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Abstract

In this thesis, I examine high and low frequency price discovery for US equity

markets. In Chapter 3, I propose a methodology to disentangle high frequency

price jumps into a permanent and transitory component. Using a variance de-

composition and realized estimates I show that while jumps are extremely rare

events, jump contribution to intraday price discovery is large. In Chapter 4, co-

authored with Ryan Riordan, we examine the market dynamics of price jumps.

We find that jumps have a predictable component which is captured by the degree

of fragmentation in liquidity in minutes leading up to price jumps. Applying the

methodology of Chapter 3, we show that fragmentation predicts noisier jumps.

Lastly, in Chapter 5, co-authored with Evan Dudley, Luke Phelps and Ryan Ri-

ordan, we use mutual fund fire sales to decompose low frequency quarterly stock

prices into an efficient and noise component. We show that more than a quarter

of variance in low frequency stock prices is attributable to noise. Overall, this

thesis finds that noise is an important component of both high and low frequency

stock price variation.
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Chapter 1

Introduction

The two central functions of financial markets is to provide liquidity and facili-

tate price discovery. While liquidity refers to matching buyers and sellers, price

discovery is the process through which asset prices incorporate new information.

Since the flow of information is continuous, price discovery is a dynamic process

which involves repeated interaction of traders until all participants agree on the

fundamental value of the asset.

Intrinsically, price discovery is a latent process. This is due to the fact that

information sets and trading motives of individual traders are unobserved. In

particular, while the trades of informed traders push prices towards their efficient

value, uninformed traders have liquidity needs which are unrelated to asset fun-

damentals resulting with transitory deviations (i.e. noise) of prices from their

efficient value. This interaction is further complicated by liquidity suppliers’ who

set prices both to manage inventory risk arising from uninformed traders and

adverse selection risk arising from informed traders. While this thesis does not

identify the unique source of information leading to a particular price move, we
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identify the mechanisms of price discovery in a signal extraction model. In partic-

ular, this thesis shows that high frequency price discovery is largely dominated by

discrete price moves (i.e. jumps). Further, this thesis shows that jumps and their

realized signal-to-noise ratios contain a predictable component which is captured

degree of dispersion in liquidity (i.e. liquidity fragmentation) in minutes prior to

jumps. Lastly, we propose a methodology which uses the distress selling of mutual

funds (i.e. fire sales) to disentangle the efficient and noise components of prices

at low frequencies. More broadly, we study the market dynamic of high and low

frequency price discovery.

1.1 Contribution

Financial markets have evolved to unprecedented levels over the past two decades.

Rapid technological advances have resulted with traditional sources of informa-

tion such as analyst reports and print news largely replaced by high frequency

machine readable news, social media posts, high frequency changes to variables

governing the state of electronic limit order books, as well as other sources of in-

formation which can be quickly processed by machines and used to make trading

decisions at low latencies. These innovation mean that intraday prices evolve as a

continuous process interspersed with discrete price moves (i.e. jumps) in a manner

foreseen by the seminal work of Press [1967] and Clark [1973]. While continuous

price moves are associated with the slow trickle down of information (e.g. Kyle

[1985a]; Glosten and Milgrom [1985]), discrete price moves are associated with

high frequency information release of the aforementioned type. Understanding

the dynamics of jumps is important as they can affect the efficient functioning of

markets by impairing portfolio management, risk management and option-pricing
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(e.g. Bollerslev and Todorov [2011]; Bollerslev, Li, and Todorov. [2016]; Bégin,

Dorion, and Gauthier [2019]). Despite their importance, we know little about the

importance of jumps for price discovery and even less about the market dynamics

of jump price discovery. This thesis finds that despite being rare events, jumps

are extremely importance to the price formation process. We show that jumps

have a permanent component entangled with transitory (noise) component. Ad-

ditionally, the relative size of the two component has a predictable component

captured by liquidity fragmentation in minutes prior to the jump.

Disentangling the permanent and transitory jump components is important

since these two components have distinct implication for investors. For instance,

jumps with large transitory component are largely hedgeable simply by holding

the portfolio through mean reversion. In contrast, a large permanent jump can

result in significant informational losses particularly for liquidity suppliers who

trade against jumps. Further, jumps with large transitory components have the

potential to stabilize markets (e.g. Flash Crash of 2010).

A second result of technological advances is the degree of fragmentation in

equity markets, with quoting and trading regularly occurring on a multitude of

exchanges, trading venues, and broker-dealer platforms (O’Hara and Ye [2011]).1

The fragmented nature of equity markets can lead to increased fragility, a focus of

this thesis, and complexity as market participants attempt to coordinate liquidity

supply and demand in real-time (Menkveld and Yueshen [2018]). Often the liq-

uidity demand exceeds the liquidity supply and this mismatch can lead to jumps

with large transitory component as liquidity demanding orders consume all the

1See SEC Public Statement - https://www.sec.gov/news/statement/us-equity-market-
structure.html
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available liquidity in a market, pushing prices far away from the efficient value.

This thesis shows that the dergree of liquidity fragmentation in minutes leading

up to price jumps can predict both jumps and direction of price jumps, thereby

capturing the information of liquidity suppliers.2

Our research also disentangles low frequency prices into their respective noise

and efficient components. Price discovery at lower frequencies has important im-

plication for corporate and policy decisions. Extending this insight we decompose

information into a part that is knowable at the time of the investment (public in-

formation), and a part that is revealed in the future (private information). Using

these information components we show that managers do not have private infor-

mation about changes in efficient value, implying that managers do not possess

information not already in prices.

1.2 Research Questions

The goal of this thesis is to study the market dynamics of price discovery. One

particularity focus this thesis is intraday price jumps and their contribution to

intraday price discovery.

The first research question is as follows:

RQI: How much do jumps contribute to intraday price discovery and intraday

noise?

RQI is addressed in Chapter 3 by proposing a signal extraction methodology

which disentangles both variance contributions and realized time paths of intraday

jumps and continuous price moves. I also examine the implication of permanent

2We defined liquidity supplier as any trader that post a limit order.
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and transitory jump components for information cost and contrarian strategy

profits of liquidity suppliers.

The second research question is as follows:

RQII: Can liquidity fragmentation predict jumps, direction of jumps and jump

realized signal-to-noise ratio?

If liquidity suppliers’ are better informed than the average investor, then we

should expect that liquidity fragmentation should predict jumps, and direction

of jumps. In addition, if fragmented liquidity make markets fragile during times

leading up to jumps, then higher levels of fragmentation should predict jumps

with smaller realized jump signal-to-noise ratio. RQII is addressed in Chapter 4

The third and final question is as follows:

RQIII: How informative are low frequency stock prices?

In Chapter 5, we propose a methodology which uses distressed selling of mutual

funds (i.e. Fire Sales) to disentangle low frequency quarterly price into efficient

component and noise component. Using these two components we show that

that corporate managers do not have private information about future changes in

efficient value nor can they identify noise in prices.

1.3 Organization of Thesis

Chapter 3 presents a general overview of literature related to price jumps and

liquidity fragmentation. In Chapters 3 and 4 we examine high frequency price

discovery for US equity markets. In Chapter 3 I propose a methodology to dis-

entangle the permanent and transitory component of jumps and continuous price
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moves. In Chapter 4 we examine the market dynamic of price jumps. In partic-

ular, we examine the importantance of intermarket linkages in liquidity for price

jumps and jump component of price discovery. In Chapter 5 use mutual fund fires

sales to examine low frequency price discovery.
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Chapter 2

Literature Review

This chapter provides a general overview of the literature on price jumps and

liquidity fragmentation. A more focused literature review and how it relates to

the specific chapters is provided again in Chapters 3 and 4.

2.1 Price Jumps

Since the seminal work of Press [1967] and Clark [1973], it is widely accepted

that stock prices are characterized by extreme price changes over relatively short

periods of time. These aforementioned low probability and high impact price

moves are commonly known as price jumps. One of the main innovation in the

econometrics of price jumps is the availability of high frequency price data which

greatly facilitates estimation and detection of jumps which relies on the infill

asymptotic properties of volatility estimators. Moreover, the inclusion of jumps

in standard stochastic volatility model considerably improve model fit for equity

prices (e.g. Andersen, Benzoni, and Lund [2002], Andersen, T., and Ørregaard

Nielsen [2010])

Previous work has suggested that jumps might be explained by the arrival
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of new valuation relevant information (Andersen, Bollerslev, Diebold, and Vega

[2007]; Jiang and Yao [2013a]; Jeon and Zhao [2019]) and political news (Lobo

[1999]), while others have put forward the idea that limited arbitrage is the main

cause of large price movements (Mitchell and Pulvino [2012]). Despite the lack

of consensus on the source of price jumps, their importance is widely recognized

across a wide range of areas in finance, most notably for option pricing and equity

risk premium models.

One of the underlying assumption of the celebrated Black and Scholes [1973]

model is that markets operate continuously which precludes the presence of jumps.

Merton [1976] shows that the continuous price solution of the Black and Scholes

model can be viewed as an asymptotic limit to the case where the price process

contains discrete jumps. Assuming a log-normal distributed jump size, Merton

derives the option price in the presence of jumps as a weighted average of the

Black and Scholes solution. More generally, the inclusion of jumps in both price

and stochastic volatility processes can significantly improve model performance

compared to continuous time models. For example, the inclusion of jumps in

option pricing models explain the U-shape of implied volatilities across different

strike prices (Bates [1996]; Kou [2002]), further including jumps in both prices and

volatility increase implied volatility of in-the-money options (Eraker, Johannes,

and Polson [2003]).

Price jumps also have deep implication for the predictability of equity risk

premium. In particular jumps can explain several asset pricing anomalies. For

instance, Bollerslev et al. [2016] show that the inclusion of systematic jump risk in

the capital asset pricing model (CAPM) significantly improves the performance of

the CAPM in explaining cross-sectional return variation. Jumps can also explain
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the pricing of idiosyncratic risk (Bégin et al. [2019]), as well as size and value

premiums (Jiang and Yao [2013b]). In addition to price jumps, recent work also

examines the effects of jumps in variance risk premium (VRP) as it pertains

to return predictability. For example, Bollerslev, Todorov, and Xu [2015] non-

parametrically decompose VRP into a continuous and jump component to show

that return predictability of the market portfolio exclusively arise from the jump

component of VRP. Rombouts, Stentoft, and Violante [2019] also find no evidence

to suggest that the continuous component of VRP is priced.

2.2 Market Fragmentation

Modern equity markets are highly fragmented with quoting and trading occurring

on multiple exchanges, electronic communicating networks (ECNs), dark pools

and broker-dealer platforms. For instance, in the United States, stocks listed on

NYSE or NASDAQ can trade on BATS, Direct Edge, NYSE Arca and several

other trading venues. When a security trades on several venues its price discovery

is fragmented across multiple venues, in addition the information available to the

demand side of liquidity is also fragmented across multiple limit order books. This

has lead to concerns for policy makers such as excessive price dispersion, search

cost and adverse selection costs. On the other hand, proponents of fragmentation

argue that it encourages competition amongst venues for orderflow which result

in lower transaction cost and improved market quality.

There exist a rich literature examining the effects of market fragmentation on

market quality. Early theoretical models supported market consolidation. For

instance Pagano [1989] argues that liquidity externality leads to all traders grav-

itating towards a single exchange hence making fragmented markets unstable.
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Chowdhry and Nanda [1991] also support consolidation by arguing that adverse

selection cost for liquidity suppliers are higher in fragmented markets since in-

formed trader can hide their orders across venues. More recent literature has

examined the beneficial effects of fragmentation. Parlour and Seppi [2003] de-

velop a model where a hybrid market competes with a pure limit order book.

Foucault and Menkveld [2008] extend this framework to model competition be-

tween two pure limit order markets, the London Stock Exchange and Euronext.

The authors show that consolidated limit order book is deeper when both mar-

kets coexist. O’Hara and Ye [2011] also find that fragmentation in US equity

markets lowered transaction cost with faster execution speeds. Bennett and Wei

[2006]; Degryse and van Kervel [2015] also find evidence of lower transaction in

fragmented markets.

Recent papers which favor consolidation argue that fragmentation can result in

a search cost for market participants and therefore adversely effect market quality.

Yin [2005] shows that search costs associated with searching for quotes across

multiple venues widen spreads and thereby adversely effect liquidity. Madhavan

[2012] argues that weaker intermarket linkages resulting from fragmented liquidity

exacerbated the Flash Crash of 2010. Upson and Van Ness [2017] find that quote

fragmentation increase quoted and effective spreads.
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Chapter 3

A Tale of Two Jumps

This chapter proposes a signal extraction model of price discovery to examine

intraday price discovery in a state space framework. The variance contributions

of two types of price moves are separately considered: (i) continuous returns and

(ii) discrete jumps. My results suggest that even though jumps are extremely

rare events which happen with probability of 0.38 percent, they contribute 12.87

percent to price discovery and 36 percent to transitory mispricing. Using esti-

mates from the state space model I decompose intraday realized profits from the

provision of liquidity into informational losses from permanent jumps and reversal

profits from transitory jumps. The results suggest that profits from price rever-

sals and quoted spreads are not sufficient to compensate for large informational

losses, thereby liquidity suppliers face net losses during jumps. Profits from the

the provision of intraday liquidity arise exclusively from continuous price moves.

3.1 Introduction and Literature Review

Using a novel time series representation of intraday price series as distinct continu-

ous and jump parts, I propose a state space model to explicitly extract the ex-ante
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and realized informational content of jumps. In essence, I disentangle information

(i.e. permanent component) and transitory mispricing (i.e. noise component)

from observed jump returns. I further use realized estimates of permanent and

transitory jump components to decompose profits from the provision of intraday

liquidity into informational losses from permanent component and reversal profits

(i.e. contrarian strategy profits) from transitory component. The results suggest

that profits from price reversals and quoted spreads are insufficient to compen-

sate for large informational losses resulting from the permanent component of

jumps. However, since jumps are rare the provision of intraday liquidity remains

profitable on average.

Price discovery is the process through which prices incorporate new fundamen-

tal information and thereby transition to an informationally efficient equilibrium

(Grossman and Stiglitz [1980]). This chapter finds that not all jumps are equal

in their contribution to price discovery, the aforementioned finding is important

because the dynamics of price discovery for jumps have strong implications for

investors. For instance, a large transitory jump can destabilized the market (e.g.

Flash Crash, 2010) resulting in loss of investor confidence in the price system,

while the large mean reverting component in transitory jumps can also result in

large profits from contrarian liquidity supplying strategies. In contrast, a large

permanent jump can result in significant informational losses for liquidity sup-

pliers and thereby significantly impair market liquidity. Permanent jumps also

differ from transitory jump as the former entails inventory risk for liquidity sup-

pliers while the latter is largely hedgeable simply by holding the inventory position

through mean reversion. More generally, the instantaneous nature of jumps make

portfolio allocation suboptimal at the instance following the jump, but only to
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the degree of the permanent component of jumps.

My main contribution is to methodology. I propose a time series represen-

tation of the observed price series which allows for a convenient representation

of jumps as a signal extraction model in a Non-Gaussian state space framework.

Using estimation methods proposed by Shephard and Pitt [1997], and in a series

of articles by Durbin and Koopman [1994, 1997, 2000] I estimate variance con-

tributions of jumps to permanent and transitory intraday return variation. My

analysis is frequentist and allows convenient estimates of realized paths of per-

manent and transitory jumps returns. These realized estimators are efficient in

the sense of conditioning on future and past information in price series. I use

the t-distribution for permanent and transitory jump components which allow for

a sufficiently large probability of tail events to match my sample distribution of

jump returns. To the best of my knowledge, this is the first article to explicitly

model price jumps in a signal extraction framework, where each jumps is uniquely

disentangled into its permanent and transitory component.

I find that while jumps are rare events which occur with probability of 0.38

percent, they contribute 12.87 percent to permanent variance of intraday price re-

turns. However, these large contributions to price discovery are also accompanied

by a 36 percent contribution to total transitory variance. In addition, the median

jump realized signal-to-noise ratio is 6 times smaller as compared to the median

continuous signal-to-noise ratio. These results suggest that relative to continuous

returns, jumps are large but often imprecise signals of fundamental information.

Using realized estimates of permanent and transitory jumps and their continuous

counterparts, I examine the provision of liquidity during jump and continuous re-

turns. I find that jumps contribute 6.74 percent to intraday informational losses,
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which relative to their probability is 17.76 times larger. Examining intraday prof-

its net of informational losses, the results suggest that liquidity suppliers, on

average face a small loss during jumps compared to an average profit of 25,422.41

dollars from continuous price moves across each stock and day. Therefore, profits

from the provision of intraday liquidity result exclusively during continuous price

moves. I also use the proposed methodology to examine price discovery during

the 2008 financial crisis. My results suggest that price discovery during the 2008

financial crisis was dominated by a larger proportion of low latency news. This

translated into a larger contribution of jumps to permanent variance by 17.62

percent as compared to the relatively tranquil period of 2010.

My work is related to studies which examine price discovery in a state space

framework. For instance, Menkveld, Koopman, and Lucas [2007] examine price

discovery for Dutch stocks across multiple markets and, Brogaard, Hendershott,

and Riordan [2014] examine the contribution of high frequency traders to price

discovery. I also contribute to recent yet growing literature which examine the

market dynamics of jumps. For instance, Christensen, Oomen, and Podolskij

[2014] disentangle jumps from volatility bursts at tick frequency, and Brogaard at

al. (2018) examine the liquidity supplying role of high frequency traders during

jumps.

The outline of the chapter is as follows. Section 3.2 introduces price discovery

as a signal extraction model and details the state space model used to compute

variance contributions and realized estimators of permanent and transitory return

components. Section 3.3 presents my data and explains my sample selection.

Section 3.4 presents results and examines characteristics of estimated permanent

and transitory jump components from the state space model. In section 3.5,
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I present two applications to my methodology. First, I examine informational

losses to the provision of liquidity during jumps. Second, I examine price discovery

during the 2008 financial crisis. Section 3.6 concludes.

3.2 Methodology

3.2.1 State Space Model (SSM)

Introducing price discovery as a signal extraction model and assuming markets are

rational, it follows that new information about a stock’s fundamental value has

a permanent impact on the stock price. This permanent component is precisely

the component of observed return which contributes to price discovery. Denoting

{ηi,k}Tk=1 as the contributing series to price discovery for stock i, the permanent

price (i.e. efficient price) can be modelled as a random walk adapted to the

market’s aggregate informational set.

mi,t = m0,i +
t∑

k=1

ηi,k ; t ∈ [0 . . T ] (1)

Where m0,i is the initial permanent price. Since the permanent price is a mar-

tingale, it follows that the contributing series {ηi,k}Tk=1 is a martingale difference

series (MDS). Denoting si,t as stock i’s transitory price, the observed logarithmic

price is the sum of permanent and transitory parts.

pi,t = mi,t + si,t (2)

Since pi,t is logarithmic price, observed returns are the sum of permanent and



3.2. METHODOLOGY 16

transitory returns.

∆pi,t = ηi,t + ∆si,t (3)

Using a SSM framework I can decompose the variance of ∆pi,t into a part

related to new fundamental information ηi,t and a part related to transitory pricing

errors ∆si,t. Transitory mispricing in returns result from market overreaction to

information and/or liquidity considerations. As will be discussed in section 3.5.1,

∆si,t result in profits for liquidity suppliers. Since markets eventually corrects all

price moves unrelated to the stock’s efficient value, ∆si,t is the mean reverting

part of observed return. In addition to variance decomposition a SSM can also

compute realized estimators of permanent and transitory returns by conditioning

on all past and future information in observed price. These realized estimators

denoted as η̂i,t|p and ∆ŝi,t|p are efficient in the sense of using all past and future

information in the observed price series. In the SSM framework realized estimators

are commonly known as smoothed innovations. However, in the present framework

I want to emphasize that η̂i,t|p and ∆ŝi,t|p are ex-post estimators of the unobserved

sample time paths of permanent and transitory returns and therefore I will refer

to these estimators as realized estimators.

3.2.2 Return decomposition

Intraday price series is characterized by two types of price increments, (i) con-

tinuous returns and (ii) discrete jumps. It is important to distinguish between

these two increments for two reasons. First, from a price discovery perspective,

these two types of returns differ in the characteristics of information each incor-

porate during price formation. While continuous returns are associated with the
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slow trickle down of information in continuous trading, jumps incorporate low

latency and high informational content news. Second, from a modeling perspec-

tive, continuous returns satisfy properties associated with the Normal distribution,

whereas jumps being extreme events have heavier tails than the Normal distribu-

tion. Denoting Ji,y as the set of jump times for stock i in year y, and denoting

its complement J c
i,y, the set of continuous times, it follows that observed returns

have the following decomposition into jump and continuous returns.

∆pi,t =


Ci,t + Ji,t if t ∈ Ji,y

Ci,t if t ∈ J c
i,y

(4)

Where Ci,t is the continuous return for stock i at time t and Ji,t is the jump return.

To avoid convulsion of jump and continuous distributions I make the following

assumption.

Assumption 1.

∆pi,t ≈ Ji,t if t ∈ J i,y

Assumption 1 states that when there is a jump, the jump return is sufficiently

larger than the continuous return, such that the jump return can be approximated

by the observed return alone. In my sample, the size of observed returns during

a jumps is 9 times larger, on average than the continuous counterpart. Therefore

assumption 1 is innocuous for the sample.

Assumption 2.

(a) Ji,t|t−1 ∼ i.i.d(0, σ2
i,y)

(b) Ci,t|t−1 ∼ i.i.d N (0, σ2
i,d)

Where y denotes year and d denotes day.
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Assumption 2(a) states that time t jump return, conditional on time t− 1 in-

formation set, is identically and independently distributed with constant variance

for a given stock-year. Assumption 2(b) states that time t continuous return, con-

ditional on time t−1 information set, is identically and independently distributed

following a Normal distribution with constant variance for a given stock-day. As-

sumption 2-b allows continuous component of volatility to vary across days but is

non-stochastic.

3.2.3 Jump State Space Model

To examine the contribution of jumps to price discovery I construct an observed

jump price process which contains all relevant information related to permanent

and transitory jump returns. Using the method proposed by Lee and Mykland

[2008] and outlined in 3.2.9, I estimate a set of jump times Ji,y, for each stock i

in year y. Under Assumption 1 of the previous section, jump return Ji,t can be

approximated by the observed return alone when t ∈ Ji,y. Under assumption 2-a,

conditional on time t − 1, time t jump return is identically and independently

distributed. In particular, jump return is conditionally independent of past and

future continuous return. It follows that all relevant information required for a

signal extraction model can be recursively summarized by a jump price series

which, at each time t, is the aggregate sum of past jump returns as follows.

pJi,t = pJi,0 +
∑

{k∈Ji,y∩[0 t]}

Ji,k (5)

Where pJi,0 is the initial jump price. Since my initialization will be diffuse, esti-

mators of permanent and transitory jump returns will not depend on the precise



3.2. METHODOLOGY 19

value of the unknown initial jump price pJi,0. Using (5) I can formulate jump part

of the SSM consisting of a permanent jump price (i.e. efficient jump price) as ran-

dom walk process, and a transitory component which is a stationary and therefore

mean reverting process. The increments to the random walk are permanent jump

returns which incorporate new information about the security’s efficient value in

observed price. Whereas, the transitory jump return ∆st is the mean reverting

mispricing component. The jump part of the SSM is as follows:

pJi,t = mJ
i,t + sJi,t (6a)

mJ
i,t = mJ

i,t−1 + ηJi,t (6b)

Where ηJi,t ∼ i.i.d(0, ση,Ji,y ), sJi,t ∼ i.i.d(0, σs,Ji,y ) and t ∈ J i,y. Expressions (6a) and

(6b) define a parametric model for variance decomposition of jump returns into

permanent and transitory parts. Where the permanent variance (ση,Ji,y )2 is the

variance contribution of new information and the transitory variance (σs,Ji,y )2 is

the variance contribution of transitory mispricing incorporated in the observed

price by jumps. Using (σJi,y)
2 to denote the variance of Ji,t for t ∈ Ji,y, the

signal-to-noise variance decomposition is as follows:

(σJi,y)
2 = (ση,Ji,y )2 + (σs,Ji,y )2 (7)

Corresponding to the variance contributions in equation (7), the SSM can also

decompose jump returns into a MDS, {ηJi,t}t∈J i,y which is the informative com-

ponent of jump returns and a transitory mispricing component of jump returns,

{∆sJi,t}t∈J i,y . The jump return decomposition is as follows.
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Ji,t = ηJi,t + ∆sJi,t (8)

In order to validate that the stated model is well specified, I test for a per-

manent component (i.e. unit root) in the jump price series pj across the 347

stock-year in my sample. My sampling frequency for intraday returns is 1 minute.

I choose two unit root tests, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test

and the Phillips Perron (PP) test. The null hypothesis of the KPSS test assumes

that a unit root is absent in the series, whereas the null hypothesis of the PP test

assumes a unit root is present. Results from these two unit root tests are presented

in panel A of table 1. Starting with the KPSS test, the average LM statistic is

28.55 and the null hypothesis of absence of a unit root is rejected in all stock-years

at the 5 percent level. For the PP test, the average PP test statistic is -0.23 and

the null hypothesis of presence of a unit root in 94 percent of stock-years cannot

be rejected. For the remaining 6 percent of stock-years the null hypothesis is

rejected after allowing for a constant mean in the PP test. These results provide

conclusive evidence that {pJ}t∈J i,y contains a permanent component across all

stock-years in my sample and therefore the jump state space model in expressions

(6a) and (6b) is well specified.

3.2.4 Continuous Part of State Space Model

Correspondingly to the jump observed price series, I construct the continuous

price series as follows:

pi,t = pci,0 +
∑

{k∈J ci,y∩[0 t]}

Ci,k (9)
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where pci,0 is the initial continuous price. Using equation 8, I can formulate a

continuous part of the SSM with Normally distributed returns as follows:

pci,t = mc
i,t + sci,t (10a)

mc
i,t = mc

i,t−1 + ηci,t (10b)

sci,t = φsci,t−1 + εci,t (10c)

where ηci,t ∼ N (0, ση,ci,d ), εci,t ∼ N (0, σε,ci,d), d denotes day, and t ∈ J c
i,y.

Following (Hendershott and Menkveld [2014]) and to allow for price pressure

arising from persistent order splitting strategies I model transitory price as an

autoregressive process. The half life of transitory mispricing in continuous price

is − ln(2)

ln(|φ|)
.

Corresponding to my jump price process, I also test that the continuous SSM

is well specified by testing for a unit root in the observed continuous price pi,t.

Since the continuous SSM is estimated independently for each stock-day, the unit

root tests are also independently implemented for each of the 64,889 stock-days

in my sample. Panel B of table 3.1 presents results for the KPSS and PP test for

the continuous price series pc. The average LM statistic from the KPSS test is

32.76 and the null hypothesis of the absence of unit root in all stock-days in my

sample can be rejected. For the PP test the null hypothesis of presence of a unit

in all, but 1.94 percent of stock-days, cannot be rejected. These results present

strong to suggest that the continuous price pc contains a permanent component

and therefore the continuous SSM is well specified.
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Table 3.1: Unit Root Tests

This table presents results from the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
and the Phillips Perron (PP) test for the jump price series pj (Panel A) and
continuous price series pc (Panel B). The null hypothesis of the KPSS test assumes
that a unit root is absent in the series, whereas the null hypothesis of the PP test
assumes a unit root is present.

KPSS Test: pt = mt + st ; mt = mt−1 + ηt ; where ηt ∼ N (0, σ2
η) and st is a stationary

process.
Null hypothesis of KPSS test is σ2

η = 0
PP Test ∆pt = αpt−1 + ut
Null hypothesis of PP test is α = 0

Panel A: Jump Price Series

KPSS Test PP Test

Year N LM Statistic % Rejected PP Statistic % Rejected

All 347 28.55 100 -0.23 6.34

2008 174 28.24 100 -0.04 3.44

2010 173 28.86 100 -0.41 9.24

Panel B: Continuous Price Series

KPSS Test PP Test

Year N LM Statistic % Rejected PP Statistic % Rejected

All 64,889 32.76 100 0.02 1.94

2008 32,948 32.72 100 -0.03 2.47

2010 31,941 32.79 100 0.08 1.40

3.2.5 Variance Decomposition of Jumps

I begin with outlining the estimation procedure for jump SSM given in expressions

(6a) and (6b). The first step is the choice of a distribution for permanent jump

returns denoted by ηJi,t and transitory price sJi,t respectively. Since observed jump

returns ∆pJi,t are on average 9 times larger than continuous returns ∆pci,t, it is

important that the choice of distributions have sufficiently large mass in the tails
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(i.e. large kurtosis). Examining the kurtosis of ∆pJi,t in panel A of table 3.1,

it can be observed that the average kurtosis across the two years in the sample

is 8.46. Since ∆pJi,t is the sum of ηJi,t and ∆sJi,t, the distributions of ηJi,t and sJi,t

should have larger kurtosis than that of ∆pt. This is because the sum of two

distribution has smaller kurtosis than the individual distributions. At the same

time, the estimation procedure leads to poor convergence when the kurtosis is

unbounded or the distribution is bi-modal. Given the above considerations, I

choose a two parameter t-distribution with substantially heavier tails than the

normal distribution. Since the focus of this chapter is on variance contributions

I fix the degrees of freedom of the t-distribution to 4.25 and estimate variances

of the t-distributed ηJi,t and sJi,t from the SSM 1 . The choice of 4.25 degrees of

freedom for the two parameter t-distribution leads to an excess kurtosis over the

normal distribution of 24 and therefore substantially larger probability in the tails

than the Normal distribution. Given this choice of distribution, the jump-state

model in (6a) and (6b) takes the following form.

pJi,t = mJ
i,t + sJi,t (11a)

mJ
i,t = mJ

i,t−1 + ηJi,t (11b)

Where ηJi,t ∼ t4.25(0, ση,Ji,y ), sJi,t ∼ t4.25(0, σs,Ji,y ) and t ∈ J i,y.

Since densities for both the permanent and transitory component are Non-

Normal, the standard Kalman Filter no longer yield efficient estimators of realized

permanent and transitory jump components. Therefore, I use simulation based

1The estimates of permanent and transitory components are similar for degrees of freedom
ranging from 4.25 to 5.25 in increments of 0.25
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methods proposed by Shephard and Pitt (1997), and in a series of papers by

Durbin and Koopman [1994, 1997, 2000]. These methods involve drawing samples

from an importance density to numerically maximize the likelihood function. The

procedure is as follows.

Denote the vector of unknown parameters as ΨJ = {ση,Jy , σs,Jy }, the stacked

vectors of jump price, permanent jump returns and transitory jump returns as

pJ = (pJ1 , ..., p
J
T ), ηJ = (ηJ1 , ..., η

J
T ) and sJ = (sJ1 , ..., s

J
T ) respectively. In addition,

denote f(pJ |ΨJ) as the jump price density. Where for notational convenience

I have dropped the stock index i. Then the likelihood function Lf , takes the

following form:

Lf (pJ |ΨJ) =

∫
f(pJ , ηJ |ΨJ)dηJ

=

∫
f(pJ , ηJ |ΨJ)

g(ηJ |pJ ,ΨJ)
g(ηJ |pJ ,ΨJ)dηJ

= Lg(pJ |ΨJ)Eg[ω(ηJ , sJ |ΨJ)]

(12)

where Lg(pJ |ΨJ) is the likelihood function containing the two importance den-

sities, Eg denotes expectation under density g, and ω are importance sampling

weights.

ω(ηJ , sJ |ΨJ) =
f(ηJ , sJ |ΨJ)

g(ηJ , sJ |ΨJ)

=

∏
t f(ηJt |ΨJ)f(sJt |ΨJ)∏
t g(ηJt |ΨJ)g(sJt |ΨJ)

(13)

For a given ΨJ I estimate the value of Lf by drawing N samples of permanent

jumps {ηJ(k)}Nk=1 from the importance density g(ηJ |pJ ,ΨJ) and of transitory jumps

{sJ(k)}Nk=1 from the importance density g(sJ |pJ ,ΨJ) . I then proceed to compute

the sample counterpart of expression (12).
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L̂f (pJ |ΨJ) = Lg(pJ |ΨJ)
1

N

N∑
k=1

ω(ηJ(k), s
J
(k)) (14)

I estimate Ψ̂J , the maximized likelihood estimator of ΨJ as the value which

maximizes expression (14). Since both permanent and transitory jump returns

are Non-Normal I choose a large sample size of 500 draws from the importance

densities g(ηJ |pJ ,ΨJ) and g(sJ |pJ ,ΨJ), for each computation of expression (14).

In addition, I use diffuse initialization and therefore Ψ̂J and realized permanent

and transitory jump returns do not depend on the initial permanent jump price

mJ
0 . In order to increase the efficiency of the estimators I use 4 antithetic variables

which are balanced for scale and location. Details about these antithetic variables

are in Durbin and Koopmans (2012). Combined with antithetic variables the

complete sample size N is 2,000 for each computation of L̂f (pJ |ΨJ) in (14).

As in Jungbacker and Koopmans (2007) I use the normal densities as the

importance densities to the t-distributions t4.25(0, ση,Ji,y ) and t4.25(0, σs,Ji,y ). The pa-

rameters of the importance densities are estimated by maximizing the logarithmic

conditional density f(ηJ , sJ |pJ ,ΨJ) with respect to ηJ and sJ . The resulting value

η̂J and ŝJ are the mode and therefore the most probably value of ηJ and sJ under

the Non-Gaussian densities f(ηJ |pJ ,ΨJ) and f(sJ |pJ ,ΨJ). The procedure is as

follows.

maxηJ ,sJ{logf(ηJ , sJ |pJ ,ΨJ)} = maxηJ ,sJ{logf(pJ |ηJ , sJ ,ΨJ)−

logf(ηJ , sJ |ΨJ)− logf(pJ |ΨJ)}
(15)

Using Newton-Rhapson method to maximize expression (15) results with Nor-

mal densities g(ηJ |pJ ,ΨJ) and g(sJ |pJ ,ΨJ) with the same mode as f(ηJ |pJ ,ΨJ)
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and f(sJ |pJ ,ΨJ) respectively. Following which I then proceed to use g(ηJ |pJ ,ΨJ)

and g(sJ |pJ ,ΨJ) as the importance densities to draw sample of ηJ and sJ . To put

simply, the importance densities g(ηJ |pJ ,ΨJ) and g(sJ |pJ ,ΨJ) are normally dis-

tribution with the same mode as the Non-Normal jump densities f(ηJ |pJ ,ΨJ) and

f(sJ |pJ ,ΨJ). Each single draw from the importance densities g(ηJ |pJ ,ΨJ) and

g(sJ |pJ ,ΨJ) requires a single run of the Kalman Filter and Simulation smoother

of Durbin and Koopmans (2002).

3.2.6 Realized Permanent and Transitory Jump Returns

In addition to estimating variance contribution of permanent and transitory jump

returns, I also compute realized estimators of time paths for jump return com-

ponents η̂Jt and ∆ŝJt . These realized estimators are expectations of permanent

and transitory jump returns conditional on both future and past time paths of

observed variables in the SSM. In the state space modeling literature these esti-

mators are known as smoothed innovations. These estimator are efficient in the

sense of using all available information in past and future time paths. Using the

importance densities g(ηJ |pJ ,ΨJ) and g(sJ |pJ ,ΨJ) from section 3.2.5 , I compute

realized estimator of permanent jump returns as follows:

ηJt|pJ =

∫
ηtf(ηJt |pJ ,ΨJ)dηJt

=

∫
ηt
f(ηJt |pJ ,ΨJ)

g(ηJt |pJ ,ΨJ)
g(ηJt |pJ ,ΨJ)dηJt

=
Eg[η

J
t ω(ηJt , s

J
t |ΨJ)]

Eg[ω(ηJt , s
J
t |ΨJ)]

(16)

where ω(ηJt , s
J
t |ΨJ) are importance weights defined in expression (13). The sample

counterpart of (14) is as follows:
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η̂Jt|pJ =

∑N
k=1 η

J
t,(k)ωk∑N

k=1 ωk
(17)

similarly, realized estimator of transitory jump price is as follows:

ŝJt|pJ =

∑N
k=1 s

J
t,(k)ωk∑N

k=1 ωk
(18)

Using (15), the realized estimator for transitory jump return is ∆ŝJt|pJ . I com-

pute realized permanent and transitory jump returns by simulating 500 draws

from the importance density g(ηJ |pJ ,ΨJ), along with 4 antithetic variables which

lead to a sample size N of 2,000. As is the case when numerically computing the

likelihood function in section 3.2.5, each draw of ηt from the importance density

requires a of single run of the Kalman Filter and Simulation smoother of Durbin

and Koopman [2002].

3.2.7 Continuous State Space Model Estimation

Since the continuous SSM in expressions (10a)-(10c) has normally distributed per-

manent returns ηci,t and innovations to the transitory price εci,t, standard Kalman

Filtering yields efficient estimators of continuous return components η̂ct|pc and

∆ŝct|pc . I use Expectation Maximization (EM) algorithm of Dempster, Laird,

and Rubin [1977] to compute starting values. These starting values are then used

as initial values to maximize the likelihood function using BFGS algorithm. Max-

imizing the likelihood function which is computed using the Kalman Filter yield

estimates for the continuous part of my model for each stock-day in the sample.
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3.2.8 Permanent Price Estimator

The realized estimator for permanent (i.e efficient price) is recursively defined for

each year by combining realized returns from jumps and the continuous component

for each stock-day in the sample. Denoting T as the last time period for a given

day, the realized permanent price has the following recursive form.

m̂i,t|T =


m̂i,t−1|T + η̂Ji,t|pJ if t ∈ Ji,y

m̂i,t−1|T + η̂ci,t|pc if t ∈ J c
i,y

(19)

The realized estimator m̂i,t|T is the conditional expectation of permanent price

conditional on all continuous information in a given day, and all jump information

for the given year. If the first observation of a given day is not a jump, I estimate

the initial permanent price by m̂c
i,0|T , which is the continuous estimator of initial

permanent price, whereas if the first observation is a jump, I use m̂c
i,0|T + η̂Ji,−1|pJ

as the initial permanent price. Since both the jump and continuous SSM are

initialized using diffuse initializations, the realized permanent price and all other

estimator do not depend on the true realization m0,i.

3.2.9 Jump Detection

A variety of tests have been proposed to detect the presence of jumps at intraday

frequencies (e.g. Barndorff-Nielsen and Shephard [2006]; Jiang and Oomen [2008];

Aı̈t-Sahalia and Jacod [2009]; Andersen et al. [2010]). The earliest contribution

to this literature was an estimator of integrated volatility, realized bipower varia-

tion (RBV), proposed in Barndorff-Nielsen and Shephard (2004). Unlike realized
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variation (RV), RBV is robust to jumps in returns and this makes it a valid mea-

sure of sample return variation arising from the continuous part of return process.

More specifically defining the return process as a jump diffusion.

dp(t) = σtdWt + Ytdqt (20)

Where Wt is Brownian motion, σt is strictly positive instantaneous volatility, Yt

is random jump size and qt is Poisson-jump process. RBV is constructed by

multiplying adjacent returns from discretely sampled data. As shown in Lee and

Mykland (2008) a slight modification of RBV yields an estimator of instantaneous

volatility over a rolling window of size K as follows.

σ̂2
t =

1

K − 2

t−1∑
i=t−K+2

|∆pt||∆pt−1| (21)

The exact time of a jump along with the jump size can easily be estimated

using a non-parametric test statistic proposed by Lee and Mykland [2008]. The

intuition behind their test statistic is as follows: at any given time, the observed

return can be large if there is a jump, or because instantaneous volatility had

a large realization, which suggest that returns standardized by a jump robust

estimator of instantaneous volatility are large precisely when there is a jump.

Following this institution the authors propose the following test statistic.

Lt =
∆pt
σ̂2
t

(22)

Where σ̂2
t is the jump robust estimator of instantaneous volatility from (20).
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Under certain regularity conditions outlined in Lee and Mykland [2008], the au-

thors show that under the null of absence of a jump, Lt converges asymptotically

to a known distribution. Using the test statistic Lt I detect detect jumps as fol-

lows. Across each stock-year, I compute Lt for all intraday returns sampled at

the 1 minute frequency and using a rolling window K=300. This choice of rolling

window size is consistent with the authors’ suggestion for returns sampled at the

1 minute frequency. Using a critical value of 1 percent I test for a jump, for each

stock i and time t return ∆pi,t, for the two sample periods of 2008 and 2010 inde-

pendently. Therefore, for each stock i and year y, I estimate a set of jump times,

Ji,y with associated jump returns, Ji,t. If a return ∆pi,t is a not a jump then it is

a continuous return.

3.3 Sample and Data

I start my sample selection with the Compustat index constituents data and select

all stocks listed on the S&P 500 index for least one month in each of the 9 years

between 2008 to 2016. This ensures that the sample stocks are sufficiently liquid

to trade at intraday frequencies. Following which I remove all stocks that (i)

underwent a stock split, (2) paid stock dividends, (3) de-listed or the issuing

company underwent a merger or (4) closing price falls below 5 dollars in Center

for Research in Security Price (CRSP) daily stock file, between 2008 to 2016.

Following these four filters I am left 229 stock, of which 215 uniquely matched

with Trade & Quotation (TAQ) Data master files. This concludes my stock sample

selection with 215 stocks. I use two temporal samples for the SSM estimation

namely (i) 1st January 2008 to 31 December 2008, the year of the financial crisis,

and (ii) the non-crisis period of 1st January 2010 to 31st December 2010. The
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latter sample is sufficiently close to the financial crisis such that the stock issuing

companies are not likely to undergo structural changes, whereas the height of the

2008 financial crisis had resolved by January of 2010.

In order to avoid estimation issues related to small sample sizes in the jump

part of the SSM, I truncate the bottom half of stocks by number of jumps detected

for each of the sample years . In order to avoid a biased sample towards high jump

stocks I also truncated the top 10 percent of the stocks by number of jumps for

each year in my sample. This preserves the median number of jumps across stocks

in a given year. The final sample consist of 174 stocks in my first sample year,

2008 and 173 stocks in my second sample year, 2010.

I sample midpoint price and compute returns at the 1 minute frequency for

each day in 2008 and 2010 during regular trading hours hours, 9:30 am to 4:00

pm. I remove the first and last minute of the trading day to avoid the opening and

closing batch auction returns. I also remove withdrawn quotes using the methods

and code of Holden and Jacobsen [2014]. All market statistics such as spread,

orderflow imbalance and traded volume are computed using aggregates or means

within the 1 minute interval over which the corresponding return is calculated. In

addition to market data I also use high frequency and machine readable news data

from Raven Pack News Analytics Database. This database consists of news events

timestamped to the millisecond, and used in real time trading by high frequency

and other algorithmic traders. The database consist of news feed from sources

such as Barron’s MarketWatch and Dow Jones Newswire, and cover approximately

90 percent of all global investment news. From RavenPack News Database I filter

news that are relevant to the stocks in the sample, by using a unique company

level identifier and a relevance score. Relevance score is computed by RavenPack
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using proprietary text analysis algorithms. Relevance score takes value between 0

and 100 with high scores indicating high relevance. To filter news by relevance, I

remove all news with relevance scores smaller than 90. I further filter news based

on novelty score computed by RavenPack at the news level. I remove all news

with novelty score of less than 100 which is the highest level of novelty. The final

news dataset consist of high relevance and highly novel news for the sample stocks

during the years 2008 and 2010.

Table 3.2: Summary Statistics - Sample Stocks
This table reports descriptive statistics for stocks in my sample by year (Panel A), and
by size group (Panel B) as measured by dollar market capitalization (MCAP). Daily
vol. is average daily traded volume in dollars, and Price is the average intraday dollar
price sampled at the 1 minute frequency. Spread is average quoted spread in
percentage basis points, computed from intraday midpoints at the millisecond
frequency. N is the number of stocks in the given group.

Panel A: By Year

Year N Number of Jumps MCAP(×109) Price Daily Vol.(×106) Spread

Min Mean Max

All 347 175 336.83 472 36.90 46.37 265.20 5.18

2008 174 233 333.32 472 39.20 44.72 286.28 6.34

2010 173 175 340.36 459 49.49 48.54 241.02 3.85

Panel B: By Size Group

Size N Number of Jumps MCAP(×109) Price Daily Vol.(×106) Spread

Min Mean Max

Small 98 232 352.49 468 9.73 42.26 102.39 6.30

Large 99 199 323.73 472 65.53 50.54 430.51 4.10

Table 3.2 presents descriptive statistics for the sample stocks. The minimum

number of jumps for a given stock-year in my sample is 175 and the mean is
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367. The sample stocks have average market capitalization (MCAP) of 37 billion

dollars. The average daily traded volume across stocks in the sample is 265 million

dollars. In addition, the average midpoint price is 46.37 dollars. I further examine

stocks based on two size groups. Small stocks have average MCAP of 9.73 billion

dollars whereas large stocks have MCAP of 65.53 billion dollars. Large stocks

in the sample are more liquid with almost four times the daily traded volume of

small stocks, and 2.20 basis points smaller quoted spread.

Each 1 minute interval corresponds to a 1 minute realized return, which is

either a jump return or a continuous return. Panel A of table 3 presents descriptive

statistics for jump time intervals and panel C for continuous intervals. From table

3, the mean jump return size is 67.24 basis points as compared to 7.68 basis points

for continuous return size. Therefore on average, jump returns are almost 9 times

larger than continuous returns. Jumps are also accompanied by a surge of trading

activity. The average volume traded over 1 minute jump intervals is 1.94 million

as compared to 0.68 million for continuous intervals. Since jumps are also times of

market stress, average quoted spread are also 4 times larger than the corresponding

continuous time intervals. As can be expected, 2008 had larger size jumps with

an average size of 83.70 basis points as compared to 50.58 basis points for 2010.

However, there are slightly fewer jumps detected in 2008 with a probability of

0.36 percent as compared to 0.40 percent in 2010. This result can be explained

by taking into account that volatility was larger in 2008, which suggest that a

portion of large returns were volatility spikes.
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Table 3.3: Summary Statistics - Jump and Continuous Times
This table reports descriptive statistics for intraday jumps (Panel A), intraday jumps
from the stocks which converged in state space model (SSM) (Panel B) and for and
continuous (Panel C) 1 minute time intervals during the trading day. Prob.(%) is the
percentage probability for jumps (Panel A) or the continuous return (Panel B).
Return size is the average of the absolute value of 1 minute returns and reported in
percentage basis points. Traded vol. is average dollar traded volume in the given
1-minute intraday time interval. Spread is average quoted spread in percentage basis
points, computed from intraday midpoints at the millisecond frequency. For jumps I
compute average kurtosis by year, and by day for the corresponding continuous
returns, this is consistent with the Jumps and Continuous SSM estimation frequency.

Panel A: Jump Returns

Year Prob.(%) Return Size Kurtosis Traded Vol.(×106) Spread

Min Mean Max

All 0.38 4.83 67.24 6,233 8.46 1.94 20.15

2008 0.36 9.59 83.70 6,233 6.44 1.94 29.83

2010 0.40 4.83 50.58 5,629 10.49 1.93 10.34

Panel B: Jump Returns - SSM Sample

Year Prob.(%) Return Size Kurtosis Traded Vol.(×106) Spread

Min Mean Max

All 0.38 5.54 66.65 6,233 7.96 1.88 17.51

2008 0.36 10.40 84.53 6,233 6.53 1.77 26.20

2010 0.36 5.54 50.20 5,629 9.31 1.98 9.50

Panel C: Continuous Returns

Year Prob.(%) Return Size Kurtosis Traded Vol. Spread

Min Mean Max

All 99.62 0 7.68 4,991 2.48 0.68 5.12

2008 99.64 0 9.81 1,199 2.54 0.74 6.25

2010 99.60 0 5.24 4,991 2.41 0.62 3.83

In addition to being large in size and trading activity, jumps are also rare events

which occur with a probability of 0.38% across the two sample years. The average
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kurtosis for jump returns is 8.46 as compared to 2.48 for continuous returns. This

suggest that jumps are Non-Gaussian with significant probability mass on tails of

the distribution. In section 3.2.5 I outlined the choice of the t-distribution with

4.25 degrees of freedom for permanent and transitory jump returns. This choice

allows for sufficiently large kurtosis in the permanent and transitory jump returns

when estimating variance contributions from the SSM. The jump kurtosis in 2008

is 6.44 as compared to 10.49 in 2010. This result is caused by more mass on the

left tail of the jump distribution in 2008 as compared to 2010. To conclude this

section, it can be observed that jumps are low probability, high impact events

characterized by large returns, traded volume and quoted spread.

3.4 Results

3.4.1 Permanent and Transitory Jumps

I proceed to examine permanent, transitory and median jumps using estimates

from the SSM. As outlined in section 3.2.6, in addition to estimates of variance

contributions, the proposed SSM also provides realized estimates of permanent

and transitory jump returns. These realized measures are expectations of per-

manent and transitory jump components, conditional on all past and future in-

formation contained in observed jump price. To examine this decomposition of

individual returns into permanent and transitory parts, I construct a Realized

signal-to-noise (Realized SN) ratio for individual jump returns as follows.
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Realized SNi,y,t =
|η̂Ji,y,t|pJ |
|∆ŝJ

i,y,t|pJ |
; i denotes stock, y denotes year and t is jump time.

(23)

From expressions (8) and (23), it can be observed that corresponding to each

jump return Ji,y,t is a Realized SN which estimates the size of the permanent

component of jump return relative to the size of the transitory component. If

the Realized SN is large, then the jump has a large estimated permanent com-

ponent relative to the estimated transitory component, whereas if this estimate

is small than the jump has a small estimated permanent component relative to

the estimated transitory component. Using Realized SN I define representative

permanent and transitory jumps for each stock-year in 3 steps, as follows. (1)

For each stock-year I order jumps based on their Realized SN. (2) I compute the

25th, 50th and 75th percentile values of realized SN for each stock-year. (3) If

a jump for a given stock-year has a realized SN smaller than 25th percentile, I

assign it the label of transitory jump, whereas, if it has a Realized SN higher than

75th percentile, I label the jumps as permanent. For comparison purposes, I label

jumps with Realized SN exactly at the 50th percentile as median jumps. Defining

jumps based on percentiles for each stock-year has the advantage that each of the

permanent, transitory and median jump categories have representations from all

stock-years.

Panel A of table 3.4 presents descriptive statistics for each of the three jump

categories. Transitory jumps tend to be largest with mean size of 84.46 basis

points, whereas permanent jumps are smaller with mean size of 67.20 basis points.

Median jumps are the smallest of the three, with mean jump size of 59.10 basis
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points. As expected, permanent jumps have large permanent size and transitory

jumps have large transitory size. The mean (median) permanent jump Realized

SN is 32.90 (12.11) as compared to the mean (median) transitory Realized SN

of 0.42 (0.28). Median jumps have twice as large permanent size as compared to

transitory size, as measured by their mean realized SN of 2.19. Therefore, jumps

generally have large relative permanent component and with approximately a

quarter of the mass on each tail of SN distribution.

Table 3.4: Permanent Jumps, Continuous Jumps & Earning News Jumps
This table reports average size of realized permanent (Perm. Component) and
transitory (Tran. Component) jump components across (1) permanent jumps, (2)
transitory jumps and (3) median jumps. Size of permanent and transitory jump
return is computed as the absolute value of the estimated return component, reported
in percentage basis points. Jump components are expectation of permanent and
transitory jump returns, conditional on all past and future information in jump price
series. These components are realized estimators computed using importance sampling
as outlined in section 3.2.6. N is the number of jumps in each group. Standard errors
are given in parenthesis. I use importance sampling to compute standard errors of
jump components and delta method to compute standard errors of realized SN. I
define permanent (transitory) jumps, as jump with realized signal to noise ratio
(Realized SN) larger (smaller) than the 75th (25th) percentile value for a given
stock-year. Median jumps have realized SN equal to the median value for a given
stock year.

Permanent Jumps and Transitory Jumps

Jump Type N Jump Size Permanent Size Transitory Size Realized S-N Jumps

Mean Median

Permanent 23,229 67.20 61.23 5.97 32.90 12.11

(1.86) (0.11) (0.09) (16.93)

Transitory 24,111 84.46 14.58 74.65 0.42 0.28

(0.57) (0.12) (0.09) (0.01)

Median 995 59.10 42.49 22.75 2.19 1.99

(1.48) (0.46) (0.40) (0.07)
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Figure 3.1: Average Cumulative Returns - Permanent Jumps versus Transitory
Jumps

Figure 1. - Plot of average cumulative returns in event time for jumps identified as permanent,
transitory and median jumps by the state space model (SSM)

Figure 3.1 presents plots of average cumulative returns for the three types of

jumps in event time. I use a 7 minute event window, with 2 minutes prior and 5

minutes post. Jump time is labeled as t = 0. Cumulative returns are normalized

to zero at t = −2, and negative cumulative returns are flipped to positive. Starting

with transitory jumps, two features strike attention. First, transitory jumps tend

to have large mean reversion in the 1 minute immediately following the jump.

This initial mean reversion at event time t = 1 is 18.21 basis points and this is
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followed by mean reversions of 2.52 and 2.93 basis points at event times t = 2 and

t = 3 respective. From thereon, cumulative returns are almost flat during event

times t = 4 and t = 5. When compared to the the initial midpoint at event time

t = −2 relative to the jump midpoint at event t = 0 a price move of 68.99 basis

points can be observed, of which 26.34 basis points mean revert by event time

t = 3 or equivalently a mean reversion of 38%.

Uninformed orders have low immediacy demand as compared to informed or-

ders. Therefore, uninformed traders are more likely to time their trade when

liquidity conditions are favorable. Since transitory jumps are likely to result from

large uninformed orders (i.e. price) it can be expected that trading conditions,

relative to the direction of the orderflow, to be favorable immediately preceding

transitory jumps. This is precisely what can be observed at t = −1. Cumulative

returns are negative immediately preceding transitory jumps (i.e kink at t = −1)

which implies that the prevailing midpoint at t = −1 is favorable for trades im-

mediately preceding transitory jumps, which are in the identical direction to the

transitory jumps; i.e. sell (buy) orders preceding positive (negative) transitory

jumps.

Next, I examine permanent jumps. In sharp contrast to transitory jumps, re-

turns initially move in the direction of the permanent jump by 6.18 basis points,

followed by a jump return of 64.29 basis points at t = 0, and a further move in

jump direction of 1.69 basis points at t = 1. from thereon cumulative returns

are flat. The absence of mean reversion for permanent jumps validates their per-

manent nature. Lastly, median jumps are similar to permanent jumps except for

smaller overall size, and a small mean reversion of 2.92 basis points. To summa-

rize the findings of this section, while the median or typical jump is permanent,
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approximately 25% of jumps are highly transitory with mean reversion of 38%

and correspondingly 25% of jumps are highly permanent with prices continuing

to move in the jump direction until 2 minute post jump.

3.4.2 Variance Contributions

Following the procedures outlined in section 3.2.5, I estimate ex-ante variance con-

tribution from the SSM. The jump SSM convergence rate is 79.2% of stock-years

and continuous SSM convergence rate is 78.3% of days in the sample. Table 3.5

reports estimated variances and realized sizes of jump components. The average

permanent jump return variance is 3 times larger than the transitory jump re-

turn variance, while the average size of permanent jump is only 8.35 basis points

larger. This is consistent with my finding in section 3.2.3 indicating that the

average jumps is permanent with a significant proportion of highly permanent

and highly transitory jumps. Next, I examine price informativeness for jumps

and continuous returns. Recall from the discussion on variance decomposition

in section 3.2.5 that observed jump and continuous returns have the following

unconditional (i.e. ex-ante) variance decomposition.

Var[Ji,y,t] = (ση,Ji,y )2 + (σs,Ji,y )2 (24)

Var[Ci,d,t] = (ση,ci,d )2 + (σε,ci,d)
2 (25)

Where Ji,y,t and Ci,d,t are jump and continuous returns respectively. Using

expressions (24) and (25) I define an ex-ante measure of price informativeness,
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Table 3.5: State Space Model (SSM) - Permanent & Transitory
Components
The table reports average size of realized permanent (Perm. Component) and
transitory (Tran. Component) jump components across individual jumps. Where size
is computed as the absolute value of estimated return component, reported in
percentage basis points. Realized jump components are expectation of permanent and
transitory jump returns, conditional on all past and future information in jump price
series. These components are estimated using importance sampling as outlined in
section 3.2.5. N is the number of jumps in each year group. Perm. Var is the average
permanent jump return variance, across stock-years. Trans. Var is the average
permanent jump return variance, across stock-years. Standard errors are given in
parenthesis. e use importance sampling to compute standard errors of jump
components

Year N Jump Size Perm. Var(×106) Trans. Var(×106)

Perm. Component Tran. Component

All 93,030 40.82 32.48 27.16 8.12

(0.05) (0.04) (0.29) (0.12)

2008 44,629 54.58 39.64 44.83 13.72

(0.10) (0.08) (0.57) (0.24)

2010 48,401 28.14 25.88 10.36 2.80

(0.05) (0.04) (0.13) (0.06)

signal-to-noise (SN) ratio, as follows.

SN Jumpsi,y =
(ση,Ji,y )2

(σs,Ji,y )2
; i denotes stock and y denotes year (26)

SN Conti,d =
(ση,ci,d )2

(σε,ci,d)
2

; i denotes stock and d denotes day (27)

The signal to noise ratio is an ex-ante measure of the average fundamental

information in observed returns relative to the average mispricing. A large value
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Table 3.6: State Space Model (SSM) - Variance Decomposition

This table reports results from the state space model (SSM) proposed in section 3.2.3
of this chapter. I compute signal to noise ratio jumps (SN Jumps) for each stock i and
year y as the ratio of the permanent and transitory jump return variance estimated

from the jump SSM,
(σ̂η,Ji,y )2

(σ̂s,Ji,y )2
; where i denotes stock and y denotes year. The reported

SN Jumps is the average across stocks-years. The continuous signal to noise ratio
continuous (SN Cont.) is the ratio of the permanent and transitory continuous return

variance estimated from the continuous SSM,
(σ̂η,ci,d )2

(σ̂ε,ci,d)
2

; where i denotes stock and d

denotes day. The reported SN Jumps is the average across stocks-days. %Trans is the
average amount of transitory mispricing in intraday observed price across days.
%Trans-J is the average contribution of jumps to permanent return variance across

days,
(σs,Ji,y )2NJ

d[
(σs,Ji,y )2NJ

d + (σε,ci,y)
2N c

d)
] , reported in percent. %Perm-J is the average

contribution of jumps to permanent (i.e. efficient) return variance across

days,
(ση,Ji,y )2NJ

d[
(ση,Ji,y )2NJ

d + (ση,ci,y )2N c
d)
] , reported in percent. Where NJ

d and N c
d are the

number of jumps and continuous times respectively in a given day d. HL is the half life
of transitory mispricing in the continuous price process reported in minutes. Standard
errors are reported in parenthesis. I use delta method to compute all standard errors.

Year N SN Jumps SN Cont. %Trans %Trans-J %Perm-J HL

Mean Median Mean(×105) Median

All 50,844 3.85 3.51 10.04 20.72 18.69 36.05 12.87 2.85

(0.01) (0.47) (0.05) (0.23) (0.30) (0.02)

2008 26,214 3.45 3.31 14.47 20.21 19.65 36.58 13.88 2.95

0.01 (0.86) (0.07) (0.33) (0.30) (0.40) (0.02)

2010 24,630 4.27 3.81 5.05 21.12 17.67 35.48 11.80 2.75

(0.14) (0.29) (0.06) (0.33) (0.34) (0.44) (0.02)

of SN corresponds to more informative observed price increments (i.e. returns),

whereas small values corresponds to large mispricing.

Table 3.6 presents SNs for jump and continuous returns. The average SN
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for jumps is 3.85 and the corresponding continuous SN is 10.04x105, across both

years in the sample. Therefore, the mean continuous SN is several magnitudes

higher than jump SN. In addition the median jump SN is 3.85 as compared to

the 6 times larger median continuous SN of 20.72. These results suggest that

continuous returns though small, have a much higher proportion of fundamental

information relative to the amount of mispricing. This implies that in a rela-

tive sense, continuous returns are more precise signals, which are released to the

market in small increments. This gives markets sufficient time and liquidity to

process the informational accurately. Next I compute the transitory variance

contribution of jump returns to intraday transitory variance, as well as the per-

manent variance contribution of jumps to intraday permanent variance. In order

to compute intraday jump variance I treat jumps as a compound Poisson pro-

cess, with permanent and transitory variances estimated from jump SSM and

jump intensity computed for each day in the sample using the number of ob-

served jumps. Denoting NJ
d and N c

d as the number of jumps and continuous

times respectively, the jump contribution to total intraday transitory variance is
(σs,Ji,y )2NJ

d[
(σs,Ji,y )2NJ

d + (σε,ci,d)
2N c

d)
] . The corresponding jump contribution to total intraday

permanent variance is
(ση,Ji,y )2NJ

d[
(ση,Ji,y )2NJ

d + (ση,ci,d )2N c
d)
] . Table 3.6, presents the average

intraday relative transitory contribution of jumps across all stock days in the

sample. While the probability of jumps in the sample is 0.38 percent, they con-

tribute 12.87 percent to total intraday permanent return variance or equivalently,

the share of jumps in permanent return variance is 34 times jump probability.

However, this large amount of fundamental variance is also accompanied by 36.05

percent contribution to total intraday transitory variance. Therefore, the share
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of jumps in the average return mispricing is 95 times jump probability. These

results suggest that jumps have a very large contribution in both price discovery

and noise, however, jump contribution to noise is the larger. Lastly, substantial

persistence can be observed in transitory continuous price. The estimated half

life of transitory continuous innovations is 2.9 minutes.

3.5 Applications

In this section I use estimates from the state space model to (i) decompose prof-

its from supplying liquidity into components arising from jumps and continuous

returns and (ii) examine characteristics of intraday information during the 2008

financial crisis as compared to 2010.

3.5.1 Realized Liquidity Supplier Profits: Jumps versus Continuous

Returns

As shown in Section 3.4.1, jump can have an extremely large realized permanent

or realized transitory component. Do these large components entail large risk and

compensating profits for liquidity suppliers? I address this question in the current

section.

The permanent jump component is associated with changes in efficient value

of the firm. If some traders have superior information than these informed traders

will trade in the direction of the permanent component during times leading up to

the jump. Liquidity suppliers, who are in the middle of all trades, make a loss when

trading against informed traders. This informational loss is the adverse selection

cost of supplying liquidity (Kyle [1985a];Glosten and Milgrom [1985];Easley and

O’hara [1987]). In contrast, the transitory jump component is market overreaction
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to the jump and mean reverts at a future time and consequently, the transitory

jump component is part of future observed price change which is negatively serially

correlated with the current jump return. This negative serial correlation in returns

are profits from the inherently contrarian nature of supplying liquidity as shown in

Lehmann [1990], Lo and MacKinlay [1990] as well as Nagel [2012]. Reversal prof-

its arise because liquidity suppliers can reverse their position from the time of the

jump at the the more favorable mean reverted future price. The aforementioned

argument is not unique to jumps. Corresponding to each continuous price returns

the state space model estimates a continuous realized permanent and realized

transitory component which can be used to compute realized informational losses

and reversal profits for continuous component of returns. Consequently, using the

jump and continuous parts of the state space model, I can decompose realized

informational losses and reversal profits for liquidity suppliers into distinct com-

ponents arising during rare jump periods and common continuous periods. This

allows me to examine the profitability and risk associated with liquidity supply

during jumps, as compared to the frequent continuous price moves. Since my

analysis is across all intradays and not restricted to days when there are jumps,

I can examine the average contribution to realized profits and losses of the two

types of price moves across intradays.

The decomposition of profits into jump and continuous intraday period is

similar to the spectral decomposition of profits in Hau (2001), but in the jump-

continuous dimension instead of the frequency dimension of Hau [2001]. Since

I use mid-quote prices in the state space model a full characterization of profits

requires adding a third component, profits from spreads. I define ∆pt as the mid-

quote return and Li,t as consolidated limit orders for stock i which are executed
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within the time interval [t− 1, t). It follows that profits from liquidity supply on

intraday d and for stock i, Profitsi,t is as follows

Profitsi,d =
∑
t∈d

Li,t∆pi,t +
∑
t∈d

QSi,t
2

Volumei,t

=
∑
t∈d

Li,t(ηi,t + ∆si,t) +
∑
t∈d

QSi,t
2

Volumei,t

=
∑
t∈d

Li,tηi,t +
∑
t∈d

Li,t∆si,t +
∑
t∈d

QSi,t
2

Volumei,t

(28)

Where
QSi,t

2
is the average quoted half spread and Volumei,t defined as, pi,t−1×

traded sharesi,t, is the traded volume during the time interval [t− 1, t). The term

Li,tηi,t is the change in liquidity suppliers’ inventory resulting from trading against

the permanent component of price returns during the time interval [t− 1, t), this

term is the informational loss for liquidity supplying trades. In contrast, the term

Li,t∆si,t is the profit from reversals. I can further characterize profits and losses

from expression (28) into terms arising from jump and continuous component of

returns. Defining Ji,d and J ci,d as the set of jump and continuous times within day

d, the jump and continuous components of profits are as follows.

Profitsi,d =
∑
t∈Jci,d

Li,tη
c
i,t +

∑
t∈Jci,d

Li,t∆s
c
i,t +

∑
t∈Jci,t

QSi,t
2

Volumei,t +
∑
t∈Ji,d

Li,tη
J
i,t

+
∑
t∈Ji,d

Li,t∆s
J
i,t +

∑
t∈Ji,d

Spreadi,t
2

Volumei,t

(29)

Using realized estimators from the jump and continuous parts of the SSMs I

can estimate realized intraday profit for stock i as follows.
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̂Profitsi,d =
∑
t∈Jci,d

Li,tη̂
c
i,t|pc︸ ︷︷ ︸

Info. Loss - Cont.

+
∑
t∈Jci,d

Li,t∆ŝ
c
i,t|pc︸ ︷︷ ︸

Reversal Profit - Cont.

+
∑
t∈Jci,d

QSi,t
2

Volumei,t︸ ︷︷ ︸
Spread Profit - Cont.

+
∑
t∈Ji,d

Li,tη̂
c
i,t|pc︸ ︷︷ ︸

Info. Loss - Jumps

+

∑
t∈Ji,d

Li,t∆ŝ
c
i,t|pc︸ ︷︷ ︸

Reversal Profit - Jumps

+
∑
t∈Ji,d

QSi,t
2

Volumei,t︸ ︷︷ ︸
Spread Profit - Jumps

(30)

The terms Li,tη̂
J
i,t|pJ and Li,tη̂

c
i,t|pc are the realized informational losses from

supplying liquidity during jump and continuous returns respectively, during a

given intraday d. Li,t∆ŝ
J
i,t|pJ and Li,t∆ŝ

c
i,t|pc are realized reversal profits around

jump and continuous returns. Expression (29) is a complete characterization of

intraday profits from liquidity supplying trades into jump and continuous time

periods, (30) estimates realized intraday profits by replacing parameters in (29)

with realized estimates. Thereby, decomposing realized informational losses, re-

versal profits and profits from spreads into components associated with jump and

continuous returns. Part of these profits are compensation for holding risky inven-

tory (Stoll [1978]). In continuous markets, inventory risk arises because buy and

sell orders from liquidity demander do not arrive at the the same time. There-

fore, liquidity suppliers have to hold temporary order imbalances in the form of

inventory positions. In the time between holding an initial order imbalance and

clearing their position with an arriving liquidity seeker, the permanent price may

move against the liquidity supplier’s position and therefore liquidity suppliers face

an ex-ante risk of making a loss even when not trading with an informed trader.

From the SSM, I can estimate intraday inventory risk arising from jump and
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continuous components of returns, as estimates of intraday conditional perma-

nent return standard deviation, σ̂η,Ji,y
√

(NJ
d ) and σ̂η,ci,y

√
(N c

d). Where, as in section

3.4.2, NJ
d and N c

d are number of jump and continuous time intervals in a given

day. Using these estimates of inventory risk I can compute profits adjusted for

holding inventory risk as follows.

Risk Adj. ProfitsJd =
ProfitsJd

σ̂η,Ji,y
√

(NJ
d ) + σ̂η,ci,y

√
(N c

d)
(31)

Risk Adj. Profitscd =
ProfitsJc

σ̂η,Ji,y
√

(NJ
d ) + σ̂η,ci,y

√
(N c

d)
(32)

Expression (31) and (32) are intraday dollar profits per basis points of in-

ventory risk. These expressions can quantify and capture temporal variation in

profits adjusted for inventory risk. For the case when there are no jumps in a

given day, Risk Adj. ProfitsJd , is zero and all risk adjusted compensation arises

from the continuous component Risk Adj. Profitscd. I use Lee and Ready (1991)

tick test to sign direction of market orders and therefore direction of executed

limit orders.

Table 3.7 presents results of profit decomposition from the supply of liquidity.

From panel A, the average realized profit net of informational losses, across stock-

days, is 25,369.71 dollars and the risk adjusted realized profit is 183.14 dollars

per basis points of inventory risk. Realized profits from reversals accounts for

8,051 dollars or 31.74 percent of total net profits. Whereas, profits from bid-ask

spread are much larger with mean of 48,277.69 dollars. I now compare profit

decomposition during jumps and continuous returns. From panel B, the jump
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contribution to informational loss is 2,089.43 dollars which accounts for 6.75 per-

cent of realized intraday informational loss. To illustrate the magnitude of this

loss relative to the rarity of jumps, note that probability of a jump in the sample

is 0.38 percent. Therefore, jump contribution to realized information loss is 17.76

times larger relative to the probability of jumps. Similarly, examining the risk

adjusted jump contribution to realized informational loss, jump contribution to

realized risk adjusted informational loss is 18.87 times larger relative to the rarity

of jumps. These results suggest that despite being rare events jumps entail a large

realized informational loss for liquidity suppliers. Consequently, adverse selection

risk resulting from the jump part of the tails of return distribution is important

in relative magnitude for liquidity suppliers. As shown in table 3.5, jumps tend to

have an average transitory return size of 32.48 basis points and therefore a large

mean reverting component. The estimate of realized jump reversal profit in is

925.55 dollars (panel B of table 3.7) which is 11.50 percent of intraday reversal

profits. This jump contribution to reversal profits is 30.26 times larger relative to

the probability of jumps and suggest that relative to their rarity jumps are sub-

stantially important for reversal profits. These findings complement my results

from section 3.4.1, where I show that jumps have large contribution to both the

permanent and transitory components of intraday returns, the aforementioned re-

sults suggest that large permanent and transitory jump components have strong

implications for the provision of liquidity in the form of informational losses and

reversal profits, respectively.

I now examine total realized profits net of informational losses during jumps

versus continuous returns. The estimated intraday net loss from jumps is 52.70

dollars as compared to a profit of 25,422.41 dollars during continuous returns.
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Comparing risk adjusted profits, jumps entail a loss of 1 dollar as compared to

a profit of 184.14 dollars per basis point of inventory risk. Since these estimates

are across all days in the sample, this suggest that intraday profits result ex-

clusively from supplying liquidity during continuous returns. Consequently, the

larger spreads and reversals profits during jump returns are not sufficient to com-

pensate for the substantially larger relative realized informational loss from jumps.

In essence, my results suggest that intraday liquidity supply consist of frequent

profits from continuous returns and occasional losses from jumps. Given the rarity

of jumps, continuous time periods make intraday liquidity provision profitable.

Table 3.7: Profit Decomposition - Liquidity Supply
The table reports profit decomposition from supplying liquidity, averaged across
stock-days and reported in dollars. The three components of profits are as follow. (1)
Informational losses (Info) arises from supplying liquidity against the permanent
component of return, (2) Profits from price reversals (Rev), Rev profits occur from the
transitory component of return which mean reverts allowing liquidity suppliers to
reverse their position at the new favorable price and (3) Profits from quoted spreads
(Spread). The column labeled ‘Total’, reports profits net of informational losses. Risk
Adjusted column reports profit decomposition in units of total permanent variance
(Panel A), jump permanent variance (Panel B) and continuous permanent variance
(Panel C) in units of dollars per basis points variance.

Panel A: All Intervals

Profits Risk Adjusted Profits

Year Info Rev Spread Total Info Rev Spread Total

All -30,959.59 8,051.60 48,277.69 25,369.71 -168.37 58.75 292.76 183.14

(194.87) (77.98) (212.19) (179.78) (0.95) (0.60) (1.34) (1.42)

2008 -34,420.75 9,184.63 57,443.80 32,207.68 -132.84 48.72 260.66 176.54

(301.22) (123.56) (312.53) (288.00) (1.01) (0.77) (1.52) (1.86)

2010 -27,366.64 6,875.43 38,762.57 18,271.36 -205.25 69.15 326.06 189.96

(242.51) (93.16) (272.44) (201.77) (1.53) (0.93) (2.20) (2.16)
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Panel B: Jump Intervals

Profits Risk Adjusted Profits

Year Info Rev Spread Total Info Rev Spr Total

All -2,089.43 925.55 1,111.18 -52.70 -12.07 4.90 6.17 -1.00

(34.60) (20.91) (12.31) (31.68) (0.19) (0.11) (0.06) (0.17)

2008 -2,289.68 1,149.02 1,404.61 263.95 -9.92 4.70 6.24 1.02

(15.04) (7.63) (9.06) (51.61) (0.26) (0.16) (0.09) (0.24)

2010 -1,881.56 693.57 806.58 -381.41 -14.31 5.10 6.09 -3.12

(4.62) (22.27) (13.20) (35.88) (0.27) (0.14) (0.08) (0.24)

Panel C: Continuous Intervals

Profits Risk Adjusted

Year Info Rev Spread Total Info Rev Spr Total

All -28,870.16 7,126.05 47,166.51 25,422.41 -156.30 53.85 286.59 184.14

(174.43) (67.00) (205.90) (169.09) (0.85) (0.24) (1.31) (1.39)

2008 -32,131.07 8,035.61 56,039.19 31,943.73 -122.92 44.02 254.42 175.52

(268.43) (104.55) (302.29) (267.52) (0.95) (0.69) (1.49) (1.78)

2010 -25,485.08 6,181.86 37,955.99 18,652.77 -190.94 64.05 319.97 193.08

(218.66) (82.44) (266.15) (194.87) (1.38) (0.88) (2.16) (2.16)

Before concluding this section I compare realized jump profits during the fi-

nancial crisis to the relatively tranquil period of 2010. During 2008 realized jump

profits are 263.95 dollar as compared to a realized loss -381.41 dollars during 2010,

which suggest that liquidity provision during jumps was more profitable in 2008
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despite the substantially larger realized informational loss. The identical conclu-

sion can be drawn when comparing risk adjusted profits in panel B of table 3.7.

The larger net profits during the crisis follow from 66 percent larger realized jump

reversal profits and 74.14 percent larger profits from spreads in 2008 as compared

to 2010. This result suggest that the substantially larger realized jump informa-

tional cost during the criss was offset by larger profits. To summarize the findings

of this section, the results suggest that liquidity suppliers face realized losses dur-

ing jumps and realized profits during continuous returns. However, since jumps

are rare as compared to the frequent continuous returns, intraday provision of

liquidity is profitable on average. More generally, the adverse selection cost of

jumps resulting from the size of the permanent component is sufficiently large to

offset profits from quoted spreads and price reversals.

3.5.2 Price Discovery during the 2008 Financial Crisis

In this section I use the state space model (SSM) to address the following ques-

tion. Did characteristics of intraday information change during the 2008 financial

crisis and if so, did this impact price discovery? Price discovery is important for

market stability in times of crisis, and can effect monetary policy (Mishkin [2009]),

corporate decisions (Fishman and Hagerty [1989]) and the demand for accounting

research (Lee [2001]). The 2008 financial crisis is also unique as the only major

recession of its magnitude marked by the prevalence of high frequency traders,

enhancing the importance of intraday price discovery (Brogaard et al. [2014]).

The 2008 financial crisis was also characterized by microstructure events such as

the 2008 ban on short sale, which adversely effected price discovery (Boehmer,

Jones, and Zhang [2013]; Brogaard, Hendershott, and Riordan [2017]). Despite
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the importance of intraday price discovery for the 2008 financial crisis, to the best

of my knowledge, there is no research which examine differences in price discov-

ery resulting from differences in the characteristics of information revealed to the

market, between the 2008 financial crisis and a non-crisis period. By means of a

variance decomposition the proposed SSM can accomplish this by breaking down

the outcome of price discovery into a jump component associated with high in-

formation content and low latency news and a continuous component associated

with small and/or incrementally revealed information. Comparing the variance

decomposition results during 2008 financial crisis with those of 2010 sample period

can highlight any shift in price discovery along the dimensions of latency and size

of information content. I further validate my results using real time news data

from RavenPack News Analytics. In essence, this application section highlights

the differences in price discovery emanating from differences in the characteristics

of information between the financial crisis period of 2008 and the non-crisis period

of 2010.

I first examine differences in revealed information characteristics between 2008

and 2010 by building a news dataset consisting low latency and high information

content news events. As outline in section 3.3, my news dataset is from Raven-

Pack News Analytics which consist of news events that are timestamped to the

millisecond and used in real time trading by high frequency traders. Given its low

latency, RavenPack news is discretely revealed news. Not all discrete news has

high information content, therefore, in addition to relevance and novelty filters

outlined in section 3.3, I wish to subset news based on high information content.

To do this I use RavenPack’s composite sentiment score (CSS) which is based on

textual analysis of emotionally charged words and phrases. In addition to textual
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Table 3.8: High Frequency News
The table reports news counts from RavenPack News Analytics Database. Each news
is timestamped to the millisecond and used in real time trading by high frequency
traders. I filter news on high novelty and high relevance scores for the sample stocks.
In addition, I also filter news so that each news events has high sentiment based on
sentiment score assigned by RavenPack Analytics.

2008 2010

News Group Negative Positive Group Total Negative Positive Group Total

Acquisitions/Mergers 4 0 4 2 1 3

Analyst Ratings 400 2 402 361 8 369

Assets 4 5 9 3 2 5

Credit 19 1 20 17 2 19

Credit Ratings 214 5 219 268 9 277

Dividends 3 3 6 0 6 6

Earnings 471 388 859 245 76 321

Equity Actions 57 3 60 54 2 56

Investor Relations 0 0 0 0 1 1

Labour Issues 24 3 27 20 4 24

Legal 15 0 15 6 1 7

Marketing 2 0 2 1 1 2

Partnerships 3 2 5 0 1 1

Price Target 0 0 0 3 0 3

Products/Services 37 23 60 18 23 41

Regulatory 5 0 5 3 1 4

Total 1,258 435 1,693 1,001 138 1,139

analysis, stories are further rated by experts as having effect on share price. CSS

can take values between 0 and 100, values larger (smaller) than 50 indicate a

positive (negative) sentiment, whereas a value of 50 indicates neutral sentiment.

To restrict the news sample to news which represent high information content,

I restrict the sample to news events with CSS score of larger than 60 (positive

news) or with a score smaller than 40 (negative news).
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Table 3.8 presents news counts for the years 2008 and 2010 based on news group

and news sentiment. The total number of high frequency and high sentiment news

is 1,693 in 2008 as compared to 1,139 in 2010. Therefore, it can be observed that 48

percent more high information content and discretely revealed news events in 2008

as compared to 2010. Looking across news groups, it can be observed that there

were 859 news events in 2008 labeled as ’earnings’ news, as compared to 321 news

events in 2010, or equivalently there were 2.7 times more earning news in 2008

as compared to 2010. Earnings news is most likely to contain high information

content about a security’s fundamental value and therefore, the aforementioned

result suggest that the financial crisis period had a higher proportion of low latency

and high information content news.

Did a higher latency and informational content of news during the 2008 fi-

nancial crisis change the outcome of price discovery? In order to address the

aforementioned question, I use estimates of variance contribution from the SSM.

From table 3.6, jumps contribute 13.88 percent to permanent price (i.e. efficient

price) over a given day in 2008 as compared to 11.80 percent in 2010. This trans-

lates to a 17.62 percent larger jump contribution to price discovery in 2008 as

compared to 2010. Therefore, the variance decomposition results from the SSM

provide evidence to suggest that the shift in information towards high information

content and discrete news did translate into more discrete price discovery in 2008

as compared to the 2010 benchmark. Examining continuous price discovery dur-

ing the financial crisis, it can be observed that continuous signal-to-noise ratios

(Cont. SN) in 2008 were 3 times larger as compared to 2010. This suggest that

while jumps contributed proportionally more to overall price discovery in 2008 as

compared to 2010, continuous price increments were much more informed in 2008
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as compared to 2010.

3.6 Conclusion

Using a time series representation of intraday price series as distinct jump and con-

tinuous components, I examined intraday price discovery in a state space frame-

work. I find that while jumps are extremely rare events which happen with a prob-

ability of 0.38 percent, they contribute significantly more to both price discovery

and transitory mispricing. The realized estimates of permanent and transitory

jump components suggest that not all jumps are equal in their contribution to

price discovery. While the median or typical jump is permanent, roughly half of

all jumps are highly transitory or highly permanent. Since the dynamics of price

discovery through jumps are important for investors, the results suggest that al-

lowing for distinct permanent and transitory jumps in risk management and asset

pricing models can be an important avenue of future research. In particular, the

proposed framework in this chapter can be used to allow for distinct jump CAPM

betas arising from co-movement in permanent and transitory jumps with the cor-

responding market portfolio jump components. In addition, extending the work of

Easley, Hvidkjaer, and O’hara [2002] and O’Hara [2003]) the proposed framework

can examine the jump risk of price discovery in the cross section of assets along

with asset pricing implications.

Using a profit decomposition for the provision of liquidity in the jump-continuous

domain, I found that jump entail a large informational risk for liquidity suppliers.

Overall, liquidity suppliers face realized net losses during jumps which are com-

pensated by supplying liquidity during continuous price movements. Since jumps

are rare, the provision of intraday liquidity is, on average, profitable.
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Chapter 4

Intraday Liquidity Fragmentation & Price

Jumps

This chapter examines the relationship between liquidity fragmentation and price

jumps. Unexpected changes in intraday liquidity fragmentation predict jumps

and jump direction. A shock to ask (bid) side liquidity fragmentation increases

the probability of positive (negative) jumps by 36%. Decomposing jumps into

information and noise components we show that fragmented jumps are noisier.

Our work suggests that liquidity suppliers predict jumps and actively manage their

exposure to large order imbalances accompanying jumps by fragmenting liquidity.

This makes jumps predictable as liquidity suppliers’ information is reflected in

liquidity fragmentation, minutes before the arrival of a jump.

4.1 Introduction and Literature Review

Before and during the Flash Crash, liquidity supply was fragmented across more

than 50 exchanges and execution venues.1 There is little consensus on the sources

1See Thomson Reuters Business News - https://www.reuters.com/article/idINIndia-
49218020100610
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and causes of extreme price movements (jumps) in modern financial markets. Un-

derstanding the dynamics of jumps is important as they can affect the efficient

functioning of markets by impairing portfolio management, risk management and

option-pricing (e.g. Bollerslev and Todorov [2011]; Bollerslev et al. [2016]; Bégin

et al. [2019]). Despite their importance, we know little about the source of the

these price movements and we know even less about how to predict their occur-

rence. This chapter does not take a stand on the source of jumps but identifies a

predictable component of jumps related to liquidity suppliers’ information. Fur-

ther, we apply a signal extraction methodology proposed in Chapter 3 to identify

components of price movements related to information and noise, and show that

the ratio of information to noise is partially predictable using a proxy for liquidity

suppliers’ information. Consistent with Jeon and Zhao [2019]; we find that jumps

in large and liquid S&P 100 stocks are mostly permanent and therefore related to

the arrival of new valuation relevant information. Nevertheless, the average jump

return has a 7.44% transitory component.2 This means that on average markets

overreact to positive and negative information arrivals for even the highly liquid

S&P 100 stocks.

Modern equity markets are fragmented, with quoting and trading regularly oc-

curring on a multitude of exchanges, trading venues, and broker-dealer platforms

(O’Hara and Ye [2011]).3 The fragmented nature of equity markets can lead to

increased fragility, a focus of This chapter, and complexity as market participants

attempt to coordinate liquidity supply and demand in real-time (Menkveld and

Yueshen [2018]). Often the liquidity demand exceeds the liquidity supply and this

2Or equivalently the signal-to-noise ratio (SN ratio) is 12.44
3See SEC Public Statement - https://www.sec.gov/news/statement/us-equity-market-

structure.html
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mismatch can lead to large transitory jump components as liquidity demanding

orders consume all the available liquidity in a market, pushing prices far away

from the fundamental value.

In This chapter we study the relationship between liquidity fragmentation

and jumps. In general, fragmentation has a large persistent component. For

instance, unexpected changes in fragmentation persist for at least 30 minutes,

suggesting that fragmentation is predictable. We use unanticipated changes in

fragmentation (innovation) to explain the arrival and direction of jumps 1-minute

into the future. In an instrumental variable (IV) probit model where we control

for overall market conditions and account for omitted variables that are jointly

determined with fragmentation, we find that a one standard deviation increase in

liquidity fragmentation on the ask (bid) side increases the probability of positive

(negative) jumps by 36% points. Therefore, liquidity fragmentation can predict

future jumps and their direction. Our model can correctly predict 28% of all

within sample jumps and their direction.4 Our paper is the first to show that

liquidity fragmentation is informative for jumps and jump direction.

Liquidity suppliers are traditionally closest to the trading mechanism. They

view trading in real-time and accumulate inventory (shares) in the opposite di-

rection of the aggregate market.5 As liquidity suppliers accumulate inventory

and otherwise observe trading they may also acquire information about future

demand and supply imbalances or about future information arrivals (Harris and

4We compute a measure known as recall in the maching learning literature. For binary jump
event, recall is the proportion of all within sample jumps which are correctly predicted. Where
we define a jump as correctly predicted, if the time t-1 ask (bid) side fragmentation innovation
predicts a time t jump probability of greater than 50% for a corresponding positive (negative)
jump.

5We defined liquidity supplier as any trader that post a limit order.
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Panchapagesan [2005]). They will condition their liquidity supply and manage

risk based on this information. One way for liquidity suppliers to manage their

risk is to reduce the likelihood of executing against a large order. They do this by

reducing the total depth offered and also by reducing the maximum order size on

all markets. The latter leads to fragmented liquidity supply. In order to capture

the dynamics of information flow for liquidity suppliers our research uses ex-ante

offered liquidity to measure market fragmentation. This approach directly ap-

proximates pre-trade information of liquidity suppliers allowing us to examine the

relationship between fragmentation and price jumps arising from the information

of liquidity suppliers.

To further highlight the importance of fragmentation in managing inventory

risk, note that liquidity suppliers have to manage their exposure to both fast and

slow traders (Van Kervel [2015]; and Foucault and Menkveld [2008]). Fast traders

use technology to monitor and simultaneously route orders to multiple trading

venues known as smart order routing (SOR). These traders can access liquidity

across multiple venues as if they were a consolidated liquidity pool. While the

exact fraction of SOR traders is not known it is estimated to be less than one

third of all traders.6 Unlike fast traders, slow (non-SOR) traders can only access

liquidity in multiple venues sequentially. When a substantial fraction of traders

are slow, fragmented liquidity can lead to a mismatch between the supply and

demand for liquidity during times of extreme price movements. This is because

liquidity suppliers have the opportunity to cancel quotes in competing trading

venues before slow traders can access them. As an example, take the case of

6For European markets Foucault and Menkveld [2008] estimate that 27% of traders use SOR.
In a more recent study Van Kervel [2015] estimates the proportions to be 20%.
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one liquidity supplier and two trading venues with the liquidity supplier willing

to quote 1,000 shares in total. In times leading up to a jump, the liquidity

supplier may anticipate a surge of immediacy demand and fragment liquidity

equally across both venues by offering to trade 500 shares on each market. When

a slow trader sweeps the the first venue by consuming all 500 offered shares, the

liquidity supplier may strategically cancel her quote on the second venue before

the slow trader can access liquidity at the second venue.7 As a result, prices are

likely to overshoot and therefore become more noisy relative to their information

content. This example highlights one reason why fragmented liquidity can lead

to a mismatch between the demand and supply of liquidity and how the time-

series of fragmentation may provide insight into the information sets of liquidity

suppliers.

Since jumps are characterised by large and quick price movement, they are ac-

companied by a surge in market activity.8 In particular, jumps are accompanied

by a sudden increase in directional demand for immediacy as investors manage

their portfolio and risk.9 This surge in directional trading poses risk for liquidity

suppliers as they accumulate large net inventory position in volatile times.10 Liq-

uidity suppliers will therefore manage their exposure to large expected directional

orderflow by fragmenting liquidity across numerous venues. Therefore, liquidity

fragmentation should be a reasonable proxy for liquidity suppliers’ information.

7We find that in times leading up to jumps market orders which consume all available liquidity
are disproportional larger than the number quote updates.

8By their definition jumps are discrete price moves and therefore of higher frequency then
continuous returns.

9The average volume based orderflow in the direction of returns is 0.67 million during jumps;
as compared to 0.16 million during continuous price moves; see table 4.5

10Jumps are often followed by large volatility spikes e.g. Todorov and Tauchen [2012]



4.1. INTRODUCTION AND LITERATURE REVIEW 62

Further, if liquidity suppliers are better informed than the general public, it fol-

lows that unanticipated shocks to liquidity fragmentation predict jumps. The

degree to which they fragment liquidity and the corresponding direction of frag-

mentation will be based on their information. Natural investors and the trading

public only view transactions and cannot reasonably approximate net-buying or

selling by liquidity suppliers.

Our work contributes to growing literature examining the effects of market

fragmentation on market quality. O’Hara and Ye [2011] find that fragmentation

in US equity markets lowered transaction cost and short term return volatility

thereby improving market quality. Using the entrance of Euronext in the Euro-

pean equity market as an exogenous fragmentation shock, Foucault and Menkveld

[2008] show that ex-post liquidity improved for a set of Dutch stocks. Madha-

van [2012] finds that fragmented stocks were disproportionately affected during

the flash crash. Our work contributes to this literature by examining the effect

of high frequency innovation to fragmentation on market quality during jumps.

To the best of our knowledge ours is the first paper to show that innovation to

liquidity fragmentation are informative for jumps and their direction. In addi-

tion, we show that jumps which follow fragmented liquidity are more noisier than

the average jump. Our research complements the work of Van Kervel [2015] who

shows that liquidity suppliers manage adverse selection risk by cancelling orders

on other exchanges after the arrival of a trade. Our research adds to Van Kervel

[2015] by showing that US equity markets are most fragmented precisely when

liquidity suppliers anticipate a large directional demand; i.e. high frequency unan-

ticipated changes in liquidity fragmentation are strategic. In a recent paper Bro-

gaard, Hendershott, and Riordan [2019] show that limit orders predict future price
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movements and transmission of information across markets. We complement this

study by showing that the dispersion of liquidity in limit orders predict large price

movements.

More generally, we show that market linkages are important, and are partic-

ularly important during extreme price movements. Our work also suggest that

market fragmentation could lead to noisier prices then a consolidated market.

Future work could explore the welfare consequences of exogenous variation in

fragmentation.

The rest of the paper is organized as follows. In section 4.2 we present our data

and sample selection. Section 4.3 outlines fragmentation and liquidity measures

of This chapter. Section 4.4 presents jump detection and decomposition method-

ologies. In section 4.5, we present a preliminary analysis of the link between

fragmentation innovation and jumps and introduce our tests examining the effect

of fragmentation innovation for jumps. In sections 4.6, 4.7 and 4.8 we perform

our tests and discuss the implications. Section 4.9 presents our conclusion.

4.2 Data and Market Shares in Liquidity

4.2.1 Data

Our sample time period begins on January 1st, 2010 and ends on December 31st,

2017. The dataset consist of stocks listed on the S&P 100 index in a given sample

year along with the S&P 500 ETF (ticker: SPY) which proxies for the market

portfolio. Since stock listing on an index is not necessarily continuous, the set

of sample stocks is dynamic across years. On average, 7 percent of the stocks

in our sample change each year. To avoid spurious jumps associated with stock
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splits, we remove a given stock during the sample year in which the split has

taken place. This leaves us with a dataset consisting of 128 unique stocks and

768 stock-years. Using the signal extraction methodology proposed in Chapter 3

we estimate permanent and transitory jump components for each stock-year in

our dataset with an average convergence rate of 84 percent across stock-years.

This concludes our sample selection with 123 unique stocks spread across 606

stock-years.

We define intraday returns as the set of 1 minute logarithmic price moves

between 9:32 and 15:59. We remove the first and last minute of the trading day

to avoid the opening and closing batch auction. An additional minute at the

open is removed to ensure that the first price move of the day corresponds to at

least 2 minutes of within-day of prior. Table 4.1 reports descriptive statistics for

our sample stocks. Of the 123 stocks in our sample, 96 have primary listing on

the NYSE and the remaining 27 have primary listing at NASDAQ. The sample

consist of large and liquid stocks, with an average market capitalization (MCAP)

of 77.44 billion USD and average daily traded volumes of 475.51 million USD.

Our primary data consist of (i)consolidated quotes, (ii) consolidated NBBO

quotes, and (iii) consolidated trades files from NYSE’s Trade and Quotation

(TAQ) dataset. We use the methodology proposed in Holden and Jacobsen [2014]

to account for withdrawn quotes. Time stamped to the millisecond, the TAQ

dataset uniquely identifies all quotes and trades originating from any NMS par-

ticipant.11 We further augment our dataset by matching TAQ data to Center

for Research in Security Prices (CRSP) dataset to obtain daily price, dividend

adjusted returns and primary listing information.

11All major national and regional exchanges are national market system (NMS) participants.
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Table 4.1: Descriptive Statistics: Sample Stocks
This table reports descriptive statistics for our sample stocks. MCAP is the average
market capitalization computed as price times shares outstanding and reported in
billion USD. Price is the daily closing price. Volume is daily traded volume reported
in millions. Quoted spread is the daily closing ask price minus bid price relative to the
close midpoint. Return size (Ret. Size) is the dividend adjusted size of daily return.

Stock Descriptive Statistics

Sample Stocks: S&P 100

Number of Stocks: 123

NYSE Listed: 96

NASDAQ Listed: 27

Sample Years: 2010-2017

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

MCAP (Size) $ B. 77.44 67.81 33.44 57.61 95.12

Price $ 80.40 139.18 34.43 55.07 79.68

Quoted Spread % Bps 3.60 2.30 2.24 2.98 4.05

Ret. Size % Bps 128.18 52.42 94.62 116.58 148.14

Shares Outstanding # M. 1, 533.04 1, 781.77 492.29 983.28 1, 705.67

Volume $M. 475.51 381.39 240.41 349.28 575.70

4.2.2 Market Shares in Liquidity

We define market share in intraday liquidity as the proportion of ask or bid depth

offered at NBBO prices during a 1-minute time interval.12 Table 4.2 reports

liquidity shares of the NMS trading platforms for the S&P 100 sample stocks.

NASDAQ OMX has the largest share with a 35.58 percent share in intraday

liquidity. NYSE falls closely with 28.89 percent share and NYSE Arca follows

with a share of 19.48 percent. The two major exchanges NYSE and NASDAQ

have a total share of approximated 65 percent leaving the remaining 35 percent

split across the remaining NMS trading venues. Considering that all of the sample

12National best bid and offer (NBBO) quote price are the lowest (highest) ask (bid) price
across all NMS participants for a given security and a given time.
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stocks have primary listing on NYSE or NASDAQ, these market shares represent

a significant degree of fragmentation, in particular when compared to years prior

to 2007 when NYSE alone was executing 79% of volume in its listed stocks.1314

Table 4.2: Intraday Liquidity - National Market System (NMS)
This table reports the percentage share in intraday liquidity for all national market
system (NMS) platforms. We define intraday liquidity as the number of shares offered
by the platform at the national best bid or offer quote price (NBBO).

TAQ Flag Platform Market Share (%)

A NYSE MKT LLC / AMEX 0.01

B NASDAQ OMX BX, Inc. 0.10

C National Stock Exchange Inc. (NSX) 0.46

D FINRA Alternative Display (FINRA ADF) 0.05

I International Securities Exchange, LLC (ISE) 2.70

J Direct Edge A Stock Exchange, Inc. 0.54

K Direct Edge X Stock Exchange, Inc. 5.56

M Chicago Stock Exchange, Inc. (CHX) 0.02

N New York Stock Exchange 28.89

P NYSE Arca, Inc. 19.48

T/Q NASDAQ Stock Exchange 35.58

W CBOE Stock Exchange 0.02

X NASDAQ OMX PSX Stock Exchange 2.56

Y BATS BYX Exchange, Inc. 0.07

Z BATS BZX Exchange, Inc. 3.94

4.3 Liquidity and Fragmentation Measures

In this section we outline our measures of intraday liquidity and liquidity frag-

mentation.

13Regulation national market system (NMS) was implemented in the year 2007.
14See SEC Litreature Review Regulation NMS - www.sec.gov/marketstructure/research/fragmentation-

lit-review-100713.pdf
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4.3.1 Intraday Liquidity

Market Depth

Trading against a limit order that is strictly worse in price than the NBBO quote

is prohibited by the Securities and Exchange Commission (SEC), therefore of

particular importance for US markets is the liquidity available at NBBO quotes.15

Amongst all limit orders NBBO quotes have the largest contribution to price

discovery
(
Brogaard et al. [2019]

)
. If there is insufficient liquidity available at

NBBO quotes, then traders have to search for liquidity across time and venues.

Hence, motivated by the importance of NBBO quotes, we define share based ask

(bid) depth as the aggregate number of shares available on the ask (bid) side of

the NBBO within a given intraday time interval. Market depth is then defined

as the average of ask and bid side depth. Denote i = 1 . . . I for the set of stocks,

p = 1 . . . P for the set of exchanges and Qi,m,p as the consolidated quote for stock i,

at exchange p for a given millisecond m contained in the intraday interval [t−1, t);

it follows:

Best Depth Aski,m =
P∑
p=1

(
S(QAsk

i,p,m)
)
IQNBBO, Ask

i,p,m

Best Depth Bidi,m =
P∑
p=1

(
S(QBid

i,k,p)
)
IQNBBO, Bid

i,k,m

(4.1)

aggregating across each millisecond m in interval [t− 1, t)

15See SEC statement on trade-throughs - https://www.sec.gov/rules/proposed/34-
49325.htm#III



4.3. LIQUIDITY AND FRAGMENTATION MEASURES 68

Depth Aski,t =
∑

m∈[t−1, t)

Best depth Aski,m

Depth Bidi,t =
∑

m∈[t−1, t)

Best depth Bidi,m

(4.2)

where IQNBBO, Ask
i,p,m

IQNBBO, Bid
i,p,m

are indicator function which equal 1 if consolidated

quote at venue p is the national best ask (bid) quote and zero otherwise. As

in Holden and Jacobsen [2014] we a also construct time weighted volume based

market depth, depthVi,t. The aforementioned measure captures both the effect

of share size and offered price and serves as a control variable in our following

models.

Liquidity Supply Demand Mismatch (SDM)

The demand and supply of liquidity is a dynamic matching problem. Liquidity

suppliers’ provide trading options to the demand side by posting limit orders. As

these limit orders are consumed by the demand side in the form of market orders,

new limit orders are continuously posted to replenish consumed liquidity. How-

ever, if market orders are consuming liquidity at a faster rate than it is replenished

by quote updates then there is higher demand for immediacy as compared to liq-

uidity supply. In particular, there exists a supply and demand mismatch (SDM).

In order to measure the degree of liquidity SDM we compute a variable which

measures the number of trades of size larger than the prevailing liquidity offered

at the NBBO relative to the number of quote updates to the NBBO. Denote Si,l,t

as the size of l-th trade in intraday interval [t − 1, t), we define the number of

large sized trades as follows:



4.3. LIQUIDITY AND FRAGMENTATION MEASURES 69

TradesNBBOi,t =
L∑
l=1

I[Si,l,t≥DeptNBBOi,k,t ] (4.3)

where I[Si,k,t≥DeptNBBOi,k,t ] is an indicator variable which equals 1 if the l-th buy (sell)

trade has size larger than the offered ask (bid) depth. TradesNBBOi,t is a count

variable of trades which consume all the liquidity available at NBBO quotes.

Correspondingly we compute NBBO quote updates as follows:

QuotesNBBOi,t =
K∑
k=1

IQNBBO
i,k,t

(4.4)

QuotesNBBOi,t is the liquidity supply side counterpart of TradesNBBOi,t which counts

the number of consolidated quote updates to NBBO. The ratio of these two vari-

ables is our SDM measure:

SDMi,t =
TradesNBBOi,t

QuotesNBBOi,t

(4.5)

the intuition behind the SDM variable is as follows: when SDM is large for a

given intraday time interval there are more liquidity consuming trades relative to

liquidity replenishing orders. Therefore, temporal variation in SDM captures the

changes in the degree of mismatch between the supply and demand for liquidity.

Effective Spread

Effective spread (ES) is the difference between the trade price and the prevail-

ing mid quote. Effective spreads can be interpreted as the total cost of trading

which include liquidity supplier profits and the information component of the

trade. Denoting l = 1 . . . L as the total number of trades, ES is computed as

follows:
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ESi,t =
1

L

L∑
l=1

Di,l
pi,l −Mi,l

Mi,l

(4.6)

where Dl is an indicator for trade direction, which equals 1 (-1) for a buy (sell)

trade. Intraday effective spread is the average cost of trading in a given interval,

where the average is computed over all trades in a given intraday interval.

Price Impact of Trade

The effective spread can be decomposed into two components; (i) liquidity

supplier profits and (ii) price impact (PI). The latter represents the information

cost of trade. We define intraday price impact as follows:

PIi,t =
1

L

L∑
l=1

Di,l
Mi,l,m −Mi,l,m+60000

Mi,l,m

(4.7)

whereMl,m+60000 is the prevailing mid quote 1 minute (or 60,000 milliseconds) after

the l-th trade. The price impact can be interpreted as the information content

of a trade. If a trade is highly informative than the midpoint will have a large

change in the direction of the trade which will persist 1 minute into the future.

Since the effective spread is the sum of the price impact and the realized spread,

by including the former two in a linear model, we also implicitly also account for

temporal variation in realized spreads.

Panel A of table 4.3 reports descriptive statistics for intraday liquidity vari-

ables. As expected the S&P 500 ETF is far more liquid than the individual sample

stocks. For the sample stocks, the average depth is 0.64 million shares, which is

approximately one third of the depth available for the S&P 500 ETF of 2.33 mil-

lion shares. On average, a given trade has an effective spread and price impact of
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2 basis points. Correspondingly, the S&P 500 ETF trades has an effective of also

1.6 basis points with a price impact of 0.51 basis points. On average, there are

272 quote updates for the sample stocks. These updates are newly added quotes

at a given exchange which offer either price and/or size improvement relative to

the prevailing NBBO quotes at the time of submission. The average SDM is 0.09

which suggests that on average the number of NBBO quote revisions outnumber

trades. This further highlights that our sample consists of liquid stocks which

trade at high frequencies.

4.3.2 Fragmentation

We define intraday liquidity fragmentation as the degree to which visible liquidity

is dispersed across NMS trading venues. To proxy for the level of consolidated

liquidity we construct a Herfindahl-Hirschman (HHI) index based on the aggregate

depth available in a given intraday time interval. Formally, denote p = 1 . . . P

as the number of trading platforms; the bid and ask side market share (MS) of

platform p in time interval t is as follows:

MSAski,p,t =
Best depth Aski,p,t∑P
i=1 Best depth Aski,p,t

MSBidi,p,t =
Best depth Bidi,p,t∑P
i=1 Best depth Bidi,p,t

.

(4.8)

MSi,p,t is a proportion between zero and one which measures the the share of p-th

exchange in offered depth, in a given interval t. Using intraday market shares we

construct HHI for each 1 minute time interval t as follows:
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HHIAski,t =
P∑
p=1

(MSAski,p,t)
2

HHIBidi,t =
P∑
p=1

(MSBidi,p,t)
2

(4.9)

HHI is bounded between one and
1

P
. Where one corresponds to completely

consolidated markets and
1

P
corresponds to liquidity equally fragmented across

the P platforms. From HHI we construct a measure of fragmentation, Ft such

that when liquidity is consolidated on a single platform Ft takes on a value of

zero.

FAsk
i,t = 1− HHIAski,t

FBid
i,t = 1− HHIBidi,t

(4.10)

In order to model the relationship between jumps and liquidity fragmentation,

we first note that if liquidity fragments because of liquidity suppliers’ information,

then it is the unanticipated component of fragmentation;
(
i.e. Fi,t − Et−1[Fi,t]

)
which affects time t price. This is because the expected component, Et−1[Ft] is

already incorporated in market participants’ time t-1 information set, and there-

fore so is its effect on price. We model the unanticipated component of liquidity

fragmentation in two steps. First, for each stock-year combination, we demean

liquidity fragmentation. Demeaning fragmentation removes both stock fixed and

year fixed effects. Second, for each stock-year in our sample we estimate an au-

toregressive model for both the bid and ask side of demeaned fragmentation as

follows:
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Table 4.3: Descriptive Statistics: Intraday Liquidity and Stock-Year
Controls
This table reports descriptive statistics for intraday liquidity (panel A), intraday
liquidity fragmentation (panel B) and stock controls (panel C). Dept is the average of
ask and bid side shares offered; reported in millions. Average dept (DepthV ) is the
time weighted average of ask side and bid side offered volume. Effective spread (ES)
is the signed difference between price and prevailing midpoint, measured relative to
the prevailing midpoint at the time of trade. Price impact (PI) is the signed changed
in midpoint following a trade, relative to prevailing midpoint at time of trade.
Fragmentation innovation (F̃D) is the unanticipated component of liquidity
fragmentation estimated using an autoregressive model of order p, where p is
determined by AIC criterion. NBBO quotes are the number of quote revision to the
national best bid and offer price. Orderflow is the number of trades in the direction of
price move. OrderflowV is the traded volume in the direction of price move reported in
millions. Supply and demand mismatch (SDM) is computed as the number of trades
larger than NBBO offered liquidity relative to number NBBO quote updates. Return
size (Ret. Size) is the size of return computed as the absolute value of returns. Trades
are the count of executed trades. Volume is the dollar traded volume reported in
millions. The SPY superscript denotes S&P 500 ETF variables which proxies for
systematic liquidity.

Panel A: Intraday Liquidity

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Depth (Depth) # M./1min 0.64 1.61 0.04 0.12 0.44

Depth SPY (DepthSPY ) # M./1min 2.33 2.81 0.66 1.50 3.01

Avg Depth (DepthV ) $ M./1min 0.07 0.08 0.03 0.04 0.08

Avg Depth SPY (DepthV,SPY ) $ M./1min 1.74 0.99 1.12 1.49 2.14

Eff. Spread (ES) % Bps./1min 2.23 1.46 1.32 1.85 2.67

Eff. Spread SPY (ESSPY ) % Bps./1min 1.58 6.49 0.47 0.60 0.82

NBBO Quotes #/1min 271.61 290.21 90.57 175.71 336.20

Orderflow #/1min 16.33 36.89 −1.43 9.06 26.19

OrderflowV $ M./1min 0.17 0.51 −0.03 0.08 0.26

Prc. Impact (PI) % Bps./1min 1.94 3.76 0.00 1.26 3.23

Prc. Impact SPY (PISPY ) % Bps./1min 0.51 1.43 −0.16 0.35 1.04

SD Mistmatch(SDM) Ratio×100/1min 8.88 10.88 1.48 4.93 12.12

Trades #/1min 108.71 124.21 34.39 67.66 131.16

Volume $ M./1min 1.13 1.57 0.29 0.61 1.27

Panel B: Intraday Liquidity Fragmentation

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Frag. (F ) Prop./1min 0.57 0.18 0.49 0.62 0.69
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Table Continued

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Frag. Inno (F̃D Prop./1min 0.00 0.12 −0.05 0.02 0.08

IV Frag. (F IV ) Prop./1min 0.55 0.06 0.51 0.56 0.60

IV Frag. Inno (F̃ IV,D) Prop./1min 0.00 0.03 −0.02 0.00 0.02

Panel C: Stock Controls

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Lograthmic Size (log(MCAP )) Log/Stock-year 17.95 0.81 17.40 17.86 18.56

Quoted Spread (QS) % Bps./Stock-year 2.81 1.77 1.53 2.23 3.29

Volatility (V ol.) $ /Stock-year 0.02 0.01 0.01 0.01 0.02

FAsk
i,t = α1F

Ask
i,t−1 + α2F

Ask
i,t−2 + · · ·+ αpF

Ask
i,t−p + F̃Ask

i,t

FBid
i,t = β1F

Bid
i,t−1 + β2F

Bid
i,t−2 + · · ·+ βpF

Bid
i,t−p + F̃Bid

i,t

(4.11)

where the optimal lag length p is determined using the BIC criterion. The in-

novation component of intraday fragmentation F̃Ask
i,t and F̃Bid

i,t are the estimated

residual components from the autoregressive model. Next, we examine the degree

of persistence; i.e. predictable component of fragmentation. Figure 4.3.2 plots

the average autocorrelation function for up to 30 minutes post innovation. From

the plots we note that the first order autocorrelation is 0.38. Which suggests that

38 percent of the innovation to fragmentation persists 1 minute into the future.

More interestingly, the autocorrelation 30 minutes following the innovation is 0.18.

This highlights that approximately 18 percent of the original innovation persists
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30 minutes into the future. These statistics reveal a high degree of persistence and

therefore predictability in fragmentation. Table 4.4 reports results from estimates

(4.11) using conditional least squares. Consistent with the aforementioned acf

Table 4.4: Fragmentation - Autoregressive Model
This table reports estimates from the autoregressive (AR) model given in (4.11). Each
stock-year is independently estimated. Order selected is the average AR order p,
determined by minimizing the Bayesian information criterion (BIC) criterion. We also
report the average of the first five estimated coefficient across stock-year models.
White Noise (WN) test is the Ljung-Box for estimated residuals performed on the first
24 lags.

Panel A: Ask Size

Variable Units Mean T-statistic P25 Median P75

Order Selected # lags 36.69 139.04 32.00 36.00 41.00

Order 1 Correlation 0.23 131.87 0.20 0.24 0.26

Order 2 Correlation 0.08 176.75 0.08 0.08 0.09

Order 3 Correlation 0.06 175.57 0.05 0.06 0.06

Order 4 Correlation 0.04 180.76 0.04 0.04 0.05

Order 5 Correlation 0.04 178.43 0.03 0.04 0.04

WN Test P-value 0.96 131.72 0.99 1.00 1.00

Panel B: Bid Size

Variable Units Mean T-statistic P25 Median P75

Order Selected # lags 37.49 135.49 32.00 37.00 41.00

Order 1 Correlation 0.23 129.67 0.20 0.24 0.26

Order 2 Correlation 0.08 173.91 0.07 0.08 0.09

Order 3 Correlation 0.06 174.62 0.05 0.06 0.06

Order 4 Correlation 0.04 177.04 0.04 0.04 0.05

Order 5 Correlation 0.04 183.77 0.03 0.04 0.04

WN Test P-value 0.96 134.10 1.00 1.00 1.00
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Panel A: Ask Side Autocorrelation Function

Panel B: Bid Side Autocorrelation Function

Figure 4.1: Autocorrelation Function - Liquidity Fragmentation
This figure plots the average autocorrelation function for liquidity fragmentation.
Panel A is a plot of ask side autocorrelation function and panel B corresponds to the
bid side. Averages are computed across stock-year model. The shaded region shows
the confidence intervals for the mean autocorrelation for each lag.

plots, the BIC criterion selects a lag length of 37 minutes for the bid and ask side

models. The average p-value for Ljung-Box test for up to 12 lags is 0.96 suggesting

that the autoregressive model adequately captures the predictable component of

each side of fragmentation.
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Our objective is to capture the degree to which the size and direction of frag-

mentation predict jumps and jump direction, we therefore define directional liq-

uidity fragmentation as follows:

F̃D
t =


F̃Ask
t , ∆pt+1>0

1/2
(
F̃Ask
t + F̃Bid

t

)
, ∆pt+1 = 0

F̃Bid
t , ∆pt+1<0

 (4.12)

Since a strategic liquidity supplier will fragment liquidity in the same direction as

the anticipated price move; i.e. ask (bid) side for an anticipated positive (negative)

price move, F̃D
t relates both the size and direction of fragmentation to the size

and direction of future price moves.

Panel B of table 4.3 reports descriptive statistics for liquidity fragmentation

measures. The average fragmentation is 0.57, which suggests our sample stocks

are moderately fragmented.1617 The innovation component of fragmentation has

an average standard deviation that is two-thirds as large as fragmentation which

suggest that roughly two-thirds of the variation in fragmentation is from the

unanticipated component.

4.3.3 Stock Level Controls

To control for stock level heterogeneity, we construct four variables using the

previous year averages for the given stock. To control for the average level of

liquidity for a given stock-year we compute daily spreads from CRSP data as

follows:

16Fragmentation is bounded between one and 1
15 with one representing complete consolidation

on a single venue.
17There are 15 unique trading venues in our data set
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QSi,y−1 =
1

D

L∑
d=1

Aski,d −Bidi,d
Mi,d

(4.13)

where d=1. . . D denotes trading days in year y-1, and Aski,d and Bidi,d are the

end of day ask and bid price. We further compute the previous year’s market

capitalization, and daily return volatility as follows:

MCAPi,y−1 =
1

D

D∑
d=1

pi,d × shrouti,d (4.14)

Voli,y−1 =
1

D − 1

D−1∑
d=1

r2
i,d (4.15)

where ri,d is the daily closing return and shrout is the number of shares outstand-

ing. The control variables account for cross-sectional variation in liquidity, size

and return. Our final control variable is an indicator variable listing, and it equals

1 if the primary listing of the stock is NASDAQ and 0 if the it is NYSE. This vari-

able controls for the cross-sectional effect of primary listing on all our dependent

variables. Panel C of 4.3 reports descriptive statistics on control variables.

4.4 Jumps

In this section we outline our jump detection and jump decomposition method-

ologies.

4.4.1 Detecting Jumps

The exact time of a jump along with the jump size can be estimated using a

non-parametric test statistic proposed by Lee and Mykland [2008] and outlined
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Table 4.5: Jumps versus Continuous Price moves
This table reports jump counts (panel A), average estimates from the jump
decomposition methodology proposed in Chapter 3 (panel B), liquidity statistics
during jumps (panel C) and liquidity statistics during continuous price moves (panel
D). We define a jump as systematic if it occurs within a 1 minute interval of a jump in
the S&P 500 ETF. Size of permanent return (|η̂|) is the absolute value of the
estimated permanent jump component and size of transitory return (|ε̂|) is the
estimated size of transitory jump component reported in percentage basis points.
Signal-to-noise ratio (SG) is the ratio of estimated permanent to transitory jump size.
We define directional fragmentation innovation F̃Dt−1, as F̃Askt−1 (F̃Bidt−1 ) if time t price
move is positive (negative). NBBO quotes are the number of quote revision to the
national best bid and offer price. Orderflow is the number of trades in the direction of
price move. OrderflowV is the traded volume in the direction of price move reported in
millions. Supply and demand mismatch (SDM) is computed as the number of trades
with share size larger than NBBO offered liquidity relative to the number NBBO
quote updates. Return size (Ret. Size) is the size of return computed as the absolute
value of returns. Trades are the number of trades and volume is the dollar traded
volume reported in millions. All variables are winsorized at the %1 level with the
exception of listing and return size.

Panel A: Jump Counts

Name Count % Prop.

Total 168, 115

Systematic 24, 699 17.22%

Idiosyncratic 143, 41 83.88%

Panel B: Jump Estimates

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Size Perm. Ret.(|η̂|) % Bps./1min 21.81 20.66 10.67 17.90 27.78

Size Trans. Ret.(|ε̂|) % Bps./1min 12.23 37.25 4.09 8.70 15.48

Signal to Noise(SG) Ratio 12.44 44.45 0.83 2.26 5.91

Panel C: Jump Liquidity Statistics

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Frag. Inno (F̃D) Prop./1min 0.06 0.12 0.01 0.08 0.15

NBBO Quotes #/1min 454.70 420.71 186.22 346.72 700.79
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Table 4.5 Continued

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Orderflow #/1min 54.76 59.76 14.34 38.99 93.76

OrderflowV $ M./1min 0.67 0.97 0.12 0.41 1.02

SD Mistmatch(SDM) #/1minx100 19.10 13.69 8.72 16.06 26.06

Ret. Size % Bps./1min 34.04 41.42 19.22 25.75 36.23

Trades #/1min 252.97 225.25 82.17 185.61 452.59

Volume $ M./1min 3.06 3.08 0.88 1.84 4.04

Panel D: Continuous Liquidity Statistics

Percentiles

Name Units Mean Std. Dev 25th 50th 75th

Frag. Inno (F̃D) Prop./1min 0.00 0.12 −0.05 0.02 0.08

NBBO Quotes #/1min 270.94 289.40 90.15 174.85 334.44

Orderflow #/1min 16.19 36.71 −1.48 9.01 26.15

OrderflowV $ M./1min 0.16 0.50 −0.03 0.08 0.26

Ret. Size (Cont. Ret Size) % Bps./1min 3.85 7.85 0.82 2.56 5.18

SD Mistmatch(SDM) Ratio./1min × 100 8.84 10.85 1.48 4.92 12.10

Trades #/1min 108.18 123.37 34.36 67.44 131.21

Volume $ M./1min 1.12 1.55 0.29 0.61 1.27

in section 3.2.9 of this thesis. Using the test statistic Lt we detect detect jumps as

follows. Across each stock-year, we compute Lt for all intraday returns sampled at

the 1 minute frequency and using a rolling window K=300. This choice of rolling

window size is consistent with the authors’ suggestion for returns sampled at the

1 minute frequency. Using a critical value of 1 percent we test for a jumps across

for in returns ∆pi,t, for each stock-year combination independently. For a given

stock, we define a jump as systematic when it is within 1 minute of a S&P 500

ETF jump.18

18The results are not sensitive to alternate windows up to 5 minute
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Figure 4.2: Cumulative Returns - High SN versus Low SN Jumps
This figure plots cumulative returns in event time for high (solid line) and low (dashed
line) signal to noise (SN) jumps. For each jump the realized SN is estimated using the
methodology proposed outlined in section 4.2. The horizontal axis shows event time in
minutes and the vertical axis shows cumulative returns in minutes. Time 0 denotes
time of jump. Cumulative returns are normalized to zero two minute prior to jumps.
The shaded region shows the confidence intervals for the mean cumulative returns.

Panel A of table 4.5 reports jump counts for the sample stocks. The total num-

ber of jumps detected is 168,115 which represents 0.30% of our sample, amongst

these 17.22% are systematic jumps and 83.88% are idiosyncratic. Comparing jump

return size (panel C) with the corresponding continuous counterpart (panel D),
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the average jump size is 34.04 basis points as compared to 3.85 basis point contin-

uous return size. Jumps are therefore roughly nine times larger than continuous

price moves. Combined with the low frequency of occurrence, the aforementioned

statistics provide convincing evidence that jumps are rare tail events. In addition,

jumps are far more likely to be stock specific tail events.

4.4.2 Jump Signal-to-Noise (SN) Ratio

Chapter 3 has proposed a methodology to disentangle permanent and transitory

jump components, where the permanent component is related to information and

the transitory component is the component related to noise (e.g. market overre-

action related to liquidity considerations). More specifically the permanent jump

component contributes to a price process that is a martingale and therefore ef-

ficient, whereas the transitory jump component is a stationary mean reverting

process. The identification of the informative (uninformative) part of price move-

ment based on a random walk (stationary) dates back to the early work of Has-

brouck (Hasbrouck [1991a], Hasbrouck [1991b]) and more recently Hendershott

and Menkveld [2014] and Chapter 5 of this thesis. The observed and efficient

process are modeled as follows:

pi,tJ = mi,tJ + si,tJ

mi,tJ = mi,tJ + ηi,tJ

(4.16)

where tJ is random jump times, m is the efficient jump price process and s is a

stationary transitory price process. Using a heavy tailed distribution and impor-

tance sampling methods Chapter 3 proposes a methodology to disentangle the

equivalent jump return process.
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∆pi,tJ = ηi,tJ + ∆si,tJ (4.17)

The individual permanent and transitory jump component in equation (4.17)

can be identified from (4.16) which has a state space form. An efficient estimator

of the permanent and transitory price process can be obtained of the following

form:

η̂i,tJ = E[ηi,tJ |p1 . . . pT ]

∆ŝi,tJ = E[ŝi,tJ |p1 . . . pT ]

(4.18)

η̂i,tJ and ∆ŝi,tJ are estimators of the conditional expectation form, where the

conditioning is on the entire observed prices series, future and past. Since η̂i,tJ and

∆ŝi,tJ are individual estimators for each individual jumps, they are estimators of

the realized sample time path of jump time series. We will refer to these estimators

as the realized permanent and transitory jump components.

The size of the realized permanent jump component |η̂i,tJ | estimates how much

new fundamental information is incorporated by the jump at time tJ , correspond-

ingly the size of the transitory component |∆ŝi,tJ | estimates the mean reverting

and illiquid associated jump component at time tJ . By this logic we can construct

a measure of relative jump informativeness, realized signal-to-noise ratio, SN as

follows:

SNi,tJ =
|η̂i,tJ |
|∆ŝi,tJ |

(4.19)

SNi,tJ ratio is a size based relative measure of price informativeness. Jumps

which have a large permanent component relative to the transitory component are
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more informative relative to their liquidity component or conversely have a smaller

liquidity (noise) associated component relative to the size of the new information

incorporated by the jump. Panel B of table 4.5 reports descriptive statistics for

the realized signal-to-noise ratio for intraday jumps in our sample stock. The

mean SN is 12.44 while the median is 2.34.19 This suggests that the SN ratio is

skewed left; high information content jumps tend to be far more informative than

the median signal-to-noise ratio jumps. To see this explicitly we classify jumps

into two categories: (1) high SN jumps with estimated SN of larger than the 75th

percentile value and (2) low SN as jumps with estimated SN of smaller than the

25th value; within a given stock. Figure 4.2 presents average cumulative returns

in event time by jump type. High SN jumps tend to be larger with a mean size

of 36.30 basis points as compared to 28.44 basis points for low SN jumps. As

predicted by the estimated model high SN jumps are highly informative with

prices continuing to move in the jump direction for up to 5 minutes which adds

a further 8 percent to jump impact. In sharp contrast, low SN jumps revert by

27% within 5 minutes of the jump.

4.5 Jumps and Fragmentation

Having outlined our jump detection and decomposition methodology, we now fo-

cus on the link between jumps and liquidity fragmentation. We first compare

intraday jump times to times characterized by extreme unanticipated fragmenta-

tion, where we define extreme fragmentation as innovations that are larger than

1.64 standard deviation from the average. Panel A of figure 4.3 plots frequency

19Or equivalently the mean (median) of percentage estimated noise is 7.44% (29.77%)
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counts of extreme fragmentation innovation in 1 minute intraday time bins.2021

Several noteworthy features can be observed from the figure. First, the total

count of intraday times when markets are characterized by extreme unanticipated

fragmentation is 1,270,932 or 2.35% of our sample as compared to jumps which

consist of 0.30% of our sample. Second, large unanticipated fragmentation occur

most often within the first thirty minutes of market open. This is consistent with

a significant quantity of news generated overnight and before market open. Lastly,

comparing panel A with panel B it is evident that both jumps and extreme frag-

mentation innovation tend to coincide with the first 30 minutes of market open.

Hence, intraday times when markets are most fragmented are also times when

jumps are likely.

Jumps are mainly attributed to the arrival of new information in the form of

news announcements or unanticipated liquidity shocks. In either case jumps trig-

ger large directional immediacy demand as traders’ manage the adverse price risk

by buying (selling) large quantities of shares during positive (negative) jumps.22

Table 4.5 reports that the average 1 minute traded volume and number of trades

are approximately three times as large as their corresponding continuous counter-

part. More importantly, the average volume orderflow imbalance when measured

in the direction of price move is 0.67 million during jumps as compared to 0.16

million during continuous price moves. This surge in directional liquidity de-

mand implies that liquidity suppliers risk holding large quantities of unbalanced

inventory positions. To manage their

20Figure 4.3 is robust to alternate definitions using values between one and two standard
deviation.

21The mean of fragmentation innovation is zero.
22As in Grossman and Miller [1988] immediacy is defined as traders’ willingness to trade

immediately rather than wait.
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Panel A: Extreme Unanticipated Fragmentation

Panel B: Jumps

Figure 4.3: Extreme Fragmentation and Price Jumps - Frequency Counts
This figure plots frequency counts of extreme liquidity fragmentation shock (panel A)
and jumps (panel B). We define the latter as times when unanticipated liquidity
fragmentation is larger than 1.64 standard deviation. The horizontal axis corresponds
to intraday time.

inventory exposure liquidity suppliers may fragment quotes leading to a mismatch

between the supply and demand side of liquidity during times leading up to jumps.

Figure 4.4 plots SDM in intraday event time, where time 0 corresponds to the time
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of the jump.23 The dashed line corresponds to the mean of SDM and the event

window is defined as 10 minute prior and post jump. Interestingly, SDM begins

to increase 10 minute before jumps and reaches its largest value 0.02 at the time

of the jump. Thereon, SDM gradually falls over the following 10 minutes.

Figure 4.4: Liquidity Supply and Demand Mismatch and Jumps
This figure plots liquidity supply and demand mismatch (SDM) in jump event time.
We define liquidity supply and demand mismatch as the number of trader larger than
NBBO offered liquidity relative to the number NBBO quote updates The horizontal
axis corresponds to intraday event time in minutes. Time 0 denotes time of jumps.
The dashed line corresponds to average fragmentation shock. The shaded region
shows the confidence intervals for the means across jump types.

23In section 2.1 we define SDM as the count of trades which consume all liquidity available
at NBBO price relative to number of NBBO quote revisions
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Figure 4.4 highlights an important feature of jumps: in times leading up to jumps

there is a gradual build up of immediacy demand which leads to mismatch between

the supply and demand side of liquidity. In particular, as measured by SDM, large

sized trades tend to outnumber quote revisions and this trend gradually increases

in jump time. In appendix A we show that liquidity fragmentation is associated

Figure 4.5: Unanticipated Fragmentation and Jumps
This figure plots liquidity fragmentation shocks during jumps. Unanticipated
Fragmentation (innovation) is estimated using an autoregressive model and equation
(4.12). The horizontal axis corresponds to intraday event time in minutes. Time 0
denotes time of jumps. The dashed line corresponds to zero mean of fragmentation
shocks. The shaded region shows the confidence intervals for the means across jump
types.
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with larger future SDM levels which highlights that fragmented liquidity leads to

a mismatch between the supply and demand side of liquidity.

If fragmentation is linked to jumps through the liquidity suppliers’ informa-

tion; then a preliminary analysis should show a gradual increase in fragmentation

before jumps as was the case for SDM. To examine the timing of unanticipated

fragmentation relative to jumps, figure 5 plots fragmentation innovation during

each 1-minute time interval in event time, where time 0 corresponds to time of

jumps. Between event time -10 and -1 liquidity experiences fragmentation in-

novation in increasing magnitude. The innovation component at time -1 is 0.06

followed by its maximum value of 0.09 at the time of jump. This suggests that the

unanticipated component of fragmentation is informative for future price jumps.

Where the information content is increasing gradually in jump event time.

The preliminary analysis of this subsection suggest two characteristics of the

association between fragmentation and jumps; (i) periods when jumps are most

probable are also periods when large unanticipated fragmentation is also most

likely and (ii) while fragmentation and SDM are largest during jumps, they tend to

increase gradually during times leading up to jumps. The aforementioned results

provide preliminary evidence to suggest that fragmented liquidity is informative

for jumps and also lead to a mismatch of liquidity supply and demand.

We formally model the relationship between liquidity fragmentation and price

jumps as a series of test:
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Test I: Does unanticipated fragmentation predict future price jumps?

Test II: Conditional on observing a jump, does unanticipated fragmentation

result with noisier jumps?

Test III: Is fragmented liquidity during times leading up to jumps a strategic

response of liquidity suppliers?

If liquidity suppliers are better informed than the general trading public, it fol-

lows that unanticipated fragmentation should be positively related to future jump

events. This is precisely the question in test 1. Test II examines price informa-

tiveness during jumps. If fragmented liquidity leads to a mismatch between the

supply and demand side of liquidity then jump price moves will, on average, over-

shoot relative to their information as the demand side of liquidity will trade at

worse prices, making jumps during times of fragmented liquidity noisier. Test III

examines if liquidity fragmentation is at least in part related to liquidity suppliers’

strategic inventory management. Positive (negative) jumps are accompanied by

large buy (sell) direction imbalances in orderflow. If liquidity suppliers anticipate

these imbalances they will fragment the ask (bid) side of liquidity to manage their

exposure to positive (negative) incoming jumps. Thereon, any measure which

incorporates the direction of liquidity fragmentation should contain more infor-

mation for future price jumps as compared to an average measure. The three tests

combined address a more general question as follows. How important are high fre-

quency market linkages during times leading up to extreme price movements? In

the following sections we perform the three tests respectively.
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4.6 Can Fragmentation Predict Jumps and Jump Directions?

If liquidity suppliers are better informed than the general trading public, we

should expect that unanticipated changes in fragmentation are informative for

price jumps. In this section we perform Test 1 of the paper in an instrument

variable (IV) probit model. In particular, by using an instrument we estimate the

direct predictive effect of fragmentation for jumps arising from the information of

liquidity suppliers.

4.6.1 Unobserved Endogeneity

Time t-1 fragmentation innovation and time t price jumps are likely related

through other decision variables of liquidity suppliers not observed in TAQ data.

To see this note that fragmentation depends on liquidity suppliers’ information,

as do other decision variables of liquidity suppliers such as quote cancellations and

dept offered at each level of the limit order book.24 These variables are largely

unobserved in TAQ data and in addition their relationship to fragmentation is of

unknown form. This aforementioned omitted variable bias implies that the infor-

mation content of fragmentation for jumps is likely to be over or underestimated

depending on the sign of the correlation of omitted variables with fragmentation

and with jumps.25 In particular, there exist three channels through which liquid-

ity suppliers’ information can predict jumps: (i) directly through fragmentation

(ii) indirectly through the correlation of fragmentation and omitted variables (iii)

24Every variable on the limit order book is at least partially correlated with liquidity suppliers’
information.

25If the average correlation between (i) omitted variables and jumps and (ii) omitted variables
and fragmentation is of identical (opposite) sign then the predictive power of fragmentation for
jumps is over (under) estimated when ignoring omitted variable bias.
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directly through omitted variables. Our objective is to estimate (i) and while (iii)

does not lead to bias in our estimation; (ii) will lead to biased estimates for (i).

Put explicitly, the predictive power of fragmentation for price jumps and their

direction may arise partially for reasons other then the direct effect of liquid-

ity suppliers’ information on fragmentation i.e. omitted variables which predict

jumps and are also correlated with fragmentation. To address this aforementioned

endogeneity we follow an approach similar to Degryse and van Kervel [2015]. In

this approach we instrument a given stock’s time t fragmentation, with time t

systematic component of fragmentation. The instrument is computed by taking

the average fragmentation for all stocks except stock i as follows:

F̃ IV,D
i,t =

1

I − 1

∑
j 6=i

F̃D
j,t (4.20)

The instrument F̃ IV
i,t removes all stock specific endogeneity issues arising from

the link between fragmentation and omitted variables. This follows since it is

highly unlikely that stock specific (idiosyncratic) variation in omitted variables

would be correlated with market liquidity; i.e. liquidity for all other stocks ex-

cluding stock i. Therefore, by instrumenting with systematic fragmentation we

largely isolate the predictive power of fragmentation arising from the direct effect

of liquidity suppliers’ information on fragmentation during times leading up to

jumps. While it still remains the case that systematic variation in omitted vari-

ables are likely correlated with the instrument, this would only lead to omitted

variable bias for the case of systematic jumps. However, only 17% of the jumps



4.6. CAN FRAGMENTATION PREDICT JUMPS AND JUMP
DIRECTIONS? 93

in our sample are systematic jumps and further our results are robust to the ex-

clusion of systematic jumps.26 In addition, we control for several dimensions of

systematic liquidity using measures computed from the S&P 500 ETF. There-

fore, our IV approach to account for the correlation between fragmentation and

omitted liquidity variables is a conditional IV model.27.

Table 4.6 presents our first stage OLS regressions, where in column 2 we include

all control variable for systematic and firm specific liquidity.28 The correlation

between fragmentation and its instrument is positive and statistically significant.

Despite the significantly smaller standard deviation of the instrument, the results

imply that a one standard deviation change in the instrument is associated with a

30 percent change in fragmentation innovation of the same direction. This result

is consistent with Coughenour and Saad [2004] who show that NYSE specialist

provide liquidity for multiple stocks. Commonality in specialist is likely to cre-

ate commonality in fragmentation at the stock level, as inventory risk is pooled

across multiple stocks and therefore interlinked. The first stage regression also

present several results consistent with the claim that liquidity fragmentation is

a search cost for the demand side of liquidity. Table 4.6 reports a positive cor-

relation between fragmentation and the two transaction cost measures: effective

spreads and price impacts. This suggest that liquidity is likely to fragmented when

transaction cost is large. In addition fragmentation is negatively correlated with

the size of offered depth, and therefore the size of offered liquidity. Lastly, the

26We define a jump as systematic if it occurs within a 1 minute interval of a jump in the S&P
500 ETF. See table 4.5.

27The Independence assumption of the instrument is replaced by independence conditional
on a set of observable controls; see Deuchert and Huber [2017] for a discussion on conditional
IV models

28We discuss our control variable in the following section.
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number cumulative shares traded at NYSE and NASDAQ is positively correlated

with fragmentation. Including this variable in our forthcoming models controls

for demand side innovation which may fragment liquidity prior to jumps.

4.6.2 Methodology

Having discussed our instrumental variable approach we now present our IV Probit

model to parametrically model the predictive relationship between fragmentation

and jumps arising directly from the information of liquidity suppliers. In partic-

ular, this section examines if fragmentation innovation at time period t-1 have

an impact on time t jump probability. First, we define a binary response jump

variable as follows:

Ji,t =

 1, t ∈ Ji,t

0, t /∈ Ji,t

 (4.21)

where Ji,t is the set of detected jump times for stock i. Corresponding to the

binary response model there exist a latent jump state J∗i,t defined as follows:

Ji,t = I[J∗i,t ≥ 0] (4.22)

I[J∗i,t ≥ 0] is an indicator function which equals 1 if J∗i,t ≥ 0. J∗i,t is an infor-

mation threshold variable governing the dynamics of jumps. We model J∗i,t as a

linear function of an unpredictable random component ν1,t, and a set of time t-1

observables as follows:

J∗i,t = ζ + δ11F̃
D
i,t−1 + δ12Ci,t−1 + ν1,i,t. (4.23)
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Table 4.6: First Stage (IV Model) - Fragmentation Innovation
This table reports OLS results of the first stage IV regression. The dependent variable
is directional fragmentation innovation F̃Di,t, defined as F̃Askt (F̃Bidt ) if time t+1 price

move is positive (negative). F̃ IV,Di,t is the instrument for F̃Di,t; defined as the average
fragmentation innovation for all stocks except stock i. Effective spread (ESt) is the
signed difference between price and prevailing midpoint, measured relative to the
prevailing midpoint at the time of trade. Price impact (PIt) is the signed changed in
midpoint following a trade, relative to prevailing midpoint at time of trade. Average
dept (DepthVt ) is the time weighted average of ask side and bid side offered volume.
Trades is cumulative traded volume at NASDAQ and NYSE in units of ten thousand
shares. SPY superscript denotes S&P 500 ETF variables which proxy for systematic
liquidity. The data is pooled and includes stock-year level controls as follows: average
market capitalization (MCAP), average quoted spread computed from the previous
years data; and listing defined as a dummy variable which equals one if the stock’s
primary listing is on NASDAQ and zero if NYSE. SPY return size (|r|SPYt ) is the
absolute value of time t-1 SPY return. All variables are statistically significant at the
% 1 level unless otherwise stated.

Dependent Variable= Fragmentation Innovation (F̃Di,t)

Reg 1. Reg 2.

Variable Coeff. T-stat Coeff T-stat

Intercept 0.00 46.35 −0.16 −255.46

IV Frag. Inno. (F̃ IV,Dt ) 0.76 1, 387.19 0.52 884.92

Eff. Spread (ESt) 0.28 181.75

Prc. Impact (PIt) 0.17 328.81

DepthV (Deptht) −0.33 −1, 095.40

Trades (Tradest) 0.02 919.63

SPY Eff. Spread (ESSPYt ) −0.01 −19.52

SPY Prc. Impact (PISPYt ) 0.04 31.46

SPY Depth (DepthSPYt ) 0.00 100.51

SPY Ret. Size (|r|SPYt ) −0.13 −150.08

MCAP (Size) 0.01 244.59

Quoted Spreads (QS) 1.01 385.76

Volatility (V ol) −1.39 −324.24

Listing −0.00 39.40

F-Value 1,924,300 144,819

Year Fixed Effect Yes Yes

# R-sq 0.03 0.06

# Obs 54,185,923 54,185,923
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Assuming ν1,i,t is a normally distributed random variables, equation (4.23)

defines a probit model for the jump binary response variable Ji,t. Where F̃D
i,t−1

denotes time t-1 innovation component of liquidity fragmentation defined in (4.12)

and Ci,t−1 denotes matrix of control variables. The variable ν1,i,t corresponds to

news or liquidity shocks which are purely unanticipated by the market at time

t-1; e.g. the unanticipated component of an earnings announcement. The non-

linearity of the probit model makes estimation of stock fixed effects computation-

ally intensive. Therefore, we use an alternative approach to control for stock level

heterogeneity using variables which account for stock characteristic. These set in-

clude the logarithmic of average market capitalization (size), average daily quoted

spread and average daily volatility computed from the previous year’s CRSP data.

We also include a dummy to capture listing affect. The listing dummy variable

equals one if the stock’s primary listing is NASDAQ and zero if it is NYSE. We

control for time fixed effects by including year fixed dummy variables in Ci,t−1.

Our main parameter of interest is δ11. A positive coefficient on δ11 means that

past unanticipated changes in liquidity fragmentation increase the probability of

future jumps. However, as discussed in the previous section, a stock’s level of

liquidity fragmentation is correlated with omitted variables, therefore in order to

explicitly examine the predictive effect of fragmentation which directly arises from

the information of liquidity suppliers, we use an IV probit model. The endogenous

equation is assumed to be a linear model as follows:

F̃D
i,t−1 = µ2 + δ21F̃

IV,D
i,t−1 + δ22Ci,t−1 + ν2,i,t−1 (4.24)

Omitted variable bias is explicitly modelled by assuming that ν2,i,t−1 and ν1,i,t
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are correlated with a correlation coefficient denoted by ρν1,ν2 . We estimate ρν1,ν2

using maximum likelihood. Using (4.23) and (4.24) along with the two marginal

densities f(Ji,t|F̃D
i,t−1, Ci,t−1) and f(F̃D

i,t−1|F̃
IV,D
i,t−1 , Ci,t−1) we can explicitly derive the

log likelihood function as follows:

LIV =
∑
i,t

log

(
f(Ji,t|F̃D

i,t−1, Ci,t−1)f(F̃D
i,t−1|F̃

IV,D
i,t−1 , Ci,t−1)

)
=
∑
i,t

(
Ji,t log

(
Φ(ωi,t)

)
+ [1− Ji,t] log

(
1− Φ(ωi,t)

)
−

1/2 log(σ2
µ2

)− 1/2σ2
µ2

(F̃D
i,t−1 − µ2 − δ21F̃

IV,D
i,t−1 − δ22Ci,t−1)2

) (4.25)

Where:

ωi,t =
[µ1 + δ11F̃

D
i,t−1 + δ12Ci,t−1 + (ρν1,ν2/σµ2 )(F̃D

i,t−1 − µ2 − δ21F̃
IV,D
i,t−1 − δ22Ci,t−1)]

(1− ρ2
µ1,µ2

)
1
2

(4.26)

with Var(ν1,i,t) = σ2
ν1

; Var(ν2,i,t−1) = σ2
ν2

; Corr(ν1,i,t, ν2,i,t−1)=ρν1,ν2 and Φ(.) de-

notes the cdf of normal distribution. We jointly maximize all parameters in the

log-likelihood function (4.25) using the BFGS algorithm over our data set con-

sisting of of 54 million data points.

Also included in our set of control variables Ci,t are intraday stock liquid-

ity variables which capture the size of liquidity on several different dimensions.

In particular, we include the following intraday variables: (i) effective spreads

(ESi,t−1) which proxy for the overall trading cost, (ii) price impact (PIi,t−1) of

trade which proxy for the information content of trades and (iii) the time weighed

average depth which directly measures the total size of liquidity available at the
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market best prices (DepthVt−1). In order to control for systematic liquidity we com-

pute both liquidity and price informativeness measures from the S&P 500 ETF.

This includes all the above liquidity variables computed using the S&P 500 ETF

rather than the stock data. In addition to systematic liquidity, we also control for

systematic information shocks using the size of S&P 500 ETF returns (|rt−1|SPY ).

Lastly, liquidity can fragment at time t-1 from demand side shock which consumes

a large proportion of available liquidity at the two largest exchange; i.e. NYSE

and NASDAQ. Therefore, we control for the cumulative number of shares traded

(Tradesi,t−1) at NYSE and NASDAQ.29

4.6.3 Results

Columns 1 and 2 of table 4.7 report MLE estimates and t-statistics from maxi-

mizing the log-likelihood function given in (4.25). Our main estimate of interest is

the coefficient on F̃D
t−1 which corresponds to the effect of fragmentation on the on

the binary response variable Ji,t through its effect on J∗i,t. The estimate is positive

which implies that ask (bid) side fragmentation predict higher positive (negative)

jump probabilities. Correspondingly, the magnitude of the marginal effect is pos-

itive. In order to examine the importance of fragmentation in predicting jumps

we compute a measure known as recall in the machine learning literature. To

compute recall we define two counting variables as follows:

29We are agnostic about the source of information leading liquidity suppliers’ to fragment
liquidity during time periods prior to t-1. Therefore, if demand side shocks fragment liquidity
prior to time t-1 then the source of the information for liquidity suppliers’ is potentially the
demand side. Important to our analysis is controlling for demand side shocks at time t-1.
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J := {Number of jumps in the sample}

J α := {Number of jumps in the sample with P̂ (Ji,t = 1) ≥ α}
(4.27)

J α counts the number of in sample jumps which are correctly predicted at a

decision rule of α. It follows that recall is defined as follows:

Recall(α) =
J α

J
× 100 (4.28)

Recall is therefore the percentage of correctly predicted jumps using a decision

rule α. While jumps represent 0.3 percent of our sample, table (4.7) reports a

recall of 28 percent at an α of 0.5. Put explicitly, while occur with a frequency of

0.3 percent the IV Probit model correctly identifies 28 percent of jumps at a de-

cision rule of 0.5. We next examine how important is fragmentation in predicting

jumps? In order to answer the aforementioned question we drop fragmentation

from our model. The resulting recall is 0 percent as reported in table (4.7). This

suggests that fragmentation is the most important information variable in pre-

dicting jumps. Columns 3-4 report results for the simple probit model which

severly underestimated the effect of fragmentation for jumps. In particular the

estimated correlation between fragmentation innovation and unobserved omitted

variables ρν1,ν2 , is both large and negative implying that omitted variables have

correlations with fragmentation and with jumps which have opposite signs. For

example, controlling for NBBO depth, depth at levels outside the NBBO is likely

to be negatively correlated with NBBO liquidity fragmentation and positively

correlated with jumps as liquidity suppliers place limit orders further down the
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Table 4.7: Probit Model - Fragmentation Shocks and Jump Direction
This table presents estimation results from the IV Probit model (columns 2-4) and
Probit model (columns 5-7). The dependent variables is jump binary response which
equals one if there is a jump at time t and zero otherwise. We define directional
fragmentation innovation F̃Dt−1, as F̃Askt−1 (F̃Bidt−1 ) if time t price move is positive
(negative). Effective spread (ESt−1) is the difference between price and prevailing
midpoint, measure relative to the prevailing midpoint at the time of trade. Price
impact (PI) is the signed changed in midpoint following a trade, relative to prevailing
midpoint at time of trade. Trades is cumulative traded volume at NASDAQ and
NYSE in units of ten thousand shares. SPY superscript denotes S&P 500 ETF
variables which proxy for systematic liquidity. The data is pooled with included
stock-year level controls: average market capitalization (MCAP), average quoted
spread computed from the previous years data; and listing defined as a dummy
variable which equals one if the stock’s primary listing is on NASDAQ and zero if
NYSE. SPY return size (|r|SPYt−1 ) is the absolute value of time t-1 SPY return.

Columns 3 and 6 report the marginal effect at the mean dPX̄
dXk

defined as the change in
jump probability from a small change in the the given dependent variable from it’s
mean; with all other dependent variable held fixed at their respective means. We
define a correctly predicted response if the predicted probability of a jump in the
sample is greater than or equal to 0.5 (less than 0.5) and the observed response is a
jump (not a jump). % Correctly Predicted is the percentage of correctly predicted
response. % Recall is the percent of correctly predicted jumps relative to the number
of jumps. We use full information likelihood for estimating both probit models. The
reported t-statistics are computed using inverse of the estimated hessian matrix. All
variables are winsorized at the %1 level with the exception of listing and return size.
All variables are statistically significant at the % 1 unless otherwise stated. All
variables are statistically significant at the %1 level unless otherwise stated

Dependent Variable = Binary Jump Variable (Ji,t)

IV Probit Model Simple Probit Model

Variable Coeff. T-stat dP (X̄)
dXk

Coeff T-stat dPX̄
dXk

Intercept 0.15 14.31 −3.97 −136.80

Frag. Inno. (F̃Dt−1) 7.26 2, 865.10 1.82 0.63 88.23 0.01

Eff. Spread (F̃Dt−1) 1.17 57.95 0.29 16.59 463.36 0.15

Prc. Impact (PIt−1) −0.96 −158.44 −0.24 1.13 74.13 0.01

DepthV (Deptht−1) 1.87 307.12 0.47 −3.29 −177.91 −0.03

Trades (Tradest−1) −0.10 −398.44 −0.03 0.15 266.87 266.87

SPY Eff. Spread (ESSPYt−1 ) −0.10 −16.31 −0.03 −0.77 37.39 −0.01

SPY Prc. Impact (PISPYt−1 ) −0.59 −30.52 −0.15 −0.88 −16.34 −0.00

SPY Depth (DepthSPYt−1 ) −0.01 −22.72 −0.00 0.03 28.97 0.00

SPY Ret. Size (|r|SPYt−1 ) 0.64 54.33 0.16 1.97 63.38 0.02

MCAP (Size) −0.05 −97.63 −0.01 0.07 45.93 0.00
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Table Continued

Quoted Spreads (QS) −7.60−189.78 −1.90 −2.63 −23.00 −0.02

Volatility (V ol) 5.58 76.83 1.40 −19.74 −95.25 −0.18

Listing −0.01 −3.02 0.00 0.05 22.31 0.00

Endogenity Test for F̃i,t (ρν1,ν2 = 0) −0.944, 340.00

Year Fixed Effect Yes Yes

% Recall(Decision Rule: P̂ (Ji,t = 1) ≥ 50%) 28.14 0.43

% Recall (Without Frag. Inno) 0.00 0.00

# Obs 54,185,923 54,185,923

limit order book to manage inventory risk from jumps.

Next we examine the magnitude of predictive ability of fragmentation for

jumps by computing predicted jump probabilities using the maximized param-

eter estimates of our probit model. Table 4.8 reports predicted jump probabilities

for both the IV probit and simple probit models. In each row of table 4.8, we

compute predicted jump probabilities for values of fragmentation innovation F̃D
t

which vary in increments of half standard deviation from its mean, with all other

explanatory variables held fixed at their mean value. Since the mean of frag-

mentation innovation is zero by design, we refer to positive (negative) standard

deviation increments as fragmentation (consolidation) innovation to liquidity. We

compute separate predictions for the two values of the listing dummy variable

which correspond to predicted probabilities for the NYSE (columns 1 and 3) and

NASDAQ (columns 3 and 4) listed stocks. For the IV Probit model, the predicted

jump probability for NYSE listed stocks is 16.73% when fragmentation is at its

mean.30 The predicted probability of a positive (negative) jump more than dou-

bles to 34.70% for a half standard deviation fragmentation innovation on the ask

30The predicted probability at the mean value is larger than the unconditional jump frequency
as a result of the negative estimated correlation ρν1,ν2 from the IV probit model in (4.23) and
(4.24). As discussed earlier this implies that omitted variables have correlations of opposite
magnitudes with fragmentation and jumps. An example is provided in the discussion earlier.
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(bid) side of liquidity. A full standard deviation innovation almost quadruples

Table 4.8: Effect of Fragmentation Innovation on Jump Probaility and
Direction
This table presents predicted probabilities from the IV Probit model (columns 2-4)
and probit model (column 3-4). We define directional fragmentation innovation F̃Dt−1,

as F̃Askt−1 (F̃Bidt−1 ) if time t price move is positive (negative). We report predicted

probabilities for fragmentation innovation (F̃Dt−1) in units of standard deviation from
the mean; with all other dependent variables held fixed at their mean value. We
individually report predicted values for NASDAQ and NYSE stocks based on the
listing dummy.

Predict Jump Probability P̂ rob (%)

IV Probit Model Simple Probit Model

Std Dev. from Mean (F̃Dt−1) NYSE NASDAQ NYSE NASDAQ

−1.50 0.57 0.40 0.20 0.19

−1.25 1.16 0.89 0.21 0.21

−1.00 2.23 1.84 0.23 0.23

−0.75 4.03 3.54 0.24 0.24

−0.50 6.86 6.38 0.26 0.26

−0.25 11.02 10.73 0.28 0.28

0.00 16.73 16.89 0.30 0.30

0.25 24.07 24.95 0.32 0.33

0.50 32.88 34.70 0.35 0.35

0.75 42.77 45.58 0.37 0.38

1.00 53.13 56.81 0.39 0.41

1.25 63.28 67.52 0.42 0.44

1.50 72.58 76.94 0.45 0.47

the predicted probability to 53.13%. Conversely, a half standard deviation con-

solidation innovation to ask (bid) side of liquidity reduces the predicted positive

(negative) jump probability by more than half with to a value of 6.38%. A full

one standard deviation consolidation innovation further reduces this probability to

1.84%. These results provide strong evidence to suggest that (i) time t-1 fragmen-

tation strongly predict jumps and jump direction and (ii) omitted variable bias

severely underestimates the predictive ability of fragmentation. Since we largely
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isolated the direct effect of liquidity supplier’s information for jumps through the

fragmentation channel, these results suggest that liquidity suppliers’ anticipate

jumps and their information is strongly captured by fragmentation. More for-

mally, the information content of fragmentation strongly predict jumps. Further,

the predicted probabilities for NASDAQ stocks are similar to NYSE stocks.

4.7 Does Fragmentation Predict Noisier Jumps?

In appendix A we show that fragmentation also predicts a mismatch between sup-

ply and demand for liquidity. Any price impact arising from this mismatch must

mean revert as it is unrelated to the efficient price. Further, the eventual arrival

of natural counter-parties allow liquidity suppliers to restore their original inven-

tory position (e.g. Ho and Stoll [1981]; Grossman and Miller [1988]; Hendershott

and Menkveld [2014]) and therefore restore the balance between the supply and

demand for liquidity. Therefore, if fragmentation innovation lead to a mismatch

between the supply and demand side of liquidity in times preceding jumps, we

should expect fragmentation innovation to predict jumps with smaller signal-to-

noise (SN) ratio. In this section we examine Test II: Conditional on observing a

jump, does unanticipated fragmentation result with noisier jumps?

4.7.1 Two Stage Least Square Regression - Signal-to-Noise Ratios

In section 4.4.2 we outline our methodology to decompose each jump in our sam-

ple into two components: (i) permanent component, which represent changes in

efficient price incorporated by the jump and (ii) noise component. Using these

two components we compute an estimator of the information content of jumps

relative to their noise component; i.e. the realized SN ratio given in equation
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(4.19). Following the unobserved endogeneity discussion in section 4.6.1, we use

a two stage least square model (TSLS) to examine predictive power of time t-1

fragmentation innovation on time t SN ratio. The second stage of the TSLS is as

follows:

F̃D
i,t−1 = µ+ α11F̃

IV,D
i,t−1 + α12Ci,t−1 + ε1,i,t−1

SNi,t = ζ + α21
̂̃FD

i,t−1 + α22Ci,t−1 + ε1,i,t−1

(4.29)

where the model is estimated conditional on observing a jump at time t, ̂̃FD

i,t−1 is

the fitted value from the first stage regression which instruments fragmentation

innovation by its systematic component. The matrix of control variables Ci is

identical to section 4.6.2. Our main parameter of interest is α21 which measures

the effect of time t-1 fragmentation on time t jump SN ratio. A negative and

economically significant value of α21 corresponds to the finding that jumps which

proceed fragmented liquidity tend to be noisier as measured by their SN ratio.

4.7.2 Results

Table 4.9 presents second stage estimates from the 2SLS model (columns 1 and

2) and from the simple OLS model (columns 2 and 3). All intraday variables are

normalized by their stock level standard deviations. This normalization allows us

to interpret the coefficients as the effect of a one standard deviation change in the

given variable on jump SN ratio. Amongst the intraday variables, fragmentation

has the largest magnitude effect for jump SN ratios. In particular, a one standard

deviation fragmentation innovation is associated with a SN ratio which is smaller

by -7.05. Relative to the unconditional mean of SN ratio,
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Table 4.9: Effect of Fragmentation Shocks on Jump Signal to Noise Ratio
This table presents estimation results from the two stage least squares model (columns
3-4) and simple OLS model (columns 2-3). The dependent variable is the
signal-to-noise ratio computed using the methodology proposed in 3. We define
directional fragmentation innovation F̃Dt−1, as F̃Askt−1 (F̃Bidt−1 ) if time t price move is
positive (negative). Effective spread (ESt−1) is the signed difference between price and
prevailing midpoint, measured relative to the prevailing midpoint at the time of trade.
Price impact (PI) is the signed changed in midpoint following a trade, relative to
prevailing midpoint at time of trade. Average dept (DepthV ) is the time weighted
average of ask side and bid side offered volume. Trades is cumulative traded volume
at NASDAQ and NYSE in units of ten thousand shares. SPY superscript denotes
S&P 500 ETF variables which proxy for systematic liquidity. The data is pooled and
includes stock-year level controls as follows: average market capitalization (MCAP),
average quoted spread computed from the previous years data; and listing defined as a
dummy variable which equals one if the stock’s primary listing is on NASDAQ and
zero is NYSE. SPY return size (|r|SPYt−1 ) is the absolute value of time t-1 SPY return.

The explanatory variables F̃ , ES, PI, DeptV , ESSPY , PISPY and DeptV,SPY are
intraday variables computed at the 1 minute frequency. Size is computed as the
logarithmic of average daily market capitalization for the previous year. Average
quoted spread is computed as the difference between the close of day ask minus bid
price, relative to the midpoint and averaged across the previous year. Listing dummy
variable is defined as a dummy variable which equals one if the stock’s primary listing
is on NASDAQ and zero if NYSE. Volatility is computed as the daily return volatility
of the previous year. Size, Quoted Spreads, Volatility and Listing are stock level
controls that vary across stock-years. All intraday variables are normalized by their
stock level standard deviation to facilitate economic interpretation. Each regression
includes year dummies to control for year fixed effects. All variables are winsorized at
the %1 level with the exception of listing and returns. ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.001

Dependent Variable = Jump Signal to Noise Ratio (SNt)

2SLS (Second Stage) Simple Regression

Variable Coeff. T-stat Coeff. T-stat

Intercept −16.05∗∗∗ −5.22 −17.64∗∗∗ −5.79

Frag. Inno (F̃Dt−1) −7.05∗∗∗ −11.33 −0.47∗∗∗ −4.35

Eff. Spread (ESt−1) 2.28∗∗∗ 22.32 2.08∗∗∗ 20.93

Prc. Impact (PIt−1) −0.04 −0.36 0.06∗∗∗ 0.56

Depth (DepthVt−1) −1.88∗∗∗ −8.43 0.23 2.21

Trades (Tradest−1) 1.20∗∗∗ 7.64 0.03 0.29

SPY Eff. Spread (ESSPYt−1 ) −0.12 −1.14 −0.01 −0.16

SPY Prc. Impact (PISPYt−1 ) −0.02 −0.21 −0.02 −0.23

SPY Depth (DepthV,SPYt−1 ) −0.47∗∗∗ −4.23 −0.69∗∗∗ −6.43

SPY Ret. Size (|r|SPYt−1 ) 0.43∗∗∗ 4.04 0.50∗∗∗ 4.78

MCAP (Size) 1.28∗∗∗ 8.84 1.29∗∗∗ 8.22
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Table Continued

Quoted Spreads (QS) 283.58∗∗∗ 21.57 224.01∗∗∗ 18.96

Volatility (V ol) −377.94∗∗∗ −15.18 −295.89∗∗∗ −12.60

Listing (NASDAQ) −2.83∗∗∗ −10.41 −2.75∗∗∗ −10.21

Year Fixed Effect Yes Yes

R-square 0.02 0.02

Obs 168,192 168,192

the aforementioned result corresponds to a 57% smaller SN ratio. This result

provides strong evidence to suggest that when jumps follow fragmented liquidity,

they tend to be less informed and more noisy, or put explicitly, tend to have

smaller informational component as compared to their noise component.

4.8 Is Fragmented Liquidity Strategic?

In this section we perform test III: Is fragmented liquidity during times leading up

to jumps strategic?

Since jumps are accompanied by large immediacy demand in the direction

of jumps, liquidity suppliers risk accumulating large inventory positions during

jumps. As shown in table 4.5, orderflow imbalance during jumps is both large

and in the same direction as the jump; i.e. excess buy (sell) imbalance during

positive (negative) jump price moves is large. If liquidity suppliers are fragmenting

liquidity using their information to actively manage inventory risk then we should

expect that any fragmentation measure which takes the direction of fragmentation

into account contains more information for jumps, as compared to a measure

which ignores the direction of liquidity fragmentation. As an example take the

case where there is one stock and one liquidity supplier at time t-1. Further, a
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scheduled earning announcement is anticipated at time t. If the liquidity

Figure 4.6: Recall Improvement - Directional Fragmentation versus
Average Fragmentation
This figure plots recall improvement when using directional fragmentation versus
average fragmentation as given in (4.31). The vertical axis shows percentage
improvement and the vertical axis values of decision rule between 0 and 90%).

supplier’s information set predicts a positive earnings surprise then she anticipates

a large ask side immediacy demand at time t. Consequently, she will fragment ask

side liquidity at time t-1 to manage inventory risk from incoming time t ask side

orderflow imbalance. From the preceding example we note that if liquidity suppli-

ers are both strategic and correct in anticipating immediacy demand, on average,
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then it must follow that the direction of fragmentation should predict the direction

of jumps i.e. ask (bid) side fragmentation predict positive (negative) jumps. As a

result a measure which takes into account both the size and direction of liquidity

fragments should contain more information than a measure which ignores the di-

rection of liquidity fragmentation. One such measure which ignores the direction

of liquidity fragmentation is the average level of fragmentation defined as follows:

F̃i,t =
F̃Ask
i,t + F̃Bid

i,t

2
(4.30)

Comparing the directional fragmentation measure F̃D
i,t defined in (4.12) with

F̃t it follows

that if liquidity fragmentation is strategic than we should expect the directional

measure of fragmentation F̃D
i,t to contain more information than the average frag-

mentation measure F̃i,t. In order to examine the aforementioned statement we

estimate the IV probit model using F̃i,t and compare its recall measure to the

model of section 4.6 which uses F̃D
i,t . In particular we compute the relative im-

provement in recall as follows:

Recall Improvement =
RecallD(α)− Recall(α)

Recall(α)
× 100 (4.31)

Where α is the decision rule as defined in (4.27), RecallD(α)
(
Recall(α)

)
is

recall computed using directional (average) fragmentation. For a given alpha, a

positive value of recall improvement implies that that F̃D
i,t−1 is more informative for

future jumps as compared to F̃i,t−1. Or equivalent the direction in which liquidity

is fragmenting contains more information for jumps in the next minute. Figure

4.6 plots recall improvement for values of alpha between 0% and 90%. We note
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that recall improvement is positive for all decision rules α between 5% and 90%

which implies that F̃D
i,t has more information on average than F̃i,t in predicting

price jumps. In addition, recall improvement is increasing with larger values for

α implying that the information content of F̃D
i,t relative to F̃i,t is increasing with

more stringent decision rule. These results provide strong evidence in support of

liquidity suppliers strategically fragment liquidity in the same direction as their

information is predicting future price jumps.

4.9 Conclusion

We examine the relationship between intraday liquidity fragmentation and price

jumps for S&P 100 stocks. We find that unanticipated changes to fragmentation

predict future price jumps. This suggests that liquidity suppliers are informed

about large future price movements. In addition, we find that fragmentation,

during times leading up to price jumps, is related to liquidity suppliers actively

managing inventory risk based on their information about future liquidity demand

and information arrivals.

More generally, we show that market linkages are important during times

leading up to jumps. In particular, jumps are more informative and less noisier

in consolidated markets as compared to fragmented markets. Future research

could examine the welfare consequences of exogenous variations in fragmentation

to guide policy.
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4.10 Appendix: Fragmentation & Supply and Demand Mismatch

In this appendix section we show that liquidity fragmentation predicts mismatch

in demand for immediacy and the supply of liquidity. We measure this aforemen-

tioned mismatch by constructing a variable, SDM defined in (4.5). Our modelling

approach is the two stage least squares (TSLS) model similar to section 4.6.1.

Following the discussion in section 4.5.1 we instrument fragmentation innovation

by its systematic component and regress time t SDM on time t-1 fitted values

from the first stage as follows:

F̃i,t−1 = µ+ γ11F̃
IV
i,t−1 + γ12Ci,t−1 + ζ1,i,t−1

SDMi,t = ζ + γ21
̂̃F i,t−1 + γ22Ci,t−1 + ζ1,i,t−1

(4.32)

where the set of variables Ci,t is matrix of control variables. The parameter

γ21 measures the predictive power of fragmentation innovation on SDM. Table

4.10 reports least square results of model (4.32). We normalize SDMi,t and all

intraday variables by their respective stock level standard deviations for ease of

economics interpretation. The results presented in table (4.10) show that a one

standard deviation increase in time t-1 fragmentation increase time t SDM by 0.65

standard deviation. Based on these results we conclude that the degree of liquidity

fragmentation predicts future increase in the mismatch between the supply and

demand side of liquidity. These results are consistent with section 4.7 where we

show that jumps which follow fragemted liquidity tend to be noisier on average.
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Table 4.10: Effect of Fragmentation Innovation on Liquidity Demand and
Supply Mismatch
This table presents estimation results from the two stage least squares model given in
equations 4.32 (columns 2-3) and simple OLS model (columns 4-5). The dependent
variables is the liquidity demand and supply mismatch normalized by its stock level
standard deviation, defined as the number of trades larger than NBBO offered
liquidity relative to number NBBO quote updates. We define directional
fragmentation innovation F̃Dt−1, as F̃Askt−1 (F̃Bidt−1 ) if time t price move is positive
(negative). Effective spread (ES) is the signed difference between trade price and
prevailing midpoint, computed relative to the prevailing midpoint. Price impact (PI)
is the signed change in midpoint 1 minute following a trade, computed relative to the
prevailing midpoint. Volume dept (deptV ) is the time weighted average of ask side and
bid side offered volume at NBBO quote.Trades is cumulative traded volume at
NASDAQ and NYSE in units of ten thousand shares. The superscript SPY denotes
variables computed for the S&P 500 ETF which proxies for the market portfolio. SPY
return size |rSPY | is the absolute value of time t-1 SPY return. The explanatory
variables F̃ , ES, PI, DeptV , ESSPY , PISPY and DeptV,SPY are intraday variables
computed at the 1 minute frequency. Size is computed as the logarithmic of average
daily market capitalization for the previous year. Average quoted spread is computed
as the difference between the close of day ask minus bid price, relative to the midpoint
and averaged across the previous year. Listing variable is defined as a dummy variable
which equals one if the stock’s primary listing is on NASDAQ and zero if NYSE.
Volatility is computed as the daily return volatility of the previous year. Size, Quoted
Spreads, Volatility and Listing are stock level controls that vary across stock-years.
All intraday variables are normalized by their stock level standard deviation to
facilitate economic interpretation. Each regression includes year dummies to control
for year fixed effects. All variables are winsorized at the %1 level with the exception of
listing and return size. All variables are statistically significant at the %1 level unless
otherwise stated.

Dependent Variable = Liquidity Demand and Supply Mismatch (SDMt × 100)

2SLS (Second Stage) Simple Regression

Variable Coeff T-stat Coeff T-stat

Intercept 2.58 550.79 2.41 601.23

Frag. Inno (F̃Dt−1) 0.65 476.70 0.01 99.56

Eff. Spread (ESt−1) 0.04 257.09 0.06 430.10

Prc. Impact (PIt−1) −0.02 −168.71 −0.00 −8.27

Depth (Deptht−1) 0.02 70.31 −0.09 −678.42

Trades (Tradest−1) 0.02 61.82 0.10 669.26

SPY Eff. Spread (ESSPYt−1 ) −0.00 −28.12 −0.01 −50.13

SPY Prc. Impact (PISPYt−1 ) −0.01 −72.09 −0.01 −51.95

SPY Depth (DepthSPYt−1 ) −0.01 −62.95 −0.001 −2.12

SPY Ret. Size (|r|SPYt−1 ) 0.01 61.82 0.01 72.66



4.10. APPENDIX: FRAGMENTATION & SUPPLY AND
DEMAND MISMATCH 112

Table Continued

MCAP (Size) −0.05 −192.22 −0.04 −193.71

Quoted Spreads (QS) −29.20 −1, 362.00 −26.17 −1, 498.10

Volatility (V ol) 26.35 698.30 23.07 726.82

Listing 0.19 418.37 0.17 451.71

Year Fixed Effect Yes Yes

R-square 0.07 0.08

Obs 53,311,147 53,311,147

1Estimate is not statistically significant at the %1 level.
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Chapter 5

Discovering Efficient Value

Using machine learning methods we identify the efficient value and noise com-

ponents of quarterly stock prices. We show that 28% of stock price variation is

attributable to noise, and that 40% of noise is attributable to mutual fund trad-

ing. We find spikes in noise around the dot-com bubble, the 2008 financial crisis,

and the European sovereign-debt crisis. Noise is higher for small firms and firms

with high R&D expenditures. In an application of our methodology, we show

that corporate managers do not have private information about future changes in

efficient value nor can they identify noise in prices.

5.1 Introduction and Literature Review

Disentangling the efficient value and noise components of equity prices has a long

history. Fisher Black famously noted in his 1985 presidential address that in the

“...basic model of financial markets, noise is contrasted with information.” Mar-

kets aggregate information from investors about efficient value in prices. While
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theoretically appealing, equity prices often deviate from efficient value when un-

informed investors trade (Shleifer and Summers [1990]), when markets become

illiquid, or when limits to arbitrage are binding (Brunnermeier and Pedersen

[2009]). Identifying informed and uninformed investors and their order-flow is

difficult as informed investors often hide their trading by mimicking the trading

of uninformed investors (Kyle [1985a] and Collin-Dufresne and Fos [2015]).

More informative prices are more useful if they aggregate information not al-

ready possessed by managers and investors, thereby improving resource allocation

and investment decisions. For instance, firm managers condition investment deci-

sions on prices (Chen, Goldstein, and Jiang [2007]). Would-be acquirers are more

likely to retreat from takeover efforts after negative stock price movements (Luo

[2005]). Additionally, regulators often use market responses to understand the im-

pacts of regulation on the economy. Disentangling permanent changes in efficient

value from temporary deviations of prices away from efficient value is an im-

portant step towards understanding the relationship between market-aggregated

information and real decision-making.

We contribute to this literature by developing a machine learning state space

methodology (SSM) that uses mutual fund flows to identify permanent changes

in unobserved efficient value and temporary deviations of the price from efficient

value (i.e. noise). We use a simple model of stock prices and mutual fund trading

during fire sale quarters to isolate the two components. Mutual fund fire sales

have been used to indirectly identify transitory deviations from efficient value

(Coval and Stafford [2007]) but clean identification is difficult. Our approach

addresses the critique that previous measures of noise using mutual fund fire sales

are correlated with returns for mechanical reasons (Wardlaw [2019]).
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We decompose the previously-used mutual fund fire sales variable into a liquid-

ity component that satisfies redemption requests and a discretionary component

correlated with information. The rationale for this decomposition is that mutual

fund managers do not have to sell each stock in proportion to current holdings.

This grants managers discretion to sell a greater proportion of holdings in firms

with negative expected future returns. This measure of discretionary buying or

selling is based on the idea that, when a mutual fund manager must sell a certain

proportion of her fund’s holdings to fulfill investor redemption requests, deviations

in sales from this proportion reveal the mutual fund manager’s information.1

Using mutual funds’ liquidity-driven and discretionary trading (as opposed to

all trading) to identify noise in stock prices assumes that mutual fund discretionary

trading is equivalent to informed trading. In order to justify this assumption,

we show that as long as mutual fund managers observe similar signals to other

investors and mutual fund managers correctly interpret the information content

of prices and redemption requests by their investors (even with a lag), mutual

fund trading is correlated with changes in efficient value.

We establish the empirical validity of our decomposition of mutual fund trad-

ing by first showing that actual net imbalances based on all trading by mutual

funds correlate positively with current returns and negatively with future returns.

This suggests that at least some of the correlation between actual net imbalances

and returns is temporary and subsequently reversed. We also show that discre-

tionary net share imbalances are positively correlated with returns. Importantly,

1This breakdown is similar to the predicted selling model in Huang, Ringgenberg, and Zhang
[2019].
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the discretionary measure is not associated with later reversals in stock prices, sug-

gesting mutual funds’ discretionary sales are correlated with permanent changes

in the efficient value of firms rather than temporary deviations in the price from

efficient value.

To confirm that our methodology is capturing information, we separate dis-

cretionary net imbalances into stock-quarters in which managers over-sell and

under-sell holdings of those stocks, relative to their proportion of the fund’s port-

folio. Our data allow us to estimate how much a manager should actually sell in

order to fulfill investor redemption requests. Managers that sell more of a par-

ticular stock than required to fulfill redemption requests may do so because they

possess information about the future prospects of the firm.

Indeed, we find that mutual funds over-sell stocks in their portfolio that exhibit

permanent decreases in efficient value. Stocks that managers under-sell exhibit

positive contemporaneous changes in efficient value. Over-selling is a particularly

salient event because while a mutual fund manager is forced to liquidate some of

her holdings to satisfy redemption requests, she can also choose to satisfy some of

the requests with cash holdings. This leads actual sales to be consistently lower

than predicted hypothetical sales. By selling a security more than required to

satisfy redemption requests and by opting not to use cash on-hand to meet these

requests, thereby incurring liquidity costs to sell, the manager is expressing a

strong opinion against the firm being over-sold. Our results show clearly that this

behavior is associated with large negative permanent changes in efficient value.

By decomposing mutual fund fire sales into two parts and using these to es-

timate a state-space model, we merge the strands of literature that suggest fire
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sales: (1) contain information; and (2) cause prices to become noisier. Consis-

tent with the prior literature, we find that observed mutual fund sales by funds

experiencing significant investor redemptions are correlated with transitory price

movements. The SSM suggests that noise variance is roughly 28% of total price

variance and that 39% of that variance can be explained by actual mutual fund

trading in a given stock-quarter. Put differently, roughly 11% of total variance is

noise variance that can be attributed to mutual fund fire sales. We find spikes in

noise during the dot-com bubble, the 2008-09 financial crisis, and the European

sovereign debt crisis.

We also find an informational component in fire-sale-induced mutual fund trad-

ing. Mutual fund managers’ deviations from predicted selling (i.e., discretionary

trading) is correlated with unobserved changes in the efficient value of firms. The

SSM parameter Kappa (κ) measures this correlation between discretionary trading

by mutual funds and permanent price changes. Kappas are positive and signif-

icant, suggesting that when mutual fund managers exercise discretion in their

trading they do so for informed reasons. Moreover, their information varies with

observable firm characteristics and the quality of information about the firm, con-

sistent with a noisy rational expectations equilibrium in which investors update

their beliefs based on both their private information and observed prices (Hellwig

[1980], Admati [1985], Banerjee [2011]). Correlations between mutual fund man-

agers’ discretionary trading and changes in efficient value are greater for larger

firms, more profitable firms, and firms that invest more in R&D relative to assets.

That mutual fund managers possess private information is discussed in a long

literature. For instance, Bollen and Busse [2001] show that mutual fund managers

possess the ability to time market movements, whereas Frazzini and Lamont [2008]



5.1. INTRODUCTION AND LITERATURE REVIEW 118

suggest that mutual fund investors and managers constitute “dumb money.” In a

related paper, Huang et al. [2019] show that mutual fund fire sales are correlated

with permanent price changes in equity prices. Another literature suggests that

transitory price movements (noise) due to mutual fund fire sales affect corporate

policies. Phillips and Zhdanov [2013] demonstrate the relationship between mu-

tual fund fire sales and R&D expenditures. Derrien, Kecskés, and Thesmar [2013]

show how corporate payout policy varies with mutual fund fire sales. Chen et al.

[2007] relate the firm’s own stock prices to corporate investment.

Our paper is related to Brogaard, Nguyen, Putniņš, and Wu [2020], Bai, Philip-

pon, and Savov [2016] and Dávila and Parlatore [2018]. Brogaard et al. [2020]

define noise as the residual term in a return regression, where the residual is pos-

sibly correlated with unobserved sources of information. In contrast, we explicitly

define noise as the portion of stock price changes correlated with the liquidity com-

ponent of mutual-fund trading. Our results also differ from Bai et al. [2016], who

find that price informativeness (noise) has increased (decreased) over time. How-

ever, our findings complement Dávila and Parlatore [2018], who find substantial

cross-sectional variation in price informativeness.

Our methodology can be applied to numerous first order questions in finance

research. For instance, a significant challenge lies in making inferences about

the channel through which stock prices are associated with corporate investment

(Dessaint, Foucault, Frésard, and Matray [2019]). Based on their study we present

an application of our measures of efficient value and noise and estimate versions

of corporate investment-price sensitivity relationships using both the firm’s own

noise and peer noise. We show that firm investment is sensitive to changes in the

efficient price and noise, with a greater sensitivity to changes in efficient value
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than noise. Extending this insight we decompose information into a part that is

knowable at the time of the investment (public information), and a part that is

revealed in the future (private information). These results indicate that managers

do not have private information about changes in efficient value, implying that

managers do not possess information not already in prices.

Our methodology can be applied to better understand the information sets

and decision-making of corporate insiders, activists, or arbitrageurs. It is flex-

ible and can be modified to include the trading of other institutional investors

(e.g., closed-end funds, exchange-traded funds, firm executives and directors) or

retail traders. For instance, we estimate the model for all mutual trading (rather

than only those undergoing fire sales) and show that our results also hold in this

setting. We estimate our model at the quarterly frequency but the model could

also be estimated at the intraday, daily, weekly or monthly frequencies depend-

ing on data availability and the research question. Finally, we assume an error

correlation structure suggested by a number of theoretical models (Wang [1994]

and Hendershott and Menkveld [2014]), however the model can be estimated with

more general error correlation assumptions.

5.2 Background and model of stock prices

Investors use models to update their beliefs about the efficient value of a firm.

Most investors will use some form of Bayesian updating, in that they will have an

opinion (prior) about the efficient value of a firm. The prior could be based on

current and past prices (or price movements), and/or current and past trading.

At some point, new information will arrive that updates the prior information of

the investors. The investor will then generate a posterior estimate of the efficient
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value depending on how much weight they wish to assign to the new information.

This representation maps directly into the Kalman filter that we use to estimate

efficient value. For instance, the estimate of efficient value generated by a Kalman

filter would be similar to the estimate generated by a Bayesian investor where the

updating function from the prior to posterior estimate is the Kalman gain.

Our model takes an additional step. Since the Bayesian investor is not en-

dowed with any specific informational advantage, they may not possess useful

information about efficient value. We extend the logic to a Bayesian investor who

knows all future prices and trading. This type of investor would be closer to a

Walrasian who knows all past, current, and future prices, volumes and the rela-

tionships between these variables. The Walrasian is comparable to our Kalman

smoother who uses these same variables to generate estimates of the efficient value

for every firm-quarter in our sample.

Our measure of noise is simply the difference between the estimate of efficient

value generated by the Walrasian-type investor (Kalman smoother) and the ob-

served price. This intuitive decomposition identifies information that enters into

price through the trading process and noise that is generated by trading.

5.2.1 Identifying informed and uninformed trading

In order to motivate the empirical analysis, we consider asset prices in the context

of a noisy rational expectations equilibrium (REE). In REE models, investors learn

about the value of the firm by observing stock prices and a (noisy) signal of firm

value (Grossman and Stiglitz [1980]). In the case of different private signals across

many investors, stock prices play an information aggregation role (Hellwig [1980]).

A key feature in these models is that there is “noise” in the price system, either
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in the form of supply shocks (Hellwig [1980]), traders who trade randomly (Kyle

[1985b]), or forecast errors by uninformed investors (Wang [1994]). Noise is an

essential feature of the market in order to incentivize private (costly) information

production (Grossman and Stiglitz [1980]). The existence of noise in the price

system implies that prices respond to both informed and uninformed trading.

Uninformed trading will lead prices to deviate from efficient value and subsequent

price reversals as investors learn more about the value of the firm. Informed

trading will lead prices toward efficient value and will not lead to subsequent

price reversals.

Consistent with a noisy REE, Coval and Stafford [2007] find strong price de-

clines following forced assets sales in mutual funds. These forced sales lead to re-

versals in prices, with the average reversal lasting several calendar quarters. The

length and the relative size of the average reversal suggests that these forced sales

are not caused purely by noise (either in the form of supply shocks or random

trading), implying that fire sales are also correlated with information. Mutual

fund managers may therefore be exercising discretion and acting on information

(public or private) in the selection of which stocks to sell, and the proportion that

they sell, in response to large mutual fund redemption requests.

In order to distinguish between noisy and informed trading, we decompose

mutual fund sales into two components based on observed sales of firm i’s stock

across mutual funds j that hold stock in firm i at time t-1:

Acti,t =
∑
j

(Sharesi,j,t − Sharesi,j,t−1)/V olumei,t. (5.1)

Actual sales in quarter t equals the change in shares held from quarter t-1 to t



5.2. BACKGROUND AND MODEL OF STOCK PRICES 122

by all funds j that: (1) hold the stock at the end of quarter t-1; and (2) experience

flows of assets under management of less than or equal to -5%. We divide the

summation by share volume of firm i in quarter t. Note that the scaling variable

is measured in shares traded in quarter t and does not rely on price. Constructing

the measure of sales (and discretionary sales below) in this way, rather than using

dollar changes in holdings and dollar volume as a scaling variable, addresses the

Wardlaw [2019] critique that instruments based on mutual fund fire sales are

invalid because they mechanically incorporate returns. Conditioning sales on the

subset of fund-quarters where the fund experience flows less than or equal to -5%

of assets under management identifies fire-sale quarters (FS quarters).

We define discretionary imbalances as the difference between actual sales and

what the fund would have sold in response to redemption requests had it sold

shares in all of its stocks according to their proportion of AUM. That is,

Disci,t =
∑
j

(∆Sharesi,j,t − Flowj,t × Sharesi,j,t−1)/V olumei,t (5.2)

where Flow is the percentage change in AUM net of returns earned over the

quarter, and the summation is across mutual funds experiencing flows less than

-5% in quarter t.

We exploit this feature of mutual fund fire sales (i.e., coexistence of noise and

informed trading) to decompose stock prices into efficient value and noise via a

state space model representation of such prices. The next section provides a brief

description of this model.
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5.2.2 Model of stock prices

Our model of stock prices is based on a dealer-inventory model described in

Glosten and Milgrom [1985] and Hendershott and Menkveld [2014]. The latter

characterize the dealer’s problem as a stochastic optimal linear regulator problem.

This intermediary holds inventory of stock and supplies liquidity to investors. The

intermediary can either be long or short inventory, though she prefers a net zero

position. As she is risk averse, she will bid up prices in response to buy orders

(thereby increasing her inventory), and mark down prices in response to sell or-

ders (thereby decreasing her inventory). All market orders are assumed to pass

through a dealer (i.e. there is no limit-order book).

Solving the dealer’s problem yields the following structural model of stock

prices:

pt = mt + st

mt = mt−1 + κ(∆It − Et−1[∆It]) + ηt

st = φst−1 + β∆It + εt

(5.3)

where pt equals the log of price and ∆It equals the change in dealer’s inventory

resulting from buy and sell orders.

The model of stock prices has two components. Efficient value is represented

by mt. This component is adjusted each period for trade and non-trade related

information. Here, ∆It − Et−1[∆It] represents the information conveyed by the

unexpected component of inventory changes due to trade, and ηt represents non-

trade news that arrives between time t-1 and t. The variances of ηt and εt can be

interpreted as the impact of information and market frictions on security prices.
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The second component (st) represents noise, or a transitory deviation of the price

from efficient value. This process is mean-reverting and the coefficient β reflect

the impact of market frictions on price. For example, initiators of buy orders

pay more than efficient value to compensate the dealer for the resulting inventory

imbalance.

The main feature of the model is that order arrivals convey information and

cause prices to deviate from true values.2 This feature can be seen from the fact

that the transitory component st is correlated with the trading-related component

of information (∆It − Et−1[∆It]) because ∆It is common to both. In summary,

changes attributed to information have a permanent effect on prices while changes

attributed to pricing errors have a temporary effect on prices.

Kalman filter representation

Stock prices in equation (5.3) have a Kalman filter representation, which we use to

estimate the parameters. The filtering equation is linear in the prediction errors.

Based on this representation, investors update their conditional expectations after

observing prices.3 Let mt|t := E(mt|vt), where vt is the prediction error form

observing prices. A similar definition for st|t obtains. Then the stock price model

implies,

mt|t

st|t

 =

E(mt|vt−1)

E(st|vt−1)

+ Kt vt (5.4)

2George and Hwang [2001] also discuss how to estimate a similar representation of stock
prices.

3Wang [1994] proposes a similar formulation.
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where Kt is a 2 × 1 matrix with positive components and vt is the predic-

tion error or surprise in prices, pt − E(mt|vt−1). See Internet Appendix for the

derivation.

The first term on the right-hand side gives the expectation of efficient value

and noise based on previous information. The second term gives the update in

expectations based on new information from surprises in price. The first com-

ponent of Kt is the Kalman gain, or the weight given to the price signal about

efficient value mt by investors. Thus, estimates of noise and efficient value are

based on investors’ updating of the conditional distributions of efficient value and

noise after observing prices, where the weight put on prices is given by K(1)t.

Price informativeness in stock prices can be recovered from the recursion esti-

mates in (5.4). Price informativeness, τm̂,t, is defined as the precision of the signal

about efficient value contained in price pt after observing the time-t prediction

error vt. Thus

τm̂,t : = V ar(mt|vt)−1

= [V ar(mt|vt−1)(1−K(1)t]
−1

(5.5)

Price informativeness increases with the weight investors put on price surprises

(the Kalman gain), and it decreases with the variance of efficient value conditional

on time t-1 information. In the limiting case where the Kalman gain is close to

one, investors put all the weight on the price as a signal of innovation in efficient

value, disregarding all prior information.4

4Dávila and Parlatore [2018] link price informativeness to the Kalman gain.
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Assumptions required for estimation

The stochastic inventory control model implies that changes in inventory affect

the transitory component of stock prices, but only unexpected changes (or innova-

tions) in inventory affect the permanent component of price. Intuitively, only the

unexpected portion of information conveyed by inventory changes should matter

for efficient value.

However, because we only observe mutual fund trading, we must make as-

sumptions about the information available to different types of investors. More

specifically, we assume that different sets of investors’ (e.g., mutual funds’ and

hedge funds’) trading is correlated through access to common sources of infor-

mation. Therefore, trading by informed and less-informed investors differs only

in quantity. This assumption implies the independence between the error terms

ε and η, which reduces the number of parameters required to estimate the state

space model.

This assumption can be relaxed by allowing observed mutual fund trading and

unobserved trading to be only partially correlated through a common source of

information. For example, if more-informed investors have access to an orthogonal

signal that is unobserved by less-informed investors. We show in the Appendix

that this type of information structure generates a correlation between the error

terms that is proportional to the variance of information observed by the more

informed investor. In terms of estimating the model, allowing this more general

information structure across investors adds an additional parameter to the SSM.
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5.3 Data and descriptive results

Estimation of the state space model uses both stock-level returns and quarterly

mutual fund holdings information. We obtain necessary data from CRSP, Compu-

stat, CRSP Mutual Funds and Thomson Reuters to run the state space model and

the investment regressions. We use Thomson Reuters to determine the number of

shares of firms held by mutual funds, while CRSP Mutual Funds provides infor-

mation on the performance of these funds. The intersection of these two datasets

allows us to calculate FLOW, as well as both hypothetical and actual sales of

stocks across funds for each firm-quarter. The intersection of CRSP, Compustat

and the mutual fund-based data from 1990-2016 leaves us with 589,184 observa-

tions. We remove firms which do not have at least eight years (32 quarters) of

non-missing values for our test variables. Next, since we require variation in our

mutual fund trading variables to identify our state space estimators, we remove

firms that do not have at least three non-zero observations for both hypothetical

sales and actual sales.

Finally, we remove firms with average total assets below $5M, as well as fi-

nancial and utility firms (2-digit SIC codes 49, 60-69, 90+). The sample with

which we proceed to state space model estimation spans 273,023 observations

(4,417 unique stocks). Estimating the recursion in equation (5.4) eliminates some

firms in cases where the maximum likelihood estimator does not converge. Our

estimation model converges for 72% of firms in fire sale models and 70% in the

all mutual fund trading model, resulting in a combined sample of 2,581 firms.
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5.3.1 Summary statistics

Summary statistics for the sample are provided in Table 5.1. As shown, firms

in the final sample are large, measured either in terms of market capitalization

(MCAP) or total assets (Assets), with the average firm having $3.4 billion in

assets measured in current dollars. Firms in the sample have average daily bid-

ask spreads of 1.55% and daily trading volume of 1.21 million shares (median

trading volume of 120,000 shares). Firms are also widely held by mutual funds,

with the average firm being held by 62 funds (median is 29).

Table 5.3 presents mutual-fund level statistics for the subset of firm-calendar

quarters characterized by fire sales (FS). Following Chen et al. [2007], fire-sale

quarters are defined as quarters in which at least one mutual fund holding a given

stock in our sample experiences of flows less than or equal to -5% of AUM. As is

shown, FS-quarters comprise 25% of the sample, and conditional on a FS-quarter,

flows are substantial, amounting to 11.5%of AUM on average (median is 9.5%).

Mean net imbalance (Act) in response to fire sales is -0.32% of trading volume,

and the median is zero, suggesting that funds do not sell stocks proportionally to

AUM in response to flows.

5.3.2 Discretionary Imbalance

If funds incorporate information in their decision to sell stocks during FS-quarters,

then discretionary net imbalances (buying - selling) should be different from zero.

As shown in Table 5.3, average discretionary net imbalances (Disc) are 0.68% of

share volume, indicating that mutual funds’ share sales in response to redemption

requests are correlated with information about the firm’s value. We explore this
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Table 5.1: Summary Statistics - Sample Stocks
This table reports descriptive statistics for the 2,581 stocks used in our main analysis.
The sample time period is 1990-2016. For each variable, the table reports the mean,
25th percentile, median, 75th percentile and standard deviation. Stock-Quarters is the
number of quarters a sample stock exists in the CRSP and Compustat universe with
non-missing statistics required in our main analysis. Assets is end of quarter book
value of total assets reported in COMPUSTAT Fundq file. MCAP is end of quarter
price times shares outstanding from CRSP MSF file and averaged across all sample
stocks and sample time periods. Returns (Ret.) are computed as the logarithmic
difference of end of quarter price. Standard deviation of returns are computed for each
stock and quarter using end of day price from CRSP DSF file. Spreads are computed
as the average of end of day ask price minus bid price relative to the prevailing bid-ask
midpoint in the CRSP DSF file. Volume is total quarterly dollar traded volume for a
given stock. Shrout is end of quarter shares outstanding for a given stock, reported in
millions of shares. Funds held is the number of mutual funds holding at least one
sample stock. FS Funds held is the number of funds experiencing a fire sale and
holding at least one sample stock. Investment (Inv.) is capital expenditure (Capxq)
over of given quarter relative to property planet and equipment in the previous
quarter reported in COMPUSTAT Fundq file. Cash-to-assets (CF/Assets) is defined
as end of quarter operating cash flow relative to end of quarter assets reported in the
COMPUSTAT Fundq file. Debt-to-assets (Debt/Assets) is total end of quarter debt
relative to end of quarter assets reported in the COMPUSTAT Fundq file. All dollar
denoted variables are deflated using the quarterly seasonally adjusted GDP deflater
from FRED database. Price, Volume and MCAP are adjusted for stock splits and
distributions. In addition, all variables are winsorized at the 1% level in each tail.

# Stocks Variable Units Mean P25 Median P75 Std

2,581

Stock-Quarters # quarters - across stocks 62.40 42.00 58.00 82.00 22.62

MCAP $B. quarterly - across stocks 2.31 0.10 0.37 1.36 6.52

Assets $B. quarterly - across stocks 3.42 0.12 0.42 1.72 10.26

Price $ quarterly - across stocks 27.15 7.31 15.48 30.03 44.85

Ret % quarterly - across stocks −0.32 −13.47 0.85 14.13 26.85

Std. Ret. $ quarterly - across stocks 0.03 0.02 0.03 0.04 0.02

Spreads % daily - across stocks 1.55 0.12 0.65 2.03 2.26

Volume $M. quarterly - across stocks 1.21 0.02 0.12 0.70 3.29

Shrout M. Shr. quarterly - across stocks 82.87 10.11 26.56 64.13 182.06

Funds held # Funds - across quarters 61.69 8.00 29.00 88.00 78.89

FS Funds held # FS Funds - across quarters 14.19 1.00 4.00 16.00 24.45

Inv. (Capxq/PPENTq) % quarterly - across stocks 7.44 2.62 4.90 8.96 8.44

CF/Assets % quarterly - across stocks 1.05 0.72 2.06 3.31 5.07

Debt/Assets % quarterly - across stocks 23.50 5.15 20.69 35.39 20.87
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idea in more detail by estimating residual discretionary net imbalances:

Disci,t = ξi,t + γi + α1Sizei,t−1 + α2Spreadsi,t−1 + α2Shrouti,t−1+

α3Volatilityi,t−1 + D̃isci,t

(5.6)

Table 5.2: Panel Regression - FS Discretionary Imbalance
This table presents results of OLS panel regressions of time t discretionary net
purchases on time t-1 logarithmic assets (size), logarithmic shares outstanding
(Shrout) and quoted spread. Each panel regression contains stock fixed and year fixed
effects. All explanatory variables are normalized by their standard deviation to
facilitate economic interpretation. All variables are winsorized at the %1 level in each
tail. Reported T-statistics are computed using Heteroscedasticity-Corrected
Covariance Matrix (HCCME 1). ∗ p < 0.01; ∗∗ p < 0.05; ∗∗∗ p < 0.001

Dependent Variable: FS Discretionary Imbalance i,t

Explanatory Variables:

Log Size i,t-1 −0.35∗∗∗ −0.33∗∗∗

(−11.14) (−8.98)

Spread i,t-1 0.10∗∗∗ 0.15∗∗∗

(5.24) (7.73)

Volatility i,t-1 −0.21∗∗∗ −0.26∗∗∗

(−19.13) (−22.97)

Log Shares Outstanding i,t-1 −0.25∗∗∗ −0.10∗∗∗

(−9.65) (−3.36)

(7.73)

R2 0.10 0.10 0.10 0.10 0.10

The residual component removes the predictable component from discretionary

net imbalances (Disc) related to liquidity and volatility. For example, mutual

funds might sell the most liquid stocks in order to minimize on trading costs.
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Estimates of this regression are reported in Table 5.2. As expected, larger, more

liquid stocks in a mutual fund’s portfolio are more likely to be sold in fire sale

quarters. By construction, the residual discretionary imbalances are zero on aver-

age, but, as shown in the last row of Table 2, residual discretionary sales exhibit

substantial variation around the mean with an inter-quartile range of 1.33% of

share volume.

We next measure the price impact of discretionary and actual selling as a

validation check of our measure of discretionary selling. If discretionary sales

are correlated with information, then price changes in FS-quarters with a large

discretionary component of observed sales should be permanent. That is, we

should not observe price reversals following the FS-quarter. In contrast, if a large

component of actual sales in response to flows is uncorrelated with information,

then these sales should be more likely to be followed by significant price reversals.

We test both ideas in Table 5.5, which reports estimates of the following price-

impact regressions:

retit = α + β1Actit + β2Actit−1 + ε (5.7)

retit = α + β1D̃isci,t + β2D̃isci,t−1 + ε (5.8)

As shown in Panel A, Act is positively and significantly associated with current

quarter returns but lagged values of Act are negatively and significantly associated

with current returns. This result indicates that part of the current impact of

mutual fund trading on prices is reversed during the next quarter. Panel B reports

equivalent estimates for price impacts of discretionary residual net imbalances
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(Disc. residual, see equation 5.6). Consistent with the idea that the discretionary

Table 5.3: Summary Statistics - Fire Sales Funds
This table reports descriptive statistics for Fire Sales funds in our sample. The sample
time period is 1990-2016. For each variable, the table reports the mean, 25th
percentile, median, 75th percentile and standard deviation. In a given quarter we
identify fire sale funds as those funds with market performance-adjusted net asset
outflow greater than 5 percent (i.e., Flowj,q < −0.05). Fire Sales fund quarter
frequency (FS fund Qtr. freq.) is the number of fire sale fund-quarters divided by the
total number of fund-quarters. Hypothetical Net imbalance is a stock-quarter variable
equal to fire sales funds’ outflow multiplied by their holdings of the stock at the
beginning of the quarter, scaled by share trading volume. The variable Act is a
stock-quarter variable equal to fire sales funds’ net imbalance of the stock in the
quarter, scaled by share trading volume. Discretionary net imabalance (Disc)
measures the discretionary component of mutual fund buying-selling. Disc. residual is
the residual component from a panel regression of Disc. on size, volatility, spread and
shares outstanding. All variables are winsorized at the 1% level in each tail.
Further details of the variables in this table are given in Appendix A.

# Funds Variable Units Mean P25 Median P75 Std

FS fund Qtr. freq. % quarterly 25.12 10.28 19.17 33.35 19.63

Flow % quarterly−11.50 −13.86 −9.21 −6.73 6.58

Act % quarterly −0.32 −0.50 0.00 0.06 2.68

Disc % quarterly 0.68 −0.05 0.00 0.75 3.14

Disc. residual % quarterly −0.00 −0.95 0.00 0.38 2.96

component is correlated with information, the contemporaneous effect on prices

of this component of mutual fund net imbalances is significantly positive, but the

impact of lagged values of this variable is small and statistically insignificant.

5.4 Estimating efficient value

Having established that discretionary trading is correlated with information, we

next solve the signal extraction problem described by equation (5.4) for the sample

of stocks described in the preceding section. Estimation is done stock-by-stock by

obtaining initial estimates of the parameters assuming there is no auto-correlation



5.4. ESTIMATING EFFICIENT VALUE 133

Table 5.4: Panel Regression - Discretionary Imbalance / Net Imbalance
This table presents results of OLS panel regressions of time t discretionary purchases
on time t-1 logarithmic assets (size), logarithmic shares outstanding (Shrout) and
quoted spread. In Panel A the dependent variable is discretionary fire sales imbalance,
and in Panel B net discretionary imbalance. Each panel regression contains stock fixed
and year fixed effects. All explanatory variables are normalized by their standard
deviation to facilitate economic interpretation. All variables are winsorized at the 1%
level in each tail. Reported t-statistics are computed using a
Heteroscedasticity-Corrected Covariance Matrix (HCCME 1) and clustered by stock
and year. ∗ p < 0.01; ∗∗ p < 0.05; ∗∗∗ p < 0.001

Panel A: FS Discretionary Imbalance t-1

Log Size i,t-1 −0.35∗∗∗ −0.33∗∗∗

(−11.14) (−8.98)

Spread i,t-1 0.10∗∗∗ 0.15∗∗∗

(5.24) (7.73)

Volatility i,t-1 −0.21∗∗∗ −0.26∗∗∗

(−19.13) (−22.97)

Log Shrout i,t-1 −0.25∗∗∗ −0.10∗∗∗

(−9.65) (−3.36)

(7.73)

R2 0.10 0.10 0.10 0.10 0.10

#Stocks 4, 228 4, 228 4, 228 4, 228 4, 228

#Obs 214, 173 214, 173 214, 173 214, 173 214, 173

Panel B: Net Discretionary Imbalance t-1

Log Size i,t-1 −0.02 −0.40∗∗∗

(0.34) (−6.08)

Spread i,t-1 −0.48∗∗∗ −0.33∗∗∗

(−14.64) (−9.71)

Volatility i,t-1 −0.52∗∗∗ −0.45∗∗∗

(−22.57) (−19.00)
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Table Continued

Log Shrout i,t-1 0.08 0.22∗∗∗

(1.60) (3.79)

(7.73)

R2 0.03 0.03 0.03 0.03 0.03

#Stocks 4, 417 4, 417 4, 417 4, 417 4, 417

#Obs 267, 736 267, 736 267, 736 267, 736 267, 736

/noindent in noise using repeated iterations (250) of the Kalman recursion.

This produces starting values for the parameters which we combine with a grid

search for the auto-correlation coefficient parameter. We then estimate the full

set of parameters with maximum likelihood.5

5.4.1 State space model estimates

Estimates are reported in Table 5.6, where mean and median values and confidence

intervals of the parameters over all stocks are reported. Reported estimates are

based on log prices in order to facilitate the interpretation (differences in log

prices equal returns). The first row reports average and median values of κ,

which measures the relationship between efficient value with discretionary trading.

On average kappas are significantly positive and lie in a 95% confidence interval

bounded below by 0.83 and above by 1.53. This shows that, a significant portion

5Internet Appendix provides more detail on this procedure.
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Table 5.5: FS Price Impacts
This table reports OLS panel regression estimates of equation(5.7), price impact
regressions for our sample of 2,581 stocks. The dependent variable is the stock return.
Panel A reports results for actual Net Imbalances (buying-selling) and panel B for the
Discretionary Residual Net Imbalances. All explanatory variables are normalized by
their standard deviation to facilitate economic interpretation and are winsorized at the
1% level in each tail. Reported t-statistics are computed using
Heteroscedasticity-Corrected Covariance Matrix (HCCME 1). ∗ p < 0.01; ∗∗ p < 0.05;
∗∗∗ p < 0.001.

Dependent Variable: Qtr. Returns

Panel A: Panel Regression - Actual Net Imbalance

# Obs Variable Estimate R2

158,480 Act. Net Imbalancesi,t 1.62∗∗∗ 0.02

(23.05)

Act. Net Imbalancesi,t-1 −0.24∗∗∗

(−3.40)

Panel B: Panel Regression - Discretionary Residual Net Imbalance

# Obs Variable Estimate R2

158,480 Disc. Res. Net Imbalancesi,t 1.80∗∗∗ 0.02

(26.69)

Disc. Res. Net Imbalancesi,t-1 −0.03

(−0.47)
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Table 5.6: Main Results: FS State Space Model (SSM)
This table presents estimation results from the Fire Sales state space model given in
equation 5.3. The total number of converged stocks were 2,581 which represent 72% of
our sample stocks. All reported statistics are cross-sectional means across stock
estimates. t-statistics for the means are reported in parenthesis. κ is the mean of
estimated correlations between stock permanent price innovations and discretionary
component of sales. β is the mean of estimated correlation between stock transitory
price innovation and actual sales and φ is the mean of estimated autoregressive
component in transitory price. % Noise is the size weighted mean of transitory price
contribution to total price variation; % Disc. contribution to information is size
weighted mean of discretionary sale contribution to permanent price variation; % Act.
contribution to noise is size weighted mean of actual sales contribution to transitory
price variation. 95% Confidence intervals for the means are presented in column 4 and
percent of estimated stock κ and β which are positive and statistically significant at
the 10% level are reported in column 5.

Variable Mean Median 95% CI

Disc. Res. Comp t (κ) 1.18 1.50 (0.83 1.53)

(6.61)

Act. Sales t (β) 1.62 0.61 (1.29 1.95)

(9.67)

AR(1) (φ) 0.30 0.48 (0.33 0.28)

(23.34)

% Noise 28.01 16.29 (26.92 29.09)

(50.59)

% Disc. contribution to information 21.68 7.39 (20.46 22.89)

(35.05)

% Act. contribution to noise 39.26 26.64 (37.90 40.62)

(56.67)
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Figure 5.1: Percentage Transitory Price - FS SSM
This figure plots transitory price as a percentage of observed price, winsorized at the
1% level in each tail.

of mutual fund trading during FS quarters is correlated with information. The

second row reports average and median values of β that measures the association

between actual sales and the noise term in the price equation (st). As shown, noise

in stock prices is significantly associated with mutual fund imbalances during FS-

quarters, as initially observed by Coval and Stafford [2007]. The variance of st

is a measure of transitory volatility, which we report in the row titled % Noise.

We scale this variable by total variance in prices. Based on the average stock,
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approximately 28% of stock price variation is noise-related. The median value of

noise is 16.3%, suggesting that measures of noise are right-skewed. The median

percentage of noise in stock prices during our sample is remarkably close

to the 10% lower bound obtained by Eckbo and Liu [1993] during the post-war

period using different methods.

We next examine the proportion of information-related variance explained by

the discretionary component of mutual fund sales.

κ2V ar(D̃isct)

σ2
η + κ2V ar(D̃isct)

(5.9)

On average, 21.7% of the variance in efficient value (mt) is related to the dis-

cretionary component of mutual fund sales during FS quarters. We also compute

a similar variance ratio for the relationship between actual imbalances and noise

and show that almost 40% of noise variance during FS-quarters is attributable to

mutual fund trading (% Act. contribution to noise). This result suggests that

more than 10% of stock price variance, in fire sale quarters, is related to mutual

fund trading. We conclude that mutual fund imbalances during FS-quarters are

an important determinant of stock price movements that are associated with both

information and noise induced by extreme flows.

We also examine changes in the proportion of noise in stock prices over time.

Figure 5.1 plots the ratio of the absolute value of noise to (log) price across stocks

in each year of the sample. As shown, the transitory component becomes more

important during periods of higher uncertainty about stock market valuations.

For example, the average noise-to-price ratio

(
st
pt

)
increased from less than 5%

in 1996 to over 9% in 2001 before declining to 5% at the end of 2006. This ratio
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reached its peak of 11% during the 2007-2008 financial crisis before reverting back

to an average of 7% during the post-crisis years.

Figure 5.2 plots average price and smoothed estimates of the permanent com-

ponent of returns averaged across firms in each quarter of our sample. We report

smoothed estimates of mt in order to incorporate past, current and future infor-

mation in our estimate of efficient value.6 As one might expect, the

Figure 5.2: Return decomposition - FS SSM
This figure plots cumulative permanent returns versus observed returns.

6Smoothed estimates are obtained by taking the expectation of mt conditional on past,
current and future information. See Durbin and Koopman [2012] for further details.
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5.4.2 Validation test: Over- and under-selling during fire sale quarters

time series of the permanent component of returns is smoother than the price-

based return series. We argue above that selling of stock by more than its pro-

portional weight in mutual funds’ portfolios sends a strong signal about efficient

value. Accordingly, in this section, we explore the implications of over-selling by

conducting an event study around FS-quarters characterized by either over- or

under-selling.

If we have solved the signal extraction problem correctly, we expect both

declines in price and efficient value during quarters in which there is over-selling.

Likewise we expect to observe increases in efficient value during event quarters

characterized by under-selling relative to what one would expect if mutual fund

managers sold stocks proportionately to what they owned in the previous quarter.

In both cases, the rationale is that over- and under-selling are associated with

information about the permanent component of returns mt.

We test this prediction by defining over-selling event quarters as quarters in

which the following condition holds.

∑
j

(∆Sharesi,j,t − Flowj,t × Sharesi,j,t−1) < 0 (5.10)

where the summation is over mutual funds j such that Flowj,t < −5%. An

analogous definition applies for under-selling quarters. We employ the smoothed

estimates of mt and st, which condition on all information, thus incorporating
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Table 5.7: Event Study - FS Model: Overselling versus Underselling
This table reports mean and t-statistics for observed returns, permanent price returns
and noise price returns around Overselling (Panel A) and Underselling (Panel B)
events. Event time t, denotes time of respective buying or selling. Overselling
(Underselling) is defined as change in fire sale net holdings corresponding to positive
(negative) discretionary residual component. Permanent returns and transitory
returns are computed from the fire sales state space model 5.3. ∗ p < 0.01;
∗∗ p < 0.05; ∗∗∗ p < 0.001

Panel A: Overselling

Event Time Obs. Ret.(∆pt) Perm. Ret(∆mt) Noise. Ret (∆st)

Mean T-Stat Mean T-Stat Mean T-Stat

t-8 0.61∗∗∗ 5.32 0.57 6.80 0.04 0.49

t-7 1.17∗∗∗ 10.66 0.88 10.95 0.28∗∗∗ 4.11

t-6 1.13∗∗∗ 10.33 0.77 9.52 0.36∗∗∗ 5.33

t-5 −0.12 −1.11 0.00 0.01 −0.12∗ −1.81

t-4 −0.04 −0.39 0.03 0.37 −0.07 −1.06

t-3 0.41∗∗∗ 3.85 0.21∗∗∗ 2.63 0.20∗∗∗ 3.06

t-2 −0.73∗∗∗ −6.89 −0.38∗∗∗ −4.83 −0.35∗∗∗ −5.23

t-1 −0.43∗∗∗ −4.10 −0.25∗∗∗ −3.23 −0.18∗∗∗ −2.71

t −1.63∗∗∗ −15.72 −1.06∗∗∗ −13.85 −0.57∗∗∗ −8.72

t+1 0.11 1.11 −0.08 −1.11 0.19∗∗∗ 3.11

t+2 −0.68∗∗∗ −6.39 −0.44∗∗∗ −5.58 −0.24∗∗∗ −3.64

t+3 0.30∗∗∗ 2.85 0.02 0.30 0.28∗∗∗ 4.24

t+4 0.13 1.27 −0.06 −0.75 0.19∗∗∗ 2.96

t+5 −0.52∗∗∗ −4.82 −0.38∗∗∗ −4.78 −0.14∗∗∗ −2.05

t+6 −0.39∗∗∗ −3.59 −0.40∗∗∗ −4.99 0.01 0.20

t+7 −0.24∗∗∗ −2.23 −0.14∗∗ −1.80 −0.10 −1.47

t+8 −0.45∗∗∗ −4.11 −0.35∗∗∗ −4.28 −0.10 −1.51

Panel B: Underselling

Time Obs. Ret.(∆pt) Perm. Ret(∆mt) Noise. Ret (∆st)

Mean T-Stat Mean T-Stat Mean T-Stat

t-8 0.96∗∗∗ 7.31 0.60∗∗∗ 6.13 0.36∗∗∗ 4.29

t-7 −0.71∗∗∗ −5.23 −0.25∗∗∗ −2.44 −0.46∗∗∗ −5.39

t-6 −0.37∗∗∗ −2.87 0.02 0.20 −0.39∗∗∗ −4.63

t-5 1.34∗∗∗ 10.25 0.95∗∗∗ 9.70 0.39∗∗∗ 4.62
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Table Continued

t-4 0.57∗∗∗ 4.37 0.42∗∗∗ 4.30 0.15∗ 1.77

t-3 0.05 0.41 0.12 1.25 −0.07 −0.82

t-2 0.69∗∗∗ 5.29 0.24∗∗∗ 2.52 0.44∗∗∗ 5.35

t-1 −1.80∗∗∗ −13.96 −1.11∗∗∗ −11.52 −0.69∗∗∗ −8.34

t 2.63∗∗∗ 21.01 1.44∗∗∗ 14.93 1.18∗∗∗ 14.86

t+1 −1.27∗∗∗ −9.62 −0.59∗∗∗ −5.92 −0.68∗∗∗ −8.26

t+2 −0.50∗∗∗ −3.96 −0.46∗∗∗ −4.83 −0.04 −0.45

t+3 −1.31∗∗∗ −10.10 −0.74∗∗∗ −7.64 −0.56∗∗∗ −6.97

t+4 −1.25∗∗∗ −9.53 −0.84∗∗∗ −8.45 −0.41∗∗∗ −5.10

t+5 −0.84∗∗∗ −6.42 −0.64∗∗∗ −6.44 −0.21∗∗∗ −2.53

t+6 0.32∗∗∗ 2.44 0.04 0.37 0.29∗∗∗ 3.51

t+7 −1.52∗∗∗ −11.45 −1.12∗∗∗ −11.23 −0.40∗∗∗ −4.81

t+8 0.15 1.13 −0.18∗∗∗ −1.80 0.33∗∗∗ 4.07

past, current and future information. As such, smoothed estimates of efficient

value benefit from peering into the future.

Table 5.7 reports mean values of the log change in price (∆pt), efficient value

(∆mt) and noise (∆st). The first column reports quarterly returns, and the sec-

ond and third columns report the percentage changes in the efficient and tran-

sitory (noise) components of price. As expected, both price and the transitory

component of price decline significantly during event quarters in which there is

over-selling. More importantly, the permanent component mt declines by more

than 1% during over-selling quarters. Consistent with the price impact regres-

sions reported earlier, there is no subsequent reversal in either price or efficient

value following the event quarter. Panel B reports results for under-selling quar-

ters, with the direction of changes in price, efficient value and noise being positive

in the event quarter. There is a slight reversal in price following under-selling

quarters. Figures 5.3 and 5.4 provide a visual
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Figure 5.3: Under-selling versus Over-selling and Observed Returns - FS
SSM This figure plots observed abnormal returns for over-selling versus under-selling
in the fire sale sample. We compute abnormal returns as observed returns minus the
CRSP value weighted return index. Over-selling (under-selling) of a stock occurs when
the sum of funds’ discretionary residual trading in a quarter is negative (positive).

representation of returns, efficient value and noise during and around over and

under selling quarters. Figure 5.3 shows the evolution of price around over-selling

and under-selling quarters. Reversals in price are of limited magnitude over quar-

ters t+1, t+2, etc. Figure 5.4 shows the impact of information on the (smoothed)

permanent component of prices following under and over selling quarters.
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Figure 5.4: Underselling versus Overselling Permanent Returns - FS SSM
This figure plots permanent returns from the FS SSM in event time. Over-selling
(under-selling) of a stock occurs when the sum of funds’ discretionary residual trading
in a quarter is negative (positive).

There is no reversal in the permanent component of price following under-selling

and over-selling quarters.

5.4.3 State space model estimates based on all mutual fund-quarters

Consistent with the literature on fire sales-induced price pressure, we have used

FS quarters to construct the two measures of mutual fund trading Disct and Actt

by setting the values of these two variables to zero in non FS-quarters. In this
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section we consider whether our estimates change when all mutual fund trading

quarters (i.e., including fund-quarters with Flowj,t > −5%) are used to estimate

the permanent and temporary components of returns. Broadening the set of

mutual fund calendar quarters that are included in the sample is appealing because

the additional information contained in mutual fund trading during

Table 5.8: Main Results: Net State Space Model (SSM)
This table presents estimation results from the state space model given in equation
5.3. The total number of converged stocks were 2,581 which represent 72% of our
sample stocks. All reported statistics are cross-sectional means across stock estimates.
t-statistics for the means are reported in parenthesis. κ is the mean of estimated
correlations between stock permanent price innovations and discretionary component
of sales. β is the mean of estimated correlation between stock transitory price
innovation and actual sales and φ is the mean of estimated autoregressive component
in transitory price. % Noise is the size weighted mean of transitory price contribution
to total price variation; % Disc contribution is size weighted mean of discretionary sale
contribution to permanent price variation; % Act contribution is size weighted mean
of actual net purchases contribution to transitory price variation. 95% Confidence
intervals for the means are presented in column 4 and percent of estimated stock κ
and β which are positive and statistically significant at the 10% level are reported in
column 5.

Variable Mean Median 95% CI

Disc residualt (κ) 1.41 1.50 (1.17 1.64)

(11.62)

Actt (β) 1.01 0.41 (0.78 1.24)

(8.72)

AR(1) (φ) 0.30 0.50 (0.32 0.28)

(29.57)

% Noise 27.59 13.92 (26.49 28.68)

(33.47)

% Disc. contribution to information 16.41 6.08 (15.45 17.37)

(35.06)

% Act. contribution to noise 33.61 19.72 (32.26 34.96)

(48.75)
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non FS-quarters can increase the precision of our estimates of the permanent

component of prices. However, doing so may come at the cost of loss of power to

detect trading-induced price pressures. The principal reason is that positive flows

do not commit mutual funds to trading to satisfy redemption requests within one

business day, as is the case with redemption requests in open-ended funds. This

factor allows funds to break down their purchases of a stock over time in order to

minimize the impact of their trades on price (see Simutin [2014] who argues these

funds have higher risk-adjusted returns). On the other hand, the impact on prices

of mutual-fund trading in response to flows may be muted in funds that are more

likely to internalize the negative externality of fire sales. As argued by Chernenko

and Sunderam [2020], these funds actively manage their cash holdings in order to

minimize the impact of flows on prices. Adding non-fire sale mutual fund quarters

and trading can incorporate additional information due to the trading by these

funds.

We suspect that trading during non FS-quarters is more likely to be associated

with information than during FS quarters. It follows that the variance ratio of

noise to price (% noise) should fall when using all mutual fund trading quarters, as

should the variance proportion of actual trades to total noise (% Act contribution).

We also expect the variance of discretionary trading to be lower in relation to

the variance of the permanent component of returns (% Disc contribution). While

this conjecture may seem counterintuitive as FS quarters generate more temporary

price pressure than non FS quarters, the ability of mutual fund managers to

reduce price impact by breaking up trading during non-FS quarters means that

uninformed investors will have more difficulty distinguishing discretionary trading

from non-discretionary trading to meet investor flows during non FS quarters. Put
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differently, discretionary trading Disct has lower power to detect information-

related trading during non FS quarters, which decreases the ratio of the variance

of the discretionary trading (Disc) to the permanent component variance.

Table 5.8 reports SSM estimates using all mutual fund trading quarters for

each stock in our sample. As shown, the noise proportion in price variance equals

27.6%, which is not significantly lower than during FS-quarter based estimates re-

ported in Table 5.6. However, the proportion of discretionary trading contribution

to permanent component variance is significantly lower. Moreover, the proportion

of variance of actual trading to noise variance is also lower, as one might expect if

non-FS quarters contain information-related trading. The net model also suggests

prices are somewhat less noisy than in the FS model and that mutual fund trading

contributes to less overall noise (11% versus only 9%).

5.4.4 Application: Investment-noise sensitivity

We next consider an application of our price decomposition in explaining corporate

investment. A firm’s stock price may inform managerial investment decisions if

managers and investors have different sets of information, as stock prices may

reflect information about investment opportunities that the manager would not

have otherwise known (i.e., the active informant hypothesis). If this is the case

and managers use prices to make real decisions, noisy prices have the potential

to distort corporate investment policy when managers incorrectly attribute noise-

based changes in price to information.7

Evidence on this question is mixed, with some studies showing a significant

7Morck, Shleifer, and Vishny [1990] describe several different hypotheses relating stock prices
to corporate investment.
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relation between stock prices and investment (Chen et al. [2007]), and others

showing no relation (Bakke and Whited [2010]). Answering this question is also

challenging because investment and stock prices may be related through informa-

tion that is known by investors and the firm’s managers (i.e. the passive informant

hypothesis).

We estimate investment-price sensitivity by decomposing log prices into their

permanent and transitory components through the SSM. Finding a significant

relation between the transitory component (i.e., noise) and investment would be

inconsistent with the passive informant hypothesis because the noise term (st) is,

by construction, impermanent and unrelated to information (see equation 5.3).

Because the permanent component (mt) is non-stationary, we normalize it by

subtracting the log of the book value of equity per share (CEQ). This variable

is equivalent the log of the efficient (or efficient value) equity price-to-book ratio.

This normalization also has the benefit of scaling log prices, which may differ

by large magnitudes across stocks (e.g., Berkshire Hathaway’s A-class shares are

priced above $100,000, much higher than the average price of other stocks). Since

we cannot perform an equivalent scaling for noise, we also standardize all variables

by subtracting the time-series mean and dividing by the within-firm standard

deviation.8 Both efficient value and noise estimates are based on the Kalman

smoother, meaning that we incorporate past, present and future information into

estimates of mt and st.

In order to measure the sensitivity of investment to noise and efficient value,

we estimate the following regression:

8We standardize using firm-specific mean and standard deviation instead of the pooled mean
and standard deviation, since cross-sectional differences in non-standardized noise are related
to difference in the dollar magnitudes of stock prices across firms.
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Table 5.9: Investment Sensitivity
This table reports OLS estimates of investment sensitivity panel regression specified in
equation 5.11. Our sample selection is outlined in section 5.3 and the sample time
period is 1990-2016. The dependent variable is investment of firm i defined as the
quarterly capital expenditures relative to lag property plant and equipment; in units
of percent. In column 1 we use the Fire Sales State Space Model (FS SSM) price
estimates and in column 2 we use the Net Imbalance State Space Model (Net SSM)
price estimates. SSM efficient firm value to replacement cost (SSM Eff.) is defined as
the SSM efficient price estimate (m̂t) net of natural logarithmic of the per share value
of common equity. We include firm’s debt to asset value as control for firm’s value of
debt. SSM Noise is the SSM estimate of transitory price (ŝt). In column 3 we replicate
table 2 of Dessaint et al. (2019) using our sample stocks and sample time period.
MFHS is unadjusted for returns as in Dessaint et al. (2019). Tobin Q residuals is a
proxy for efficient firm value to replacement cost and is estimated as residuals from
panel regression of Tobin’s Q on MFHS. CF/Assets is cash flow divided by assets. Size
is the natural logarithmic of assets. Peer variable are computed as equally weighted
peer averages. Peers are identified using similarity scores from Hoberg and Phillips
(2015). All regressions include firm fixed and time fixed effects at the quarter level.
All variables are winsorized at the 1% level in each tail and deflated to 2012 dollars.
All explanatory variables are normalized by their stock standard deviation to facilitate
economic interpretation and are winsorized at the 1% level in each tail. Reported
t-statistics are computed using Heteroscedasticity-Corrected Covariance Matrix
(HCCME 1) with clustering at the firm and time levels. ∗ p < 0.01; ∗∗ p < 0.05;
∗∗∗ p < 0.001.

Dependent Variable: Investment (CAPXt/PPEt−1)

Panel A: Own Sensitivity

FS SSM Net SSM Dessaint et al. (2019)

SSM Noise (ŝi,t−1) 0.33∗∗∗ 0.38∗∗∗

(11.82) (13.23)

SSM Eff.

(
m̂i,t−1 − log

( CEQi,t−1

sharesi,t−1

))
0.81∗∗∗ 0.78∗∗∗

(20.07) (19.46)

MFHSi,t-1 0.20∗∗∗

(6.22)

Tobin Q residuals (Q̃i,t−1) 1.22∗∗∗

(27.34)

CF/Assetsi,t-1 0.28∗∗∗ 0.28∗∗∗ 0.28∗∗∗

(8.05) (8.19) (8.15)

Sizei,t-1 0.07 0.06 0.00

(1.41) (1.30) (0.07)
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Table Continued

Debt/Assetsi,t-1 −0.68∗∗∗ −0.68∗∗∗

(−18.25) (−18.25)

# Stocks 2, 341 2, 341 2, 341

# Obs 107, 204 107, 204 107, 470

R2 0.30 0.28 0.28

Panel B: Own and Peer Sensitivity

FS SSM Net SSM Dessaint et al. (2019)

SSM Noise (ŝi,t−1) 0.33∗∗∗ 0.39∗∗∗

(9.83) (11.55)

SSM Eff.

(
m̂i,t−1 − log

( CEQi,t−1

sharesi,t−1

))
0.75∗∗∗ 0.74∗∗∗

(15.30) (14.59)

MFHSi,t-1 0.10∗∗

(2.39)

Tobin Q residuals (Q̃i,t−1) 1.19∗∗∗

(21.33)

CF/Assetsi,t-1 0.28∗∗∗ 0.30∗∗∗ 0.28∗∗∗

(6.75) (7.52) (7.04)

Sizei,t-1 0.13∗∗ 0.02 0.07

(2.43) (0.45) (1.42)

Debt/Assetsi,t-1 −0.66∗∗ −0.60∗∗∗

(−15.20) (−13.22)

Peer SSM Noise (ŝ−i,t−1) 0.12∗∗∗ 0.13∗∗∗

(3.25) (3.44)

Peer SSM Eff.

(
m̂−i,t−1 − log

( CEQ−i,t−1

shares−i,t−1

))
0.13∗∗∗ 0.10∗∗

(3.22) (2.09)

Peer MFHS-i,t-1 0.08∗

(1.78)

Peer Tobin Q residuals (Q̃−i,t−1) 0.06

(1.46)

Peer CF/Assets-i,t-1 0.02 0.03 0.06∗

(0.60) (0.90) (1.77)

Peer Size-i,t-1 −0.01 −0.00 0.02

(−0.39) (−0.02) (0.53)
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Table 8 Continued

Peer Inv. (
CAPX−i,t−1

PPE−i,t−2
) 0.27∗∗∗ 0.28∗∗∗ 0.28∗∗∗

(7.60) (7.85) (7.68)

Peer Debt/Assets-i,t-1 −0.09∗∗ −0.09∗∗

(−2.30) (−2.18)

# Stocks 2, 063 2, 063 2, 063

# Obs 74, 873 74, 873 74, 873

R2 0.30 0.29 0.29

CAPXi,t

PPENTi,t−1

= αi + β1ŝi,t−1 + β2

(
m̂i,t−1 − log

(
CEQi,t−1

sharesi,t−1

))
+ β3

CF

Assetsi,t−1

+ β4Sizei,t−1 + β5
Debt

Assetsi,t−1

+ δt + εi,t

(5.11)

where αi is a firm fixed effect and δt is a fiscal quarter fixed effect. The dependent

variable, investment, is measured as the ratio of capital expenditures to (lagged)

net property, plant and equipment. Control variables include the ratio of cash-flow

to assets (CF/Assets), the log of total assets (Size), and financial leverage mea-

sured as the ratio of total book value of debt to total assets. As described above,

we measure all independent variables in units of within-firm standard deviation

to facilitate economic interpretation.

Table 5.9 reports results of this test. As shown in Panel A, investment is pos-

itively and significantly related to both components of stock prices (mt and st).

The estimates suggest that a one standard deviation increase in the firm’s noise

increases quarterly investment (as a fraction of PP&E) by 0.33% (1.31% annu-

ally). In comparison, a one standard deviation increase in the log ratio of efficient
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price to book value

(
m̂i,t−1 − log

CEQi,t−1

sharesi,t−1

)
increases quarterly investment by

0.81% (median quarterly investment scaled by PP&E is 4.9%). We obtain slightly

greater investment-noise sensitivities when including all mutual fund-quarters be-

yond fire sale quarters (the net sales model described in Section 5.4.3). As shown

in column (2), a one standard deviation in noise increases quarterly investment

by 0.38% of PP&E.

For purposes of comparison with previous literature, we report a similar re-

gression in which noise is proxied by mutual fund hypothetical sales (MFHS),

normalized so that it is in units of standard deviation. This variable, used in Des-

saint et al. [2019] and Lou and Wang [2018] to proxy for noise in stock prices, is

constructed in similar fashion to Actt except that shares are multiplied by time t-1

share prices and dollar volume over quarter t is used in the denominator. MFHS

is defined as follows.

MFHSi,t =
∑
j

(FLOWj,t × Sharesi,j,t−1)× Pricei,t−1/(Pricei,t × V olumei,t).

(5.12)

where the summation is over mutual funds j experiencing quarterly flows less

than -5%. As shown, investment is also sensitive to this measure of non-efficient

price pressure, but the economic significance is smaller with one standard devia-

tion increasing investment by 0.20% of PP&E.

The sensitivity of investment to noise reported in Panel A is consistent with

two interpretations. Stock prices may aggregate information that would otherwise

not be available to the manager (the active informant hypothesis), with managers
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learning from stock prices and (incorrectly) inferring information from the transi-

tory component of stock price returns. Alternatively, investment may be sensitive

to price because access to equity financing required for investment is dependent

on favorable stock prices (the financing hypothesis).9

One solution to disentangling these two effects is to measure the sensitivity

of investment to noise in peer prices. Including peer stock prices controlling for

the firm’s own stock price allows a clean test of the active informant hypothesis

as financing cost effects are captured by the correlation between investment and

the firm’s own stock price. Foucault and Fresard [2014] and Dessaint et al. [2019]

use this strategy and estimate the sensitivity of investment to peer stock prices

and peer noise, respectively. These studies find a significant relation between

investment, peer stock prices and peer noise. We adopt a similar testing framework

except that we measure peer noise as the average of the transitory component st

across the firm’s peers. We identify the set of company peers using the similarity

measure developed in Hoberg and Phillips [2016] based on a textual analysis of

company 10-K forms. The similarity measure compares firms’ product description

and we group firms based on this measure. The peer noise and peer efficient

value consist of an equally weighted average of each measure across firms in each

industry grouping.10

Panel B reports estimation results with peer effects. As shown, firm investment

is sensitive to noise in peer stock prices. As one might expect, the economic

magnitude is smaller than the effect of the firm’s own noise, with a one standard

deviation increase in peer noise increasing investment by 0.12%, compared with

9For evidence on the financing hypothesis, see Baker, Stein, and Wurgler [2003].
10We obtain similar results using weighted averages with weights based on product similarity

scores.
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0.33% for the firm’s own noise in stock price. We obtain similar results using all

mutual fund-quarter sales instead of only sales in FS-quarters to identify noise

(column 2).

Interestingly, firm managers are equally sensitive to changes in the permanent

and transitory components of peer prices. The coefficients on peer noise and peer

efficient price are both approximately 0.12-0.13 and statistically indistinguishable.

This finding suggests that managers cannot distinguish between noise and infor-

mation in peer prices, yet use these prices (along with their firm’s prices) to inform

their investment decisions. The last column replicates the Dessaint et al. [2019]

regression with peer effects using PeerMFHS, equal to the average of MFHS

over peer firms, as a measure of noise in stock prices. Consistent with their re-

sults, this measure of noise in peer stock prices is (weakly significantly) related to

investment.

5.4.5 Public or Private Information

Another solution to disentangling whether or not managers possess private in-

formation about efficient value is to decompose information into a component

knowable at time t (public information) and information revealed between time

t and time τ > t (private information). To do this we exploit the Kalman fil-

ter that provides an estimate of efficient value (mt) and the difference between

this estimate and the estimate generated by the Kalman smoother that includes

information up until time τ .

We estimate a similar investment-sensitivity model as before, except that we

split efficient value and noise into public (filtered) and private (unanticipated)
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Table 5.10: Investment Sensitivity - Filtered versus Smooth estimates
This table reports OLS estimates of investment sensitivity panel regression specified in
equation 5.11. Our sample selection is outlined in section 5.3 and the sample time
period is 1990-2016. The dependent variable is investment of firm i defined as the
quarterly capital expenditures relative to lag property plant and equipment; in units
of percent. In column 1 we use the Fire Sales State Space Model (FS SSM) price
estimates and in column 2 we use the Net Imbalance State Space Model (Net SSM)
price estimates. Filtered estimates are conditional permanent and noise price
estimates based on information until time t. Smooth estimates are conditional
permanent and noise price estimates based on all available; i.e. past, present, and
future. Filtered firm value to replacement cost (Filtered SSM Eff.) is defined as the
SSM filtered efficient price estimate (m̂F

t ) net of natural logarithmic of the per share
value of common equity. Smooth firm value to replacement cost (SSM Eff.) is defined
as the SSM smooth efficient price estimate (m̂t) net of natural logarithmic of the per
share value of common equity. Unanticipated SSM Eff. (SSM Eff - Filtered SSM Eff)
is the difference between firm value to replacement cost computed using filtered
permanent price estimate and smooth price estimate. SSM filtered noise is the SSM
estimate of filtered transitory price (ŝFt ). SSM Noise is the SSM estimate of smooth
transitory price (ŝt). Unanticipated SSM Noise (ŝt − ŝFt ) is the difference between the
filtered and smooth noise price estimate. CF/Assets is cash flow divided by assets.
Size is the natural logarithmic of assets. We include firm’s debt to asset value as
control for firm’s value of debt. All regressions include firm fixed and time fixed effects
at the quarter level. All variables are winsorized at the 1% level in each tail and
deflated to 2012 dollars. All explanatory variables are normalized by their stock
standard deviation to facilitate economic interpretation and are winsorized at the 1%
level in each tail. Reported t-statistics are computed using
Heteroscedasticity-Corrected Covariance Matrix (HCCME 1) with clustering at the
firm and time levels. ∗ p < 0.01; ∗∗ p < 0.05; ∗∗∗ p < 0.001.

Dependent Variable: Investment (CAPXt/PPEt−1)

FS SSM Net SSM

Filtered SSM Noise (ŝFi,t−1) 0.30∗∗∗ 0.36∗∗∗

(10.53) (12.46)

Unanticipated SSM Noise (ŝi,t−1 − ŝFi,t−1) 0.15∗∗∗ 0.14∗∗∗

(5.85) (5.16)

Filtered SSM Eff.

(
m̂F
i,t−1 − log

( CEQi,t−1

sharesi,t−1

))
0.82∗∗∗ 0.78∗∗∗

(19.95) (19.07)

Unanticipated SSM Eff. (SSM Eff - Filtered SSM Eff.) 0.02 0.01

(0.99) (0.56)

CF/Assetsi,t-1 0.26∗∗∗ 0.27∗∗∗

(7.70)
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Table Continued

(7.83)

Sizei,t-1 0.05 0.04

(0.97) (0.88)

Debt/Assetsi,t-1 −0.67∗∗∗ −0.67∗∗∗

(−18.16) (−18.14)

# Stocks 2, 341 2, 341

# Obs 107, 204 107, 204

R2 0.28 0.28

components. A positive coefficient on the unanticipated component of noise sug-

gests that managers make investment decisions using a component of price that

is revealed as noise in the future. A positive coefficient on the unanticipated com-

ponent of efficient value would suggest that managers make investment decisions

using private information about efficient value. We report the coefficients in Table

5.10.

We find evidence that managers’ investment decisions are correlated with

unanticipated noise, suggesting that they do not possess private information. The

coefficient on unanticipated noise is 0.15 (0.14) and statistically significant for the

fire sales model (net model). Managers may assume that they are making decisions

based on information or they may realize that they are making decisions based

on noise that are advantageous. For instance, they may be exploiting temporary

increases in the transitory component of prices to acquire inexpensive funding and

invest in projects that nay otherwise not be funded.

Our results also suggest that managers do not possess or act upon information

about future efficient value, not already included in prices at time t. The coeffi-

cients on unanticipated information are close to zero and statistically insignificant.
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Table 5.11: SSM Cross Sectional Regression This table reports OLS results
from a cross-sectional regression of state space model (SSM) estimates on firm
fundamentals. In regression (1) and (2) the dependent variable is the estimated SSM
coefficient κ, on discretionary sales (panel A) and discretionary net purchases (panel
B). In regression (3) and (4) the dependent variables is percentage estimated noise
from the fire sales model (panel A) and net imbalance model (panel B). Log Size is the
natural logarithmic of average assets, PPENT/Assets is the average of the ratio of
property plant and equipment relative to assets (asset tangibility), cash flow volatility
to average cash flow (CF Vol/Avg. CF) is the standard deviation of cash flow to
average cash flow, CF to Assets is the average of the ratio of cash flow to assets,
Investment is the ratio of capital expenditures to lagged property plant and
equipment, R&D to assets (RD Exp. to Assets) is the average of the ratio of R&D
expenditures to assets and sales growth is the average of quarterly percent change in
net sales. Averages correspond to time-series averages taken firm-by-firm. All
variables are winsorized at the 1% level in each tail and deflated to 2012 dollar values.
All ratio are expressed in units of percent. ∗ p < 0.01; ∗∗ p < 0.05; ∗∗∗ p < 0.001

Panel A : Fire Sales

Dependent Variable: Disc. (κ) % Noise

Reg. 1 Reg. 2 Reg. 3 Reg. 4

Intercept −2.29∗∗∗ −2.35∗∗∗ 40.67∗∗∗ 37.50∗∗∗

(−4.00) (−2.91) (18.53) (11.90)

Log Size 0.60∗∗∗ 0.54∗∗∗ −1.12∗∗∗ −1.35∗∗∗

(6.73) (5.34) (−3.30) (−3.44)

Sales Growth 0.05 0.48∗∗

(0.88) (2.27)

PPENT/Assets −3.13∗∗∗ −2.07

(−3.71) (−0.63)

CF/Assets 0.28∗∗∗ 1.10∗∗∗

(5.01) (5.10)

CF Vol/Avg. CF 0.05 0.03

(1.17) (0.21)

Investment 0.08∗∗ 0.24∗

(2.14) (1.72)

RD Exp. to Assets 0.17∗∗ 0.97∗∗∗

(1.98) (2.91)
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Table Continued

Missing RD Exp Indicator 0.10 −2.00

(0.24) (−1.28)

R2 0.02 0.04 0.00 0.02

#Stocks 2, 581.00 2, 405.00 2, 581.00 2, 495.00

Panel B : Net Imbalance

Dependent Variable: Disc. (κ) % Noise

Reg. 1 Reg. 2 Reg. 3 Reg. 4

Intercept −3.18∗∗∗ −2.22∗∗ 42.12∗∗∗ 37.42∗∗∗

(−4.49) (−2.24) (19.38) (11.98)

Log Size 0.70∗∗∗ 0.55∗∗∗ −1.20∗∗∗ −1.15∗∗∗

(6.43) (4.45) (−3.56) (−2.97)

Sales Growth 0.02 0.61∗∗∗

(0.38) (2.96)

PPENT/Assets −3.62∗∗∗ −1.72

(−3.49) (−0.53)

CF/Assets 0.43∗∗∗ 0.82∗∗∗

(6.22) (3.79)

CF Vol/Avg. CF 0.04 0.13

(0.77) (0.85)

Investment 0.04 0.20

(0.82) (1.46)

RD Exp. to Assets 0.26∗∗ 0.99∗∗∗

(2.48) (3.00)

Missing RD Exp Indicator −0.65∗∗ −1.32

(−1.30) (−0.85)

R2 0.02 0.04 0.00 0.02

#Stocks 2, 581.00 2, 495.00 2, 581.00 2, 495.00

The overall evidence suggests that firm-managers do not possess private informa-

tion about efficient value or noise.
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5.4.6 Cross-sectional tests

Stocks issued by firms can have characteristics that make them more likely to be

associated with information-related trading than trading deriving from liquidity

demand. For example, the market liquidity of larger firms makes these firms’ stock

more likely to be selected for sale by managers who have (negative) information

about efficient value. Large firms are less likely to suffer from a fire sale discount

during a FS-quarter. Stock prices of larger firms may also be more informationally

efficient in the sense that the variance of mt conditional on price and information is

low (Brunnermeier, Markus, and Brunnermeier [2001]). Begenau, Farboodi, and

Veldkamp [2018] provide supporting evidence for this assertion. They argue that

because large firms disclose more information for the market to process, these

firms have higher price-informativeness and lower costs of capital than smaller

firms.

Another feature determining the association between information and trading

is the discretionary component of total firm investment, measured using research

and development expenses (R&D) and investment through capital expenditures

(Investment). Changes in R&D in firms with a large proportion of R&D to to-

tal investment are likely to be associated with information about efficient value

(Phillips and Zhdanov [2013]). For similar reasons, we also expect these features

i.e., size, CAPX and R&D) to be associated with the proportion of stock price

variance that is attributable to noise.

Table 5.11 reports cross-sectional regressions of κ and the variance propor-

tion of noise on firm size (in columns 2 and 4), and firm size, investment, R&D
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and other measures of firm fundamentals (in columns 3 and 5). Higher correla-

tions between κ and firm fundamentals indicates that stock trading in firms with

these features is more likely to be associated with information than with liquidity

demand. The coefficient on firm size is positive and significant across all four

specifications suggesting that it is robust to including additional cross-sectional

variables. As shown, with the exception of profitability (CF/Assets), the asso-

ciation between κ and firm fundamentals are in the direction one might expect.

Firms with more tangible assets (PPENT/Assets) have lower κ’s, while larger

firms and firms with higher R&D relative to assets have higher κ’s. Firms with

greater cash flows from operations typically have lower information asymmetry be-

tween insiders and outsiders, which is predictive of a negative correlation between

κ and operating cash flows. We find the opposite result, suggesting that trading

in high-CF firms is more likely to be information-driven than liquidity-demand

driven.

The last column reports associations between firm efficients and the proportion

of price variance attributable to noise. Consistent with intuition, the variance pro-

portion declines with size and increases with R&D and investment. Firms with

greater average sales growth (a non-price based measure of investment oppor-

tunities) have a greater proportion of noise variance, as do firms with greater

operating cash flows. This last result, while unexpected, is consistent with the

positive relation between cash flows and information-related trading observed in

Reg. (2).
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5.5 Conclusion

We propose a parsimonious model that decomposes stock prices into a transitory

(noise) and permanent component (efficient value). The model solves a signal

extraction problem in which uninformed investors update their conditional expec-

tations about efficient value based on observed prices and mutual fund trading.

We use the model to measure the information content of mutual fund trading

during fire sale quarters, defined as stock-quarters in which one or more mutual

funds holding the stock experiences outflows of 5% of AUM or more. Our price

decomposition indicates that 28% of the variance in stock prices is attributable

to noise.

We apply our decomposition to measure the sensitivity of corporate investment

to noise and efficient value in the firm’s own and peer stock prices. We find that

firms respond significantly to noise in their own stock prices, as well as their peers’

stock prices, but to a lesser extent. Our results show a stronger reaction to noise

in own stock prices than documented in other studies, consistent with theories

of learning from stock prices. We also apply our methodology to a cross-asset

learning setting and confirm previous results. In a novel test we align manager

decision making with public information in prices at decision time. We show that

they do not possess private information about future changes in efficient value. In

fact, we show that their investment decisions are positively correlated with future

noise.

The price decomposition we propose can be applied to other corporate poli-

cies such as executive compensation. A fruitful avenue for future research is to

apply the price decomposition to the terms of executive compensation contracts..
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Compensation for noise may have implications for the design of certain aspects of

executive compensation contracts, such as “clawback” clauses in these contracts

designed to limit excessive pay following stock-price reversals. Our methodology

can also be applied in an asset pricing context. For instance, using our estimates

of the noise component of prices, researchers can directly test the relationship

between noise, or the component of noise related to trading (illiquidity), and

expected returns.
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Appendix A: Identifying assumptions for estimation of structural

model of stock prices

5.6 Appendix - Inventory Control

The state space model representation is based on Ho and Stoll [1981] and Hen-

dershott and Menkveld [2014] who characterize the intermediary’s problem as a

stochastic optimal linear regulator problem. The intermediary holds inventory

and supplies liquidity to investors. We assume that the intermediary can either

be long or short inventory and prefers a net zero position. As he is risk averse, he

will bid up prices in response to sell orders, which increase his inventory, and mark

down prices in response to buy orders, which decrease his inventory. We assume

a dealer market in which all market orders pass through a dealer (i.e. there is no

limit-order book).

The solution to the stochastic control problem yields the following structural

model of prices.

pt = mt + st

mt = mt−1 + κ(∆It − Et−1[∆It]) + ηt

st = φst−1 + β∆It + εt

(5.13)

where ∆It equals the dealer’s inventory imbalance, i.e, buy orders minus sell

orders. The error terms ηt and εt are assumed to be independent, but we relax this

assumption below. Here, ∆It−Et−1[∆It] represents the information conveyed by

the unexpected component of trade and ηt represents non-trade news that arrives

between time t and t-1. The unexpected component conveys information while
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also increasing or deceasing the dealer’s inventory. The variances of ηt and εt

can be interpreted as the impact of information and market frictions on security

prices. Changes attributed to information have a permanent effect on prices while

changes attributed to pricing errors have a temporary effect on prices.

One of the main features of such a model is that changes in inventory convey

information and cause prices to deviate from fundamental value. This can be seen

from the fact that the transitory component st is correlated with the trading-

related component of information (∆It − Et−1[∆It]) because ∆It is common to

both. Order arrivals convey information and cause prices to deviate from true

values (George and Hwang 2001).

5.6.1 Assumptions required for estimation

The following discusses how to estimate such a model when only a portion of

changes in dealer inventory It are observed. Based on the assumption that all

trades pass through a dealer (no limit-order book assumption), the dealer inven-

tory follows the following transition equation:

It = It−1 − qs,t + qb,t (5.14)

where qs,t and qb,t are investor buy and sell orders respectively. In the empir-

ical implementation, we only observe a portion of trades that change the dealer

inventory. Suppose that buy and sell orders are comprised of two components,

one observed and indexed by one, and a correlated but unobserved component,

indexed by two. Then the change in inventory is
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∆It = qb,t − qs,t = q1,b,t − qs,1,t + q2,b,t − qs,2,t (5.15)

So that inventory changes have two components, one observed and one unob-

served.

∆It = x1,t + x2,t (5.16)

The state space model cannot be estimated without making some assumptions

about the correlation between the observed component, x1,t, and the unobserved

component x2,t of inventory changes. Suppose that the two components are lin-

early related through access to a common signal about fundamental value.

x2,t = γx1,t + ut (5.17)

where the error term ut is orthogonal to x1,t and mean zero conditional on

time t-1 information. The unconditional variance of this error term is σ2
u. The

error term represents additional information about fundamental value observed

by investor 2 but not by investor 1. Denoting (∆Xt − Et−1[∆Xt]) as ∆X̃t,

x̃2,t = γx̃1t + ut (5.18)

∆Ĩt = x̃1t + x̃2t

= (1 + γ)x̃1,t + ut

(5.19)
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∆It = x1t + x2t

= (1 + γ)x1,t + ut

(5.20)

Rewriting the state space model in terms of x1,t and x2,t we obtain

pt = mt + st

mt = mt−1 + κ(x̃1t + x̃2t) + ηt

st = φst−1 + β(x1,t + x2,t) + εt

(5.21)

which is equivalent to,

pt = mt + st

mt = mt−1 + κ
′
(x̃1t) + η

′

t

st = φst−1 + β
′
∆(x1,t) + ε

′

t

(5.22)

where κ
′
= (1 + γ)κ, β

′
= (1 + γ)β and,

η
′

t = ηt + κut

ε
′

t = εt + βut

(5.23)

Therefore having a correlated unobserved transaction component x2,t implies

that the error terms η
′

and ε
′

in the state space mode are correlated with corre-

lation coefficient κβσ2
u. The correlated unobserved component of trading adds an

extra parameter to the state space model that is proportional to the variance of

the information observed by investor 2 but not investor 1.11

11We thank Ioanid Rosu for suggesting this formulation.
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5.6.2 Special case: investors have the same information set but differ

in scale

A more restrictive specification would be to assume that investor one and investor

two have the same information set, but trade in different quantities. This implies

that trades of the two investors are proportional.

Suppose instead that investor two observes the same signal as investor one, but

can trade in either greater or smaller scale, for example with the use of leverage.

Then,

x2,t = γx1,t (5.24)

and

pt = mt + st

mt = mt−1 + κ
′
(x̃1t) + ηt

st = φst−1 + β
′
∆(x1,t) + εt

(5.25)

where κ
′
= (1+γ)κ, β

′
= (1+γ)β. In this special case we can assume that the

non-trade related innnovations ηt and εt in the permanent and transitory com-

ponents are independent. In the empirical implementation, x1,t is measured with

mutual fund net sales (Actt) and (It−Et−1[It]) is measured with the discretionary

component of mutual funds sales (Disct).



5.7. APPENDIX - SSM DERIVATION 168

Internet Appendix: Derivation of state space model

5.7 Appendix - SSM Derivation

5.7.1 Notation

Notation:

� j: denotes fund.

� i: denotes stock.

� t: denotes quarter.

� Hypi,t:
∑

j Hypi,j,t.

� Acti,t:
∑

j Acti,j,t.

� Disci,t: Acti,t - Hypi,t.

Theorem: Through out the recursions, we will extensively use the following

theorem. If X ∼ N (µX , σX) and Y ∼ N (µY , σY ); and cov(X,Y)=σ2
X,Y then if

follows:

uX|Y = µX +
σ2
X,Y

σ2
Y

(Y − µY ) (5.26)

σ2
X|Y = σ2

X −
σ2
X,Y

σ2
Y

(5.27)
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5.7.2 Model Setup

SSM

For each Permno i=1,....I:

Observed Logarithmic Price

pi,t = mi,t + si,t (5.28)

Unobserved Efficient Price

mt = mi,t + η∗i,t

η∗i,t = κD̃isci,t + ηi,t

(5.29)

Unobserved Transitory Price

si,t = φsi,t−1 + ε∗i,t

ε∗i,t = βActi,t + εi,t

(5.30)

Where ηi,t ∼ N (0, σi,η) and εi,t ∼ N (0, σi,ε)

Discretionary Net Purchases - Panel Regression

Di,t = ξi,t + γi + α1Sizei,t−1 + α2Spreadsi,t−1 + α2Shrouti,t−1 + α3Volatilityi,t−1 + D̃isci,t

(5.31)

SSM Prediction Errors, νi,t

νi,t = pi,t −mi,t|t−1 − κD̃isci,t − φsi,t|t−1 − βActi,t (5.32)

SSM Updating Steps (Updating Recursions)
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Starting from diffuse initial values mi,1|0, P
m,ν
i,1|0 and si,1|0, P

s,ν
i,1|0

mt|t = E[mi,t|pi,t]

= E[mi,t|pi,t−1, νi,t]

= mi,t|t−1 + Pm,ν
i,t|t−1F

−1
i,t νi,t

(5.33)

si,t|t = E[si,t|pi,t]

= E[si,t|pi,t−1, νi,t]

= si,t|t−1 + P s,ν
i,t|t−1F

−1
i,t νi,t

(5.34)

Since mi,t is a random walk:

mi,t+1|t = E[mi,t|pi,t]

= mt|t

(5.35)

Since si,t is follows an autoregressive process:

si,t+1|t = E[si,t|pi,t]

= φst|t

(5.36)

Pm,ν
i,t|t = Pm,ν

i,t|t−1 − P
m,ν
i,t|t−1F

−1
i,t P

m,ν
i,t|t−1

(5.37)

P s,ν
i,t|t = P s,ν

i,t|t−1 − P
s,ν
i,t|t−1F

−1
i,t P

s,ν
i,t|t

(5.38)
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Pm,ν
i,t+1|t = Pm,ν

i,t|t + σ2
i,η

(5.39)

P s,ν
i,t+1|t = P s,ν

i,t|t + σ2
i,ε

(5.40)

Fi,t = P s,ν
i,t|t−1 + P s,ν

i,t|t−1 + σi,η + σ2
i,ε

(5.41)

Where the recursions Pm,ν
i,t|t−1 = cov(mt|t−1, νi,t), P

s,ν
i,t|t−1 = cov(st|t−1, νi,t) and Fi,t =

var(νi,t).

SSM Smoothing Steps (Smoothing Recursions)

m̂i,t = E(mi,t|pi,T )

= E(mi,t|pi,t−1, νt:T )

= mt|t−1 +
T∑
j=t

Cov(mt|t−1, νi,t)F
−1
i,t νi,t

= mt|t−1 + Pm,ν
t|t−1F

−1
i,t νi,t + Pm,ν

t|t−1L
m
i,tF

−1
i,t+1νi,t+1 + · · ·+ Pm,ν

t|t−1L
m
i,t...L

m
i,T−1F

−1
i,t νi,t

(5.42)
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ŝi,t = E(si,t|pi,T )

= E(si,t|pi,t−1, νt:T )

= st|t−1 +
T∑
j=t

Cov(st|t−1, νi,t)F
−1
i,t νi,t

= st|t−1 + P s,ν
t|t−1F

−1
i,t νi,t + P s,ν

t|t−1L
s
i,tF

−1
i,t+1νi,t+1 + · · ·+ P s,ν

t|t−1L
s
i,t...L

s
i,T−1F

−1
i,t νi,t

(5.43)

Where Lmi,t = 1− Pm,ν
t|t−1F

−1
i,t and Lsi,t = φ(1− P s,ν

t|t−1F
−1
i,t )

V̂ m
i,t = Var(mi,t|pi,T )

= Var(mi,t|pi,t−1, νt:T )

= Pm,ν
i,t|t−1 − P

m,ν
i,t|t−1F

−1
i,t P

m,ν
i,t|t−1 − P

m,ν
i,t|t−1L

m
i,tF

−1
i,t L

m
i,tP

m,ν
i,t|t−1 − · · · − P

m,ν
i,t|t−1L

m
i,t . . .

Lmi,T−1F
−1
i,t L

m
i,T−1 . . . L

m
i,tP

m,ν
i,t|t−1

(5.44)

V̂ s
i,t = Var(si,t|pi,T )

= Var(si,t|pi,t−1, νt:T )

= P s,ν
i,t|t−1 − P

s,ν
i,t|t−1F

−1
i,t|t−1P

s,ν
i,t − P

s,ν
i,t|t−1L

s
i,tF

−1
i,t L

s
i,tP

s,ν
i,t|t−1 − · · · − P

s,ν
i,t|t−1L

s
i,t . . .

Lsi,T−1F
−1
i,t L

s
i,T−1 . . . L

s
i,tP

s,ν
i,t|t−1

(5.45)
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V̂ s
i,t,t+1 = Cov(si,t, si,t−1|pi,T )

= Cov(si,t, si,t−1|pi,t−1, νt:T )

= P s
t|t−1L

s
i,t

(
1− (F−1

i,t+1 + Lsi,t+1F
−1
t+2L

s
i,t+1 + · · ·+ Lsi,t+1 . . . Li,T−1F

−1
i,t L

s
i,T−1 . . . Li,t+1)

P s,ν
i,t|t−1

)
(5.46)

V̂ m
i,t,t+1 = Cov(mi,t,mi,t−1|pi,T )

= Cov(mi,t, si,t−1|pi,t−1, νt:T )

= Pm
t|t−1L

m
i,t

(
1− (F−1

i,t+1 + Lmi,t+1F
−1
t+2L

m
i,t+1 + · · ·+ Lmi,t+1 . . . Li,T−1F

−1
i,t L

m
i,T−1 . . . Li,t+1)

Pm,ν
i,t|t−1

)
(5.47)

Where Lmi,t = 1− Pm,ν
t|t−1F

−1
i,t and Lsi,t = φ(1− P s,ν

t|t−1F
−1
i,t )

5.7.3 Likelihood

Recall from Section 2:

νi,t = pi,t −mi,t|t−1 − κD̃isci,t − φsi,t|t−1 − βActi,t (5.48)

It follows from the SSM model: νi,t ∼ N (0, Fi,t).

Therefore, the log-likelihood function is as follows:

Li ∝ −
1

2

T∑
t=1

(
νi,tF

−1
i,t νi,t

)
(5.49)
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Note that νi,t is a function of κi,βi and φi; and Fi,t is an implicit function of σi,η

and σi,ε. It follows that the maximization problem is as follows:

max
κi,βi,σi,η ,σi,ε

{
1

2

T∑
t=1

(
νi,tF

−1
i,t νi,t

)}
(5.50)

5.7.4 Maximization using EM Algorithm

We use the expectation–maximization (EM) algorithm is used to obtain starting

values of κi, βi, σi,η and σi,ε . We initially set φ = 0 so that the model is linear

and the EM algorithm can be conveniently applied. From the likelihood function

the first order conditions (FOC) are as follows:

FOC κi:

κ̂i =

∑T−1
t=1 ∆mi,t+1|tD̃isci,t+1∑T−1

t=1 D̃isc
2

i,t+1

(5.51)

FOC βi:

β̂i =

∑T−1
t=0 si,t+1|tActi,t+1∑T

t=1Act
2
i,t+1

(5.52)

FOC σ2
η,i:

σ̂i,η
2 =

1

T − 1

T−1∑
t=1

(
mt+1|t −mt|t−1 − κD̃isci,t+1

)2
(5.53)

FOC σ2
ε,i:

σ̂i,ε
2 =

1

T − 1

T∑
t=1

(
st+1|t − βActi,t+1

)2
(5.54)

The expectation and maximization steps can be combined by taking expectations

in (23)-(26) and using smoothing recursions (17)-(20).
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κ̂EMi =

∑T−1
t=1 ∆m̂i,t+1D̃isci,t∑T−1

t=1 D̃isc
2

i,t

(5.55)

β̂EMi =

∑T−1
t=0 ŝi,t+1Acti,t∑T−1
t=1 Act

2
i,t+1

(5.56)

σ̂EMi,η =
1

T − 1

T−1∑
t=1

(
(m̂i,t+1 − m̂i,t − κ̂EMi D̃isci,t+1)2 + V̂ m

i,t+1 + V̂ m
i,t − 2V̂ m

i,t+1,t

)
(5.57)

σ̂EMi,ε =
1

T − 1

T−1∑
t=1

(
(ŝi,t − β̂EMi Acti,t+1)2 + V̂i,t

s
)

(5.58)

From equations (27)-(30) it follows that the k-th EM algorithm recursion is as

follows:

κ̂
EM,(k)
i =

∑T−1
t=1 ∆m̂

(k−1)
i,t D̃isci,t∑i,t

t=1 D̃isc
2

i,t

β̂
EM,(k)
i =

∑T−1
t=1 ŝ

(k−1)
i,t Acti,t∑T

t=1 Act
2
i,t

σ̂
(k)
i,η =

1

T − 1

T∑
t=1

(
(m̂

(k−1)
i,t+1 − m̂

(k−1)
i,t − κ̂EM,(k−1)

i D̃isci,t)
2 + V̂

m,(k−1)
i,t+1 + V̂

m,(k−1)
i,t − 2V̂

m,(k−1)
i,t+1,t

)

σ̂
(k)
i,ε =

1

T − 1

T−1∑
t=1

(
(ŝ

(k−1)
i,t+1 − β̂

EM,(k−1)
i Acti,t)

2 + V̂
s,(k−1)
i,t+1

)
(5.59)

Using 250 iteration of the EM algorithm we obtain EM estimates κ̂EMi , β̂EMi , σ̂EMiη

and σ̂EMiη .
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5.7.5 Grid Search

Starting with initial values κ̂EMi , β̂EMi , σ̂EMiη , σ̂EMiη we use a grid search on the like-

lihood function Li over the interval φi ∈ (−0.9, 0.9) in increments of 0.05. Using

the aforementioned procedure we obstain an initial value for the autoregressive

paramter φ.

φGridi := max
φ∈(−0.9,0.9)

L(κ̂EMi , β̂EMi , σ̂EMiη , σ̂EMiη ) (5.60)

5.7.6 Constrained Maximization

Starting with initial values κ̂EMi , β̂EMi , σ̂EMiη , σ̂EMiη and φGridi we do an unconstrained

maximization of Li using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) algorithm with the restriction φ ∈ (−0.9, 0.9).

5.7.7 Unconstrained Maximization

Starting with initial values from the constrained maximization we do an uncon-

strained maximization of Li using the BFGS algorithm.

5.7.8 Diffuse Initialization

We initialize the efficient price process m, assuming an uninformative prior as

follows:

mi,0 ∼ N (0, δ) (5.61)

where we let δ → ∞; i.e. we assume a diffuse prior for mi,t. Following Durbin

and Koopman [2012] the diffuse initialization equations are given by the following
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equations:

Pi,2|1 = TP∞i,1L
(1)>
i,1 + TP ∗i,1L

0>
i,1 +Q (5.62)

mi,2|1

si,2|1

 = K0
1

(
pi,1 E(st)

)

= K0
1

(
pi,1 0

) (5.63)

where Q is the diagonal matrix of variances

σ2
η 0

0 σ2
ε

, T is the transition matrix

1 0

0 φ

 and P∞i,1 , P
∗
i,1, L

0
i,1, K

0
1 can be solved using second order Taylor approxima-

tion around F−1
i,t and the Kalman gain matrix with δ →∞. Substituting solutions

to P∞i,1 , P
∗
i,1, L

0
i,1, K

0
1 in 5.63 we obtain the diffuse initialization as follows:

mi,2|1

si,2|1

 =

pi,1
0


Pi,2|1 =

 σ2
0 −φσ2

0

−φσ2
0 (φ2 + 1)σ2

0


(5.64)

where σ2
0 is the unconditional variance of transitory price σ2

ε

1−φ2 .
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