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1 INTRODUCTION

Beckmann (1976, Chapter 8) set out an interesting model of an urban area, a model

based on the interaction of each resident at a residential location with each other,

on a regular basis.1 Instead of every resident commuting to the center each day and

interacting in a productive way as in a monocentric city, a resident in Beckmann�s

city commutes each day to the residence of every other person (resident) in the city.

The cost per resident of interacting becomes complicated since person i needs to know

where every other resident is located when she allocates her income toward commuting

(interacting) costs, �housing�and other consumption goods. We re-solve Beckmann�s

model for the case of each resident having a Cobb-Douglas utility function de�ned

over �housing� and other goods. Beckmann worked with an idiosyncratic separable

utility function. Our re-solving in a sense brings Beckmann�s analysis closer to that of

textbook models of cities.

We then extend Beckmann�s analysis by endogenizing the bene�ts of resident i

interacting with each other resident over a period. We do this in a model with a

simpler interaction �technology�. Resident i visits or is visited by every other resident

once per period. (Beckmann had resident i visiting every other resident at her residence

once per period.) A productive interaction in our model is an uncertain �hit�of resident

i with one other resident which yields to i a saleable patent. It is as if pairs of residents

have co¤ee each period and one pairing results stochastically in a useful invention, and

in income to one of the residents. Hence a resident�s income is stochastic since she

never knows which co¤ee she has will result in a saleable patent. And a resident�s

1The model is interpreted slightly di¤erently (total cost of interaction rather than average cost) in
Fujita and Thisse (2002, pp. 174-179) and re-presented clearly. We follow their �formulation�.

2



average income is a function of the number of other residents she is interacting with.

City size becomes a function of the value of output, here the average number of useful

patents �produced�per period. Production is a consequence of two residents pairing

o¤ for co¤ee on a regular basis. Every resident engages in interaction in every period

but resident i never knows with which other resident or in which period �her�saleable

patent will be realized.2

The idea that the core of a city should be treated as a group of interacting (cross-

visiting) �rms followed directly from Beckmann, notably in Borukov and Hochman

(1977), Imai (1982), Fujita and Ogawa (1982)3, Tauchen and Witte (1983) and (1984),

Kanemoto (1990), and more recently in Berliant, Reed, and Wang (2000) and Helsely

and Strange (2005). A central focus is on the inherent market failure associated with

interactive cities. To a �rst approximation agent i locates to minimize her interaction

costs without reckoning the costs she is imposing on the N � 1 other �rms by her

choice of location. Each other �rm faces a particular cost of interacting with her. One

can envisage di¤erent degrees of interaction corresponding to di¤erent departures of

equilibria from �rst best outcomes, a topic we hope to pursue in the future.4

2 THE MODEL

The city is located on a line with a resident at distance x from the center consuming

h(x) of land (�housing�). Land rent at x will be r(x): Hence a household�s budget

2Helsley and Strange (2005), for example, have the utility of an agent higher with more interactions
but at the cost of more travel.

3Lucas and Rossi-Hansberg (2002) rework the approach of Fujita and Ogawa (1982) in a very
general model which ends up analyzable only by means of numerical simulations. Of interest is their
discovery of �the extreme sensitivity of the nature of equilibria to small changes in assumed travel
costs�(p. 1447).

4Beckmann did not take up the issue of equilibria versus optima or a schedule of location taxes and
subsidies that could implement a �rst best. Of interest would be the result that the �rst best Beckmann
city was less technically complicated than the second best counterpart which we are reporting here.
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constraint is

y � T (x) = cp+ r(x)h(x)

with c other consumption goods (with price p set at unity), T (x) interaction or total

transportation costs per period per household, and y income per period. Consumption

c will vary with distance x: The household has utility function U = h(x)�c(x)1��. The

utility level is �xed at U by free migration between cities (the open city assumption).

Hence

h(x) = U
1=�
=c(x)(1��)=�

Since c(x) = (1 � �)[y � T (x)]; we have h(x) = �
h
1= [y � T (x)](1��)=�

i
for � =h

U
1=(1��)

=(1� �)
i(1��)=�

and population density function n(x) = 1=h(x) in

n(x) = [y � T (x)](1��)=� =� (1)

And since r(x)h(x) = �[y � T (x)]; we also have

r(x) = � [y � T (x)]1=� =�

Consider exogenous edge rent r at edge b; positive and unspeci�ed.5 Cobb-Douglasness

of utility gives us

� [y � T (b)] = rh(b)

and (1� �) [y � T (b)] = c (b)

or �c(b) = (1� �)rh(b)

In addition we have U = h(b)�c(b)1��: Hence we can solve for edge values h(b) (=1=n(b))

5With Cobb-Douglas utility one worries about a zero rent at the edge leading to an extremely large
radius for a city. Hence r is treated as strictly positive.
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and c(b): These values then allow us to solve for T (b)

h(b) = (r=�)��1 � ��

c(b) = (1� �) � (r�=�)�

T (b) = y � (r�=�)� (2)

Observe that

r(x) = �[y � T (x)]=h(x)

= �[y � T (x)] � n(x)

= �[y � T (x)]1=�=� (3)

= ���=(1��)[n(x)]1=(1��)

Given r as rent at the edge, b; we can express n(b) in terms of r: That is

n(b) = ��� (r=�)1�� (4)

3 MONOCENTRIC CITY AS BENCHMARK

We can �x ideas by appealing to the monocentric counterpart for comparison. Then

T (x) = t � jxj and all interaction occurs at one point in the center. Given parameters

�; y; �; t and edge rent r; we can solve for edge, b in � [y � t � b]1=� =� = r and then city

size N in

b = [y � (r�=�)�]=t

2

Z b

0

[y � t � x](1��)=� =�dx = 2�
�
y1=� � (y � tb)1=�

	
=�t = N:

5



We interpret this as parameters �; �; y; t and r yielding geographic size b and then b

and n(x) yielding population, N:6 This sequence of links is somewhat di¤erent for a

Beckmann city.7

In Beckmann�s city, interaction occurs by one-on-one visiting of each person to all

others, one trip per person visited per period. Hence each household incurs N � 1 trips

per period. Formally, then travel costs for interacting for a person at x miles from the

center, at zero, are

T (x) =

Z x

�b
t(x� z)n(z)dz +

Z b

x

t(z � x)n(z)dz (5)

The city ranges on the line from �b to b: Observe that

d2T (x)=dx2 = 2tn(x)

Hence we can substitute for n(x) and obtain the fundamental equation for a Beckmann

city

d2T (x)=dx2 = 2t [y � T (x)](1��)=� =� (6)

We turn to solving the model.

4 SOLVING THE MODEL FOR � = :5

Since the resident in the center at x = 0 will incur the least interaction costs, we have

T 0(0) = 0 and since n(x) must be positive, we know that T (x) is convex in x: For the

6Somewhat parenthetically we note that dR = Ndy � rdb; for R = 2
R b
0
r(x)dx: Roughly speaking,

since the utility level is �xed, wage increments are fully capitalized in aggregate rent increments. This
capitalization result turns on Leibnitz�s Rule for di¤erentiation of an integral.

7When we speak of a Beckmann city, we mean one generated with our Cobb-Douglas utility function,
not one generated with Beckmann�s utility function u = � log h+ c. We have done no analysis with his
utility function. In fact we started this analysis to see if we could re-work Beckmann�s analysis with
a Cobb-Douglas function.
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case � = 1=2, (6) is a linear nonhomogeneous equation of the second order

d2T (x)=dx2 + 2tT (x)=� = 2ty=�

which solves8 to the closed form

T (x) = y � c1 cos(x
p
2t=�) (7)

c1 is a constant of integration.

Using the de�nition (1) of n(x) we have n(x) = c1 cos
�
x
p
2t=�

�
=�: Substituting

the last expression in de�nition (5) of T (x) we obtain

T (x) = c1t

24 xZ
�b

t(x� z) cos
�
z
p
2t=�

�
dz +

bZ
x

t(z � x) cos
�
z
p
2t=�

�
dz

35 =�
= c1

hp
2t=� � b � sin

�
b
p
2t=�

�
+ cos

�
b
p
2t=�

�
� cos

�
x
p
2t=�

�i
(8)

We equate (7) and (8) at x = 0 to get c1 as a function of the new �parameter�, b;

temporarily unspeci�ed:

c1 = y=
hp
2t=� � b � sin

�
b
p
2t=�

�
+ cos

�
b
p
2t=�

�i
(9)

Given boundary condition, T (b) = y�
p
2r�; we have another nonlinear equation in c1

and b:

c1 =
h
y �

p
2r�
i
=
hp
2t=� � b � sin

�
b
p
2t=�

�i
; b 2

�
0;
�

2

p
�=2t

�
(10)

The above is a Beckmann city and an equilibrium is a positive pair (c�1; b
�) satisfying

equations (9) and (10), given y; �; t and r.

8We �nd a general solution Th(x) of the corresponding homogeneous equation T 00 + 2t
� T = 0 (see

Murphy, 1960, p. 84) and the particular integral Tp(x) of the nonhomogeneous one [Murphy, 1960, p.
146], and then T (x) = Th(x)+ Tp(x), or by �nding a solution of the equation with the missing T 0(x)
[Murphy, 1960, p. 160]. We use T 0(x) = 0 at 0:
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To obtain b�; we substitute for c1 from (10) in (9) to get a nonlinear equation for b:

y �
p
2r� �

h
1 +

p
2t=� � b � tan

�
b
p
2t=�

�i
= 0 (11)

or

y �
p
2r� =

p
2r� �

p
2t=� � b � tan

�
b
p
2t=�

�
which can be rewritten as

a

�
= tan (�)

where � = b
p
2t=� and a =

�
y �

p
2r�
�
=
p
2r�. Since tan has intersections with the

hyperbola only if a > 0, then we have a natural a¤ordability condition9 for the existence

of positive root on b of equation (11), namely:

y �
p
2r� � T (b) > 0

We denote the solution of (11) as b�: Then c�1 =
�
y �

p
2r�
�
=
hp
2t=� � b� � sin

�
b�
p
2t=�

�i
from (10). We use this expression for c1 in T (x)10 to get T (x; b�) and then get

n(x; b�) = � cos(x
p
2t=�) for � = 1

�

�
y �

p
2r�
�
=
hp
2t=� � b� � sin

�
b�
p
2t=�

�i
: The

integral for total population, N is then 2�
R b�
0
cos(x

p
2t=�)dx which works out to be

(y �
p
2r�)=tb� � T (b�)=tb� (12)

= N

We plot the function on the left of (11) in Figure 1 for parameter values y = 10;

� = 1 = t = r:

9y � T (b) is income available for housing and c(b) at b and
p
2R� is the cost of achieving utility

level U at b:
10T (x; b�) = y �

nh
y �

p
2R�

i
=
hp
2t=� � b� � sin

�
b�
p
2t=�

�io
cos

�
x
p
2t=�

�
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It follows directly that db=dy > 0; db=dr < 0; db=dt < 0; and db=d� > 0: The edge

increases with income, decreases with edge rent, transportation cost and increases with

the open city utility level.

Given T (x; b�) immediately above we have r(x; b�) de�ned in terms of x and b�:

Thus, we have functions T (x; b�); n(x; b�); r(x; b�) over (�b�;+b�) and population N in

(12), given b� an equilibrium value for b.

Here is an example with y = 10; � = 1 = t = r; which yields b = 0:9558 (see Fig.

1), and then N = 8:98. The functions T (x); n(x); and r(x) come out as:

T (x) = 10� 6:5 � cos(x
p
2)

n(x) = 6:5 � cos(x
p
2)

r(x) = 21:2 � cos(x
p
2)2

T (x) plots as a strictly convex function i.e. U shaped over (�b�; b�), n(x) as strictly con-

cave (inverted U shaped) and r(x) is generally bell-shaped with two points of in�ection

(see Fig. 2). The total transportation cost for this example is 43.002.

5 � 6= :5

For � not 1/2 we can solve for T (x) for an approximate solution by series method which

is a Taylor Series expansion in the neighborhood of x = 0: In this case, we obtain

T (x) = T (0) + x2t(y � 1)(1��)=�=� + x4(�� 1)
�
t(y � 1)(1��)=�

�2
=[6�2�(y � 1)] +O(x6)

(13)

For the case of � = :5 this solution tracks a plot of our exact solution above well in

the neighborhood of x = 0 (see Fig. 3, with T (x) analytical (circles) and T (x) in form

(13)(crosses)).
9



Comparison of T (x) for di¤erent � is on Fig. 4 (� = :5 - solid line, � = :45 - crosses,

and � = :55 - circles). We do not pursue further analysis with � 6= :5 since we cannot

obtain closed form solutions.

6 BEYOND THE BECKMANN MODEL

Beckmann�s idea of an interactive city is wanting in at least two dimensions. First

the pattern of interaction involves much duplication in the costs of visiting. Each

resident travels at a cost to the �home�of every other resident once per period. One

could imagine scale economies in interaction costs. Once person i was at a site for

a visit, she could visit all households nearby the one she is currently at. We have

explored this alternate interactive �technology�in detail elsewhere. Another alternative

is having resident i visited by or do visiting with every other resident once every period.

This leads to a much simpler cost of visiting than Beckmann dealt with and we draw

on it directly. The second large de�ciency of Beckmann�s model is an explicit and

meaningful motivation for resident i to be doing interacting. We counter this criticism

by constructing a simple model of an interaction being productive for resident i: Hence

we exploit Beckmann�s idea of resident i touching base once with every other resident,

but in a simpler model of interacting costs, and we extend the analysis by endogenizing

the payo¤ to resident i from doing interacting.

7 PRODUCTIVE INTERACTIONS

We hypothesize that if resident i visits each of M other randomly chosen residents in

a period, she will come up with a saleable patent worth ew to her as income, every

z periods. Though the patent pops up stochastically after two residents have co¤ee,

10



we assume that only one of the two residents receives the ew: We assume that z(M) is
decreasing in contact number M: In a city of N residents, we will assume that resident

i makes N � 1 visits per period and she will make a successful visit or contact once

every z(N�1) periods. Hence her average income per period will be w = ew=[z(N�1)]:
For ew exogenous, we will have average income larger in larger cities. Larger cities will
also be producing a saleable patent more often than will smaller cities.

We are assuming then that over each period, each resident of our town either visits

or is visited by every other resident �for a cup of co¤ee�. Every once in a while the

co¤ee chat yields a saleable patent to one of the two engaged in chat. Residents are

assumed to be indistinguishable from one another in their ability to produce a saleable

patent. Each resident however has a distinct location, x of residence along the line

(our city). The city center is at x = 0 and is symmetric about this point. It is the

face-to-face co¤ee meeting that is necessary for a saleable patent to emerge. Chats over

a telephone or by email are assumed not to be substitutes for a face-to-face meeting.

Hence resident i incurs visiting costs over each period, her bill for total visiting costs

per period being a function of her location on the line.

The resident�s home consumes space and each resident desires more �home�, h(x) or

more space on the line. There is land rent r(x) associated with a unit of land or space

at location x: In addition each resident desires other consumption goods, represented

by scalar c(x); costing $1 per unit. Utility is then U(c(x); h(x)) for bundle (c(x); h(x))

at location x:We set out a worked example and employ a Cobb-Douglas speci�cation of

the utility function, c(x)�h(x)1��: The per period budget constraint11 for the resident

11For resident i; we use her expected income in a period as the income she �works with�over that
period. In other words we treat resident i�s income as non-stochastic each period, a clear simpli�cation.
In a fully stochastic model, the income of resident i in any period would involve an expectation over
a sequence of periods.

11



at x is w � V (x) = c(x) + r(x)h(x); where V (x) is the visiting cost per period.

Consider our visiting �technology�. A resident at edge b departs from her home in

a period and visits every other resident, incurring cost 2tb where t is roundtrip cost

per unit distance travelled. Recall that the city center is at x = 0: We postulate that

cost per visit at site is zero. The resident at the other edge departs from her home in

a period and visits every other resident except the resident that has just visited her

from the �opposite�end. This �second resident�incurs cost, �= 2tb� tdb; for db a small

distance related to the person she does not need to visit. And so on for other residents

as we track each resident�s visiting cost closer and closer to the center at 0: The person

at 0 has been visited by every other resident and thus has visiting costs, zero. A smooth

approximation of the visiting cost for a resident at x is simply 2t jxj f= V (x)g: Visiting

is then done at distinct sites, not in the center as would be the case for a CBD type

city, in which the CBD was the location for face-to-face co¤ee pairings. More on this

below.

Thus utility maximization for the resident at x has Uh=Uc = r(x) and w � 2t jxj =

c(x) + r(x)h(x): Given our Cobb-Douglas speci�cation, this yields w� 2t jxj = c(x)=�:

We invoke the OPEN CITY assumption: each resident faces option U if she relocates

to a nearby city at zero re-location cost. Hence

c(x) =
�
U=h(x)1��

�1=�
When combined with the previous equation, one has

1=h(x) = �[w � 2t jxj](�=(1��))

where � = �(�=(1��))=U
(1=(1��))

:We can now solve for total populationN(b) in 2
R b
0
1=h(x)dx =

12



N(b): When integrated, this becomes

N(b) = �(1� �)=tfw1=(1��) � [w � 2tb]1=(1��)g

for w = ew=z(N(b)� 1) where ew is an exogenous parameter.
Edge b is solved for in r(b) = r; for r the exogenous land rent at the city edge. The

equation for r(x) is derived in much the same way we obtained the equation for 1=h(x):

This equation is

r(x) = (1� �)�[w � 2t jxj](1=(1��))

which gives us

b = (w � fr=[(1� �)�]g(1��))=2t

Substituting this expression into the equation for N(b) we have

N(b) = [�(1� �)w(1=(1��)) � r]=t

Hence, given a form for function z(:); we have a non-linear equation in N(b) to solve in

order to determine the equilibrium size of our city with productive and costly face-to-

face visiting. Since z(:) is assumed to be declining in N(b)� 1; we can work with z(:)

speci�ed as 1=(N(b)� 1)� or w = ew(N(b)� 1)� : Then the equation for N(b) is
N(b) = f�(1� �)

� ew(N � 1)��(1=(1��)) � rg=t
which gives us an explicit formula for N for some selection of values for � and �:

8 NUMERICAL EXAMPLES

We will consider our numerical examples for � = � = 0:5: Then we have

N = (r + t)=[�(1� �) ew(1=(1��)) � t] + 1
13



We have summarized the results for given t = 0:01; U = 1; r = 1 and r = 2 in the

Table 1 and Table 2.

Plots of rent r(x) and density functions for r = 1 are depicted on Figures 5 and 6

in circles for ew = 0:25; in dashed lines for ew = 0:5; and in solid lines for ew = 1:
For r = 2 we have qualitatively the same pictures for rent and density functions.

The reader will have become aware that our city immediately above is formally a

variant of the textbook monocentric city. The economics or our interactive city are very

di¤erent however. Output here is a useful invention and inventions pop up stochastically

from the �process�of two residents engaged in FACE-TO-FACE chat. Explicit in our

formulation of productive visiting is that it happens at a residence and not at a central

meeting place. Visiting costs could be lowered if, per period, every resident travelled to

a central place and there, each resident sat down and had co¤ee once per period with

every other resident. It seems entirely appropriate to view the CBD of a modern city

as a central meeting place for residents and that each resident travels there to have a

co¤ee visit, yielding a productive output, with every other resident. The productive

output could be a saleable patent and it could pop out of a visit stochastically, in the

way we have treated productive visiting above. A CBD city could be viewed as an

interactive city with a special low cost �visiting technology�, a �technology�involving

every resident meeting in a central place for face-to-face interacting, period after period.

We have innovated by (a) exploring alternative costs for a resident to interact and (b)

by introducing a simple model of the explicit productiveness of face-to-face interactions.
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9 CONCLUDING REMARK

We have brought the Beckmann model into mainstream urban economics by making use

of a Cobb-Douglas utility function. We observed interesting density and rent functions

for the case of a Cobb-Douglas utility function. The Beckmann model strikes us as

highly ine¢ cient since each visit by resident i to j requires a separate costly trip. We

introduced a �technology�in which resident i does visiting OR is visited by every other

resident, once per period. We employed this simpler visiting �technology�in a model

with an explicit payo¤ to resident i for making a visit or being visited. We solved our

new interactive city and reported some numerical examples illustrating its properties.

Our interactive city is built around the notion of a productive interaction between

two residents in a face-to-face setting. Inventive activity here is based on individuals

discussing things with each other in a face-to-face setting. Every once in a while a chat

or interaction between a pair of residents results in a saleable invention from our city.
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TABLE 1: Productive Interaction City parameters for r = 1ew N z(N) w(N) b
0:25 180:6 0:07 3:35 67:5
0:5 20:2 0:228 2:19 9:6
1 5:2 0:487 2:05 2:57
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TABLE 2: Productive Interaction City parameters for r = 2ew N z(N) w(N) b
0:25 358:3 0:05 4:73 94:9
0:5 39:3 0:162 3:09 13:3
1 9:4 0:346 2:89 3:28
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10 FIGURES CAPTIONS

FIGURE 1: Beckmann b equation.

FIGURE 2: Beckmann density (+) and rent (o) functions.

FIGURE 3: Taylor series (+) and analytical (o) solutions.

FIGURE 4: T (x), Taylor series: .45 (+), .5 (-), .55 (o).

FIGURE 5: Productive Interaction rent functions (r = 1): for ew = 0:25 - circled

line; for ew = 0:5 - dashed line; for ew = 1 - solid line.
FIGURE 6: Productive Interaction density functions (r = 1): for ew = 0:25 - circled

line; for ew = 0:5 - dashed line; for ew = 1 - solid line.
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