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Abstract

We study nonparametric identifiability of finite mixture models of k-variate data with
M subpopulations, in which the components of the data vector are independent conditional
on belonging to a subpopulation. We provide a sufficient condition for nonparametrically
identifying M subpopulations when k ≥ 3. Our focus is on the relationship between the
number of values the components of the data vector can take on, and the number of identifi-
able subpopulations. Intuition would suggest that if the data vector can take many different
values, then combining information from these different values helps identification. Hall and
Zhou (2003) show, however, when k = 2, two-component finite mixture models are not non-
parametrically identifiable regardless of the number of the values the data vector can take.
When k ≥ 3, there emerges a link between the variation in the data vector, and the number
of identifiable subpopulations: the number of identifiable subpopulations increases as the
data vector takes on additional (different) values. This points to the possibility of identify-
ing many components even when k = 3, if the data vector has a continuously distributed
element. Our identification method is constructive, and leads to an estimation strategy. It is
not as efficient as the MLE, but can be used as the initial value of the optimization algorithm
in computing the MLE. We also provide a sufficient condition for identifying the number of
nonparametrically identifiable components, and develop a method for statistically testing
and consistently estimating the number of nonparametrically identifiable components. We
extend these procedures to develop a test for the number of components in binomial mixtures.
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1 Introduction: finite mixture models with independent marginals

Consider the following M -component finite mixture model of a k-vector X = (X1, . . . , Xk),
where the elements of X are independently distributed within each component:

F (x) = F (x1, . . . , xk) =
M∑

m=1

πm
k∏

j=1

F jm(xj), πm > 0,
M∑

m=1

πm = 1, (1)

where F (x) is the distribution function of X, πm is the mixture proportion of the mth sub-
population, and F jm(xj) is the distribution function of Xj conditional on being from the mth
subpopulation.

We study the nonparametric identifiability of this mixture model, i.e., whether the informa-
tion from F (x) can uniquely determine πm and F jm(xj)’s when no parametric restrictions are
imposed on them. Analyzing nonparametric identification is relevant for applied work, because
there is rarely theory to guide the specification of component distributions. For example, Cruz
et al. (2004) report a simulation result in which imposing incorrect parametric restrictions on
component distributions leads to erroneous inference. Zhou et al. (2005) develop a nonpara-
metric maximum likelihood method for M = 2 to estimate ROC curves in the absence of a gold
standard.

Nonparametric identifiability of finite mixtures has recently attracted increasing attention.
Hall and Zhou (2003) and Hall et al. (2005) analyze nonparametric identifiability of the above
mixture model with two components (M = 2). Hettmansperger and Thomas (2000) and Cruz-
Medina et al. (2004) analyze nonparametric identification of models analogous to (1). Their
approach involves reducing multivariate data to binomial or multinomial variables, and applying
the identification theory for binomial and multinomial mixtures of Blischke (1964) and Elmore
and Wang (2003).

Hall and Zhou (2003) show that k ≥ 3 is necessary and sufficient for nonparametric iden-
tification when M = 2. Somewhat surprisingly, the non-identifiability for k = 2 by Hall and
Zhou (2003) holds regardless of the number of values the Xj ’s can take. If Xj takes J different
values, then considering F (x) for all possible values of X provides Jk − 1 restrictions, whereas
the number of unknowns is kJM + M − 1. Hence, as J increases, the number of restrictions
increases at an exponential rate, whereas the number of unknowns increases only linearly. In-
tuition would suggest that this additional information helps identification. This is not the case,
however, when k = 2.

When k ≥ 3, combining information from different x’s changes the picture substantially. Now
the model (1) is nonparametrically identifiable. We provide a sufficient condition that enables
one to identify up to M components. Furthermore, we show that, when k ≥ 3, there emerges
a link between the variation in X and the number of identifiable components: the number
of identifiable components increases as X takes more (different) values. If X is continuously
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distributed, one can identify as many components as desired. Hall et al. (2005) show that the
model in (1) is nonparametrically identifiable when k ≥ kM = (1 + o(1))6M ln(M) as M →∞.
Our results imply that k = 3 is sufficient if the Xj ’s have sufficient variation. Our identification
method is constructive, and leads to an estimation strategy. It is not as efficient as the MLE,
but can be used as the initial value of the optimization algorithm in computing the MLE.

Testing the number of components in finite mixtures has long been a challenging problem.
The asymptotic distribution of the likelihood ratio statistic has been derived recently (Dacunha-
Castelle and Gassiat, 1999; Liu and Shao, 2003) but is nonstandard, and not easy to tabulate.
There is also a growing literature on consistent estimation of the number of components, includ-
ing Henna (1985), Leroux (1992), Chen and Kalbfleisch (1996), Dacunha-Castelle and Gassiat,
(1997, 1999), Keribin (2000), and James et al. (2001). In these papers, the component distri-
butions are assumed to belong to a parametric family. Little is known of identifiability of the
number of components in a nonparametric setting.

We provide a sufficient condition for nonparametrically identifying the number of compo-
nents. This condition is stated in terms of F (x), and hence testable by using empirical distri-
bution functions. Using this fact, we develop a procedure to statistically test, and consistently
estimate the number of nonparametrically identifiable components. It is based on an estimate of
the rank of a matrix constructed from the empirical distribution of X. Since our procedure does
not require estimating a mixture model, it is computationally easy to implement. Extending this
framework, we also develop a procedure to statistically test and consistently estimate the num-
ber of components in mixtures of binomial distributions. Simulations illustrate our procedure
performs well.

Kasahara and Shimotsu (2007) study nonparametric identification of finite mixture dynamic
discrete choice models widely used in econometrics using a similar approach to this paper. This
paper analyzes nonparametric identifiability in a more general context of multivariate mixtures,
and provides a clearer intuition behind the identification results.

We assume the elements of X (or blocks of the elements of X) are independent conditional
on being from a subpopulation, as in Hall and Zhou (2003) (and other existing papers on
nonparametric identification mentioned above). Hall and Zhou (2003, section 2.3) and Hall et
al. (2005, p. 668) discuss the validity of the assumption of independent marginals, and list the
body of work that employs it. Elmore et al. (2004) and Zhou et al. (2005) also employ a model
with independent marginals.

The reminder of the paper is organized as follows. Section 2 briefly reviews the non-
identifiability for k = 2 shown by Hall and Zhou (2003). Section 3 discusses the identifiability
under k ≥ 3 and provides a sufficient condition for nonparametric identification. Section 4 gives
a sufficient condition for nonparametrically identifying the number of components, and section
5 introduces a test of the number of mixture components. Section 6 reports simulation results,
and proofs are collected in the Appendix.
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2 Non-identifiability of finite mixture models under k = 2

In this section, we consider a two-component mixture model of a k-dimensional variable X =
(X1, . . . , Xk):

F (x) = F (x1, . . . , xk) = π
k∏

j=1

F j1(xj) + (1− π)
k∏

j=1

F j2(xj), (2)

where π ∈ (0, 1). F (x) denotes the distribution function of the observed data, and F jm(xj)
denotes the univariate distribution function of Xj conditional on being from the mth subpop-
ulation. Let Q be the primitive parameter of this model; Q = {π, {{F jm(xj)}k

j=1}2
m=1}. Q is

nonparametrically identified if it is uniquely determined from F (x), and its marginals.
Hall and Zhou (2003) show that this model is nonparametrically non-identifiable if k = 2.

Somewhat surprisingly, this non-identifiability for k = 2 holds regardless of the number of values
the Xj ’s can take. Suppose both X1 and X2 can take at least J distinct values, {ξ1, . . . , ξJ}.
Then, considering F (x) for all possible values of X provides J2 − 1 restrictions, whereas the
number of unknowns in Q = {π, {F 11(ξl), F 21(ξl), F 12(ξl), F 22(ξl)}J

l=1} is 4J + 1. This suggests
that it may be possible to nonparametrically identify Q if J is sufficiently large. However, the
additional restrictions from F (x) at different values of x cancel with each other, and the effective
number of restrictions is always smaller than the number of unknowns.

Hall and Zhou (2003) prove the non-identifiability by showing that there exists a continuum
of Q’s that satisfy (2) for a given F (x) when k = 2. In the following, we provide an additional
insight to this problem by showing that only 4J − 1 of these J2 − 1 restrictions are effective.

First, we introduce the irreducibility condition used by Hall and Zhou (2003, p. 215). Let
F j(xj) denote the marginal distribution function of Xj .

Assumption 1 (irreducibility) F (x1, x2) is not identical to F 1(x1)F 2(x2) for any x1 and x2.

Note that if the irreducibility condition fails, then we have F j1(xj) = F j2(xj) = F j(xj) in (2),
and that the right hand side of (2) is not uniquely determined with respect to π.

The following proposition shows that all the J2 − 1 restrictions implied by F (x1, x2) can be
constructed from a set of 4J − 1 restrictions and, therefore, the number of unknowns in Q is
strictly larger than the number of effective restrictions when k = 2.

Proposition 1 Suppose that the distribution function of (X1, X2) is given by (2) with k = 2,
and F (x1, x2) satisfies Assumption 1. Suppose Q̃ = {π̃, {F̃ 11(ξl), F̃ 21(ξl), F̃ 12(ξl), F̃ 22(ξl)}J

l=1}
satisfies

F (x1, x2) = π̃
2∏

j=1

F̃ j1(xj) + (1− π̃)
2∏

j=1

F̃ j2(xj), (3)

for (x1, x2) = (ξ1, ξ1), (ξ1, ξ2), . . . , (ξ1, ξJ) and (ξ2, ξ1), (ξ3, ξ1), . . . , (ξJ , ξ1), and Q̃ satisfies

F 1(x1) = π̃F̃ 11(x1) + (1− π̃)F̃ 12(x1), F 2(x2) = π̃F 21(x1) + (1− π̃)F̃ 22(x2), (4)
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for x1 = ξ1, . . . , ξJ , and x2 = ξ1, . . . , ξJ . Then Q̃ satisfies (3) for all (x1, x2) ∈ {ξ1, . . . , ξJ} ×
{ξ1, . . . , ξJ}.

3 Sufficient conditions for nonparametric identification when

k ≥ 3

When k ≥ 3, the restrictions from F (x) at different values of x help identification. The number
of identifiable components increases as the number of values the Xj ’s can take increases. We
focus on the case k = 3, but the following argument is also valid for k ≥ 3. The distribution
function of X is

F (x) = π1
k∏

j=1

F j1(xj) + · · ·+ πM
k∏

j=1

F jM (xj), (5)

where πm > 0 and
∑M

m=1 π
m = 1. Let Xj denote the support of Xj . Consider a partition of Xj

into M subsets, Ξj
1, . . . ,Ξ

j
M . Define, for a, b, c = 1, . . . ,M ,

pjm
a = P(Xj ∈ Ξj

a|Xj is from the mth subpopulation) =
∫

1{xj ∈ Ξj
a}dF jm(xj), (6)

P 12
a,b = P(X1 ∈ Ξ1

a, X2 ∈ Ξ2
b) =

M∑
m=1

πmp1m
a p2m

b , (7)

P 123
a,b,c = P(X1 ∈ Ξ1

a, X2 ∈ Ξ2
b , X3 ∈ Ξ3

c) =
M∑

m=1

πmp1m
a p2m

b p3m
c . (8)

Arrange the pjm
· ’s into two M ×M matrices as

Lj =


pj1
1 · · · pj1

M
...

. . .
...

pjM
1 · · · pjM

M

 , j = 1, 2. (9)

The mth row of Lj represents the distribution function of Xj conditional on being from the mth
subpopulation. Define, for h ∈ {1, . . . ,M}, two M ×M matrices as

P =


P 12

1,1 · · · P 12
1,M

...
. . .

...
P 12

M,1 · · · P 12
M,M

 , Ph =


P 123

1,1,h · · · P 123
1,M,h

...
. . .

...
P 123

M,1,h · · · P 123
M,M,h

 . (10)

Define V = diag(π1, . . . , πM ) and Dh = diag(p31
h , . . . , p

3M
h ). Then P and Ph are expressed as

P = L′1V L2, Ph = L′1DhV L2 = L′1V DhL2. (11)
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The following proposition and corollary provide a sufficient condition for nonparametrically
identifying L1, L2, V , and Dh. Here, P and Ph are functions of the observables, while L1, L2,
V , and Dh are unknowns. The restrictions from P alone are not sufficient to determine L1, L2

and V uniquely - additional information from Ph enables the identification.

Proposition 2 Suppose P is nonsingular and we can find h such that the characteristic roots
of PhP

−1 are distinct. Then L1, L2, Dh, and V are uniquely determined from P and Ph.

Corollary 1 Suppose L1 and L2 are nonsingular and that there exists h such that p3m
h 6= p3n

h

for any m 6= n. Then, L1, L2, Dh, and V are uniquely determined from P and Ph.

Once L1 and V are identified, we can identify

p3m
S = P(X3 ∈ S|X3 is from the mth subpopulation)

for any subset S of X3. To see why, define P 13
a,S = P(X1 ∈ Ξ1

a, X3 ∈ S) =
∑M

m=1 π
mp1m

a p3m
S , and

PS =


P 13

1,S
...

P 13
M,S

 , LS =


p31

S
...

p3M
S

 .
Then, PS = L′1V LS holds, and LS is determined uniquely by LS = V −1(L′1)

−1PS . Using the
same argument, we can identify pjm

S for any subset S of Xj for j = 1, 2.

Remark 1

1. Identification requires both L1 and L2 to be nonsingular. Therefore, for identifying M com-
ponents, all the elements of X need to take at least M distinct values. If X is continuously
distributed, it is possible to identify as many components as desired.

2. The sufficient condition of Proposition 2 relaxes the identification condition by Hall et al.
(2005), which requires k ≥ kM = (1 + o(M))6M log(M) as M increases. As long as X
has sufficient variation, and L1 and L2 are nonsingular, k = 3 suffices for identification.

3. Hall and Zhou (2003, section 4.2) show the nonparametric non-identifiability of the follow-
ing model with a continuously distributed random effect: ψ(x) =

∫
{
∏k

j=1 Fj(xj |λ)}φ(λ)dλ,
where φ is the density of the random effect Λ, and Fj(xj |λ) is the distribution function of
Xj conditional on the realization λ of Λ. Our results show that, if the random effect has
a discrete distribution with finite support, then it is possible to nonparametrically identify
Fj(xj |λ), and the distribution function of the random effect.
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4. Hettmansperger and Thomas (2000) analyze nonparametric identification and inference of
the model (5) with conditionally iid marginals (F 1m(x1) = · · · = F km(xk)) by defining
Y =

∑k
j=1 1{Xj ≤ c}, and reducing the data to a mixture of binomials. Cruz-Medina et

al. (2004) consider splitting the support of Xj further and reducing the data to a mixture
of multinomials. In both cases, identification requires k ≥ 2M − 1. Our results imply that
treating each Xj separately, and not reducing the data help identification.

5. When k ≥ 4, and X can be decomposed into k′ ≥ 3 conditionally independent subvec-
tors, we can apply Proposition 2 to these subvectors. For example, assume k is odd, let
Z1 = (X1, . . . , X(k−1)/2), Z2 = (X(k−1)/2+1, . . . , Xk−1), and assume Z1, Z2, and Xk are
independent conditional on belonging to a subpopulation. Partition the support of Z1, Z2,
and Xk to construct P and Ph. When the Xj’s have J distinct support points, it is possible
to identify up to J (k−1)/2 components.

The proof of Proposition 2 uses a similar idea to that of Proposition 1 of Kasahara and
Shimotsu (2007), which in turn is developed starting from the contributions to the analysis of
latent class models by Anderson (1954) and Gibson (1955).

In some cases, we have an access to two different samples with different mixing probabilities
but the same component distributions. The distribution function of the first and second sample
is respectively given by,

F (x) =
M∑

m=1

πm
k∏

j=1

F jm(xj), F̄ (x) =
M∑

m=1

π̄m
k∏

j=1

F jm(xj).

For example, suppose we have the results of k diagnostic tests from two different groups of
patients, whose disease status is unknown. The fraction of patients with disease (m = 1) differs
across two groups of patients, so π1 6= π̄1. But the distributions of the test outcomes are the
same across groups once one conditions on the true disease status, so that the F jm(xj)’s are
common.

In this case, we may nonparametrically identify the model even when k = 2. Define
V =diag(π1, . . . , πM ) and V̄ =diag(π̄1, . . . , π̄M ), and consider a decomposition similar to (11):
P = L′1V L2 and P̄ = L′1V̄ L2. It follows that P (P̄ )−1 = L′1V (V̄ )−1(L′

1)
−1. Consequently,

V (V̄ )−1 and L′1 are identified with the characteristic roots and characteristic vectors of P (P̄ )−1.
Similarly, the characteristic vectors of P̄P−1 identify L2, and we in turn identify V and V̄ . This
result is useful in the context of diagnostic tests (cf., Hall and Zhou, 2003), making it possible to
determine the distributional properties of diagnostic tests even when only two tests are available.
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4 Identifying the number of components

In this section, we provide a sufficient condition to nonparametrically identify the number of
mixture components, M . Section 4.1 analyzes a general case while Section 4.2 studies binomial
mixtures.

4.1 General case

In this subsection, we provide a sufficient condition to nonparametrically identify M when the
distribution function of X is given by (5). Here, we are interested in identifying M , but not
the component distributions such as F jm(xj). The requirement in k becomes weaker than in
Section 3: it is possible to identify M even when k = 2.

Let R1 and R2 be integers such that R1, R2 ≥ M . We may set R1 and R2 to be the same,
but it is not necessary to do so. For each j = 1, 2, consider a partition of Xj into Rj subsets,
Ξj

1, . . . ,Ξ
j
Rj

. Following (6)-(7), define p1m
a , p2m

b and P 12
a,b for a = 1, . . . , R1, and b = 1, . . . , R2.

Arrange p1m
a ’s and p2m

b ’s into M ×R1 and M ×R2 matrices as

L∗1 =


p11
1 · · · p11

R1

...
. . .

...
p1M
1 · · · p1M

R1

 , L∗
2 =


p21
1 · · · p21

R2

...
. . .

...
p2M
1 · · · p2M

R2

 . (12)

Arrange P 12
ab ’s into a R1 ×R2 matrix as

P ∗ =


P 12

1,1 · · · P 12
1,R2

...
. . .

...
P 12

R1,1 · · · P 12
R1,R2

 , (13)

The intuition behind our identification result is simple. Suppose there is only one component,
so that M = 1. Then, the joint distribution of X1 and X2 is a product of their marginal
distributions, and we have P ∗ = (L∗1)

′L∗
2. Consequently, the rank of P ∗ equals one, which is the

number of components. For M ≥ 2, we may write P ∗ as P ∗ = (L∗1)
′V L∗2. Then, the rank of P ∗

provides information on the rank of L∗1 and L∗2, which is related to the number of components
in our finite mixture model.

Proposition 3 Define L∗1 and L∗
2 as in (12), and define P ∗ as in (13). Then M ≥ rank(P ∗).

Furthermore, if both L∗1 and L∗
2 have rank M , then M = rank(P ∗).

The rank of P ∗ corresponds to the number of nonparametrically identifiable components from
the joint distribution of X1 and X2. When L∗1 has only rank M − 1, then two components have
the same marginal distribution for X1 with respect to the partition Ξ1

1, . . . ,Ξ
1
R1

. Consequently,
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the variation of X1 is not sufficient to identify M . The proof of Proposition 3 is essentially the
same as the proof of Proposition 3 of Kasahara and Shimotsu (2007), but we provide it in the
Appendix for completeness.

When k ≥ 3, we can group variables into two groups and apply Proposition 3, similarly to Re-
mark 1.5. For example, when k is even, we may let Z1 = (X1, . . . , Xk/2), Z2 = (Xk/2+1, . . . , Xk),
and partition the support of Z1 and Z2 to construct P ∗. Reducing the data into bivariate
vectors is another option. For example, as our simulation study illustrates, we may define
Z1 = X1 + · · · +Xk/2 and Z2 = Xk/2+1 + · · · +Xk, and partition the support of Z1 and Z2 to
construct P ∗.

4.2 Binomial mixtures

Suppose X follows a mixture of binomial distributions, B(K, pm), in which pm is the parameter
of the mth component distribution:

P(X = k) =
M∑

m=1

πm(1− pm)K−kpk
m, k = 0, . . . ,K (14)

where 0 < p1 < · · · < pM < 1, πm > 0, and
∑M

m=1 π
m = 1.

In this subsection, we provide a necessary and sufficient condition to identify M . It has
been known that K ≥ 2M − 1 is both necessary and sufficient to identity the parameters of the
model, {πm, pm}M

m=1 (Teicher, 1961, 1963; Blischke, 1964). However, little is known about the
identifiability of M itself. Provided K ≥ 2M − 1, it is not clear if we can identify how many
components are present in this model. In the following, we show that M is identified as the rank
of a matrix of the factorial moments of the data.

Similar to Blischke (1964), define the kth (normalized) population factorial moment as

f(k) = E

[
X(X − 1) · · · (X − k + 1)
K(K − 1) · · · (K − k + 1)

]
,

for k = 1, . . . ,K, and define f(0) = 1. Then, as shown in Blischke (1962, 1964),

f(k) =
M∑

m=1

πmpk
m.

Let K∗ be an even number no larger than K. Define the following (K∗/2 + 1) × (K∗/2 + 1)

9



matrix

PB =


f(0) f(1) · · · f(K∗/2)
f(1) f(2) · · · f(K∗/2 + 1)

...
...

. . .
...

f(K∗/2) f(K∗/2 + 1) · · · f(K∗)

 , (15)

as well as V =diag(π1, . . . , πM ) and1

LB =


1 p1 · · · p

K∗/2
1

...
...

...

1 pM · · · p
K∗/2
M

 .
Then, it follows that PB = L′BV LB, and the rank of PB provides the information on M via the
rank of LB. Using an analogous argument to the proof of Proposition 3, we obtain the following
corollary that identifies M . Its proof can be found in the Appendix.

Corollary 2 Suppose X follows (14), and assume K∗ ≥ 2M − 2. Define PB as in (15). Then
M =rank(PB).

Note that the condition on K is K∗ ≥ 2M − 2. This condition is weaker than K ≥ 2M − 1,
the necessary and sufficient condition for identifying {πm, pm}M

m=1. Hence, in order to identify
only M , we need one less variation in X.

5 Testing the number of identifiable components

Proposition 3 shows that the rank of P ∗ gives the lower bound of the number of mixture
components. If, in addition, both L∗1 and L∗2 have rank M , then the rank of P ∗ equals the
number of components. Therefore, we may test the (lower bound of the) number of components
by estimating P ∗ and testing its rank.

Several statistics for testing the rank of a matrix have been proposed: the LDU decomposition-
based statistic by Gill and Lewbel (1992) and Cragg and Donald (1996), the minimum chi-
squared type statistic by Cragg and Donald (1997), the characteristic root-based statistics by
Robin and Smith (2000), and the statistics using the singular value decomposition by Kleibergen
and Paap (2006). We use the test statistic by Robin and Smith (2000), because it does not need
the covariance matrix of the estimate of the matrix to be of full rank.

In the following, we review the statistic by Robin and Smith (2000), and discuss two pro-
cedures to estimate the rank of a matrix: sequential hypothesis testing, and a model selection
approach.

1FB , V , and LB corresponds to D, A, and P in Blischke (1964, pp. 513-514).
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5.1 Statistic by Robin and Smith (2000)

Let B be a p × q matrix with p ≥ q. The matrix B corresponds to P ∗ or PB in Section 4.
Suppose the rank of B is r0, where 0 ≤ r0 < q. Our interest is to estimate r0 and test H0 :
rank(B) = r0 against H1 : rank(B) > r0, using a consistent estimate of B.

The procedure by Robin and Smith (2000) is based on the estimates of the characteristic
roots of BB′. Let λ1 ≥ · · · ≥ λr0 > 0 and λr0+1 = · · · = λp = 0 denote the ordered characteristic
roots of BB′. Let ci denote the characteristic vector of BB′ associated with λi, and collect them
into a p × p matrix C = (c1, . . . , cp). For 0 ≤ r < p, partition C as C = (Cr, Cp−r), where
Cr = (c1, . . . , cr) and Cp−r = (cr+1, . . . , cp). An alternative representation for the characteristic
roots λ1 ≥ · · · ≥ λr0 > 0 and λr0+1 = · · · = λq = 0 is obtained as the ordered characteristic
roots of B′B. Let di denote the characteristic vector of B′B associated with λi, and collect them
into a q × q matrix D = (d1, . . . , dq). For 0 ≤ r < q, partition D as D = (Dr, Dq−r), where
Dr = (d1, . . . , dr) and Dq−r = (dr+1, . . . , dq). For unique characteristic roots, the corresponding
characteristic vectors are identified up to a normalization of its length, whereas for multiple roots,
including zero roots, the corresponding characteristic vectors are identified up to an orthonormal
matrix of dimension equal to the multiplicity of the roots.

Let B̂ be a root-N consistent estimator of B. The test statistic by Robin and Smith (2000)
is based on the characteristic roots of B̂B̂′. Let λ̂1 ≥ · · · ≥ λ̂p be the ordered characteristic
roots of B̂B̂′. Robin and Smith (2000) consider the following test statistic:

CRT (r) = N

q∑
i=r+1

λ̂i.

Following Robin and Smith (2000), we introduce the following assumptions:

Assumption 2
√
Nvec(B̂ −B) →d N(0,Ω) where Ω is finite and rank s, 0 < s ≤ pq.

Assumption 3 If r0 < q ≤ p, the (p − r0)(q − r0) × (p − r0)(q − r0) matrix (Dq−r0 ⊗
Cp−r0)

′Ω(Dq−r0 ⊗ Cp−r0) is nonzero; that is, rk [(Dq−r0 ⊗ Cp−r0)
′Ω(Dq−r0 ⊗ Cp−r0)] > 0.

Assumption 4 There exists Ω̂ such that Ω̂ →p Ω.

Assumption 3 requires that at least one column of Dq−r0 ⊗ Cp−r0 is not in the null space
of Ω. If Ω has full rank, this assumption is automatically satisfied. Assumption 3 is a weak
assumption, and we expect it to hold in most cases we consider.2 However, in general, this
assumption is empirically nonverifiable without an explicit knowledge of Ω and Dq−r0 ⊗ Cp−r0 .

Robin and Smith (2000) derive the asymptotic distribution of CRT (r0) when r0 < q:
2Kleibergen and Paap (2006) need a stronger assumption (Assumption 2, p.104) on the rank of a matrix

involving Ω, which may be violated, for instance, when we apply it to binomial mixtures.
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Proposition 4 (Robin and Smith, 2000, Theorem 3.2 and Corollary 3.2) If r0 < q and As-
sumptions 2-3 hold, CRT (r0) has an asymptotic distribution described by

∑t
i=1 γiZ

2
i , where

t ≤ min{s, (p − r0)(q − r0)}, and γ1 ≥ · · · ≥ γt are the nonzero ordered characteristic roots of
the matrix (Dq−r0 ⊗ Cp−r0)

′Ω(Dq−r0 ⊗ Cp−r0), and {Zi}t
i=1 are independent standard normal

variates.

Let Ĉ and D̂ be the estimates of C and D derived from B̂, and let γ̂i be the estimate
of γi constructed from Ĉ, D̂ and Ω̂. Robin and Smith (2000, Theorem 4.1) show that we
can estimate the asymptotic distribution function of CRT (r0) consistently by F̂CRT

r0
(·), the

distribution function of
∑(p−r0)(q−r0)

i=1 γ̂iZ
2
i . We can approximate this distribution function to

any desired degree by simulations, and test H0 : rank(B) = r0 against H1 : rank(B) > r0.

5.2 Sequential hypothesis testing

We now discuss estimation of r0. Robin and Smith (2000) consider sequential hypothesis testing:
we sequentially test H0 : rank(B) = r against H1 : rank(B) > r for r = 0, 1, . . . , q,3 and stop at
the first value for r that leads to a nonrejection of H0.4 By allowing the significance level of the
test to change with the sample size N , it is possible to estimate r0 consistently. For r = 0, . . . , q,
let ĉr1−αN

denote the 100(1− αN ) percentile of the cdf F̂CRT
r (·), and define

r̂ = min
r∈{0,...,q}

{r : CRT (r) ≥ ĉi1−αN
, i = 0, . . . , r − 1, CRT (r) < ĉr1−αN

}. (16)

By letting αN go to zero at a sufficiently slow rate as the sample size increases, r̂ converges to
the rank of B.

Proposition 5 (Robin and Smith, 2000, Theorem 5.2) If the conditions of Proposition 4 and
Assumption 4 hold, and if αN = o(1) and −N−1 lnαN = o(1) as N →∞, then r̂ − r0 = op(1).

5.3 Model selection procedure

We propose to employ a model selection procedure to estimate r0 consistently. Consider the
following criterion function

S(r) = CRT (r)− f(N)g(r),

where g(r) is a (possibly stochastic) penalty function, which is bounded in probability. Define

r̃ = arg min
1≤r≤q

S(r).

Under a standard condition on f(N) and g(N), this gives a consistent estimate of r0:
3Robin and Smith (2000) propose to test the null for r = 0, 1, . . . , p, but it is not necessary to test the null for

r > q because rank(B) cannot be larger than q.
4Cragg and Donald (1997) also use sequential hypothesis testing with their estimator.
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Proposition 6 Suppose that f(N) → ∞, f(N)/N → 0, and P(g(r) − g(r0) < 0) → 1 for all
r > r0 as N →∞. Then r̃ →p r0.

If the asymptotic distribution of S(r0) were chi-squared with (p−r0)(q−r0) degrees of freedom,
then using f(N) = 1 and g(r) = 2(p − r)(q − r) would give an AIC-type criterion, while using
f(N) = log(N) and g(r) = (p− r)(q − r) would give a BIC-type criterion.

In light of the non-standard asymptotic distribution of CRT (r0), we propose the following
penalty function g(r) for a BIC-type criterion:

g(r) = (p− r)(q − r)γ̄(r) (17)

where γ̄(r) =
P(p−r)(q−r)

i=1 γ̂i

(p−r)(q−r) is the average of the characteristic roots of (D̂q−r ⊗ Ĉp−r)′Ω̂(D̂q−r ⊗
Ĉp−r). In an AIC-type criterion, g(r) is multiplied by 2. The term γ̄(r) in (17) makes our
model selection procedure invariant to a rescaling of B.5 Further, the asymptotic distribution
of CRT (r0)/γ̄(r0) has the same mean as a chi-squared random variable with (p − r0)(q − r0)
degrees of freedom.

To apply Proposition 6 with g(r) defined in (17), we need additional assumptions to guarantee
that g(r) becomes strictly decreasing in r as N →∞. Using the relation tr(AB) = tr(BA), and
the properties of the Kronecker product, we obtain

g(r)− g(r + 1) = tr[(d̂r+1 ⊗ ĉr+1)′Ω̂(d̂r+1 ⊗ ĉr+1)] +
p∑

j=r+2

tr[(d̂r+1 ⊗ ĉj)′Ω̂(d̂r+1 ⊗ ĉj)]

+
q∑

i=r+2

tr[(d̂i ⊗ ĉr+1)′Ω̂(d̂i ⊗ ĉr+1)]. (18)

Since Ω̂ is positive semidefinite, it follows that g(r) is nonincreasing in r. g(r) becomes strictly
decreasing as N → ∞ if the right hand side of (18) becomes strictly positive for any r. This
holds, for example, if (dr ⊗ cr)′Ω(dr ⊗ cr) > 0 for 1 ≤ r ≤ q, or if for any 1 ≤ r ≤ q there exists
a pair (i, j) such that (di ⊗ cj)′Ω(di ⊗ cj) > 0 where r + 1 ≤ i ≤ p and r + 1 ≤ j ≤ q.

6 Simulation study

6.1 General case: an example with normal mixtures

We conduct Monte Carlo simulation experiments with normal mixtures to assess the finite
sample performance of our proposed procedures for selecting the number of components. The

5Alternatively, we may consider a BIC-type criterion function of the form S(r) = CRT (r)/γ̄(r) − f(N)g(r)
with f(N) = log(N) and g(r) = (p− r)(q− r). These two versions of S(r) performed similarly in simulations that
are not reported here.
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reported results are based on 10, 000 simulated samples. Regarding the number of components,
we experiment with M = 2 and 3.

While the simulated DGP is a parametric (normal) model, our selection procedures do not
assume the knowledge of parametric structures. We partition the support of Xj into Rj subsets
such that P(Xj ∈ Ξj

l ) = 1/Rj for l = 1, . . . , Rj . Specifically, let x̄j
β denote the β quantiles of

Xj . Let βl = l/Rj for l = 0, 1, . . . , Rj , and define Ξj
l = (x̄j

βl−1
, x̄j

βl
] for l = 1, . . . , Rj − 1 and

Ξj
Rj

= (x̄βRj−1
,∞).

We construct a consistent estimator of the covariance matrix of
√
Nvec(P̂ ∗−P ∗) as follows.

With a slight abuse of notation, let X1, . . . , XN denote N iid draws of X, and let Xt,j denote the
jth element of Xt. Let P̂ ∗ be the empirical distribution estimator of P ∗: for a = 1, . . . , R1 and
b = 1, . . . , R2, the (a, b)th element of P̂ ∗ is P̂ ∗12

a,b = N−1
∑N

t=1 1{Xt,1 ∈ Ξ1
a, Xt,2 ∈ Ξ2

b}. Because
{NP̂ ∗12

a,b }a=1,...,R1,b=1,...,R2 follows a multinomial distribution with the parameter {P ∗12
a,b }, we can

easily see

EP̂ ∗12
a,b = P ∗12

a,b , var(P̂ ∗12
a,b ) = P ∗12

a,b (1− P ∗12
a,b )/N,

cov(P̂ ∗12
a,b , P̂

∗12
c,d ) = −P ∗12

a,b P
∗12
c,d /N, (a, b) 6= (c, d).

Let Ω denote the (R1R2)× (R1R2) covariance matrix of
√
Nvec(P̂ ∗ − P ∗). Note that the rank

of Ω is R1R2 − 1 because
∑R1

a=1

∑R2
b=1 P̂

∗12
a,b = 1. Let θ = vec(P ∗), then the ith diagonal element

of Ω is given by θi(1− θi), and the (i, j)th off-diagonal element of Ω is given by −θiθj .
We first consider a bivariate normal mixture

F (x) =
M∑

m=1

πmFm(x), (19)

where x = (x1, x2)′, and Fm(x) is N2(µm, I). We set µ1 = (0, 0)′ and µ2 = (2.0, 1.0)′ for M = 2.
For M = 3, we set, in addition, µ3 = (4.0, 3.0)′. The mixing probabilities are equal across
subpopulations, so that π1 = π2 = 1/2 for M = 2, while π1 = π2 = π3 = 1/3 for M = 3.
R1 and R2 are chosen to R1 = R2 = M + 1.6 In simulations, we use the sample quantiles of
Xj ’s to determine the boundaries of Ξj

l . This introduces additional variation, and may affect
the asymptotic distribution of CRT (r) statistic, but the consistency of our procedure is not
affected. We experimented bootstrapping CRT (r) statistic, however it did not improve the
results substantially.

Table 1 reports the result of experiments when the data is generated from the model with two
components (M = 2). For the sequential hypothesis testing procedure (SHT), the smaller the
significance level α is, the more likely the procedure underestimates the number of components.
The performance of the SHT improves at all the significance levels as the sample size increases.

6We also experimented with R1 = R2 = M + 2 (not reported here) and found that the procedures with
R1 = R2 = M + 1 performed better than those with R1 = R2 = M + 2.
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Furthermore, the “optimal” choice of significance level, i.e., α that selectsM = 2 most frequently,
decreases from 0.1 to 0.05, and then to 0.01 as the sample size increases from N = 50 to 200, and
then to 1000, respectively. These results are in agreement with Proposition 5. Overall, the SHT
performs well in reasonably sized samples. The performance of BIC is somewhat disappointing,
despite its theoretic superiority to the AIC.

The lower two panels of Table 1 report the performance of the AIC and BIC. With a small
sample size of N = 50, the AIC performs better than the SHT. With a larger sample size of
N = 200 however, the AIC substantially overestimates the number of components, highlighting
its inconsistency. On the other hand, the BIC performs worse than both the SHT and AIC when
N = 50, but the performance of BIC is comparable to that of the SHT when N = 1000.

Table 2 reports the simulation results when the data is generated from the model with
three components (M = 3). The overall pattern is similar to Table 1, but the tendency to
underestimate M is more pronounced. For the SHT and BIC, the frequency of choosing M = 3
approaches one as the sample size increases. The AIC performs better than the SHT and BIC
when N = 100 and N = 400, but overestimates the number of components more often than the
SHT and BIC when N = 2000.

Next, we consider a trivariate normal mixture of the form (19) where x = (x1, x2, x3)′ and
Fm(x) is N3(µm, I). To apply our selection procedure to trivariate mixtures, we group the
second and the third variables into one group as Z2 = (X2, X3)′. We consider a partition of
X1 into R1 = M + 1 subsets while X2 and X3 are partitioned into R2 = R3 = M subsets and,
thus, the support of Z2 is partitioned into M2 subsets.7 For instance, for the model with two
components, we estimate the rank of the following matrix (see (13)):

P ∗ =

 P1,(1,1) P1,(1,2) P1,(2,1) P1,(2,2)

P2,(1,1) P2,(1,2) P2,(2,1) P2,(2,2)

P3,(1,1) P3,(1,2) P3,(2,1) P3,(2,2)

 ,
where Pa,(b,c) = P(X1 ∈ Ξ1

a, Z2 ∈ Ξ2
b × Ξ3

c).
Table 3 shows the result of trivariate mixtures for a two-components model.8 We set the first

two variables, (X1, X2), to have the same distribution as the bivariate case, thus µ1 = (0, 0)′

and µ2 = (2.0, 1.0)′. We experiment with two different distributions of X3. The first panel of
Table 3 reports the case where X3 has the same distribution as X2, i.e., E[X3|m = 1] = 0 and
E[X3|m = 2] = 1. Comparing the first panel of Table 3 with Table 1, we find that the our
selection procedures perform better with trivariate mixtures than with bivariate mixtures across
different procedures and sample sizes. Thus, the additional information from the third variable
can improve the performance of our selection procedures.

7We also experimented a partition of X2 and X3 into M − 1 or M + 1 subsets, but the results did not improve
for either two components models or three components models.

8The results of trivariate mixtures for three components model are similar and, thus, not reported here.
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This is not necessarily the case, however, when the third variable contains little information
for distinguishing different subpopulations. The second panel of Table 3 reports the case in
which the distribution of the third variable similar across different subpopulations; specifically,
E[X3|m = 1] = 0 and E[X3|m = 2] = 0.5. Comparing them with the result of Table 1, we
notice that our procedure performs worse with trivariate mixtures than with bivariate mixtures
in these cases.

Instead of grouping the second and third variables into one group as Z2 = (X2, X3)′, we
may consider a sum of the second and the third variables: Z2 = X2 + X3. The results are
reported in Table 4. Comparing it with the result of Table 1, our procedure now performs
better with trivariate mixtures than with bivariate mixtures even under the assumption that
E[X3|m = 1] = 0 and E[X3|m = 2] = 0.5. In this case, the means of both X2 and X3 are higher
when m = 2 than when m = 1 and, as a result, the information for distinguishing different
subpopulations is augmented by summing up X2 and X3.

We have to be cautious, however, of applying this method blindly because it is possible that
the summation operation could reduce the information for distinguishing different subpopula-
tions. The second panel of Table 4 illustrates this point under the alternative assumption that
E[X3|m = 1] = 0.5 and E[X3|m = 2] = 0; in this case, if we use Z2 = X2 + X3 instead of
grouping variable Z2 = (X2, X3)′, our procedure performs worse.

6.2 Binomial mixtures

We also conduct Monte Carlo simulations for mixtures of binomial distributions, B(K, pm), as
defined in (14) with M = 2, 3, and 4. We set (p1, p2) = (0.2, 0.5), (p1, p2, p3) = (0.2, 0.5, 0.9),
and (p1, p2, p3, p4) = (0.05, 0.3, 0.7, 0.95) for models with two, three and four components, re-
spectively. The value of K is chosen to K = 2M so that the maximum identifiable number of
components is the true number of components plus one. As before, the mixing probabilities are
set to equal to each other across subpopulations.

For binomial mixtures, we construct a consistent estimate of Ω from an estimate of the
covariance matrix of the sample factorial moments. Define ν(X, k) = X(X−1)···(X−k+1)

K(K−1)···(K−k+1) so that
f(k) = E(ν(X, k)). We estimate f(k) by f̂(k) = N−1

∑N
i=1 ν(Xi, k). Hence, Ncov(f̂(j), f̂(k)) is

equal to E(ν(X, j)ν(X, k))−E(ν(X, j))E(ν(X, k)), which is a linear function of EX, . . . , EXj+k

and, thus, can be estimated from sample moments of X.
Tables 5, 6, and 7 show the results for models with two, three, and four components, re-

spectively. Across three different models, as the sample size increases, the frequency to select
the true number of components approaches one in the SHT and BIC; on the other hand, the
AIC tends to overestimate the true number of components. It is also seen that a relatively large
number of observations is required to estimate M accurately when M is large.
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7 Appendix

7.1 Proof of Proposition 1

First, note that, if the joint distribution function of (X1, X2) is given by (2) with k = 2, then the
marginal distribution function of X1 and X2 is given by F 1(x1) = πF 11(x1)+(1−π)F 12(x1) and
F 2(x2) = πF 21(x1) + (1 − π)F 22(x2), respectively. In light of F (x1, x2) = πF 11(x1)F 21(x2) +
(1− π)F 12(x1)F 22(x2), it follows that

F (x1, x2)− F 1(x1)F 2(x2) = π(1− π)[F 11(x1)− F 12(x1)][F 21(x2)− F 22(x2)]. (20)

Using the irreducibility, we have, for any xa, xb, xc ∈ {ξ1, . . . , ξJ},

F (xa, xb)− F 1(xa)F 2(xb) =
[F (xa, xc)− F 1(xa)F 2(xc)][F (xc, xb)− F 1(xc)F 2(xb)]

F (xc, xc)− F 1(xc)F 2(xc)
.

Let (xa, xb, xc) = (ξi, ξj , ξ1), then

F (ξi, ξj)− F 1(ξi)F 2(ξj) =
[F (ξi, ξ1)− F 1(ξi)F 2(ξ1)][F (ξ1, ξj)− F 1(ξ1)F 2(ξj)]

F (ξ1, ξ1)− F 1(ξ1)F 2(ξ1)
. (21)

Since Q̃ satisfies (3) and (4) for (x1, x2) = {(ξ1, ξ1), (ξ1, ξi), (ξj , ξ1)}, the relation (20) holds
for these pairs of (x1, x2). Therefore, the right hand side of (21) equals π̃(1 − π̃)[F̃ 11(ξi) −
F̃ 12(ξi)][F̃ 21(ξj)− F̃ 22(ξj)], and hence Q̃ satisfies (3) for (x1, x2) = (ξi, ξj). Repeating the above
for all pairs of (ξi, ξj) gives the stated result. �

7.2 Proof of Proposition 2 and Corollary 1

Since P is nonsingular, we can construct a matrix Bh = PhP
−1 = L′1Dh(L′1)

−1. Because
BhL

′
1 = L′1Dh, the characteristic roots of Bh determine the diagonal elements of Dh, and the

characteristic vectors of Bh determine the columns of L′1 uniquely up to multiplicative constants.
Since p1m

1 + · · ·+p1m
M = 1 for each m, each column of L′1 must sum to one, and hence the columns

of L′
1 are uniquely determined. Having determined L′1, we can recover the rows of L2 uniquely

up to multiplicative constants from (L′1)
−1P because (L′1)

−1P = V L2. Since p2m
1 + · · ·+p2m

M = 1
for each m, each row of L2 must sum to one, and hence the rows of L2 are uniquely determined.
Then V is determined as V = (L′1)

−1P (L2)−1.
Corollary 1 is proven by observing that P is nonsingular and the characteristic roots of

PhP
−1 are distinct when the conditions of Corollary 1 are satisfied. �
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7.3 Proof of Proposition 3

Let V = diag(π1, . . . , πM ), then P ∗ = (L∗
1)
′V L∗2. It follows that rank(P ∗) ≤ min{rank(L∗1),

rank(L∗2), rank(V )}. Since rank(V ) = M , it follows that rank(P ∗) ≤ M where the inequality
becomes strict when rank(L∗

1) or rank(L∗2) is smaller than M .
When rank(L∗1) = rank(L∗

2) = M , multiplying both sides of P ∗ = (L∗1)
′V L∗2 from the right by

(L∗2)
′(L∗2(L

∗
2)
′)−1 gives P ∗(L∗2)

′(L∗2(L
∗
2)
′)−1 = (L∗1)

′V . There areM linearly independent columns
in (L∗1)

′V , because (L∗1)
′ has M linearly independent columns while V is a diagonal matrix with

strictly positive elements. Thus, rank(P ∗(L∗2)
′(L∗2(L

∗
2)
′)−1) = M . Hence, M ≤ min{rank(P ∗),

rank(L∗2), rank(L∗2(L
∗
2)
′)−1} ≤rank(P ∗), and it follows that rank(P ∗) = M . �

7.4 Proof of Corollary 2

Since PB = L′BV LB, if follows from the proof of Proposition 3 that rank(PB) ≤ M . In view of
the proof of Proposition 3, rank(PB) = M follows if we show rank(LB) = M .

First, rank(LB) ≤M because LB is a M × (K∗/2+1) matrix. To show rank(LB) ≥M , first
note that the condition K∗ ≥ 2M − 2 guarantees that K∗/2 ≥ M − 1. Consider the following
M ×M submatrix of LB:

L∗B =


1 p1 · · · pM−1

1
...

...
...

1 pM · · · pM−1
M

 .
Since L∗B is a Vendermonde matrix, its determinant is given by

∏
i<j(pj−pi), which is nonzero by

definition. Hence, rank(L∗
B) = M . Since L∗B is a submatrix of LB, rank(LB) ≥rank(L∗B) = M .

It follows that rank(LB) = M . �

7.5 Proof of Proposition 6

First, we show P(r̃ < r0) → 0. If r̃ < r0, this implies S(r) < S(r0) for some r < r0. Thus
P(r̃ < r0) ≤

∑r0−1
r=1 P(S(r) < S(r0)). Now, for any r < r0,

P(S(r) < S(r0)) = P(CRT (r)− CRT (r0)− f(N)g(r) + f(N)g(r0) < 0)

≤ P

(
N

r0∑
i=r+1

λ̂i + f(N)[g(r0)− g(r)] < 0

)
.

This probability tends to 0 as N →∞ because f(N)/N → 0 and
∑r0

i=r+1 λ̂i →p
∑r0

i=r+1 λi > 0
since the λi’s are continuous functions of the elements of B.

Second, we show P(r̃ > r0) → 0. Similarly as above, we have P(r̃ > r0) ≤
∑q

r=r0+1 P(S(r) <
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S(r0)). Now, for any r > r0,

P(S(r) < S(r0)) ≤ P

(
−N

r∑
i=r0+1

λ̂i + f(N)[g(r0)− g(r)] < 0

)
.

This probability tends to 0 as N → ∞ because N
∑r

i=r0+1 λ̂i converges to a weighted sum of
chi-squared variables, f(N) →∞, and P(g(r0)− g(r) > 0) → 1 as N →∞. �
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Table 1: Selection Frequency for the Number of Components: Bivariate Normal with M = 2
N = 50 N = 200 N = 1000

Significance level α Significance level α Significance level α
.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.4936 0.6394 0.8544 0.0245 0.0494 0.1528 0.0000 0.0000 0.0000
M = 2 0.4480 0.3403 0.1437 0.8896 0.9083 0.8389 0.9023 0.9527 0.9902
M ≥ 3 0.0584 0.0203 0.0019 0.0859 0.0423 0.0083 0.0977 0.0473 0.0098

AIC M = 1 0.3956 0.0125 0.0000
M = 2 0.5128 0.8474 0.8448
M ≥ 3 0.0916 0.1401 0.1552

BIC M = 1 0.7887 0.2807 0.0000
M = 2 0.2010 0.7044 0.9921
M ≥ 3 0.0103 0.0149 0.0079

Notes: The parameter values are: π1 = π2 = 1/2, µ1 = (0, 0)′ and µ2 = (2, 1).

Table 2: Selection Frequency for the Number of Components: Bivariate Normal with M = 3
N = 100 N = 400 N = 2000

Significance level α Significance level α Significance level α
.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 2 0.7090 0.8184 0.9462 0.1650 0.2590 0.5148 0.0000 0.0000 0.0000
M = 3 0.2610 0.1713 0.0522 0.7663 0.7090 0.4811 0.9039 0.9538 0.9900
M ≥ 4 0.0300 0.0102 0.0014 0.0687 0.0320 0.0041 0.0961 0.0462 0.0100

AIC M = 1 0.0000 0.0000 0.0000
M = 2 0.5759 0.0941 0.0000
M = 3 0.3747 0.7935 0.8456
M ≥ 4 0.0494 0.1124 0.1544

BIC M = 1 0.0006 0.0000 0.0000
M = 2 0.9453 0.7275 0.0022
M = 3 0.0517 0.2685 0.9920
M ≥ 4 0.0024 0.0040 0.0058

Notes: The parameter values are: π1 = π2 = π3 = 1/3, µ1 = (0, 0)′, µ2 = (2, 1), and µ3 = (4, 3).
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Table 3: Selection Frequency for the Number of Components: Trivariate Normal with M = 2
E[x3|m = 1] = 0 and E[x3|m = 2] = 1

N = 50 N = 200 N = 1000
Significance level α Significance level α Significance level α

.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.3864 0.5284 0.7809 0.0020 0.0052 0.0298 0.0000 0.0000 0.0000
M = 2 0.5448 0.4410 0.2149 0.8942 0.9396 0.9582 0.8880 0.9396 0.9863
M ≥ 3 0.0688 0.0306 0.0042 0.1038 0.0552 0.0120 0.1120 0.0604 0.0137

AIC M = 1 0.3084 0.0011 0.0000
M = 2 0.5988 0.8570 0.8501
M ≥ 3 0.0928 0.1419 0.1499

BIC M = 1 0.7792 0.1342 0.0000
M = 2 0.2130 0.8600 0.9990
M ≥ 3 0.0078 0.0058 0.0010

E[x3|m = 1] = 0 and E[x3|m = 2] = 0.5
N = 50 N = 200 N = 1000

Significance level α Significance level α Significance level α
.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.5766 0.7135 0.9065 0.0384 0.0746 0.2170 0.0000 0.0000 0.0000
M = 2 0.3671 0.2625 0.0905 0.8503 0.8681 0.7719 0.8692 0.9296 0.9822
M ≥ 3 0.0563 0.0240 0.0030 0.1113 0.0573 0.0111 0.1308 0.0704 0.0178

AIC M = 1 0.4910 0.0230 0.0000
M = 2 0.4356 0.8251 0.8288
M ≥ 3 0.0734 0.1519 0.1712

BIC M = 1 0.9144 0.5183 0.0000
M = 2 0.0816 0.4774 0.9976
M ≥ 3 0.0040 0.0043 0.0024

Notes: The parameter values are: π1 = π2 = 1/2, µ1 = (0, 0)′ and µ2 = (2, 1)′.
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Table 4: Selection Frequency for the Number of Components: Trivariate Normal with M = 2
and using Z2 = X2 +X3

E[x3|m = 1] = 0 and E[x3|m = 2] = 0.5 using Z2 = X2 +X3

N = 50 N = 200 N = 1000
Significance level α Significance level α Significance level α

.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.4483 0.5922 0.8170 0.0132 0.0315 0.1060 0.0000 0.0000 0.0000
M = 2 0.4896 0.3853 0.1799 0.8987 0.9271 0.8875 0.9030 0.9481 0.9899
M ≥ 3 0.0621 0.0225 0.0031 0.0881 0.0414 0.0065 0.0970 0.0519 0.0101

AIC M = 1 0.3538 0.0062 0.0000
M = 2 0.5464 0.8515 0.8425
M ≥ 3 0.0998 0.1423 0.1575

BIC M = 1 0.7498 0.2030 0.0000
M = 2 0.2372 0.7843 0.9921
M ≥ 3 0.0130 0.0127 0.0079

E[x3|m = 1] = 0.5 and E[x3|m = 2] = 0 using Z2 = X2 +X3

N = 50 N = 200 N = 1000
Significance level α Significance level α Significance level α

.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.8316 0.9096 0.9775 0.6838 0.7899 0.9255 0.1163 0.1920 0.4018
M = 2 0.1467 0.0840 0.0221 0.2832 0.1982 0.0734 0.8052 0.7731 0.5926
M ≥ 3 0.0217 0.0064 0.0004 0.0330 0.0119 0.0011 0.0785 0.0349 0.0056

AIC M = 1 0.7537 0.5823 0.0720
M = 2 0.2118 0.3642 0.7994
M ≥ 3 0.0345 0.0535 0.1286

BIC M = 1 0.9651 0.9738 0.7829
M = 2 0.0324 0.0254 0.2153
M ≥ 3 0.0025 0.0008 0.0018

Notes: The parameter values are: π1 = π2 = 1/2, µ1 = (0, 0)′ and µ2 = (2, 1)′.

Table 5: Selection Frequency for the Number of Components: Binomial with M = 2
N = 50 N = 200 N = 1000

Significance level α Significance level α Significance level α
.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.7494 0.8752 0.9763 0.2423 0.4083 0.7493 0.0000 0.0001 0.0013
M = 2 0.1887 0.0960 0.0189 0.6860 0.5633 0.2471 0.9104 0.9586 0.9907
M ≥ 3 0.0619 0.0288 0.0048 0.0717 0.0284 0.0036 0.0896 0.0413 0.0080

AIC M = 1 0.6279 0.1564 0.0000
M = 2 0.2748 0.7181 0.8554
M ≥ 3 0.0973 0.1255 0.1446

BIC M = 1 0.9051 0.6644 0.0025
M = 2 0.0754 0.3290 0.9904
M ≥ 3 0.0195 0.0066 0.0071

Notes: The parameter values are π1 = π2 = 1/2, (p1, p2) = (0.2, 0.5), and K = 4.
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Table 6: Selection Frequency for the Number of Components: Binomial with M = 3
N = 100 N = 400 N = 2000

Significance level α Significance level α Significance level α
.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 2 0.6918 0.7867 0.9202 0.1949 0.2918 0.5148 0.0000 0.0000 0.0008
M = 3 0.2813 0.2042 0.0791 0.7327 0.6750 0.4810 0.9061 0.9541 0.9910
M ≥ 4 0.0269 0.0091 0.0007 0.0724 0.0332 0.0042 0.0939 0.0459 0.0082

AIC M = 1 0.0000 0.0000 0.0000
M = 2 0.6176 0.1447 0.0000
M = 3 0.3286 0.7305 0.8492
M ≥ 4 0.0538 0.1248 0.1508

BIC M = 1 0.0000 0.0000 0.0000
M = 2 0.8635 0.5155 0.0019
M = 3 0.1322 0.4778 0.9941
M ≥ 4 0.0043 0.0067 0.0040

Notes: The parameter values are π1 = π2 = π3 = 1/3, (p1, p2, p3) = (0.2, 0.5, 0.9), and K = 6.

Table 7: Selection Frequency for the Number of Components: Binomial with M = 4
N = 200 N = 800 N = 4000

Significance level α Significance level α Significance level α
.10 05 .01 .10 .05 .01 .10 .05 .01

SHT M = 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 2 0.0061 0.0145 0.0504 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 3 0.6625 0.7405 0.8378 0.1919 0.2816 0.4917 0.0000 0.0000 0.0004
M = 4 0.3017 0.2338 0.1108 0.7463 0.6933 0.5042 0.9093 0.9575 0.9916
M ≥ 5 0.0297 0.0112 0.0010 0.0618 0.0251 0.0041 0.0907 0.0425 0.0080

AIC M = 1 0.0000 0.0000 0.0000
M = 2 0.0032 0.0000 0.0000
M = 3 0.5997 0.1393 0.0000
M = 4 0.3440 0.7515 0.8491
M ≥ 5 0.0531 0.1092 0.1509

BIC M = 1 0.0000 0.0000 0.0000
M = 2 0.0325 0.0000 0.0000
M = 3 0.8222 0.5257 0.0024
M = 4 0.1426 0.4706 0.9945
M ≥ 5 0.0027 0.0037 0.0031

Notes: The parameter values are π1 = π2 = π3 = π4 = 1/4, (p1, p2, p3, p4) = (0.05, 0.3, 0.7, 0.095), and K = 8.
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