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1 Introduction

In dynamic games of perfect information, the concept of subgame-perfect equilibrium is
most commonly used in the prediction of players’ behavior. Consider a generic game
of finitely many moves, the subgame-perfect equilibrium always exists and is unique.
While the equilibrium concept is easily understood and the equilibrium characterization
is usually straight-forward, challenges to its ability to predict players’ behavior grow in
the literature, both on theoretical front and experimental front.

Back in the nineteen eighties, Rosenthal (1982) constructed a game (which was later
dubbed the “Centipede Game”) which consisted a sequence of a hundred moves. In this
game, each player moves at every alternative period, either to pass to the next period or
to end the game right away. Passing the game to the next period would yield a larger
total pile of money, but it strictly reduces the money one gets if the opponent ends the
game then. The unique subgame perfect equilibrium (SPE) is that the first player ends
the game at the first node and each player gets a small sum. Rosenthal argued that it
is highly unlikely that, in practice, players will actually choose the SPE strategies when
they play that game.

Since then, various centipede game experiments have been conducted to test the
predictive power of the concept of SPE. McKelvey and Palfrey (1992) reported that only
15% of the players chose to end the game at the first node in the high-payoff version, and
as little as 0.7% in other versions of the centipede game. In a much simplified two-move
extensive form game, Goeree and Holt (2001) documented that players usually do not
trust their rivals to be rational, and as a result, credible threats may not be credible at
all.

In an attempt to reconcile the differences between the theory and the experiment
outcomes, various modifications to the assumptions of the games used in the experiments
have been proposed. McKelvey and Palfrey (1992), for example, propose that a player
believes that the opponent is an altruist with some positive probability. They find that
even a very small such probability can induce players to adopt mixed strategies in the
early rounds of the game, mimicking the observed behaviors in their experiment. A
few years later, McKelvey and Palfrey (1998) use a quantal choice model to re-examine
the same experimental results. They show that if we assume that the probability of
implementing a particular strategy is increasing in the equilibrium payoff of the strategy,
then the observed behavior more or less coincides with the predictive behavior. Zauner
(1999), on the other hand, adds yet another alternative to the explanation of McKelvey
and Palfrey’s experimental results by injecting a random perturbation to each player’s
payoffs. Various types of perturbations are explored and two best-fit models are selected.

At the same time, many game theorists have proposed alternatives to the basic as-
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sumptions that lead to SPE, including common knowledge of rationality and backward
induction. For example, Aumann (1992) formalizes the idea of higher order mutual
knowledge. Caplan (2001) treats irrationality as a standard good, and players need to
pay to get closer to some (irrational) “bliss belief”. Basu (1988) argues that each his-
tory of moves reveals certain characteristics of players to one another, and therefore the
outcomes of a game depend on these revealed characteristics (instead of depending on
rationality alone).

Recent advances in psychology have also helped in explaining why players in experi-
ments behave differently from what SPE predicts. Epstein et al (1992) conduct studies
to test the cognitive-experiential self-theory. They confirm that two conceptual systems,
an experiential system and a rational system, each operate by its own rules of inference
inside the same individual. To some extents, an individual can switch from one system
to another. Tirole (2002) builds on similar psychological findings and explores their im-
plications in an individual’s decision making process. He proposes a model of rational
irrationality which can explain why people rehearse good news and selectively forget bad
news, which is a universal behavior.

In this paper, we argue along the lines of the above psychological findings and pro-
pose yet another explanation on the “irrational behaviors” on the theoretical front. We
emphasize on the observation that that even if all players understand fully the concept
of subgame-perfect equilibrium and even if no players believe that other players are al-
truists, they still do not follow the SPE strategies when playing the centipede game. We
assume that a player can choose to be “rational” or “behavioral”. If being “behavioral”
yields better outcome than being “rational”, then a player would choose to “behavioral”
(or, in terms of standard game theory terminology, “irrational”.) The intuition for this
to happen is as follows. SPE strategies are optimal for a player only when other players
follow them. If players do not believe that other players will follow SPE strategies, then
those SPE strategies are not optimal anymore. In the model, we specify an alterna-
tive belief for each player regarding the behavior of other players. Each player then has
a choice of selecting his belief (between the SPE strategy and the alternative one) at
the beginning of the game and then optimizing given the selected belief. A “behavioral
equilibrium” is formed if each player is better off in the actual outcomes by selecting
the alternative belief. These outcomes of the game are determined by the strategies the
players actually used in the game.

The basic idea behind the “behavioral equilibrium” concept is that players can choose
to believe that their counterparts can be either fully rational (such that SPE strategies are
the best response) or somewhat irrational (so that SPE strategies are not best response
anymore). Given any belief, the players still optimize by choosing the best strategy.
This is the same as in a subgame-perfect equilibrium. However, the difference between
a behavioral equilibrium and a subgame-perfect equilibrium is that those alternative
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beliefs in a behavioral equilibrium do not usually coincide with those players’ actual
strategies. If the two are the same, a subgame-perfect equilibrium is formed. Therefore,
these alternative beliefs are somewhat irrational. Still, these irrational beliefs generate
better payoffs than those SPE beliefs. Thus, players will choose these irrational beliefs
rationally.

The rest of this paper is organized as follows. In Section 2, we analyze a few centipede
games using the concept of “behavioral equilibria”. In Section 3, we analyze some of the
experiments in centipede games in the literature. In Section 4, we conclude.

2 Centipede Games and Behavioral Equilibria

We begin with a general description of the centipede games.

Figure 1: A General n-Move Centipede Game

There are two players, 1 and 2, playing the centipede game of n moves in Figure 1.
To simplify notation, we assume that n is even.

In this game, a1 > a2, a3 > a4, ..., a2i−1 > a2i, ..., an−1 > an, and b2 > b3, b4 > b5,
..., b2j−2 > b2j−1, ..., bn > bn+1. It is straight-forward to check that the unique subgame-
perfect equilibrium strategy for each player is to play T whenever it is his turn to move.
Given this strategy, the equilibrium outcome of the game is that player 1 plays T at the
very beginning and ends the game with payoffs (a1, b1).

3



Now suppose that before the start of the game, the two players choose a belief si-
multaneously. Player 1 secretly chooses a belief from {SPE1, B1}; at the same time,
player 2 secretly chooses a belief from {SPE2, B2}. Here, SPEi represents player i’s
subgame-perfect equilibrium belief on his opponent j’s behavior; i.e., player j will play T
whenever it is his move. On the other hand, Bi denotes player i’s alternative belief. Let
B1 = (p2, p4, ..., pn) be player 1’s belief, where p2k is the probability that player 2 will play
T at node 2k conditional on node 2k being reached. For SPE belief, SPE1 = (1, 1, ..., 1).
Similarly, we define B2 = (p1, p3, ..., pn−1), and SPE2 = (1, 1, ..., 1).

The subgame-perfect equilibrium belief SPEi is the only belief that satisfy the prop-
erties of common knowledge of rationality and backward induction in the centipede game.
Therefore, any other belief Bi would violate these properties. In this section, we do not
focus on where this alternative belief is derived from. (It could be derived from a player’s
past game-play experience, for example. Since the population in general are not always
rational. Even if someone is rational, he/she does make mistakes. All these factors can
contribute to the forming of a player’s belief about other players’ behavior.) Instead, we
want to characterize the equilibrium of the expanded game given this belief.

In summary, the game we are examining is as follows. Both players simultaneously
select their beliefs before the start of the game. Once the belief is selected, it remains the
same throughout the game. Given these beliefs regarding his opponent’s behavior, they
play the above centipede game. Each player’s goal is to maximize his expected payoff
given his chosen belief.

We explicitly impose that the beliefs will not be updated during the game. It simplifies
the analysis so that we can emphasize the point we are trying to make. (Even if we allow
for belief updating, we will not get back the SPE beliefs as long as the initial belief is
somewhat incorrect.)

To analyze the modified centipede game, first note the following. If B1 is such that
playing T at node 1 is the optimal action for player 1, then the game is over at node 1 no
matter what belief player 1 has selected. The more interesting case is when T at node 1
is not the optimal action.

If player 1 chooses belief SPE1 and thus plays T at the first node, the game ends at
the first node, with payoffs (a1, b1). If player 1 chooses belief B1, player 1 maximizes his
expected payoff by choosing the node he plans to play T :

max
i∈{1,3,...,n−1}

p2a2 + (1− p2)p4a5 + ... + (1− p2)(1− p4) · · · (1− pi−3)pi−1ai−1

+(1− p2)(1− p4) · · · (1− pi−3)(1− pi−1)ai (1)

Let i = n∗1 denote an i that maximizes the above. (Note that there could be many such
i’s that maximize the above.)
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Consider player 2 at node 2. The optimal action with the belief of SPE2 is to end
the game right away. In this case, the payoffs are (a2, b2). If belief B2 is chosen, player 2
maximizes his expected payoff by choosing the node he plans to play T :

max
j∈{2,4,...,n}

p1b1 + (1− p1)p3b3 + ... + (1− p1)(1− p3) · · · (1− pj−3)pj−1bj−1

+(1− p1)(1− p3) · · · (1− pj−3)(1− pj−1)bj (2)

Let j = n∗2 denote a j that maximizes the above. (Again, there could be many such j’s
that maximize the above.)

The proposed pure strategy for player 1 is to select B1 and plan to play T at node
n∗1. The proposed pure strategy for player 2 is to select B2 and play P at node 2 (if
player 1 played P at node 1), and plan to play T at node n∗2. The game ends at node
min{n∗1, n∗2} ≡ n∗.

{B1, n
∗
1} and {B2, n

∗
2} form a pure strategy “behavioral equilibrium” if player 1’s

payoff is higher by selecting {B1, n
∗
1} than selecting {SPE1, 1} given player 2’s strategy

of playing T at node n∗2, and player 2’s payoff is higher by selecting {B2, n
∗
2} than selecting

{SPE2, 1} given player 1’s strategy of playing T at node n∗1. That is,

an∗ ≥ a1, and bn∗ ≥ b2.

In this behavioral equilibrium, players are better off selecting these non-SPE beliefs than
selecting the SPE beliefs. Thus these beliefs are reinforced when the players play these
games again later.

Now consider mixed strategy “behavioral equilibria”. Suppose that there are more
than one j’s that maximize (2), or there are more than one i’s that maximize (1), mixed
strategies could be used by the players. Let s1 = (..., qi∗1 , ..., qi∗2 , ..., qi∗k , ...) denote any
of player 1’s optimal mixed strategies, where i∗1, i

∗
2, ..., i

∗
k are all of the numbers that

maximizes (1). Similarly, let s2 = (..., qj∗1 , ..., qj∗2 , ..., qj∗
k
, ...) denote any of player 2’s

optimal mixed strategies, where j∗1 , j
∗
2 , ..., j

∗
k are all of the numbers that maximizes (2).

Then the outcomes of the game are determined by s1 and s2.

{B1, s
∗
1} and {B2, s

∗
2} form a mixed-strategy “behavioral equilibrium” if player 1’s

payoff is higher by selecting {B1, s
∗
1} (comparing to {SPE1, 1}) given player 2’s strat-

egy s∗2, and player 2’s payoff is higher by selecting {B2, s
∗
2} (comparing to {SPE2, 2})

given player 1’s strategy s∗1. Again, in this behavioral equilibrium, players are better off
selecting these non-SPE beliefs than selecting those SPE beliefs.

Example 1 Consider the eight-move centipede game in Figure 2.

Suppose that B1 = (0, 0, 0, 1) and B2 = (0, 0, 0, 1). Then it is straight-forward to
obtain n∗1 = 7, and n∗2 = 6. That is, player 1 playing T at node 7 is optimal given B1,
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Figure 2: An Eight-Move Centipede Game

while player 2 playing T at node 6 is optimal given B2. The minimum of n∗1 and n∗2, n∗,
is 6; that is, the game ends at node 6, with payoffs (2,5).

It is easy to see that {B1, n
∗
1} and {B2, n

∗
2} form a behavioral equilibrium because

an∗ > a1, and bn∗ > b2.

Example 2 Consider the six-move centipede game in Figure 3.

Figure 3: A Six-Move Centipede Game

In this game, we can construct pure-strategy behavioral equilibria similarly to the
last example. Let B1 = (0, 1, 0), and B2 = (0, 0, 1). Then we have n∗1 = 3, and n∗2 = 4.
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Therefore, n∗ = min{n∗1, n∗2} = 3; that is, the game ends at node 3. This constitutes
a behavioral equilibrium as the final outcome is (3,0), which is weakly better for both
players than the SPE outcome of (1,0).

Now consider a mixed-strategy behavioral equilibrium. Suppose that B1 = (0, p4, 1)
and B2 = (0, p3, 1), with p4 ∈ (0, 1) and p3 ∈ (0, 1). Given these beliefs, denote player
1’s expected payoff of planning to play T at node i by EΠ1(i). We have EΠ1(1) = 1,
EΠ1(3) = 3, and EΠ1(5) = p40 + (1− p4)5. For player 1 to randomize between playing
T at node 3 and playing T at node 5, we should set EΠ1(3) = EΠ1(5); that is, p4 = 2

5
.

Similarly, for player 2, EΠ2(2) = 2, EΠ2(4) = p30 + (1 − p3)4, and EΠ2(6) = 0.
Suppose that p3 < 1

2
. Then n∗2 = 4.

To construct a behavioral equilibrium, player 1’s mixed strategy (0, q3, 1) must satisfy
the following two conditions regarding the each player’s actual payoffs. First, for player
1, q33 + (1− q3)0 is at least 1, which is player 1’s payoff by following SPE strategy and
playing T at node 1. This gives us q3 ≥ 1

3
. Second, for player 2, q30 + (1− q3)4 must be

at least 2, which is player 2’s payoff by following SPE strategy and playing T at node 2.
This gives us q3 ≤ 1

2
. Therefore, any q3 ∈ [1

3
, 1

2
] would satisfy these two conditions.

To summarize, B1 = (0, 2
5
, 1), s1 = (0, q3, 1), B2 = (0, p3, 1), s2 = (0, 1, 1), where

q3 ∈ [1
3
, 1

2
], and p3 ∈ [0, 1

2
] form a mixed-strategy behavioral equilibrium.

3 Analyzing Previous Centipede Game Experiments

McKelvey and Palfrey (1992) report the results of seven different sessions of the centipede
game experiments. Sessions 1 to 3 are four-move centipede games with the following
payoffs: (a1, b1) = (0.4, 0.1), (a2, b2) = (0.2, 0.8), (a3, b3) = (1.6, 0.4), (a4, b4) = (0.8, 3.2),
and (a5, b5) = (6.4, 1.6). Session 4 is a high-payoff four-move centipede game where the
payoffs are quadruppled. Sessions 5 to 7 are six-move centipede games with the following
payoffs: (a1, b1) = (0.4, 0.1), (a2, b2) = (0.2, 0.8), (a3, b3) = (1.6, 0.4), (a4, b4) = (0.8, 3.2),
(a5, b5) = (6.4, 1.6), (a6, b6) = (3.2, 12.8), and (a7, b7) = (25.6, 6.4).

Table IIA in McKelvey and Palfrey (1992) describes the proportion of observations
at each terminal node. In that table, fi is used to denote the proportion of games that
ends at node i. From these fi’s, we can calculate a player’s strategy as follows. For the
four-move game, let q1 and q3 be the proportion of player 1 who plan to choose TAKE
at node 1 and at node 3 respectively. (Therefore, the proportion of player 1 choosing
Pass at node 3 is equal to 1 − q1 − q3.) Similarly, let q2 and q4 be the proportion of
player 2 who plan to choose TAKE at node 2 and at node 4 respectively, and thus the
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proportion of player 2 choosing Pass at node 4 is equal to 1 − q2 − q4. Then q1 = f1,
(1 − q1)q2 = f2, (1 − q2)q3 = f3, and (1 − q1 − q3)q4 = f4. We define qi similarly in the
six-move game. Then we have q1 = f1, (1−q1)q2 = f2, (1−q2)q3 = f3, (1−q1−q3)q4 = f4,
(1−q2−q4)q5 = f5, and (1−q1−q3−q5)q6 = f6. The results are reported in the following
table.

Table 1: Players’ Strategies and Optimal Actions

Session q1 q2 q3 q4 q5 q6 Optimal Action
1 player 1 .06 .61 Take at Node 3 (61%)

player 2 .28 .61 Take at Node 4 (61%)
2 player 1 .10 .69 Take at Node 3 (69%)

player 2 .42 .52 Take at Node 4 (52%)
3 player 1 .06 .52 Pass at Node 3 (42%)

player 2 .46 .33 Take at Node 4 (33%)
4 player 1 .15 .57 Take at Node 3 (57%)

player 2 .44 .39 Take at Node 2 (44%)
5 player 1 .02 .43 .50 Take at Node 5 (50%)

player 2 .09 .51 .20 Take at Node 4 (51%)
6 player 1 .00 .04 .70 Take at Node 5 (70%)

player 2 .02 .48 .42 Take at Node 4 (48%)
7 player 1 .00 .15 .55 Take at Node 5 (55%)

player 2 .07 .51 .40 Take at Node 4 (51%)

It is hard to infer a player’s belief in playing these games, since many different beliefs
could lead to the same observed strategy. Therefore, in each session, we take a player’s
rivals’ revealed strategies as the player’s belief and calculate the player’s optimal action
according to that belief. In the calculations, we assign the players a utility function with
constant degree of absolute risk aversion of 0.5. That is, Ui(x) = −e−0.5x, where x is the
amount of money earned in one game. Therefore, the players are modestly risk averse.
The results are reported in Table 1 as well. The percentage number after each optimal
action is the percentage of players actually choosing the implied optimal action in that
session. As we can see from the table, the majority of the players chose the implied
optimal action in all but session 3. It suggests that the behavior of the majority of the
players can be explained by our theory.

4 Concluding Remarks

In this paper, we propose a concept of behavioral equilibrium explaining the behavior of
players in centipede games. Players’ behavior is usually different from what game theory
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has predicted. We allow players to abandon the logic of subgame perfect equilibrium
and choose a belief that is formed (e.g. from their previous experience in the situation).
Under certain conditions, the players are better off by abandoning the subgame perfect
equilibrium belief and choose the alternative belief instead. This reinforces the players’
subjective opinion that subgame perfect equilibrium may not work well in these games.
Hence, alternative beliefs become the beliefs of choice. We support our theory by re-
examining some previous centipede game experiments.
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