∈ {2, . . . , 10}, T̄ = 60 and censoring time restricted to be at most 80
weeks.
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e−θ
∫ t
0 b(s)ds for all t ≥ 0. With discrete measurement, we assume that the measured duration

is always rounded up to the next integer. That is, for t = 1, 2, . . . , the probability that

measured duration is at least t is e−
∫ t−1
0 θb(s)ds.

In the CT-DM model, there is no hope of recovering the baseline hazard at all real

durations, since we only observe integer outcomes. Instead, for any t = 1, 2, . . . , define

bt ≡
∫ t
t−1

b(s)ds. Additionally, for notational convenience continue to assume b0 = 0. Our

objective is to recover b ≡ {b1, . . . , bT , bT+1}, where sparsity of data lead us to impose

bt = bT+1 for all t ≥ T + 1. It is also useful to define the integrated hazard zt ≡
∑t

s=0 bs =∫ t
0
b(s)ds, so the probability that measured duration of a spell is at least t = 1, 2, . . . for a

type θ product is e−θzt−1 .

We formulate the likelihood function for case where we observe two spells per product.

The data we observe is censored, (ci, di1, d
i
2, ζ

i
1, ζ

i
2) for a typical individual i, where ζ ij is the

measured duration of jth spell and dij equals one if jth spell is censored. If the first spell

right-censored (and hence the second spell is not observed), we code the duration of the

second spell as ζ i2 = 0 and di2 = 1. Under our assumptions we can write down the likelihood

of different outcomes. First, we may observe two completed spells, ζ i1 = t1 ∈ {1, 2, . . . },
ζ i2 = t2 ∈ {1, 2, . . . }, and di1 = di2 = 0. The probability of this event is

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=

(
1− P (t1 + t2 − 1)

) ∫ ∞
0

e−θ(zt1−1+zt2−1)(1− e−θbt1 )(1− e−θbt2 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

The integrand is equal to the probability that the censoring time exceeds t1 + t2, ci ≥ t1 + t2,

multiplied by the probability that the uncensored durations (τ i1, τ
i
2) are exactly (t1, t2) given

θ, multiplied by the density of a Gamma distribution with mean m and variance v. Here Γ

is the gamma function. Solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=
(
1− P (t1 + t2 − 1)

)
fCT−DM0 (t1, t2; z,m, v)

where

fCT−DM0 (t1, t2; z,m, v) ≡
(

1 +
v

m
(zt1−1 + zt2−1)

)−m2

v −
(

1 +
v

m
(zt1 + zt2−1)

)−m2

v

−
(

1 +
v

m
(zt1−1 + zt2)

)−m2

v
+
(

1 +
v

m
(zt1 + zt2)

)−m2

v
.

We note the explicit dependence of this function on the integrated hazard z = {z1, z2, . . . },
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as well as the mean and variance of the frailty distribution.

Second, we may observe a completed spell followed by a censored spell, ζ i1 = t1 ∈
{1, 2, . . . }, ζ i2 = t2 ∈ {0, 1, . . . }, di1 = 0, di2 = 1. The probability of this event is

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
=

(
P (t1 + t2)− P (t1 + t2 − 1)

) ∫ ∞
0

e−θ(zt1−1+zt2 )(1− e−θbt1 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the probability that the censoring time is exactly t1 + t2, ci = t1 + t2 multiplied by

the probability that τ i1 = t1 and τ i2 > t2. Again, solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
=
(
P (t1 + t2)− P (t1 + t2 − 1)

)
fCT−DM1 (t1, t2; z,m, v)

where

fCT−DM1 (t1, t2; z,m, v) ≡
(

1 +
v

m
(zt1−1 + zt2)

)−m2

v −
(

1 +
v

m
(zt1 + zt2)

)−m2

v
.

Finally, we may observe a single censored spell, ζ i1 = t1 ∈ {1, 2, . . . } and di1 = di2 = 1.

The probability of this event is

E
[
1ζi1=t1,di1=1

]
=
(
P (t1)− P (t1 − 1)

) ∫ ∞
0

e−θzt1
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the probability that the censoring time is t1, ci = t1, multiplied by the probability

that τ i1 > t1. Solve the integral to get

E
[
1ζi1=t1,di1=1

]
=
(
P (t1)− P (t1 − 1)

)
fCT−DM2 (t1, 0; z,m, v)

where

fCT−DM2 (t1, 0; z,m, v) ≡
(

1 +
v

m
zt1

)−m2

v
.

We can use the probability of these three events to compute the log-likelihood. We treat

P as a nuisance parameter and take advantage of the fact that each of the probabilities is

multiplicatively separable in the terms involving P to get

LCT−DM =
1

N

N∑
i=1

log fCT−DM
di1+di2

(ζ i1, ζ
i
2; z,m, v). (23)
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We impose z0 = 0, which holds by definition. We also normalize m = 1.13 Given a data set,

we can search for values of z and v to maximize this likelihood, subject to the constraint

zt+1 − zt = bT+1 for t ≥ T . We then first difference the integrated hazard zt to recover the

baseline hazard, bt = zt − zt−1.

It is straightforward to extend this analysis to the case where the frailty is a mixture of

K gamma distributions. Let {mk, vk, wk} denote the mean, variance, and weight on each

distribution. Then the likelihood is

LCT−DM =
1

N

N∑
i=1

log

(
K∑
k=1

wkf
CT−DM
di1+di2

(ζ i1, ζ
i
2; z,mk, vk)

)
. (24)

We again impose z0 = 0 and fix
∑K

k=1 wk = 1 and mk, vk, and wk all nonnegative to have

a mixture model. We also normalize
∑K

k=1wkmk = 1. We then search for values of z and

distributional parameters which maximize the likelihood for fixed K.

F Continuous Time with Continuous Measurement

F.1 Likelihood Function

We next turn to the continuous time model with continuous time measurement (CT-CM). As

in CT-DM, we assume each product has a censoring time c ∈ R+ with continuous cumulative

distribution P and a type θ drawn from a Gamma distribution with mean m and variance

v. We later consider an extension to the case where the frailty distribution is a mixture of

Gamma distributions. We again impose that c and θ are independent random variables.

We also assume that for any t ∈ R+, the probability that the true duration of a spell is

at least t for a product with type θ is e−θz(t) for all t ≥ 0, where z(t) ≡
∫ t

0
b(s)ds. As usual,

measured durations may be censored, but here we assume that we can measure the exact

duration or censoring time for each spell

The data we observe is (ci, di1, d
i
2, ζ

i
1, ζ

i
2) for a typical individual i. Under the assumption

of a Gamma frailty distribution with mean m and variance v, independent of ci, we can

write down the likelihood of different outcomes. First, we may observe two completed spells,

ζ i1 = t1 ≥ 0, ζ i2 = t2 ≥ 0, and di1 = di2 = 0. The density of this event is

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=
(
1− P (t1 + t2)

)
b(t1)b(t2)

∫ ∞
0

θ2e−θ(zt1+zt2 ) e
−mθ

v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

13The likelihood is unaffected by doubling m, quadrupling v, and halving z.
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The integrand is equal to the probability that the censoring time exceeds t1 + t2, ci ≥ t1 + t2,

multiplied by the density that the uncensored durations (τ i1, τ
i
2) are exactly (t1, t2) given θ,

multiplied by the density of a Gamma distribution with mean m and variance v. Again, Γ

is the gamma function. Solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=
(
1− P (t1 + t2)

)
fCT−CM0 (t1, t2; z,m, v)

where

fCT−CM0 (t1, t2; z,m, v) ≡ b(t1)b(t2)
(
m2 + v

) (
1 +

v

m
(z(t1) + z(t2))

)−2−m2

v
.

Second, we may observe a completed spell followed by a censored spell, ζ i1 = t1 ≥ 0,

ζ i2 = t2 ≥ 0, di1 = 0, di2 = 1. The density of this event is

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
= h(t1 + t2)b(t1)

∫ ∞
0

θe−θ(zt1+zt2 ) e
−mθ

v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the probability that the censoring time is exactly t1 + t2, ci = t1 + t2 multiplied by

the probability that τ i1 = t1 and τ i2 > t2. Again, solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
= h(t1, t2)fCT−CM1 (t1, t2; z,m, v)

where

fCT−CM1 (t1, t2; z,m, v) ≡ b(t1)m
(

1 +
v

m
(z(t1) + z(t2))

)−1−m2

v
.

Finally, we may observe a single censored spell, ζ i1 = t1 ≥ 0 and di1 = di2 = 1. The

probability of this event is

E
[
1ζi1=t1,di1=1

]
= h(t1)

∫ ∞
0

e−θzt1
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ

This is the probability that the censoring time is t1, ci = t1, multiplied by the probability

that τ i1 > t1. Solve the integral to get

E
[
1ζi1=t1,di1=1

]
= h(t1)fCT−CM2 (t1, 0; z,m, v)

where

fCT−CM2 (t1, 0; z,m, v) ≡
(

1 +
v

m
zt1

)−m2

v
.
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As in the CT-DM model, we use the probability of these three events to compute the

log-likelihood, taking advantage of the fact that each of the probabilities is multiplicatively

separable in the terms involving P to treat P as a nuisance parameter. This gives us the

portion of the likelihood that we are interested in:

LCT−CM =
1

N

N∑
i=1

log fCT−CM
di1+di2

(ζ i1, ζ
i
2; z,m, v). (25)

As usual, we normalize m = 1.

It is again straightforward to extend this analysis to the case where the frailty is a mixture

of K gamma distributions. Let {mk, vk, wk} denote the mean, variance, and weight on each

distribution. Then the likelihood is

LCT−CM =
1

N

N∑
i=1

log

(
K∑
k=1

wkf
CT−CM
di1+di2

(ζ i1, ζ
i
2; z,mk, vk)

)
. (26)

We again impose
∑K

k=1 wk = 1 and mk, vk, and wk all nonnegative to have a mixture model.

We also normalize
∑K

k=1 wkmk = 1.

Given any finite data set, we need to impose some restrictions on the baseline hazard

in order to maximize either likelihood (25) or (26). We assume that the baseline hazard is

piecewise constant and so z is piecewise linear.

F.2 Estimation of CT-CM Model in Stata

Stata has a built-in command for parametric estimation of the MPH model with multiple

spells (streg) and observable characteristics. Even though it is necessary to specify frailty

distribution as well as the function form of the baseline hazard, one can use a full set of

dummy variables for duration to “over-ride” the parametric form of the baseline hazard and

estimate it flexibly. Since we are interested in estimating hazards up to duration T , we have

only one dummy variable for spells longer than T . This dummy is equal to 1 if the measured

duration exceeds T + 1 and zero otherwise. We find that the maximum likelihood estimates

in Stata following this procedure coincide with the CT-CM(1), the version that uncovers

very little evidence of heterogeneity.

In IRI data, the root-mean-square difference between baseline hazards estimated in Stata

and CT-CM(1) is 1.4× 10−3; the absolute value of the difference in variances is 2.3× 10−4.

We thus conclude that existing estimates of the continuous time MPH model using Stata

may be biased towards finding little heterogeneity.
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G Baseline Hazards for Product Categories
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Figure 8: Kaplan-Meier and baseline hazards for individual product categories. Product
categoriess are sorted by the number of spell pairs.
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Figure 9: Average type for individual product categories. Product categories are sorted by
the number of spell pairs.
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