QED

Empirical Likelihood Block Bootstrapping

Jason Allen
Allan W. Gregory
Katsumi Shimotsu

Department of Economics
Queen's University
94 University Avenue
Kingston, Ontario, Canada
K7L 3N6

EMPIRICAL LIKELIHOOD BLOCK BOOTSTRAPPING

Jason Allen ${ }^{\dagger}$, Allan W. Gregory ${ }^{\text {b }}$, and Katsumi Shimotsu ${ }^{\text {* }}$
Department of Monetary and Financial Analysis, Bank of Canada ${ }^{\dagger}$ and Department of Economics, Queen's University ${ }^{\text {b }}$

March 2, 2008

Abstract

Monte Carlo evidence has made it clear that asymptotic tests based on generalized method of moments (GMM) estimation have disappointing size. The problem is exacerbated when the moment conditions are serially correlated. Several block bootstrap techniques have been proposed to correct the problem, including Hall and Horowitz (1996) and Inoue and Shintani (2006). We propose an empirical likelihood block bootstrap procedure to improve inference where models are characterized by nonlinear moment conditions that are serially correlated of possibly infinite order. Combining the ideas of Kitamura (1997) and Brown and Newey (2002), the parameters of a model are initially estimated by GMM which are then used to compute the empirical likelihood probability weights of the blocks of moment conditions. The probability weights serve as the multinomial distribution used in resampling. The first-order asymptotic validity of the proposed procedure is proven, and a series of Monte Carlo experiments show it may improve test sizes over conventional block bootstrapping.

Keywords: generalized methods of moments, empirical likelihood, block-bootstrap

JEL classification: C14, C22

[^0]
1 Introduction

Generalized method of moments (GMM, Hansen (1982)) has been an essential tool for econometricians, partly because of its straightforward application and fairly weak restrictions on the data generating process. GMM estimation is widely used in applied economics to estimate and test asset pricing models (Hansen and Singleton (1982), Kocherlakota (1990), Altonji and Segal (1996)), business cycle models (Christiano and Haan (1996)), models that use longitudinal data (Arellano and Bond (1991), Ahn and Schmidt (1995)), as well as stochastic dynamic general equilibrium models (Ruge-Murcia (2007)).

Despite the widespread use of GMM, there is ample evidence that the finite sample properties for inference have been disappointing (e.g. the 1996 special issue of JBES); t-tests on parameters and Hansen's test of overidentifying restrictions (J-test, or Sargan test) for model specification perform poorly and tend to be biased away from the null hypothesis. The situation is especially severe for dependent data (see Clark (1996)). Consequently, inferences based on asymptotic critical values can often be very misleading. From an applied perspective, this means that theoretical models may be more frequently rejected than necessary due to poor inference rather than poor modeling.

Various attempts have been made to address finite sample size problems while allowing for dependence in the data. Berkowitz and Kilian (2000), Ruiz and Pascual (2002), and Härdle, Horowitz, and Kreiss (2003) review some of the techniques developed for bootstrapping time-series models, including financial time series. Lahiri (2003) is an excellent monograph on resampling methods for dependent data. Hall and Horowitz (1996) apply the block bootstrap approach to GMM and establish the asymptotic refinements of their procedure when the moment conditions are uncorrelated after finitely many lags. Andrews (2002) provides similar results for the k-step bootstrap procedure first proposed by Davidson and Mackinnon (1999).

Limited Monte Carlo results indicate the block-bootstrap has some success at improving inference in GMM. More recent papers by Zvingelis (2002) and Inoue and Shintani (2006) attempt refinements to Hall and Horowitz (1996) and Andrews (2002). The main requirement of these earlier papers is that the data is serially uncorrelated after a finite number of lags. In contrast, Inoue and Shintani (2006) prove that the block bootstrap provides asymptotic refinements for the GMM estimator of linear models when the moment conditions are serially correlated of possibly infinite order. Zvingelis (2002) derives the optimal block length for coverage probabilities of normalized and Studentized statistics.

A complementary line of research has examined empirical likelihood (EL) estimators, or their generalization (GEL). Rather than try to improve the finite properties of the GMM estimator di-
rectly, researchers such as Kitamura (1997), Kitamura and Stutzer (1997), Smith (1997), and Imbens, Spady, and Johnson (1998) have proposed and/or tested new statistics, ones based on GELestimators. ${ }^{1}$ A GEL estimator minimizes the distance between the empirical density and a synthetic density subject to the restriction that all the moment conditions are satisfied. GEL estimators have the same first-order asymptotic properties as GMM but have smaller bias than GMM in finite samples. Furthermore, these biases do not increase in the number of overidentifying restrictions in the case of GEL. Newey and Smith (2004) provide theoretical evidence of the higher-order efficiency of GEL estimators. Gregory, Lamarche, and Smith (2002) have shown, however, that these alternatives to GMM do not solve the over-rejection problem in finite samples.

Brown and Newey (2002) introduce the empirical likelihood bootstrap technique for iid data. Rather than resampling from the empirical distribution function, the empirical likelihood bootstrap resamples from a multinomial distribution function, where the probability weights are computed by empirical likelihood. Brown and Newey (2002) show that empirical likelihood bootstrap provides an asymptotically efficient estimator of the distribution of t ratios and overidentification test-statistics. The authors Monte Carlo design features a dynamic panel model with persistence and iid error structure. The results suggest that the empirical likelihood bootstrap is more accurate than the asymptotic approximation, and not dis-similar to the Hall and Horowitz (1996) bootstrap.

In this paper, the approach of Brown and Newey (2002) is extended to the case of dependent data, using the empirical likelihood (Owen (1990)). A number of researchers have implemented this approach with some success in linear time-series models (Ramalho (2006)) as well as dynamic panel data models (Gonzalez (2007)). With serially correlated data the idea is that parameters of a model are initially estimated by GMM and then used to compute the empirical likelihood probability weights of the blocks of moment conditions, which serve as the multinomial distribution for resampling. In this paper the first-order asymptotic validity of the proposed empirical likelihood block bootstrap is proven using the results in Gonçalves and White (2004). We report on the finite-sample properties of t -ratios and overidentification test-statistics. A series of Monte Carlo experiments show that the empirical likelihood block bootstrap can reduce size distortions considerably and improve test sizes over first-order asymptotic theory and frequently outperforms conventional block bootstrapping approaches. ${ }^{2}$ Furthermore, the empirical likelihood block bootstrap does not require solving the difficult saddle point problem associated with GEL estimators. This is because estimation of the probability weights can be conducted by plugging-in first-stage GMM es-

[^1]timates. Difficulties with solving the saddle point problem is a common argument amongst applied researchers for not switching from GMM to EL, even though the latter is higher-order efficient.

The paper is organized as follows. Section 2 provides an overview of GMM and EL. Section 3 presents a discussion of how resampling methods might improve inference in GMM. Section 4 presents the asymptotic results. Section 5 presents the Monte Carlo design for both linear and nonlinear models. Section 6 concludes. The technical assumption and proofs are collected at the end of the paper in the mathematical appendix.

2 Overview of GMM and GEL

Let $X_{t} \in \mathbb{R}^{k}, t=1, \ldots n$, be a set of observations from a stochastic sequence. Suppose for some true parameter value $\theta_{0}(p \times 1)$ the following moment conditions (m equations) hold and $p \leq m<n$:

$$
\begin{equation*}
E\left[g\left(X_{t}, \theta_{0}\right)\right]=0 \tag{1}
\end{equation*}
$$

where $g: \mathbb{R}^{k} \times \Theta \rightarrow \mathbb{R}^{m}$. The GMM estimator is defined as:

$$
\begin{equation*}
\hat{\theta}=\arg \min Q_{n}(\theta), \quad Q_{n}(\theta)=\left(n^{-1} \sum_{t=1}^{n} g\left(X_{t}, \theta\right)\right)^{\prime} W_{n}\left(n^{-1} \sum_{t=1}^{n} g\left(X_{t}, \theta\right)\right) \tag{2}
\end{equation*}
$$

where the weighting matrix $W_{n} \rightarrow p$. Hansen (1982) shows that the GMM estimator $\hat{\theta}$ is consistent and asymptotically normally distributed subject to some regularity conditions. The elements of $\left\{g\left(X_{t}, \theta\right)\right\}$ and $\{\nabla g(x, \theta)\}$ are assumed to be near epoch dependent (NED) on the α-mixing sequence $\left\{V_{t}\right\}$ of size -1 uniformly on (Θ, ρ) where ρ is any convenient norm on \mathbb{R}^{p}. \|x\|$\|_{p}$ denotes the L_{p} norm $\left(E\left|X_{n t}\right|^{p}\right)^{1 / p}$. For a $(m \times k)$ matrix x, let $|x|$ denote the 1-norm of x, so $|x|=\sum_{i=1}^{m} \sum_{j=1}^{k}\left|x_{i j}\right|$.

Define $\Sigma=\lim _{n \rightarrow \infty} \operatorname{var}\left(n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}, \theta_{0}\right)\right)$. The standard kernel estimate of Σ is:

$$
\begin{equation*}
S_{n}(\theta)=\sum_{h=-n}^{n} k\left(\frac{h}{m}\right) \hat{\Gamma}(h, \theta) \tag{3}
\end{equation*}
$$

where $k(\cdot)$ is a kernel and $\hat{\Gamma}(h, \theta)=n^{-1} \sum_{t=h+1}^{n} g\left(X_{t}, \theta\right) g\left(X_{t+h}, \theta\right)^{\prime}$ for $h \geq 0$ and $n^{-1} \sum_{t=1}^{n-h} g\left(X_{t}, \theta\right) g\left(X_{t-h}, \theta\right)^{\prime}$ for $h<0$. It is known that $S_{n}(\tilde{\theta}) \rightarrow_{p} \Sigma$ if $\tilde{\theta} \rightarrow_{p} \theta_{0}$ under weak conditions on the kernel and bandwidth; see de Jong and Davidson (2000).

The optimal weighting matrix is given by $S_{n}(\tilde{\theta})^{-1}$ with $\tilde{\theta} \rightarrow_{p} \theta_{0}$. When the optimal weighting matrix is used, the asymptotic covariance matrix of $\hat{\theta}$ is $\left(G^{\prime} \Sigma^{-1} G\right)^{-1}$, where $G=\lim _{n \rightarrow \infty} E\left(n^{-1} \sum_{t=1}^{n} \nabla g\left(X_{t}, \theta_{0}\right)\right)$
with $\nabla g(x, \theta)=\partial g(x, \theta) / \partial \theta^{\prime}$.
In terms of testing for model misspecification, the most popular test is Hansen's J-test for overidentifying restrictions:

$$
\begin{equation*}
\mathcal{I}_{n}=K_{n}\left(\hat{\theta}_{n}\right)^{\prime} K_{n}\left(\hat{\theta}_{n}\right) \rightarrow{ }_{d} \chi_{m-r}, \tag{4}
\end{equation*}
$$

where

$$
K_{n}(\theta)=S_{n}^{-1 / 2} n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}, \theta\right),
$$

and S_{n} is a consistent estimate of Σ. Let θ_{r} denote the r th element of θ, and let $\theta_{0 r}$ denote the r th element of θ_{0}. The t-statistic for testing the null hypothesis $H_{0}: \theta_{r}=\theta_{0 r}$ is:

$$
\begin{equation*}
T_{n r}=\frac{\sqrt{n}\left(\hat{\theta}_{n r}-\theta_{0 r}\right)}{\hat{\sigma}_{n r}} \rightarrow{ }_{d} N(0,1), \tag{5}
\end{equation*}
$$

where $\hat{\theta}_{n r}$ is the r th element of $\hat{\theta}_{n}$, and $\hat{\sigma}_{n r}^{2}$ is a consistent estimate of the asymptotic variance of $\hat{\theta}_{n r}$.
Empirical Likelihood (EL) estimation has some history in the statistical literature but has only recently been explored by econometricians. One attractive feature is that while its first-order asymptotic properties are the same as GMM, there is an improvement for EL at the second-order (see Qin and Lawless (1994) and Newey and Smith (2004)). For time-series models see Anatolyev (2005). This suggests that there might be some gain for EL over GMM in finite sample performance. At present, limited Monte Carlo evidence (see Gregory, Lamarche, and Smith (2002)) has provided mixed results.

The idea of EL is to use likelihood methods for model estimation and inference without having to choose a specific parametric family or probability densities. The parameters are estimated by minimizing the distance between the empirical density and a density that identically satisfies all of the moment conditions. The main advantages over GMM are that it is invariant to linear transformations of the moment functions and does not require the calculation of the optimal weighting matrix for asymptotic efficiency (although smoothing or blocking of the moment condition is necessary for dependent data). The main disadvantage is that it is computationally more demanding than GMM in that a saddle point problem needs to be solved.

The Generalize Empirical Likelihood Estimator solves the following Lagrangian:

$$
\begin{equation*}
\max L=\frac{1}{n} \sum_{t=1}^{n} h(\cdot)-\mu\left(\sum_{t=1}^{n} \pi_{t}-1\right)-\gamma \sum_{t=1}^{n} \pi_{t} g\left(x_{t}, \theta\right) . \tag{6}
\end{equation*}
$$

Solving for π_{t} gives

$$
\begin{equation*}
\pi_{t}=\frac{h_{1}\left(\delta^{\prime} g\left(x_{t}, \theta\right)\right)}{\sum h_{1}\left(\delta^{\prime} g\left(x_{t}, \theta\right)\right)}, \quad h_{1}(v)=\partial h(v) / \partial v . \tag{7}
\end{equation*}
$$

In the case of EL, $h(\cdot)=\log \left(\pi_{t}\right)$. The presence of serially correlated observations necessitates a modification of equation (6). Kitamura and Stutzer (1997) address the data dependency problem by smoothing the moment conditions. Anatolyev (2005) provides conditions on the amount of smoothing necessary for the bias of the GEL estimator to be less than the GMM estimator. Kitamura (1997) and Bravo (2005) address serial correlation in the moment conditions by using averages across blocks of data.

3 Improving Inference: Resampling Methods

Under the assumption of finite autocorrelation of the moment conditions, Hall and Horowitz (1996) show that block bootstrapping provides asymptotic refinements to the critical values of t tests and Hansen's J-test. A small Monte Carlo experiment, consisting of two nonlinear moment conditions and one parameter, is used to show that the block bootstrap usually reduces the errors in level from the critical values based on first-order asymptotic theory. ${ }^{3}$

3.1 The Block Bootstrap

The bootstrap amounts to treating the estimation data as if they were the population and carrying a Monte Carlo in which bootstrap data is generated by resampling the estimation data. If the estimation data is serially correlated, then blocks of data are resampled and the blocks are treated as the iid sample. Operationally one needs to choose a block size when implementing the blockbootstrap. Härdle, Horowitz, and Kreiss (2003) point out that the optimal block length depends on the objective of bootstrapping. That is, the block length depends on whether or not one is interested in bootstrapping one-sided or two-sided tests or whether one is concerned with estimating a distribution function. Among others, Zvingelis (2002) solves for optimal block lengths given different scenarios. Practically, the optimal block lengths for each different hypothesis test are unlikely to be implemented since practitioner's are interested in a variety of problems across various hypotheses. Experimentation is done with fixed block lengths as well as data-dependent methods.

We implement two forms of the block bootstrap. The first approach implements the overlapping bootstrap (MBB, Künsch (1989)). Let b be the number of blocks and ℓ the block length, such that

[^2]$n=b \ell$. The i th overlapping block is $\tilde{X}_{i}=\left\{X_{i}, \ldots, X_{i+\ell-1}\right\}, i=1, \ldots, n-\ell+1$. The MBB resample is $\left\{X_{t}^{*}\right\}_{t=1}^{n}=\left\{\tilde{X}_{1}^{*}, \ldots, \tilde{X}_{b}^{*}\right\}$, where $\tilde{X}_{i}^{*} \sim \operatorname{iid}\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n-\ell+1}\right)$. The GMM estimator is therefore:
\[

$$
\begin{aligned}
\theta_{M B B}^{* *}= & \arg \min Q_{M B B, n}^{* *}(\theta) \\
& Q_{M B B, n}^{* *}(\theta)=\left(n^{-1} \sum_{t=1}^{n} g^{*}\left(X_{t}^{*}, \theta\right)\right)^{\prime} W_{n}^{* *}\left(n^{-1} \sum_{t=1}^{n} g^{*}\left(X_{t}^{*}, \theta\right)\right),
\end{aligned}
$$
\]

where $g^{*}\left(X_{t}^{*}, \theta\right)=g\left(X_{t}^{*}, \theta\right)-n^{-1} \sum_{t=1}^{n} g\left(X_{t}, \hat{\theta}_{n}\right)$ and $W_{n}^{* *}$ is a weighting matrix. That is, given a weighting matrix $W_{n}^{* *}$, the GMM estimator that minimizes the quadratic form of the demeaned block-resampled moment conditions is $\theta_{M B B}^{* *}$.

Hall and Horowitz (1996) implement the nonoverlapping block bootstrap (NBB, Carlstein (1986)). This approach is also considered (in addition to the MBB). Let b be the number of blocks and ℓ the block length, and assume $b \ell=n$. We resample b blocks with replacement from $\left\{\tilde{X}_{i}: i=1, \ldots, b\right\}$ where $\tilde{X}_{i}=\left(X_{(i-1) \ell+1}, \ldots, X_{(i-1) \ell+\ell}\right)$. The NBB resample is $\left\{X_{t}^{*}\right\}_{t=1}^{n}$. The NBB version of the GMM problem is identical to the MBB version, except for the way one resamples the data.

As shown in Gonçalves and White (2004) (hereafter GW04), because the resampled b blocks are (conditionally) iid, the bootstrap version of the long-run autocovariance matrix estimate takes the form (cf. equation (3.1) of GW04):

$$
\begin{equation*}
S_{n}^{* *}\left(\theta^{* *}\right)=\ell b^{-1} \sum_{i=1}^{b}\left(\ell^{-1} \sum_{t=1}^{\ell} g^{*}\left(X_{(i-1) \ell+t}^{*}, \theta^{* *}\right)\right)\left(\ell^{-1} \sum_{t=1}^{\ell} g^{*}\left(X_{(i-1) \ell+t}^{*}, \theta^{* *}\right)\right)^{\prime} \tag{8}
\end{equation*}
$$

where $\theta^{* *}$ denotes either $\theta_{M B B}^{* *}$ or $\theta_{N B B}^{* *}$. The optimal weighting matrix is given by $\left(S_{n}^{* *}\left(\tilde{\theta}^{* *}\right)\right)^{-1}$, where $\tilde{\theta}^{* *}$ is the first-stage MBB/NBB estimator. The bootstrap version of the J-statistic, $\mathcal{I}_{M B B, n}^{* *}$ and $\mathcal{I}_{N B B, n}^{* *}$, is defined analogously to I_{n} but using $\left(S_{n}^{* *}\left(\tilde{\theta}^{* *}\right)\right)^{-1 / 2}$ and $n^{-1 / 2} \sum_{t=1}^{n} g^{*}\left(X_{t}^{*}, \theta\right)$.

Note that in Hall and Horowitz (1996), the recentering of the sample moment condition is necessary in order to establish the asymptotic refinements of the bootstrap. This is because in general there is no θ such that $E^{*} g(x, \theta)=0$ when there are more moments than parameters and the resampling schemes must impose the null hypothesis. Recentering is not necessary for establishing the first-order validity of the bootstrap version of $\hat{\theta}_{n}$ (cf. Hahn (1996)), but is necessary for the first-order validity of the bootstrap J-test.

Both bootstrap approaches are considered because there is little known about the finite sample properties of either method. It is, however, known that the bias and variance of a block bootstrap estimator depends on the block length (Hall, Horowitz, and Jing (1992)), and that the MBB is more efficient than the NBB in estimating the variance (Lahiri (1999)).

3.2 Empirical Likelihood Bootstrap

In this section we develop the empirical likelihood approach to estimating time-series models. Two cases are considered: (i) the overlapping empirical likelihood block bootstrap (EMB), and (ii) the non-overlapping empirical likelihood block bootstrap (ENB). The procedure for implementing the empirical block bootstrap is straightforward and outlined in Section 7.

3.2.1 EMB

First consider the overlapping bootstrap. Let $N=n-\ell+1$ be the total number of overlapping blocks. Define the i th overlapping block of the sample moment as (${ }^{\circ}$ stands for "overlapping"):

$$
T_{i}^{o}(\theta)=\ell^{-1} \sum_{t=1}^{\ell} g\left(X_{i+t-1}, \theta\right), \quad i=1, \ldots, N,
$$

and the Lagrangian as:

$$
L=\sum_{i=1}^{N} \log \left(\pi_{i}^{o}\right)+\mu\left(1-\sum_{i=1}^{N} \pi_{i}^{o}\right)-N \gamma \sum_{i=1}^{N} \pi_{i}^{o} T_{i}^{o}(\theta) .
$$

It is known that the solution for the probability weights are given by:

$$
\pi_{i}^{o}=\frac{1}{N}\left(\frac{1}{1+\gamma^{o}(\theta)^{\prime} T_{i}^{o}(\theta)}\right),
$$

where

$$
\begin{equation*}
\gamma^{\rho}(\theta)=\underset{\lambda \in \Lambda_{n}(\theta)}{\operatorname{argmax}} \sum_{i=1}^{N} \log \left(1+\gamma^{\prime} T_{i}^{o}(\theta)\right) . \tag{9}
\end{equation*}
$$

Solving out the Lagrange multipliers and the coefficients simultaneously requires solving a difficult saddle point problem outlined in Kitamura (1997). Instead, one can use the GMM estimate of θ to compute π_{i}^{o} and attach these weights to the bootstrapped (blocks of) samples. Given the GMM estimate $\hat{\theta}$, compute $\gamma^{\rho}(\hat{\theta})$, which is a much smaller dimensional problem. Then solve for the empirical probability weights:

$$
\begin{equation*}
\hat{\pi}_{i}^{o}=\frac{1}{N}\left(\frac{1}{1+\gamma^{o}(\hat{\theta})^{\prime} T_{i}^{o}(\hat{\theta})}\right), \tag{10}
\end{equation*}
$$

which satisfy the moment condition $\sum_{i=1}^{N} \hat{\pi}_{i}^{o} T_{i}^{o}(\hat{\theta})=0$. The EMB version of $\hat{\theta}$ is defined as:

$$
\begin{aligned}
& \theta_{M B B}^{*}=\arg \min Q_{M B B, n}^{*}(\theta), \\
& Q_{M B B, n}^{*}(\theta)=\left(b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta)\right)^{\prime} W_{M B B, n}^{*}\left(b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta)\right),
\end{aligned}
$$

where $W_{M B B, n}^{*}$ is a weighting matrix and $\left\{\hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta)\right\}$ are b iid samples (with replacement) from $\left\{\hat{\pi}_{i}^{o} T_{i}^{o}(\theta): j=1, \ldots, N\right\}$. The multiplicative numbers b^{-1} and N are included so that the order of $Q_{M B B, n}^{*}(\theta)$ mimics that of $Q_{n}(\theta)$. Note that $E^{*} \hat{\pi}_{i}^{o *} T_{i}^{o *}(\hat{\theta})=N^{-1} \sum_{i=1}^{N} \hat{\pi}_{i}^{o} T_{i}^{o}(\hat{\theta})=0$.

The long-run autocovariance matrix estimator for EMB takes the form:

$$
\begin{equation*}
S_{M B B, n}^{*}(\theta)=\ell b^{-1} \sum_{i=1}^{b}\left(N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta)\right)\left(N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta)\right)^{\prime}=\ell b^{-1} N^{2} \sum_{i=1}^{b} \hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta) \hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta)^{\prime}, \tag{11}
\end{equation*}
$$

and the second-stage (optimal) weighting matrix is given by $S_{M B B, n}^{*}\left(\tilde{\theta}_{M B B}^{*}\right)^{-1}$, where $\tilde{\theta}_{M B B}^{*}$ is the first-stage EMB estimator. The overlapping block Wald tests are based on the long-run autocovariance matrix $S_{M B B, n}^{*}(\theta)$. The EMB version of the J-statistic, $I_{M B B, n}^{*}$, is defined analogously to I_{n} but using $\left(S_{M B B, n}^{*}\left(\tilde{\theta}_{M B B}^{*}\right)\right)^{-1 / 2}$ and $n^{-1 / 2} b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\theta)$.

3.2.2 ENB

The ENB uses b non-overlapping blocks rather than overlapping blocks. The i th non-overlapping block is defined as:

$$
T_{i}(\theta)=\ell^{-1} \sum_{t=1}^{\ell} g\left(X_{(i-1) \ell+t}, \theta\right), \quad i=1, \ldots, b,
$$

and the Lagrange multiplier and empirical probability weights are given by:

$$
\begin{equation*}
\gamma(\hat{\theta})=\underset{\lambda \in \Lambda_{n}(\hat{\theta})}{\operatorname{argmax}} \sum_{i=1}^{b} \log \left(1+\gamma^{\prime} T_{i}(\hat{\theta})\right), \quad \hat{\pi}_{i}=\frac{1}{b}\left(\frac{1}{1+\gamma(\hat{\theta})^{\prime} T_{i}(\hat{\theta})}\right) . \tag{12}
\end{equation*}
$$

The ENB estimator is defined as:

$$
\theta_{N B B}^{*}=\arg \min Q_{N B B, n}^{*}(\theta), \quad Q_{N B B, n}^{*}(\theta)=\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{*} T_{i}^{*}(\theta)\right)^{\prime} W_{N B B, n}^{*}\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{*} T_{i}^{*}(\theta)\right),
$$

where $W_{N B B, n}^{*}$ is a weighting matrix. The long-run autocovariance matrix estimator for ENB is:

$$
\begin{equation*}
S_{N B B, n}^{*}(\theta)=\ell b^{-1} \sum_{i=1}^{b}\left(b \hat{\pi}_{i}^{*} T_{i}^{*}(\theta)\right)\left(b \hat{\pi}_{i}^{*} T_{i}^{*}(\theta)\right)^{\prime}=\ell b \sum_{i=1}^{b} \hat{\pi}_{i}^{*} T_{i}^{*}(\theta) \hat{\pi}_{i}^{*} T_{i}^{*}(\theta)^{\prime}, \tag{13}
\end{equation*}
$$

and the optimal weighting matrix is given by $S_{N B B, n}^{*}\left(\tilde{\theta}_{N B B}^{*}\right)^{-1}$, where $\tilde{\theta}_{N B B}^{*}$ is the first-stage ENB estimator. The non-overlapping block Wald tests are based on the long-run autocovariance matrix, $S_{N B B, n}^{*}(\theta)$. The ENB version of the J-statistic, $\mathcal{I}_{N B B, n}^{*}$, is defined analogously to $\mathcal{I}_{M B B, n}^{*}$.

4 Consistency of the bootstrap-based inference

The following lemmas establish the consistency of the bootstrap-based inference. The proofs are based on the results in Gonçalves and White (2004) and hereafter referred to as GW04. As in GW04, let P denote the probability measure that governs the behavior of the original time-series and let P^{*} be the probability measure induced by bootstrapping. For a bootstrap statistic T_{n}^{*} we write $T_{n}^{*} \rightarrow 0$ prob- P^{*}, prob-P (or $T_{n}^{*} \rightarrow P^{*}, P$) if for any $\varepsilon>0$ and any $\delta>0, \lim _{n \rightarrow \infty} \mathrm{P}\left[\mathrm{P}^{*}\left[\left|T_{n}^{*}\right|>\varepsilon\right]>\delta\right]=0$. Also following GW04 we use the notation $x_{n} \rightarrow_{d^{*}} x$ prob-P when weak convergence under P^{*} occurs in a set with probability converging to one.

Lemma 1 Suppose Assumption A in Appendix hold. Then $\hat{\theta}-\theta_{0} \rightarrow_{P}$. If also $\ell \rightarrow \infty$ and $\ell=$ $o(n)$, then $\theta_{M B B}^{* *}-\hat{\theta} \rightarrow_{P^{*}, P} 0$. If also Assumption B in Appendix hold and $\ell=o\left(n^{1 / 2-1 / r}\right)$, then $\theta_{M B B}^{*}-\hat{\theta} \rightarrow P^{*}, P$.

Lemma 2 Suppose Assumption A in Appendix hold, $\ell \rightarrow \infty$, and $\ell=o(n)$. Then $\theta_{N B B}^{* *}-\hat{\theta} \rightarrow P_{P^{*}, P} 0$. If also $\ell=o\left(n^{(r-2) / 2(r-1)}\right)$, then $\theta_{N B B}^{*}-\hat{\theta} \rightarrow_{P^{*}, P} 0$. Note that ℓ must satisfy $\ell=o\left(n^{1 / 2}\right)$ because $(r-2) / 2(r-1)<1 / 2$.
If we compare conditions on ℓ, the condition with the NBB is slightly weaker because $(r-2) / 2(r-$ $1)=1 / 2-1 / 2(r-1)$ and $2(r-1)>r$.

Lemma 3 Let Assumptions A and B in Appendix hold. If $\ell \rightarrow \infty, \ell=o\left(n^{1 / 2-1 / r}\right)$, and $W_{n}^{* *}, W_{M B B, n}^{*} \rightarrow P^{*}, P$ W, then for any $\varepsilon>0, \operatorname{Pr}\left\{\sup _{x \in \mathbb{R}^{p}}\left|P^{*}\left[\sqrt{n}\left(\theta_{M B B}^{*}-\hat{\theta}\right) \leq x\right]-P\left[\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \leq x\right]\right|>\varepsilon\right\} \rightarrow 0$ and $\operatorname{Pr}\left\{\sup _{x \in \mathbb{R}^{p}}\left|P^{*}\left[\sqrt{n}\left(\theta_{M B B}^{* *}-\hat{\theta}\right) \leq x\right]-P\left[\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \leq x\right]\right|>\varepsilon\right\} \rightarrow 0$.

Lemma 4 Let Assumptions A and B in Appendix hold. If $\ell \rightarrow \infty, \ell=o\left(n^{(r-2) / 2(r-1)}\right)$, and $W_{n}^{* *}, W_{N B B, n}^{*} \rightarrow P^{*}, P$, then for any $\varepsilon>0, \operatorname{Pr}\left\{\sup _{x \in \mathbb{R}^{p}} \mid P^{*}\left[\sqrt{n}\left(\theta_{N B B}^{*}-\hat{\theta}\right) \leq x\right]-P\left[\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \leq\right.\right.$ $x] \mid>\varepsilon\} \rightarrow 0$ and $\operatorname{Pr}\left\{\sup _{x \in \mathbb{R}^{p}}\left|P^{*}\left[\sqrt{n}\left(\theta_{N B B}^{* *}-\hat{\theta}\right) \leq x\right]-P\left[\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \leq x\right]\right|>\varepsilon\right\} \rightarrow 0$.

Lemma 5 Let Assumptions A and B in Appendix hold. Assume $S_{n} \rightarrow_{P} \Sigma$. If $\ell \rightarrow \infty$ and $\ell=$ $o\left(n^{1 / 2-1 / r}\right)$, then the Wald statistic converges to χ_{q}^{2} in distribution $\mathcal{I}_{n} \rightarrow{ }_{d} \chi_{m-p}^{2}$, and $\mathcal{I}_{M B B, n}^{*}, \mathcal{I}_{N B B, n}^{*}$, $\mathcal{I}_{M B B, n}^{* *}, I_{N B B, n}^{* *} \rightarrow d^{*} \chi_{m-p}^{2}$ prob-P. Therefore, the bootstrap inference is consistent.

5 Monte Carlo Experiments

In this section, a comparison of the finite sample performance differences of the standard block bootstrapping approaches to the empirical likelihood block bootstrap approaches is undertaken in a number of Monte Carlo experiments. The Monte Carlo design includes both linear and nonlinear models. For each experiment we report actual and nominal size at the 1,5 , and 10 per cent level for the t-test and J-test. Parameter settings are deliberately chosen to illustrate the most challenging size problems. There are sample sizes: 100, 250, and 1000. Each experiment has 2000 replications and 499 bootstrap samples. This number of bootstrap samples does not lead to appreciable distortions in size for any of the experiments.

5.1 Case I: Linear models

5.1.1 Symmetric Errors

Consider the same linear process as Inoue and Shintani (2006):

$$
\begin{equation*}
y_{t}=\theta_{1}+\theta_{2} x_{t}+u_{t} \quad \text { for } t=1, \ldots T \tag{14}
\end{equation*}
$$

where $\left(\theta_{1}, \theta_{2}\right)=(0,0), u_{t}=\rho u_{t-1}+\varepsilon_{1 t}$ and $x_{t}=\rho x_{t-1}+\varepsilon_{2 t}$. The error structure, $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$ are uncorrelated iid normal processes with mean 0 and variance 1. The approach is instrumental variable estimation of θ_{1} and θ_{2} with instruments $z_{t}=\left(\imath x_{t} x_{t-1} x_{t-2}\right)$. There are two overidentifying restrictions. The null hypothesis being tested is: $H_{o}: \theta_{2}=0$. The statistics based on the GMM estimator are Studentized using a Bartlett kernel applied to pre-whitened series (see Andrews and Monahan (1992)). The bootstrap sample is not smoothed since the b blocks are iid. Both the nonoverlapping block bootstrap and the overlapping block bootstrap are considered in the experiment.

Results are reported in Table 1. The amount of dependence in the moment conditions is relatively high, $\rho=0.9$. The block length is set equal to the lag window in the HAC estimator, which is chosen using a data-dependent method (Newey and West (1994)). One immediate observation is that the asymptotic test-statistics severely over-reject the true null hypothesis. For example, with 100 observations the actual level for a $10 \% t$-test is 42.25%. The actual level of the J-test is closer to the nominal level, although there is still over-rejection. The block bootstrap, with block size averaging from 1.96 for 100 observations to 4.48 for 1,000 observations, reduces the amount of over-rejection of the t-test substantially. The greatest improvements for the t-test are with the standard bootstrap. For the J-test the empirical likelihood bootstrap produces actual size much closer to the nominal size than the alternatives. Interestingly, the overlapping bootstrap has worse size than
the non-overlapping block bootstrap for the t-test.

5.1.2 Heteroscedastic Errors

The subsequent DGP is the same as in the previous section with the addition of conditional heteroscedasticity, modeled as a $\operatorname{GARCH}(1,1)$. The DGP is:

$$
\begin{equation*}
y_{t}=\theta_{1}+\theta_{2} x_{t}+\sigma_{t} u_{t} \quad \text { for } t=1, \ldots T, \tag{15}
\end{equation*}
$$

where $\left(\theta_{1}, \theta_{2}\right)=(0,0), x_{t}=0.75 x_{t-1}+\varepsilon_{1 t}$, and $u_{t} \sim N\left(0, \sigma_{t}\right) . \sigma_{t}^{2}=0.0001+0.6 \sigma_{t-1}^{2}+0.3 \varepsilon_{2 t-1}^{2}$ and $\varepsilon \sim N(0, I)$. The unconditional variance is 1 . The instrument set is $z_{t}=\left[\begin{array}{ll}1 & x_{t} x_{t-1} \\ x_{t-2}\end{array}\right]$.

Results with 2,000 replications and 499 bootstrap samples are presented in Table 2. There are three sample sizes: 100,250 , and 1000 . The actual size of the asymptotic tests are close to the nominal size for sample size 250 and greater. The moving block bootstrap tests have good size and the empirical likelihood bootstrap performs best out of the bootstrap procedures. Using the standard block bootstrap actually leads to more severe under-rejection of the true null hypothesis than the asymptotic tests.

5.2 Case II: Nonlinear Models

Two experiments are consider. First the chi-squared experiment from Imbens, Spady, and Johnson (1998). Second, the asset pricing DGP outlined in Hall and Horowitz (1996) and used by Gregory, Lamarche, and Smith (2002). Imbens, Spady, and Johnson (1998) also consider this DGP. In addition this section looks at the empirical likelihood bootstrap in a framework with dependent data. It is the case of nonlinear models where the asymptotic t-test and J-test tend to severely over-reject.

5.2.1 Asymmetric Errors

First consider a model with Chi-squared moments. Imbens, Spady, and Johnson (1998) provide evidence that average moment tests like the J-test can substantially over-reject a true null hypothesis under a DGP with Chi-squared moments. The authors find that tests based on the exponential tilting parameter perform substantially better.

The moment vector is:

$$
g\left(X_{t}, \theta_{1}\right)=\left(X_{t}-\theta_{1} \quad X_{t}^{2}-\theta_{1}^{2}-2 \theta_{1}\right)^{\prime}
$$

The parameter θ_{1} is estimated using the two moments.
Results for 2,000 replications and 499 bootstrap samples are presented in Table 3. There is severe over-rejection of the true null hypothesis when using the asymptotic distribution. The bootstrap procedures correct for this over-rejection; the empirical likelihood bootstrap performs very well for the t-tests. For small sample sizes the standard and empirical likelihood bootstrap both outperform the asymptotic approximation but there is still is an over-rejection.

5.2.2 Asset Pricing Model: Environment

Finally consider an asset pricing model with the following moment conditions. ${ }^{4}$:

$$
E[\exp (\mu-\theta(x+z)+3 z)-1]=0, \quad E z[\exp (\mu-\theta(x+z)+3 z)-1]=0
$$

It is assumed that

$$
\log x_{t}=\rho \log x_{t-1}+\sqrt{\left(1-\rho^{2}\right)} \varepsilon_{x t}, \quad z_{t}=\rho z_{t-1}+\sqrt{\left(1-\rho^{2}\right)} \varepsilon_{z t}
$$

where $\varepsilon_{x t}$ and $\varepsilon_{z t}$ are independent normal with mean 0 and variance 0.16 . In the experiment $\rho=0.6$.
Results for 2,000 replications and 499 bootstrap samples are presented in Table 4. Again, the asymptotic tests severely over-reject the true null hypothesis. The bootstrap procedures produce tests with reasonable size, especially for the t-tests. As was the case in the model with asymmetric errors, the empirical likelihood bootstrap performs best.

6 Conclusion

This paper extends the ideas put forth by Brown and Newey (2002) to bootstrap test-statistics based on empirical likelihood. Where Brown and Newey (2002) consider bootstrapping in an iid context, this paper provides a proof of the first-order asymptotic validity of empirical likelihood block bootstrapping in the context of dependent data. Given the test-statistics considered, the size distortions of those tests based on the asymptotic distribution are severe, especially in the case of nonlinear moment conditions and substantial serial correlation. The empirical likelihood bootstrap largely corrects for these size distortions and produces promising results. This is especially true when the regression errors are non-spherical. Two possible avenues for future research include

[^3]combining subsampling methods with empirical likelihood probability weights and establishing higher order improvements for the ENB and EMB.

7 Implementing the Block Bootstrap

The procedure for implementing the GMM overlapping (MBB) and empirical likelihood (EMB) bootstrap procedures are outlined below. The procedure is similar for the non-overlapping bootstrap.

1. Given the random sample $\left(X_{1}, \ldots, X_{n}\right)$, calculate $\hat{\theta}$ using 2-stage GMM
2. For EMB calculate $\hat{\pi}_{i}^{o}$ using equation (10)

3a. For EMB sample with replacement from $\left\{\hat{\pi}_{j}^{o} T_{j}^{o}(\hat{\theta}): j=1, \ldots, N\right\}$
3b. For MBB uniformly sample with replacement to get $\left\{X^{*}\right\}_{t=1}^{n}=\left(\tilde{X}_{1}, \ldots, \tilde{X}_{b}\right)$
4a. For EMB calculate the J -statistic $\left(\mathcal{I}_{M B B, n}^{*}\right)$ and t -statistic $\left(T_{n r}^{*}\right)$
4b. For MBB calculate J-statistic $\left(\mathcal{I}_{M B B, n}^{* *}\right)$ and t -statistic $\left(T_{n r}^{* *}\right)$
5. Repeat steps 3-4 B times
6. Let \hat{q}_{α}^{π} be a $(1-\alpha)$ percentile of the distribution of $T_{n r}^{*}$ or $T_{n r}^{* *}$
7. Let \bar{q}_{α}^{π} be a $(1-\alpha)$ percentile of the distribution of $\mathcal{I}_{M B B, n}^{*}$ or $\mathcal{I}_{M B B, n}^{* *}$
8. The bootstrap confidence interval for $\theta_{0 r}$ is $\hat{\theta}_{n r} \pm \hat{q}_{\alpha}^{\pi} n^{-1 / 2} \hat{\sigma}_{n r}$
9. For the bootstrap J-test, the test rejects if $g_{n} \geq \bar{q}_{\alpha}^{\pi}$

8 Mathematical Appendix

Assumptions A and B are a simplified version of Assumptions A and B in Gonçalves and White (2004), tailored to our GMM estimation framework.

Assumption A

A. 1 Let (Ω, \mathcal{F}, P) be a complete probability space. The observed data are a realization of a stochastic process $\left\{X_{t}: \Omega \rightarrow \mathbb{R}^{k}, k \in \mathbb{N}\right\}$, with $X_{t}(\omega)=W_{t}\left(\ldots, V_{t-1}(\omega), V_{t}(\omega), V_{t+1}(\omega), \ldots\right), V_{t}$: $\Omega \rightarrow \mathbb{R}^{v}, v \in \mathbb{N}$, and $W_{t}: \prod_{\tau=-\infty}^{\infty} \mathbb{R}^{v} \rightarrow \mathbb{R}^{l}$ is such that X_{t} is measurable for all t.
A. 2 The functions $g: \mathbb{R}^{k} \times \Theta \rightarrow \mathbb{R}^{m}$ are such that $g(\cdot, \theta)$ is measurable for each $\theta \in \Theta$, a compact subset of $\mathbb{R}^{p}, p \in \mathbb{N}$, and $g\left(X_{t}, \cdot\right): \Theta \rightarrow \mathbb{R}^{m}$ is continuous on Θ a.s.-P, $t=1,2, \ldots$
A. 3 (i) θ_{0} is identifiably unique with respect to $E g\left(X_{t}, \theta\right)^{\prime} W E g\left(X_{t}, \theta\right)$ and (ii) θ_{0} is interior to Θ.
A. 4 (i) $\left\{g\left(X_{t}, \theta\right)\right\}$ is Lipschitz continuous on Θ, i.e. $\left|g\left(X_{t}, \theta\right)-g\left(X_{t}, \theta^{o}\right)\right| \leq L_{t}\left|\theta-\theta^{o}\right|$ a.s.-P, \forall $\theta, \theta^{\circ} \in \Theta$, where $\sup _{t} E\left(L_{t}\right)=O(1)$. (ii) $\left\{\nabla g\left(X_{t}, \theta\right)\right\}$ is Lipschitz continuous on Θ.
A. 5 For some $r>2$: (i) $\left\{g\left(X_{t}, \theta\right)\right\}$ is r-dominated on Θ uniformly in t, i.e. there exists $D_{t}: \mathbb{R}^{l t} \rightarrow \mathbb{R}$ such that $\left|g\left(X_{t}, \theta\right)\right| \leq D_{t}$ for all θ in Θ and D_{t} is measurable such that $\left\|D_{t}\right\|_{r} \leq \Delta<\infty$ for all t. (ii) $\left\{\nabla g\left(X_{t}, \theta\right)\right\}$ is r-dominated on Θ uniformly in t.
A. $6\left\{V_{t}\right\}$ is an α-mixing sequence of size $-2 r /(r-2)$, with $r>2$.
A. 7 The elements of (i) $\left\{g\left(X_{t}, \theta\right)\right\}$ are NED on $\left\{V_{t}\right\}$ of size -1 uniformly on (Θ, ρ), where ρ is any convenient norm on \mathbb{R}^{p}, and (ii) $\left\{\nabla g\left(X_{t}, \theta\right)\right\}$ are NED on $\left\{V_{t}\right\}$ of size - 1 uniformly on (Θ, ρ).
A. $8 \Sigma \equiv \lim _{n \rightarrow \infty} \operatorname{var}\left(n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}, \theta_{0}\right)\right)$ is positive definite, and $G \equiv \lim _{n \rightarrow \infty} E\left(n^{-1} \sum_{t=1}^{n} \nabla g\left(X_{t}, \theta_{0}\right)\right)$ is of full rank.

Assumption B

B. $1\left\{g\left(X_{t}, \theta\right)\right\}$ is $3 r$-dominated on Θ uniformly in $t, r>2$.
B. 2 For some small $\delta>0$ and some $r>2$, the elements of $\left\{g\left(X_{t}, \theta\right)\right\}$ are $L_{2+\delta}-$ NED on $\left\{V_{t}\right\}$ of size $-(2(r-1)) /(r-2)$ uniformly on $(\Theta, \rho) ;\left\{V_{t}\right\}$ is an α-mixing sequence of size $-((2+$ $\delta) r) /(r-2)$.

8.1 Proof of Lemma 1

The proof closely follows the proof of Theorem 2.1 of GW04, with two differences: (i) the objective function is a GMM objective function, and (ii) in the case of EL-MBB, the bootstrapped objective function contains the probability weight $\hat{\pi}_{i}^{o} . \hat{\theta}-\theta_{0} \rightarrow_{P} 0$ follows from applying Lemma A. 2 of GW04 to the GMM objective function, because conditions (a1)-(a3) in Lemma A. 2 of GW04 are satisfied by Assumption A. The consistency of $\theta_{M B B}^{* *}$ is proved by applying Lemma A. 2 of GW04. Their conditions (b1)-(b2) are satisfied by Assumptions A.2. Define $\tilde{Q}_{n}(\theta)=$ $\left(n^{-1} \sum_{t=1}^{n} g\left(X_{t}^{*}, \theta\right)\right)^{\prime} W_{n}^{*}\left(n^{-1} \sum_{t=1}^{n} g\left(X_{t}^{*}, \theta\right)\right)$, then their condition (b3) holds because $\sup _{\theta} \mid Q_{M B B, n}^{* *}(\theta)-$ $\tilde{Q}_{n}(\theta) \mid \rightarrow P^{*}, P$ from a standard argument and $\sup _{\theta}\left|\tilde{Q}_{n}(\theta)-Q_{n}(\theta)\right| \rightarrow P_{P^{*}, P} 0$ by Lemmas A. 4 and A. 5 of GW04.

Deriving the asymptotics of $\theta_{M B B}^{*}$ requires the bound of the difference between $\hat{\pi}_{i}$ and $1 / N$. First we show $\gamma^{\rho}(\hat{\boldsymbol{\theta}})=O_{P}\left(\ell n^{-1 / 2}\right)$. In view of the argument in pp. 100-101 of Owen (1990) (see also Kitamura (1997)), $\gamma^{\rho}(\hat{\theta})=O_{P}\left(\ell n^{-1 / 2}\right)$ holds if (a) $\ell N^{-1} \sum_{i=1}^{N} T_{i}^{o}(\hat{\theta}) T_{i}^{o}(\hat{\theta})^{\prime} \rightarrow_{P} \Sigma$, (b) $\ell N^{-1} \sum_{i=1}^{N} T_{i}^{o}(\hat{\theta})=O_{P}\left(\ell n^{-1 / 2}\right)$, and (c) $\max _{1 \leq i \leq N}\left|T_{i}^{o}(\hat{\theta})\right|=o_{P}\left(n^{1 / 2} \ell^{-1}\right)$. For (a), a mean value expansion gives, with $\bar{\theta} \in\left[\theta_{0}, \hat{\theta}\right]$,

$$
\begin{aligned}
& \left|\ell N^{-1} \sum_{i=1}^{N} T_{i}^{o}(\hat{\theta}) T_{i}^{o}(\hat{\boldsymbol{\theta}})^{\prime}-\ell N^{-1} \sum_{i=1}^{N} T_{i}^{o}\left(\theta_{0}\right) T_{i}^{o}\left(\theta_{0}\right)^{\prime}\right| \\
\leq & \left|\hat{\theta}-\theta_{0}\right| 2 \ell N^{-1} \sum_{i=1}^{N}\left|\nabla T_{i}^{o}(\bar{\theta})\right|\left|T_{i}^{o}(\bar{\theta})\right|=O_{P}\left(n^{-1 / 2} \ell\right)=o_{P}(1),
\end{aligned}
$$

where the second equality follows because $\left|T_{i}^{o}(\theta)\right|$ and $\left|\nabla T_{i}^{o}(\theta)\right|$ are r-dominated on Θ with $r>2$. Define $\bar{G}_{n}^{*}=n^{-1} \sum_{t=1}^{n} g\left(X_{t}^{*}, \theta_{0}\right)$, then we have (cf. Lahiri (2003), p. 48) $\ell N^{-1} \sum_{i=1}^{N} T_{i}^{o}\left(\theta_{0}\right) T_{i}^{o}\left(\theta_{0}\right)^{\prime}=$ $\operatorname{var}^{*}\left(\sqrt{n} \bar{G}_{n}^{*}\right)+\ell \bar{T}_{n} \bar{T}_{n}^{\prime}$, where $\bar{T}_{n}=N^{-1} \sum_{i=1}^{N} T_{i}^{o}\left(\theta_{0}\right) \cdot \operatorname{var}^{*}\left(\sqrt{n} \bar{G}_{n}^{*}\right)-\Sigma \rightarrow_{P} 0$ from Corollary 2.1 of Gonçalves and White (2002) (hereafter GW02). \bar{T}_{n} is equal to $\bar{X}_{\gamma, n}$ defined in p. 1371 of GW02 if we replace their X_{t} with $g\left(X_{t}, \theta_{0}\right)$. GW02 p. 1381 shows $\bar{X}_{\gamma, n}=o_{P}\left(\ell^{-1}\right)$, and hence $\ell \bar{T}_{n}^{2}=o_{P}(1)$. Therefore, $\ell N^{-1} \sum_{i=1}^{N} T_{i}^{o}\left(\theta_{0}\right) T_{i}^{o}\left(\theta_{0}\right)^{\prime} \rightarrow_{P} \Sigma$, and (a) follows. (b) follows from expanding $T_{i}^{o}(\hat{\theta})$ around θ_{0} and using $N^{-1} \sum_{i=1}^{N} T_{i}^{o}\left(\theta_{0}\right)=n^{-1} \sum_{t=1}^{n} g\left(X_{t}, \theta_{0}\right)+O_{p}\left(n^{-1} \ell\right)$ (cf. Lemma A. 1 of Fitzenberger (1997)), and applying the central limit theorem. (c) holds because $\max _{1 \leq i \leq N}\left|T_{i}^{o}(\hat{\theta})\right|=O_{a . s .}\left(N^{1 / r}\right)$ from Lemma 3.2 of Künsch (1989) and $\ell=o\left(n^{1 / 2-1 / r}\right)$. Therefore, we have

$$
\begin{equation*}
\gamma^{\rho}(\hat{\boldsymbol{\theta}})=O_{P}\left(\ln ^{-1 / 2}\right), \quad \max _{1 \leq i \leq N}\left|\gamma^{\prime}(\hat{\boldsymbol{\theta}})^{\prime} T_{i}^{o}(\hat{\boldsymbol{\theta}})\right|=o_{P}(1) . \tag{16}
\end{equation*}
$$

Since $(1+\alpha)^{-1}=1-(1+\bar{\alpha})^{-2} \alpha, \bar{\alpha} \in[0, \alpha]$, it follows that

$$
\begin{equation*}
\hat{\pi}_{i}^{o}=N^{-1}\left(1+\delta_{n i}\right), \quad \max _{1 \leq i \leq N}\left|\delta_{n i}\right|=o_{P}(1) \tag{17}
\end{equation*}
$$

Consequently, $\sup _{\theta}\left|Q_{M B B, n}^{*}(\theta)-\tilde{Q}_{n}(\theta)\right| \rightarrow_{P^{*}, P} 0$, and the stated result follows since the conditions (b1)-(b2) of Lemma A. 2 of GW04 are satisfied by Assumptions A.2.

8.2 Proof of Lemma 2

In view of the proof of Lemma 1, the consistency of $\theta_{N B B}^{* *}$ holds because condition (b3) of Lemma A. 2 of GW04 holds because $\sup _{\theta}\left|\tilde{Q}_{n}(\theta)-Q_{n}(\theta)\right| \rightarrow_{P^{*}, P} 0$ by Lemmas 6 and 7.

Similarly, $\theta_{N B B}^{*}$ is consistent if

$$
\begin{equation*}
\gamma(\hat{\theta})=O_{P}\left(\ell n^{-1 / 2}\right), \quad \max _{1 \leq i \leq b}\left|\gamma(\hat{\theta})^{\prime} T_{i}(\hat{\theta})\right|=o_{P}(1) \tag{18}
\end{equation*}
$$

Equation (18) holds if (a) $\ell b^{-1} \sum_{i=1}^{b} T_{i}(\hat{\theta}) T_{i}(\hat{\theta})^{\prime} \rightarrow_{P} \Sigma$, (b) $\ell b^{-1} \sum_{i=1}^{b} T_{i}(\hat{\theta})=O_{P}\left(\ell n^{-1 / 2}\right)$, and (c) $\max _{1 \leq i \leq b}\left|T_{i}(\hat{\theta})\right|=o_{P}\left(n^{1 / 2} \ell^{-1}\right)$. (a) follows from expanding $T_{i}(\hat{\theta})$ around θ_{0} and using Corollary 1. (b) follows from expanding $T_{i}(\hat{\theta})$ around θ_{0} and applying the central limit theorem. (c) follows because $\max _{1 \leq i \leq b}\left|T_{i}(\hat{\theta})\right|=O_{\text {a.s. }}\left(b^{1 / r}\right)$ and $\ell=o\left(n^{(r-2) / 2(r-1)}\right)$.

8.3 Proof of Lemma 3

The proof follows the argument in the proof of Theorem 2.2 of GW04. Define $H=\left(G^{\prime} W G\right)^{-1} G^{\prime} W \Sigma W G\left(G^{\prime} W G\right)^{-1}$, then the stated result follows from Polya's theorem if we show $\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \rightarrow{ }_{d} N(0, H), \sqrt{n}\left(\theta_{M B B}^{*}-\hat{\theta}\right) \rightarrow_{d^{*}} N(0, H)$ prob-P, and $\sqrt{n}\left(\theta_{M B B}^{* *}-\hat{\theta}\right) \rightarrow_{d^{*}} N(0, H)$ prob-P. The limiting distribution of $\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)$ follows from a standard argument. First, we derive the limiting distribution of $\theta_{M B B}^{*}$. We need to strengthen the bound on $\hat{\pi}_{i}^{o}-1 / N$. Since $(1+\alpha)^{-1}=$ $1-\alpha+2(1+\bar{\alpha})^{-3} \alpha^{2}, \bar{\alpha} \in[0, \alpha]$, it follows that

$$
\begin{align*}
\hat{\pi}_{i}^{o}= & N^{-1}\left(1-\gamma^{o}(\hat{\theta})^{\prime} T_{i}^{o}(\hat{\theta})+A_{n i}\left[\gamma^{o}(\hat{\theta})^{\prime} T_{i}^{o}(\hat{\theta})\right]^{2}\right), \tag{19}\\
& \max _{1 \leq i \leq N}\left|A_{n i}\right| \leq 1 \text { with prob-P approaching one. } \tag{20}
\end{align*}
$$

The first order condition gives:

$$
0=\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{o *} \nabla T_{i}^{o *}\left(\theta_{M B B}^{*}\right)\right)^{\prime} W_{M B B, n}^{*}\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{o *} T_{i}^{o *}\left(\theta_{M B B}^{*}\right)\right)
$$

Expanding $\sum_{i=1}^{b} \hat{\pi}_{i}^{o *} T_{i}^{o *}\left(\theta_{M B B}^{*}\right)$ around $\hat{\theta}$ gives, with $\bar{\theta} \in\left[\hat{\theta}, \theta_{M B B}^{*}\right]$,

$$
\begin{aligned}
0= & \left(\sum_{i=1}^{b} \hat{\pi}_{i}^{o *} \nabla T_{i}^{o *}\left(\theta_{M B B}^{*}\right)\right)^{\prime} W_{M B B, n}^{*}\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{o *} T_{i}^{o *}(\hat{\theta})\right) \\
& +\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{o *} \nabla T_{i}^{o *}\left(\theta_{M B B}^{*}\right)\right)^{\prime} W_{M B B, n}^{*}\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{o *} \nabla T_{i}^{o *}(\bar{\theta})\right)\left(\theta_{M B B}^{*}-\hat{\theta}\right) .
\end{aligned}
$$

Note that

$$
b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} \nabla T_{i}^{o *}\left(\theta_{M B B}^{*}\right)-G=b^{-1} \sum_{i=1}^{b}\left(N \hat{\pi}_{i}^{o *}-1\right) \nabla T_{i}^{o *}\left(\theta_{M B B}^{*}\right)+b^{-1} \sum_{i=1}^{b} \nabla T_{i}^{o *}\left(\theta_{M B B}^{*}\right)-G .
$$

In view of (17) and $E\left(E^{*} b^{-1} \sum_{i=1}^{b} \sup _{\theta}\left|\nabla T_{i}^{o *}(\theta)\right|\right)=O(1)$, the first term on the right is $o_{P^{*}, P}(1)$. Define $G_{n}(\theta)=n^{-1} \sum_{t=1}^{n} \nabla g\left(X_{t}, \theta\right)$. The second term on the right is $o_{P^{*}, P}(1)$ because $b^{-1} \sum_{i=1}^{b} \nabla T_{i}^{o *}(\theta)-$ $G_{n}(\theta)$ converges to 0 uniformly in prob-P*, prob-P from Lemmas A. 4 and A. 5 of GW04, $G_{n}(\theta)$ converges to $G(\theta)=\lim _{n \rightarrow \infty} n^{-1} \sum_{t=1}^{n} E \nabla g\left(X_{t}, \theta\right)$ uniformly, $G(\theta)$ is continuous, and $\theta_{M B B}^{*}$ is consistent. Therefore, $b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} \nabla T_{i}^{o *}\left(\theta_{M B B}^{*}\right)$ converges to G in prob-P ${ }^{*}$, prob-P. $b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} \nabla T_{i}^{o *}(\bar{\theta})$ converges to G from the same argument.

We proceed to derive the limiting distribution of $\sqrt{n} b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\hat{\theta})$. Since $\sum_{i=1}^{N} \hat{\pi}_{i}^{o} T_{i}^{o}(\hat{\boldsymbol{\theta}})=$ 0 by the construction of $\hat{\pi}_{i}^{o}$, we can write $\sqrt{n} b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\hat{\theta})=I_{n}+I I_{n}$, where

$$
\begin{aligned}
I_{n} & =\sqrt{n} b^{-1} \sum_{i=1}^{b} T_{i}^{o *}(\hat{\theta})-\sqrt{n} N^{-1} \sum_{i=1}^{N} T_{i}^{o}(\hat{\theta}) \\
I I_{n} & =\sqrt{n} b^{-1} \sum_{i=1}^{b}\left(N \hat{\pi}_{i}^{o *}-1\right) T_{i}^{o *}(\hat{\theta})-\sqrt{n} N^{-1} \sum_{i=1}^{N}\left(N \hat{\pi}_{i}^{o}-1\right) T_{i}^{o}(\hat{\theta}) .
\end{aligned}
$$

Since $N^{-1} \sum_{i=1}^{N} T_{i}^{o}(\hat{\theta})=n^{-1} \sum_{t=1}^{n} g\left(X_{t}, \hat{\theta}\right)+O_{p}\left(n^{-1} \ell\right)$ from Lemma A. 1 of Fitzenberger (1997),

$$
I_{n}=n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}^{*}, \hat{\theta}\right)-n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}, \hat{\theta}\right)+O_{P}\left(n^{-1 / 2} \ell\right) \rightarrow_{d^{*}} N(0, \Sigma) \quad \text { prob-P, }
$$

where the convergence of $n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}^{*}, \hat{\theta}\right)-n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}, \hat{\theta}\right)$ follows from the proof of Theorem 2.2 of GW04.

The limiting distribution of $\theta_{M B B}^{*}$ is obtained if we show $I I_{n}=o_{P^{*}, P}(1)$. It follows from (19) that

$$
\begin{equation*}
I I_{n}=I I_{n}^{1}+\sqrt{n} b^{-1} \sum_{i=1}^{b} A_{n i}\left[\gamma^{\rho}(\hat{\theta})^{\prime} T_{i}^{o *}(\hat{\theta})\right]^{2} T_{i}^{o *}(\hat{\theta})-\sqrt{n} N^{-1} \sum_{i=1}^{N} A_{n i}\left[\gamma^{\rho}(\hat{\theta})^{\prime} T_{i}^{o}(\hat{\theta})\right]^{2} T_{i}^{o}(\hat{\theta}), \tag{21}
\end{equation*}
$$

where

$$
I I_{n}^{1}=-\sqrt{n} b^{-1} \sum_{i=1}^{b} T_{i}^{o *}(\hat{\boldsymbol{\theta}}) T_{i}^{o *}(\hat{\boldsymbol{\theta}})^{\prime} \gamma^{\rho}(\hat{\boldsymbol{\theta}})+\sqrt{n} N^{-1} \sum_{i=1}^{N} T_{i}^{o}(\hat{\boldsymbol{\theta}}) T_{i}^{o}(\hat{\boldsymbol{\theta}})^{\prime} \gamma^{\rho}(\hat{\boldsymbol{\theta}}) .
$$

Expanding $T_{i}^{o *}(\hat{\theta})$ and $T_{i}^{o}(\hat{\theta})$ around θ_{0} and using (16), we obtain

$$
\begin{aligned}
I I_{n}^{1} & =-\sqrt{n} b^{-1} \sum_{i=1}^{b} T_{i}^{o *}\left(\theta_{0}\right) T_{i}^{o *}\left(\theta_{0}\right)^{\prime} \gamma^{\rho}(\hat{\boldsymbol{\theta}})+\sqrt{n} N^{-1} \sum_{i=1}^{N} T_{i}^{o}\left(\theta_{0}\right) T_{i}^{o}\left(\theta_{0}\right)^{\prime} \gamma^{\rho}(\hat{\boldsymbol{\theta}})+o_{P}(1) \\
& =-b^{-1} \sum_{i=1}^{b}\left\{\ell T_{i}^{o *}\left(\theta_{0}\right) T_{i}^{o *}\left(\theta_{0}\right)^{\prime}-E^{*}\left[\ell T_{i}^{o *}\left(\theta_{0}\right) T_{i}^{o *}\left(\theta_{0}\right)^{\prime}\right]\right\} \sqrt{n} \ell^{-1} \gamma^{\rho}(\hat{\boldsymbol{\theta}})+o_{P}(1) .
\end{aligned}
$$

We assume $T_{i}^{o *}\left(\theta_{0}\right)$ is a scaler and derive the bound on $I I_{n}^{1}$, because the bound for the vector-valued case follows from the elementwise bounds and the Cauchy-Schwartz inequality. Let $p=1+\delta / 2$ with $0<\delta \leq 2$. Then, proceeding in a similar manner as the proof of Lemma B. 1 of GW04 (p.217), we obtain

$$
\begin{align*}
& E^{*}\left|b^{-1} \sum_{i=1}^{b}\left[\left(\ell^{1 / 2} T_{i}^{o *}\left(\theta_{0}\right)\right)^{2}-E^{*}\left(\ell^{1 / 2} T_{i}^{o *}\left(\theta_{0}\right)\right)^{2}\right]\right|^{p} \tag{22}\\
\leq & b^{-p} C E^{*}\left|b^{-1} \sum_{i=1}^{b}\left[\left(\ell^{1 / 2} T_{i}^{o *}\left(\theta_{0}\right)\right)^{2}-E^{*}\left(\ell^{1 / 2} T_{i}^{o *}\left(\theta_{0}\right)\right)^{2}\right]^{2}\right|^{p / 2} \\
\leq & b^{-(p-1)} C E^{*}\left|\left(\ell^{1 / 2} T_{1}^{o *}\left(\theta_{0}\right)\right)^{2}-E^{*}\left(\ell^{1 / 2} T_{1}^{o *}\left(\theta_{0}\right)\right)^{2}\right|^{p} \\
\leq & b^{-(p-1)} 2^{p} C E^{*}\left|\ell^{1 / 2} T_{1}^{o *}\left(\theta_{0}\right)\right|^{2 p} .
\end{align*}
$$

From Lemmas A. 1 and A. 2 of GW02, we have, for $i=1, \ldots, N$,

$$
\begin{equation*}
E\left|\ell T_{i}^{o}\left(\theta_{0}\right)\right|^{2 p} \leq E\left(\max _{1 \leq j \leq \ell}\left|\sum_{t=i}^{i+j-1} g\left(X_{t}, \theta_{0}\right)\right|\right)^{2 p} \leq C\left(\sum_{t=i}^{i+\ell-1} c_{t}^{2}\right)^{2 p / 2}=O\left(\ell^{p}\right) \tag{23}
\end{equation*}
$$

where c_{t} are (uniformly bounded) mixingale constants of $\left\{g\left(X_{t}, \theta_{0}\right)\right\}$. Therefore, $E\left(E^{*}\left|\ell^{1 / 2} T_{1}^{o *}\left(\theta_{0}\right)\right|^{2 p}\right)=$ $N^{-1} \sum_{i=1}^{N} \ell^{-p} E\left|\ell T_{i}^{o}\left(\theta_{0}\right)\right|^{2 p}=O(1)$, and (22)$=O_{P}\left(b^{-(p-1)}\right)$ and $I I_{n}^{1}=o_{P^{*}, P}(1)$ follow.

For the other terms in (21), note that the Lyapunov inequality implies $E\left|T_{i}^{o}\left(\theta_{0}\right)\right|^{2} \leq\left(E\left|T_{i}^{o}\left(\theta_{0}\right)\right|^{2 p}\right)^{1 / p}=$ $O\left(\ell^{-1}\right)$. Therefore, the third term on the right of (21) is bounded by

$$
\sqrt{n} N^{-1}\left(\max _{1 \leq i \leq N}\left|A_{n i}\right|\right)\left(\max _{1 \leq i \leq N}\left|\gamma^{o}(\hat{\theta})^{\prime} T_{i}^{o}(\hat{\theta})\right|\right)\left|\gamma^{o}(\hat{\theta})\right| \sum_{i=1}^{N}\left|T_{i}^{o}(\hat{\theta})\right|^{2}=o_{P}(1)
$$

and the second term on the right of (21) $o_{P^{*}, P}(1)$ by a similar argument. Therefore, $I I_{n}=o_{P^{*}, P}(1)$
and $\sqrt{n}\left(\theta_{M B B}^{*}-\hat{\theta}\right) \rightarrow_{d^{*}} N(0, H)$ prob-P follows.
For the standard bootstrap estimator $\theta_{M B B}^{* *}$, expanding the first order condition gives
$0=\left(G+o_{P^{*}, P}(1)\right)^{\prime} W_{n}^{* *} n^{-1} \sum_{t=1}^{n}\left(g\left(X_{t}^{*}, \hat{\theta}\right)-g\left(X_{t}, \hat{\theta}\right)\right)+\left(G+o_{P^{*}, P}(1)\right)^{\prime} W_{n}^{* *}\left(G+o_{P^{*}, P}(1)\right)\left(\theta_{M B B}^{* *}-\hat{\theta}\right)$,
and the limiting distribution of $\theta_{M B B}^{* *}$ follows immediately.

8.4 Proof of Lemma 4

Expanding the first order condition gives, with $\bar{\theta} \in\left[\hat{\theta}, \theta_{N B B}^{*}\right]$,

$$
\begin{aligned}
0= & \left(\sum_{i=1}^{b} \hat{\pi}_{i}^{*} \nabla T_{i}^{*}\left(\theta_{N B B}^{*}\right)\right)^{\prime} W_{N B B, n}^{*}\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{*} T_{i}^{*}(\hat{\theta})\right) \\
& +\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{*} \nabla T_{i}^{*}\left(\theta_{N B B}^{*}\right)\right)^{\prime} W_{N B B, n}^{*}\left(\sum_{i=1}^{b} \hat{\pi}_{i}^{*} \nabla T_{i}^{*}(\bar{\theta})\right)\left(\theta_{N B B}^{*}-\hat{\theta}\right) .
\end{aligned}
$$

In view of (18), the weights $\hat{\pi}_{i}$ satisfy the bound (17), (19), and (20) with $\left(b, \gamma(\hat{\theta}), T_{i}(\hat{\theta})\right)$ replacing $\left(N, \gamma^{o}(\hat{\theta}), T_{i}^{o}(\hat{\theta})\right)$. Therefore, $\sum_{i=1}^{b} \hat{\pi}_{i}^{*} \nabla T_{i}^{*}\left(\theta_{N B B}^{*}\right), \sum_{i=1}^{b} \hat{\pi}_{i}^{*} \nabla T_{i}^{*}(\bar{\theta}) \rightarrow_{P^{*}, P} G$ follows from repeating the argument of the proof of Lemma 3 using Lemmas 6 and 7 in place of Lemmas A. 4 and A. 5 of GW04.

We proceed to derive the limiting distribution of $\sqrt{n} \sum_{i=1}^{b} \hat{\pi}_{i}^{*} T_{i}^{*}(\hat{\theta})$. Since $\sum_{i=1}^{b} \hat{\pi}_{i} T_{i}(\hat{\theta})=0$ by the construction of $\hat{\pi}_{i}$, we can rewrite $\sqrt{n} \sum_{i=1}^{b} \hat{\pi}_{i}^{*} T_{i}^{*}(\hat{\theta})=\sqrt{n} \sum_{i=1}^{b}\left[\hat{\pi}_{i}^{*} T_{i}^{*}(\hat{\theta})-\hat{\pi}_{i} T_{i}(\hat{\theta})\right]$. The argument leading to (23) can be used to show $E\left|\ell T_{i}\left(\theta_{0}\right)\right|^{2 p}=O\left(\ell^{p}\right)$ for $i=1, \ldots, b$. Then, using this bound and the bounds of $\hat{\pi}_{i}-1 / b$ and proceeding as in the proof of Lemma 3 , we obtain

$$
\sqrt{n} \sum_{i=1}^{b} \hat{\pi}_{i}^{*} T_{i}^{*}(\hat{\theta})=\sqrt{n} b^{-1} \sum_{i=1}^{b}\left[T_{i}^{*}(\hat{\theta})-T_{i}(\hat{\theta})\right]+o_{P^{*}, P}(1) .
$$

Rewrite $\sqrt{n} b^{-1} \sum_{i=1}^{b}\left[T_{i}^{*}(\hat{\theta})-T_{i}(\hat{\theta})\right]=\zeta_{1 n}+\zeta_{2 n}+\zeta_{3 n}$, where $\zeta_{1 n}=\sqrt{n} b^{-1} \sum_{i=1}^{b}\left[T_{i}^{*}\left(\theta_{0}\right)-T_{i}\left(\theta_{0}\right)\right]=$ $\sqrt{n} b^{-1} \sum_{i=1}^{b}\left[T_{i}^{*}\left(\theta_{0}\right)-E^{*} T_{i}\left(\theta_{0}\right)\right], \zeta_{2 n}=\sqrt{n} b^{-1} \sum_{i=1}^{b}\left[T_{i}^{*}(\hat{\theta})-T_{i}^{*}\left(\theta_{0}\right)\right]$, and $\zeta_{3 n}=\sqrt{n} b^{-1} \sum_{i=1}^{b}\left[T_{i}\left(\theta_{0}\right)-\right.$ $\left.T_{i}(\hat{\theta})\right]$. Observe that $\zeta_{2 n}+\zeta_{3 n}=b^{-1} \sum_{i=1}^{b}\left[\nabla T_{i}^{*}\left(\bar{\theta}^{*}\right)-\nabla T_{i}(\bar{\theta})\right] \sqrt{n}\left(\hat{\theta}-\theta_{0}\right)$, where $\bar{\theta}^{*}, \bar{\theta} \in\left[\theta_{0}, \hat{\theta}\right]$. Then $\zeta_{2 n}+\zeta_{3 n}=o_{P^{*}, P}(1)$ because both $\bar{\theta}^{*}$ and $\bar{\theta}$ converge to $\theta_{0}, b^{-1} \sum_{i=1}^{b}\left[\nabla T_{i}^{*}(\theta)-\nabla T_{i}(\theta)\right]$ and $b^{-1} \sum_{i=1}^{b}\left[\nabla T_{i}(\theta)-\right.$ $G(\theta)$] converges to 0 uniformly, and $G(\theta)$ is continuous.

In view of the proof of Theorem 2.2 of GW02, $\zeta_{1 n} \rightarrow_{d^{*}} N(0, \Sigma)$ prob-P follows if, for some
small $\delta>0$,
(a) $\operatorname{var}^{*}\left(\zeta_{1 n}\right)-\Sigma \rightarrow_{P} 0, \quad \Sigma$ is positive definite,
(b) $b E^{*}\left|\tilde{Z}_{n 1}\right|^{2+\delta} \rightarrow_{P} 0$,
where $\tilde{Z}_{n i}=\Sigma^{-1 / 2} n^{-1 / 2} \ell\left[T_{i}^{*}\left(\theta_{0}\right)-E^{*} T_{i}^{*}\left(\theta_{0}\right)\right]$. Lemma 8 implies (a), because $\zeta_{1 n}=n^{-1 / 2} \sum_{t=1}^{n}\left[g\left(X_{t}^{*}, \theta_{0}\right)-\right.$ $\left.E^{*} g\left(X_{t}^{*}, \theta_{0}\right)\right]$. For (b), first observe that $E\left(E^{*}\left|\ell^{1 / 2} T_{1}^{*}\left(\theta_{0}\right)\right|^{2 p}\right)=O(1)$ because $E\left|\ell T_{i}\left(\theta_{0}\right)\right|^{2 p}=O\left(\ell^{p}\right)$. Therefore, by setting $p=1+\delta / 2$,

$$
E\left(b E^{*}\left|\tilde{Z}_{n i}\right|^{2+\delta}\right) \leq C E\left(b E^{*}\left|n^{-1 / 2} \ell T_{i}^{*}\left(\theta_{0}\right)\right|^{2+\delta}\right)=O\left(b n^{-1-\delta / 2} \ell^{1+\delta / 2}\right)=O\left(b^{-\delta / 2}\right)=o(1),
$$

and $\zeta_{1 n} \rightarrow d_{d^{*}} N(0, \Sigma)$ prob-P and the limiting distribution of $\theta_{N B B}^{*}$ follows.
For the standard bootstrap estimator $\theta_{N B B}^{* *}$, expanding the first order condition gives

$$
0=\left(G+o_{P^{*}, P}(1)\right)^{\prime} W_{n}^{* *} \sum_{i=1}^{b} b^{-1}\left(T_{i}^{*}(\hat{\theta})-T_{i}(\hat{\theta})\right)+\left(G+o_{P^{*}, P}(1)\right)^{\prime} W_{n}^{* *}\left(G+o_{P^{*}, P}(1)\right)\left(\theta_{N B B}^{* *}-\hat{\theta}\right),
$$

and the limiting distribution of $\sqrt{n}\left(\theta_{N B B}^{* *}-\hat{\theta}\right)$ follows immediately.

8.5 Proof of Lemma 5

The validity of the bootstrap Wald test with the EL bootstrap is proven if we show $S_{M B B, n}^{*}\left(\theta^{*}\right) \rightarrow_{P^{*}, P}$ Σ and $S_{N B B, n}^{*}\left(\theta^{*}\right) \rightarrow P_{P^{*}, P} \Sigma$ for any root- n consistent θ^{*}. First,

$$
\begin{aligned}
S_{M B B, n}^{*}\left(\theta^{*}\right) & =\ell b^{-1} \sum_{i=1}^{b}\left(N \hat{\pi}_{i}^{o *} T_{i}^{o *}\left(\theta_{0}\right)\right)\left(N \hat{\pi}_{i}^{o *} T_{i}^{o *}\left(\theta_{0}\right)\right)^{\prime}+o_{P^{*}, P}(1) \\
& =\ell b^{-1} \sum_{i=1}^{b} T_{i}^{o *}\left(\theta_{0}\right) T_{i}^{o *}\left(\theta_{0}\right)^{\prime}+o_{P^{*}, P}(1)=\Sigma+o_{P^{*}, P}(1),
\end{aligned}
$$

where the first equality follows from expanding $T_{i}^{o *}\left(\theta^{*}\right)$ around θ_{0}, the second equality follows from (17) and $E\left|T_{i}^{o}\left(\theta_{0}\right)\right|^{2}=O\left(\ell^{-1}\right)$, and the third equality follows from the proof of Theorem 3.1 of GW04. Similarly, we obtain

$$
\begin{aligned}
S_{N B B, n}^{*}(\theta) & =\ell b^{-1} \sum_{i=1}^{b} T_{i}^{*}\left(\theta_{0}\right) T_{i}^{*}\left(\theta_{0}\right)^{\prime}+o_{P^{*}, P}(1) \\
& =\ell b^{-1} \sum_{i=1}^{b} T_{i}\left(\theta_{0}\right) T_{i}\left(\theta_{0}\right)^{\prime}+o_{P^{*}, P}(1)=\Sigma+o_{P^{*}, P}(1),
\end{aligned}
$$

where the second equality follows because the argument following (22) is valid even if we replace $T_{i}^{o *}\left(\theta_{0}\right)$ in (22) with $T_{i}^{*}\left(\theta_{0}\right)$, and the third equality follows Corollary 1. The proof for the standard MBB and NBB bootstrap is very similar and omitted.
$I_{n} \rightarrow{ }_{d} \chi_{m-p}^{2}$ if $W_{n} \rightarrow_{P} \Sigma^{-1}$ and $n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}, \theta_{0}\right) \rightarrow_{d} N(0, \Sigma)$, which follows from Assumptions A and B and a standard argument. $\mathcal{I}_{M B B, n}^{*} \rightarrow d_{d^{*}} \chi_{m-p}^{2}$ prob-P because $S_{M B B, n}^{*}\left(\tilde{\theta}_{M B B}^{*}\right) \rightarrow_{P^{*}, P} \Sigma$ and $\sqrt{n} b^{-1} \sum_{i=1}^{b} N \hat{\pi}_{i}^{o *} T_{i}^{o *}(\hat{\theta}) \rightarrow_{d^{*}} N(0, \Sigma)$ prob-P. $\mathcal{I}_{M B B, n}^{* *} \rightarrow_{d^{*}} \chi_{m-p}^{2}$ prob-P follows because $S_{n}^{* *}\left(\theta_{M B B}^{* *}\right) \rightarrow_{P^{*}, P}$ Σ and we have shown in the proof of Lemma 3 that $n^{-1 / 2} \sum_{t=1}^{n} g^{*}\left(X_{t}, \hat{\theta}\right)=n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}^{*}, \hat{\theta}\right)-$ $n^{-1 / 2} \sum_{t=1}^{n} g\left(X_{t}, \hat{\theta}\right) \rightarrow_{d^{*}} N(0, \Sigma)$ prob-P. The convergence of $\mathcal{I}_{N B B, n}^{*}$ and $\mathcal{I}_{N B B, n}^{* *}$ are proven by a similar argument.

9 Auxiliary results

Lemma 6 (NBB uniform $W L L N)$. Let $\left\{q_{n t}^{*}(\cdot, \omega, \theta)\right\}$ be an NBB resample of $\left\{q_{n t}(\omega, \theta)\right\}$ and assume: (a) For each $\theta \in \Theta \subset \mathbb{R}^{p}, \Theta$ a compact set, $n \sum_{t=1}^{n}\left(q_{n t}^{*}(\cdot, \omega, \theta)-q_{n t}(\omega, \theta)\right) \rightarrow 0$, prob- $P_{n, \omega}^{*}$, prob-P; and $(b) \forall \theta, \theta_{0} \in \Theta,\left|q_{n t}(\cdot, \theta)-q_{n t}\left(\cdot, \theta_{0}\right)\right| \leq L_{n t}\left|\theta-\theta_{0}\right|$ a.s. $-P$, where $\sup _{n}\left\{n^{-1} \sum_{t=1}^{n} E\left(L_{n t}\right)\right\}=O(1)$. Then, if $\ell=o(n)$, for any $\delta>0$ and $\xi>0$,

$$
\lim _{n \rightarrow \infty} P\left[P_{n, \omega}^{*}\left(\sup _{\theta \in \Theta} n^{-1}\left|\sum_{t=1}^{n}\left(q_{n t}^{*}(\cdot, \omega, \theta)-q_{n t}(\omega, \theta)\right)\right|>\delta\right)>\xi\right]=0
$$

Proof The proof closely follows that of Lemma 8 of Hall and Horowitz (1996).

Lemma 7 (NBB pointwise WLLN). For some $r>2$, let $\left\{q_{n t}: \Omega \times \Theta \rightarrow \mathbb{R}^{m}: m \in \mathbb{N}\right\}$ be such that for all n, t, there exists $D_{n t}: \Omega \rightarrow \mathbb{R}$ with $\left|q_{n t}(\cdot, \theta)\right| \leq D_{n t}$ for all $\theta \in \Theta$ and $\left\|D_{n t}\right\|_{r} \leq \Delta<\infty$. For each $\theta \in \Theta$ let $\left\{q_{n t}^{*}(\cdot, \omega, \theta)\right\}$ be an NBB resample of $\left\{q_{n t}(\omega, \theta)\right\}$. If $\ell=o(n)$, then for any $\delta>0$, $\xi>0$ and for each $\theta \in \Theta$,

$$
\lim _{n \rightarrow \infty} P\left[P_{n, \omega}^{*}\left(n^{-1}\left|\sum_{t=1}^{n}\left(q_{n t}^{*}(\cdot, \omega, \theta)-q_{n t}(\omega, \theta)\right)\right|>\delta\right)>\xi\right]=0
$$

Proof Fix $\theta \in \Theta$, and we suppress θ and ω henceforth. Since $q_{n t}^{*}$ is a NBB resample, $E^{*} q_{n t}^{*}=$ $n^{-1} \sum_{t=1}^{n} q_{n t}=\bar{q}_{n}$ and hence $\sum_{t=1}^{n}\left(q_{n t}^{*}-q_{n t}\right)=\sum_{t=1}^{n}\left(q_{n t}^{*}-E^{*} q_{n t}\right)$. From the arguments in the proof of Lemma A. 5 of GW04, the stated result follows if $\left\|\operatorname{var}^{*}\left(n^{-1 / 2} \sum_{t=1}^{n} q_{n t}^{*}\right)\right\|_{r / 2}=O(\ell)$ for some $r>$ 2. Define $U_{n i}=\ell^{-1} \sum_{t=1}^{\ell} q_{n,(i-1) \ell+t}$, the average of the i th block. Since the blocks are independently
sampled, we have (cf. Lahiri (2003), p.48)

$$
\begin{aligned}
\operatorname{var}^{*}\left(n^{-1 / 2} \sum_{t=1}^{n} q_{n t}^{*}\right) & =b^{-1} \ell \sum_{i=1}^{b}\left(U_{n i}-\bar{q}_{n}\right)\left(U_{n i}-\bar{q}_{n}\right)^{\prime} \\
& =b^{-1} \ell^{-1} \sum_{i=1}^{b}\left[\sum_{t=1}^{\ell}\left(q_{n,(i-1) \ell+t}-\bar{q}_{n}\right) \sum_{s=1}^{\ell}\left(q_{n,(i-1) \ell+s}-\bar{q}_{n}\right)^{\prime}\right] \\
& =R_{n}(0)+b^{-1} \sum_{i=1}^{b} \sum_{\tau=1}^{\ell-1}\left(R_{n i}(\tau)+R_{n i}^{\prime}(\tau)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{n}(0)=n^{-1} \sum_{t=1}^{n}\left(q_{n t}-\bar{q}_{n}\right)\left(q_{n t}-\bar{q}_{n}\right)^{\prime} \\
& R_{n i}(\tau)=\ell^{-1} \sum_{t=1}^{\ell-\tau}\left(q_{n,(i-1) \ell+t}-\bar{q}_{n}\right)\left(q_{n,(i-1) \ell+t+\tau}-\bar{q}_{n}\right)^{\prime}, \quad \tau=1, \ldots, \ell-1
\end{aligned}
$$

Applying Minkowski and Cauchy-Schwartz inequalities gives $\left\|R_{n}(\tau)\right\|_{r / 2}=O(1), \tau=0, \ldots, \ell-1$, and $\left\|\operatorname{var}^{*}\left(n^{-1 / 2} \sum_{t=1}^{n} q_{n t}^{*}\right)\right\|_{r / 2}=O(\ell)$ follows.

Lemma 8 (Consistency of NBB conditional variance). Assume $\left\{X_{t}\right\}$ satisfies $E X_{t}=0$ for all t, $\left\|X_{t}\right\|_{3 r} \leq \Delta<\infty$ for some $r>2$ and all $t=1,2, \ldots$. Assume $\left\{X_{t}\right\}$ is $L_{2}-N E D$ on $\left\{V_{t}\right\}$ of size $-(2(r-$ 1)) $/(r-2)$, and $\left\{V_{t}\right\}$ is an α-mixing sequence of size $-(2 r /(r-2))$. Let $\left\{X_{t}^{*}\right\}$ be an NBB resample of $\left\{X_{t}\right\}$. Define $\bar{X}_{n}=n^{-1} \sum_{t=1}^{n} X_{t}, \bar{X}_{n}^{*}=n^{-1} \sum_{t=1}^{n} X_{t}^{*}, \Sigma_{n}=\operatorname{var}\left(\sqrt{n} \bar{X}_{n}\right)$, and $\hat{\Sigma}_{n}=\operatorname{var}^{*}\left(\sqrt{n} \bar{X}_{n}^{*}\right)$. Then, if $\ell \rightarrow \infty$ and $\ell=o\left(n^{1 / 2}\right), \Sigma_{n}-\hat{\Sigma}_{n} \rightarrow_{P} 0$.

Corollary 1 Assume X_{t} satisfies the assumptions of Lemma 8. Define $U_{i}=\ell^{-1} \sum_{t=1}^{\ell} X_{(i-1) \ell+t}$, the average of the ith non-overlapping block. Then, if $\ell \rightarrow \infty$ and $\ell=o\left(n^{1 / 2}\right), b^{-1} \ell \sum_{i=1}^{b} U_{i} U_{i}^{\prime}-\Sigma_{n} \rightarrow_{P} 0$.

Proof For simplicity, we assume X_{t} to be a scalar. The extension to the vector-valued X_{t} is straightforward, see GW02. Define $U_{i}=\ell^{-1} \sum_{t=1}^{\ell} X_{(i-1) \ell+t}$, the average of the i th block. Since the blocks
are independently sampled, we have

$$
\begin{align*}
\hat{\Sigma}_{n} & =b^{-1} \ell \sum_{i=1}^{b} U_{i}^{2}-\ell \bar{X}_{n}^{2} \\
& =b^{-1} \ell^{-1} \sum_{i=1}^{b}\left[\sum_{t=1}^{\ell} X_{(i-1) \ell+t} \sum_{s=1}^{\ell} X_{(i-1) \ell+s}\right]-\ell \bar{X}_{n}^{2} \tag{24}\\
& =b^{-1} \sum_{i=1}^{b} \hat{R}_{i}(0)+2 b^{-1} \sum_{i=1}^{b} \sum_{\tau=1}^{\ell-1} \hat{R}_{i}(\tau)-\ell \bar{X}_{n}^{2} .
\end{align*}
$$

where $\hat{R}_{i}(\tau)=\ell^{-1} \sum_{t=1}^{\ell-\tau} X_{(i-1) \ell+t} X_{(i-1) \ell+t+\tau}, \tau=0, \ldots, \ell-1$. First we show $E\left(\hat{\Sigma}_{n}\right)-\Sigma_{n}=o(1)$. From Lemmas A. 1 and A. 2 of GW02, we have, for $i=1, \ldots, b$,

$$
E\left(\bar{X}_{n}^{2}\right)=n^{-2} E\left|\sum_{t=1}^{n} X_{t}\right|^{2} \leq n^{-2} E\left(\max _{1 \leq j \leq n}\left|\sum_{t=1}^{j} X_{t}\right|^{2}\right) \leq C n^{-2}\left(\sum_{t=1}^{n} c_{t}^{2}\right)=O\left(n^{-1}\right)
$$

where c_{t} are (uniformly bounded) mixingale constants of X_{t}, and $E\left|\ell \bar{X}_{n}^{2}\right|=o(1)$ follows. Define $R_{i}(\tau)=\ell^{-1} \sum_{t=1}^{\ell-\tau} E\left(X_{(i-1) \ell+t} X_{(i-1) \ell+t+\tau}\right)$ and $R_{i j}=\ell^{-1} \sum_{t=1}^{\ell} \sum_{s=1}^{\ell} E\left(X_{(i-1) \ell+t} X_{(j-1) \ell+s}\right)$ so that $E\left(\hat{R}_{i}(\tau)\right)=R_{i}(\tau)$, then

$$
\Sigma_{n}=b^{-1} \sum_{i=1}^{b} R_{i}(0)+2 b^{-1} \sum_{i=1}^{b} \sum_{\tau=1}^{\ell-1} R_{i}(\tau)+b^{-1} \sum_{i=1}^{b} \sum_{j \neq i}^{b} R_{i j}
$$

and $E\left(\hat{\Sigma}_{n}\right)-\Sigma_{n}=b^{-1} \sum_{i=1}^{b} \sum_{j \neq i}^{b} R_{i j}$. From Gallant and White (1988) (pp.109-110), $E\left(X_{t} X_{t+\tau}\right)$ is bounded by

$$
\left|E X_{t} X_{t+\tau}\right| \leq \Delta\left(5 \alpha_{[\tau / 4]}^{1 / 2-1 / r}+2 v_{[\tau / 4]}\right) \leq C \tau^{-1-\xi}
$$

for some $\xi \in(0,1)$, where v_{m} is the NED coefficient. Therefore, for $|i-j|=k \geq 2$, we have $\left|R_{i j}\right| \leq C \ell^{-1} \sum_{t=1}^{\ell} \sum_{s=1}^{\ell}((k-1) \ell)^{-1-\xi}=O\left((k-1)^{-1-\xi} \ell^{-\xi}\right)$, and

$$
\left|R_{i, i+1}\right| \leq C \ell^{-1} \sum_{t=1}^{\ell} \sum_{s=1}^{\ell}|\ell+s-t|^{-1-\xi} \leq C \ell^{-1} \sum_{h=-\ell+1}^{\ell-1}(\ell-|h|)|\ell+h|^{-1-\xi}=O\left(\ell^{-\xi}\right),
$$

where the last equality follows from evaluating the sums with $h>0$ and $h<0$ separately. It follows that

$$
b^{-1} \sum_{i=1}^{b} \sum_{j \neq i}^{b} R_{i j}=O\left(\ell^{-\xi}+b^{-1} \sum_{k=2}^{b-1}(b-k)(k-1)^{-1-\xi} \ell^{-\xi}\right)=O\left(\ell^{-\xi}\right)
$$

and we establish $E\left(\hat{\Sigma}_{n}\right)-\Sigma_{n}=o(1)$. It remains to show $\operatorname{var}\left(\hat{\Sigma}_{n}\right)=o(1)$. It suffices to show that the variance of

$$
\begin{equation*}
b^{-1} \sum_{i=1}^{b}\left(\hat{R}_{i}(0)-R_{i}(0)\right)+2 b^{-1} \sum_{i=1}^{b} \sum_{\tau=1}^{\ell-1}\left(\hat{R}_{i}(\tau)-R_{i}(\tau)\right) \tag{25}
\end{equation*}
$$

is $o(1)$. Following the derivation in GW02 leading to their equation (A.4), we obtain

$$
\begin{aligned}
\operatorname{var}\left(\hat{R}_{i}(\tau)\right) \leq & \ell^{-2} \sum_{t=1}^{\ell-\tau} \operatorname{var}\left(X_{(i-1) \ell+t} X_{(i-1) \ell+t+\tau}\right) \\
& +2 \ell^{-2} \sum_{t=1}^{\ell-\tau} \sum_{s=t+1}^{\ell-\tau}\left|\operatorname{cov}\left(X_{(i-1) \ell+t} X_{(i-1) \ell+t+\tau}, X_{(i-1) \ell+s} X_{(i-1) \ell+s+\tau}\right)\right| \\
\leq & C \ell^{-1}\left\{\Delta+\sum_{k=1}^{\infty} \alpha_{[k / 4]}^{1 / 2-1 / r}+\sum_{k=1}^{\infty} v_{[k / 4]}+\sum_{k=1}^{\infty} v_{[k / 4]}^{(r-2) / 2(r-1)}\right\} \\
& +C \ell^{-1}\left(\tau \alpha_{[\tau / 4]}^{1-2 / r}+\tau v_{[\tau / 4]}^{2}+2 \tau \alpha_{[\tau / 4]}^{1 / 2-1 / r} v_{[\tau / 4]}\right)=O\left(\ell^{-1}\right)
\end{aligned}
$$

Observe that, when $|i-j| \geq 7$, from Lemma 6.7(a) of Gallant and White (1988) we have, for some $\xi \in(0,1)$,

$$
\begin{aligned}
\operatorname{cov}\left(\hat{R}_{i}(\tau), \hat{R}_{j}(\tau)\right) & \leq \ell^{-2} \sum_{t=1}^{\ell-\tau \ell-\tau} \sum_{s=1}\left|\operatorname{cov}\left(X_{(i-1) \ell+t} X_{(i-1) \ell+t+\tau}, X_{(j-1) \ell+s} X_{(j-1) \ell+s+\tau}\right)\right| \\
& \leq \ell^{-2} \sum_{t=1}^{\ell-\tau \ell-\tau} \sum_{s=1}\left(\alpha_{[(|i-j|-6) \ell / 4]}^{1 / 2-1 / r}+v_{[(|i-j|-6) \ell / 4]}^{(r-2) / 2(r-1)}\right) \\
& =O\left(\ell^{-2} \sum_{t=1}^{\ell-\tau} \sum_{s=1}^{\ell-\tau}[(|i-j|-6) \ell / 4]^{-1-\xi}\right) \leq C(\ell|i-j|)^{-1-\xi}
\end{aligned}
$$

Define $B_{r}=\{1 \leq i \leq b: i=7 k+r, k \in \mathbb{N}\}$ for $r=1, \ldots, 7$, so that all $i \in B_{r}$ are at least 7 apart from each other. Rewrite (25) as $\sum_{r=1}^{7} b^{-1} \sum_{i \in B_{r}}\left(\hat{R}_{i}(0)-R_{i}(0)\right)+2 \sum_{r=1}^{7} \sum_{\tau=1}^{\ell-1} b^{-1} \sum_{i \in B_{r}}\left(\hat{R}_{i}(\tau)-R_{i}(\tau)\right)$. Then, for $\tau=0, \ldots, \ell-1$,

$$
\begin{aligned}
\operatorname{var}\left(b^{-1} \sum_{i \in B_{r}}\left(\hat{R}_{i}(\tau)-R_{i}(\tau)\right)\right) & =b^{-2} \sum_{i \in B_{r}} \sum_{j \in B_{r}} \operatorname{cov}\left(\hat{R}_{i}(\tau), \hat{R}_{j}(\tau)\right) \\
& =O\left(b^{-1} \ell^{-1}+\ell^{-1-\xi} b^{-2} \sum_{i=1}^{b} \sum_{j \neq i}^{b}|i-j|^{-1-\xi}\right) \\
& =O\left(b^{-1} \ell^{-1}+\ell^{-1-\xi} b^{-2} \sum_{h=1}^{b-1}(b-h) h^{-1-\xi}\right) \\
& =O\left(b^{-1} \ell^{-1}\right) .
\end{aligned}
$$

Therefore, the variance of (25) is $O\left(\ell b^{-1}\right)=O\left(\ell^{2} n^{-1}\right)=o(1)$, giving the stated result. Corollary 1 follows because $b^{-1} \ell \sum_{i=1}^{b} U_{i} U_{i}^{\prime}=\hat{\Sigma}_{n}+o_{P}(1)$ from (24).

Table 1: Linear Model - symmetric errors

Replications=2000; Bootstraps=499; auto-selection block length$\begin{gathered} y_{t}=\theta_{1}+\theta_{2} x_{t}+u_{t} ; u_{t}=0.9 u_{t-1}+\varepsilon_{1 t} ; \\ x_{t}=0.9 x_{t-1}+\varepsilon_{2 t} ; z_{t}=\left(1 x_{t} x_{t-1} x_{t-2}\right) \\ \left(\theta_{1}, \theta_{2}\right)=(0,0) ;\left[\varepsilon_{1 t}, \varepsilon_{2 t}\right] \sim N\left(0, I_{2}\right) \end{gathered}$						
	T-Test			Sargan Test		
	10	05	01	10	05	01
100						
Asymptotic	0.4225	0.3420	0.2335	0.1360	0.0735	0.0245
SNB	0.2725	0.2070	0.1085	0.1505	0.0945	0.0320
SMB	0.3760	0.2885	0.1640	0.1330	0.0755	0.0255
ENB	0.3475	0.2240	0.1580	0.1220	0.0700	0.0280
EMB	0.3510	0.2765	0.1535	0.1395	0.0885	0.0315
250						
Asymptotic	0.3485	0.2755	0.1625	0.1225	0.0745	0.0235
SNB	0.2090	0.1460	0.0720	0.1320	0.0840	0.0310
SMB	0.3255	0.2390	0.1320	0.1315	0.0790	0.0260
ENB	0.3135	0.2350	0.1235	0.1215	0.0715	0.0250
EMB	0.3175	0.2330	0.1225	0.1695	0.1095	0.0465
1000						
Asymptotic	0.2735	0.1945	0.0955	0.0925	0.0460	0.0075
SNB	0.1675	0.1140	0.0425	0.0930	0.0505	0.0090
SMB	0.2550	0.1815	0.0830	0.0970	0.0450	0.0070
ENB	0.2545	0.1755	0.0803	0.0930	0.0560	0.0100
EMB	0.2450	0.1700	0.0800	0.1110	0.0650	0.0180

Table 2: Linear Model - GARCH(1,1) errors
Replications $=2000$; Bootstraps $=499$; auto-selection block length
$\left.\begin{array}{ccccccc}y_{t}=\theta_{1}+\theta_{2} x_{t}+\sigma_{t} u_{t} ; u_{t} \sim N\left(0, \sigma_{t}\right), \sigma_{t}^{2}=0.0001+0.6 \sigma_{t-1}^{2}+0.3 \varepsilon_{1 t-1} ; \\ x_{t}=0.75 x_{t-1}+\varepsilon_{2 t}, \text { where } \varepsilon_{1 t} \sim N(0,1) ; z_{t}=\left(1 x_{t} x_{t-1} x_{t-2}\right) \\ \left(\theta_{1}, \theta_{2}\right)=(0,0) ; \varepsilon_{1 t} \sim N(0,1)\end{array}\right)$

[^4]Table 3: Nonlinear Model - Chi-Square Moment Conditions
Replications=2000; Bootstraps=499; auto-selection block length

$$
\begin{array}{cc}
g\left(X_{t}, \theta_{1}\right)=\left(X_{t}-\theta_{1}\right. & \left.X_{t}^{2}-\theta_{1}^{2}-2 \theta_{1}\right)^{\prime} . \\
\text { T-Test } & \text { Sargan Test }
\end{array}
$$

	10	05	01	10	05	01
$\mathbf{1 0 0}$ Asymptotic	0.1845	0.1250	0.0625	0.2655	0.2065	0.1195
SNB	0.1535	0.1000	0.0380	0.1895	0.1505	0.0870
SMB	0.1800	0.0875	0.0070	0.1825	0.1465	0.0780
ENB	0.1075	0.0525	0.006	0.2235	0.1580	0.0745
EMB	0.1100	0.0600	0.0080	0.2100	0.1600	0.0700
$\mathbf{2 5 0}$						
Asymptotic	0.1245	0.0700	0.0250	0.1990	0.1560	0.0840
SNB	0.1095	0.0585	0.0200	0.1615	0.1290	0.0790
SMB	0.1240	0.0710	0.0175	0.1520	0.1225	0.0695
ENB	0.1070	0.0550	0.0130	0.1730	0.1200	0.0415
EMB	0.1050	0.0600	0.0120	0.1800	0.1300	0.0400
$\mathbf{1 0 0 0}$						
Asymptotic	0.0975	0.0515	0.0100	0.1325	0.0835	0.0400
SNB	0.0985	0.0620	0.0205	0.1335	0.0985	0.0580
SMB	0.0795	0.0395	0.0075	0.1180	0.0870	0.0430
ENB	0.1000	0.0550	0.0180	0.1300	0.0800	0.0500
EMB	0.0960	0.0400	0.0080	0.1350	0.0705	0.0430

[^5]Table 4: Nonlinear Model - Asset Pricing Model
Replications $=2000$; Bootstraps $=499$; auto-selection block length $g=(\exp (\mu-\theta(x+z)+3 z)-1 \quad z[\exp (\mu-\theta(x+z)+3 z)-1])$, $\log x_{t}=\rho \log x_{t-1}+\sqrt{\left(1-\rho^{2}\right)} \varepsilon_{x t}, \quad z_{t}=\rho z_{t-1}+\sqrt{\left(1-\rho^{2}\right)} \varepsilon_{z t}$, where $\varepsilon_{x t}$ and $\varepsilon_{z t}$ are independent normal with mean 0 and variance 0.16. In the experiment $\rho=0.6$.

	T-Test			Sargan Test			
	10	05	01	10	05	01	
$\mathbf{1 0 0}$							
Asymptotic	0.4010	0.3235	0.2195	0.3080	0.2350	0.1460	
SNB	0.1550	0.0985	0.0400	0.1880	0.1260	0.0385	
SMB	0.1540	0.1015	0.0435	0.1930	0.1300	0.0420	
ENB	0.1400	0.0820	0.0265	0.1270	0.0700	0.0160	
EMB	0.1380	0.0905	0.0300	0.1900	0.0820	0.0205	
$\mathbf{2 5 0}$							
Asymptotic	0.3005	0.2275	0.1240	0.2470	0.1850	0.0995	
SNB	0.1270	0.0755	0.0290	0.1435	0.1005	0.0510	
SMB	0.1285	0.0780	0.0290	0.1430	0.0985	0.0535	
ENB	0.1200	0.0640	0.0170	0.1230	0.0690	0.0190	
EMB	0.1300	0.0600	0.0230	0.1275	0.0680	0.0280	
$\mathbf{1 0 0 0}$							
Asymptotic	0.2205	0.1440	0.0545	0.1975	0.1335	0.0685	
SNB	0.1440	0.0825	0.0280	0.1005	0.0715	0.0220	
SMB	0.1420	0.0820	0.0250	0.1040	0.0660	0.0220	
ENB	0.1190	0.0600	0.0205	0.1290	0.0700	0.0230	
EMB	0.1160	0.0580	0.0170	0.1080	0.0620	0.0170	

[^6]
References

Ahn, S., and P. Schmidt (1995): "Efficient Estimation of Models for Dynamic Panel Data," Journal of Econometrics, 68, 5-27.

Altonji, J., and L. Segal (1996): "Small-sample Bias in GMM Estimation of Covariance Structures," Journal of Business \& Economic Statistics, 14, 353-366.

AnATOLYEV, S. (2005): "GMM, GEL, Serial Correlation, and Asymptotic Bias," Econometrica, 73, 983-1002.

Andrews, D. (2002): "Higher-ordeer Improvements of a Computationally Attractive k-step Bootstrap for Extremum Estimators," Econometrica, 70, 119-262.

Andrews, D., and J. Monahan (1992): "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, 60, 953-966.

Arellano, M., and S. Bond (1991): "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, 58, 277297.

Berkowitz, J., and L. Kilian (2000): "Recent Developments in Bootstrapping Time Series," Econometric Reviews, 19, 1-48.

Bravo, F. (2005): "Blockwise Empirical Entropy Tests for Time Series Regressions," Journal of Time Series Analysis, 26, 185-210.

Brown, B., and W. Newey (2002): "Generalized Method of Moments, Efficient Bootstrapping, and Improved Inference," Journal of Business \& Economic Statistics, 20, 507-517.

Carlstein, E. (1986): "The Use of Subseries Methods for Estimating the Variance of a General Statistic from a Stationary Time Series," The Annals of Statistics, 14, 1171-1179.

Christiano, L., and W. HaAn (1996): "Small-sample Properties of GMM for Business-cycle Data," Journal of Business \& Economic Statistics, 14, 309-327.

Clark, T. (1996): "Small-sample Properties of Estimators of Nonlinear Models of Covariance Structure," Journal of Business and Economic Statistics, 14, 367-373.

Davidson, R., and J. G. Mackinnon (1999): "Bootstrap Testing in Nonlinear Models," International Economic Review, 40, 487-508.
de Jong, R., and J. Davidson (2000): "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, 68, 407-423.

Fitzenberger, B. (1997): "The Moving Blocks Bootstrap and Robust Inference for Linear Least Squares and Quantile Regressions,"Journal of Econometrics, 82, 235-287.

Gallant, A., and H. White (1988): A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models. Blackwell.

Gonçalves, S., and H. White (2002): "The Bootstrap of the Mean for Dependent Heterogeneous Srrays," Econometric Theory, 18, 1367-1384.
_ (2004): "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," Journal of Econometrics, 119, 199-219.

GonZalez, A. (2007): "Empirical Likelihood Estimation in Dynamic Panel Models," mimeo.

Gregory, A., J. Lamarche, and G. W. Smith (2002): "Information-theoretic Estimation of preference Parameters: Macroecnomic Applications and Simulation Evidence," Journal of Econometrics, 107, 213-233.

Hahn, J. (1996): "A Note on Bootstrapping Generalized Method of Moments Estimators," Econometric Theory, 12, 187-197.

Hall, P., and J. Horowitz (1996): "Bootstrap Critical Values for Tests Based on Generalized-method-of-moments Estimators," Econometrica, 64, 891-916.

Hall, P., J. Horowitz, and B. Jing (1992): "On Blocking Rules for the Bootstrap with Dependent Data," Biometrika, 82, 561-574.

HANSEN, L. (1982): "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, 50, 1029-1054.

Hansen, L., and K. J. Singleton (1982): "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, 50, 1296-1286.

HÄrdle, W., J. Horowitz, and J. Kreiss (2003): "Bootstrapping Methods for Time Series," International Statistical Review, 71, 435-459.

Hong, H., and O. Scaillet (2006): "A Fast Subsampling Method for Nonlinear Dynamic Models," Journal of Econometrics, 133.

Imbens, G., R. Spady, and P. Johnson (1998): "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, 66, 333-357.

Inoue, A., and M. Shintani (2006): "Bootstrapping GMM Estimators for Time Series," Journal of Econometrics, 133, 531-555.

Kitamura, Y. (1997): "Empirical Likelihood Methods with Weakly Dependent Processes," The Annals of Statistics, 25, 2084-2102.

- (2007): Empirical Likelihood Methods in Econometrics: Theory and Practice. In R.W. Blundell, and W.K. Newey and T. Persson (Eds), Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Volume III of Econometric Society Monograph ESM 43pp. 174-237. Cambrdige: Cambrdige University Press.

Kitamura, Y., and M. Stutzer (1997): "An Information-theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, 65, 861-874.

Kocherlakota, N. (1990): "On Tests of Representative Consumer Asset Pricing Models,"Journal of Monetary Economics, 25, 43-48.

Künsch, H. (1989): "The Jackknife and the Bootstrap for General Stationary Observations," The Annals of Statistics, 17, 1217-1261.

Lahiri, S. (1999): "Theoretical Comparisons of Block Bootstrap Methods," Annals of Statistics, 27, 384-404.
__ (2003): Resampling Methods for Dependent Data. Springer.
Newey, W., and R. Smith (2004): "Higher Order Properties of GMM and Generalized Empirical Likelihood Estimators," Econometrica, 72, 219-256.

Newey, W., and K. West (1994): "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, 61, 631-654.

Owen, A. (1990): "Empirical Likelihood Ratio Confidence Regions," Annals of Statistics, 18, 90-120.

Politis, D., and J. Romano (1994): "Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions," The Annals of Statistics, 22.

Politis, D., J. Romano, and M. Wolf (1999): Subsampling. New York: Springer.

Qin, J., and J. Lawless (1994): "Empirical Likelihood and General Estimating Equations," The Annals of Statistics, 22, 300-325.

Ramalho, J. (2006): "Bootstrap Bias-Adjusted GMM Estimators," Economics Letters, 92, 149155.

Ruge-Murcia, F. (2007): "Methods to Estimate Dynamic Stochastic General Equilibrium Models," Journal of Economic Dynamics and Control, 31, 2599-2636.

Ruiz, E., and L. Pascual (2002): "Bootstrapping Financial Time Series," Journal of Economic Surveys, 16, 271-300.

Smith, R. (1997): "Alternative Semi-Parametric Likelihood Approaches to Generalized Method of Moments Estimation," The Economic Journal, 107, 503-519.

ZVingelis, J. (2002): "On Bootstrap Coverage Probability with Dependent Data," University of Iowa working paper.

[^0]: *Correspondence can be sent to J. Allen (JAllen@bankofcanada.ca). We thank Don Andrews, Geoffrey Dunbar, Atushi Inoue, Gregor Smith, Silvia Gonçalves, Thanasis Stengos, and Tim Vogelsang for helpful comments and insightful discussion. We also thank seminar participants at the Bank of Canada, Indiana University, Queen's University, Econometric Society World Congress in London (2005), Canadian Econometric Study Group in Vancouver (2005), and Far East Meetings of the Econometric Society in Taiwan (2007). We acknowledge the Social Sciences and Humanities Research Council of Canada for support of this research. The views in this paper do not necessarily reflect those of the Bank of Canada. All errors are our own.

[^1]: ${ }^{1}$ See Kitamura (2007) for a review of recent research on empirical likelihood methods.
 ${ }^{2}$ In addition to bootstrapping using empirical likelihood estimated weights it would seem natural to consider subsampling using the same weights. Subsampling (Politis and Romano (1994), Politis, Romano, and Wolf (1999), and Hong and Scaillet (2006)) is an alternative to bootstrapping where each block is treated as it's own series and test-statistics are calculated for each sub-series. This is left as future work.

[^2]: ${ }^{3}$ This paper follows this design in the Monte Carlo experiments and also includes cases with persistence, heteroscedasticity, and asymmetry in the moment conditions.

[^3]: ${ }^{4}$ Derivation of the example can be found in Gregory, Lamarche, and Smith (2002).

[^4]: Note: The mean block length is 1.96 when $T=100,2.84$ when $T=250$, and 4.48 when $T=1000$.

[^5]: Note: The mean block length is 1.29 when $T=100,1.99$ when $T=250$, and 3.33 when $T=1000$.

[^6]: Note: The mean block length is 1.51 when $T=100,2.62$ when $T=250$, and 4.96 when $T=1000$.

