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Abstract

When people share risk in financial markets, intermediaries provide costly enforce-

ment for most trades and, hence, are an integral part of financial markets’ organi-

zation. We assess the degree of risk sharing that can be achieved through financial

markets when enforcement is based on the threat of exclusion from future trading

as well as on costly enforcement intermediaries. Starting from constrained efficient

allocations and taking into account the public good character of enforcement we

study a Lindahl-equilibrium where people invest in asset portfolios and simultane-

ously choose to relax their borrowing limits by paying fees to an intermediary who
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finances the costs of enforcement. We show that financial markets always allow

for optimal risk sharing as long as markets are complete, default is prevented in

equilibrium and intermediaries provide costly enforcement competitively. In equi-

librium, costly enforcement translates into both agent-specific borrowing limits and

price schedules that include a separate default premium. Enforcement costs - or,

equivalently, default premia - increase borrowing costs, while interest rates per se

depend on the change in enforcement over time.

Keywords: Limited Commitment, Enforcement Intermediaries, Lindahl-equilibrium, Endoge-

nous Borrowing Constraints

JEL Classifications: C73, D60, G10, H41, K42
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1 Introduction

In modern economies people share risk mainly through trades in financial assets. Most

of these trades involve ex-post transfers between the parties involved and have to be

enforced since a party obliged to make a transfer has necessarily an incentive to de-

fault. To enforce trades many institutions have been set up that assess the problem of

default, specify penalties for default and carry out these penalties. One example is a

bankruptcy procedure with its specific set of rules, its application through a court system

and its enforcement by public authorities. Other examples are enforcement and financial

intermediaries such as rating and collection agencies, clearinghouses or settlement banks.

Since these intermediaries provide costly enforcement for most transactions on financial

markets, they form an integral part of financial markets’ organization. The goal of this

paper is first to assess the degree of risk sharing that can be achieved through financial

markets when intermediaries provide costly enforcement of trades. We then investigate

how default is prevented in equilibrium when intermediaries provide enforcement and

agents bear the costs associated with enforcement when making their financial decisions.

The basic set-up for our analysis is a standard dynamic risk sharing problem where

commitment to contracts is limited.1 In our framework however, when enforcing risk

sharing people can rely not only on the threat of exclusion from future risk sharing,

but also on a punishment technology. While resources are required to operate this

technology, it allows for enforcement by inflicting a utility penalty on a person that

violates the arrangement. Enforcement is thus treated as a decision variable, since the

technology choice forms part of the risk sharing arrangement itself.2

After characterizing optimal risk sharing, we establish versions of the Welfare Theorems

by introducing a perfectly competitive, profit-maximizing intermediary that operates

the punishment technology. Since operating this technology acts as a threat to enforce

1Examples of this literature include Coate and Ravallion (1993), Kocherlakota (1996), Ligon et al.

(2002) among others.
2For a detailed discussion of this approach see Koeppl (2003).
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financial trades, enforcing an obligation of someone does not preclude the use of this tech-

nology to enforce obligations of anybody else. Hence, this non-rivalry causes enforcement

through the intermediary to be a public good.3

To capture these characteristics we use the ideas of Lindahl-equilibrium4 when decen-

tralizing optimal allocations. We assume that asset markets are complete and people

are restricted in their trades by borrowing constraints. Following Alvarez and Jermann

(2000) borrowing limits take the form of “endogenous solvency constraints” that rule out

default in equilibrium. Given equilibrium prices people can borrow up to a level of debt

that they are willing to pay back. This amount reflects not only that people are excluded

from asset markets forever after defaulting, but also punished through the technology.

Individuals, however, do not only choose how much to invest in state-contingent claims

subject to a given borrowing limit, but in doing so also decide how restricted they are with

respect to their borrowing. In fact, agents can borrow more by “demanding” enforcement

to back up larger transactions. Agents therefore choose a borrowing limit from a full

schedule of limits associated with different levels of enforcement for a “price” that reflects

enforcement costs. As is typical for a Lindahl-equilibrium, the intermediary supplies

this enforcement competitively by operating the technology on agent-specific markets

for individualized prices. Hence, each agent demands the use of the technology on an

individualized market facing a price that reflects his marginal utility from enforcement

through the technology.

3Green (2000) emphasizes this feature by pointing out that “Certainty of settlement is a public

good in a market where the ability of one trader to meet commitments often depends benefiting from

the fulfilment of others’ commitments. ... a clearinghouse may set, monitor, and enforce standards

of creditworthiness ... it may require participants to transfer securities and funds to one another in

reliance on its judgement, rather than exercising their independent judgement of the creditworthiness

of counterparties. The clearinghouse may set and compute participants’ margin requirements, hold

participants’ collateral in escrow, ... , manage the liquidation of defaulting participants’ positions, and

so forth.” (Green (2000), p. 23).
4For an extensive review on general equilibrium theory with public goods and the concept of Lindahl-

equilibrium, see Milleron (1972).
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We show that financial markets always allow for optimal risk sharing as long as markets

are complete, default is prevented in equilibrium and intermediaries provide enforce-

ment competitively. Furthermore, in equilibrium costly enforcement translates into both

borrowing limits and price schedules that differ across people.

The amount people can borrow is restricted in equilibrium by endogenous solvency con-

straints. As already pointed out these constraints reflect the punishment associated with

default: exclusion from future trade on asset markets plus the utility penalty arising from

the punishment technology. Moreover, total costs of borrowing are non-linear and are

composed of a price that is linear and a fee that pays for the costs of enforcing the

trade. This fee is agent-specific and reflects the severity of the default problem. Hence,

we derive a theory of financial markets structure where people are not only restricted in

their borrowing, but also borrow at different rates that reflect the premium required to

be able to obtain additional funds.

There is a rich literature that analyzes constraints on debts5 while other contributions

focus on the importance of various transaction costs for asset prices6. We contribute to

this large literature by linking debt constraints to the problem of incurring additional

costs when enforcing “tighter” constraints. While our findings show how these costs

feed into asset prices, we also indicate that it is possible to disentangle asset prices

into a default-free part and a default premium that is associated precisely with the

cost of default. Here enforcement costs - or, equivalently, default premia - are increasing

borrowing costs, while the risk-free rate per se tends to be lower. This suggest a potential

new route for analyzing pricing puzzles by decomposing agent-specific interest rates into

components that reflect different sources of costs.

Furthermore, we offer a way to incorporate optimal market design into general equilib-

rium theory. Since the intermediaries offer and people demand enforcement as part of

5Examples are Levine and Zame (1996), Constantinides and Duffie (1996) and Zhang (1997) among

others.
6See e.g. Luttmer (1996) and He and Modest (1995).
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their optimal behavior, one can see a first step towards deriving a theory of how markets

set borrowing limits and price claims that are subject to default.7 Finally, even though

we analyze enforcement and, hence, a particular public good, an additional contribution

of our work here is that we show how to extend the ideas of a Lindahl-equilibrium with

individualized markets for a public good to financial markets as well as dynamic environ-

ments with sequential market structures where externalities influence only the feasible

sets of individual agents.

The remainder of this paper is organized as follows. The next section sets out the

framework for our analysis and describes optimal risk sharing with costly third-party

enforcement. In Section 3 and 4 we establish different versions of the Second Welfare

Theorem incorporating the ideas of enforcement as a public good. Section 5 shows that -

given our assumptions - financial markets are generally efficient in providing risk sharing

even if enforcement is costly to provide. Finally, we discuss asset pricing implications in

more detail. All proofs are relegated to the appendix.

2 Environment

2.1 Physical Environment

Consider the following environment where time is discrete and indexed by t = 0, 1, . . . .

There is a finite set of infinitely lived agents I, who receive each period a stochastic

endowment of a single good. Let ω = {ω1, ω2, . . . } be a sequence of independently and

identically distributed random variables each having finite support Ω = {1, 2, . . . , S} and

denote the probability of ωt equaling s by πs > 0 for all s ∈ Ω. Define a t-history of ω

7The literature on consumer bankruptcy has made some progress in this direction (cf. for example

Chatterjee, et al. (2002) or Livshits, et al. (2001)). In this literature financial intermediaries when

making loans distinguish between agents according to their likelihood of default. Hence, all transactions

take place on competitive, but segmented loan markets. This literature, however, does not analyze

optimal bankruptcy/enforcement rules and how these rules are implemented on loan markets.

6



by ωt = {ω1, ω2, . . . , ωt} and let Ωt be the set of all possible t-histories of ω with π(ωt)

being the probability of a particular history. The endowment for agent i ∈ I in period t

is determined by the realization of ωt and denoted by yit,s when ωt = s for t = 0, 1, . . . .

We assume that yit,s 6= yjt,s for some agents i, j ∈ I and that
∑

i∈I y
i
t,s = Y > 0 for all

s ∈ Ω and t = 0, 1, . . . , i.e., that there is no aggregate risk and the economy is stationary.

This assumption is purely made to facilitate the exposition.

Preferences for agent i are described over ωt-measurable consumption processes ci ∈ C =

{{cit}∞t=0|cit : Ωt −→ [0, Y ]} and represented by the utility function

Et

[ ∞∑
τ=0

βτui(c
i
t+τ )

]
, (1)

where β ∈ (0, 1) and Et expresses the expectation conditional on a history of shocks

at time t. We assume that ui is increasing, strictly concave and twice continuously

differentiable. Furthermore, ui is bounded from below with normalization ui(0) = 0 and

limc→0 u
′
i(c) =∞.

Since the agents are risk averse and face idiosyncratic income shocks, there is an incentive

to share income risk. We assume, however, that there is limited enforcement. Each

period, after uncertainty in period t is resolved and the current distribution of endowment

{yit,s}i∈I is known, an agent i can choose to remain in autarky forever. The utility of

autarky is given by

ui(y
i
t,s) + Et

[ ∞∑
τ=1

βτui(y
i
t+τ )

]
≡ ui(y

i
t,s) + βV i

aut, (2)

where V i
aut expresses the future expected utility from autarky which is independent of

the realized history of shocks.

The economy has access to a “punishment” technology that reduces an agent’s current

and future utility in case this agent decides to remain in autarky. Specifically, if this

technology is operated at a level dt ∈ [0, 1] and an agent decides to remain in autarky
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forever in period t, the agent loses a fraction dt of her autarkic utility as given by equation

(2).

Operating this technology in period t at a level dt requires an investment of resources

equal to ψ(dt) in period t which depreciates fully after one period. The level of this

punishment technology in any period t, dt, is set before the current shock ωt is realized.

Therefore, the level of punishment in period t can depend only on the past history of

realizations of ω, i.e., ωt−1. Formally and slightly abusing notation, we denote the ωt−1-

measurable process of punishment levels by d ∈ D = {{dt}∞t=0|dt : Ωt−1 −→ [0, 1]}, where

Ω−1 is defined to contain a single element. To ensure the convexity of the problem we

assume that the cost function ψ(·) is increasing, strictly convex and does not include any

fixed costs:

Assumption 2.1. 1. ψ′ ≥ 0 and ψ′′ > 0.

2. ψ(0) = 0 and ψ′(0) = 0.

2.2 Incentive Feasible Allocation

We will now define incentive feasible allocations for the risk-sharing environment de-

scribed in the previous section.8. An allocation ({ci}i∈I , d) ∈ CI × D is given by a

consumption process for each agent and a process of punishment levels. An allocation is

feasible if

(∑
i∈I

ci(ωt, s)

)
+ ψ(d(ωt)) ≤ Y for all t, (ωt, s). (3)

An agent can switch to autarky for any given state s at time t. Her decision will depend

on the comparison between the continuation utility offered by an allocation and the value

of autarky given the current level of punishment. Since we are interested in voluntary

8For a more detailed discussion on the set up as well as the concept of incentive feasibility in this

context see Koeppl (2002).
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risk-sharing, we restrict attention to allocations that give every agent an incentive to

participate in risk-sharing over time.

Definition 2.2. An allocation ({ci}i∈I , d) ∈ CI ×D is ex post incentive compatible if it

satisfies

ui(c
i(ωt, s)) + Et

[ ∞∑
τ=1

βτui(c
i
t+τ )

]
≥ (1− d(ωt))

[
ui(y

i
t,s) + βV i

aut

]
(4)

for all i ∈ I, for all t, s. An allocation is incentive feasible if it is feasible for all t, (ωt, s)

and ex post incentive compatible for all i ∈ I, for all t, (ωt, s).

For the reminder of the paper we denote the set of incentive feasible allocations by

Γ ⊂ CI ×D.

2.3 Optimal Allocations

The concept of incentive feasibility allows us to define optimal allocations. An alloca-

tion ({ci}i∈I , d) ∈ Γ is optimal if there exists no other incentive feasible allocation that

provides all agents with at least as much expected utility at period 0 and at least one

of them with strictly more expected utility at period 0. Denoting the initial level of

expected utility promised to agent i by u0
i , optimal allocations can then be described by

the following Pareto-problem:

max
({ci}i∈I ,d)

E0

[ ∞∑
t=0

βtu1(c1
t )

]
(5)

subject to

({ci}i∈I , d) ∈ Γ (6)

E0

[ ∞∑
t=0

βtui(c
i
t)

]
≥ u0

i for all i ∈ I \ {1}. (7)
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Denote the Lagrange multiplier on the ex-post incentive compatibility constraint (4)

of agent i in state (ωt−1, s) by ξi(ωt−1, s) and define ξ̃i(ωt−1, s) = ξi(ωt−1,s)
βtπ(ωt−1,s)

. We have

then the following first-order necessary conditions with respect to the optimal choice of

ci(ωt−1, s) and d(ωt−1) in period t after history ωt−1:

u′i(ci(ω
t−1, s))

[
νi +

∑

ωτ≺ωt
ξ̃i(ωτ )

]
− λ(ωt−1, s) = 0 for all i ∈ I (8)

ψ′(d(ωt−1)) =

∑
i∈I

∑
s∈S ξ

i(ωt−1, s)
[
ui(y

i(ωt−1, s)) + βVaut
]

∑
s∈S λ(ωt−1, s)

, (9)

where νi (with ν1 = 1) is the Lagrange multiplier on constraint (7) and λ(ωt−1, s) the

multiplier for the resource constraint.

The optimality condition (9) makes it apparent that enforcement through the punishment

technology is a public good. It is the classic condition first derived by Samuelson (1954)

for the optimal provision of a public good. Operating the technology at a level d(ωt−1) >

0 benefits not only one agent, but all agents that are constrained. This is due to the

fact that a higher level of d(ωt−1) relaxes the ex post incentive compatibility constraints

(4) for all agents simultaneously. Hence, it is optimal to equate the marginal costs of

using the technology with the sum of marginal benefits that all agents derive from the

technology. Note that equation (9) takes into account that not all agents are necessarily

constrained. If some agent i is unconstrained, her Lagrange multiplier on the ex post

incentive compatibility constraint, ξi(ωt−1, s), is zero indicating that she does not derive

any direct marginal benefit from operating the technology even though there is an indirect

benefit from better risk sharing.

Summarizing main results for the problem (5) - (7) optimal incentive feasible allocations

always exist for the given environment. Furthermore, if the first-best allocation is not

incentive feasible, it is always optimal to partially rely on the punishment technology for

enforcement since by Assumption 2.1 the marginal costs of the technology at d(ωt−1) = 0

are small. It also is never optimal to set d(ωt−1) = 1 which justifies the equality sign in
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the first-order condition (9). Last, the optimal choice of using the punishment technology

is path-dependent, i.e., varies over time with the sequence of realized endowment shocks.9

To facilitate the exposition we assume without loss of generality for the remainder of this

paper that ui = u for all i ∈ I.

3 Lindahl Equilibria with Enforcement Intermedi-

aries

We are now taking into account that enforcement - or, more specifically, the punishment

technology - has the character of a public good and analyze whether the optimal level

of the technology as well as optimal risk sharing can be achieved through a financial

markets arrangement. In doing so we rely on ideas captured by the concept of Lindahl-

equilibrium where the public good is sold on individualized markets for agent-specific

prices that reflect the marginal utility of an agent from the public good.

The basic set-up is as follows. There are one-period state-contingent claims that pay

in units of the consumption good and are traded competitively. Hence, markets are

complete in the sense that there are as many securities as there are realizations of ωt at

period t; the size of possible trades, however, is restricted through limits on borrowing in

form of “endogenous solvency constraints” as introduced by Alvarez and Jermann (2000).

These solvency constraints ensure that agents do not have an incentive to default - or,

equivalently, prefer a certain outside option such as autarky. Since default is associated

with a specific level of utility, agents are allowed to borrow only up to an amount that

gives them exactly this level of life-time utility if they honor their debt and repay the

borrowed amount plus interest.

In our environment, people can influence their utility from default by using the punish-

ment technology. The technology itself is operated by a profit maximizing competitive

9For details on these results see Koeppl (2003).

11



firm that sells the use of the technology to the agents at agent-specific prices. If an

agent does not demand any enforcement through the punishment technology default is

punished by permanent exclusion from asset markets and her borrowing constraints is

set to reflect this punishment. If an agent, however, demands some enforcement through

the technology for a positive price, she reduces her wealth, but is able to relax her bor-

rowing constraints. As we will show later, this set up guarantees the efficient provision

of enforcement and - together with agents choosing their borrowing constraints - allows

for constrained optimal risk sharing.

3.1 Enforcement Intermediaries

The punishment technology is operated by a perfectly competitive firm which will be

called the enforcement intermediary. In period t − 1, after the endowment shocks have

been realized, the intermediary supplies a level of punishment d for next period and

sells the “right to use” the punishment technology at level d in period t to agent i at

the agent-specific price pei which is quoted in period-t goods. Next period, he collects

the payments in period-t goods from last period’s sales to the agents and operates the

technology at the level he chose last period. Formally, taking agent-specific prices {pei}i∈I
as given, in period t− 1 the intermediary maximizes next period profits:

max
d(ωt−1)

∑
i∈I

pei (ω
t−1)d(ωt−1)− ψ(d(ωt−1)) (10)

subject to

d(ωt−1) ∈ [0, 1].

The agent-specific prices, pei , are expressed in units of the consumption good at period

t and are given by an ωt−1-measurable stochastic process taking positive values for all

ωt−1, i.e., pei : Ωt−1 −→ IR+. The total fee charged to agent i, peid, is to be interpreted

as a direct transfer of resources from agent i to the enforcement intermediary. Since the
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punishment technology is linear with a strictly convex cost function (cf. Assumption

2.1), profits will be strictly positive whenever d > 0. We denote profits in period t given

a history of shocks ωt−1 by Θt(ω
t−1). Every period, these profits are then paid out as a

lump-sum transfer to the agents that is constant across agents.

Note that the intermediary decides about the level of punishment before period-t endow-

ment shocks are realized. He receives, however, the fees charged to consumers only after

the period-t shocks have occurred. Hence, we implicitly assume that the intermediary

has one-period commitment, i.e., he will carry out his initial decision once the current

shock has been realized and he has received the payments from the agents. Furthermore,

we rule out any further incentive problem on part of the intermediary by assuming that

he will use the punishment technology in case of default by agents on trades made in the

market for state-contingent claims.

The solution to problem (10) after history ωt−1 can be characterized by

∑
i∈I

pei (ω
t−1) = ψ′(d(ωt−1)). (11)

By Assumption 2.1, d = 0 is a solution to equation (11) only if pei = 0 for all i. It will

become clear later that zero prices for all agents corresponds to a situation where the

marginal utility of the technology is zero for everybody. This corresponds to a situation

where some first-best consumption allocation is in fact incentive feasible.10

3.2 Asset Markets and Borrowing Constraints

The asset market structure in period t after a history of shocks ωt is given by a complete

set of one-period state-contingent claims. Let q(ωt, s) be the price of a claim in period

t after history ωt to one unit of the consumption good conditional on ωt+1 = s. Denote

10We are ignoring here the second corner solution, since it is never optimal to operate the technology

at d = 1.
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by ai(ωt, s) the holdings of such a claim by agent i. The stochastic processes of asset

holdings of agent i and asset prices are then given by ai = {{ait}∞t=1|ait : Ωt −→ IR} and

q = {{qt}∞t=1|qt : Ωt −→ IR+} respectively.

Agents invest in these Arrow-Debreu securities to insure against their endowment risk.

When doing so they face a full schedule of borrowing constraints that is specific for

each security and depends on their demand of the punishment technology. Formally, let

di = {{dit}∞t=0|dit : Ωt−1 −→ [0, 1]} be agent i’s demand for the use of the punishment

technology which we call from now on borrowing rights. The schedule of borrowing

constraints that agent i faces given history ωt is then denoted by Bi(d
i(ωt), (ωt, s)) for all

agents i ∈ I with the stochastic process given by Bi = {{Bi,t}∞t=0|Bi,t : [0, 1]×Ωt −→ IR}.
We assume that the schedule of borrowing constraints is strictly decreasing and convex.

Assumption 3.1. For all i ∈ I, B′i(d
i(ωt), (ωt, s)) < 0 and B′′i (di(ωt), (ωt, s)) ≥ 0 for

all (ωt, s).

Denote the wealth of agent i by wi = {{wit}∞t=0|wit : Ωt −→ IR}. Given her wealth, the

problem of agent i is then to choose current consumption, a portfolio of state-contingent

claims and borrowing rights such as to maximize her utility taking prices and the schedule

of constraints as given.

Jt(w
i, ωt) = max

ci(ωt),di(ωt),{a(ωt,s)}s∈S
u(ci(ωt)) + β

∑
s∈S

πsJt+1(wi(ωt, s), (ωt, s)) (12)

subject to

yi(ωt) + wi =
∑
s∈S

q(ωt, s)ai(ωt, s) + ci(ωt) (13)

wi(ωt, s) = a(ωt, s)− pei (ωt)di(ωt) +
Θt+1(ωt)

#I
for all s ∈ S (14)

wi(ωt, s) ≥ Bi(d
i(ωt), (ωt, s)) for all s ∈ S. (15)

Note that the agent’s optimal choices depend only on the total wealth w at the start of

a period as defined by (14). The composition of wealth, i.e., payoffs of state-contingent
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claims, profits from the intermediary and costs of having bought additional borrowing

rights, does not matter for the agent’s choice.

The interpretation of the borrowing constraints (15) is as follows. When choosing her

trades in state-contingent claims, agent i is restricted by schedules Bi. These schedules

represent the amount the agent can borrow given she demands a level di of borrowing

rights - or, equivalently, enforcement through the technology. Hence, by Assumption 3.1,

she can choose to relax the constraints on her financial trades by buying additional bor-

rowing rights at the agent-specific price pei . The demand for these rights, di, corresponds

then to the rights of using the punishment technology to secure the agent’s overall debt

position.

3.3 Lindahl-equilibrium for Sequential Security Markets

Our set up leads us to the following definition of a Lindahl-equilibrium for sequential

security markets which we will call simply Lindahl-equilibrium.

Definition 3.2. A Lindahl-equilibrium for schedules of borrowing constraints {Bi}i∈I
and initial conditions ({ai0}i∈I , {pei,0}i∈I , d0) where

∑
i∈I

pei (ω0)d0 = ψ(d0), (16)

wi(ω0) ≥ Bi(d
i
0, ω0) for all i ∈ I, for all ω0 (17)

and

di0 = d0 for all i ∈ I, (18)

is given by stochastic processes for security prices and agent-specific prices (q, {pei}i∈I),

a stochastic process of punishment, d, and stochastic processes for asset holdings, con-

sumption and borrowing rights, {ci, di, ai}i∈I , such that

1. {ci, di, ai}i∈I solve problem (12) - (15) taking (q, pei , Bi) as given
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2. d solves problem (10) taking {pei}i∈I as given for all ωt−1, for all t > 1

3. markets clear, i.e.,

∑
i∈I

ci(ωt, s) = Y − ψ(d(ωt)) for all t, (ωt, s) (19)

∑
i∈I

ai(ωt, s) = 0 for all t, (ωt, s) (20)

di(ωt) = d(ωt) for all i, ωt. (21)

For our purpose it is important to look only at equilibria that prevent agents from

defaulting. We therefore restrict attention to Lindahl-equilibria where the schedules

of borrowing constraints are such that no agent has an incentive to default on any

obligations - arising from ai and peid
i - for any choice of borrowing rights, but otherwise

allow for best possible risk sharing given a level of borrowing rights. This is formalized

in the definition below.

Definition 3.3. A Lindahl-equilibrium (q̂, {p̂ei}i∈I , d̂, {ĉi, d̂i, âi}i∈I) has borrowing limits

that are not too tight if - given equilibrium prices - the schedules of borrowing constraints

{Bi}i∈I satisfy

Jt+1(Bi(d
i(ωt), (ωt, s)), (ωt, s)) = (1− di(ωt))[u(yis) + βVaut] (22)

for all i, (ωt, s).

We emphasize that condition (22) is imposed on the whole schedule of borrowing con-

straints, and not only at the equilibrium level of rights demanded by agent i. Condition

(22) ensures that no agent has an incentive to default at any level of di(ωt). Given her

choice of di(ωt), her future expected utility of borrowing up to the limit Bi(d
i(ωt), (ωt, s))

is equal to her outside option of remaining in autarky forever and being punished at level

di(ωt). Since Jt is strictly increasing in overall wealth w, whenever the schedule of bor-

rowing constraints for agent i satisfies equation (22), agent i has no incentive to default

for any choice of di.
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It is also crucial here that we impose the borrowing constraints on the overall level

of wealth rather than the size of trades in a particular state-contingent claim. This

implies that - for any Lindahl-equilibrium - agents who demanded borrowing rights in

the previous period will pay their fees once their endowment shock has been realized

in the current period. Hence, Definition 3.3 rules out that agents have an incentive to

default on their obligations with the intermediary for any level of borrowing rights they

can demand. This is important since it ensures that the enforcement intermediary will -

for any choice of d - obtain the payments from all agents to operate the technology. This

justifies that we have not imposed an incentive compatibility constraint on the problem

of the intermediary that would have taken into account that agents could default on the

fees charged by the intermediary.

3.4 Second Welfare Theorem

By Assumption 3.1 the constraint set of each agent is convex and, hence, strict concavity

of the objective function implies that the first-order conditions together with an appro-

priately defined transversality condition are sufficient for a solution to problem (12) -

(15). Denote the Lagrange-multiplier on the budget constraint (13) by λi(ωt) and the

multipliers on the borrowing constraints (15) by µi(ωt, s). Assuming that Jt+1 is dif-

ferentiable with respect to wi(ωt, s), the first-order necessary condition with respect to

ci(ωt) and ai(ωt, s) are given by

u′(ci(ωt))− λi(ωt) = 0 (23)

−λi(ωt)q(ωt, s) + πsβJ
′
t+1(wi(ωt, s), (ωt, s)) + µi(ωt, s) = 0. (24)

Since the envelope theorem implies that J ′t+1(wi(ωt, s), (ωt, s)) = λi(ωt, s), we obtain the

intertemporal Euler equation

πsβu
′(ci(ωt, s))− u′(ci(ωt))q(ωt, s) + µi(ωt, s) = 0 (25)
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where µi(ωt, s) = 0 if wi(ωt, s) > Bi(d
i(ωt), (ωt, s)) and the first-order condition with

respect to the choice of borrowing rights

∑
s∈S

[
πsβu

′(ci(ωt, s))pei (ω
t) + µi(ωt, s)

[
pei (ω

t) +B′i(d
i(ωt), (ωt, s))

]]
= 0. (26)

The first term of equation (26) describes the marginal cost of choosing di associated

with the fees paid in every state. The second term describes the net marginal benefit

from relaxing the borrowing constraint for every state: on the one hand a higher choice

of di relaxes the constraint by reducing Bi and, hence, allows for more consumption

smoothing; on the other hand, it tightens the borrowing constraint for every state as the

agent’s overall wealth is reduced by the fees paid to the intermediary.

Finally, the transversality condition is given by

lim
t→∞

E0

[
βtλit(w

i
t −Bi,t(d

i))
]

= 0. (27)

Using the first-order condition (23) we can rewrite this condition as

lim
t→∞

∑

ωt∈Ωt

π(ωt)βtu′(ci(ωt))
[
wi(ωt)−Bi(d

i(ωt−1), ωt)
]

. (28)

Before establishing a version of the Second Welfare Theorem we derive some properties

of asset prices and personalized prices for borrowing rights. We first show that uncon-

strained agents have the highest marginal rate of intertemporal substitution for every

optimal allocation. This marginal rate of substitution is later used to determine the asset

price process for a Lindahl-equilibrium.

Lemma 3.4. Let ({ci}i∈I , d} be an optimal allocation. If for j ∈ I equation (4) holds

with strict inequality for (ωt, s), then

u′(cj(ωt, s))
u′(cj(ωt))

= max
i∈I

u′(ci(ωt, s))
u′(ci(ωt))

. (29)

Proof. See Appendix.
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Since asset prices will be determined using Lemma 3.4, the only missing part in de-

centralizing an optimal allocation as a Lindahl-equilibrium with borrowing limits that

are not too tight consists, then, of finding agent-specific prices for borrowing rights and

schedules of borrowing constraints that satisfy equation (22) for every agent. The next

result describes the situation where some agent - or subgroup of agents - does not benefit

directly from the punishment technology, i.e., his marginal utility from the public good

is zero.

Lemma 3.5. For any Lindahl-equilibrium, pei (ω
t) = 0 if µi(ωt, s) = 0 for all s ∈ S.

Proof. See Appendix.

The lemma states that the agent-specific price is strictly positive in equilibrium only if

the agent is borrowing constrained for some state s in the next period. In case a first-

best consumption allocation is incentive feasible, this implies that agent-specific prices

in a Lindahl-equilibrium with borrowing limits that are not too tight are zero for all

agents and, hence, d = 0. This lemma is not in contradiction to the requirement of

Definition 3.2 that all agents demand the same quantity of the good, i.e., di = d for all

i. Facing a zero price for borrowing rights while unconstrained an agent is indifferent

between any level of d. We then assume that the agent demands the right amount of d

in equilibrium.11

For any agent i that is constrained at least for some state after history ωt, let S0
i be the

set of states s such that µi(ωt, s) > 0. Using the intertemporal Euler equation (25) we

obtain

pei (ω
t) =

∑
s∈S0

i
[βπsu

′(ci(ωt, s))− u′(ci(ωt))q(ωt, s)]B′i(di(ωt), (ωt, s))∑
s∈S0

i
u′(ci(ωt))q(ωt, s) +

∑
s∈S\S0

i
βπsu′(ci(ωt, s))

. (30)

For any Lindahl-equilibrium where borrowing constraints are not too tight we must have

that for any given (ωt, s)

11Alternatively, one could require in Definition 3.2 that di = d for all i such that di > 0.
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Bi(d
i(ωt), (ωt, s)) = J−1|(ωt,s)((1− di(ωt))[u(yit,s) + βVaut]) (31)

which is well defined since the function J is strictly increasing in wealth. Assuming again

that J is differentiable, differentiating Bi with respect to di yields

B′i(d
i(ωt), (ωt, s)) =

1

J ′((1− di(ωt))[u(yit,s) + βVaut], (ωt, s))
(32)

Let the asset price process q be defined for a given allocation ({ci}i∈I , d) by

q(ωt, s) = max
i∈I

βπ(ωt, s)
u′(ci(ωt, s))
u′(ci(ωt))

for all (ωt, s). (33)

It follows from Lemma 3.4 and equation (33) that

pei (ω
t) =

∑
s∈S [βπsu

′(ci(ωt, s))− u′(ci(ωt))q(ωt, s)]B′i(di(ωt), (ωt, s))∑
s∈S u

′(ci(ωt))q(ωt, s)
. (34)

This is due to the fact that for unconstrained agents the definition of the asset price

process equates the marginal rate of substitution with the price of the state-contingent

claim. Furthermore, the terms in the sum of the numerator are only non-zero if the

borrowing constraints for a state s is binding. Using equation (32) and the envelope

theorem, for any Lindahl-equilibrium that has borrowing limits which are not too tight

personalized prices for borrowing rights have to be equal to

pei (ω
t) =

∑
s∈S [βπsu

′(ci(ωt, s))− u′(ci(ωt))q(ωt, s)] −[u(yit,s)+βVaut]

u′(ci(ωt,s))∑
s∈S u

′(ci(ωt))q(ωt, s)
. (35)

These prices reflect that the marginal benefit agent i derives from operating the pun-

ishment technology at d(ωt) which is zero if the agent is not borrowing constrained (cf.

Lemma 3.5). If we substitute this expression together with the optimality condition of

the public good d, equation (9), into the first-order condition of the intermediary (11),
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it is apparent that d(ωt) maximizes profits given history ωt and prices pei (ω
t) for all i.

Finally, we introduce the following condition on the asset price process.12

Definition 3.6. Let Q0(ωt|ω0) = q(ω0, ω1)q(ω1, ω2) · · · q(ωt−1, ωt). Interest rates are high

if
∞∑
t=1

∑

ωt∈Ωt

Q0(ωt|ω0) <∞ for all ω0. (36)

This leads directly to our main result - decentralizing a given optimal allocation as a

Lindahl-equilibrium with borrowing limits that are not too tight - which is stated below.13

This result is also important in the sense that it shows the existence of Lindahl-equilibria

under very weak restrictions.

Theorem 3.7. Let ({ci}i∈I , d) be an optimal allocation. Suppose the security price pro-

cess defined by equation (33) has high interest rates and agent-specific prices are given

by equation (35). Then there exist initial conditions ({ai0}i∈I , {pei,0}i∈I , d0), asset hold-

ings and schedules of borrowing constraints, ({ai}i∈I , {Bi}i∈I), such that the security

price process defined by equation (33), the agent-specific prices defined by equation (35),

the schedule of borrowing constraints, the supply of punishment, d, and the demands by

agents, {ci, di, ai}i∈I , where di = d for all i ∈ I, are a Lindahl-equilibrium with borrowing

limits that are not too tight.

Proof. See Appendix.

12In a related context, Alvarez and Jermann (2000) show in their Proposition 4.10 that implied interest

rates are high given an optimal allocation that exhibits some risk sharing. Since it can be shown that

some risk sharing is always feasible as long as we have ψ′(0) = 0, we conclude that for our framework,

the condition of high implied interest rates is fulfilled for every optimal allocation.
13It is straightforward to also decentralize the initial level d0 at which the punishment technology is

operated. One has to look at the initial problem for an agent of choosing her borrowing constraints at

t = 0 for each ω0 and paying an agent-specific price pei,0 for borrowing rights di0.
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4 Optimality of Lindahl-Equilibria

Having shown that Lindahl-equilibria can implement efficient outcomes, this leaves the

question whether financial markets where intermediaries provide costly enforcement al-

ways achieve efficient outcomes. The methodology to address this question is straight-

forward. First, we transform any Lindahl-equilibrium with sequential markets into an

equilibrium of a corresponding Arrow-Debreu economy with participation constraints

that restrict the feasible consumption set along the lines of Kehoe and Levine (1993).

The proof of the First Welfare Theorem is then completely standard and follows as a

corollary.

For this purpose we define an Arrow-Debreu pricing functional p0 that assigns a price

to any vector in the consumption space. Hence, p0 : C −→ IR+, where C is the set of

all possible consumption plans for a consumer. Whenever p0 is countably additive, the

value of this pricing functional for any c ∈ C can be expressed as

p0(c) =
∞∑
t=0

∑

ωt∈Ωt|ω0

c(ωt)Q0(ωt|ω0), (37)

where Q0(ωt|ω0) is the period 0 price of one unit of the consumption good in state ωt

conditional on the first period shock ω0 and Q(ω0|ω0) ≡ 1. For a countably additive

pricing functional the problem of agent i given ω0 becomes then

max
ci,di

E0

[ ∞∑
t=0

βtu(ci)|ω0

]
(38)

subject to

p0(ci + peid
i)− p0(yi +

Θ

#I
) ≤ wi0 (39)

ui(c
i(ωt, s)) + Et

[ ∞∑
τ=1

βτui(c
i
t+τ )

]
≥ (1− di(ωt)) [

ui(y
i
t,s) + βVaut

]
for all (ωt, s).

(40)
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Intermediaries solve an intertemporal maximization problem. Prices for enforcement are

still quoted in terms of the consumption good, but transformed into a net present value by

using the pricing functional p0. Hence, assuming p0 is countably additive intermediaries

solve

max
d

∞∑
t=1

∑

ωt∈Ωt|ω0

Q0(ωt|ω0)

(∑
i∈I

pei (ω
t−1)d(ωt−1)− ψ(d(ωt−1))

)
(41)

subject to

d(ωt−1) ∈ [0, 1] for all t, ωt−1.

This leads us to a definition of the equilibrium concept developed by Kehoe and Levine

(1993).

Definition 4.1. A Kehoe-Levine equilibrium for given initial conditions (d0, {wi0, pei,0}i∈I)
where

∑
i∈I

pei,0d0 = ψ(d0) (42)

and

di0 = d0 for all i ∈ I, (43)

is given by stochastic processes for consumption and individual demands for enforcement

{ci, di}i∈I , a stochastic process of punishments d, a pricing functional p0 and stochastic

processes of agent-specific prices {pei}i∈I such that

1. {ci, di} solve problem (38) - (40) taking p0 and pei as given

2. d solves problem (38) taking p0 and pei as given

3. markets clear, i.e. equations (19) and (21) hold.
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By using a variational argument, from the first-order necessary conditions of the con-

sumer’s problem one can easily verify that for any Kehoe-Levine equilibrium the pricing

functional p0 is countably additive and satisfies

q0(ωt, s) =
Q0(ωt, s|ωt)
Q0(ωt|ω0)

= max
i∈I

βπs
u(ĉi(ωt, s))

u(ĉi(ωt))
, (44)

where ĉi is consumption of agent i in equilibrium. The prices q0(ωt, s) are the Arrow-

Debreu prices implied by the pricing functional p0. Whenever interest rates are high, the

pricing functional p0 is finitely valued and, therefore, the problems of the agents and the

intermediary are always well defined in this case.

Similarly, given the pricing functional fulfills condition (44), one can verify through a

variational argument that for any Kehoe-Levine equilibrium agent-specific prices are

given by

p̃ei (ω
t) =

∑
s∈S [βπsu

′(ĉi(ωt, s))− u′(ĉi(ωt))q0(ωt, s)]
−[u(yit,s)+βVaut]

u′(ĉi(ωt,s))∑
s∈S u

′(ĉi(ωt))q0(ωt, s)
. (45)

This allows us to prove the equivalence of Kehoe-Levine equilibria and Lindahl-equilibria

provided interest rates are high and the consumption process in Lindahl-equilibrium is

strictly bounded away from zero for every agent. As mentioned earlier, since optimal

allocation are always different from autarky, it follows that interest rates are high given

any optimal allocation. From this follows immediately a version of the First Welfare The-

orem since preferences are monotone and given the form of the participation constraints

(40) we have a standard, convex Arrow-Debreu economy.

The intuition for this result is simple. From equation (40) it is clear that the equilib-

rium pricing functional is equivalent to the price process for state-contingent claims in a

Lindahl-equilibrium. The crucial step then involves expressing the schedule of borrowing

limits as participation constraints and verifying that the enforcement choice di is still

optimal given the optimal agent-specific price p̃ei for the agents when facing participation
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constraints rather than borrowing limits. This is, however, ensured by the strong require-

ment that borrowing constraints are not too tight for every value of di. The borrowing

constraints reflect, then, exactly the participation constraints (40).

Theorem 4.2. Let ({ci, di, ai}i∈I , q, {pei}i∈I) be a Lindahl-equilibrium for which the sched-

ule of borrowing limits are not too tight. Suppose that interest rates are high in equilib-

rium. Then, ({ci, di}i∈I , d, {p̃ei}i∈I , p0) is a Kehoe-Levine equilibrium for initial conditions

(d0, {ai0, pei,0}i∈I) where p0 is given by (44) and p̃ei by equation (45).

Proof. See Appendix.

Corollary 4.3. Any Lindahl-equilibrium for with the borrowing constraints are not too

tight and interest rates are high is constrained efficient.

5 Asset Pricing Implications

We already pointed out that borrowing costs can be decomposed into two components:

a claim-specific price that reflects the scarcity of funds and an additional premium that

reflects costs associated with default. People that are unconstrained in state s trade

state-contingent claims at the price q(ωt−1, s).

Constrained people, however, have to pay a higher price for the same claim. If agent

i is constrained in state s, he still pays q(ωt−1, s) for buying a(ωt−1, s) state-contingent

claims, but obtains a pay-off of only a(·) − pei (ωt−1)di(a(·)), where di(a) > 0 expresses

the amount of borrowing rights agent i has to buy at price pei > 0 to carry out this trade.

Hence, the return on this trade is given by 1
qs

(1− pei d
i(a)

a
).

In a Lindahl-equilibrium, the effective rate of borrowing, Ri(ωt−1), is then given for all

agents by

R̂i(a, ωt−1) =
1∑

s q̂(ω
t−1, s)

(
1− p̂ei (ω

t−1)di(a((ωt−1))

a

)
, (46)
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where a is a portfolio of state-contingent claims that pays a in every state s after history

ωt−1. Hence, for a < 0 we have 1P
s q̂s

< R̂i(a) or, equivalently, there is a positive spread

between borrowing and lending in equilibrium for agents that are constrained.14

We analyze now how interest rates in Lindahl-equilibrium compare to the ones with

first-best risk sharing in a standard Arrow-Debreu economy. There are two effects on

interest rates. First, enforcement is costly and - as shown in Koeppl (2002) - varies

over time in an optimal allocation. Hence, even though there is no aggregate risk in

the economy, total resources available for consumption in equilibrium change over time

as well. Whenever enforcement increases from one period to the next, people have an

incentive to intertemporally smooth consumption with the result that interest rates tend

to be lower.

Second, if a positive amount of resources is spent on the enforcement technology, people

share less risk in the optimal allocation than in the first-best. With our decentralization

this implies as in Alvarez and Jermann (2000) that people borrow less than in the

standard Arrow-Debreu economy. This is only compatible with equilibrium if interest

rates are relatively lower. These findings are summarized in the proposition below.

Proposition 5.1. Let ({ĉi}i∈I , d̂) be an optimal allocation. If d̂(ωt−1) ≤ d̂(ωt), then

q(ωt, s) ≥ βπs in the corresponding Lindahl-equilibrium. Otherwise,
∑

s q(ω
t, s) > β if

and only if there exists i ∈ I such that E [u′(ĉi(ωt, s))] > u′(ĉi(ωt)).

Proof. See Appendix.

This result shows that the two effects can influence interest rates in different directions.

This is the case when third-party enforcement decreases over time. Whether the risk

sharing effect or the resource effect dominates depends on the comovement of d and

individual consumption. As long as there is one person for which consumption declines in

expected terms from one period to the next, interest rates are lower than in a comparable

14Interestingly, in case a constrained agent wants to save, the interest rate for saving in a risk-free

asset is strictly lower than the one for unconstrained agents.
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Arrow-Debreu economy. The costs of borrowing for individual consumers can of course

be considerably higher due to the additional fees charged for borrowing rights.

6 Discussion

The concept of Lindahl-equilibrium is based on several implicit assumptions. The most

crucial one is the existence of agent-specific markets for the public good which seems

to be in contradiction to price-taking behavior by agents. However, one can reinterpret

having I agents as rather having I different types of agents each being a continuum with

measure one.

More importantly is the criticism that the existence of agent-specific markets requires

the exclusivity of trades in the public good. Agents are not allowed to trade on markets

that are set up specifically for another agent. This requires not only information15

about which agents trade on which markets, but also preventing agents from acquiring

the public good on the wrong market or, equivalently, for the wrong price. Hence, an

enforcement problem different from the one studied here seems to become important.

Since we assume public information about the identity of the agents, it is reasonable to

argue that the punishment technology is also used to punish agents that pay a different

than their agent-specific price for the public good. Such free-riding after a particular

history of shocks would be punished with autarky forever plus the current utility penalty.

In fact, by condition (22), the extreme case of not paying the fee at all is ruled out in

equilibrium.

15The concept of Lindahl-equilibrium has recently been applied to the literature on asymmetric in-

formation. In particular, Bisin and Gottardi (2000) have used the concept to internalize externalities

inherent in adverse selection economies. Their approach naturally relies on extending the market struc-

ture to internalize all external effects. Most interestingly, however, in their approach agents have the

choice to declare their type. Trades are required to be incentive compatible, so that agents will re-

veal their type truthfully. One could envision employing their approach here to analyze problems of

information revelation between the intermediary and the agents.
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A related issue concerns the production side of the equilibrium concept. There is a single

firm or intermediary that produces the public good taking prices on the markets for each

agent as given. Given convex costs and a linear technology to produce punishment, this

firm makes strictly positive profits whenever these prices are positive. Hence, interpret-

ing the firm as privately owned there should be entry until zero profits are made. This

criticism can be addressed by arguing that entry is prohibited and the firm is regulated

to behave as a price taker producing the public good in a profit maximizing way. This

implies that there must be a public authority or government - not modelled here - that

implements agent-specific prices on the consumption side, while giving the firm the right

incentives to produce the right quantity of the public good. We do not regard our mod-

elling choice here as an accurate description of how public goods are generally provided

for. Our analysis simply shows that it is sufficient to have a competitive intermediary

operate the technology for decentralizing optimal allocations.

Another comment concerns the ability of the intermediary to commit for one period. In

light of this assumption the enforcement problem seems not to be solved, but merely

shifted from the consumption to the production side. The problem here is not so much

default by the intermediary in the sense that he does not operate the technology once he

has received the payments from the agents; the payments and operating the technology

could be reinterpreted as direct exchanges or spot transactions after the shocks have

occurred with the punishment technology being set for next period. The real issue is

whether there is an incentive for some of the agents and the intermediary to jointly

revise the original decision concerning the punishment technology. This can be seen as

renegotiation - or even as an intermediary influenced by partial interests. One possible

way to address this issue is to model the ownership structure of the intermediary via

shares traded among agents on the asset market. Given the possibility of default by

agents, markets are incomplete. Hence, there will be a conflict between owners about

the optimal plan of the firm which implies that the proper objective of such a privately

owned firm might not be clear altogether. It would then be intriguing to analyze whether

a particular ownership structure of the intermediary could actually solve the commitment
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problem associated with operating the punishment technology.

A short-coming of the Lindahl-equilibrium concept remains that the schedule of bor-

rowing constraints is not a choice variable for the enforcement intermediary. It is left

unanswered by our work how the schedules of borrowing constraints are set and who sets

them, since the only requirement we impose is that they preclude default in equilibrium

(cf. Assumption 3.1). Even though our concept is then well short of a theory of how

borrowing constraints are set on competitive asset markets, it potentially offers a way to

endogenize the structure of these markets.

Suppose intermediaries compete by operating the punishment technology and by offer-

ing schedules of borrowing constraints. Agents choose a borrowing constraint from a

schedule thereby self-selecting how much they want to borrow and at which cost. Costs

for borrowing are different across agents, since they pay fees to relax their borrowing

constraints which are additional costs of borrowing besides interest payments. Together

with the price of a state-contingent claim - or the interest charged - they are the total

cost of going short in this claim. Whereas the price for the claim is linear, these fees are

not. Hence, borrowing takes place at non-linear prices; moreover, while prices are the

same for all agents when borrowing a certain amount, the total cost is different across

agents.

This approach has the potential to gain insights in the equilibrium structure of inter-

est rates for different levels of borrowing as well as demand and supply structures for

intertemporal borrowing. These insights will be important to shape future work that

addresses organization of financial markets. In this respect the contribution of this chap-

ter must be strictly seen as a mere starting point towards a full fledged theory of truly

endogenous borrowing constraints.
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7 Appendix

Proof of Lemma 3.4:

Proof. The proof is identical to Alvarez and Jermann (2000), but is given for complete-

ness. Let ({ci}i∈I , d) be an optimal allocation. Suppose there exists j ∈ I such that

u(cj(ωt, s)) + Et+1,s

[ ∞∑
τ≥1

βτu(cjt+1+τ )

]
> (1− dt+1)

[
u(yj(ωt, s)) + βVaut

]

but condition (29) does not hold. Then there exists some i ∈ I with a strictly higher

intertemporal marginal rate of substitution than j. Since for agent j the ex post incentive

compatibility constraint is not binding for (ωt, s), we can decrease cj(ωt, s) and increase

cj(ωt) slightly so as to keep her overall continuation utility after history ωt constant.

If we decrease ci(ωt) and increase ci(ωt, s) by the corresponding amounts, we increase

agent i’s overall expected utility given ωt since his marginal rate of substitution is strictly

higher than j’s. Since this does not violate the ex-post incentive feasibility constraints

for ωt nor (ωt, s), the allocation can not be optimal. A contradiction.

Proof of Lemma 3.5:

Proof. Let µi(ωt, s) = 0 for all s for some i. Then, the first-order necessary condition

(22) reduces to
∑
s∈S

πsβu
′(ci(ωt, s))pei (ω

t) = 0.

Using the fact that u′(ci(ωt, s)) > 0, it follows that pei (ω
t) = 0 for all s.

Proof of Theorem 3.7:

Proof. The proof is by construction. Let ({ĉi}i∈I , d̂) be an optimal allocation. De-

fine the security price process q̂ by equation (33) and define further Q̂t(ω
t+τ |ωt) =
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q̂(ωt, s) · . . . · q̂(ωt+τ−1, s) for τ > 0. Next, given the optimal allocation and asset

prices q̂ we use equation (35) to define agent-specific prices p̂ei .

Claim: For the process of asset prices q̂ and agent-specific prices {p̂ei}i∈I , the solution to

the problem of the enforcement intermediary is d̂(ωt) for all ωt.

There exists some j ∈ I for whom constraint (4) does not bind for the optimal allocation.

Then, from the first-order necessary condition (8) at ωt and (ωt, s) for agent j and the

definition of asset prices we obtain

βπsu
′(ĉi(ωt, s))

u′(ĉi(ωt))
= q̂(ωt, s) =

λ(ωt, s)

λ(ωt)
.

Hence, for any agent i we again obtain from the first-order necessary condition of opti-

mality (8) at ωt and (ωt, s) for the price p̂ei

p̂ei (ω
t) =

=

∑
s∈S [βπsu

′(ci(ωt, s))− u′(ci(ωt))q(ωt, s)] −[u(yis)+βVaut]
u′(ci(ωt,s))∑

s∈S u
′(ci(ωt))q(ωt, s)

=
∑
s∈S

−[u(yis) + βVaut]

u′(ci(ωt, s))
1

u′(ci(ωt))
(∑

s∈S q(ω
t, s)

) (−1)ξ̃i(ωt, s)βπsu
′(ci(ωt, s))

[νi +
∑

ωτ≺ωt ξ̃
i(ωτ )]

=
∑
s∈S

[u(yis) + βVaut]ξ̃
i(ωt, s)βt+1π(ωt+1)

βtπ(ωt)u′(ci(ωt))
(∑

s∈S q(ω
t, s)

)
[νi +

∑
ωτ≺ωt ξ̃

i(ωτ )]

=
∑
s∈S

[u(yis) + βVaut]ξ
i(ωt, s)(∑

s∈S q(ω
t, s)

)
λ(ωt)

=

∑
s∈S ξ

i(ωt, s)[u(yis) + βVaut]∑
s∈S λ(ωt, s)

.

Summing agent-specific prices over all agents i we obtain from equation (9) that

∑
i∈I

p̂ei (ω
t) = ψ′(d̂(ωt))

which shows that condition (11) holds. Hence, given agent-specific prices p̂ei (ω
t) the in-

termediary produces d̂(ωt).
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To prove that the optimal allocation is a solution to the agent’s problem, let the process

of asset holdings of agent i be given by the difference of the present value of consumption

net of endowment including profits and net of fees for enforcement, i.e.,

âi(ωt) = ĉi(ωt)−
(
yi(ωt)− p̂ei (ωt−1)d̂(ωt−1) +

Θ̂t(ω
t−1)

#I

)
+

∑
τ>t

∑

ωτ∈(Ωτ |ωt)
Q̂t(ω

τ |ωt)
[
ĉi(ωτ )−

(
yi(ωτ )− p̂ei (ωτ−1)d̂(ωτ−1) +

Θ̂t(ω
τ−1)

#I

)]

for all t > 0 and ωt ∈ Ωt.

For now we define the schedules of borrowing constraints as linear decreasing functions

on the interval [0, 1] for all (ωt, s). Define the slope of these functions by equation (32)

or

B′i(d
i(ωt), (ωt, s)) =

1

u′(ci(ωt, s))
.

Define the intercept of these functions as follows:

• If the ex post incentive compatibility constraint is binding for agent i in state

(ωt, s), let

Bi(d̂
i(ωt), (ωt, s)) = âi(ωt, s)− p̂ei (ωt)d̂(ωt) +

Θ̂t+1(ωt)

#I
.

• Otherwise, let

Bi(d̂
i(ωt), (ωt, s)) =

−
∑
τ>t

∑

ωτ∈(Ωτ |ωt)
Q̂t(ω

τ |ωt)
(
yi(ωτ )− p̂ei (ωτ−1)d(ωτ−1) +

Θ̂t(ω
τ−1)

#I

)

Similarly, it is straightforward to define initial borrowing schedules, asset portfolios and

agent-specific fees such that the restrictions on the initial conditions of Definition 3.2 are

fulfilled and d̂0 satisfies equation (16).
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Claim: The processes for consumption, asset holdings and borrowing rights (ĉi, âi, d̂i),

where d̂i = d̂, are a solution to agent i’s problem given the security price process q̂ and

the process of agent-specific fees p̂ei .

First note that by construction the borrowing constraints are binding for agents with

binding ex post incentive compatibility constraints. Also, since ĉi(ωt) > 0 for all ωt for

any optimal allocation, the borrowing constraints are otherwise not binding. Also, given

the definition of asset holdings, asset prices and agent-specific prices, for every agent i

(ĉi, âi, d̂i) is feasible.

Next, by Lemma 3.4 and the definition of q̂, the intertemporal Euler equation given by

equation (25) is satisfied since

πsβu
′(ĉi(ωt, s))

u′(ĉi(ωt))
≤ q̂(ωt, s)

with strict inequality for agents where the ex post incentive compatibility constraint is

binding in state (ωt, s).

Next, by the definition of p̂ei and the construction of the schedules of borrowing con-

straints, d̂i = d̂ satisfies the first-order necessary condition (26) for every agent i that

is borrowing constrained for some state. Also note that unconstrained agents have

p̂ei (ω
t) = 0 and, hence, are indifferent between any choice of di. We assume that their

demand is given by d̂i = d̂.

Since the intertemporal Euler equation together with the transversality condition (28) is

sufficient for optimality, we are left to check the latter one. If the borrowing constraint

is binding for agent i after some history of shocks, ŵi(ωt)−Bi(d̂
i(ωt−1), ωt) = 0.

Otherwise, by iterating forward and using the definition of Bi(d̂
i(ωt−1), ωt), we have that

ŵi(ωt)−Bi(d̂
i(ωt−1), ωt) =

∑
τ≥t

∑

ωτ∈(Ωτ |ωt)
Q̂t(ω

τ |ωt)ĉi(ωτ ),
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where Q̂t(ω
t, ωt) ≡ 1. Thus,

lim
t→∞

∑

ωt∈(Ωt|ω0)

π(ωt|ω0)βtu′(ĉi(ωt))[ŵi(ωt)−Bi(d̂
i(ωt−1), ωt)]

≤ lim
t→∞

∑

ωt∈(Ωt|ω0)

π(ωt|ω0)βtu′(ĉi(ωt))
∑
τ≥t

∑

ωτ∈(Ωτ |ωt)
Q̂t(ω

τ |ωt)ĉi(ωτ )

≤ Y lim
t→∞

∑

ωt∈(Ωt|ω0)

π(ωt|ω0)βtu′(ĉi(ωt))
∑
τ≥t

∑

ωτ∈(Ωτ |ωt)
Q̂t(ω

τ |ωt)

≤ Y u′(ĉi(ω0)) lim
t→∞

∑

ωt∈(Ωt|ω0)

Q̂0(ωt|ω0)
∑
τ≥t

∑

ωτ∈(Ωτ |ω0)

Q̂t(ω
τ |ω0)

≤ Y u′(ĉi(ω0)) lim
t→∞

∑
τ≥t

∑

ωτ∈(Ωτ |ω0)

Q̂0(ωτ |ω0)

= 0

for all ω0, where we use feasibility, i.e., ĉi(ωt) ≤ Y for all ωt, the fact that

Q̂0(ωt|ω0) ≥ π(ωt|ω0)βtu′(ĉi(ωt))
u′(ĉi(ω0))

which follows from iterating on the Euler equation, and, finally, the assumption that

implied interest rates are high, which implies that

lim
t→∞

∑
τ≥t

∑

ωτ∈(Ωτ |ω0)

Q̂0(ωτ |ω0) = 0.

Hence,

lim
t→∞

E0

[
βtλit(w

i
t −Bi,t(d

i))
]

=
∑
ω0

π(ω0)


Y u′(ĉi(ω0)) lim

t→∞

∑
τ≥t

∑

ωτ∈(Ωτ |ω0)

Q̂0(ωτ |ω0)


 = 0

and the transversality condition is fulfilled.

Since markets clear by construction, we are to satisfy the last condition in Definition

3.2 that the borrowing constraints are not too tight. We construct first the functions

{J0
t }∞t=0 given security price process q̂, agent-specific prices p̂ei and the functions for

Bi(d
i(ωt), (ωt, s)) we defined earlier. We then adjust the schedules of borrowing con-

straints and iterate until convergence to condition (22). We distinguish here the two
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cases of binding and non-binding borrowing constraints.

Whenever the ex post incentive compatibility constraint for agent i is binding in state

(ωt, s), Bi(d̂
i(ωt), (ωt, s)) = ŵi(ωt, s) and, hence,

J0
t+1(Bi(d̂

i(ωt), (ωt, s)) = J0
t+1(ŵi(ωt, s), (ωt, s))

= (1− d̂(ωt))[u(yis) + βVaut].

Since Bi(d̂
i(ωt), (ωt, s)) is linear and strictly decreasing in di(ωt), J0

t+1 is also a strictly

decreasing and strictly concave function of di(ωt) with Bi(d̂
i(ωt), (ωt, s) being the tangent

at d̂i. Hence, there exists d̄i(ωt) ∈ (d̂i(ωt), 1) such that

J0
t+1(Bi(d̄

i(ωt), (ωt, s))) = 0.

This allows us to construct J0
t+1 for all wealth levels greater than Bi(d̄

i(ωt), (ωt, s)). For

wealth levels corresponding to di(ωt) > d̄i(ωt) the function J0
t+1(Bi(d

i(ωt), (ωt, s))) is not

defined.

Note that, by the previous claim, (ĉi, âi, d̂i) are solutions to agent i’s problem and, hence,

are solutions for {J0
t }∞t=0 given initial asset holdings ai0 and the choice of di(ωt) being

restricted to the interval [0, d̄i].

Define then a new schedule of borrowing constraints B1
i (·) by

J0
t+1(B1

i (d
i(ωt), (ωt, s))) = (1− di(ωt))[u(yis) + βVaut]

for all di ∈ [0, d̄i]. Clearly, B1
i (·) is a strictly decreasing and strictly convex function on

[0, d̄i] being tangent to J0
t+1 at d̂i. Then, there exists d̄i,1(ωt) > d̄i such that

J0
t+1(B1

i (d̄
i,1(ωt), (ωt, s))) = 0.

For the case where the ex post incentive compatibility constraint is not binding, note

that

J0
t+1(Bi(d̂

i(ωt, s), (ωt, s))) = 0 < (1− d̂(ωt))[u(yis) + βVaut],
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since d̂i(ωt) < 1 for all ωt and borrowing up to the net present value of future endowment

net of taxes implies that future consumption will be equal to 0. We can then construct

the function J0
t+1 for wealth levels greater than Bi(d̂

i(ωt, s), (ωt, s))). Next, we define

new schedules of borrowing constraints and new cut-off levels d̄i as for the other case.

Since ŵi(ωt, s) ≥ B1
i ((d̂

i(ωt, s), (ωt, s)), (ĉi, âi, d̂i) are still feasible given the initial asset

holdings and, hence, optimal. We can then construct new functions {J1
t }∞t=0 for the price

process q̂ and p̂ei , the new process of borrowing constraints B1
i (·) and the new cut-off

values for d̄i1. Iterating until convergence yields borrowing schedule B̂i(·) and a cut-off

value d̄i = 1 such that

Jt+1(B̂i(d
i(ωt), (ωt, s))) = (1− di(ωt))[u(yis) + βVaut]

for all di ∈ [0, 1]. This completes the proof.

Proof of Theorem 4.2:

Proof. Let {ĉi, d̂i}i∈I be a Lindahl-equilibrium. Hence, d̂i = d̂ for all i. Then, given

the borrowing constraints are not too tight, the allocation satisfies the participation

constraints (40). Next, define the pricing functional p0 by equation (44) and agent-

specific prices for every agent i by equation (45).

Given {p̃ei}i∈I , we first show that d̂ solves the intermediary’s problem. From the defi-

nition of the implied Arrow-Debreu prices q0(ωt, s) and the fact that the participation

constraints are binding if and only if the corresponding borrowing constraints are bind-

ing, it follows that p̃ei (ω
t) = p̂ei for all i ∈ I and ωt. Since the first-order necessary

conditions for the intermediary’s problem are identical to equation (11), d̂ maximizes

profits.
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Next, the Lagrangian function of agent i is given by

L(ci, di, λ0, η
i) = E0

[ ∞∑
t=0

βtu(cit)|ω0

]
+ λ0

[
wi0 + p0(yi +

Θ

#I
)− p0(ci + p̃eid

i)

]

+
∞∑
t=0

∑

ωt∈Ωt|ω0

βtπ(ωt|ω0)ηi(ωt)

[
u(ci(ωt−1, s)) + Et

[ ∞∑
τ=1

βτu(ciτ )

]
− (1− di(ωt−1))[u(yis) + βVaut]

]

where ηi is the process of Lagrange multipliers on the participation constraints of agent

i. For any given process ci define now λ0 by

λ0 = u′(ci(ω0)).

Furthermore, let the multipliers ηi(ωt, s) be given recursively by

βt+1π((ωt, s)|ω0)u′(ci(ωt, s))


1 +

∑

ωτ≺(ωt,s)

ηi(ωτ )

βτπ(ωτ |ω0)


 = λ0Q0((ωt, s)|ω0)

with ηi(ω0) ≡ 0. Thus, by construction for any given process ci, the Lagrange multipliers

minimize the function L.

We then verify that - given a choice for ci - the definition of agent specific prices p̃ei fulfills

the first-order necessary condition of L with respect to di. The first-order necessary

condition of the Lagrangian L with respect to di(ωt) is given by

p̃ei (ω
t) =

∑
s∈S −ηi(ωt, s)[u(yis) + βVaut]

λ0

∑
s∈S Q0((ωt, s)|ω0)

.

From the definition of q0(ωt, s) and ηi(ωt, s) we have that

λ0Q0((ωt, s)|ω0) = q0(ωt, s)βtπ(ωt|ω0)u′(ci(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
,

where η̃i(ωt) ≡ ηi(ωt)
βtπ(ωt|ω0)

and

q0(ωt, s)u′(ci(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
= βπsu

′(ci(ωt, s))


1 +

∑

ωτ≺(ωt,s)

η̃i(ωτ )


 .

Using the last two expression in the first-order necessary condition for di(ωt) confirms

that the definition of p̃ei is consistent with the definition of the Lagrange multipliers.
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From the definition of ηi(ωt) and the assumption that interest rates are high, we have

∞∑
t=0

∑

ωt∈Ωt|ω0

βtπ(ωt|ω0)ηi(ωt)

[
u(ci(ωt−1, s)) + Et

[ ∞∑
τ=1

βτu(ciτ )

]]
=

=
∞∑
t=0

∑

ωt∈Ωt|ω0

λ0Q0(ωt|ω0)
u(ci(ωt))

u′(ci(ωt))

≤ λ0

∞∑
t=0

∑

ωt∈Ωt|ω0

Q0(ωt|ω0)ci(ωt)

<∞

where the weak inequality follows from the concavity of u and the fact that u is bounded

below. Furthermore,

∞∑
t=0

∑

ωt∈Ωt|ω0

βtπ(ωt|ω0)ηi(ωt)(1− di(ωt−1))[u(yis) + βVaut] ≤

≤
∞∑
t=0

∑

ωt∈Ωt|ω0

βtπ(ωt|ω0)ηi(ωt)

[
u(ci(ωt−1, s)) + Et

[ ∞∑
τ=1

βτu(ciτ )

]]

<∞

and all other terms of the Lagrangian L are finite which allows us to exchange the order

of summation in the definition of the Lagrangian L.

This allows us to prove that (ĉi, d̂i) are optimal given the definitions of prices and mul-

tipliers. Dropping constant terms from the Lagrangian, using the definition of p0 and p̃ei
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as well as collecting terms we obtain

∞∑
t=0

∑

ωt∈Ωt|ω0

(
βtπ(ωt|ω0)u(ci(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
− λ0Q0(ωt|ω0)

(
ci(ωt) + p̃ei (ω

t−1)di(ωt−1)
)

+

+ ηi(ωt−1, s)di(ωt−1)[u(yis) + βVaut]

)
=

∞∑
t=0

∑

ωt∈Ωt|ω0

(
βtπ(ωt|ω0)u(ci(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
− λ0Q0(ωt|ω0)ci(ωt)

)
−

−
∞∑
t=0

∑

ωt∈Ωt|ω0

di(ωt−1)
(
ηi(ωt−1, s)[u(yis) + βVaut]− λ0Q0((ωt−1, s)|ω0)p̃ei (ω

t−1)
)

=

∞∑
t=0

∑

ωt∈Ωt|ω0

(
βtπ(ωt|ω0)u(ci(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
− λ0Q0(ωt|ω0)ci(ωt)

)
−

−
∞∑
t=0

∑

ωt−1∈Ωt−1|ω0

di(ωt−1)
∑
s∈S

(
ηi(ωt−1, s)[u(yis) + βVaut]− λ0Q0((ωt−1, s)|ω0)p̃ei (ω

t−1)
)

=

∞∑
t=0

∑

ωt∈Ωt|ω0

(
βtπ(ωt|ω0)u(ci(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
− λ0Q0(ωt|ω0)ci(ωt)

)
.

Finally, using the fact that u′(ĉi(ωt)) ≥ u(ci(ωt))−u(ĉi(ωt))
ci(ωt)−ĉi(ωt) , which follows from the concavity

of u, and the definition of the multipliers ηi, the optimality of (ĉi, d̂i) follows since

∞∑
t=0

∑

ωt∈Ωt|ω0

(
βtπ(ωt|ω0)u(ci(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
− λ0Q0(ωt|ω0)ci(ωt)

)
≤

∞∑
t=0

∑

ωt∈Ωt|ω0

βtπ(ωt|ω0)

[
u(ĉi(ωt) + u′(ĉi(ωt))[ci(ωt)− ĉi(ωt)]

] [
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
−

− λ0

∞∑
t=0

∑

ωt∈Ωt|ω0

Q0(ωt|ω0)ci(ωt) =

∞∑
t=0

∑

ωt∈Ωt|ω0

βtπ(ωt|ω0)u(ĉi(ωt))

[
1 +

∑

ωτ≺ωt
η̃i(ωτ )

]
− λ0

∞∑
t=0

∑

ωt∈Ωt|ω0

Q0(ωt|ω0)ĉi(ωt).

Proof of Proposition 5.1:
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Proof. Suppose d̂(ωt−1) ≤ d̂(ωt). Then, from resource feasibility it follows for all s ∈ S
that

∑
i∈I ĉ

i(ωt) ≥∑
i∈I ĉ

i(ωt, s). Hence, for all s ∈ S, there exists j ∈ I with u′(ĉj(ωt,s))
u′(ĉj(ωt)) ≥

1. From equation (33) it follows immediately that

q(ωt, s) ≥ βπs
u′(ĉj(ωt, s))
u′(ĉj(ωt))

≥ βπs.

The second part of the proof follows directly from summing equation (33) over s ∈ S.
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