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Abstract

We propose a new methodology for structural estimation of dynamic dis-
crete choice models. We combine the Dynamic Programming (DP) solution
algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a sin-
gle algorithm that solves the DP problem and estimates the parameters si-
multaneously. As a result, the computational burden of estimating a dynamic
model becomes comparable to that of a static model. Another feature of our
algorithm is that even though per solution-estimation iteration, the number of
grid points on the state variable is small, the number of effective grid points
increases with the number of estimation iterations. This is how we help ease
the "Curse of Dimensionality". We simulate and estimate several versions of
a simple model of entry and exit to illustrate our methodology. We also prove
that under standard conditions, the parameters converge in probability to the
true posterior distribution, regardless of the starting values.
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1 Introduction

Structural estimation of Dynamic Discrete Choice (DDC) models has become increas-
ingly popular in empirical economics. Examples include Keane and Wolpin (1997)
in labor economics, Erdem and Keane (1995) in marketing, Imai and Krishna (2004)
on crime and Rust (1987) in empirical industrial organization. Structural estimation
is appealing for at least two reasons. First, it captures the dynamic forward-looking
behavior of individuals, which is very important in understanding agents’ behavior in
various settings. For example, in labor market, individuals carefully consider future
prospects when they switch occupations. Secondly, since the estimation is based on
explicit solution of a structural model, it avoids the Lucas Critique. Hence, after the
estimation, policy experiments can be relatively straightforwardly conducted by sim-
ply changing the estimated value of “policy” parameters and simulating the model to
assess the change. However, one major obstacle in adopting the structural estimation
method has been its computational burden. This is mainly due to the following two
reasons.
First, in dynamic structural estimation, the likelihood or the moment conditions

are based on the explicit solution of the dynamic model. In order to solve a dynamic
model, we need to compute the Bellman equation repeatedly until the calculated
expected value function converges. Second, in solving the Dynamic Programming
(DP) Problem, the Bellman equation has to be solved at each possible point in the
state space. The possible number of points in the state space increases exponentially
with the increase in the dimensionality of the state space. This is commonly referred
to as the “Curse of Dimensionality”, and makes the estimation of the dynamic model
infeasible even in a relatively simple setting.
In this paper, we propose an estimator that helps overcome the two computational

difficulties of structural estimation. Our estimator is based on the Bayesian Markov
Chain Monte Carlo (MCMC) estimation algorithm, where we simulate the posterior
distribution by repeatedly drawing parameters from a pseudo-Markov Chain until
convergence. In contrast to the conventional MCMC estimation approach, we com-
bine the Bellman equation step and the MCMC algorithm step into a single hybrid
solution-estimation step, which we iterate until convergence. The key innovation in
our algorithm is that for a given state space point, we need to solve the Bellman equa-
tion only once between each estimation step. Since evaluating a Bellman equation
once is as computationally demanding as computing a static model, the computa-
tional burden of estimating a DP model is in order of magnitude comparable to that
of estimating a static model1.
Furthermore, since we move the parameters according to the pseudo-MCMC al-

gorithm after each Bellman step, we are “estimating” the model and solving for the
DP problem at the same time. This is in contrast to conventional estimation methods
that “estimate” the model only after solving the DP problem. In that sense, our es-
timation method is related to the algorithm advocated by Aguirreagabiria and Mira

1Ferrall (2005) also considers optimal mix of model solution and estimation algorithms.
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(2001), Kasahara and Shimotsu (2005), which are an extension of the method devel-
oped by Hotz and Miller (1993), and Hotz, Miller, Sanders and Smith (1994). They
propose to iterate the Bellman equation only once before constructing the likelihood.
The estimation strategy, which is not based on the full solution of the model, has had
difficulties dealing with unobserved heterogeneity. This is because this estimation
method essentially recovers the value function from the observed choices of people
at each point of the state space. But if there are unobserved heterogeneities, the
state space points are unobservable in the data. In contrast to the above estimation
algorithm, our estimation algorithm is based on the full solution of the dynamic pro-
gramming problem, hence can account for a variety of unobservable heterogeneities.
But we only need to solve the Bellman equation once between each estimation step.2

Specifically, we start with an initial guess of the expected value function (emax
function). We then evaluate the Bellman equation for each state space point, if
the number of state space points is finite, or for a subset of the state space grid
points if the state space is continuous. We then use Bayesian MCMC to update the
parameter vector. We update the emax function for a state space point by averaging
with those past iterations in which the parameter vector is “close” to the current
parameter vector and the state variables are either exactly the same as the current
state variables (if the state space is finite) or close to the current state variables (if
the state space is continuous). This method of updating the emax function is similar
to Pakes and McGuire (2001) except in the important respect that we also include
the parameter vector in determining the set of iterations over which averaging occurs.
Our algorithm also helps in the ‘the Curse of Dimensionality’ situation where

the dimension of the state space is high. In most DP solution exercises involving a
continuous state variable, the state space grid points, once determined, are fixed over
the entire algorithm, as in Rust (1997). In our Bayesian DP algorithm, the state
space grid points do not have to be the same for each solution-estimation iteration.
In fact, by varying the state space grid points at each solution-estimation iteration,
our algorithm allows for an arbitrarily large number of state space grid points by
increasing the number of iterations. This is how our estimation method reduces the
computational burden in high dimensional cases.
The main reason behind the computational advantage of our estimation algo-

rithm is the use of information obtained from past iterations. In the conventional
solution-estimation algorithm, at iteration t, most of the information gained in all
past estimation iterations remains unused, except for the iteration t − 1 likelihood
and its Jacobian and Hessian in Classical ML estimation, and MCMC transition func-
tion in Bayesian MCMC estimation. In contrast, we extensively use the vast amount

2In contrast to Ackerberg (2004), where the entire DP problem needs to be solved for each
parameter simulation, in our algorithm, the Bellman equation needs to be computed only once for
each parameter value. Furthermore, there is an additional computational gain because our pseudo-
MCMC algorithm guarantees that except for the initial burn-in simulations, most of the parameter
draws are from a distribution close to the true posterior distribution. In Ackerberg’s case, the initial
parameter simulation and therefore the DP solution would be inefficient because at the initial stage,
true parameter distribution is not known.
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of computational results obtained in past iterations, especially those that are helpful
in solving the DP problem. However, notice that if we use information on past iter-
ations to update parameters, then the probability function that determines the next
period parameter values is not a Markov transition function any more. We prove that
under mild conditions, the probability function converges to the true MCMC tran-
sition function as we keep iterating the Bayesian MCMC algorithm. Hence, as the
number of iterations increase, then our algorithm will become closer to the standard
MCMC algorithm.
We demonstrate the performance of our algorithm by estimating a dynamic model

of firm entry and exit choice with observed and unobserved heterogeneities. The un-
observed random effects coefficients are assumed to have a continuous distribution
function, and the observed characterisitcs are assumed to be continuous as well. It
is well known that for a conventional Dynamic Programming Simulated Maximum
Likelihood estimation strategy, this setup imposes a severe computational burden.
The computational burden is due to the fact that during each estimation step, the
DP problem has to be solved for each firm hundreds of times. Because of the ob-
served heterogeneity, each firm has a different parameter value, and furthermore,
because the random effects term has to be integrated out numerically via Monte-
Carlo integration, for each firm, one has to simulate the random effects parameter
hundreds of times, and for each simulation, solve for the DP problem. This is why
most practitioners of structural estimation follow Heckman and Singer (1984) and
assume discrete distributions for random effects and only allow for discrete types as
observed characteristics.
We show that using our algorithm, the above estimation exercise becomes one

that is computationally quite similar in difficulty to the Bayesian estimation of a
static discrete choice model with random effects (see McCullogh and Rossi (1994) for
details), and thus is feasible. Indeed, though simulation/estimation exercises we show
that the computing time for our estimation exercise is around 8 times as fast and sig-
nificantly more accurate than the conventional Random Effects Simulated Maximum
Likelihood estimation algorithm. In addition to the experiments, we formally prove
that under very mild conditions, the distribution of parameter estimates simulated
from our solution-estimation algorithm converges to the true posterior distribution in
probability as we increase the number of iterations.
Our algorithm shows that the Bayesian methods of estimation, suitably modified,

can be used effectively to conduct full solution based estimation of structural dynamic
discrete choice models. Thus far, application of Bayesian methods to estimate such
models has been particularly difficult. The main reason is that the solution of the
DP problem, i.e. the repeated calculation of the Bellman equation is computationally
so demanding that the MCMC, which typically involves far more iterations than the
standard Maximum Likelihood routine, quickly becomes infeasible with a relatively
small increase in model complexity. One of the few examples of Bayesian estimation
is Lancaster (1997). He successfully estimates the equilibrium search model where
the Bellman equation can be transformed into an equation where all the information

4



on optimal choice of the individual can be summarized in the reservation wage, and
hence, there is no need for solving the value function. Another example is Geweke
and Keane (1995) who estimate the DDC model without solving the DP problem. In
contrast, our paper accomplishes Bayesian estimation based on full solution of the DP
problem by simultaneously solving for the DP problem and iterating on the pseudo-
MCMC algorithm. The difference turns out to be important because the estimation
algorithms that are not based on the full solution of the model can only accomodate
limited specification of unobserved heterogeneities.
Our estimation method not only makes Bayesian application to DDC models

computationally feasible, but possibly even superior to the existing (non-Bayesian)
methods, by reducing the computational burden of estimating a dynamic model to
that of estimating a static one. Furthermore, the usually cited advantages of Bayesian
estimation over classical estimation methods apply here as well. That is, first, the
conditions for the convergence of the pseudo-MCMC algorithm are in general weaker
than the conditions for the global maximum of the Maximum Likelihood (ML) esti-
mator, as we show in this paper. Second, in MCMC, standard errors can be derived
straightforwardly as a byproduct of the estimation routine, whereas in ML estima-
tion, standard errors have to be computed usually either by inverting the numerically
calculated Information Matrix, which is valid only in a large sample world, or by
repeatedly bootstrapping and reestimating the model, which is computationally de-
manding.3

The organization of the paper is as follows. In Section 2, we present a general
version of the DDC model and discuss conventional estimation methods as well as our
Bayesian DP algorithm. In Section 3, we prove convergence of our algorithm under
some mild conditions. In Section 4, we present a simple model of entry and exit. In
Section 5, we present the simulation and estimation results of several experiments
applied to the model of entry and exit. Finally, in Section 6, we conclude and briefly
discuss future direction of this research. The Appendix contains all proofs.

2 The Framework

Let θ be the J dimensional parameter vector. Let S be the set of state space points
and let s be an element of S. We assume that S is finite. Let A be the set of all
possible actions and let a be an element of A. We assume A to be finite to study
discrete choice models.
The value of choice a at parameter θ and state vector s is,

V(s, a, a, θ) = U(s, a, a, θ) + βE 0 [V (s0, 0, θ)] (1)

3Osborne (2006) has applied the Bayesian DP algorithm to the estimation of the dynamic discrete
choice model with random effects, and estimated the dynamic consumer brand choice model. Norets
(2006) applied it to the DDC model with serially correlated state variables. We follow them in
adopting the modified Metropolis-Hastings algorithm for the MCMC sampling instead of Gibbs
sampler used in the earlier draft.
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where s0 is the next period’s state variable, U is the current return function. is a
vector whose a th element a is a random shock to current returns to choice a. Finally,
β is the discount factor. We assume that follows a multivariate distribution F ( |θ),
which is independent over time. The expectation is taken with respect to the next
period’s shock 0. We assume that the next period’s state variable s0 is a deterministic
function of the current state variable s, current action a, and parameter θ 4. That is,

s0 = s0(s, a, θ).

The value function is defined to be as follows.

V (s, , θ) = max
a∈A

V(s, a, a, θ)

We assume that the dataset for estimation includes variables which correspond
to state vector s and choice a in our model but the choice shock is not observed.
That is, the observed data is YN,T ≡

©
sdi,τ , a

d
i,τ , F

d
i,τ

ªN,T

i=1,τ=1
5, where N is the number

of firms and T is the number of time periods. Furthermore,

adi,τ = argmax
a∈A

V(sdi,τ , a, a, θ)

F d
i,τ = U(sdi,τ , a

d
i,τ , adi,τ

, θ) if
¡
sdi,τ , a

d
i,τ

¢ ∈ Ψ

0 otherwise.

The current period return is observable in the data only when the pair of state and
choice variables belongs to the set Ψ. In the entry/exit problem of firms that we
discuss later, profit of a firm is only observed when the incumbent firm stays in. In
this case, Ψ is a set whose state variable is being an incumbent (and the capital stock)
and the choice variable is staying in.
Let π() be the prior distribution of θ. Furthermore, let L(YN,T |θ) be the likeli-

hood of the model, given the parameter θ and the value function V (., ., θ), which is
the solution of the DP problem. Then, we have the following posterior distribution
function of θ.

P (θ|YN,T ) ∝ π(θ)L(YN,T |θ). (2)

Let ² ≡ { i,τ}N,T
i=1,τ=1. Because ² is unobserved to the econometrician, the likelihood is

an integral over it. That is, if we define L(YN,T |², θ) to be the likelihood conditional
on (², θ), then,

L(YN,T |θ) =
Z

L(YN,T |², θ)dF (²|θ).
The value function enters in the likelihood through choice probability, which is a
component of the likelihood. That is,

P
£
a = adi,τ |sdi,τ , V, θ

¤
= Pr

∙ba,i,τ : adi,τ = argmax
a∈A

V(sdi,τ , a,ba,i,τ , θ)¸
4This is a simplifying assumption for now. Later in the paper, we study random dynamics as

well.
5We denote any variables with d superscript to be the data.
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Below we briefly describe the conventional estimation approaches and then, the
Bayesian dynamic programming algorithm we propose.

2.1 The Maximum Likelihood Estimation

The conventional ML estimation procedure of the dynamic programming problem
consists of two main steps. First is the solution of the dynamic programming problem
and the subsequent construction of the likelihood, which is called “the inner loop”
and second is the estimation of the parameter vector, which is called “the outer loop”.

1. Dynamic Programming Step (Inner Loop): Given parameter vector θ, we
solve the Bellman equation, given by equation 1. This typically involves several
steps.

(a) First, the random choice shock, is drawn a fixed number of times, say,M ,
generating (m),m = 1, ...,M . At iteration 0, set initial guess of the value
function to be, for example, zero. That is, V (0)(s, (m), θ) = 0 for every
s ∈ S, (m). We also let the expected value function (Emax function) to
be zero, i.e., E 0

£
V (0)(s, 0, θ)

¤
= 0 for every s ∈ S.

(b) Assume we are at iteration t of the DP algorithm. Given s ∈ S and (m),
the value of every choice a ∈ A is calculated. For the Emax function, we use
the approximated expected value function bE 0

£
V (t−1)(s0, 0, θ)

¤
computed

at the previous iteration t−1 for every s0 ∈ S. Hence, the iteration t value
of choice a is,

V(t)(s, a, (m)
a , θ) = U(s, a, (m)

a , θ) + β bE 0
£
V (t−1)(s0, 0, θ)

¤
.

Then, we compute the value function,

V (t)(s, (m), θ) = max
a∈A

V(t)(s, a, (m)
a , θ). (3)

The above calculation is done for every s ∈ S and (m), m = 1, ...,M .

c. The approximation for the expected value function is computed by taking
the average of value functions over simulated choice shocks as follows.

bE 0
£
V (t)(s0, 0, θ)

¤ ≡ 1

M

MX
m=1

V (t)(s0, (m), θ) (4)

Steps b) and c) have to be done repeatedly for every state space point
s ∈ S. Furthermore, all three steps have to be repeated until the value
function converges. That is, for a small δ > 0,¯̄

V (t)(s, (m), θ)− V (t−1)(s, (m), θ)
¯̄
< δ

for all s ∈ S and m = 1, ..,M .
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2. Likelihood Construction

The important increment of the likelihood is the conditional choice proba-
bility P

£
a = adi,τ |sdi,τ , V, θ

¤
given the state sdi,τ , value function V and the para-

meter θ. For example, suppose that the per period return function is specified
as follows.

U(s, a, (m)
a , θ) = eU(s, a, θ) + (m)

a ,

where eU(s, a, θ) is the deterministic component of the per period return func-
tion. Also, denote, eV(s, a, θ) = eU(s, a, θ) + β bE 0 [V (s0, 0, θ)]

to be the deterministic component of the value of choosing action a. Then,

P
£
adi,τ |sdi,τ , V, θ

¤
= P

h
a − adi,τ

≤ eV(s, adi,τ , θ)− eV(s, a, θ);∀a 6= adi,τ |sdi,τ , V, θ
i

which becomes a multinomial probit specification when the error term is as-
sumed to follow a joint normal distribution.

3. Likelihood Maximization routine (Outer Loop)

Supppose we have K parameters to estimate. In a typical Maximum Likelihood
estimation routine, where one uses Newton hill climbing algorithm, at iteration
t, likelihhood is derived under the original parameter vector θ(t) and under the
perturbed parameter vector θ(t) +∆θj, j = 1, ..., K. The perturbed likelihood
is used together with the original likelihood to derive the new direction of the
hill climbing algorithm. This is done to derive the parameters for the iteration
t + 1, θ(t+1). That is, during a single ML estimation routine, the DP problem
needs to be solved in full K + 1 times. Furthermore, often the ML estimation
routine has to be repeated many times until convergence is achieved. During
a single iteration of the maximization routine, the inner loop algorithm needs
to be executed at least as many times as the number of parameters plus one.
Since the estimation requires many iterations of the maximization routine, the
entire algorithm is usually computationally extremely burdensome.

2.2 The conventional Bayesian MCMC estimation

A major computational issue in Bayesian estimation method is that the posterior
distribution, given by equation 2, is a high-dimensional and complex function of
the parameters. Instead of directly simulating the posterior, we adopt the Markov
Chain Monte Carlo (MCMC) strategy and construct a transition density from current
parameter θ to the next iteration parameter θ0, f (θ, θ0), which satisfies, among other
more technical conditions, the following equality.

P (θ|YN,T ) =

Z
f (θ, θ0)P (θ0|YN,T ) dθ

0
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We simulate from the transition density the sequence of parameters
n
θ(s)
ot
s=1

, which

is known to converge to the correct posterior.
The conventional Bayesian estimation method applied to the DDCmodel proceeds

in the following three main steps.
Metropolis-Hastings (M-H) Step: The Metropolis-Hastings algorithm is a

Markov Chain simulation algorithm used to draw from a complex target distribution.
See Robert and Casella (2004) for more details on the M-H algorithm. In our case,
the traget density is proportional to π(θ)L(YN,T |θ). Given θ(t), the parameter vector
at iteration t, draw the new parameter vector θ(t+1) as follows: First, draw the candi-
date parameter vector θ∗(t) from a candidate generating density (or proposal density)

q
³
θ(t), θ∗(t)

´
. Then, accept θ∗(t), i.e. set θ(t+1) = θ∗(t) with probability

λ
³
θ(t), θ∗(t)

´
= min

⎧⎨⎩π
³
θ∗(t)

´
L
³
YN,T |θ∗(t)

´
q
³
θ∗(t), θ(t)

´
π
³
θ(t)
´
L
³
YN,T |θ(t)

´
q
³
θ(t), θ∗(t)

´ , 1

⎫⎬⎭
otherwise, reject θ∗(t), i.e. set θ(t+1) = θ(t).
Notice that since the likelihood is a function of the value function, during each M-

H step, in order to compute the proposal density, for each θ∗(t) the DP problem needs
to be solved and value function derived. Hence, the MCMC algorithm is the “Outer
Loop” of the estimation algorithm, and we need the following Dynamic Programming
step within the Hastings-Metropolis Step as the “Inner Loop”.
Dynamic Programming Step: The Bellman equation, given by equation 1, is

iterated until convergence for the given parameter vector θ(t) and the candidate vector
θ∗(t). This solution algorithm for the DP Step is similar to the Maximum Likelihood
algorithm discussed above.
We now present our algorithm for estimating the parameter vector θ. We call it

the Bayesian Dynamic Programming Algorithm. The key innovation of our algorithm
is that we solve the dynamic programming problem and estimate the parameters
simultaneously, rather than sequentially.

2.3 The Bayesian Dynamic Programming Estimation

Our method is similar to the conventional Bayesian algorithm in that based on the
value function we compute at each estimation step, we construct an algorithm that is
a modified version of the Metropolis-Hastings algorithm described above to generate
a sequence of parameter simulations. The main difference between the Bayesian DP
algorithm and the conventional algorithm is that during each estimation step, we do
not solve the DP problem in full. In fact, during each modified Metropolis-Hastings
step, we iterate the DP algorithm only once.
A key issue in solving the DP problem is the way the expected value function

(or the Emax function) is approximated. In conventional methods, this approxi-
mation is given by equation 4. In contrast, we approximate the emax function by
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averaging over a subset of past iterations. Let Ω(t) ≡
n

(s), θ∗(s), V (s)
ot
s=1

be the his-

tory of shocks, parameters and value functions up to the current iteration t6. Let
V(t)(s, a, (t)

a , θ∗(t),Ω(t−1)) be the value of choice a and let V (t)(s, (t), θ∗(t),Ω(t−1)) be
the value function derived at iteration t of our solution/estimation algorithm. Then,

the value function and the approximation
∧
E
(t)

0
£
V (s0, 0, θ)|Ω(t−1)¤ for the expected

value function E 0 [V (s0, 0, θ)] at iteration t are defined recursively as follows.

∧
E
(t)

0
£
V (s0, 0, θ)|Ω(t−1)¤ ≡ N(t)X

n=1

V (t−n)(s0, (t−n), θ∗(t−n),Ω(t−n−1))
Kh(θ − θ∗(t−n))PN(t)
k=1 Kh(θ − θ∗(t−k))

,

(5)
and,

V(t−n)(s, a, (t−n)
a , θ∗(t−n),Ω(t−n−1)) = U(s, a, (t−n)

a , θ∗(t−n))

+β
∧
E
(t−n)
0

h
V (s0, 0, θ∗(t−n))|Ω(t−n−1)

i
,

V (t−n)(s, (t−n), θ∗(t−n),Ω(t−n−1)) =Maxa∈AV(t−n)(s, a, (t−n)
a , θ∗(t−n),Ω(t−n−1))

where Kh() is a kernel with bandwidth h > 0. That is,

Kh(z) =
1

hJ
K(

z

h
).

K is a nonnegative, continuous, bounded real function which is symmetric around zero
and integrates to one. i.e.

R
K(z)dz = 1. Furthermore, we assume that

R
zK(z)dz <

∞.
The approximated expected value function given by equation 5 is the weighted

average of value functions of N(t) most recent iterations. The sample size of the
average, N(t), increases with t. Futhermore, we let t − N(t) → ∞ as t → ∞. The
weights are high for the value functions at iterations with parameters close to the
current parameter vector θ(t). This is similar to the idea of Pakes and McGuire
(2002), where the expected value function is the average of the past N iterations. In
their algorithm, averages are taken only over the value functions that have the same
state variable as the current state variable s. In our case, averages are taken over the
value functions that have the same state variable as the current state variable s as
well as parameters that are close to the current parameter θ∗(t).
We now describe the complete Bayesian Dynamic Programming algorithm at it-

eration t. Suppose that
©
(l)
ªt
l=1
,
n
θ∗(l)

ot
l=1

are given and for all discrete s ∈ S,n
V (l)(s, (l), θ∗(l))

ot
l=1

is also given. Then, we update the value function and the pa-

rameters as follows.
6The simulated shocks (s) are those used for calculating the value function.
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1. Modified Metropolis-Hastings Step7: Draw the new parameters θ(t+1) as
follows: First, draw the candidate parameter θ∗(t) from the proposal density
q
³
θ(t), θ∗(t)

´
. then, accept θ∗(t), i.e. set θ(t+1) = θ∗(t) with probability

λ
³
θ(t), θ∗(t)|Ω(t−1)

´
= min

⎧⎨⎩π
³
θ∗(t)

´
L
³
YN,T |θp(t), bE(t)

0

h
V
³
., θ∗(t)

´
|Ω(t−1)

i´
q
³
θ∗(t), θ(t)

´
π
³
θ(t)
´
L
³
YN,T |θ(t), bE(t)

0

h
V
³
., θ(t)

´
|Ω(t−1)

i´
q
³
θ(t), θ∗(t)

´ , 1

⎫⎬⎭ (6)

otherwise, reject θ∗(t), i.e. set θ(t+1) = θ(t).

2 Bellman Equation Step: During each Metropolis-Hastings step, we need to
solve for the expected value function bE(t)

0
£
V (., ) |Ω(t−1)¤ for parameters θ(t) and

θ∗(t). To do so for all s ∈ S, we follow equation 5. For use in future iterations,
we simulate the value function by drawing (t) to derive,

V(t)(s, a, (t)
a , θ∗(t),Ω(t−1)) = U(s, a, (t)

a , θ∗(t)) + β
∧
E
(t)

0

h
V (s0, 0, θ∗(t)) | Ω(t−1)

i
,

V (t)(s, (t), θ∗(t),Ω(t−1)) = max
a∈A

V(t)(s, a, (t)
a , θ∗(t),Ω(t−1)).

We repeat Steps 1 to 2 until the sequence of the parameter simulations converges to
a stationary distribution. In our algorithm, in addition to the Dynamic Programming
and Bayesian methods, nonparametric kernel techniques are also used to approximate
the value function. Notice that the convergence of kernel based approximation is not
based on the large sample size of the data, but based on the number of Bayesian
DP iterations. The Bellman equation step (Step 2) is only done once during a single
estimation iteration. Hence, the Bayesian DP algorithm avoids the computational
burden of solving for the DP problem during each estimation step, which involves
repeated evaluation of the Bellman equation.
It is important to notice that the modified Metropolis-Hastings algorithm is not

a Markov Chain8. This is because it involves value functions calculated in past
iterations. Hence, convergence of our algorithm is by no means trivial. In the next
section, we prove that under some mild assumptions the distribution of the parameters
generated by our algorithm converges to the true posterior in probability.
Both Osborne (2006) and Norets (2006) approximate the expected value function

using the value functions computed in the past iterations evaluated at the past para-
meter draws θ(t−n). Here, we use the value functions evaluated at the past proposal

7We are grateful to Andriy Norets for pointing out the flaw in the Gibbs Sampling scheme adopted
in the earlier draft.

8We are grateful to Peter Rossi for emphasizing it.
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parameter draws θ∗(t−n). We chose to do so because given θ(t) it is easier to con-
trol the random movement of θ∗(t) than the random movement of θ(t+1), since θ∗(t)

is drawn from a known distribution function which we can easily change, whereas
θ(t+1) comes from a complex distribution which involves the solution of the dynamic
model. For example, if in modified Metropolis-Hastings algorithm the parameter θ(t)

is “stuck” at a value for many iterations, then the value functions are only evaluated
at that parameter value. But even then, θ∗(t) moves around so that we can com-
pute the value functions at the parameter values around θ(t), which becomes useful
in computing the expected value function when the parameter θ(t) finally moves to
a different value. Furthermore, by setting the support of the proposal density to be
the entire parameter set Θ, which we assume to be compact, we can insure that at
each point θ in Θ, the proposal density draw θ∗(t) will visit the open neighborhood of
θ arbitrarily many times as we increase the iteration to infinity, which turns out to
be the main reason why the expected value function approximation of the Bayesian
DP algorithm converges to the true ones. By keeping the conditional variance of the
proposal density given θ(t) small, we can guarantee that the invariant distribution of
θ∗ is not very different from that of θ.

3 Theoretical Results

In this section, we prove the convergence of the Bayesian DP algorithm. To facilitate
the proof, we modify the Bellman equation step slightly. That is, we simulate the
value function by drawing (t) to derive,

V(t)(s, a, (t)
a , θ∗(t),Ω(t−1)) = eU(s, a, (t)

a , θ∗(t)) + β
∧
E
(t)

0

h
V (s0, 0, θ∗(t)) | Ω(t−1)

i
,

V (t)(s, (t), θ∗(t),Ω(t−1)) = max
a∈A

V(t)(s, a, (t)
a , θ∗(t),Ω(t−1)).

where eU(s, a, (t)
a , θ∗(t)) =Min

n
Max

neU(s, a, (t)
a , θ∗(t)),−MU

o
,MU

o
for a large positiveMU . This makes the utility function used in the Bellman equation
uniformly bounded, which simplifies the proof. This modification does not make any
difference in practice because MU can be set arbitrarily large. We also denote V to
the the value function of the following Bellman equation.

V (s, (m)
a , θ) =Max

neU(s, a, a, θ) + βE 0,s0 [V (s
0, 0, θ)]

o
.

Next we show that under some mild assumptions, our algorithm generates a sequence
of parameters θ(1), θ(2), ... which converges in probability to the correct posterior dis-
tribution.
Assumption 1: Parameter space Θ ⊆ RJ is compact, i.e. closed and bounded

in the Euclidean space RJ . We set the proposal density q(θ, .) to be continuously
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differentiable, strictly positive and uniformly bounded in the parameter space given
any θ ∈ Θ.
Compactness of the parameter space is a standard assumption used in proving the

convergence of MCMC algorithm. See, for example, McCullogh and Rossi (1994). It
is often not necessary but simplifies the proofs. An example of the proposal density
that satisfies Assumption 1 is the multivariate normal density, truncated to only cover
the compact parameter space.
Assumption 2: For any s ∈ S, a ∈ A, and , θ ∈ Θ,

¯̄̄ eU(s, a, a, θ)
¯̄̄
< MU

for some MU > 0. Also, eU(s, a, ., θ) is a nondecreasing function in and eU(s, a, ., .)
satisfies the Lipschitz condition in terms of and θ. Also, the distribution of , has a
density function dF ( , θ) which is continuous in θ.
Assumption 3: β is known and β < 1.
Assumption 4: For any s ∈ S, and θ ∈ Θ, V (0)(s, , θ) < MI for some MI > 0.

Furthermore, V 0(s, ., .) also satisfies the Lipschitz condition in terms of and θ.

Assumptions 2 and 3, and 4 jointly make V (t)(s, , θ) and hence
∧
E
(t)

0 [V (s0, 0, θ)],
t = 1, ... uniformly bounded, measurable, continuous and satisfying the Lipschitz
condition as well.
Assumption 5: π(θ) is positive and bounded for any θ ∈ Θ. Similarly, for any

θ ∈ Θ and V uniformly bounded, L(YNT |θ, V ) > 0 and bounded.
Assumption 6: The bandwidth h is a function of N and as N →∞, h(N)→ 0

and Nh(N)2J →∞. The kernel K has an absolutely integrable Fourier transform.
Assumption 7: N(t) is nondecreasing in t, increases at most by one for a unit

increase in t, and N(t) → ∞. Furthermore, t − N(t) → ∞. Define the sequence
t(l), eN(l) as follows. For some t > 0, define t(1) = t, and eN(1) = N(t). Let
t(2) be such that t(2) − N(t(2)) = t(1). Such t(2) exists from the assumption on
N(t). Also, let eN(2) = N(t(2)). Similarly, for any l > 2, let t(l + 1) be such that
t(l+1)−N(t(l+1)) = t(l), and let eN(l+1) = N(t(l+1)). Assume that there exists
a finite constant A > 0 such that eN(l + 1) < A eN(l).
An example of a sequence that satisfies Assumption 8 is:

t(l) ≡ l(l + 1)

2
, eN(l) = l

and,
N(t) = l for t(l) ≤ t < t(l + 1).

The following two Lemmas establish some properties that are used in the later proofs.
Lemma 1:Let h (.), ε0 and g(.) be defined as follows.

h (θ∗) ≡ inf
θ∈Θ

q (θ, θ∗)

ε0 =

Z
h
³
θ̃
´
dθ̃
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g (θ∗) ≡ h (θ∗)R
h
³
θ̃
´
dθ̃

Then,
0 < ε0 ≤ 1

and for any θ, θ∗ ∈ Θ,
ε0g (θ

∗) ≤ q (θ, θ∗) .

Proof:
By Assumption 1 (Compactness of parameter space), for any θ∗ ∈ Θ,

h (θ∗) ≡ inf
θ∈Θ

q (θ, θ∗)

exists, is strictly positive and uniformly bounded below. Notice that h(.) is Lebesgue
integrable. Furthermore, for any θ ∈ Θ

ε0g (θ
∗) = h (θ∗) ≤ q (θ, θ∗) .

Next, since q satisfies Assumption 1, g(.) is strictly positive, bounded and
R
g (θ) dθ =

1. Hence, g(.) as a function is a density function. Also, by construction, ε0 is a strictly
positive constant. Finally, since both g(.) and q (θ, .) are densities and integrate to 1,
0 < ε0 ≤ 1.
Lemma 1 implies that the proposal density of the modified Metropolis-Hastings

algorithm has an important property: regardless of the current parameter values or
the number of iterations, every parameter value in the compact parameter space is
visited with a strictly positive probability.
Lemma 2: Let eh (.), be a continuously differentiable function which satisfies the

following inequality. eh (θ∗) ≥ sup
θ∈Θ

q (θ, θ∗) .

Let ε1 and eg () be defined as follows.
ε1 ≡

Z eh³θ̃´ dθ̃
eg (θ∗) ≡ eh (θ∗)R eh³θ̃´ dθ̃

Then,
1 ≤ ε1 <∞

and for any θ, θ∗ ∈ Θ
q (θ, θ∗) ≤ ε1eg (θ∗)

Proof: Using similar logic as in Lemma 1, one can show that for any θ∗ ∈ Θ,

sup
θ∈Θ

q (θ, θ∗)
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exists and is bounded. Then, eg (θ) and ε1 satisfy the conditions of the Lemma.
Lemma 2 implies that the proposal density is bounded above, the bound being

independent of the current parameter value or the number of iterations.
Theorem 1: Suppose Assumptions 1 to 7 are satisfied for V (t), π, L, ² and θ.

Then, the sequence of approximated value functions V (t)(s, , θ) converges in proba-

bility uniformly over s, and θ ∈ Θ to V (s, , θ) as t → ∞. Also,
∧
E
(t)

0 [V (s0, 0, θ)]
converges to E 0 [V (s0, 0, θ)] in probability uniformly over s0 ∈ S, θ ∈ Θ.
Proof: See the Appendix.
Corollary 1: Suppose Assumptions 1 to 7 are satisfied. Then Theorem 1 implies

that λ
³
θ(t), θ∗(t)|Ω(t−1)

´
converges to λ

³
θ(t), θ∗(t)

´
in probability uniformly.

Proof : Recall Equations 5 and 6. Since bE(t)
0 [V ] → EV in probability uniformly

in s, θ ∈ Θ, by compactness of Θ, the result follows.
Theorem 2: Suppose Assumptions 1 to 6 are satisfied for V (t), t = 1, ..., π,

L, and θ. Suppose θ(t), t = 1, ... is generated by a modified Metropolis-Hastings
Algorithm described earlier, where λ

³
θ(t), θ∗(t)|Ω(t−1)

´
converges to λ

³
θ(t), θ∗(t)

´
in

probability uniformly. Then, θ(t) converges to eθ(t) in probability, where eθ(t) is a Markov
chain generated by the Metropolis-Hastings Algorithm with proposal density q(θ, θ(∗))

and acceptance probability function λ
³
θ, θ(∗)

´
.

Proof: See the Appendix.
Corollary 2: The sequence of parameter simulations generated by theMetropolis-

Hastings algorithm with proposal density q(θ, θ∗) and the acceptance probability
λ (θ, θ∗) converge to the true posterior.
Proof of Corollary 2: Here, we use the Corollary 7.7 of Robert and Casella

(2004), which states that if the Metropolis-Hastings Markov Chain has invariant
probability density f and if there exist positive and δ such that q (x, y) > if
|x− y| < δ, then for any h ∈ L1 (f)

lim
T→∞

1

T

TX
t=1

h
³
θ(t)
´
=

Z
h (θ) f (θ) dθ

and

lim
n→∞

°°°°Z Kn (θ, .)μ (dθ)− f

°°°°
TV

= 0

for arbitrary initial distribution μ, where Kn (θ, .) is the transition kernel for n it-
erations and the norm is the total variation norm. By construction the Metropolis-
Hastings Markov Chain has an invariant probability density, which is proportional
to π (θ)L (YN,T |θ), which is assumed to be bounded and positive on Θ. Since the
proposal density is strictly positive over the parameter space, the condition for the
proposal density is also satisfied.
By Corollary 2, we can conclude that the distribution of the sequence of parame-

ters θ(t) generated by the Bayesian DP algorithm converges in probability to the true
posterior distribution in probability.
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To understand the basic logic of the proof of Theorem 1, suppose that the para-
meter θ(t) stays fixed at a value θ∗ for all iterations t. Then, equation (5) reduces
to,

bE 0 [V (s0, 0, θ∗)] =
1

N(t)

N(t)X
n=1

V (t−n)(s0, (t−n), θ∗).

Then, our algorithm boils down to a simple version of the machine learning algorithm
discussed in Pakes and McGuire (2001) and Bertsekas and Tsitsiklis (1996). They
approximate the expected value function by taking the average over all past value
function iterations whose state space point is the same as the state space point s0.
Bertsekas and Tsitsiklis (1996) discuss the convergence issues and show that under
some assumptions the sequence of the value functions from the machine learning
algorithm converges to the true value function almost surely. The difficulty of the
proofs lies in extending the logic of the convergence of the machine learning algorithm
to the framework of estimation, that is, the case where the parameter vector moves
around as well. Our answer to this issue is simple: for a parameter value θ∗ ∈ Θ at
an iteration t, we look at the past iteration and use value function of the parameters
θ(t−n) that are very close to θ∗. Then, the convergence is very similar to that where the
parameter vector is fixed, as long as the number of the past value functions that can
be used can be made arbitrarily large. We know from Lemma 1 that every parameter
vector in the compact parameter space Θ has strictly positive probability of being
drawn. Then, by increasing the number of iterations, we can make the number of
draws for every finite open cover in the parameter space Θ as large as we want and
still the probability of it can be made arbitrarily close to 1. It is important to note
that for the convergence of the value function, the estimation algorithm does not have
to be Markov. The only requirement is that during the iteration each parameter in
Θ has a strictly positive probability of being drawn.

3.1 Random Effects

Consider a model where for a subset of the parameters each firm has different value.
The parameter of the model is

¡
θ(1), θ(2)

¢
where θ(1) is the parameter vector for the

distribution of the random coefficients and θ(2) is the vector of other parameters. The

parameter vector of the firm i is
³eθi, θ(2)´. That is, eθi is the set of random effects

parameters which take different values for each firm whose distribution is defined to
be f

³eθi|θ(1)´. Instead of explicitly integrating the likelihood over eθi, we follow the
commonly adopted and computationally effective procedure of treating each eθi as
parameters and drawing it from its density. It is known (see McCullogh and Rossi
(1994), Chib and Greenberg (1996)) that instead of drawing the entire parameter

vector
³
{θi}Ni=1 , θ(1), θ(2)

´
at once, it is often simpler to partition the parameter vector

into several blocks and draw the parameters of each block separately given the other
ones. Here, we propose to draw them in the following 3 blocks. At iteration t the
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blocks are:

Block 1: draw
neθ(t+1)i

oN
i=1

given θ
(t)
(1), θ

(t)
(2)

Block 2: draw θ
(t+1)
(1) given

neθ(t+1)i

oN
i=1
, θ(t)(2)

Block 3: draw θ
(t+1)
(2) given

neθ(t+1)i

oN
i=1
, θ(t+1)(1)

Below we describe in detail the algorithm at each block9.

Block 1 Modified Metropolis-Hastings Step for drawing the Random Effectseθi: For firm i, we draw the new random effects parameters eθ(t+1)i as follows: We

set the proposal density as the distribution function of eθi, that is, f ³eθi|θ(1)´.
Notice that the prior is a function of θ(1) and θ(2), and not of eθi. Hence for
drawing eθi given θ(1) and θ(2), the prior is irrelevant. Similarly given θ(1) the
likelihood increment of firms other than i is also irrelevant in drawing eθi. There-
fore, we draw eθi from the likelihood increment of firm i, which can be written
as follows:

Li

³
Yi,T |

³eθi, θ(2)´´ f ³eθi|θ(1)´
where we denote Li

³
Yi,T |

³eθi, θ(2)´´ to be
Li

³
Yi,T |

³eθi, θ(2)´´ ≡ L
³
Yi,T |

³eθi, θ(2)´ , bE(t)
0

h
V
³
.,eθi, θ(2)´ |Ω(t−1)i´

Now, we draw the candidate parametereθ∗(t)i from the proposal density f
³eθ∗(t)i |θ(1)

´
.

Then, accept eθ∗(t)i , i.e. set eθ(t+1)i = eθ∗(t)i with probability

λ
³
θ(t),eθ∗(t)i |Ω(t−1)

´
= min

⎧⎪⎨⎪⎩
Li

³
Yi,T |

³eθ∗(t)i , θ
(t)
(2)

´´
f
³eθ∗(t)i |θ(t)(1)

´
f
³eθ(t)i |θ(t)(1)´

Li

³
Yi,T |

³eθ(t)i , θ
(t)
(2)

´´
f
³eθ(t)i |θ(t)(1)´ f ³eθ∗(t)i |θ(t)(1)

´ , 1

⎫⎪⎬⎪⎭
= min

⎧⎪⎨⎪⎩
Li

³
Yi,T |

³eθ∗(t)i , θ
(t)
(2)

´´
Li

³
Yi,T |

³eθ(t)i , θ
(t)
(2)

´´ , 1

⎫⎪⎬⎪⎭
otherwise, reject eθ∗(t)i , i.e. set eθ(t+1)i = eθ(t)i .

9The procedure described below is similar to that of Osborne (2006)
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Block 2 Drawing θ(t+1)(1) : Conditional on
neθ(t+1)i

oN
i=1
, the density of θ(t+1)(1) is proportional

to
NY
i=1

f
³eθ(t+1)i |θ(1)

´
.

Drawing from the above density is straightforward as it does not involve the
solution of the dynamic programming problem.

Block 3 Modified Metroplis-Hastings Algorithm for drawing θ(2): We draw the
new parameters θ(t+1)(2) as follows: First, we draw the candidate parameter θ∗(t)(2)

from the proposal density q
³
θ
(t)
(2), θ

∗(t)
(2)

´
. Then, accept θ∗(t)(2) , i.e. set θ

(t+1)
(2) = θ

∗(t)
(2)

with probability

λ
³
θ
(t+1)
(1) , θ

∗(t)
(2) |Ω(t−1)

´

= min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π
³
θ
(t+1)
(1) , θ

∗(t)
(2)

´" NY
i=1

Li

³
Yi,T |eθ(t+1)i , θ

∗(t)
(2)

´#
q
³
θ
∗(t)
(2) , θ

(t)
(2)

´
π
³
θ
(t+1)
(1) , θ

(t)
(2)

´" NY
i=1

Li

³
Yi,T |eθ(t+1)i , θ

(t)
(2)

´#
q
³
θ
(t)
(2), θ

∗(t)
(2)

´ , 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
otherwise, reject θ∗(t)(2) , i.e. set θ

(t+1)
(2) = θ

(t)
(2).

Bellman Equation Step: During each Metropolis-Hastings step, for each firm
i we solve for the expected value function bE(t)

0

h
V
³
.,eθi, θ(2)´ |Ω(t−1)i. To do so for all

s ∈ S, as before we follow equation 5. For use in future iterations, we simulate the
value function by drawing (t) to derive,

V(t)(s, a, (t)
a ,eθi, θ(2),Ω(t−1)) = U(s, a, (t)

a ,eθi, θ(2)) + β
∧
E
(t)

0

h
V (s0, 0,eθi, θ(2)) | Ω(t−1)i ,

V (t)(s, (t),eθi, θ(2),Ω(t−1)) = max
a∈A

V(t)(s, a, (t)
a ,eθi, θ(2),Ω(t−1)).

The additional computational burden necessary to estimate the random coefficient
model is the computation of the value function which has to be done separately for
each firm i, because each firm has different random effects parameter vector. That
is why in this case the adoption Bayesian DP algorithm results in large reduction in
computational cost.

3.2 Continuous State Space

So far, we assumed a finite state space evolving stochastically. However, the Bayesian
DP algorithm can also be applied in a straightforward manner to other settings of dy-
namic discrete choice models, with minor modifications. One example is the Random
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grid approximation of Rust (1997). There, given continuous state variable s, action a
and parameter θ, the transition function from state vector s to the next period state
vector s0 is defined to be f(s0|a, s, θ). Then, to estimate the model, the Dynamic
Programming part of our algorithm can be modified as follows.
At iteration t, the value of choice a at parameter θ, state vector s, shock is

defined to be as,

V(t)(s, a, a, θ) = U(s, a, a, θ) + β
∧
Es0, 0 [V (s

0, 0, θ)] ,

where s0 is the next period state varible.
∧
Es0, 0 [V (s

0, 0, θ)] is defined to be the ap-
proximation for the expected value function. The value function is defined to be as
follows.

V (t)(s, , θ) = max
a∈A

V(t)(s, a, a, θ)

Conventionally, randomly generated state vector grid points are fixed throughout the
solution/estimation algorithm. If we follow this procedure, and let sm, m = 1, ...,M
be the random grids that are generated before the start of the solution/estimation
algorithm, then, given parameter θ, the expected value function approximation at
iteration t of the DP solution algorithm using the Rust random grids method would
be,

MX
m=1

E V (t)(sm, , θ)
f (sm|a, s, θ)PM
l=1 f (sl|a, s, θ)

.

Hence, if we were to apply the Rust method in our solution/estimation algorithm,

the Emax function (i.e., the expected value function)
∧
Es0, 0 [V (s

0, 0, θ)] would be ap-
proximated as follows:

∧
Es0, 0 [V (s

0, 0, θ)]

≡
MX

m=1

⎡⎣N(t)X
n=1

V (t−n)(sm, (t−n), θ(t−n))
Kh(θ − θ(t−n))PN(t)
k=1 Kh(θ − θ(t−k))

⎤⎦ f (sm|a, s, θ)PM
l=1 f (sl|a, s, θ)

.

Notice that in this definition of Emax approximation, the grid points remain fixed
over all iterations. In contrast, in our Bayesian DP algorithm, random grids can
be changed at each solution/estimation iteration. Let s(t) be the random grid point
generated at iteration t. Here, s(τ), τ = 1, 2, ... are drawn independently from a
distribution. Furthermore, let Kh(.) be the kernel function with bandwidth h. Then,
the expected value function can be approximated as follows.

∧
Es0, 0 [V (s

0, 0, θ)]

≡
N(t)X
n=1

V (t−n)(s(t−n), (t−n), θ(t−n))
Kh(θ − θ(t−n))f

¡
s(t−n)|a, s, θ¢PN(t)

k=1 Kh(θ − θ(t−k))f (s(t−k)|a, s, θ)
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Notice that unlike Rust (1997), we do not need to fix the random grid points of
the state vector throughout the entire estimation exercise. In fact, we could draw a
different state vector for each solution/estimation iteration.
In Rust (1997), if the total number of random grids is M , then the number of

computations required for each Dynamic Programming iteration is M . Hence, at
iteration τ , the number of Dynamic Programming computations that is required is
Mτ . If a single DP solution step requires τ DP iterations, and each Newton ML step
requires K DP solution steps, then, to iterate Newton ML algorithm once, we need
to compute a single DP iteration MτK times.
In contrast, in our Bayesian DP algorithm, at iteration t we only need to draw

one state vector s(t) (so that M = 1) and only compute the Bellman equation on
that state vector. Further, we solve the DP problem only once (so that τ = 1 and
K = 1). Still, at iteration t, the number of random grid points is N(t), which can be
made arbitrarily large when we increase the number of iterations. In other words, in
contrast to the Rust method, the accuracy of the Dynamic Programming computation
in our algorithm automatically increases with iterations.
Another issue that arises in application of the Rust random grid method is that

Rust (1997) assumes that the transition density function f(s0|a, s, θ) is not degener-
ate. That is, we cannot use the random grid algorithm if the transition from s to s0,
given a, θ is deterministic. It is also well known that the random grid algorithm be-
comes inaccurate if the transition density has a small variance. In these cases, several
versions of polynomial based expected value function (emax function) approximation
have been used. Keane and Wolpin (1994) approximate the emax function using
polynomials of deterministic part of the value functions for each choice and state
space point. Imai and Keane (2004) use Chebychev polynomials of state variables.
It is known that in some cases, global approximation using polynomials can be nu-
merically unstable and exhibit “wiggling”. Here, we propose a kernel based local
interpolation approach to Emax function approximation. The main problem behind
the local approximation has been the computational burden of having a large number
of grid points. As pointed our earlier, in our solution/estimation algorithm, we can
make the number of grid points arbitrarily large by increasing the total number of
iterations, even though the number of grid points per iteration is one.
The next period state variable, s0 is assumed to be a deterministic function of s,

a, and θ. That is,
s0 = s0(s, a, θ).

Let Khs(.) be the kernel function with bandwidth hs for the state variable and Khθ(.)

for the parameter vector θ. Then,
∧
Es0, 0 [V (s

0, 0, θ)] is defined to be as follows.

∧
E 0 [V (s0, 0, θ)]

≡
N(t)X
n=1

V (t−n)(s(t−n), (t−n), θ(t−n))
Khs

¡
s0 − s(t−n)

¢
Khθ(θ − θ(t−n))PN(t)

k=1 Khs (s
0 − s(t−k))Khθ(θ − θ(t−k))

.
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4 Examples

We estimate a simple dynamic discrete choice model of entry and exit, with firms in
competitive environment.10 The firm is either an incumbent (I) or a potential entrant
(O). If the incumbent firm chooses to stay, its per period return is,

RI,IN(Kt, t, θ) = αKt + 1t,

where Kt is the capital of the firm, t = ( 1t, 2t) is a vector of random shocks, and θ
is the vector of parameter values. If it chooses to exit, its per period return is,

RI,OUT (Kt, t, θ) = 2t.

Similarly, if the potential entrant chooses to enter, its per period return is,

RO,IN(Kt, t, θ) = −δ + 1t,

and if it decides to stay out, its per period return is,

RO,OUT (Kt, t, θ) = 2t.

We assume the random component of the current period returns to be distributed
i.i.d normal as follows.

lt ∼ N(0, σl), l = 1, 2

The level of capital Kt evolves as follows. If the incumbent firm stays in, then,

lnKt+1 = b1 + b2 lnKt + ut+1,

where,
ut+1 ˜ N(0, σu),

and if the potential entrant enters,

lnKt+1 = be + ut+1.

Now, consider a firm who is an incumbent at the beginning of period t. Let
VI(Kt, t, θ) be the value function of the incumbent with capital stockKt, and VO(Kt, t, θ)
be the value function of the potential entrant, who has capital stock 0. The Bellman
equation for the optimal choice of the incumbent is:

VI(Kt, t, θ) =Max{VI,IN(Kt, t, θ), VI,OUT (Kt, t, θ)}.

where,

VI,IN(Kt, t, θ) = RI,IN(Kt, 1t, θ) + βEt+1VI(Kt+1(Kt, ut+1, θ), t+1, θ)

10For an estimation exercise based on the model, see Roberts and Tybout (1997).
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is the value of staying in during period t. Similarly,

VI,OUT (Kt, t, θ) = RI,OUT (Kt, 2t, θ) + βEt+1VO(0, t+1, θ)

is the value of exiting during period t . The Bellman equation for the optimal choice
of the potential entrant is:

VO(0, t, θ) =Max{VO,IN(0, t, θ), VO,OUT (0, t, θ)}.
where,

VO,IN(0, t, θ) = RO,IN(0, 1t, θ) + βEt+1VI(Kt+1(0, ut+1, θ), t+1, θ),

is the value of entering during period t and,

VO,OUT (0, t, θ) = RO,OUT (0, 2t, θ) + βEt+1VO(0, t+1, θ),

is the value of staying out during period t. Notice that the capital stock of a potential
entrant is always 0.
The parameter vector θ of the model is (δ, α, β, σ1, σ2, σu, b1, b2, be).The state vari-

ables are the capital stock K, and the status of the firm, Γ ∈ {I,O}, that is, whether
the firm is an incumbent or a potential entrant. Notice that capital stock is a contin-
uous state variable with random transition, in contrast to the theoretical framework
where the state space was assumed to be finite and the transition function determin-
istic.
We assume that for each firm, we only observe the capital stock, profit of the firm

that stays in and the entry/exit status over T periods. That is, we know,

{Kd
i,t, π

d
i,t,Γ

d
i,t}t=1,Ti=1,N

where,
πdi,t = αKd

i,t + ε1t,

if the firm stays in.
We assume the prior distribution of all parameters to be uninformative. That is,

we set π (θ) = 1. Below, we explain the estimation steps in detail.

Bellman Equation Step
In this step, we derive the value function, i.e., V (s)

Γ (K, (s), θ(s)) for iteration s.

1) Suppose we have already calculated the approximation for the expected value
function, where the expectation is over the choice shock , which is,

bE(s)VΓ(K
0(K,u(s), θ(s)), , θ(s)).

To further integrate the value function over the capital shock u, we can either
use the random grid integration method of Rust (1997) which uses a fixed grid
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or let the grid size increase over the iterations. Here, we use the Rust method.
That is, given that we have drawnM i.i.d. capital stock grids Km, m = 1, ..,M
from a given distribution, we take the weighted average as follows,

bE(s)
h
VΓ(K

0(K,u, θ(s)), , θ(s))
i
=

MX
m=1

bE(s)
h
V
(s)
Γ (Km, , θ(s))

i f(Km|K, θ(s))PM
m=1 f(Km|K, θ(s))

.

where f(Km|K, θ(s)) is the capital transition function from K to Km. In this
example, the random grids remain fixed throughout the estimation. Note that if
the firm exits or stays out, K 0 = 0. Hence, the expected value function becomesbE(s)

h
VO(0, , θ(s))

i
.

2) We draw (s) = (
(s)
1 ,

(s)
2 ).

3) Given (s) and bE(s)VΓ(K, , θ(s)), we solve the Bellman equation, that is, we solve
the decision of the incumbent (whether to stay or exit) or of the entrant (whether
to enter or stay out) and derive the value function corresponding to the optimal
decisions:

V
(s)
Γ (K, (s), θ(s)) = Max{RΓ,IN(K,

(s)
1 , θ(s)) + β bE(s)

h
VI(K

0(K,u, θ(s)), , θ(s))
i
,

RΓ,OUT (K,
(s)
2 , θ(s)) + β bE(s)

h
VO(K

0(K,u, θ(s)), , θ(s))
i
}

Modified Metropolis-Hastings Step
We draw the new parameter vector θ(s+1) from the posterior distribution. We

denote the vector Ii as follows:

Ii = [I
d
i,1(IN), ..., I

d
i,t(IN), ..., I

d
i,T (IN)]

where Idi,t(IN) = 1 if the firm either enters or decides to stay in, and 0 otherwise.
Similarly, we denote Ki, πi to be the vector of Kd

i,t and π
d
i,t. The likelihood increment
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for firm i at time t is

Li (Ii,Ki,πi|θ)
= Pr

h
2t ≤ πdit + β

n bE(s)
h
VIN(K

0(K,u, θ(s)), , θ(s))
i
− bE(s)

h
VO(0, , θ(s))

ioi
φ

µ
πdit − αKd

it

σ 1

¶
1

Kd
it+1

φ

µ
lnKd

it+1 − b1 − b2 lnK
d
it

σu

¶
Idi,t(IN)I

d
i,t+1(IN)

+Pr
h
2t − 1t > αKd

it + β
n bE(s)

h
VIN(K

0(K,u, θ(s)), , θ(s))
i
− bE(s)

h
VO(0, , θ(s))

ioi
Idi,t(IN)

¡
1− Idi,t+1(IN)

¢
+Pr

h
2t − 1t ≤ −δ + β

n bE(s)
h
VIN(K

0(0, u, θ(s)), , θ(s))
i
− bE(s)

h
VO(0, , θ(s))

ioi
1

Kd
it+1

φ

µ
lnKd

it+1 − be
σu

¶¡
1− Idi,t(IN)

¢
Idi,t+1(IN)

+Pr
h
2t − 1t > −δ + β

n bE(s)
h
VIN(K

0(0, u, θ(s)), , θ(s))
i
− bE(s)

h
VO(0, , θ(s))

ioi
¡
1− Idi,t(IN)

¢ ¡
1− Idi,t+1(IN)

¢
We employ the modified Metropolis-Hastings algorithm, where at iteration s the

proposal density q
³
θ(s), θ∗

´
is

δ∗ ∼ N
³
δ(s), σ2δ

´
α∗ ∼ N

¡
α(s), σ2α

¢
lnσ∗

1
∼ N

³
lnσ(s)

1
, σ2lnσ 1

´
lnσ∗

2
∼ N

³
lnσ(s)

2
, σ2lnσ 2

´
b∗1 ∼ N

³
b
(s)
1 , σ2b1

´
b∗2 ∼ N

³
b
(s)
2 , σ2b2

´
b∗e ∼ N

¡
b(s)e , σ2be

¢
lnσ∗u ∼ N

¡
lnσ(s)u , σ2lnσu

¢
That is, we adopt the modified random walk Metropolis Hastings algorithm. The
algorithm sets θ(s+1)1 = θ∗1 with probability

λ
³
θ(s), θ∗

´
= min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

NY
i=1

Li (Ii,Ki,πi|θ∗)
NY
i=1

Li

³
Ii,Ki,πi|θ(s)

´ , 1
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Expected Value Function Iteration Step
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Next, we update the expected value function for iteration s + 1. First, we derive
E
(s+1)

VΓ(K, , θ(s+1)).

E(s+1)
h
VΓ(K, , θ(s+1))

i

=

Ps
l=Max{s−N(s),1}

∙
1
M

MP
m=1

V
(l)
Γ (K,

(l)
m , θ(l))

¸
Kh(θ

(s+1) − θ(l))I
h
Kh(θ

(s+1) − θ(l)) > KL

i
Ps

l=Max{s−N(s),1}Kh(θ
(s+1) − θ(l))I

h
Kh(θ

(s+1) − θ(l)) > KL

i ,

where K() is the kernel function. We adopt the following Gaussian kernel:

Kh(θ
(s) − θ(l)) = (2π)−L/2

JY
j=1

h−1j exp[−1
2
(
θ
(s)
j − θ

(l)
j

hj
)2].

KL is the Lth largest value of the N(s) kernel values
n
Kh(θ

(s) − θ(l))
os
l=Max{s−N(s)}

.

The expected value function is updated by taking the weighted average over the L
value functions of past N(s) iterations where the parameter vector θ(l) was closest to
θ(s+1).
Then, if the firm enters or stays in, the expected value function is as follows.

bE(s+1)
h
VI(K

0(K,u, θ(s+1)), , θ(s+1))
i

= bE(s+1)
,K

h
VI(K

0(K,u, θ(s+1)), , θ(s+1))
i

=
MX
m=1

bE(s+1)
h
VI(Km, , θ(s+1))

i f(Km|K, θ(s+1))PM
m=1 f(Km|K, θ(s+1))

.

As discussed before, in principle, only one simulation of is needed during each
solution/estimation iteration. But that requires the number of past iterations for
averaging, i.e. N(s) to be large, which adds to computational burden. Instead, in
our example, we draw ten times and take an average. Hence, when we derive
the expected value function, instead of averaging past value functions, we average

over past average value functions, i.e., 1
M

MP
m=1

VΓ(Km,
(j)
m , θ(j)), where M = 10. This

obviously increases the accuracy per iteration, and reduces the need to have a large
N(s). That is partly why in the examples below, to have N (s) increase up to 2000
turns out to be sufficient for good estimation performance. L, the number of nearest
parameter values is set to be 1000. Notice that if the firm stays out or exits, then
its future capital stock is zero. Therefore, no averaging over capital grid points
is required to derive the expected value function, i.e., the emax function is simply
E
(s+1)

h
VO(0, , θ(s+1))

i
.

In the next section, we present the results of several Monte Carlo studies we
conducted using our Bayesian DP algorithm. The first experiment is the basic model
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using the Rust random grid method. The second experiment incorporates observed
and unobserved heterogeneity, and finally, we conduct an experiment in which capital
stock evolves deterministically.

5 Simulation and Estimation

Denote the true values of θ by θ0, i.e. θ0 = (δ0, σ0
1
, σ0

2
, σ0u, α

0, b01, b
0
2, b

0
e, β

0). We set
them as follows: δ0 = 0.4, σ0

1
= 0.3, σ0

2
= 0.3, σ0u = 0.4, α

0 = 0.1, b01 = 0.0, b
0
2 = 0.4,

b0e = 5.0, β
0 = 0.98.

We first solve the DP problem numerically using conventional numerical methods.
Next, we generate artificial data based on this DP solution. All estimation exercises
are done on a 2.8 GHz Pentium 4 Linux workstation. Below, we briefly explain how
we solved the DP problem to generate the data for the basic model. For the other two
experiments, the data generation step is basically similar with only minor changes.
Notice that for data generation, we only need to solve the DP problem once, that is,
for a fixed set of parameters. Hence, we took our time and made sure that the DP
solution is accurate.
We first set the MK capital grid points to be equally spaced between 0 and K,

which we set to be 5.0. Assume that we already know the expected value function of
the sth DP iteration for all capital grid points.

E(s)VΓ(Km, , θ0), Γ ∈ {I,O}, m = 1, 2, ...,MK.

Here, Km (m = 1, ...,MK) are grid points.
The following steps are taken to generate the expected value function for the

(s+ 1)th iteration.

Step 1 Given capital stock K, we derive,

E(s)VΓ(K
0(K,u, θ0), (s), θ∗) =

MKX
m=1

E(s)VΓ(Km,
(s), θ0)

f(Km|K, θ0)PMK

l=1 f(Kl|K, θ0)
.

Here f(Km|K, θ0) is the transition probability from K to Km.

Step 2 We draw the random shocks l. Then, for a given capital stock K, calculate

V
(s+1)
Γ (K, l, θ

0) = Max
©
RΓ,IN(K, 1l, θ

0) + βE(s)VI(K
0, , θ0),

RΓ,OUT (K, 2l, θ
0) + βE(s)VO(0, , θ0)

ª
Step 3 We repeat Step 2, M times and take an average to derive the approximated

expected value function for the next iteration.

E(s+1)VΓ(K, , θ0) =
1

M

MX
l=1

V
(s+1)
Γ (K, l, θ

0).
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The above steps are taken for all possible capital grid points, K = K1, .., KMK
.

In our simulation exercise, we set the simulation size M to be 1000. The total
number of capital grid points is set to be MK = 200.

Step 4 Repeat Step 1 to Step 3 until the Emax function converges. That is, for a
small δ (in our case, δ = 0.00001),

Maxm=1,..,MK
{E(s+1)VΓ(Km, , θ0), E(s)VΓ(Km, , θ0)} < δ.

We simulate artificial data of capital stock, profit and entry/exit choice sequences
{Kd

i,t, π
d
i,t, I

d
i,t}N,T

i=1,t=1 using the expected value functions derived above. We then esti-
mate the model using the simulated data with our Bayesian DP routine. We do not
estimate the discount factor β. Instead, we set it at the true value β0 = 0.98. We
simulated the sample size plus 2, 000 artificial data, where the first 2, 000 simulations
were discarded.

5.1 Experiment 1: Basic Model

All the priors are set to be uninformative. We set the initial guesses of the parame-
ters to be the true parameter values given by θ0, and the initial guess of the expected
value function to be 0. We used the same 200 grid points in each iteration as used in
generating the data. The pseudo-MCMC sampler was generated 10, 000 times. The
posterior mean and standard errors from the (5, 001)th iteration up to (10, 000)th iter-
ation are shown in Panel 1 of Table 1. In Panel 2 we present the estimation result of
the conventional Bayesian MCMC estimation, where during each estimation step the
Dynamic Programming model is solved in full. The posterior means and posterior
standard deviations presented are the sample average of 10 simulation/estimation
exercises, where for each exercise a different seed was chosen. We also report the
sample standard errors of the posterior means and posterior standard deviations of
the 10 simulation/estimation exercises. As we can see, the sample averages of both
the Bayesian DP posterior means and those of the Bayesian estimation with full solu-
tion are very close to the true parameter values. Furthermore, as we can see from the
sample averages and the sample standard errors of the 10 simulation/estimation exer-
cises, both the posterior means and the standard errors of the Bayesian DP estimation
are very close to those of the conventional Bayesian MCMC estimates. The sample
average of the posterior mean of the entry cost parameter estimate by the Bayesian
DP algorithm for the sample size of 2000 seems to be relatively farther away from
the true value (0.4), compared to the ones of other estimation exercises. This could
reflect the approximation error of the expected value function in the Bayesian DP
algorithm. That is, with smaller sample size and larger variance of the parameters,
more past iterations may be required to accurately approximate the expected value
functions. Notice also that for the Bayesian DP estimation, as the sample size de-
creases from 10, 000 to 2, 000, the CPU time decreases from 18 minutes 21. seconds
to 4 minutes 55 seconds, a 3.5 to 1 decrease. On the other hand, for the full solution
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based Bayesian estimation the CPU time decreases from 29 minutes 44 seconds to
15 minutes 44 seconds, only a 50% decrease. That is, as the sample size decreases,
relatively more CPU time is spent on the solution of the model than on computing
the likelihood. Hence, the computational advantage of the Bayesian DP algorithm
becomes more apparent.
In Panel 3 we also report the simulation/estimation exercises of the full solution

based ML estimation11. The standard errors are based on the inversion of the infor-
mation matrix. To compute the Information matrix, we adopt the BHHH algorithm,
i,e. we approximate it by the inner product of the gradient vector of the likelihood
increments. The parameter estimates are again very close to the true values and close
to those of the Bayesian posterior means. However, the standard errors, are quite
different from the standard deviations of the Bayesian estimates. For example, the
standard error for the ML estimate for the entry cost is 0.0185 if the sample size is
10, 000, 0.0255 and 0.0417 if the sample size is 5, 000, and 2, 000, respectively. On
the other hand, the corresponding standard deviations of the Bayesian DP estimates
for the entry cost is 0.0136, 0.0195, and 0.0295, which are close to those of the full
solution based Bayesian estimates. This reflects the inaccuracies of the computation
of the Information matrix, which is based on a numerical first derivative of the like-
lihood increments. The CPU time required for the ML estimation is much smaller
than the Bayesian estimates. For example, the CPU time for the ML estimation with
sample size of 10, 000 is 17 seconds, whereas the Bayesian DP estimation requires
about 18 minutes. That is, for the estimation of a simple dynamic structural model,
the standard ML estimation is computationally superior to the Bayesian estimation.
The computational time could become comparable if the standard errors were to be
derived by bootstrap.
To check robustness of the Bayesian DP algorithm, we also ran a simulation/estimation

exercise where the starting parameter value was set to be half of the true values. As
we can see from the results reported in Panel 3, the posterior means and the standard
deviations are almost the same as those of Panel 1 where the initial parameter values
were set to be the true ones. These results confirm the theorems on convergence in
Section 1 stating that the estimation algorithm is not sensitive to the initial values.

Table 1: Posterior Means and Standard Errors (standard errors are in
parenthesis)

11The initial parameter values were set to be the true values.
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Part 1. Bayesian dynamic programming estimation.
Sample mean of posterior means and std. deviations of

10 simulation/estimation exercises
Parameter estimate estimate estimate true
δ 0.3874 (0.0295) 0.3958 (0.0195) 0.3983 (0.0136) 0.4
α 0.09828 (0.00629) 0.09936 (0.00404) 0.09938 (0.00291) 0.1
σ 1 0.2989 (0.00734) 0.3018 (0.00482) 0.3012 (0.00354) 0.3
σ 2 0.2963 (0.0224) 0.2933 (0.0160) 0.2950 (0.0120) 0.3
b1 0.000925 (0.0117) −0.000318 (0.00751) −0.00179 (0.00537) 0.0
b2 0.4027 (0.0223) 0.4037 (0.0151) 0.4039 (0.0106) 0.4
be 0.5019 (0.0246) 0.5121 (0.0156) 0.5073 (0.0111) 0.5
σu 0.3939 (0.00715) 0.3971 (0.00466) 0.3986 (0.00327) 0.4
sample 2, 000 5, 000 10, 000
CPU time 4 min. 55 sec. 9 min.47 sec. 18 min. 21 sec.
sample std. errors of posterior means and posterior std. dev. of 10 sim./est. exercises
δ 0.0274 (0.00480) 0.0226 (0.00259) 0.0162 (0.00124)
α 0.00505 (0.000404) 0.00422 (0.000250) 0.00245 (0.000174)
σ 1 0.00998 (0.000933) 0.00557 (0.000465) 0.00490 (0.000276)
σ 2 0.0353 (0.0104) 0.0257 (0.00544) 0.0200 (0.00324)
b1 0.0134 (0.000613) 0.00919 (0.000347) 0.00562 (0.000229)
b2 0.0255 (0.00175) 0.0123 (0.00100) 0.00554 (0.000928)
be 0.0146 (0.00446) 0.0165 (0.00137) 0.0123 (0.000457)
σu 0.00878 (0.000599) 0.00496 (0.000298) 0.00378 (8.7E − 5)
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Part 2. Bayesian estimation based on the full solution of the model.
sample mean of posterior means and std. dev. of 10 simulation/estimation exercises

parameter estimate estimate estimate true
δ 0.4020 (0.0278) 0.3992 (0.0184) 0.4025 (0.0135) 0.4
α 0.09939 (0.00571) 0.09951 (0.00378) 0.09967 (0.00270) 0.1
σ 1 0.2981 (0.00731) 0.3015 (0.00492) 0.3013 (0.00341) 0.3
σ 2 0.3069 (0.0239) 0.2968 (0.0177) 0.2973 (0.0133) 0.3
b1 0.000538 (0.0118) −0.000585 (0.00780) −0.00214 (0.00544) 0.0
b2 0.4040 (0.0234) 0.4040 (0.0151) 0.4047 (0.0105) 0.4
be 0.5006 (0.0241) 0.5121 (0.0157) 0.5075 (0.0109) 0.5
σu 0.3931 (0.00736) 0.3969 (0.00458) 0.3985 (0.00333) 0.4
sample size 2, 000 5, 000 10, 000
CPU time 15 min. 44 sec. 21 min.31 sec. 29 min. 44 sec.
sample std. errors of posterior means and posterior std. dev. of 10 sim./est. exercises
δ 0.0280 (0.00604) 0.0247 (0.00276) 0.0132 (0.00230)
α 0.00457 (0.000516) 0.00453 (0.000299) 0.00199 (0.000228)
σ 1 0.00969 (0.000722) 0.00460 (0.000349) 0.00494 (0.000371)
σ 2 0.0325 (0.0113) 0.0306 (0.00655) 0.0176 (0.00459)
b1 0.0124 (0.000709) 0.00914 (0.000597) 0.00563 (0.000211)
b2 0.0287 (0.00247) 0.0140 (0.00108) 0.00616 (0.00109)
be 0.0154 (0.00203) 0.0177 (0.00106) 0.0126 (0.000473)
σu 0.00863 (0.000630) 0.00537 (0.000411) 0.00399 (0.000233)
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Panel 3. ML estimation based on the full solution of the model.
sample mean of posterior means and std. dev. of 10 simulation/estimation exercises

parameter estimate estimate estimate true
δ 0.3872 (0.0417) 0.3967 (0.0255) 0.4002 (0.0185) 0.4
α 0.09801 (0.00690) 0.09944 (0.00438) 0.09978 (0.00314) 0.1
σ 1 0.2993 (0.00912) 0.3016 (0.00561) 0.3014 (0.00399) 0.3
σ 2 0.2882 (0.0448) 0.2929 (0.0264) 0.2929 (0.0185) 0.3
b1 0.00108 (0.00889) 0.0001493 (0.00613) −0.001721 (0.00383) 0.0
b2 0.4039 (0.0242) 0.4039 (0.0152) 0.4044 (0.0107) 0.4
be 0.5006 (0.0246) 0.5119 (0.0159) 0.5076 (0.0113) 0.5
σu 0.3929 (0.00736) 0.3968 (0.00469) 0.3983 (0.00332) 0.4
sample size 2, 000 5, 000 10, 000
CPU time 4 sec. 6 sec. 17 sec.
sample std. errors of posterior means and posterior std. dev. of 10 sim./est. exercises
δ 0.0220 (0.00840) 0.0159 (0.00291) 0.0135 (0.00207)
α 0.00522 (0.000301) 0.00392 (0.000118) 0.00201 (0.0000653)
σ 1 0.00814 (0.000535) 0.00482 (0.000221) 0.00465 (0.0000962)
σ 2 0.0309 (0.00829) 0.0206 (0.00294) 0.0147 (0.00196)
b1 0.0125 (0.00341) 0.00868 (0.00115) 0.00532 (0.00145)
b2 0.0264 (0.000695) 0.0132 (0.000347) 0.00562 (0.000231)
be 0.0119 (0.00116) 0.0166 (0.000401) 0.0120 (0.000286)
σu 0.00909 (0.000224) 0.00538 (0.000125) 0.00387 (0.0000639)
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Panel 4: Bayesian DP with starting value: 0.5θ∗

sample mean of posterior means and std. errors
parameter estimate true
δ 0.3972 (0.0132) 0.4
α 0.09949 (0.00286) 0.1
σ 1 0.3011 (0.00348) 0.3
σ 2 0.2949 (0.0118) 0.3
b1 −0.00168 (0.00537) 0.0
b2 0.4039 (0.0105) 0.4
be 0.5077 (0.0114) 0.5
σu 0.3986 (0.00325) 0.4
sample size 10, 000
CPU time 18 min. 20sec.
sample std. errors of posterior means and posterior std. errors
δ 0.0165 (0.00139)
α 0.00239 (0.000152)
σ 1 0.00524 (0.000288)
σ 2 0.0206 (0.00306)
b1 0.00573 (0.000231)
b2 0.00522 (0.000888)
be 0.0126 (0.000157)
σu 0.00380

5.2 Experiment 2: Random Effects

We now report estimation results of a model that includes observed and unobserved
heterogeneities. We assume that the profit coefficient for each firm i, αi is distributed
normally with mean μα = 0.2 and standard error σα = 0.1. The transition equation
for capital is,

lnKi,t+1 = b1X
d
i + b2 lnKi,t + ui,t+1,

whereXd
i is a firm characteristics observable to the econometrician. In our simulation

sample, we simulate Xd
i from N(0.0, 1.0).

Notice that if we use the conventional simulatedMLmethod to estimate the model,
for each firm i we need to draw αi many times, say Mα times, and for each draw,
we need to solve the dynamic programming problem with the constant coefficient for
capital transition equation being b1Xd

i . If the number of firms in the data is Nd, then
for a single simulated likelihood evaluation, we need to solve the DP problem NdMα

times. This process is computationally demanding and most researchers use only a
finite number of types, typically less than 10, as an approximation of the observed
heterogeneity and the random effect. The only exceptions are economists who have
access to supercomputers or large PC clusters. Since in our Bayesian DP estimation
exercise, the computational burden of estimating the dynamic model is similar to that
of a static model, we can easily accomodate random effects estimation.
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As we discussed earlier, in contrast to the solution/estimation algorithn of the
basic model, we solve the one step Bellman equation for each firm i separately. Let
θ−α be the parameter vector except for the random effects term αi. Then, for given
K, bE(s)

VΓ(K, , θ
(s)
−α, α

(s)
i ) is derived as follows.bE(s)VΓ(K, , θ

(s)
−α, α

(s)
i )

=

Ps−1
j=Max{s−1−N(s−1),1}

∙
1
M

MP
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V
(j)
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(j)
l , θ(j))

¸
Kh(θ

(s)
−α − θ

(j)
−α)Kh(α

(s)
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(j)
i )Ps−1

j=Max{s−1−N(s−1),1}Kh(θ
(s)
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(j)
−α)Kh(α

(s)
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.

The remaining step to derive the expected value function bE(s)
h
VΓ(K

0(K,u, θ(s)), , θ(s))
i

is the same as in Experiment 1.
As pointed out by Heckman (1981) and others, the missing initial state vector

(that is, the initial status of the firm and initial capital) is likely to be correlated
with the unobserved heterogeneity αi, which would result in bias of the parameter
estimates. To deal with this problem, for each firm i, given parameters (θ−α, αi), we
simulate the model for 100 initial periods to derive the initial capital and the initial
status of the firm. Then, we proceed to construct the likelihood increment for firm i.
We set N(s) to go up to 1000 iterations. The one-step Bellman equation is the

part where we have an increase in computational burden. But it turns out that the
additional burden is far lighter than that of computing the DP problem for each firm
i Mα times to integrate out the random effects αi, as would be done in the Simulated
ML estimation strategy.
We set the sample size to be 100 firms for 100 periods, and the Bayesian DP

iteration was conducted 10, 000 times. Column 2 of Table 2 reports the posterior
mean and standard deviations from the 5, 001th iteration up to 10, 000th iteration.
We also report in column 3 the result of the simulation/estimation exercise of the
Bayesian MCMC algorithm where during each estimation iteration the DP problem
is solved in full. When we solve for the DP problem, we set M , the number of
simulations for to be 100, instead of 1, 000. In column 4, we show the parameter
estimates of the Simulated Maximum Likelihood estimates, which is based on the
full solution of the model. To construct the simulated likelihood, for each firm, we
simulated αi one hundred times (i.e. Mα = 100). We solved the DP problem using
Monte-Carlo integration to integrate over the choice shock . We set the simulation
size for to be 10012. If we were to set the simulation size of to be 1, 000 as before,
then the CPU time required for a single likelihood calculation would take us about
23 minutes and 40 seconds. Since we take numerical derivatives over 9 parameters
to derive the gradient of the likelihood, a single Newton iteration would take about

12For the ML algorithm, we used the Newton-Raphson routine. Since we took numerical deriv-
atives, in addition to the likelihood evaluation under the original parameter θ, we calculated the
likelihood for the 9 parameter perturbations θ +∆θi, i = 1, ..., 9. We stopped running the program
when either the absolute values of all the gradiants were less than 0.01 or the step size became less
than 1.0D − 5.
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4 hours and 20 minutes, which, as we will see later, is about the same CPU time
required for the entire Bayesian DP algorithm.
As we can see both the posterior means of the Bayesian DP estimates and those of

the Full solution based Bayesian estimates are very close to the true values. Further-
more, the posterior means and the standard errors of the two estimators are very close
to each other as well. On the other hand, we see a fairly large bias in the parameter
estimates by Simulated ML. The entry cost parameter δ, the mean of profit coefficient
μα and its standard error σα and the standard error of the choice shock σ 2 are all
downwardly biased, and except for σα the magnitude of the bias is larger than the
standard error. The downward bias seems to be especially large for μα, which leads
us to conclude that the simulation size of Mα = 100 is not enough to integrate out
the unobserved heterogeneity sufficiently accurately. The CPU time required for the
Bayesian DP algorithm is about 4 hours, whereas for the Full solution based Bayesian
MCMC estimation we needed about 31 hours, and for the full solution based ML es-
timation, 21 hours. That is, the Bayesian DP is about 8 times as fast as the Full
solution based Bayesian MCMC algorithm and about 5 times as fast as the Simulated
ML algorithm. We also tried to reduce the computational time for the full solution
based ML algorithm by reducing the number of draws for αi from 100 to 20. Then,
the CPU time reduces to 8 hours and 43 minutes, which is about twice as much time
required for the Bayesian DP algorithm. However, the average of the 10ML estimates
of α is 0.145, which is even smaller than 0.170 , which is the result for the estimation
with 100 αi draws. The true value is 0.2. We can see that the downward bias is larger
than before. The sample standard error of μα and σα over 10 simulation/estimation
experiments are much larger as well. If we were to try to reduce the bias by increasing
the simulation size of unobserved heterogeneity from Mα = 100 to, say Mα = 1, 000,
then the CPU time would be at least 200 hours, which would be more than a week
of computation. We also report the ML estimation results where the simulation size
for draws is reduced from 100 to 20. The parameter estimates and their standard
errors are very similar to that of the 100 draws. Notice that the sample average of
the parameter estimates over 10 simulation/estimation exercises is 0.3895, which is
closer to the truth than that of 100 draws:0.3795. However, the total CPU time of
the ML estimation with 20 draws is 18 hours and 15 minutes, hardly different from
20 hours and 47 minutes of the 100 draws. That is, even though the reduction in
the number of simulations does not result in any noticeable decline in the accuracy
of the posterior, the gain in CPU time is also small.

Table 2: Posterior Means and Standard Errors (standard errors are in
parenthesis)

34



Sample mean of 10 simulation/estimation exercises

Bayesian DP Full Solution Bayes
Full Solution ML
100 αi draws

true
value

δ 0.3954 (0.0161) 0.3981 (0.0182) 0.3795 (0.0171) 0.4
μα 0.1974 (0.0105) 0.1977 (0.0105) 0.1701 (0.0135) 0.2
σα 0.1010 (0.00743) 0.1008 (0.00729) 0.09326 (0.0140) 0.1
σ 1 0.3017 (0.00284) 0.3017 (0.00302) 0.3025 (0.00317) 0.3
σ 2 0.3002 (0.0109) 0.3022 (0.0149) 0.2805 (0.0176) 0.3
b1 0.09972 (0.00484) 0.1000 (0.00487) 0.1004 (0.00530) 0.1
b2 0.3970 (0.00960) 0.3971 (0.00978) 0.4003 (0.0101) 0.4
be 0.4982 (0.0128) 0.4965 (0.0137) 0.5054 (0.0145) 0.5
σu 0.4000 (0.00317) 0.4003 (0.00321) 0.3990 (0.00317) 0.4
sample 100× 100 100× 100 100× 100
CPU time 4 hrs. 0 min. 30 hrs. 59 min. 20 hrs. 47 min.
Sample std. error of 10 simulation/estimation exercises.
δ 0.0151 (0.00196) 0.0148 (0.00246) 0.0140 (0.00185)
μα 0.0118 (0.000491) 0.00560 (0.000565) 0.00969 (0.000963)
σα 0.00536 (0.000395) 0.00536 (0.000376) 0.00935 (0.00257)
σ 1 0.00258 (0.000187) 0.00249 (0.000184) 0.00225 (0.000289)
σ 2 0.0103 (0.00252) 0.0127 (0.00322) 0.0116 (0.00160)
b1 0.00483 (0.000340) 0.00444 (0.000348) 0.00439 (0.000662)
b2 0.00597 (0.000509) 0.00590 (0.000650) 0.00583 (0.000806)
be 0.0133 (0.00164) 0.0135 (0.00101) 0.0133 (0.00159)
σu 0.00373 (0.000110) 0.00376 (0.000181) 0.00407 (0.000277)
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Sample mean of 10 simulation/estimation exercises, Full solution ML
parameter 20 αi draws 20 draws true value
δ 0.3795 (0.0173) 0.3895 (0.0192) 0.4
μα 0.1450 (0.0123) 0.1764 (0.0157) 0.2
σα 0.1076 (0.0203) 0.09527 (0.0126) 0.1
σ 1 0.3030 (0.00315) 0.3028 (0.00315) 0.3
σ 2 0.2790 (0.0177) 0.2810 (0.0181) 0.3
b1 0.1003 (0.00526) 0.09977 (0.00524) 0.1
b2 0.3999 (0.0100) 0.4000 (0.00996) 0.4
be 0.5030 (0.0146) 0.5048 (0.0145) 0.5
σu 0.3988 (0.00318) 0.3988 (0.00317) 0.4
sample size 100× 100 100× 100
CPU time 8 hrs. 43 min. 18 hrs. 15 min.
Sample std. error of 10 simulation/estimation exercises.
δ 0.0138 (0.00272) 0.0140 (0.00265)
μα 0.0273 (0.00177) 0.0106 (0.00143)
σα 0.0316 (0.00783) 0.0110 (0.00146)
σ 1 0.00234 (0.000311) 0.00235 (0.000303)
σ 2 0.0136 (0.00220) 0.0123 (0.00185)
b1 0.00488 (0.000590) 0.00485 (0.000574)
b2 0.00595 (0.000977) 0.00594 (0.000925)
be 0.0138 (0.00152) 0.0143 (0.00159)
σu 0.00392 (0.000280) 0.00391 (0.000276)

Another estimation strategy for the simulated ML could be to expand the state
variables of the DP problem to include both X and α. Then, we have to assign
grid points for the three-dimensional state space points (K,X,α). If we assign 100
grid points per dimension, then we end up having 10, 000 times more grid points than
before. Hence, the overall computational burden would be quite similar to the orginal
simulated ML estimation strategy.

5.3 Experiment 3: Continuous State Space with Determin-
istic Transition

The framework is similar to the basic model in Experiment 1 except for the capital
transition of the incumbent, which now is deterministic. Assume that if the incumbent
decides to stay in, the next period capital is,

Kt+1 = Kt.

If the firm decides to either exit or stay out, then the next period capital is 0, and if
it enters, then the next period capital is,

ln (Kt+1) = b1 + ut+1,
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where,
ut+1 ∼ N (0, σu) .

Since the state space is continuous, we use K(t)
1 , ...,K

(t)
MK

as grid points. As in the
previous experiment, we set MK = 10 but let the grid points grow over iterations.
Now, the formula for the expected value function for the incumbent who stays in is
as follows.

∧
E [VI(K, 0, θ)]

≡
N(t)X
n=1

MKX
m=1

"
1

M
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j=1

V
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K −K
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k=1

MKP
m=1

KhK

³
K −K

(t−k)
m

´
Khθ(θ − θ(t−k))

,

where KhK is the kernel for the capital stock with bandwidth hK . The expected value
function for the entrant is different now because unlike the incumbent who stays in,
the entrant faces uncertain future capital. Thus, the entrant’s expected value function
is,

∧
EK0, 0 [VI(K

0 (u) , , θ)]

≡
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n=1

MKX
m=1

"
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³
K
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´
Kh(θ − θ(t−k))

.

The formula for the expected value function for either the firm who stays out or the
firm who exits is the same as in the infinite random grids case:

∧
E 0 [VO(0, , θ)]

≡
N(t)X
n=1

"
1

M

MX
j=1

V
(t−n)
O (0,

(t−n)
j , θ(t−n))

#
Kh(θ − θ(t−n))PN(t)
k=1 Kh(θ − θ(t−k))

We let the number of grid points increase up to 20, 000 over the iterations.
Table 3 shows the estimation results. We can see that the estimates parameters

are close to the truth. The entire exercise took about 47 minutes.
Table 3: Posterior Means and Standard Deviations

(Standard deviations are in parenthesis)
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parameter estimate true value
δ 0.1891 (0.0123) 0.2
α 0.1044 (0.00478) 0.1
σ 1 0.3956 (0.00511) 0.4
σ 2 0.3993 (0.0135) 0.4
b1 0.1996 (0.00474) 0.2
σu 0.2017 (0.00301) 0.2
sample size 10, 000
CPU time 47 min 30 sec

6 Conclusion

In conventional estimation methods of Dynamic Discrete Choice models, such as
GMM, Maximum Likelihood or Markov Chain Monte Carlo, at each iteration step,
given a new set of parameter values, the researcher first solves the Bellman equation
to derive the expected value function, and then uses it to construct the likelihood
or moments. That is, during the DP iteration, the researcher fixes the parameter
values and does not “estimate”. We propose a Bayesian estimation algorithm where
the DP problem is solved and parameters estimated at the same time. In other
words, we move parameters during the DP solution. This dramatically increases the
speed of estimation. We have demonstrated the effectiveness of our approach by
estimating a simple dynamic model of discrete entry-exit choice. Even though we
are estimating a dynamic model, the required computational time is in line with the
time required for Bayesian estimation of static models. The reason for the speed
is clear. The computational burden of estimating dynamic models has been high
because the researcher has to repeatedly evaluate the Bellman equation during a single
estimation routine, keeping the parameter values fixed. We move parameters, i.e.
‘estimate’ the model after each Bellman equation evaluation. Since a single Bellman
equation evaluation is computationally no different from computing a static model,
the speed of our estimation exercise, too, is quite similar to that of a static model.
The additional computational cost of our algorithm is the cost of using information
obtained in past iterations. The more complex the model becomes, it becomes smaller
relative to the cost of computing the full solution, which is what we have seen in the
simulation/estimation examples.
Another computational obstacle in the estimation of a Dynamic Discrete Choice

model is the Curse of Dimensionality. That is, the computational burden increases
exponentially with the increase in the dimension of the state space. In our algorithm,
even though at each iteration, the number of state space points on which we calculate
the expected value function is small, the total number of ‘effective’ state space points
over the entire solution/estimation iteration grows with the number of Bayesian DP
iterations. This number can be made arbitrarily large without much additional com-
putational cost. And it is the total number of ‘effective’ state space points that
determines accuracy. Hence, our algorithm moves one step further in overcoming the
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Curse of Dimensionality. This also explains why our nonparametric approximation
of the expected value function works well under the assumption of continuous state
space with deterministic transition function of the state variable. In this case, as is
discussed in the main body of the paper, Rust (1997) random grid method may face
computational difficulties.
It is worth mentioning that since we are locally approximating the expected value

function nonparametrically, as we increase the number of parameters, we may face
the “Curse of Dimensionality” in terms of the number of parameters to be estimated.
So far, in our examples, this issue does not seem to have made a difference. The
reason is that most dynamic models specify per period return function and transition
functions to be smooth and well-behaved. Hence, we know in advance that the value
functions we need to approximate are smooth, hence well suited for nonparametric
approximation. Furthermore, the simulation exercises in the above examples show
that with a reasonably large sample size, the MCMC simulations are tightly centered
around the posterior mean. Hence, the actual multidimensional area where we need to
apply nonparametric approximation is small. But in empirical exercises that involve
many more parameters, one probably needs to adopt an iterative MCMC strategy
where only up to 4 or 5 parameters are moved at once, which is also commonly done
in conventional ML estimation.
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Appendix
Proof of Theorem 1
For notational convenience, in the subsequent proofs we omit Ω. We need to show

that for any s ∈ S, , θ ∈ Θ,

V (t) (s, , θ)
p→ V (s, , θ) uniformly, as t→∞

But since,

V (t)(s, , θ) = max
a∈A

V(t)(s, a, , θ), V (s, , θ) = max
a∈A

V(s, a, , θ),

it suffices to show that for any s ∈ S, a ∈ A, , θ ∈ Θ,

V(t) (s, a, , θ)
p→ V (s, a, , θ) as t→∞.

Define

WN(t),h(θ, θ
(t−n)) ≡ Kh(θ − θ(t−n))PN(t)

k=1 Kh(θ − θ(t−k))
.

Then, the difference between the true value function of action a and that obtained
by the Bayesian Dynamic Programming iteration can be decomposed into 3 parts as
follows.

V (s, a, , θ)− V(t) (s, a, , θ)

= β

⎡⎣Z V (s0, 0, θ)dF 0( 0, θ)−
N(t)X
n=1

V (t−n)(s0, (t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

⎤⎦

= β

⎡⎣Z V (s0, 0, θ)dF 0( 0, θ)−
N(t)X
n=1

V (s0, (t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

⎤⎦

+β

⎡⎣N(t)X
n=1

h
V (s0, (t−n), θ∗(t−n))− V (t−n)(s0, (t−n), θ∗(t−n))

i
WN(t),h(θ, θ

∗(t−n))

⎤⎦
≡ A

(t)
1 (θ) +A

(t)
2 (θ)

The kernel smoothing part is difficult to handle because the underlying distri-
bution of θ∗(s) has a density function conditional on θ(s−1). Therefore, instead of
deriving the asymptotic value of 1

N(t)

PN(t)
k=1 Kh(θ − θ∗(t−k)), as is done in standard

nonparametric kernel asymptotics, we sometimes derive and use its asymptotic lower
bound and upper bound. Lemma 1 in the main text is used for the derivation of the
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asymptotic lower bound. Lemma 2 is used for the derivation of the asymptotic upper
bound. Using the results of Lemma 1 and 2, in Lemma 3 we prove that A(t)1 (θ)→ 0
uniformly in θ ∈ Θ.
Lemma 3:

¯̄̄
A
(t)
1 (θ)

¯̄̄
P→ 0 uniformly in Θ as t→∞.

Proof: Recall that,¯̄̄̄
¯A(t)1 (θ)β

¯̄̄̄
¯ =

¯̄̄̄
¯̄Z V (s0, 0, θ)dF 0( 0, θ)−

N(t)X
n=1

V (s0, (t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

¯̄̄̄
¯̄ .

Rewrite it as,¯̄̄̄
¯A(t)1 (θ)β

¯̄̄̄
¯ =

¯̄̄̄
¯̄ 1
N(t)
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´
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1
N(t)

PN(t)
k=1 Kh(θ − θ∗(t−k))

¯̄̄̄
¯̄ .

We show that the numerator goes to zero in probabilty uniformly in Θ and the
denominator is bounded below by a positive number uniformly in Θ with probability
arbitrarily close to one as t→∞.
Let

bXN(t) (θ) ≡ 1

N(t)

N(t)X
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∙Z
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¸
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¸
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Then, because (t−n)’s are i.i.d. and (t−n)˜F 0( 0, θ),

E
h
XN(t),t−n(θ)|θ(t−n)

i
= E

∙∙Z
V (s0, 0, θ)dF 0( 0, θ)−

Z
V (s0, 0, θ∗(t−n))dF 0( 0, θ∗(t−n))

¸
Kh(θ − θ∗(t−n))|θ(t−n)

i
→

∙Z
V (s0, 0, θ)dF 0( 0, θ)−

Z
V (s0, 0, θ)dF 0( 0, θ)

¸
q
³
θ(t−n), θ

´
= 0

as h → 0 (A1)

Also, because V is uniformly bounded,
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E
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i¯̄̄
is uniformly bounded.

Therefore, from Dominated Convergence Theorem,

E
£
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We can also show that the above convergence is uniform. For some M > 0
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∙∙Z
V (s0, 0, θ)dF 0( 0, θ)−

Z
V (s0, 0, θ∗(t−n))dF 0( 0, θ∗(t−n))

¸
Kh(θ − θ∗(t−n))I

³¯̄̄
θ − θ∗(t−n)

¯̄̄
> M

√
h
´
|θ(t−n)

i¯̄̄
≤ sup

θ,θ0∈Θ,|θ−θ0|≤M√h

¯̄̄̄Z
V (s0, 0, θ)dF 0( 0, θ)−

Z
V (s0, 0, θ0)dF 0( 0, θ0)

¯̄̄̄
+2 sup

θ

¯̄̄̄Z
V (s0, 0, θ)dF 0( 0, θ)

¯̄̄̄
ε1

Z
|z|>M/

√
h

K(z)eg (θ − hz) dz (A3)

The second inequality comes from Lemma 2, where q (θ, θ0) ≤ ε1g (θ
0) for any θ, θ0 ∈

Θ. Because V satisfies the Lipschitz condition and dF 0( 0, θ) is uniformly continuous
in θ ∈ Θ, the first term of the equation A3 converges to zero as h → 0. The second
term also converges to zero as h→ 0. Therefore, we have shown that the convergence
in A2 is uniform.
Furthermore,

E
£
XN(t),t−n(θ)XN(t),t−m(θ)

¤
= E

h
E
h
XN(t)n(θ)|θ(t−n−1)

i
XN(t)m(θ)

i
→ 0 (A4)

for t − n > t − m as h → 0. Hence, there exists η (h) > 0 such that η (h) → 0 as
h→ 0 and

E
£
XN(t)(θ)

2
¤

≤ 1

N (t)2

N(t)X
n=1

E
£
XN(t)n(θ)

2
¤
+ η (h)

≤ sup
s0,θ

1

N (t)2

N(t)X
n=1

E

∙∙Z
V (s0, 0, θ)dF 0( 0, θ)− V (s0, (t−n), θ∗(t−n))

¸
Kh(θ − θ∗(t−n))

i2
+ η (h)

≤ sup
s0,θ

1

N (t)h

Z
K(z)2

E

∙Z
V (s0, 0, θ)dF 0( 0, θ)− V (s0, (t−n), θ − zh)

¸2
ε1eg (θ − zh) dz + η (h)

→ 0.
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The last inequality comes from Lemma 2. That is, we have shown that there existseg, ε1 ≥ 1 such that q (θ, θ0) ≤ ε1eg (θ0) for any θ, θ0 ∈ Θ. Hence, from Chebychev
Inequality, for any γ > 0, δ > 0 there exists tγ such that for any t > tγ, i.e.,
N(t) ≥ N(tγ),

Pr

⎧⎨⎩
¯̄̄̄
¯̄
¯̄̄̄
¯̄ 1

N (t)

N(t)X
n=1

XN(t),t−n

¯̄̄̄
¯̄− 0

¯̄̄̄
¯̄ ≥ δ

⎫⎬⎭ ≤ γ

δ2
(A4)

Since γ/δ2 can be made arbitrarily small, this shows that the numerator in A(t)1 (θ) /β
converges to zero in probability. Next, we show that it converges to zero uniformly
in Θ. Here we follow Section 10.3 of Bierens (1994). Denote

RN(t) (θ) ≡ 1

N (t)

N(t)X
n=1

V
³
s0, (t−n), θ∗(t−n)

´
Kh(θ − θ∗(t−n))

By using the Fourier transform, we can express the kernel as follows.

K (x) =

µ
1

2π

¶J Z
exp (−iz0x)ψ (z) dz

where

ψ (z) =

Z
exp (iz0x)K (x) dx.

Because of Assumption 6, Z
|ψ (z)| dz <∞.

Then, by Fourier inversion

RN(t) (θ)

=

∙
1

2π

¸J
1

N (t)hJ

N(t)X
n=1

V
³
s0, (t−n), θ∗(t−n)

´Z
exp

⎛⎝−iz0
³
θ − θ∗(t−n)

´
h

⎞⎠ψ (z) dz

=

∙
1

2π

¸J
1

N (t)

Z ⎡⎣N(t)X
n=1

V
³
s0, (t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´⎤⎦ exp (−iz0θ)ψ (hz) dz.
(A5)

Hence,

E

∙
sup
θ∈Θ

¯̄
RN(t) (θ)−E

£
RN(t) (θ)

¤¯̄¸

≤
∙
1

2π

¸J Z
E

¯̄̄̄
¯̄ 1

N (t)

N(t)X
n=1

n
V
³
s0, (t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´
−E

h
V
³
s0, (t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´io¯̄̄
|ψ (hz)| dz (A6)
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Using the Liapunov’s Inequality, and

exp (ia) = cos (a) + i sin (a) ,

we get

E

¯̄̄̄
¯̄ 1

N (t)

N(t)X
n=1

n
V
³
s0, (t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´
−E

h
V
³
s0, (t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´io¯̄̄
≤

⎧⎨⎩V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, (t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´⎤⎦
+V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, (t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´⎤⎦⎫⎬⎭
1/2

Now, because (t−n), (t−m) n 6= m are i.i.d,

V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, (t−n), θ∗(t−n)

´
cos
³
t0θ∗(t−n)

´⎤⎦
=

1

N (t)2

N(t)X
n=1

N(t)X
m=1

Cov
h
V
³
s0, (t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´
, V
³
s0, (t−m), θ∗(t−m)

´
cos
³
z0θ∗(t−m)

´i
=

1

N (t)2

N(t)X
n=1

V ar
h
V
³
s0, (t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´i
(A7)

Similarly,

V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, (t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´⎤⎦
=

1

N (t)2

N(t)X
n=1

N(t)X
m=1

Cov
h
V
³
s0, (t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´
, V
³
s0, (t−m), θ∗(t−m)

´
sin
³
z0θ∗(t−m)

´i
=

1

N (t)2

N(t)X
n=1

V ar
h
V
³
s0, (t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´i
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Together, we derive that

E

∙
sup
θ∈Θ

¯̄
RN(t) (θ)− E

£
RN(t) (θ)

¤¯̄¸

≤
∙
1

2π

¸J Z ⎧⎨⎩ 1

N (t)2

N(t)X
n=1

n
V ar

h
V
³
s0, (t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´i
+ V ar

h
V
³
s0, (t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´ioo1/2
|ψ (hz)| dz

≤
∙
1

2π

¸J⎧⎨⎩ 1

N (t)2

N(t)X
n=1

sup
,θ∈Θ

|V (s0, , θ)|2
⎫⎬⎭
1/2 Z

|ψ (hz)| dz

=

∙
1

2π

¸J ½
1

N (t)h2J
sup
,θ∈Θ

|V (s0, , θ)|2
¾1/2 Z

|ψ (z)| dz → 0 as N (t)→∞(A8)

Therefore, from Chebychev Inequality, for any δ1 > 0, η1 > 0 there exists t (δ1, η1)
such that for any t > t (δ1, η1)

Pr

∙
sup
θ∈Θ

¯̄
RN(t) (θ)−E

£
RN(t) (θ)

¤¯̄
< δ1

¸
> 1− η1 (A9)

Furthermore, from we know from the uniform convergence of E
£
XN(t)n(θ)

¤
to zero in

Θ that

E
£
RN(t) (θ)

¤ → E

∙Z
V (s0, 0, θ)dF 0( 0, θ)Kh(θ − θ∗(t−n))

¸
=

Z
V (s0, 0, θ)dF 0( 0, θ).

uniformly in Θ. Together with A9, we have shown that the numerator of |A1 (θ)|
converges to zero uniformly in Θ. We next show that the denominator is uniformly
bounded below with probability arbitrarily close to one as t goes to infinity. Let

R(t−n) ≡ ε0
g
³
θ∗(t−n)

´
q
³
θ(t−n), θ∗(t−n)

´ .
Then, from Lemma 1, 0 ≤ R(t−n) ≤ 1 and 0 < ε0 ≤ 1. Also, define a random variable
Y (t−n) (θ) as follows.

Y (t−n) (θ) =

(
Kh

³
θ − θ∗(t−n)(q)

´
with probability R(t−n)

0 with probability 1−R(t−n)
.

Then, Y (t−n) is a mixture of 0 and Kh

³
θ − θ∗(t−n)(g)

´
, with the mixing probability

being 1− ε0 and ε0. That is,

Y (t−n) (θ) =

(
Kh

³
θ − θ∗(t−n)(g)

´
with probability ε0

0 with probability 1− ε0
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or, equivalently,
Y (t−n) (θ) = Kh

³
θ − θ∗(t−n)(g)

´
I(t−n)

where

I(t−n) =
½
1 with probability ε0
0 with probability 1− ε0

Further, from the construction of Y (t−n),

Y (t−n) (θ) ≤ Kh

³
θ − θ∗(t−n)(q)

´
.

Now, because θ∗(t−n)(g), n = 1, ..., N(t) are i.i.d., following Bierens (1994), section
10.1, and 10.3, we can derive uniform convergence. That is, by using the Fourier
transform of the kernel,

1

N(t)

N(t)X
n=1

Y (t−n) (θ)

=
1

N(t)

N(t)X
n=1

I(t−n)
µ
1

2πh

¶J Z
exp

⎛⎝−iz0
³
θ − θ∗(t−n) (g)

´
h

⎞⎠ψ (z) dz

=

µ
1

2πh

¶J Z ⎡⎣ 1

N(t)

N(t)X
n=1

I(t−n) exp
³
iz0θ∗(t−n) (g)

´⎤⎦ exp (−iz0θ)ψ (hz) dz
Hence, using equations 2.3.4 and 2.3.5 in Bierens (1994), we get

E

⎡⎣sup
θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)−E

⎡⎣ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)

⎤⎦¯̄̄̄¯̄
⎤⎦

≤
µ
1

2π

¶J Z
E

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

h
I(t−n) exp

³
iz0θ∗(t−n) (g)

´
−E

h
I(t−n) exp

³
iz0θ∗(t−n) (g)

´ii¯̄̄
|ψ (hz)| dz

≤
s

E [I(t−n)2]
N (t)

µ
1

2π

¶J Z
|ψ (ht)| dt =

s
E [I(t−n)2]
N (t)hJ

µ
1

2π

¶J Z
|ψ (t)| dt

→ 0 (A11)

as t→∞. Therefore, using Chebychev’s Inequality, we can show that

sup
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)− ε0g (θ)

¯̄̄̄
¯̄ P→ 0 (A12)
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Therefore, for any κ > 0, η > 0, there exists t > 0 , N ≡ N(t) such that for any t > t,
i.e, N(t) > N ,

Pr

⎡⎣sup
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)− ε0g(θ)

¯̄̄̄
¯̄ ≤ κ

⎤⎦ > 1− η.

That is,

Pr

⎡⎣ inf
θ∈Θ

1

N(t)

N(t)X
n=1

Y (t−n) (θ) + κ ≥ ε0 inf
θ∈Θ

g(θ)

⎤⎦ > 1− η

Now, choose κ < 1
2
infθ∈Θ ε0g(θ). Then,

Pr

⎡⎣ inf
θ∈Θ

1

N(t)

N(t)X
n=1

Y (t−n) (θ) >
1

2
ε0 inf

θ∈Θ
g(θ)

⎤⎦ > 1− η.

Since
NP
n=1

Kh

³
θ − θ∗(t−n)(q)

´
≥

NP
n=1

Y (t−n), we conclude that for any η > 0, there

exists tη > 0 , N ≡ N(tη) such that for any t > tη, i.e, N(t) > N,

Pr

⎡⎣ inf
θ∈Θ

1

N(t)

N(t)X
n=1

Kh

³
θ − θ∗(t−n)(q)

´
>
1

2
ε0 inf

θ∈Θ
g(θ)

⎤⎦ > 1− η. (A13)

From the uniform convergence of the numerator to zero, and A13, we can see that
for t = max{t (δ1, η1) , tη} > 0 , N ≡ N(t), the following holds: for any t > t, i.e,
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N(t) > N

Pr

⎡⎢⎢⎢⎣supθ∈Θ

¯̄̄̄
¯̄̄̄
¯

1
N(t)

N(t)P
n=1

hR
V (s0, 0, θ)dF 0( 0, θ)− V (s0, (t−n), θ∗(t−n))

i
Kh(θ − θ∗(t−n))

1
N(t)

N(t)P
n=1

Kh

³
θ − θ∗(t−n)

´
¯̄̄̄
¯̄̄̄
¯

≤ δ1
1
2
ε0 infθ∈Θ g(θ)

¸

≥ Pr

⎡⎢⎢⎢⎢⎣
supθ∈Θ

¯̄̄̄
¯ 1
N(t)

N(t)P
n=1

hR
V (s0, 0, θ)dF 0( 0, θ)− V (s0, (t−n), θ∗(t−n))

i
Kh

¯̄̄̄
¯

infθ∈Θ

¯̄̄̄
¯ 1
N(t)

N(t)P
n=1

Kh

³
θ − θ∗(t−n)

´¯̄̄̄¯
≤ δ1

1
2
ε0 infθ∈Θ g(θ)

¸

≥ Pr

⎧⎨⎩
⎡⎣sup
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

∙Z
V (s0, 0, θ)dF 0( 0, θ)− V (s0, (t−n), θ∗(t−n))

¸
Kh

¯̄̄̄
¯̄ ≤ δ1

⎤⎦
\ ⎡⎣ inf

θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ∗(t−n)

´¯̄̄̄¯̄ > 1

2
ε0 inf

θ∈Θ
g(θ)

⎤⎦⎫⎬⎭
≥ 1− Pr

⎡⎣sup
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

∙Z
V (s0, 0, θ)dF 0( 0, θ)− V (s0, (t−n), θ∗(t−n))

¸
Kh

¯̄̄̄
¯̄ > δ1

⎤⎦
−Pr

⎡⎣ inf
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ∗(t−n)

´¯̄̄̄¯̄ ≤ 12ε0 infθ∈Θ
g(θ)

⎤⎦
≥ 1− η1 − η (A14)

uniformly over Θ. Since δ1/
£
1
2
infθ∈Θ ε0g(θ)

¤
can be made arbitrarily small by choos-

ing δ1 small enough, we have shown that

sup
θ∈Θ

¯̄̄
A
(t)
1 (θ)

¯̄̄
P→ 0 as N(t)→∞.

From Lemma 3, we know that,

sup
θ∈Θ

¯̄̄
A
(t)
1 (θ)

¯̄̄
P→ 0, as t→∞,

Therefore, ¯̄̄
A
(t)
1 (θ

(t))
¯̄̄

P→ 0 as t→∞
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Now,
V (s, a, , θ)− V(t) (s, a, , θ) = A

(t)
1 (θ)

+β

⎡⎣N(t)X
n=1

h
V (s0, (t−n), θ∗(t−n))− V (t−n)(s0, (t−n), θ∗(t−n))

i
WN(t),h(θ, θ

∗(t−n))

⎤⎦ (A15)

Notice that if V (s, , θ) ≥ V (t) (s, , θ), then

0 ≤ V (s, , θ)− V (t) (s, , θ) =Maxa∈AV (s, a, , θ)−Maxa∈AV(t) (s, a, , θ)

≤ Maxa∈A
£V (s, a, , θ)− V(t) (s, a, , θ)

¤ ≤Maxa∈A
¯̄V (s, a, , θ)− V(t) (s, a, , θ)

¯̄
Similarly, if V (s, , θ) ≤ V (t) (s, , θ), then

0 ≤ V (t) (s, , θ)− V (s, , θ) =Maxa∈AV(t) (s, a, , θ)−Maxa∈AV (s, a, , θ)

≤ Maxa∈A
£V(t) (s, a, , θ)− V (s, a, , θ)

¤ ≤Maxa∈A
¯̄V (s, a, , θ)− V(t) (s, a, , θ)

¯̄
Hence, taking supremum over s0 on the right hand side of A15 and then taking
absolute values on both sides, we obtain:¯̄

V (s, , θ)− V (t) (s, , θ)
¯̄ ≤Maxa∈A

¯̄V (s, a, , θ)− V(t) (s, a, , θ)
¯̄

≤ sup
s0∈S

¯̄̄
A
(t)
1 (θ)

¯̄̄
+β

⎡⎣N(t)X
n=1

sup
s∈S

¯̄̄
V (bs, (t−n), θ∗(t−n))− V (t−n)(bs, (t−n), θ∗(t−n))

¯̄̄
WN(t),h(θ, θ

∗(t−n))

⎤⎦
(A15’)

Now,
¯̄
V (s, , θ)− V (t) (s, , θ)

¯̄
appears on the LHS and¯̄̄

V (bs, (t−n), θ∗(t−n))− V (t−n)(bs, (t−n), θ∗(t−n))
¯̄̄
appears on the RHS of equationA150.

Using this, we can recursively substitute away¯̄̄
V (bs, (t−n), θ∗(t−n))− V (t−n)(bs, (t−n), θ∗(t−n))

¯̄̄
. This logic is used in the following

Lemma. Before we proceed with the Lemman and its proof, we introduce some
additional notation. For τ < t, let

fW (t, τ) ≡ βWN(t),h(θ, θ
0).

where θ is the parameter vector at iteration t and θ0 the parameter vector at iteration
τ . Now, for N ≥ 1 and for m such that 0 < m ≤ N + 1, define

Ψm (t+N, t, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+N > tm−1 > .... > t2 > t1 ≥ t, t0 = τ} .
That is, Ψm (t+N, t, τ) the resulting set of iterations where the largest is t + N
and the smallest τ , and the other m − 1 iterations are greater than or equal to t.
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Furthermore, let

cW (t+N, t, τ) ≡
N+1X
m=1

⎧⎨⎩ X
Ψm(t+N,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭ .

Notice that cW (t, t, τ) ≡fW (t, τ).
Lemma 4:
For any N ≥ 1, t > 0,¯̄

V (s, , θ)− V (t+N) (s, , θ)
¯̄

≤ sup
s0∈S

¯̄̄
A
(t+N)
1 (θ)

¯̄̄
+

N−1X
m=0

cW (t+N, t+N −m, t+N −m− 1) sup
s0∈S

¯̄̄
A(t+N−m−1)

³
θ∗(t+N−m−1)

´¯̄̄
+

N(t)X
n=1

sup
s∈S

¯̄̄
V (bs, (t−n), θ∗(t−n))− V (t−n)(bs, (t−n), θ∗(t−n))

¯̄̄ cW (t+N, t, t− n).(A16)

Furthermore,
N(t)X
n=1

cW (t+N, t, t− n) ≤ β (A17)

Proof of Lemma 5.
First, we show that inequality A16 and A17 hold for N = 1. For iteration t + 1,

we get ¯̄
V (s, , θ)− V (t+1) (s, , θ)

¯̄
≤ sup

s0∈S

¯̄̄
A
(t+1)
1 (θ)

¯̄̄
+

N(t+1)X
n=1

sup
s0∈S

¯̄̄
V (s0, (t+1−n), θ∗(t+1−n))− V (t+1−n)(s0, (t+1−n), θ∗(t+1−n))

¯̄̄
fW (t+ 1, t+ 1− n)

≤ sup
s0∈S

¯̄̄
A
(t+1)
1 (θ)

¯̄̄
+ sup

s0∈S

¯̄̄
V (s0, (t), θ∗(t))− V (t)(s0, (t), θ∗(t))

¯̄̄ fW (t+ 1, t)

+

N(t+1)−1X
n=1

sup
s0∈S

¯̄̄
V (s0, (t−n), θ∗(t−n))− V (t−n)(s0, (t−n), θ∗(t−n))

¯̄̄ fW (t+ 1, t− n)

Now, we substitute away
¯̄̄
V (s0, (t), θ∗(t))− V (t)(s0, (t), θ∗(t))

¯̄̄
by using A150) and the

fact that N(t) ≥ N(t+ 1)− 1,
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¯̄̄
V
³
s, , θ∗(t+1)

´
− V (t+1)

³
s, , θ∗(t+1)

´¯̄̄
≤ sup

s0∈S

¯̄̄
A
(t+1)
1 (θ∗(t+1))

¯̄̄
+ sup

s0∈S

¯̄̄
A(t)(θ∗(t))

¯̄̄ fW (t+ 1, t)
+

N(t)X
n=1

sup
s∈S

¯̄̄
V (bs, (t−n), θ∗(t−n))− V (t−n)(bs, (t−n), θ∗(t−n))

¯̄̄
{fW (t+ 1, t)fW (t, t− n) +fW (t+ 1, t− n)}

= sup
s0∈S

¯̄̄
A
(t+1)
1

³
θ∗(t+1)

´¯̄̄
+ sup

s0∈S

¯̄̄
A
(t)
1

³
θ∗(t)

´¯̄̄cW (t+ 1, t+ 1, t)
+

N(t)X
n=1

sup
s∈S

¯̄̄
V (bs, (t−n), θ∗(t−n))− V (t−n)(bs, (t−n), θ∗(t−n))

¯̄̄ cW (t+ 1, t, t− n)

Hence, Inequality A16 holds for N = 1.

Furthermore, because
N(t)P
n=1

fW (t, t− n)/β =
N(t)P
n=1

WN(t),h(θ
∗(t), θ∗(t−n)) = 1,

N(t)X
n=1

cW (t+ 1, t, t− n) =

N(t)X
n=1

fW (t+ 1, t)fW (t, t− n) +

N(t)X
n=1

fW (t+ 1, t− n)

= fW (t+ 1, t)N(t)X
n=1

fW (t, t− n) +

N(t)X
n=1

fW (t+ 1, t− n)

= βfW (t+ 1, t) + N(t)X
n=1

fW (t+ 1, t− n) ≤
N(t)+1X
n=1

fW (t+ 1, t+ 1− n)

Since fW (t+ 1, t+ 1− n) = 0 for any n > N(t+ 1),

N(t)+1X
n=1

fW (t+ 1, t+ 1− n) =

N(t+1)X
n=1

fW (t+ 1, t+ 1− n)

= β

N(t+1)X
n=1

WN(t+1),h(θ
(t+1), θ∗(t+1−n)) = β

Thus,
N(t)X
n=1

cW (t+ 1, t, t− n) ≤ β

Hence, inequality A17 holds for N = 1.
Next, suppose that inequality A16 holds for N =M . Then, using t+1 instead of

t in inequality A16, we get

53



¯̄
V (s, , θ)− V (t+1+M) (s, , θ)

¯̄
≤ sup

s0∈S

¯̄̄
A
(t+1+M)
1 (θ)

¯̄̄
+

M−1X
m=0

cW (t+ 1 +M, t+ 1 +M −m, t+M −m) sup
s0∈S

¯̄̄
A(t+M−m)

³
θ∗(t+M−m)

´¯̄̄
+sup

s∈S

¯̄̄
V (bs, (t), θ∗(t))− V (t)(bs, (t), θ∗(t))

¯̄̄ cW (t+ 1 +M, t+ 1, t)

+

N(t+1)X
n=2

sup
s∈S

¯̄̄
V (bs, (t+1−n), θ∗(t+1−n))− V (t+1−n)(bs, (t+1−n), θ∗(t+1−n))

¯̄̄
cW (t+ 1 +M, t+ 1, t+ 1− n).

Now, using A150 to substitute away sups∈S
¯̄̄
V (bs, (t), θ∗(t))− V (t)(bs, (t), θ∗(t))

¯̄̄
, we get

¯̄
V (s, , θ)− V (t+M+1) (s, , θ)

¯̄
≤ sup

s0∈S

¯̄̄
A
(t+M+1)
1 (θ)

¯̄̄
+

MX
m=0

cW (t+M + 1, t+M + 1−m, t+M −m) sup
s0∈S

¯̄̄
A
(t+M−m)
1

³
θ∗(t+M−m)

´¯̄̄
+

N(t)X
n=1

sup
s∈S

¯̄̄
V (bs, (t−n), θ∗(t−n))− V (t−n)(bs, (t−n), θ∗(t−n))

¯̄̄
hcW (t+M + 1, t+ 1, t)fW (t, t− n) +cW (t+M + 1, t+ 1, t− n)

i
(A18)

Now, we claim that, for any M ≥ 1,cW (t+M, t+ 1, t)fW (t, t− n) +cW (t+M, t+ 1, t− n)

= cW (t+M, t, t− n) (A19)

Proof of the Claim:
Let

Ψm,1(t+M, t, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > .... > t2 ≥ t+ 1, t1 = t, t0 = τ} .
Notice that

Ψm(t+M, t+ 1, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > .... > t2 > t1 ≥ t+ 1, t0 = τ} .
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Then,
Ψm(t+M, t, τ) = Ψm,1(t+M, t, τ) ∪Ψm(t+M, t+ 1, τ)

and
Ψm,1(t+M, t, τ) ∩Ψm(t+M, t+ 1, τ) = ∅.

Also,
ΨM+1(t+M, t+ 1, τ) = ∅

Therefore,

cW (t+M, t, τ)

≡
M+1X
m=1

⎧⎨⎩ X
Ψm(t+M,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

M+1X
m=1

⎧⎨⎩ X
Ψm,1(t+M,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭+
M+1X
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

M+1X
m=2

⎧⎨⎩ X
Ψm−1(t+M,t+1,t)

m−1Y
k=1

fW (tk, tk−1)

⎫⎬⎭fW (t, τ)

+
MX

m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

MX
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,t)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭fW (t, τ) +
MX
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
= cW (t+M, t+ 1, t)fW (t, τ) +cW (t+M, t+ 1, τ)

Hence, the claim holds. Substituting this into equation A18 yields the first part of
the lemma by induction.
Next, suppose that A17 holds for N =M . That is,

N(t)X
n=1

cW (t+M, t, t− n) ≤ β.

Then, denoting t0 = t+ 1, we get
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N(t)X
n=1

cW (t+M + 1, t, t− n)

=

N(t)X
n=1

cW (t+M + 1, t+ 1, t)fW (t, t− n) +

N(t)X
n=1

cW (t+M + 1, t+ 1, t− n)

≤ cW (t0 +M, t0, t) +
N(t)X
n=1

cW (t0 +M, t0, t− n)

=

N(t0)X
n=1

cW (t0 +M, t0, t0 − n) ≤ β

Hence, induction holds and for any N > 0,

N(t)X
n=1

cW (t+N, t, t− n) ≤ β

Therefore, from induction, Lemma 5 holds.
Now, for any m = 1, ... eN(l), if we substitute t(l)−m for t+N , t(l− 1) for t, then

equation A16 becomes¯̄̄
V
³
s, (t(l)−m), θ∗(t(l)−m)

´
− V (t(l)−m)

³
s, (t(l)−m), θ∗(t(l)−m)

´¯̄̄
≤ sup

s0∈S

¯̄̄
A
(t(l)−m)
1

³
θ∗(t(l)−m)

´¯̄̄
+

N(l)−m−1X
i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄

+

N(l−1)X
n=1

sup
s∈S

¯̄̄
V (bs, (t(l−1)−n), θ∗(t(l−1)−n))− V (t(l−1)−n)(bs, (t(l−1)−n), θ∗(t(l−1)−n))

¯̄̄
cW (t(l)−m, t(l − 1), t(l − 1)− n)

Now, we take weighted sum of
¯̄̄
V
³
s, , θ∗(t(l)−m)

´
− V (t(l)−m)

³
s, , θ∗(t(l)−m)

´¯̄̄
, m =

1, ... eN(l), where the weights are defined to be W# (l, t(l)−m). These weights satisfy
W# (l, tl) > 0 for tl such that t(l − 1) ≤ tl < t(l) and 0 otherwise, andX

t(l−1)≤tl<t(l)
W# (l, tl) = 1 (A20)
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Then,

N(l)X
m=1

¯̄̄
V
³
s, (t(l)−m), θ∗(t(l)−m)

´
− V (t(l)−m)

³
s, (t(l)−m), θ∗(t(l)−m)

´¯̄̄
W# (l, t(l)−m)

≤
N(l)X
m=1

½
sup
s0∈S

¯̄̄
A
(t(l)−m)
1

¯̄̄

+

N(l)−m−1X
i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¾
W# (l, t(l)−m)

+

N(l)X
m=1

N(l−1)X
n=1

sup
s∈S

¯̄̄
V (bs, (t(l−1)−n), θ∗(t(l−1)−n))− V (t(l−1)−n)(bs, (t(l−1)−n), θ∗(t(l−1)−n))

¯̄̄
cW (t(l)−m, t(l − 1), t(l − 1)− n)W# (l, t(l)−m) (A21)

Now, let,

B1(l, l) =

N(l)X
m=1

sup
¯̄̄
A
(t(l)−m)
1

¯̄̄
W# (l, t(l)−m) ,

B2(l, l) ≡
N(l)X
m=1

W# (l, t(l)−m)

×
N(l)−m−1X

j=0

ncW (t(l)−m, t(l)−m− j, t(l)−m− j − 1) sup ¯̄A(t(l)−m−j−1)¯̄o
and,

A(l, l) ≡ B1(l, l) +B2(l, l).

Lemma 6
A(l, l)

P→ 0 as l→∞.

Proof : We first show that B1(l, l)
P→ 0. Recall that

A
(t)
1 (θ) = β

⎡⎣Z V (s0, 0, θ)dF 0( 0, θ)−
N(t)X
n=1

V (s0, (t−n), θ)WN(t),h(θ, θ
∗(t−n))

⎤⎦

+β

⎡⎣N(t)X
n=1

h
V (s0, (t−n), θ)− V (s0, (t−n), θ(t−n))

i
WN(t),h(θ, θ

∗(t−n))

⎤⎦
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Because
R
V (s0, 0, θ)dF 0( 0, θ), and V (s0, (t−n), θ) are uniformly bounded and the

parameter space is compact, A(t)1 is uniformly bounded. Hence, there exists A > 0

such that A(t)1 ≤ A for any t. Because A(t)1
P→ 0 uniformly over Θ, for any η1 > 0,

η2 > 0, there exists T such that for any t > T ,

sup
θ∈Θ

Pr

∙
sup
s0∈S

¯̄̄
A
(t)
1 (θ)

¯̄̄
< η1

¸
> 1− η2

Therefore,

E

∙
sup

s0∈S,θ∈Θ

¯̄̄
A
(t)
1 (θ)

¯̄̄¸
≤ η1 Pr

∙
sup
s0∈S

¯̄̄
A
(t)
1 (θ)

¯̄̄
< η1

¸
+APr

∙
sup

s0∈S,θ∈Θ

¯̄̄
A
(t)
1 (θ)

¯̄̄
≥ η1

¸
≤ η1 (1− η2) +Aη2 (A22)

Hence,

E [B1(l, l)] = E

⎡⎣N(l)X
m=1

sup
¯̄̄
A
(t(l)−m)
1

¯̄̄
W# (l, t(l)−m)

⎤⎦
≤

N(l)X
m=1

W# (l, t(l)−m)
£
η1 (1− η2) +Aη2

¤
=

£
η1 (1− η2) +Aη2

¤
Now, from Chebychev’s Inequality,

Pr

⎡⎣ 1eN(l)
N(l)X
m=1

W#(l, t(l)−m) sup
s0,θ(t(l)−m)∈Θ

¯̄̄
A
(t(l)−m)
1

¯̄̄
> δ

⎤⎦
≤

£
η1 (1− η2) + η2A

¤
δ

(A23)

For any given δ, the RHS can be made arbitrarily small by choosing η1and η2. Thus,

B1(l, l)
P→ 0 as t→∞.

We now show that

B2(l, l)

=

N(l)X
m=1

W# (l, t(l)−m)×

N(l)−m−1X
j=0

ncW (t(l)−m, t(l)−m− j, t(l)−m− j − 1) sup
¯̄̄
A
(t(l)−m−j−1)
1

¯̄̄o
P→ 0

as t→∞.
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For any t0 > t > 0, let,

eK (t0, t) ≡ Kh

³
θ∗(t

0) − θ∗(t)
´

For τ 1 > τ 2 > τ , define W ∗ (τ 1, τ 2, τ , j) recursively to be as follows.

W ∗ (τ 1, τ 2, τ , 1) ≡ fW (τ 1, τ)
W ∗ (τ 1, τ 2, τ , 2) ≡

τ1−τ2X
j=1

fW (τ 1, τ 1 − j)W ∗ (τ 1 − j, τ 2, τ , 1)

...

W ∗ (τ 1, τ 2, τ , k) ≡
τ1−τ2−(k−2)X

j=1

fW (τ 1, τ 1 − j)W ∗ (τ 1 − j, τ 2, τ , k − 1)

Notice that for τ < τ 2 −N (τ 2) ,

W ∗ (τ 1, τ 2, τ , k) = 0

for all k. Similarly,

K∗ (τ 1, τ 2, τ , 1) ≡ 1

N(τ 1)
eK(τ 1, τ)

K∗ (τ 1, τ 2, τ , 2) ≡
τ1−τ2X
j=1

1

N(τ 1)
eK(τ 1, τ 1 − j)K∗ (τ 1 − j, τ 2, τ , 1)

...

K∗ (τ 1, τ 2, τ , k) ≡
τ1−τ2−(k−2)X

j=1

1

N(τ 1)
eK(τ 1, τ 1 − j)K∗ (τ 1 − j, τ 2, τ , k − 1)

and for τ < τ 2 −N (τ 2),
K∗ (τ 1, τ 2, τ , k) = 0

Then, for any τ 1 > τ 2 > τ ,

cW (τ 1, τ 2, τ) ≡ N(l)+1X
m=1

⎧⎨⎩ X
Ψm(τ1,τ2,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

τ1−τ2+1X
k=1

W ∗(τ 1, τ 2, τ , k) (A24)
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Hence,

N(l)−m−1X
i=0

½cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¾

=

N(l)−m−1X
i=0

(
i+1X
k=1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄)

=

N(l)X
k=1

⎧⎨⎩
N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄⎫⎬⎭
Also, notice that, for any et such that t(l − 1) ≤ et ≤ t(l)

W ∗(et,et− i,et− i− 1, k)

=
X

Ψk(t,t−i,t−i−1)

kY
j=1

fW (tj, tj−1)

=
X

Ψk(t,t−i,t−i−1)

kY
j=1

β
eK (tj, tj−1)

N(tj)P
i=1

eK (tj, tj−i)
≤ βk

⎡⎣ inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−k X
Ψk(t,t−i,t−i−1)

kY
j=1

eK (tj, tj−1)
= βk

⎡⎣ 1eN(l) inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−k X
Ψk(t,t−i,t−i−1)

kY
j=1

eK (tj, tj−1)eN(l)
= βk

⎡⎣ 1eN(l) inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−kK∗(et,et− i,et− i− 1, k)

Hence, we get
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Pr

⎡⎣N(l)X
k=1

N(l)X
m=1

W#(l, t(l)−m)

N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥ δ − δN(l)+2

1− δ

#

≤ Pr

⎡⎣N(l)[
k=1

⎧⎨⎩
N(l)X
m=1

W#(l, t(l)−m)

N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥ δk

¾¸

≤
N(l)X
k=1

Pr

⎡⎣N(l)X
m=1

W#(t(l), t(l)−m)

N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥ δk

¸

≤
N(l)X
k=1

Pr

⎧⎨⎩
⎡⎣N(l)X
m=1

W#(t(l), t(l)−m)

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥
∙

δ

4Aβ
ε0 inf

θ
g (θ)

¸k#
[⎡⎣ inf

t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦⎫⎬⎭
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≤
N(l)X
k=1

Pr

⎡⎣N(l)X
m=1

W#(t(l), t(l)−m)

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥
∙

δ

4Aβ
ε0 inf

θ
g (θ)

¸k#

+Pr

⎡⎣ inf
t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦ (A25)

First, we consider the first term of the RHS of equation A25.

Claim 1 : The following inequality holds.

E

⎧⎨⎩
N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)
⎫⎬⎭

≤ εk+11

½
sup
θ0∈Θ

Eθ [Kh (θ
0 − θ(eg))]¾k

1

(k − 1)! (A26)

Proof: First, by definition of K∗, note that,

E

⎧⎨⎩
N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)
⎫⎬⎭

=
1eN(l)k

N(l)−m−1X
i=k−1

X
j1,...,jk−1

I (j0 = t(l)−m− i− 1,

t(l)−m− i ≤ j1 < j2 < ... < jk = t(l)−m)

E

∙½
k−1Q
s=0

h
Kh

³
θ∗(js+1) − θ∗js

´i¾¸
(A27)

Because θ0(eg) and θ(eg) are assumed to be independent,
Eθ0,θ [Kh (θ

0 (eg)− θ(eg))] = Eθ0 [Eθ {Kh (θ
0(eg)− θ(eg))}]

5 sup
θ∈Θ

Eθ

h
Kh

³eθ − θ(eg)´i (A28)

Now, for k ≥ 1, let (j0, j1, ..., jk) satisfy t(l) − m − i − 1 = j0 < j1 < j2 < ... <
jk−1 < jk = t(l)−m. Now, denote the conditional transition probability from θ∗(t) to
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θ∗(t+1) given Ω(t) as f∗
³
θ∗(t), θ∗(t+1)|Ω(t)

´
, or , in shorthand, f∗(t+1). Notice that from

Lemma 2, for any l,

⎧⎨⎩
t(l)−mY
s=2

f∗
³
θ∗(s−1), θ∗(s)|Ω(s−1)

´⎫⎬⎭
≤

"
k−1Y
m=0

ε1eg(θ∗(jm))#⎧⎨⎩
t(l)−mY
s=2

h
f∗
³
θ∗(s−1), θ∗(s)|Ω(s−1)

´
1
³
s 6= {jm}k−1m=0

´
+ 1

³
s 6= {jm}k−1m=0

´i⎫⎬⎭
(A29)

Because Kh () ≥ 0, for any 0 < t < t0

E
h
Kh(θ

∗(t0) − θ∗(t))
i
= E

h
Kh

³
θ∗(t

0)(f∗(t
0))− θ∗(t)(f∗(t))

´i
≤ ε21E

n
E
h
Kh

³
θ∗(t

0)(eg)− θ∗(t)(eg)´io .
By A28 and A29,

E

∙
k−1Q
i=0

h
Kh

³
θ∗(ji+1)(f∗(ji+1))− θ∗(ji)(f∗(ji))

´i
|Ω(j0)

¸
≤ εk+11 E

∙
k−1Q
i=0

h
Kh

³
θ∗(ji+1)(eg)− θ∗(ji)(eg)´i¸

≤ εk+11 E

∙
k−1Q
i=0

sup
θ0∈Θ

h
Kh

³
θ0 − θ∗(ji)(eg)´i¸

= εk+11

½
sup
θ0∈Θ

Eθ [Kh (θ
0 − θ∗(eg))]¾k

(A30)

Furthermore, for any i,m such that 0 < m + i ≤ eN(l) and for any k > 1 such that
k ≤ m+ i,

1eN(l)k−1 X
j1,...,jk−1

I(t(l)−m− i ≤ j1 < ... < jk−1 < t(l)−m)

=
1eN(l)k−1

µ
[i]!

(k − 1)!(i− (k − 1))!
¶

≤
h
[i] / eN(l)ik−1
(k − 1)! ≤ 1

(k − 1)! (A31)

Substituting A30 and A31 into A27, A26 follows and hence Claim 1 is proved.
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Now, by
PN(l)

m=1W
#(l, t(l) − m) = 1, the law of iterated expectations and the

results obtained in A22 and A25,

E

⎡⎣N(l)X
m=1

W#(l, t(l)−m)

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¸

= E

⎧⎨⎩
N(l)X
m=1

W#(l, t(l)−m)

E

⎡⎣N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)|Ω(t(l)−m−i−1)
⎤⎦

sup
s0,θ

¯̄̄
A
(t(l)−m−i−1)
1 (θ)

¯̄̄¾

≤
N(l)X
m=1

W#(l, t(l)−m)

∙
εk+11 sup

θ0∈Θ
Eθ [Kh (θ

0 − θ(eg))]k 1

(k − 1)!
¸ £

η1 (1− η2) + η2A
¤

=

∙
εk+11 sup

θ0∈Θ
Eθ [Kh (θ

0 − θ(eg))]k 1

(k − 1)!
¸ £

η1 (1− η2) + η2A
¤

Chebychev Inequality implies,

Pr

⎡⎣N(l)X
m=1

W#(l, t(l)−m)

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
>

∙
δ

4Aβ
ε0 inf

θ
g (θ)

¸k#

≤
£
η1 (1− η2) + η2A

¤
εk+11 supθ0∈ΘE [Kh (θ

0 − θ(eg))]k 1
(k−1)!h

δ
4Aβ

ε0 infθ g (θ)
ik (A32)

Next, we consider the second term of the RHS of equation A25.
Claim 2: For any t(l − 1) ≤ t ≤ t(l), either

h
t(l − 1)− eN(l − 1)/2, t(l − 1)i ⊆

[t−N(t), t] orh
t(l − 1), t(l − 1) + eN(l − 1)/2i ⊆ [t−N(t), t] or both.

Proof : First, we show that for t satistying t(l − 1) ≤ t ≤ t(l − 1) + eN(l − 1)/2,h
t(l − 1)− eN(l − 1)/2, t(l − 1)i ⊆ [t−N(t), t] (A33)
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Because N() is a nondecreasing function, N(t) ≥ eN(l − 1). Hence,
t− t(l − 1) ≤ eN(l − 1)/2 = eN(l − 1)− eN(l − 1)/2 ≤ N(t)− eN(l − 1)/2

Thus,
t−N(t) ≤ t(l − 1)− eN(l − 1)/2

Since t(l − 1) ≤ t, A33 holds.
Next, we show that for t satisfying t(l − 1) + eN(l − 1)/2 < t ≤ t(l),h

t(l − 1), t(l − 1) + eN(l − 1)/2i ⊆ [t−N(t), t] . (A34)

From the definition of eN(),
t(l)− eN(l) = t(l − 1)

Furthermore, because N(s) is increasing at most by one with unit increase in s,
s−N(s) is nondecreasing in s. Hence,

t−N(t) ≤ t(l)− eN(l) = t(l − 1).

Furthermore, t > t(l − 1) + eN(l − 1)/2. Therefore, A34 holds. Hence, Claim 2 is
proved.
Now, from A6, we know that for any η3 > 0, there exists L such that for any

l > L, t1 = t(l − 1) and for t2 = t(l − 1) + eN(l − 1)/2,
Pr

"
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(ti−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#
≤ η3, i = 1, 2

Therefore,

Pr

"(
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t1−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

) S
(

1eN(l)/2
N(l)/2P
k=1

Kh(θ − θ∗(t2−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

)#

≤ Pr

"
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t1−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#

+Pr

"
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t2−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#
≤ 2η3
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Therefore,

Pr

"(
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t1−k)) >
1

2
ε0 inf

θ∈Θ
g (θ)

) T
(

1eN(l)/2
N(l)/2P
k=1

Kh(θ − θ∗(t2−k)) >
1

2
ε0 inf

θ∈Θ
g (θ)

)#
> 1− 2η3

Now, from Claim 2, for any t such that t(l − 1) ≤ t ≤ t(l),

1eN(l)
N(t)P
n=1

Kh(θ − θ∗(t−k)) ≥
eN(l − 1)/2eN(l) 1eN(l − 1)/2

N(l−1)/2P
k=1

Kh(θ − θ∗(s−k)) (A35)

where either s = t1 = t(l− 1) or s = t2 = t(l− 1)+ eN(l− 1)/2 or both. Furthermore,
notice that N(l−1)/2

N(l)
≥ 1

2A
. Therefore,

Pr

"
inf

t(l−1)≤t≤t(l)
1eN(l)

N(t)P
n=1

Kh(θ − θ∗(t−n)) ≥ 1

4A
ε0 inf

θ∈Θ
g (θ)

#
> 1− 2η3

Thus,

Pr

⎡⎣ inf
t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
n=1

eK(t, t− n)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦ ≤ 2η3 (A36)

By A32 and A36,

RHS of A25

≤
N(l)X
k=1

£
η1 (1− η2) + η2A

¤
εk+11 supθ0∈ΘEθ [Kh (θ

0 − θ(eg))]k 1
(k−1)!h

δ
4Aβ

ε0 infθ g (θ)
ik + 2η3

= ε1
£
η1 (1− η2) + η2A

¤
eλλ

N(l)X
k=1

"
e−λ

λ(k−1)

(k − 1)!

#
+ 2η3

where,

λ =
4Aβε1 supθ0∈ΘEθ [Kh (θ

0 − θ(eg))]
δε0 infθ g (θ)

> 0

Notice that e−λ λ
k

k!
is the formula for the distribution function of the Poisson distrib-

ution. Hence,
N(l)X
k=1

e−λ
λ(k−1)

(k − 1)! ≤
∞X
k=1

e−λ
λ(k−1)

(k − 1)! = 1

66



Together, we have shown that,

LHS of A25

≤ ε1
£
η1 (1− η2) + η2A

¤
λ exp (λ) + 2η3 (A37)

Now,
Eθ {Kh(θ

0, θ(eg))}→ eg(θ0) as h→ 0.

Hence, for any B > supθ∈Θ [eg(θ)], there exists H > 0 such that for any positive
h < H,

Eθ {Kh(θ
0, θ(eg))} < B

Therefore, for h < H, λ is uniformly bounded. Hence, the RHS of A37 can be made
arbitrarily small by choosing η1, η2 and η3 small enough.
Thus, Lemma 6 is proved. That is, we have shown that

A(l, l)→ 0 as l→∞
Let

Ξ (l, l1 + 1)

≡ {(tl, tl−1, ..., tl1+1) : t(l1) ≤ tl1+1 < t(l1 + 1), ..., tl−1 ≤ t(l − 1) ≤ tl < t(l)} .

Now, define,
−→
W (t(l), t(l1), tl1) as follows: For l1 = l,

−→
W (t(l), t(l), tl) ≡W# (l, tl) .

For l1 = l − 1,
−→
W (t(l), t(l − 1), tl−1)

=

N(l)X
m=1

W# (l, t(l)−m)cW (t(l)−m, t(l − 1), tl−1).

For l1 ≤ l − 2,
−→
W (t(l), t(l1), tl1)

≡
X

(tl,tt−1,...,tl1+1)∈Ξ(l,l1+1)
W# (t(l), tl)

(
l−1Y

j=l1+1

cW (tj+1, t(j), tj)

)cW (tl1+1, t(l1), tl1)

Recursively, we can express for l1 < l,

−→
W (t(l), t(l1), tl1) =

N(l1+1)X
m=1

−→
W (l, t(l1 + 1), t(l1 + 1)−m)cW (t(l1 + 1)−m, t(l1), tl1).
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Hence, A21 can be written as follows.

N(l)X
m=1

¯̄̄
V
³
s, (t(l)−m), θ(t(l)−m)

´
− V (t(l)−m)

³
s, (t(l)−m), θ(t(l)−m)

´¯̄̄
−→
W (t(l), t(l), t(l)−m)

≤
N(l)X
m=1

−→
W (t(l), t(l), t(l)−m) sup

s0∈S

¯̄̄
A
(t(l)−m)
1

³
θ(t(l)−m)

´¯̄̄

+

N(l)X
m=1

−→
W (t(l), t(l), t(l)−m)

×
N(l)−m−1X

i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄

+

N(l−1)X
m=1

sup
s∈S

¯̄̄
V (bs, (t(l−1)−m), θ(t(l−1)−m))− V (t(l−1)−m)(bs, (t(l−1)−m), θ(t(l−1)−m))

¯̄̄
−→
W (t(l), t(l − 1), t(l − 1)−m) (A38)

Furthermore, by Lemma 5,

N(l1)P
m=1

cW (tl1+1, t(l1), t(l1)−m) ≤ β

Applying these inequalities to
−→
W yields,

N(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m) ≤ β(l−l1) (A39)

Now, let

A(l, l1) ≡ B1(l, l1) +B2(l, l1)

where,

B1(l, l1) ≡
N(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m) sup

s0∈S

¯̄̄
A
(t(l1)−m)
1

¯̄̄
and

B2(l, l1) ≡
N(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

N(l1)−m−1X
j=0½cW (t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1) sup

s0∈S

¯̄̄
A
(t(l1)−m−j−1)
1

¯̄̄¾
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Then, for l1 ≤ l,

N(l1)X
m=1

¯̄̄
V
³
s, (t(l1)−m), θ(t(l1)−m)

´
− V (t(l1)−m)

³
s, (t(l1)−m), θ(t(l1)−m)

´¯̄̄
−→
W (t(l), t(l1), t(l1)−m)

≤ A(l, l1)

+

N(l1−1)X
m=1

sup
s∈S

¯̄̄
V
³bs, (t(l1−1)−m), θ(t(l1−1)−m)

´
−→
W (t(l), t(l1 − 1), t(l1 − 1)−m)

¯̄̄
(A40)

Lemma 7
Given ∆ = l − l1 ≥ 0

A(l, l −∆)
P→ 0 as l→∞.

Proof : Lemma 6 proves it with ∆ = 0. By definition of
−→
W ,

−→
W (t(l), t(l1), t(l1)−m)

=

⎡⎣ P
t(l−1)≤tl<t(l)

W# (t(l), tl)

⎧⎨⎩ X
t(l−2)≤tl−1<t(l−1)

cW (tl, t(l − 1), tl−1)

...

⎧⎨⎩ X
t(l1)≤tl1+1<t(l1+1)

cW (tl1+2, t(l1 + 1), tl1+1)cW (tl1+1, t(l1), t(l1)−m)

⎫⎬⎭
⎫⎬⎭
⎤⎦
(A41)

We prove convergence of B1(l, l1). We follow steps that are similar to the proof of
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Lemma 6. First, we derive

Pr

⎡⎣N(l)X
m=1

W#(l, t(l)−m)

t(l)−m−t(l1)+1X
k=l−l1

W ∗(t(l)−m, t(l1), tl1 , k)

sup
s0∈S

¯̄̄
A
(tl1)

1

¯̄̄
≥ δl−l1

1− δN(l)+1

1− δ

#

≤
t(l)−t(l1)+1X

k=l−l1
Pr

⎡⎣N(l)X
m=1

W#(l, t(l)−m)W ∗(t(l)−m, t(l1), tl1, k) sup
s0∈S0

¯̄̄
A
(tl1)

1

¯̄̄
≥ δk

⎤⎦
≤

t(l)−t(l1)+1X
k=l−l1

Pr

⎡⎣N(l1)X
m=1

W#(l, t(l)−m)K∗(t(l)−m, t(l1), tl1, k) sup
s0∈S

¯̄
A(tl1)

¯̄
>

∙
δ

4Al+1−l1 ε0 infθ
g (θ)

¸k#

+Pr

⎡⎣ inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4Al+1−l1 ε0 infθ
g (θ)

⎤⎦ (A42)

We again use arguments similar to Claim 1 to show that,

E

⎡⎣N(l)X
m=1

W# (l, t(l)−m)

t(l)−m−t(l1)+1X
k=l−l1

K∗(t(l)−m, t(l1), tl1 , k) sup
s0∈S

¯̄̄
A
(tl1 )

1

¯̄̄⎤⎦
≤ ε1

£
η1 (1− η2) + η2A

¤
λ exp (λ)

where

λ =
4Al+1−l1βε1 supθ0∈ΘEθ [Kh (θ

0 − θ(eg))]
δε0 infθ g (θ)

> 0.

Next, let t1(l) ≡ t(l − 1) and t2(l) = t(l − 1) + eN(l − 1)/2. Then, arguments similar
to ones used in deriving equation A35 can be used to derive the inequality below.

inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦
≥ min

l1−1≤l<l

( eN(el)/2eN(l) 1eN(el)/2 min
(

N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k)),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))

≥ 1

2Al+1−l1
1eN(l∗)/2 min

(
N(l∗)/2P
k=1

Kh(θ − θ∗(t1(l
∗)−k)),

N(l∗)/2P
k=1

Kh(θ − θ∗(t2(l
∗)−k))

)
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where,

l∗ ≡ arg min
l:l1−1≤l<l

(
1

2Al+1−l
1eN(el)/2

min

(
N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k)),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))

Hence, similarly to Lemma 6, we get

RHS of A42

≤ ε1
£
η1 (1− η2) + η2A

¤
eλ

∞X
k=1

∙
e−λ

λk

(k − 1)!
¸
+ 2(l + 1− l1)η3

whose RHS can be made arbitrarily close to zero by having η1, η2 and η3 arbitrarily
small by choosing l to be large enough, for any arbitarily positive δ, RHS can be
made arbitarrily small by increasing l, while keeping ∆ = l − l1 constant,

B1(l, l −∆)
P→ 0

as l→∞.
Next, we prove convergence of B2(l, l1). Again, the arguments are very similar to
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that of Lemma 6. That is,

Pr

⎡⎢⎣ X
(tl,tt−1,...,tl1+1)∈Ξ(l,l1+1)

W# (l, tl)

(
l−1Y

j=l1+1

cW (tj+1, t(j), tj)

)cW (tl1+1, t(l1), tl1)

⎧⎨⎩
N(l1)X
k=1

tl1−t(l1−1)−1X
j=k−1

cW (tl1 , tl1 − j, tl1 − j − 1, k) sup
s0∈S

¯̄̄
A
(tl1−j−1)
1

¯̄̄⎫⎬⎭ ≥ δl−l1
1− δN(l)+1

1− δ

⎤⎦
≤ Pr

⎡⎢⎣ X
(tl,tt−1,...,tl1+1)∈Ξ(l,l1+1)

W# (l, tl)

(
l−1Y

j=l1+1

X
k

W ∗ (tj+1, t(j), tj, k)

)X
k

W ∗ (tl1+1, t(l1), tl1 , k)

⎤⎥⎦
⎧⎨⎩

N(l1)X
k=1

tl1−t(l1−1)−1X
j=k−1

W ∗(tl1 , tl1 − j, tl1 − j − 1, k) sup
s0∈S

¯̄̄
A
(tl1−j−1)
1

¯̄̄⎫⎬⎭ ≥ δl−l1
1− δN(l)+1

1− δ

⎤⎦
≤

t(l)−t(l1−1)X
k=l−l1

Pr

⎡⎣N(l)X
m=1

W#(l, t(l)−m)

tl1−t(l1−1)−1X
j=max{0,k−[t(l)−t(l1)]+m−1}

K∗(t(l)−m, t(l1)− j, tl1 − j − 1, k)

sup
s0∈S

¯̄̄
A
(tl1−j−1)
1

¯̄̄
>

∙
δ

4Al+1−l1 ε0 infθ
g (θ)

¸k#

+Pr

⎡⎣ inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4Al+1−l1 ε0 infθ
g (θ)

⎤⎦ (A43)

and

t(l)−t(l1−1)X
k=l−l1

Pr

⎡⎣N(l1)X
m=1

W#(l, t(l)−m)

tl1−t(l1−1)−1X
j=max{0,k−[t(l)−t(l1)]+m−1}

K∗(t(l)−m, t(l1)− j, tl1 − j − 1, k)

sup
s0∈S

¯̄
A(tl1−j−1)

¯̄
>

∙
δ

4Al+1−l1 ε0 infθ
g (θ)

¸k#
≤ ε1

£
η1 (1− η2) + η2A

¤
λ exp (λ)

where,

λ =
4Al+1−l1βε1 supθ0∈ΘEθ [Kh (θ

0 − θ(eg))]
δε0 infθ g (θ)

> 0

Furthermore, let t1(l) ≡ t(l − 1) and t2(l) = t(l − 1) + eN(l − 1)/2. Then, arguments
similar to ones used in deriving equation A35 can be used to derive the inequality
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below.

inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦
≥ min

l1−1≤l<l

( eN(el)/2eN(l) 1eN(el)/2 min
(

N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))

≥ 1

2Al+1−l1
1eN(l∗)/2 min

(
N(l∗)/2P
k=1

Kh(θ − θ∗(t1(l
∗)−k)),

N(l∗)/2P
k=1

Kh(θ − θ∗(t2(l
∗)−k))

)

where,

l∗ ≡ arg min
l:l1−1≤l<l

(
1

2Al+1−l
1eN(el)/2

min

(
N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k)),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))

Hence, using A24,

RHS of A43

≤ ε1
£
η1 (1− η2) + η2A

¤
eλ

∞X
k=1

∙
e−λ

λk

(k − 1)!
¸
+ 2(l + 1− l1)η3

where,

λ =
4βAl+1−l1ε1 supθ0∈ΘE [Kh (θ

0 − θ(g))]

δε0 infθ g (θ)
> 0

which can be made arbitrarily close to zero by increasing l while keeping ∆l ≡ l− l1
constant. Therefore,

B2(l, l −∆l)
P→ 0

Hence, Lemma 7 holds.
Now, let,

∆V (m,n) ≡ sup
s∈S

¯̄̄
V (s, (t(m)−n), θ∗(t(m)−n))− V (t(m)−n)(s, (t(m)−n), θ∗(t(m)−n))

¯̄̄
∆V (m) ≡

h
∆V (m, 1), ...,∆V (m, eN(m))i

W (l, k) ≡
h−→
W (l, t(l + 1− k), t(l + 1− k)−m)

iN(l+1−k)
m=1
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Then, by A39,W (l, k)0 ι ≤ βk−1 and from A39, we obtain the following.

∆V (l)0W (l, 1) ≤ A(l, l) +∆V (l − 1)0W (l, 2)

≤ ... ≤
k−1X
i=0

A (l, l − i) +∆V (l − k)0W (l, k + 1) .

By Lemma 7, given k, the first term on the RHS,
k−1P
i=0

A (l, l − i) converge to 0 in

probability as l → ∞, and since ∆V (l + 1− k) is bounded and W (l, k)0 ι ≤ βk−1

from A39, the second term can be made arbitrarily small by chosing a large enough
k. Therefore, ∆V (l)0W (l, 1) converges to zero in probability as l→∞.
Lemma 8: ¯̄̄

V (s, (t), θ(t))− V (t)(s, (t), θ(t))
¯̄̄

P→ 0 as t→∞
Suppose not. Then, there exists a positive δ, η and a sequence {tk} such that

Pr
³¯̄̄
V (s, (tk), θ(tk))− V (tk)(s, (tk), θ(tk))

¯̄̄
≥ δ

´
> η. (A44)

Set the weights W# be as follows: If there is tk such that t(l − 1) ≤ tk < t(l), then,
let

t∗(l) = min
t(l−1)≤tk<t(l)

{tk} .

Otherwise, let
t∗(l) = t(l − 1).

Let
W# (t(l), tl) = I(tl = t∗(l))

Then, because ∆V (l)0W (l, 1)
P→ 0 as l→∞,¯̄̄

V (s, (t∗(l)), θ(t
∗(l)))− V (t∗(l))(s, (t∗(l)), θ(t

∗(l)))
¯̄̄

P→ 0 as l→∞

which contradicts A44. Hence, Lemma 8 holds, and thus we have proved Theorem 1.
Proof of Theorem 2
We are given a random process with transition probability f (t) (., .) which is

f (t)
³
θ(t), θ0

´
= λ

³
θ(t), θ0|Ω(t−1)

´
q
³
θ(t), θ0

´
+

∙
1−

Z
λ
³
θ(t), θ0|Ω(t−1)

´
q
³
θ(t), θ0

´¸
δθ(t) (θ

0)

where δθ(t) is the Dirac mass at θ
(t). Because λ

¡
θ, θ0|Ω(t−1)¢ converges to λ (θ, θ0)

uniformly in probability on θ, θ0 ∈ Θ, f (t) (., .) converges to f (., .) in probability
uniformly as t → ∞. Because both λ

¡
θ, .|Ω(t−1)¢ and q (θ, .) are uniformly positive
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functions for any θ ∈ Θ, using the results in Lemma 1, we can construct a density
g(.) and a constant ε0 > 0 such that for any θ ∈ Θ,

f (t)(θ, .) ≥ ε0g(.)

f(θ, .) ≥ ε0g(.)

Define ν(t) as follows.

v(t)(θ) = min

½
inf
θ0∈Θ

½
f (t) (θ, θ0)
f (θ, θ0)

¾
, 1

¾
Then,

f (t)(θ, .) ≥ v(t)f (θ, .)

f(θ, .) ≥ v(t)f (θ, .)

Now, construct the following coupling scheme. Let X(t) be a random variable that
follows the transition probability f (t)(x, .) given X(t−1) = x, and Y (t) be a Markov
process that follows the transition probability f(y, .), given Y (t−1) = y. Suppose
X(t) 6= Y (t). With probability ε0 > 0, let

X(t+1) = Y (t+1) = Z(t+1)˜g(.)

and with probability 1− ε0,

X(t+1)˜
1

1− ε0

£
f (t)

¡
X(t), .

¢− ε0g(.)
¤

Y (t+1)˜
1

1− ε0

£
f
¡
Y (t), .

¢− εg(.)
¤

Suppose X(t) = Y (t) = Z(t). With probability v(t),

X(t+1) = Y (t+1)˜f(Z(t), .)

and with probability
¡
1− v(t)

¢
,

X(t+1)˜
1

1− v(t)
£
f (t)

¡
X(t), .

¢− v(t)f(Z(t), .)
¤

Y (t+1)˜
1

1− v(t)
£
f
¡
Y (t), .

¢− v(t)f(Z(t), .)
¤

As f (t)(x, .) P→ f(x, .) uniformly over the compact parameter set Θ, v(t) converges

to 1 in probability. Let w(t) = 1−v(t). Then, w(t) P→ 0 as t→∞. Let S(t) ∈ {1, 2} be
the state at iteration t, where state 1 is assumed to be the state in which X(t) = Y (t),
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and state 2 the state in which X(t) 6= Y (t). Then, S(t) follows the Markov process
with the following transition matrix.

P =

∙
1− w(t) w(t)

ε0 1− ε0

¸
Denote the unconditional probability of state 1 at time t as π(t). Then,£

π(t+1), 1− π(t+1)
¤
=
£
π(t), 1− π(t)

¤ ∙ 1− w(t) w(t)

ε0 1− ε0

¸
Hence,

π(t+1) = π(t)
£¡
1− w(t)

¢− ε0
¤
+ ε0

≥ π(t) (1− ε0) + ε0 − w(t)

≥ π(t−m) (1− ε0)
m+1 + 1− (1− ε0)

m+1 − £w(t) + (1− ε0)w
(t−1) + ...+ (1− ε0)

mw(t−m)
¤

We now prove that π(t) P→ 1.
Define Wtm to be

Wtm = w(t) + (1− ε0)w
(t−1) + ...+ (1− ε0)

mw(t−m)

Because w(t) P→ 0, for any δ1 > 0, δ2 > 0, there exists N > 0 such that for any t ≥ N ,

Pr
£¯̄
w(t) − 0¯̄ < δ1

¤
> 1− δ2

Now, given any δ1 > 0, δ2 > 0, let m be such that

(1− ε0)
m <

δ1
5

Also, let δ1 satisfy δ1 < δ1
5(m+1)

, and δ2 satisfy δ2 < δ2
m+1

. Then,

Pr

½
|Wtm − 0| < δ1

5

¾
≥ Pr

(
t\

j=t−m

¯̄
w(j) − 0¯̄ < δ1

)

= 1− Pr
(

t[
j=t−m

¯̄
w(j) − 0¯̄ ≥ δ1

)

≥ 1−
tX

j=t−m
Pr
©¯̄
w(j) − 0¯̄ ≥ δ1

ª ≥ 1− δ2 (A47)

Now, let N be defined as N = max {N,m}. Then, for each k > N ,

Pr
£¯̄
π(t+1) − 1¯̄ < δ1

¤
≥ Pr

£¯̄
π(t−m) (1− ε0)

m − (1− ε0)
m+1 +Wtm

¯̄
< δ1

¤
≥ Pr

∙¯̄
π(t−m) (1− ε0)

m − (1− ε0)
m+1

¯̄
<
2δ1
5
,

¯̄̄̄
(1− PΞ) /ε0

1 + (1− PΞ) /ε0

¯̄̄̄
<

δ1
5
, |Wtm| < δ1

5

¸
= Pr

∙
|Wtm| < δ1

5

¸
(A48)
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Last equality holds because 0 ≤ π(t−m) ≤ 1 and thus,
¯̄
π(t−m) (1− ε0)

m − (1− ε0)
m+1

¯̄ ≤ |2(1− ε0)
m| ≤ 2δ1

5

From (A47) and (A48), we conclude that

Pr
£¯̄
π(t+1) − 1¯̄ < δ1

¤ ≥ 1− δ2

Therefore, πk converges to 1 in probability.
Therefore, for any δ > 0, there exists M such that for any t > M ,

Pr
£
X(t) = Y (t)

¤
> 1− δ

Since Y (t)follows a stationary distribution, X(t) converges to a stationary process in
probability.
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