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Abstract

Many test statistics in econometrics have asymptotic distributions that cannot be
evaluated analytically. In order to conduct asymptotic inference, it is therefore
necessary to resort to simulation. Techniques that have commonly been used yield
only a small number of critical values, which can be seriously inaccurate. In con-
trast, the techniques discussed in this paper yield enough information to plot the
distributions of the test statistics or to calculate P values, and they can yield highly
accurate results. These techniques are used to obtain asymptotic critical values for
a test recently proposed by Kiefer, Vogelsang, and Bunzel (2000) for testing linear
restrictions in linear regression models. A program to compute P values for this
test is available from the author’s web site.
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1. Introduction

Many test statistics used in the econometric analysis of time-series data have finite-
sample distributions that are unknown. Examples include the unit root tests of
Dickey and Fuller (1979) and Phillips and Perron 1988), the single-equation cointe-
gration tests of Engle and Granger (1987), and the multiple-equation cointegration
tests of Johansen (1991). Inferences are usually based on the asymptotic distribu-
tions of the test statistics, that is, on the distributions of the random variables to
which the test statistics tend as the sample size tends to infinity. These random vari-
ables are typically functions of Weiner processes, and it is generally not possible to
evaluate them analytically. It is therefore necessary to estimate them by stochastic
simulation methods. Unfortunately, many of the critical values based on simulation
that have been published are seriously inaccurate, either because they are based on
small numbers of replications or because the quantities that have been simulated do
not follow the desired, asymptotic distributions. Moreover, most studies report only
a few tabulated critical values, and these provide only limited information about
the entire distribution. They do not allow the calculation of P values.

In this paper, I discuss a simulation-based procedure that can be used to obtain
accurate estimates of the asymptotic distribution functions of a wide variety of test
statistics. It involves calculating a great many simulated values of either the test
statistic itself or an approximation to the random variable to which the test statistic
tends asymptotically, for a number of finite sample sizes. A crude version of this
procedure was proposed in MacKinnon (1991), and more sophisticated versions were
developed in MacKinnon (1994) and MacKinnon (1996). The procedure suggested
in the last-cited paper has also been used in MacKinnon, Haug, and Michelis (1999)
and Ericsson and MacKinnon (2002).

To fix ideas, consider the case of an autoregressive process of order 1 without a
constant term,

yt = ρyt−1 + ut, ut ∼ IID(0, σ2),

where the object is to test the null hypothesis that the process has a unit root, or
that ρ = 1. One of the test statistics proposed in Dickey and Fuller (1979) is the
ordinary t statistic for ρ− 1 = 0 in the regression

yt − yt−1 = (ρ− 1)yt−1 + ut. (1)

The test statistic is

τnc =
∑T

t=2(yt − yt−1)yt−1

s
(∑T

t=2 y2
t−1

)1/2
, (2)

where T is the number of observations, and s is the standard error from the test
regression (1). The subscript nc (for “no constant”) distinguishes this version of
the Dickey-Fuller test from other versions in which the test regression includes a
constant or a constant and a trend. Unlike most t statistics, the statistic τnc does
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not follow the standard normal distribution asymptotically. Instead, it converges
asymptotically to the random variable

1
2

(
W 2(1)− 1

)
(∫ 1

0
W 2(r)dr

)1/2
, (3)

where W (r) denotes a standardized Wiener process.

The conventional approach to obtaining critical values for this sort of test makes
use of the fact that, for large T , it is valid to approximate the random variable (3)
by the random quantity

1
2 (s2

T − 1)
(

1
T

∑T
t=1 s2

t

)1/2
, (4)

where st = T−1/2
∑t

s=1 zs, with the zs independent drawings from the N(0, 1)
distribution. Thus, the Wiener process is replaced by a partial sum of independent,
standard normal variates. The quantity (4) is simulated a large number of times
using a moderately large value of T such as 500 or 1000. Quantiles of the empirical
distribution of the realized values are then used to estimate whatever critical values
are deemed to be of interest. This approach works reasonably well in the case of a
test statistic as simple as (2). However, the conventional approach does not work
well for many of the test statistics to which it has been applied, when these are
substantially more complicated than (2). The problem is that, except perhaps for
extremely large values of of T , which are not computationally tractable, the analogs
of (4) often do not provide sufficiently good approximations to the analogs of (3).

2. The Response Surface Approach

The solution to this problem is to use response surface methods. Instead of simulat-
ing a quantity like (4) for a single, large value of T , the idea is to simulate either it or
the test statistic itself for a number of different values of T , many of which need not
be particularly large. This yields estimates of a number of different finite-sample
distributions. Response surface regressions are then applied to these estimates in
order to estimate the asymptotic distribution. This is the key innovation of the
procedures discussed in this paper.

Since it is critical values and P values in which we are interested, we start by
estimating quantiles of the finite-sample distribution. In order to approximate the
entire distribution function, we need to estimate a reasonably large number of them.
These estimated quantiles may either be for an actual test statistic like (2) or for
an asymptotic approximation like (4). In general, we perform M experiments, each
with N replications, for each of m values of T .

Suppose we are interested in qα, the α quantile of the distribution, where 0 < α < 1.
There are numerous ways to estimate qα. However, since in all applications of these
techniques the quantile estimates have been based on at least 100, 000 replications,
it does not much matter what method is used. Suppose that xj denotes a realized
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value of the test statistic, and that the xj are sorted in ascending order. Then one
reasonably good estimator is

qα(Ti) = 1
2 (xαN + xαN+1), (5)

where i indexes the experiment, and Ti denotes the number of observations for
experiment i. For this formula to be valid, N must be chosen so that αN is an
integer for all α of interest.

The response surface regressions that are estimated, using data from mM experi-
ments indexed by i, generally have the form

qα(Ti) = θα
∞ + θα

1 T−1
i + θα

2 T−2
i + θα

3 T−3
i + εi. (6)

Here qα(Ti) is the estimated quantile for experiment i, and εi is an error term.
The specification of equation (6) is based on both theory and experience. The
asymptotic theory for unit root and cointegration tests tells us that the finite-sample
distributions of these test statistics should approach the corresponding asymptotic
distributions at a rate proportional to 1/T . Therefore, all terms except the constant
must tend to zero at a rate of 1/T or faster. What we are trying to estimate
is the constant term, θα

∞. Since the other terms tend to zero as Ti → ∞, this
parameter corresponds to the α quantile of the asymptotic distribution. The role of
the other three parameters is to allow the finite-sample distributions to differ from
the asymptotic one, and not all of these parameters may be needed. In practice, it
is often possible to set θα

3 = 0, and it is sometimes possible to set θα
2 = 0 as well.

In some cases, when the estimated quantiles are for actual test statistics like (2)
rather than for approximations like (3), the parameters other than θα

∞ may be
of interest, because they allow us to obtain finite-sample distributions as well as
asymptotic ones. This is the case for the unit-root and cointegration tests studied
in MacKinnon (1996). However, the finite-sample distributions generally depend
on much stronger assumptions about the underlying model than the ones needed
for the asymptotic distributions to be valid.

The error term in equation (6) arises because of experimental error in the qα(Ti).
Each realization of the dependent variable is estimated using N replications. In
practice, N has usually been either 100, 000 or 200, 000, and M has usually been
either 50 or 100. Thus the number of simulated test statistics for each value of T
has varied between 5 million and 20 million. It is this last number, along with the
choice of the Ti and the functional form of the response surface regression (6), that
determines the precision of the final estimates; see Section 4. If sufficient computing
power were available, it would be desirable to use larger values for both M and N .

It may seem curious to perform M experiments, each with N replications, for every
value of T , instead of a single experiment with MN replications, but there are
actually several good reasons for doing so. The first reason is that the observed
variation among the estimates from 50 or 100 experiments provides a very easy way
to measure the experimental randomness in the estimated quantiles that serve as
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the dependent variable in equation (6). As will be discussed in the next section, it
is essential to be able to estimate this experimental randomness in order to estimate
this equation efficiently. Since we want the estimates of the variance of the εi to be
reasonably accurate, we do not want M to be too small.

The second reason for designing the experiments in this way is to get around the
limitations of computer memories. It is very often advantageous to calculate the
distributions of several different test statistics at once, because many of the cal-
culations would otherwise need to be repeated. The number of test statistics that
must be stored in memory (in single precision) prior to calculating the quantiles
will therefore be a multiple of N . The most extensive experiments that have been
done so far, the ones in MacKinnon, Haug, and Michelis (1999), actually gener-
ated 90 test statistics at once, with M = 50 and N = 100, 000. Storing 90 times
5, 000, 000 numbers would require nearly 1800 MB of memory, whereas storing 90
times 100, 000 numbers only required about 36 MB.

The third reason, which is closely related to the second, is that estimating quantiles
requires sorting the experimental results, and it is cheaper to sort N numbers M
times than to sort MN numbers once. However, the time required to sort the
results is generally so much smaller than the time required to compute them in
the first place that having to sort 10 million or 20 million numbers would not add
appreciably to the total cost of the experiments.

The final reason for designing the experiments in this way is that it makes them
less vulnerable to power failures and easier to divide among two or more computers.
For complicated test statistics and large values of T , a full set of MN experiments
may take several weeks. With this approach, partial results are written out after
every N replications, which limits the amount of work that would be lost because
of a power failure, and the M experiments can easily be divided among several
computers.

There are practical limitations on the choice of M and N . If M is too small,
the procedure for estimating the variance of the εi, to be discussed in the next
section, may be unreliable. However, if M is too large, disk storage needs may be
excessive, because the space devoted to storing estimated finite-sample quantiles
will be proportional to M . In the case of MacKinnon et al., for example, nearly
1.4 GB of disk space (without compression) were required for this purpose with
M = 50. This also puts limits on the choice of m, the number of different values
of T that are used. If N is too large, the program may need too much memory,
as discussed above. On the other hand, if N is too small, estimates of the tail
quantiles may be unreliable. If the estimator (5) is used to estimate the quantiles,
it is essential that αN be an integer for all quantiles that are estimated.

Because it would be impractical to store all the simulated test statistics, it is nec-
essary to estimate and store a finite number of quantiles that describe the shape
of the finite-sample and asymptotic distributions. The choice of these quantiles is
somewhat arbitrary. In practice, the following 221 quantiles have generally been
estimated and stored for each experiment: .0001, .0002, .0005, .001, . . . , .010, .015,
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. . . , .985, .990, .991, . . . , .999, .9995, .9998, .9999. These quantiles are deliberately
more dense in the extreme tails of the distribution, which is the area of particu-
lar interest for significance testing. Collectively, they provide more than enough
information about the shapes of most cumulative distribution functions.

Performing m sets of NM experiments typically requires a great many random
numbers. Even for a univariate model, there will be at least TMN of them for
each of m values of T , and for multivariate models there can easily be far more.
Because of this, it is essential to use a pseudo-random number generator with a
very long period. The approach I have used is to combine two different generators
recommended by L’Ecuyer (1988). One of these has a multiplier of 40, 692 and a
modulus of 2, 147, 483, 399, and the other has a multiplier of 40, 014 and a modulus
of 2, 147, 483, 563. The two generators are started with different seeds and allowed
to run independently, so that two independent uniform pseudo-random numbers
are generated at once. The procedure of Marsaglia and Bray (1964) is then used
to transform these two uniform variates into two N(0, 1) variates. Because each
generator has a different modulus, the fact that each sequence of uniform variates
will recur after roughly 2.147×109 iterations does not imply that the same sequence
of N(0, 1) variates will do so, because the uniform variates from the two generators
will be paired up differently each time the same sequences of uniforms reappear.
Evidence that this random number generator performs in a satisfactory manner will
be discussed in the next section.

3. Estimating the Response Surface Regressions

The error terms in the response surface regression (6) will almost always be het-
eroskedastic, with variances that depend systematically on T . In order to estimate
the parameters efficiently, it is essential to take this heteroskedasticity into account.
Let us denote the variance of εi by ω2(Ti). There are several ways to estimate ω2(Ti).
Because there are M observations on qα

i for each value of T , the simplest approach
is just to find their average, say q̄α(T ), and then use it to compute the sample
variance of the qα

i around that average. This sample variance is

ω̂2(T ) =
1

M − 1

∑

Ti=T

(
qα
i − q̄α(T )

)2
,

where the notation
∑

Ti=T means a summation over the M experiments for which
Ti = T . Equation (6) can then be estimated by weighted least squares, with obser-
vation i being given a weight of ω̂−1(Ti). This is the procedure that was used in
MacKinnon (1994).

A somewhat better approach is to recognize that ω2(T ) varies systematically with T .
Experience has shown that equations similar to

(
qα
i − q̄α(Ti)

)2 = γ∞ + γ1T
−1
i + γ2T

−2
i + ei (7)
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do an excellent job of explaining the systematic variation in the estimated variances
of the qα

i . Let the fitted values from the auxiliary regression (7) be denoted ω̃2(Ti).
Then ω̃−1(Ti) can be used as the weight for observation i in equation (6). The
advantage of using fitted values rather than sample variances is that the former
suffer from less experimental error.

Sometimes, in either regression (6) or the auxiliary regression (7), or both, it is
desirable to replace T by a function of T that takes into account the way the
underlying test statistics were constructed. For example, if the original test statistic
applies to a model with k endogenous variables, better results may be obtained if T
is replaced by T − k.

Because the regressors are the same for all observations with the same value of T ,
we can simplify the estimation procedure by averaging the results over the M ex-
periments with the same regressors. Therefore, weighted least squares estimation of
equation (6) actually requires only m observations, instead of mM . The regression
that is finally estimated, with just one observation for each value of T , is

q̄α(T )
ω̃∗(T )

= θα
∞

1
ω̃∗(T )

+ θα
1

T−1

ω̃∗(T )
+ θα

2

T−2

ω̃∗(T )
+ θα

3

T−3

ω̃∗(T )
+ error, (8)

where ω̃∗(T ) ≡ ω̃(T )/M1/2 is the estimated standard error for the observation
corresponding to a sample of size T . When there are 221 quantiles, this regression
must be estimated 221 times.

The weighted least squares regression (8) can be interpreted as a generalized method
of moments, or GMM, estimation procedure. Like all GMM procedures, it has
associated with it a test statistic for overidentification. This test statistic is simply
the sum of squared residuals from (8). It tests the null hypothesis that regression (6)
is correctly specified against the alternative that the conditional mean of qα(Ti) is
different for each Ti. As M becomes large, the GMM test statistic is asymptotically
distributed as χ2(m − l), where l is the number of parameters that are estimated.
This number will be 4 if no restrictions are imposed on equation (8), 3 if θα

3 = 0, and
2 if θα

2 = θα
3 = 0. The asymptotic result holds even for fixed m because equation

(8), like equation (6), effectively has mM observations

The GMM test statistic for overidentification can be used to decide whether to set
θα
3 = 0, or θα

2 = θα
3 = 0, in equation (8). However, it is essential to use the same

functional form for all 221 values of α for the same distribution, because, otherwise,
there may be small kinks where the functional form changes. This makes it necessary
to choose the functional form on the basis of all the GMM test statistics. In practice,
I have used their arithmetic mean. However, because the 221 test statistics are not
independent, it is impossible to say precisely how this mean is distributed. In
general, I have been reluctant to accept a model if the mean of the GMM test
statistics is much greater than m− l, its expectation under the null hypothesis, or
if adding an additional negative power of T would reduce this mean substantially.
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In some cases, usually when the distribution being estimated pertains to a model
with a large number of endogenous variables, regression (8) does not fit satisfactorily.
It appears that, in such cases, the response surface (6) simply does not adequately
model the quantiles of the finite-sample distribution of the test statistic for small
values of T . In this situation, one can either add additional negative powers of T
to the response surface or drop one or more observations that correspond to small
values of T . The latter approach often seems to yield more accurate estimates of
θα
∞. The mean of the GMM test statistics is used to decide how many observations

to drop.

Because N is large, ω̃∗(T ) is generally very small, and the GMM test for overiden-
tification is, consequently, very powerful. In addition to testing the functional form
of regression (8), it implicitly tests the quality of the random number generator.
In fact, it was poor results from overidentification tests that led me, while writing
MacKinnon (1994), to replace a conventional random number generator with a pe-
riod of 231 − 1 by the much better one described in the previous section. After the
generator was updated, many of the GMM test statistics dropped sharply, especially
for cases where the simulations used a great many random numbers.

4. Accuracy and Computation Costs

If computation were free, it should, at least in principle, be possible to obtain
numerical distribution functions that are as accurate as distribution functions cal-
culated using some sort of series approximation. However, with current computing
technology, this would be inordinately expensive in most cases.

The source of the inaccuracy of numerical distribution functions is the use of pseudo-
random numbers in the simulations. This leads to experimental error in the esti-
mates qα(Ti), which causes there to be an error term in equation (6), which in
turn implies that θα

∞ and the other parameters will be estimated with error. The
standard error of qα(Ti) based on N replications is (to a very good approximation)
given by the formula (

α(1− α)
)1/2

N1/2f(qα)
, (9)

where f(qα) is the density of the xj at the point qα. Because the density will be
relatively small in the case of tail quantiles, it is clear from (9) that estimates of
critical values will be relatively imprecise.

As an example, consider once again the test statistic (2). An acceptably accurate
estimate of the asymptotic .05 critical value for this statistic, from MacKinnon
(1996), is −1.94077. The density at this value is approximately 0.1150. Therefore,
if we could estimate q.05 for this distribution using 200, 000 replications with an
infinitely large value of T , the formula (9) tells us that the standard error of such a
hypothetical estimator would be 0.00424. Taking an average over 100 experiments
would then reduce this standard error by a factor of 10 to just 0.00042.
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This hypothetical standard error may be compared with the actual standard error of
the estimate −1.94077, which is 0.00023. The actual estimate is based on a response
surface using 100 experiments for 14 values of T , most of them quite small. Thus
it appears that the standard errors of response surface estimates will be of roughly
the same order of magnitude as, but probably somewhat smaller than, the standard
errors suggested by the formula (9).

Precisely what the standard error of the response surface estimate will be depends
on the values of T that are used and on what restrictions, if any, are imposed on the
functional form of the response surface regression (6). Some insight can be gained
by supposing that this regression is estimated by ordinary least squares. It can be
rewritten as

qα = θα
∞ + Zθ + ε,

where qα is a vector with typical element qα(Ti), Z is a matrix with typical row
[T−1

i T−2
i T−3

i ], θ is a 3-vector with typical element θα
j , and ε is a vector with

typical element εi. Well-known results for OLS estimation tell us that the standard
error of the OLS estimate of θp

∞ will be proportional to (ι′Mι)−1/2, where ι is a
vector of ones and M = I−Z(Z ′Z)−1Z ′.

The result that the standard error of the OLS estimate of θp
∞ is proportional to

(ι′Mι)−1/2 suggests that it is extremely desirable for there to be small values of T
as well as large ones. The smaller the smallest value of T , the more trouble Z will
have explaining a constant term, and thus the larger will be ι′Mι. Of course, if
some of the values of T are too small, equation (6) may not fit satisfactorily. Also,
avoiding very small values of T may allow us to drop T−3

i as a regressor, and ι′Mι
will be larger when there are fewer regressors. If we know the functional form of the
response surface and the cost of computation as a function of T , it may be possible
to choose the values of T more or less optimally; see MacKinnon (1996).

The most computationally intensive set of simulations that have been performed
so far was done in MacKinnon, Haug, and Michelis (1999). That paper computed
1035 different numerical distributions for likelihood ratio cointegration tests using
M = 50, N = 100, 000, and 12 values of T : 80, 90, 100, 120, 150, 200, 400, 500, 600,
800, 1000, and 1200. The calculations were performed on 10 different computers,
half of them IBM RS/6000 machines of various vintages running AIX, and half of
them 200 MHz. Pentium Pro machines running Debian GNU/Linux, over a period
of several months. These simulations required the equivalent of about two years of
CPU time on a single Pentium Pro machine.

For MacKinnon, Haug, and Michelis (1999), the parameters M and N were rela-
tively small, and the density of the test statistics in the upper tail tended to be much
smaller than for the test statistic (2). In consequence, despite the large amount of
CPU time used, the estimated quantiles were not terribly accurate. For example,
for Case I with one restriction, the .05 critical value with no exogenous variables
was 4.1290 with a standard error of 0.00235; for the same case with eight exogenous
variables, it was 27.8406 with a standard error of .00512. To reduce these standard
errors by a factor of 10, which would be desirable if it were feasible, would require
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increasing MN by a factor of 100. The experiments would then require about 200
years of Pentium Pro CPU time.

5. Calculating P Values and Critical Values

The procedures discussed so far merely provide some number of estimated quantiles,
usually 221 of them. In order to calculate a P value for an observed test statistic or
compute a critical value, some procedure for interpolating between the 221 quantiles
is needed. Many such procedures could be devised. One that I have found to work
well is based on the regressions

Φ−1(p) = β0 + β1q̂(p) + β2q̂
2(p) + β3q̂

3(p) + ep (10)

and
q̂(p) = δ0 + δ1Φ−1(p) + δ2

(
Φ−1(p)

)2 + δ3

(
Φ−1(p)

)3 + e∗p, (11)

where p denotes one of the 221 points at which the quantiles are estimated, with
0 < p < 1, q̂(p) denotes the estimate of qp, and Φ−1(p) denotes the inverse of
the cumulative standard normal distribution function. These linear regressions are
intended to approximate the distribution of the test statistic in a small region around
a specified value of the test statistic or a specified value of p. Regression (10) is used
for calculating P values, and regression (11) is used for calculating critical values.

If the underlying test statistic followed the normal distribution, equation (10) would
be correctly specified with β2 = β3 = 0, and equation (11) would be correctly
specified with δ2 = δ3 = 0. These equations are fitted to a small, odd number
of points around the observed test statistic or specified significance level using a
generalized least squares procedure that takes account of the heteroskedasticity
and serial correlation in the q̂(p); see MacKinnon (1996) for details. Because the
approximations are usually very good, it is possible in many cases to set β3 or δ3

equal to zero on the basis of a t test. Experiments with known distributions suggest
that 9, 11, and 13 points are reasonable numbers to use when estimating these
regressions.

For example, if we wanted to obtain the .05 critical value using nine points, we
would estimate regression (11) using the points p = .03, .035, . . . , .07. The right-
hand side would then be evaluated at p = .05 to obtain the desired critical value.
Similarly, if we wanted to obtain the P value corresponding to some observed test
statistic τ̂ , we would find the estimated q̂(p) closest to τ̂ and estimate (10) using
it and the four estimated quantiles on each side. The right-hand side would then
be evaluated at τ̂ to obtain the desired P value. Of course, we do not need to use
regression (11) at all to compute a critical value for p = .05 or for any of the other
221 estimated quantiles. However, the averaging that is implicit in this procedure
probably yields an estimate that is more accurate than the estimated quantile itself.

–9–



6. Distributions of KVB Statistics

In this section, the procedures discussed in this paper are used to obtain the dis-
tributions of two new test statistics recently proposed by Kiefer, Vogelsang, and
Bunzel (2000). These statistics, which I will refer to as KVB statistics after the
authors of the paper, provide a novel way to test linear restrictions on the linear
regression model

y = Xβ + u, (12)

where y is a T × 1 vector of observations on a dependent variable, with typical
element yt, X is a T × k matrix of observations on independent variables, with
typical row Xt, β is a k× 1 vector of unknown parameters, and u is a T × 1 vector
of error terms, with typical element ut. We wish to test the null hypothesis

H0 : Rβ = r, (13)

where the matrix R is q×k and the vector r is q×1, against the alternative that the
vector β is unrestricted. Of course, if the error vector u were normally, identically,
and independently distributed, we could just use an F test. However, the vector u
is assumed to be none of these things. Instead, the error terms in (12) are allowed to
be generated by a broad range of random processes, which may exhibit conditional
heteroskedasticity and serial correlation but are assumed to be stationary.

For testing the null hypothesis (13), Kiefer, Vogelsang, and Bunzel (2000) suggest
a statistic that resembles an F statistic. Specifically, they propose using

F ∗ = (Rβ̂ − r)′(RB̂R′/T )−1(Rβ̂ − r)/q, (14)

where β̂ denotes the vector of OLS estimates, and the matrix B̂ will be defined in
a moment. Notice that F ∗ looks very much like 1/q times a conventional Wald test
statistic. When there is only one restriction, Kiefer, Vogelsang, and Bunzel (2000)
suggest using the analog of a t statistic. To test the hypothesis that βi = β0i, they
propose the statistic

t∗ =
T 1/2(β̂i − β0i)

B̂ii

, (15)

where B̂ii denotes the ith diagonal element of B̂.

What makes (14) new is the way in which the k × k matrix B̂ is defined. Let us
make the definitions

Ŝt ≡
t∑

j=1

ûjXj and Ĉ ≡ T−2
T∑

t=1

ŜtŜ
′
t,

where ûj is the jth element of the vector of OLS residuals, û. Then the matrix B̂
is defined by

B̂ ≡ (T−1X ′X)−1Ĉ(T−1X ′X)−1.
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In the conventional approach, B̂ would be replaced by an estimate of the asymp-
totic covariance matrix of β̂, generally based on spectral density estimation, which
can be tricky to implement. The matrix B̂ is much simpler but still yields an
asymptotically valid test statistic

It is proved in Kiefer, Vogelsang, and Bunzel (2000) that, as T → ∞, the statistic
(14) follows a certain nonstandard limiting distribution, different for each q, which
is a function of Wiener processes. In fact, it tends to the random variable

Wq
′(1)

(∫ 1

0

(
Wq(r)− rWq(1)

)(
Wq(r)− rWq(1)

)′
dr

)−1

Wq(1)/q, (16)

where Wq(r) is a q × 1 vector of independent, standard Wiener processes.

Since the random variable (16) is similar to, but much more complicated than, the
random variable (3) to which the Dickey-Fuller statistic (2) converges, it should
come as no surprise to learn that it can be approximated in much the same way.
The analog of (4) is

YT (T−1Z ′Z)−1Y ′
T /q, (17)

where etj is an independent drawing from the standard normal distribution, Y and
Z are T × q matrices with typical elements

Yij ≡ T−1/2
T∑

t=1

etj and Zij ≡ Yij − (i/T )YTj ,

and YT is the last row of Y .

Numerical distribution functions for the asymptotic distribution of the KVB F ∗

statistic (14) have been obtained for q = 1, 2, . . . , 40. It seems reasonable to stop at
q = 40, because the cost of computation rises sharply with q, and economists very
rarely test hypotheses involving more than 40 restrictions. The simulations used
the asymptotic approximation (17) rather than the actual test statistic. There were
100 experiments, each with 100, 000 replications, for 16 different values of T : 90,
100, 110, 120, 150, 200, 250 300, 400, 500, 600, 700, 800, 1000, 1100, and 1200. To
save time, simulations for all 40 values of q were performed simultaneously for each
value of T . The simulations required the equivalent of about two months of CPU
time on a 450 MHz. Pentium II computer running Debian GNU/Linux.
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Figure 1. Cumulative Distribution Functions of KVB F ∗ Statistics

The response surfaces used to estimate the asymptotic distributions were similar to (6),
except that, for the largest values of q, it was necessary to add a T−4 term. For q ≤ 3,
it was possible to omit all terms beyond T−1, for 4 ≤ q ≤ 11, it was possible to omit all
terms beyond T−2, and for 12 ≤ q ≤ 29, it was possible to omit the T−4 term. Thus it
appears that the discrepancies between the asymptotic and finite-sample distributions of
the approximation (17) become more substantial as q increases. This is almost certainly
true of the test statistic (14) as well.

Figure 1 shows estimated cumulative distribution functions for the KVB F ∗ statistic for
several values of q. The value of the statistic is on the horizontal axis, and the cumulative
probability is on the vertical axis. The distribution is evidently very skewed for q = 1, but
it gradually becomes less skewed and moves to the right as q increases. The critical values
are very much larger than the corresponding ones for the F distribution.

A table that contains the 221 estimated quantiles for all 40 distributions and a computer
program which reads the table and calculates P values and critical values is available from
my home page at the following URL:

http://www.econ.queensu.ca/pub/faculty/mackinnon

The program is written in Fortran. It can be compiled using any modern Fortran 77 or
Fortran 90 compiler, including the free g77 compiler and the free f2c translator used in
conjunction with the free gcc compiler.

When q = 1, it is natural to use the t∗ statistic defined in (15) instead of the F ∗ statistic.
Figure 2 shows the density of t∗. The shape is quite similar to that of the standard normal
distribution, but the density is much more spread out. The estimated .05 and .01 critical
values, for two-tailed tests, are 6.746 and 10.016, respectively. The ratio of the .01 to the
.05 critical value is 1.485. Since this is considerably greater than the same ratio for the
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standard normal distribution, it is clear that, even after allowing for its greater variance,
the t∗ distribution has thicker tails.
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Figure 2. Density of KVB t∗ Statistic

7. Conclusion

When a random variable is asymptotically equal to a function of Wiener processes, its
asymptotic distribution generally cannot be evaluated analytically. This is true of many
test statistics in econometrics. Conventional simulation-based methods are based on ap-
proximations like (4) and (17) in which the Wiener processes are approximated by partial
sums of T standard normal variates. Unfortunately, these approximations often work
poorly for the values of T that have been used in practice.

This paper has discussed a way to surmount this problem without having to perform
computationally intractable simulations that involve extremely large values of T . The
solution is to simulate the test statistic itself, or an approximation to it, for a number of
different values of T , many of them reasonably small, and then to use response surface
regressions to estimate the quantiles of the asymptotic distribution function. The resulting
estimates will often be more accurate than ones based on simulations for T = ∞ would
have been if the latter were feasible. In the case of a test statistic like (2) that is cheap to
compute, this procedure is not computationally demanding at all. In other cases, however,
the simulations can require months or even years of CPU time. Simulating statistics for
testing several restrictions, such as the KVB statistics discussed in the previous section,
tends to be particularly expensive.

The methods discussed in this paper can be used to obtain finite-sample distributions as
well as asymptotic ones. When the error terms are normally, identically, and independently
distributed, and the response surfaces are based on actual test statistics, this can easily
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be done by using all the coefficients in the response surface instead of just the constant
term, as in MacKinnon (1996). Unfortunately, this assumption about the error terms is
frequently an unacceptably strong one. In the case of the KVB statistics, the whole point is
to avoid making any such assumption. At present, it is not clear whether response surface
methods can be used to obtain good approximations to the finite-sample distribution of
this sort of test statistic.
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