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Abstract

We consider estimation of the cointegrating relation in the stationary fractional cointegra-

tion model which has found important application recently, especially in �nancial economics.

Previous research on this model has considered a semiparametric narrow-band least squares

(NBLS) estimator in the frequency domain, often under a condition of non-coherence between

regressors and errors at the zero frequency. We show that in the absence of this condition,

the NBLS estimator is asymptotically biased, and also that the bias can be consistently esti-

mated. Consequently, we introduce a fully modi�ed NBLS estimator which eliminates the bias,

and indeed enjoys a faster rate of convergence than NBLS in general. We also show that local

Whittle estimation of the integration order of the errors can be conducted consistently on the

residuals from NBLS regression, whereas the estimator has the same asymptotic distribution as

if the errors were observed only under the condition of non-coherence. Furthermore, compared

to much previous research, the development of the asymptotic distribution theory is based on

a di�erent spectral density representation, which is relevant for multivariate fractionally inte-

grated processes, and the use of this representation is shown to result in lower asymptotic bias

and variance of the narrow-band estimators. We also present simulation evidence and a series of

empirical illustrations to demonstrate the feasibility and empirical relevance of our methodology.

Keywords: Fractional cointegration, frequency domain, fully modi�ed estimation, long memory,

semiparametric.

JEL Classi�cations: C22.

1 Introduction

Recently, the concept of fractional cointegration has attracted increasing attention from both the-

oretical and empirical researchers in economics and �nance. In this theory, a p-vector time series
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zt is said to be cointegrated if each element of zt is integrated of order d, denoted I(d), but there

exists a linear combination that is I(d � b) with b > 0. Originally, the concept of cointegration

does not restrict d and b to be integers, e.g. Granger (1981), but estimation methods have been

developed mostly for the so-called I(1)� I(0) cointegration, where it is assumed that d = b = 1.

For a precise statement, a covariance stationary time series xt 2 I (d), d < 1=2, if

(1� L)d xt = vt; (1)

where vt 2 I (0), i.e. has continuous spectral density that is bounded and bounded away from

zero at all frequencies, and (1� L)d is de�ned by its binomial expansion in the lag operator L
(Lxt = xt�1). The time series fxtg generated by (1) has spectral density

f (�) � g��2d as �! 0+; (2)

where g 2 (0;1) is a constant and the symbol \�" means that the ratio of the left- and right-
hand sides tends to one in the limit. The parameter d determines the memory of the process: if

d 2 (0; 1=2) the process is covariance stationary with long memory and if d = 0 the spectral density
is bounded at the origin and the process has only weak dependence. A well-known model satisfying

(2) is the fractional ARIMA model. For surveys see, e.g., Baillie (1996) and Robinson (2003).

We consider estimation of the single-equation cointegrating regression

yt = �+ �0xt + ut; t = 1; :::; T; (3)

where both the regressors and the errors have long memory but the errors have less memory than

the regressors, i.e. where xt 2 I (dx) and ut 2 I (du) with dx > du � 0. This is the single-equation
fractional cointegration setup. In particular, we consider semiparametric analysis of model (3) with

stationary regressors, dx < 1=2, termed stationary fractional cointegration by Robinson (1994)

and Robinson & Marinucci (2003) and subsequently considered by many authors. For example,

Marinucci (2000), Robinson & Yajima (2002), Chen & Hurvich (2003a, 2003b), Christensen &

Nielsen (2006), Hualde & Robinson (2006), and Robinson (2008) consider theoretical issues, whereas

Lobato & Velasco (2000) and Fleming & Kirby (2006) apply the model to stock market trading

volume, Bandi & Perron (2006) and Christensen & Nielsen (2006) to stock return volatility, and

Robinson & Yajima (2002) to spot prices for crude oil. Hence, this model has become an important

tool for the analysis of long-run relations, especially in �nancial economics.1 Henry & Za�aroni

(2003) survey empirical applications of fractional integration and long memory in macroeconomics

and �nancial economics.

Since our model is stationary, a comparison with the standard time series regression model

with weakly dependent regressors is natural. It is well known that, in the standard case, under

a wide variety of regularity conditions, the ordinary least squares (OLS) estimator of � in (3) is

asymptotically normal, see e.g. Hannan (1979). The new complication is that, as pointed out by

Robinson (1994) and Robinson & Hidalgo (1997), when the regressors and the errors both have

long memory and are possibly non-orthogonal, the OLS estimator is in general no longer consistent.

To deal with this issue, Robinson (1994) proposed a semiparametric narrow-band least squares

(NBLS) estimator in the frequency domain (as opposed to a �xed band estimator as considered by

1For additional empirical examples, see the references in section 5 below.
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e.g. Phillips (1991) in a cointegration context) that assumes only a multivariate version of (2), see

(4) and (6) below, and essentially performs OLS on a degenerating band of frequencies around the

origin. The consistency of the estimator in the stationary case was proved by Robinson (1994), and

Christensen & Nielsen (2006) showed that its asymptotic distribution is normal when the collective

memory of the regressors and the error term is less than 1=2, i.e. when dx + du < 1=2, and under

the condition that the regressors and the errors have zero coherence at the origin. In contrast,

Robinson & Marinucci (2001, 2003) consider several cases where the regressors are nonstationary

fractionally integrated and the limiting distributions for the NBLS estimator involve fractional

Brownian motion, and Chen & Hurvich (2003a) add deterministic polynomial trends.

The semiparametric approach followed here is characterized by assuming only a local model

such as (2) for the spectral density, and using a degenerating part of the periodogram around the

origin to estimate the model. This approach has the advantage of being invariant to any short-

term dynamics (as well as mean terms since the zero frequency is usually left out). Speci�cally, a

local Whittle estimator of the memory parameter d based on the maximization of a local Whittle

approximation to the likelihood based on (2), has been developed by K�unsch (1987) and Robinson

(1995a). Of course, a fully parametric estimator would be more e�cient, but is inconsistent if the

parametric model is misspeci�ed.

The methods described above are combined by Marinucci & Robinson (2001b) and Christensen

& Nielsen (2006), who suggest conducting a (stationary) fractional cointegration analysis in several

steps. First, the integration orders of the observed data are estimated by the local Whittle estimator.

Secondly, the NBLS estimator of the cointegrating vector is calculated, and �nally the integration

order of the residuals is estimated assuming that the local Whittle approach is equally valid for

residuals. Hypothesis testing is then conducted on du as if ut were observed, and on � as if du
(which enters in the limiting distribution of the NBLS estimator) were known. Moreover, the

distribution theory for the NBLS estimator developed by Christensen & Nielsen (2006) assumes

that the long-run (zero frequency) coherence between the regressors and the errors is zero.

In this paper, we show that in the non-zero coherence case a bias term appears in the mean

of the asymptotic normal distribution of the NBLS estimator. The bias term is proportional to

the square-root of the bandwidth, with factor of proportionality depending on the integration

orders and the coherence at frequency zero. However, we show that the bias can be estimated

and hence removed by a fully modi�ed type procedure in the spirit of Phillips & Hansen (1990).

The result is a fully modi�ed NBLS (FMNBLS) estimator, which has no asymptotic bias and the

same asymptotic variance as the NBLS estimator. As a side remark, our �rst result regarding the

asymptotic distribution of the NBLS estimator in the general case actually shows that the rate

result proven by Robinson & Marinucci (2003) is sharp, as conjectured in their paper. However,

the FMNBLS estimator will have a better rate of convergence in general, i.e. the same rate as the

NBLS estimator under non-coherence as in Christensen & Nielsen (2006).

We also consider inference on the integration order of the error term in the stationary coin-

tegrating relation, and show that it can be consistently estimated by the local Whittle estimator

based on the residuals from a NBLS regression. However, the local Whittle estimator converges at

a slower rate than if the errors were observed, except if there is no long-run coherence between re-

gressors and errors in which case the asymptotic distribution theory for the local Whittle estimator

is una�ected by the fact that the estimator is based on residuals.
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Extensions of the well known fully modi�ed least squares procedure of Phillips & Hansen (1990)

to the case of nonstationary fractional cointegration have been examined by Dolado & Marmol

(1996), Kim & Phillips (2001), and Davidson (2004) in parametric frameworks. An alternative

fully modi�ed procedure for the standard I(1) � I(0) model was suggested in a NBLS framework

by Marinucci & Robinson (2001a), who considered the estimator of Phillips & Hansen (1990) based

on NBLS residuals rather than OLS residuals. It was shown that because the NBLS estimator has

a smaller second-order asymptotic bias than OLS this yields improved inference in the I(1)� I(0)
model. The same approach was implemented by Robinson & Marinucci (2003) in simulations.

However, the approach taken in the present paper is more direct. We derive an expression for the

asymptotic bias term, which depends on the integration orders of the regressors and the errors and

also on the coherence matrix at the zero frequency. We show that under appropriate conditions on

the bandwidth parameters the bias term can be estimated consistently, e.g., by running an auxiliary

NBLS regression, and this can be used to modify the initial NBLS estimate to eliminate the bias.

Furthermore, we derive the relevant distribution theory for the NBLS and FMNBLS estimators

based on the spectral representation of multivariate fractionally integrated models (see (4) and

(5) below) rather than a simpli�ed version (see (6) below) applied in previous work on stationary

fractional cointegration including Robinson & Marinucci (2003) and Christensen & Nielsen (2006).

The resulting normal distribution in the stationary case is shown to have both smaller asymptotic

bias and variance than that derived by Christensen & Nielsen (2006) for the model based on (6).

In a simulation study we document the �nite sample feasibility of the proposed FMNBLS

estimator. The simulations demonstrate the superiority in terms of bias of FMNBLS relative to

NBLS in the presence of non-zero long-run coherence between the regressor and the error, which

comes at the cost of an increased �nite sample variance. In terms of RMSE, FMNBLS also clearly

outperforms NBLS in most cases with long-run coherence.

To demonstrate the empirical relevance of our proposed methodology, we include several brief

empirical illustrations. We �rst revisit the implied-realized volatility relation analyzed by, e.g.,

Bandi & Perron (2006) and Christensen & Nielsen (2006). We then show that there is a stationary

fractional cointegrating relation between the ination rates of European Union countries, exempli-

�ed through the harmonized consumer price indices of France and Spain. Lastly, we investigate the

relationship between the volatilities of the General Electric stock and two stock indices.

The remainder of the paper is laid out as follows. Next, we describe NBLS estimation of (3) and

derive the relevant asymptotic distribution theory. We also discuss inference with the local Whittle

estimator of the integration order of the errors when the errors are not observed and residuals are

used instead. In section 3 we consider the FMNBLS modi�cation to the NBLS estimator. Sections

4 and 5 present simulation evidence and empirical illustrations, respectively, and section 6 o�ers

some concluding remarks. All proofs are gathered in the appendices.

2 Narrow-Band Least Squares Estimation

We begin with some remarks about the spectral representation of multivariate long memory models.

Suppose the spectral density of wt = (x
0
t; ut)

0 is

f (�) � � (�)�1G�� (�)�1 as �! 0+; (4)
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where the bar denotes complex conjugation, � (�) = diag(e�i�d1=2�d1 ; :::; e�i�dp=2�dp), and G is a

real, symmetric, positive de�nite matrix. The spectral density representation (4) is motivated by

the multivariate stationary long memory model with da 2 (�1=2; 1=2); a = 1; :::; p :264 (1� L)
d1 0

. . .

0 (1� L)dp

375
264 w1t � Ew1t

...

wpt � Ewpt

375 =
264 v1t

...

vpt

375 ; t = 1; :::; T; (5)

where vt = (v1t; :::; vpt)
0 is a covariance stationary process with spectral density matrix that is �nite

and bounded away from zero (in the sense of positive de�nite matrices) at all frequencies, i.e. vt
is I(0). When vt is an ARMA model, wt is a multivariate fractional ARIMA model. This class

of models is very popular in both theoretical and applied time series analysis. Since (1 � ei�)d =

�de�i�d=2(1 +O(�)) as �! 0 the representation (4) follows by de�ning G = lim�!0 fv (�).

Note that the spectral representation (4) di�ers from the simpler representation

hab (�) � Gab�
�da�db as �! 0+; a; b = 1; :::; p; (6)

applied by, e.g., Robinson (1995b) and Lobato & Robinson (1998) for inference on the integration

orders and by Robinson & Marinucci (2003) and Christensen & Nielsen (2006) in the context

of stationary fractional cointegration. The most important di�erence is that f (�) has non-zero

complex part even at the origin unless da = d for all a = 1; :::; p. In particular, da and db appear in

fab (�) � Gab�
�da�dbei�(da�db)=2 as �! 0+; a; b = 1; :::; p;

both in the power decay and in the phase shift. Neglecting the latter is a source of misspeci�cation

and may lead to erroneous inferences. For a detailed comparison of f (�) and h (�), see Shimotsu

(2007) and Robinson (2008) who derive multivariate local Whittle estimators based on (4).

We remark here that the assumptions of Christensen & Nielsen (2006) (and hence also those of,

e.g., Lobato & Robinson (1998) and Lobato (1999)) and much subsequent research are, unfortu-

nately, incompatible. The reason is that the real-valued cross-spectral density (6) imposed in their

Assumption A implies that the cross-autocorrelations are symmetric with respect to time, which

implies a two-sided moving average with equal lead and lag weights and not a one-sided moving

average as imposed in their Assumption B. The assumptions of Christensen & Nielsen (2006) (and

subsequent research on narrow-band estimation of stationary fractional cointegration) are easily

�xed, however, in light of their condition that Gap = Gpa = 0, by assuming that the integration

orders of the regressors are all equal, i.e. that da = dx for a = 1; : : : ; p � 1 and dx > dp. In that

case, their assumptions are compatible (and the representations (4) and (6) are equivalent) and

their results correct.

To consider frequency domain least squares inference on � in the cointegrating relation (3) we

de�ne the discrete Fourier transform (DFT) of an observed vector fat; t = 1; : : : ; Tg,

wa (�) =
1p
2�T

TX
t=1

ate
�it�: (7)

If fbt; t = 1; : : : ; Tg is another observed vector, the cross-periodogram matrix between at and bt is

Iab (�) = wa (�)w
�
b (�), where the asterisk denotes transposed complex conjugation. We then form
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the discretely averaged co-periodogram

F̂ab (k; l) =
2�

T

lX
j=k

Re (Iab (�j)) ; 0 � k � l � T � 1; (8)

for �j = 2�j=T . By setting k � 1 and thus excluding the zero frequency, the estimator becomes

invariant to non-zero means, i.e. invariant to � in (3). We could also have considered a continuously

averaged version of (8) as in Marinucci (2000), but it would not be invariant to mean terms.

With F̂ de�ned in (8) we consider the frequency domain least squares estimator

�̂m = F̂�1xx (1;m) F̂xy (1;m) (9)

of � in the regression (3). Notice that, by this de�nition, �̂T�1 is algebraically identical to the usual

OLS estimator of � with allowance for a non-zero mean. On the other hand, if

1

m
+
m

T
! 0 as T !1; (10)

then �̂m is the NBLS estimator using only a degenerating band of frequencies near the origin. We

need m to tend to in�nity to gather information, but we also need to remain in a neighborhood of

zero where we have assumed knowledge about the spectral density, so m=T must tend to zero.

To prove our main results we assume, with obvious implications for yt, the following conditions

on wt = (x
0
t; ut)

0 and the bandwidth parameter.

Assumption 1 The spectral density matrix of wt given in (4) with typical element fab (�), the

cross-spectral density between wat and wbt, satis�es

jfab (�)�Gab��da�dbei(���)(da�db)=2j = O(���da�db) as �! 0+; a; b = 1; :::; p; (11)

for some � 2 (0; 2]. The matrix G is positive de�nite and the memory parameters satisfy 0 � da <

1=2 for a = 1; :::; p, da + dp < 1=2 for a = 1; :::; p� 1, and min1�a�p�1 da � dp = �min > 0.

Assumption 2 wt is a linear process, wt = � +
P1

j=0Aj"t�j, with square summable coe�-

cient matrices,
P1

j=0 kAjk
2 < 1. The innovations satisfy, almost surely, E ("tj Ft�1) = 0;

E ("t"
0
tj Ft�1) = Ip; E ("t 
 "t"0tj Ft�1) = �3, and E ("t"

0
t 
 "t"0tj Ft�1) = �4, where �3 and �4

are nonstochastic, �nite, and do not depend on t, and Ft = � (f"s; s � tg).

Assumption 3 Let Aa (�) denote the a
0th row of A (�) =

P1
j=0Aje

ij�. Then, as �! 0+,

@Aa (�)

@�
= O(��1jjAa (�) jj); a = 1; :::; p:

Assumption 4 The bandwidth parameter m0 = m0 (T ) satis�es

1

m0
+
m
1+2min(1;�)
0

T 2min(1;�)
! 0 as T !1:
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Our assumptions are a multivariate generalization of those in Robinson (1994, 1995a), see also

Lobato (1999) and Christensen & Nielsen (2006). Since our assumptions are semiparametric in

nature they naturally di�er from those employed by e.g. Robinson & Hidalgo (1997) in their para-

metric setup, and are at least in some respects weaker than standard parametric assumptions. In

particular, we avoid standard assumptions (from stationary time series regressions) of independence

or uncorrelatedness between xt and ut as well as complete and correct speci�cation of f (�).

The �rst part of Assumption 1 specializes (4) by imposing smoothness conditions on the spectral

density matrix of wt commonly employed in the literature. They are satis�ed with � = 2 if, for

instance, wt is a vector fractional ARIMA process. The more precise approximation o�ered by

Assumption 1 relative to (4) reects the approximation (1 � ei�)d = j2 sin (�=2) jde�i(���)d=2 =
�de�i(���)d=2(1 +O(�2)) as �! 0, see Shimotsu (2007). The positive de�niteness condition on G

is a no multicollinearity or no cointegration condition within the components of xt, which is typical

in single-equation cointegration models and in regression models. In view of the results from, e.g.,

Fox & Taqqu (1986, Prop. 1), showing that quadratic forms of long memory processes with square-

summable autocovariances (2d < 1=2) are asymptotically Gaussian, we work with a quadratic form

with da + dp < 1=2, see also Lobato & Robinson (1996). The last condition of Assumption 1 is the

essential assumption of cointegration, with �min denoting the strength of the cointegrating relation.

The single-equation cointegrating regression model (3) is similar to the usual cointegrating

regression model in the I(1) � I(0) case, and the nature of the regression setup is subject to the

same advantages and disadvantages. An important issue, given a set of more than two variables, is

to justify the single-equation regression. That is, since cointegration among the regressors is ruled

out by Assumption 1 (as is standard in cointegrating regression models), in practice one would have

to establish that only one cointegrating relationship exists among the given set of variables. This

could be done, e.g., by the approach of Robinson & Yajima (2002) as in the empirical application

in section 5.3 below.

Much of the previous literature on semiparametric frequency domain inference in the stationary

fractional cointegration model distinguish (either explicitly or implicitly) between cases of coherence

and non-coherence between the regressors and the error process at the zero frequency, e.g. Robinson

& Marinucci (2001, 2003), Christensen & Nielsen (2006), and Robinson (2008). In the present

notation this condition is Gap = Gpa = 0, for a = 1; :::; p � 1. Indeed, in the stationary case,
asymptotic distribution theory for the NBLS estimator is only available in the case with non-

coherence at the zero frequency, Christensen & Nielsen (2006). Our assumptions avoid the non-

coherence condition and thus allow correlation between the errors and regressors at any frequency.

Assumptions 2 and 3 follow Robinson (1995a) and Lobato (1999) in imposing a linear structure

on wt with square summable coe�cients and martingale di�erence innovations with �nite fourth

moments. The assumption of constant conditional variance for the innovations could presumably

be relaxed by assuming boundedness of higher moments as in Robinson & Henry (1999). Under

Assumption 2 we can write the spectral density matrix of wt as

f (�) =
1

2�
A (�)A� (�) : (12)

Assumption 3 is a smoothness condition imposing di�erentiability of the spectral density near

the origin, analogous to those imposed on the spectral density at any frequency in parametric
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frameworks, see for example Fox & Taqqu (1986). The condition is satis�ed, e.g., by fractional

ARIMA models.

The statement of Assumptions 1 and 3 is made in the frequency domain whereas the statement of

Assumption 2 is in the time domain, which follows the tradition in the literature on semiparametric

estimation in long memory models. Clearly, the assumptions are closely related, and in particular

the matrix G in Assumption 1 is a function of the lag weights fAj ; j � 0g from Assumption 2. The

connection between the representations (4) (or Assumption 1) and (6) and the lag weights in the

linear process (Assumption 2) is explored in Theorems 1 and 2 of Robinson (2008). In particular,

it is shown there that our Assumptions 1 and 2 are compatible.2

Finally, Assumption 4 restricts the expansion rate of the bandwidth parameter m0 = m0 (T ).

The bandwidth is required to tend to in�nity for consistency, but at a slower rate than T to remain

in a neighborhood of the origin, where we have assumed some knowledge of the form of the spectral

density. When � is high, (11) is a better approximation to (12) as � ! 0+, and hence (by the

second term of Assumption 4) a higher expansion rate of the bandwidth can be chosen. The weakest

constraint is implied by � � 1, in which case the condition is m0 = o(T 2=3). A slightly weaker

bandwidth condition was employed by Christensen & Nielsen (2006) due to their assumption of

real-valued spectral density at the origin.

We next derive the distribution of the NBLS estimator of the stationary fractional cointegration

relation (3). This generalizes the consistency (with rates) result of Robinson & Marinucci (2003)

and the asymptotic normality result of Christensen & Nielsen (2006) (who assumed non-coherence

at the origin and a di�erent spectral density model).

Theorem 1 Let Assumptions 1-4 be satis�ed. Then the NBLS estimator �̂m0
in (9) satis�es

p
m0

�
�
dp
m0�

�1
m0
(�̂m0

� �)�K�1H
�

d! N
�
0;K�1JK�1� as T !1; (13)

where �m = diag(�d1m ; :::; �
dp�1
m ) and, for a; b = 1; :::; p � 1, K = (Kab), H = (Ha), and J = (Jab)

are given by

Kab =
Gab

1�da�db cos
�
�
2 (da � db)

�
;

Ha =
Gap

1�da�dp cos
�
�
2 (da � dp)

�
;

Jab =
GapGbp

2(1�da�db�2dp) cos
�
�
2 (da + db � 2dp)

�
+

GabGpp
2(1�da�db�2dp) cos

�
�
2 (da � db)

�
:

Proof. See appendix A.

Theorem 1 re�nes the result of Christensen & Nielsen (2006) in two ways: �rst, our result

uses the representation (4) of the multivariate spectral density, and secondly we allow for non-zero

coherence at the origin. The cosine terms in the asymptotic distribution are a result of using the

representation (4) rather than the simpler (6), in which case these terms would not be present. In

the absence of any coherence between the regressors and the errors at the origin, the distribution

theory follows from the above results by setting Gap = Gpa = 0 for a = 1; :::; p � 1. Also note
that the theorem presents a simple and closed form expression for the asymptotic bias term K�1H.

2Note that we could alternatively write our Assumptions 1-3 in terms of the model (5) and the errors vt, as in e.g.

Shimotsu & Phillips (2005).
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Thus, if K�1H can be estimated consistently with a su�cient rate, the bias could be removed and

a centered distribution can be obtained. This is the idea behind the following developments.

To illustrate the distribution theory and the developments leading to the below FMNBLS esti-

mator, we consider briey an illustrative example. Consider the two-variable case, i.e. the regression

(3) with only one regressor. Denote the integration orders dx and du and the spectral density matrix

at the origin G = (Gab) with a; b = x; u. In this case the result (13) reduces to

p
m0(�

du�dx
m0

(�̂m0
� �)� �) d! N (0; !) ;

where the asymptotic bias and variance terms are given by

� =
Gxu
Gxx

(1� 2dx)
(1� dx � du)

cos
��
2
(dx � du)

�
;

! =
(1� 2dx)2

2 (1� 2dx � 2du)

�
Guu
Gxx

+
G2ux
G2xx

cos (� (dx � du))
�
:

Note that, if the spectral representation (6) were used instead of (4), the cosine terms in both � and

! would be replaced by unity, their upper bound. Hence, the simpler representation (6) results in

a distribution theory that is less precise, both in terms of bias and variance, than the distribution

presented in Theorem 1. The increased variance obtained using (6) when the true model is (4) is a

consequence of the misspeci�cation of the spectral density at the origin since the non-zero complex

part in (4) is ignored in (6). In addition to the bias, the absence of the zero coherence condition

results in an additive variance ination of

(1� 2dx)2

2 (1� 2dx � 2du)
G2ux
G2xx

cos (� (dx � du)) � 0:

Note that consistency of the estimator is not a�ected by the presence of non-zero coherence

between the regressors and the errors at the zero frequency, and that the rate result established by

Robinson (1994) and Robinson & Marinucci (2003) is, in fact, sharp in this case as conjectured by

Robinson & Marinucci (2003). This is easily seen from Theorem 1, where

�̂m0
� � =

�dx�dum0p
m0

p
!Z + �dx�dum0

� + oP (m
�1=2
0 �dx�dum0

);

for Z � N (0; 1). The consistency and rate of �̂m0
follows immediately, and in particular, �du�dxm0

(�̂m0
�

�)
d! �. That is, when normalized as in Robinson (1994) and Robinson & Marinucci (2003), the

NBLS estimator converges to a degenerate distribution (a constant) in the case of non-zero coher-

ence between the regressors and the errors at the origin. However, in the absence of coherence

between the regressors and the errors at the origin and normalized by an additional
p
m0, the

NBLS estimator has an asymptotic normal distribution.

Given an estimate �̂ of �, we can consider the FMNBLS estimator,

~�m0
= �̂m0

� �dx�dum0
�̂;

which should be asymptotically unbiased (i.e. mean zero in the asymptotic normal distribution)

if �̂
P! � at an appropriate rate. The correction is asymptotically negligible in the sense that

9



�dx�dum0
�̂
P! 0. However, conditions are obviously needed to ensure consistency of �̂ and we need to

be careful in the choice of bandwidth parameter used to estimate �. In section 3 below we discuss

these issues and show how � can be estimated, e.g., by a simple auxiliary NBLS regression.

Using a completely di�erent approach, Robinson (2008) has developed joint multiple local Whit-

tle (MLW) estimation of the memory parameters, the cointegration coe�cient, and a phase param-

eter in a two-dimensional stationary fractionally cointegrated system. The MLW estimator also has

a centered asymptotic distribution and the estimator of � converges at the same rate as our FMN-

BLS estimator. The multivariate method clearly enjoys the advantages of a systems approach such

as possible e�ciency gains. However, it is based on numerical optimization of a multiparameter

objective function and is therefore computationally more demanding than our regression approach.

Moreover, the MLW objective function may have multiple local optima. Finite sample performance

of the MLW estimator of � and our FMNBLS estimator is compared in simulations in section 4.

We next show that, under the assumptions above and assuming that � has been estimated by

NBLS, the local Whittle estimator of dp, the memory of the error term, remains, at least to some

extent, valid in our stationary model even when based on NBLS residuals. A similar result has been

derived by Velasco (2003) for nonstationary fractional cointegration. Thus, suppose dp is estimated

by

d̂p = argmin
d2�

R̂ (d) ; (14)

R̂ (d) = log Ĝ (d)� 2d

m1

m1X
j=1

log �j ; Ĝ (d) =
1

m1

m1X
j=1

�2dj Îpp (�j) ;

where � = [0;�2] ; 0 < �2 < 1=2; is the parameter space and

Îpp (�j) = Ipp (�j) + (� � �̂m)0Re (Ixx (�j)) (� � �̂m) + 2(� � �̂m)0Re (Ixp (�j)) (15)

is the periodogram of the residual series ût = yt � �̂
0
mxt = ut + (� � �̂m)

0xt. The subscript xp in

(15) denotes the cross-periodogram between xt and ut (or equivalently, between xt and wpt). The

lower bound of the parameter space reects prior information that dp � 0, which seems reasonable
from a practical/empirical point of view. This condition could be relaxed at the cost of a longer

proof of the following theorem.

We introduce the following condition on the expansion rate of the bandwidth parameter used

for the local Whittle estimator of dp.

Assumption 5 The bandwidth parameter m1 = m1 (T ) satis�es

(log T )2 (logm1)

�
m0

m1

��min
+
m1+2�
1 (logm1)

2

T 2�
! 0 as T !1;

where m0 is the bandwidth parameter from Assumption 4.

The �rst part of Assumption 5 is essentially satis�ed if m1 diverges to in�nity at a faster rate

thanm0. The second part is the standard assumption on the bandwidth parameter for local Whittle

estimation, e.g. Robinson (1995a).
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Theorem 2 Let Assumptions 1-5 be satis�ed and suppose d̂p is given by (14) based on residuals

ût = yt � �̂
0
m0
xt, where �̂m0

is the NBLS estimator (9). Suppose dp belongs to the interior of �.

Then, as T !1,
d̂p � dp = OP

�
(logm1) (m0=m1)

�min
�

P! 0:

If, in addition, Gap = Gpa = 0 for a = 1; : : : ; p� 1 and (m0=m1)
2�min

p
m1=m0 ! 0, then

p
m1(d̂p � dp)

d! N (0; 1=4) as T !1:

Proof. See appendix B.

The second part of Theorem 2 shows that, under an additional (weak) restriction on the band-

width, the local Whittle estimator of the integration order of the errors is una�ected by the fact

that it is based on NBLS residuals only in the absence of long-run coherence between regressors and

errors. In the general case the local Whittle estimator remains consistent, although it converges

at a slower rate. Moreover, this result shows that in fact the three step procedure employed by

Marinucci & Robinson (2001b) and Christensen & Nielsen (2006) is only valid when there is no

long-run coherence, as in Christensen & Nielsen (2006). That is, inference on dp may, in the setup

of Christensen & Nielsen (2006), be conducted based on our distributional result in Theorem 2

and is equivalent to disregarding the fact that the estimator is based on residuals, as long as the

bandwidth parameter is chosen according to our assumptions.

3 Fully Modi�ed NBLS Estimation

We next consider estimation of the bias in NBLS from Theorem 1, i.e. estimation of K�1H. Note

that, from the de�nitions of K and H in Theorem 1 and its proof, we can equivalently write

K = ��1m �mFxx (�m) �m; H = �
dp�1
m �mFxp (�m) ; (16)

where Fab (�) =
R �
0 Re (fab (�)) d� is the integrated co-spectrum between wat and wbt. Thus, K is

the (scaled) integrated co-spectrum of xt and H is the (scaled) integrated co-spectrum between xt
and ut. By rewriting K and H in this way, the bias term K�1H is recognized to be the (scaled)

population equivalent to the coe�cient estimate in a regression of the errors from (3) on the

regressors. This mimics the corresponding well-known result from ordinary least squares when the

errors and regressors are correlated. However, in our stationary fractional cointegration setup the

bias term can be estimated and hence eliminated.

It follows that a natural estimator of the bias can be based on

�m2 = F̂�1xx (1;m2) F̂xp (1;m2) ;

using bandwidth parameter m2 = m2 (T ). However, the estimator �m2 is infeasible since the errors

ut are unobserved. Instead, the residuals from an initial NBLS regression, ût, may be used. De�ning
~Fxp (l;m) =

2�
T

Pm
j=l Re(Îxp(�j)) and noting that

~Fxp (1;m0) = 0 from the �rst order condition for

�̂m0
, yields the feasible estimator

�̂m2 = F̂�1xx (m0 + 1;m2) ~Fxp (m0 + 1;m2) : (17)

11



Thus, estimation ofK�1H can be based on simply calculating the coe�cient estimate in an auxiliary

NBLS regression of the residuals from the initial NBLS regression on the same set of regressors, xt,

i.e. on NBLS estimation of the auxillary regression

ût =  + �0xt + vt; t = 1; :::; T: (18)

Based on the discussion of the representations (4), (6), and (11), we also consider the estimator

��m2 =
�F�1xx (m0 + 1;m2) �Fxp (m0 + 1;m2) ; (19)

where �Fxx and �Fxp are based on

�Fab(k; l) =
2�

T

lX
j=k

Re(ei�j(da�db)=2Iab (�j)); 0 � k � l � T � 1;

which should more precisely approximate the integrated co-spectrum Fab (�), c.f. Assumption 1.

For the estimation of the bias term we need the following condition on the bandwidth m2.

Assumption 6 The bandwidth parameter m2 = m2 (T ) satis�es

m0

m2
+
m2

T
! 0 as T !1;

where m0 is the bandwidth from Assumption 4.

The �rst term in Assumption 6 ensures that (17) is based on an increasing number of peri-

odogram ordinates, m2 �m0. The second term ensures that estimation is conducted in a neigh-

borhood of the origin, which is su�cient for consistent NBLS estimation. We can now state the

following result regarding the estimation of the NBLS bias term.

Theorem 3 Let Assumptions 1-4 and 6 be satis�ed and assume that �̂m2 in (17) and
��m2 in (19)

are based on residuals ût = yt � �̂
0
m0
xt, where �̂m0

is the NBLS estimator (9). Then, as T !1,

�
dp
m2�

�1
m2
�̂m2 �K�1H = OP

�
n+

�m2

T

�min(1;�)
+
�m0

T

�min(1;�)� P! 0;

�
dp
m2�

�1
m2
��m2 �K�1H = OP

�
n+

�m2

T

��
+
�m0

T

��� P! 0;

where

n = n(T ) =

�
m0

m2

��min
+m

�1=2
2 (logm2): (20)

Proof. See appendix C.

This result implies that �
dp
m2�

�1
m2
�̂m2 or �

dp
m2�

�1
m2
��m2 based on residuals are consistent estimates

of K�1H. The theorem also implies, in conjunction with Theorem 2, that the bias �
�dp
m0 �m0K

�1H

of the NBLS estimate in Theorem 1 can be consistently estimated. It is even possible, based on

Theorems 2 and 3, to obtain a rate result for the bias, which we shall apply in the derivation of

the fully modi�ed estimator.
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The FMNBLS estimator is based on a new bandwidth parameter m3 = m3 (T ). In particular,

~�m3
= �̂m3

� ��d̂pm3 �̂m3�
d̂p
m2�̂

�1
m2
��m2 ; (21)

where �̂m = diag(�d̂1m ; : : : ; �
d̂p�1
m ). I.e., the fully modi�ed estimator ~�m3

is simply the NBLS esti-

mator corrected for the asymptotic bias. All the estimates of the integration orders are based on

the bandwidth m1. The bias correction term ��m2 is estimated using bandwidth m2 for (19) and

bandwidth m0 for the �̂ needed to obtain the residuals upon which both (19) and d̂p are based. We

could have equivalently considered �̂m2 , but Theorem 3 shows that ��m2 converges at a faster rate

than �̂m2 . Note that in Theorem 3 the estimator of K
�1H is based on the periodograms integrated

over �m0+1; : : : ; �m2 and therefore truncates the �rst m0 Fourier frequencies, which may introduce

variance ination in �nite samples. For example, Hurvich, Deo & Brodsky (1998) report Monte

Carlo variance ination from trimming the lowest frequencies in the log-periodogram regression,

even though theoretically trimming the lowest frequencies has no detrimental e�ect. However, as

noted above, we cannot use the lowest m0 frequencies due to the �rst order condition for the initial

NBLS estimator. This di�ers from the fully modi�ed estimator in Phillips & Hansen (1990), which

uses the frequencies closest to the origin to estimate the bias term.

For the bandwidth m3 = m3 (T ) of the FMNBLS estimator, we need the following condition.

Assumption 7 The bandwidth parameter m3 = m3 (T ) satis�es

1

m3
+
m
1+2min(1;�)
3

T 2min(1;�)
+m3

�
m0

m2

�2�min
+m3

�m2

T

�2�
+
(logm2)

2m3

m2
+(log T )2 (logm1)

2m3

�
m0

m1

�2�min
! 0

as T !1, where m0, m1, and m2 are the bandwidth parameters from Assumptions 4-6, and � is

the smoothness parameter from Assumption 1.

The condition on m3 is in some ways complicated and in others quite mild and simple. The �rst

two terms state that m3 has to satisfy the NBLS assumption for the bandwidth, c.f. Assumption

4. At the same time, m3 must diverge to in�nity at a slower rate than m2 (third through �fth

terms on the left-hand side) and a slower rate than m1 (sixth term on the left-hand side). Note

that if m1 and m2 diverge to in�nity at much faster rates than m0 and the cointegrating strength,

�min, is large, Assumption 7 is less restrictive. Furthermore, Assumption 7 is simple and easily

satis�ed because it is always feasible to choose m3 = m0, in which case there is no need to obtain

a new NBLS estimate upon which to base the FMNBLS estimate (21). In that case the condition

simpli�es signi�cantly, and in particular the relevant assumption then becomes

m1+2�min
0

m2�min
2

+m0

�m2

T

�2�
+
(logm2)

2m0

m2
+ (log T )2 (logm1)

2m
1+2�min
0

m2�min
1

! 0 as T !1; (22)

in addition to Assumptions 4-6 already placed on m0, m1, and m2. Note that the third term

only adds a logarithmic factor relative to Assumption 6. To illustrate the restriction placed on

the bandwidths by the �rst and last terms of (22), suppose we are in the empirically relevant (see

section 5 below) situation �min = 0:4. Then choosing m0 = m3 = T 0:3 is feasible if at the same time

m1 = T 0:675+ 1 andm2 = T 0:675+ 2 for any  1;  2 > 0. On the other hand, if m1 = m2 = T 0:8 then
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choosing m0 = m3 = T 32=90� 0 for any  0 > 0 is feasible which is only slightly restrictive in light

of Assumption 4 on m0. Also note that it is in fact feasible in some cases to choose m2 to diverge

faster than T 0:8, which is even faster than the rate allowed in NBLS estimation, c.f. Assumption 4.

In any case, the rate of convergence of ~�m3
in the following theorem is mostly a�ected by

the distance �min and not so much by the choice of m0 = m3. For example, if �min = 0:4 and

m0 = m3 = T 0:3, the rate of convergence of ~�m3
in (23) is T 0:43 which is close to the usual

p
T -

convergence in spite of the low bandwidth rate for m3. In general, when m0 = m3 = T � and

�min = �, the rate of convergence of ~�m3
is T �(0:5��)+�. Therefore, for any �, when � ! 1=2 the

rate of convergence of ~�m3
approaches

p
T , which is the best rate attainable for fully parametric

estimators based on complete and correct speci�cation of the spectral density at all frequencies.

Theorem 4 Let Assumptions 1-7 or Assumptions 1-6 and (22) be satis�ed and let ~�m3
be the

FMNBLS estimator (21). Then

p
m3�

dp
m3�

�1
m3
(~�m3

� �) d! N
�
0;K�1JK�1� as T !1; (23)

where K and J are de�ned in Theorem 1.

Proof. See appendix D.

The result in Theorem 4 demonstrates that it is possible to obtain an asymptotically unbiased

estimate of the cointegration vector in the stationary fractional cointegration model (3) even in the

presence of long-run coherence. More generally, it proves that it is possible to consistently estimate

(with a mean zero asymptotic distribution) the relation between stationary time series even when

the regressors and the errors are correlated at any frequency. A necessary condition is that the time

series in question are stationary fractionally cointegrated. A similar result to Theorem 4 is obtained

by Hualde & Robinson (2006) who derive the asymptotic distribution theory for a related inverse

spectral density weighted estimator, see also Nielsen (2005), which is shown to be asymptotically

normal in the stationary case.

Compared to the NBLS estimator of Theorem 1, the fully modi�ed estimator incurs no asymp-

totic variance ination, only bias correction. Indeed, the FMNBLS estimator enjoys a faster rate

of convergence than the NBLS estimator in the general case with non-zero coherence between the

regressors and the errors at the origin. In particular, in the notation of the example following

Theorem 1, the asymptotic mean squared error of the two estimators are related as

AMSE(�̂m3
) = m3�

2du�2dx
m3

E(�̂m3
� �)2 = ! +m3�

2 = AMSE(~�m3
) +m3�

2:

Thus, FMNBLS with the asymptotic distribution theory of Theorem 4 constitutes a much more

useful inferential tool for the stationary fractional cointegration model than the NBLS estimator,

which is commonly used in previous work in this area and applied especially in �nancial economics.

Consistent estimation of the parameters appearing in the variance of the limiting distribution

in (23) can be based on Theorem 2 in conjunction with the estimator

Ĝab (�; d) =
1

m2

m2X
j=1

Re
�
�da+dbj ei(�j��)(da�db)=2Iab (�j)

�
;
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where d = (d1; :::; dp). Note that � enters in Iab (�j) if a = p and/or b = p. In particular, if ~I (�j)

is based on the fully modi�ed residuals ~ut = yt � ~�
0
m3
xt, we have

Ĝ(~�m3
; d̂) =

1

m2

m2X
j=1

Re
�
�d̂a+d̂bj ei(�j��)(d̂a�d̂b)=2 ~Iab (�j)

�
P! G

as T ! 1. The proof of this statement follows as in Propositions 2 and 3 of Robinson & Yajima

(2002) by noting that ~�a;m3
� �a = OP (m

�1=2
3 �

da�dp
m3 ), and is therefore omitted.3

4 Simulation Evidence

In this section we investigate the �nite sample behavior of the FMNBLS estimator introduced above

and compare with the performance of the NBLS estimator and the MLW estimator4 of Robinson

(2008). We consider the following three two-dimensional generating mechanisms for xt and ut in

the cointegrating relation (3),

Model A : xt = (1� L)�dx "1t; ut = (1� L)�du "2t;
Model B : xt = (1� L)�dx v1t; ut = (1� L)�du "2t; v1t = a1v1;t�1 + "1t;

Model C : xt = (1� L)�dx "1t; ut = (1� L)�du v2t; v2t = a2v2;t�1 + "2t;

where "t = ("1t; "2t)
0 is independently and identically N(0;
) distributed with


 =

"
� ��1=2

��1=2 1

#
:

Thus, � = var ("1t) =var ("2t) is the signal-to-noise ratio and � = corr("1t; "2t) is the contempora-

neous correlation between the innovations "1t and "2t.

Based on the pair (xt; ut) we generate yt from (3) with � = 1. For all the simulations we

generate the data with (dx; du) = (0:4; 0) which is close to what is expected in many practical

situations concerning e.g. �nancial volatility series. This choice is also supported by the empirical

applications below where we �nd estimates very close to these values in almost all cases. Unreported

simulations reveal that the bias in NBLS is more severe when the integration orders are closer, e.g.

(dx; du) = (0:3; 0:1), which also reduces the e�ectiveness of the bias correction procedure.
5 However,

the bias reduction in FMNBLS relative to NBLS remains noteworthy in that case, and for larger

sample sizes the bias reduction works as well as with (dx; du) = (0:4; 0).

Models A, B, and C satisfy all the assumptions of the model, and are increasing in complexity

with Model A having no short-run dynamics whereas Models B and C include short-run dynam-

ics. Model B adds short-run dynamics to the regressor and thus disturbs the signal due to the

contamination of the low frequencies of xt from the higher frequencies which are dominated by the

short-run dynamics. In Model C short-run dynamics is present in ut instead of xt. Note that

G =

"
�(1� a1)�2 ��1=2(1� a1)�1(1� a2)�1

��1=2(1� a1)�1(1� a2)�1 (1� a2)�2

#
(24)

3Also note that, as in Theorem 2, local Whittle estimation of the integration order of the errors based on FMNBLS

residuals is consistent and, if m0 = m3, then ~dp�dp = OP (m�1=2
0 (logm1) (m0=m1)

�min), which converges faster than

when based on NBLS residuals.
4I thank the editor and an anonymous referee for suggesting this comparison.
5The results for (dx; du) = (0:3; 0:1) are available from the authors upon request.
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such that when � 6= 0 the G matrix is not diagonal and the distribution theory for NBLS from

Christensen & Nielsen (2006) no longer applies, see Theorem 1. However, the NBLS estimator is

still consistent when � 6= 0. On the other hand, FMNBLS should be able to handle the presence of
the long-run endogeneity that is due to � 6= 0, as shown in Theorem 4 above.

We also consider the three-dimensional generating mechanism

Model D: x1t = (1� L)�d1 "1t; x2t = (1� L)�d2 "2t; yt = x1t + x2t + (1� L)�d3 "3t;

where d1 � d2 > d3 and "t = ("1t; "2t; "3t)
0 is independently and identically N(0;
) distributed

with


 =

264 1 0:5 �0:75
0:5 1 �0:75
�0:75 �0:75 1

375 :
Note that in Model D the cointegrating regression (3) is yt = x1t + x2t + ut, i.e., � = (1; 1)

0; x1t 2
I(d1); x2t 2 I(d2); ut 2 I(d3), and yt 2 I(d1). Hence, this illustrates a three-dimensional model

where the integration orders of the regressors are not necessarily the same, while at the same time

all assumptions are satis�ed; in particular there is no cointegration among the regressors. When

d1 > d2 there is also cointegration between yt and x1t since yt�x1t = x2t+ut 2 I(d2), although this is
dominated in the three-dimensional system by the cointegrating relation yt�x1t�x2t = ut 2 I(d3).

For each model we use 10; 000 replications for sample sizes T = 128 and T = 512, which are close

to what is found in practical applications, see also the following section, although many applications

in �nance will have much larger sample sizes. The bandwidth parameters chosen for the simulation

study are mi = bT ic; i = 0; 1; 2; 3, where  0 = 0:3; 0:5,  1 = 0:6; 0:8,  2 = 0:8,  3 =  0, and bxc
denotes the largest integer less than or equal to x.

Tables 1-3 present the Monte Carlo bias and root mean squared error (RMSE) results for Models

A-C. As expected from (13), we �nd that changing the sign of the contemporaneous correlation �

only causes the bias to change sign but not size, so we only report results for � � 0. For comparison,
we also report the corresponding results for the MLW estimator of Robinson (2008) with bandwidth

m1 and using the NBLS, dx, and du estimates also applied in FMNBLS as starting values, see

Robinson (2008, Remark 3). The MLW objective function is optimized by the BFGS algorithm

and terminated when the convergence criterion � = 10�6 is satis�ed or after 100 iterations6.

Table 1 presents the results for Model A. A general �nding is that increasing the signal-to-noise

ratio � from 1=2 to 2, halves the bias of NBLS and thus also improves the bias-reducing ability of

the FMNBLS procedure. This is due to the fact that the contemporaneous covariance between "1t
and "2t is halved when � increases from 1=2 to 2. Furthermore, estimating K�1H in (13) when it

in fact is zero because � = 0 inates the variance (and hence the RMSE) of FMNBLS relative to

that of NBLS, but the fully modi�ed procedure still yields unbiased estimates of �. For � = �0:75
(and � = 0:75), the FMNBLS procedure bias-corrects NBLS although this comes at the expense

of an increase in the �nite sample standard error of up to 50%. However, the RMSE of FMNBLS

in that case is (much) lower than that of NBLS. For the larger sample size, T = 512, FMNBLS

yields almost unbiased estimates for all bandwidths with RMSEs much smaller than those of NBLS,

6In the case of non-convergence after 100 iterations the replication in question was dropped from the experiment.

Increasing the number of iterations required before termination of the numerical optimization signi�cantly worsens

the results for the MLW estimator.
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Table 1: Simulation Results for Model A
� = �0:75 � = 0

Bandwidths NBLS FMNBLS MLW NBLS FMNBLS MLW
� m0 m1 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: T = 128

1 bT 0:3c bT 0:6c -0.221 0.249 -0.067 0.178 0.218 0.987 0.001 0.158 0.002 0.238 0.004 0.935
bT 0:8c -0.060 0.170 0.279 0.612 0.003 0.232 -0.004 0.534

bT 0:5c bT 0:6c -0.296 0.309 -0.028 0.145 0.165 0.905 0.001 0.114 0.002 0.195 0.008 1.025
bT 0:8c -0.028 0.141 0.279 0.612 0.002 0.194 0.001 0.364

2 bT 0:3c bT 0:6c -0.156 0.175 -0.046 0.125 0.163 0.725 0.001 0.112 0.001 0.166 0.006 0.810
bT 0:8c -0.041 0.119 0.195 0.458 0.001 0.163 -0.000 0.320

bT 0:5c bT 0:6c -0.209 0.218 -0.020 0.102 0.128 0.703 0.001 0.081 0.000 0.137 -0.001 0.751
bT 0:8c -0.020 0.099 0.200 0.512 0.000 0.136 0.001 0.299

Panel B: T = 512

1 bT 0:3c bT 0:6c -0.139 0.150 -0.039 0.085 0.068 0.252 0.000 0.080 0.001 0.107 -0.005 0.385
bT 0:8c -0.035 0.082 0.102 0.146 0.001 0.105 0.001 0.093

bT 0:5c bT 0:6c -0.203 0.208 0.005 0.068 0.066 0.227 0.000 0.057 0.001 0.089 0.002 0.330
bT 0:8c 0.000 0.067 0.102 0.146 0.001 0.089 0.001 0.093

2 bT 0:3c bT 0:6c -0.099 0.106 -0.029 0.060 0.043 0.149 -0.000 0.056 -0.001 0.075 0.000 0.150
bT 0:8c -0.025 0.058 0.071 0.102 -0.000 0.075 -0.001 0.067

bT 0:5c bT 0:6c -0.144 0.147 0.003 0.048 0.043 0.158 -0.000 0.040 -0.001 0.063 -0.000 0.151
bT 0:8c 0.000 0.047 0.071 0.102 -0.001 0.063 -0.001 0.067

Note: The simulations are based on 10,000 replications under the empirically relevant scenario

(dx; du) = (0:4; 0); with bandwidths m2 = bT 0:8c and m3 = m0.

except when � = 0. Even though the bias of NBLS increases (and becomes fairly large) for larger

m0, the fully modi�ed procedure is still able to correct this, and indeed the bias of FMNBLS is

smaller when m0 (= m3) is larger. Since there is no short-run dynamics, the choice of m1 appears

less important. The MLW estimator performs quite poorly compared to both NBLS and FMNBLS,

especially for T = 128. Interestingly, the sign of the bias of MLW is opposite that of NBLS.

Table 2 presents the simulation results for Model B with autoregressive coe�cients a1 = �1=2
or a1 = 1=2.

7 Now, (4) is a worse approximation to (12) when moving only a short distance away

from the origin, due to the contamination from higher frequencies (short-run dynamics), and we

therefore expect the bias of NBLS (and possibly also of FMNBLS) to be larger than for the case

of no short-run dynamics. Interestingly, for Model B it appears that the biases and RMSEs of

NBLS and FMNBLS are lower than for Model A when a1 = 1=2 and higher than for Model A when

a1 = �1=2. In Model B the MLW estimator is sometimes equal to or better than FMNBLS in

terms of RMSE, but this is only when a1 = 1=2 and m1 = bT 0:8c and T = 512. In all other cases
it does not perform as well as FMNBLS, and it even has some convergence problems in some cases

which are marked by asterisks in the table.

Next, we turn to Model C, and Table 3 presents the simulation results, which are quite di�erent

for a2 = �1=2 and a2 = 1=2. Compared to the results of Model A, the NBLS estimator is actually
less biased in this setup when a2 = �1=2. This suggests that the negative autocorrelation in

ut o�sets some of the bias in the NBLS estimate introduced by the contemporaneous covariance

7For Models B and C we report the simulation results for � = 2 only. The results for � = 1=2 are qualitatively

similar, see also Table 1.
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Table 2: Simulation Results for Model B

� = �0:75 � = 0
Bandwidths NBLS FMNBLS MLW NBLS FMNBLS MLW

a1 m0 m1 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: T = 128

�1=2 bT 0:3c bT 0:6c -0.241 0.269 -0.121 0.213 0.370 1.357 0.002 0.167 0.003 0.255 0.011 1.360
bT 0:8c -0.044 0.201 0.612 2.019� 0.004 0.287 0.012 1.314

bT 0:5c bT 0:6c -0.328 0.342 -0.176 0.232 0.248 1.323 0.001 0.120 0.002 0.202 0.002 1.182
bT 0:8c -0.125 0.206 0.441 2.176� 0.002 0.224 0.010 1.419

1=2 bT 0:3c bT 0:6c -0.072 0.082 -0.031 0.061 -0.017 0.105 0.000 0.056 0.000 0.076 0.003 0.226
bT 0:8c -0.043 0.064 0.003 0.051 0.000 0.067 0.000 0.061

bT 0:5c bT 0:6c -0.089 0.095 0.038 0.065 -0.018 0.109 0.000 0.043 0.000 0.071 0.002 0.229
bT 0:8c 0.015 0.048 0.003 0.051 0.000 0.062 0.000 0.061

Panel B: T = 512

�1=2 bT 0:3c bT 0:6c -0.149 0.161 -0.048 0.093 0.122 0.339 0.000 0.084 0.001 0.114 -0.000 0.265
bT 0:8c -0.008 0.085 0.249 0.345 0.001 0.121 0.000 0.121

bT 0:5c bT 0:6c -0.221 0.227 -0.030 0.078 0.118 0.327 0.000 0.060 0.001 0.093 0.001 0.224
bT 0:8c 0.001 0.074 0.247 0.332 0.001 0.100 0.000 0.121

1=2 bT 0:3c bT 0:6c -0.048 0.052 -0.024 0.034 -0.014 0.036 -0.000 0.028 -0.000 0.036 0.000 0.053
bT 0:8c -0.034 0.041 -0.019 0.026 -0.000 0.032 -0.000 0.026

bT 0:5c bT 0:6c -0.066 0.068 0.002 0.023 -0.014 0.036 -0.000 0.020 -0.000 0.032 0.001 0.097
bT 0:8c -0.017 0.027 -0.019 0.026 -0.000 0.027 -0.000 0.026

Note: The simulations are based on 10,000 replications under the empirically relevant scenario

(dx; du) = (0:4; 0); with bandwidths m2 = bT 0:8c and m3 = m0. An asterisk indicates that MLW

did not converge for 5-10% of the replications.

between xt and ut, see (24). Consequently, the FMNBLS procedure works very well and generally

yields large reductions in bias and also smaller RMSEs when a2 = �1=2. When a2 = 1=2, Model
C renders extremely high biases (in absolute value) for NBLS. For the small sample size the NBLS

biases (when � 6= 0) range from 0:33 to 0:43 in absolute value, and for the large sample size the

biases are still about two-thirds of the bias for the smaller sample size. For the small sample

size, this yields an imprecise estimate of K�1H in (13), and as a result FMNBLS is still biased,

although the fully modi�ed procedure generally still manages to reduce the bias quite considerably

while having a smaller RMSE than NBLS. For T = 512 FMNBLS has low bias and the RMSE is

again (much) smaller than that of NBLS. The performance of MLW is similar to that in Table 2

with convergence problems when a2 = 1=2, even for the large sample size, and performance equal

to or better than that of FMNBLS only when a2 = �1=2 and m1 = bT 0:8c.
Finally, we turn to Model D with two regressors with memory parameters (d1; d2). In this case,

as in Model A, the bandwidth m1 has no signi�cant e�ect since there is no short-run dynamics.

The bandwidth m0 appears to also be of no real importance for RMSE comparisons. However,

it is important for the bias of NBLS, which increases with m0, but not for the bias of FMNBLS.

The most interesting aspect of Model D is the comparison across di�erent values of (d1; d2). In

this respect we �nd that for NBLS and especially FMNBLS the RMSE appears to be higher for

the coe�cient on the variable with the lowest memory parameter. This �nding is in line with

unreported simulations of Models A-C with (dx; du) = (0:3; 0:1).
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Table 3: Simulation Results for Model C

� = �0:75 � = 0
Bandwidths NBLS FMNBLS MLW NBLS FMNBLS MLW

a2 m0 m1 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: T = 128

�1=2 bT 0:3c bT 0:6c -0.102 0.115 -0.018 0.080 0.035 0.326 0.000 0.075 0.001 0.112 0.003 0.456
bT 0:8c -0.040 0.078 -0.014 0.075 0.001 0.096 0.001 0.100

bT 0:5c bT 0:6c -0.133 0.139 0.033 0.077 0.026 0.311 0.000 0.055 0.001 0.096 0.003 0.400
bT 0:8c 0.010 0.062 -0.014 0.075 0.001 0.085 0.001 0.100

1=2 bT 0:3c bT 0:6c -0.329 0.364 -0.195 0.326 0.279 2.024� 0.002 0.219 0.002 0.372 0.020 2.046
bT 0:8c -0.067 0.342 -0.420 2.040�� 0.002 0.456 0.001 2.516�

bT 0:5c bT 0:6c -0.430 0.446 -0.331 0.392 -0.085 1.898�� 0.001 0.152 0.002 0.273 0.008 1.849
bT 0:8c -0.282 0.374 -0.573 1.941� 0.001 0.316 -0.009 2.368�

Panel B: T = 512

�1=2 bT 0:3c bT 0:6c -0.065 0.070 -0.018 0.040 0.010 0.073 0.000 0.038 0.000 0.050 -0.001 0.117
bT 0:8c -0.028 0.043 -0.014 0.033 0.000 0.046 0.000 0.040

bT 0:5c bT 0:6c -0.093 0.096 0.007 0.032 0.010 0.075 0.000 0.027 0.000 0.042 -0.001 0.107
bT 0:8c -0.006 0.031 -0.014 0.033 0.000 0.040 0.000 0.040

1=2 bT 0:3c bT 0:6c -0.202 0.218 -0.092 0.141 0.327 0.762 -0.001 0.113 -0.001 0.158 -0.008 0.493
bT 0:8c 0.058 0.158 0.385 2.770�� -0.001 0.206 -0.006 1.415

bT 0:5c bT 0:6c -0.301 0.308 -0.137 0.168 0.301 0.708 -0.001 0.080 -0.001 0.126 -0.013 0.675
bT 0:8c -0.042 0.127 -0.217 2.693�� -0.002 0.154 -0.003 1.248

Note: The simulations are based on 10,000 replications under the empirically relevant scenario

(dx; du) = (0:4; 0); with bandwidths m2 = bT 0:8c and m3 = m0. One and two asterisks indicate

that MLW did not converge for 5-10% of the replications and 10-25% of the replications, respectively.

Overall, the simulations clearly demonstrate the superiority (especially in terms of bias) of the

fully modi�ed estimator relative to NBLS in the presence of non-zero long-run coherence between

the regressor and the error. In all models, the bias-reduction of FMNBLS relative to NBLS is

considerable, and for the larger sample size the bias practically disappears. The cost of this bias

correction is an increase in the �nite sample standard deviation of approximately 30-50% for the

models considered here, although the results indicate that this is more than o�-set by the large

bias reduction when � 6= 0 to yield reductions in the RMSE.

5 Empirical Illustrations

We apply NBLS and FMNBLS to three di�erent empirically relevant examples.

5.1 The Implied-Realized Volatility Relation

Recent contributions by, e.g., Comte & Renault (1998), Bandi & Perron (2006), and Christensen &

Nielsen (2006), including empirical evidence, have pointed towards viewing the predictive regression

between implied volatility (IV) and realized volatility (RV) as one of stationary fractional cointe-

gration. However, the possible existence of a volatility risk premium that is correlated with IV can

bias the NBLS estimate from a regression of RV on IV, which ultimately can lead to a wrongful

rejection of the long-run unbiasedness hypothesis, see Bandi & Perron (2006). Furthermore, the

existence of an unobserved risk premium can also imply a negative intercept in the regression, and
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Table 4: Simulation Results for Model D
Bandwidths NBLS FMNBLS

(d1; d2) m0 m1 Bias1 Bias2 RMSE1 RMSE2 Bias1 Bias2 RMSE1 RMSE2
Panel A: T = 128

(0:25; 0:25) bT 0:3c bT 0:6c -0.247 -0.209 0.262 0.250 -0.175 -0.128 0.220 0.250
bT 0:8c -0.169 -0.120 0.216 0.233

bT 0:5c bT 0:6c -0.290 -0.259 0.295 0.271 -0.198 -0.159 0.219 0.214
bT 0:8c -0.200 -0.160 0.218 0.211

(0:40; 0:25) bT 0:3c bT 0:6c -0.159 -0.143 0.176 0.207 -0.073 -0.027 0.132 0.244
bT 0:8c -0.063 -0.016 0.126 0.242

bT 0:5c bT 0:6c -0.210 -0.204 0.216 0.223 -0.073 -0.050 0.114 0.174
bT 0:8c -0.075 -0.054 0.112 0.167

(0:40; 0:40) bT 0:3c bT 0:6c -0.161 -0.141 0.178 0.186 -0.086 -0.058 0.134 0.182
bT 0:8c -0.079 -0.048 0.129 0.179

bT 0:5c bT 0:6c -0.212 -0.201 0.218 0.216 -0.088 -0.074 0.121 0.153
bT 0:8c -0.090 -0.074 0.120 0.147

Panel B: T = 512

(0:25; 0:25) bT 0:3c bT 0:6c -0.190 -0.150 0.198 0.173 -0.117 -0.067 0.140 0.142
bT 0:8c -0.114 -0.060 0.137 0.139

bT 0:5c bT 0:6c -0.241 -0.205 0.243 0.211 -0.142 -0.095 0.152 0.127
bT 0:8c -0.146 -0.097 0.155 0.126

(0:40; 0:25) bT 0:3c bT 0:6c -0.099 -0.069 0.107 0.115 -0.031 0.040 0.062 0.142
bT 0:8c -0.024 0.050 0.059 0.143

bT 0:5c bT 0:6c -0.147 -0.128 0.150 0.140 -0.021 0.033 0.050 0.105
bT 0:8c -0.025 0.027 0.051 0.096

(0:40; 0:40) bT 0:3c bT 0:6c -0.098 -0.076 0.106 0.099 -0.040 -0.013 0.065 0.083
bT 0:8c -0.036 -0.003 0.062 0.083

bT 0:5c bT 0:6c -0.147 -0.127 0.150 0.135 -0.033 -0.008 0.056 0.072
bT 0:8c -0.038 -0.009 0.057 0.068

Note: The simulations are based on 10,000 replications with d3 = 0 and bandwidths m2 = bT 0:8c
and m3 = m0.

thus long-run unbiasedness is typically upheld if the cointegrating coe�cient is � = 1 regardless of

the presence of the intercept.

We sample S&P500 index options (SPX) data from the Berkeley options data base covering the

period January 1988 through December 1995 and calculate T = 412 weekly Black-Scholes implied

volatilities and the corresponding S&P500 realized volatilities, see Christensen & Nielsen (2006) for

details. In particular, Christensen & Nielsen (2006) �nd that the log-volatilities are stationary, with

insigni�cantly di�erent long memory estimates, and that NBLS regression yields a cointegrating

coe�cient � ranging from 0:84 to 0:89 for di�erent bandwidth choices.

Panel A of Table 5 shows the memory estimates for the two log-volatility series. As found by

Christensen & Nielsen (2006), the series are stationary (d < 1=2) and exhibit long memory with

fairly stable estimates across bandwidths. Since the memory estimates are approximately equal,

we next turn to the long-run relation estimates.

In Panel B of the table we show estimates (with asymptotic standard errors in parentheses) of

the stationary fractional cointegration relation between the two log-volatility series, IV and RV.
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Table 5: Implied-Realized Volatility Application
Panel A: Long Memory Estimates, d̂

Realized volatility Implied volatility
Bandwidth yt = ln�RV;t xt = ln�IV;t
m1 = bT 0:6c 0:4476

(0:0822)
0:4527
(0:0822)

m1 = bT 0:7c 0:4162
(0:0606)

0:3503
(0:0606)

m1 = bT 0:8c 0:4180
(0:0449)

0:2801
(0:0449)

Panel B: Cointegration Analysis

NBLS FMNBLS

Bandwidths �̂m3 �̂m3
d̂û ~�m3

~�m3
d̂~u

m0 = bT 0:3c;m1 = bT 0:7c �0:9305 0:8412
(0:1521)

0:0974
(0:0606)

�0:4789 1:0631
(0:1660)

0:0873
(0:0606)

m0 = bT 0:3c;m1 = bT 0:8c �0:9305 0:8412
(0:1459)

0:0704
(0:0449)

�0:4088 1:0975
(0:1703)

0:0550
(0:0449)

m0 = bT 0:4c;m1 = bT 0:7c �0:9403 0:8364
(0:1325)

0:0987
(0:0606)

�0:3846 1:1094
(0:1616)

0:0945
(0:0606)

m0 = bT 0:4c;m1 = bT 0:8c �0:9403 0:8364
(0:1227)

0:0718
(0:0449)

�0:3149 1:1436
(0:1540)

0:0600
(0:0449)

Panel A reports local Whittle estimates of the fractional integration orders as described in Robinson

(1995a). Numbers in parentheses are asymptotic standard errors using
p
m1(d̂ � d)

d! N(0; 1=4).

Panel B reports NBLS and FMNBLS estimates with m2 = bT 0:8c and m3 = m0. The asymptotic

standard errors for the NBLS and FMNBLS estimates are based on (13) and (23), respectively.

Standard errors for d̂û and d̂~u are based on the same asymptotic distribution as d̂, and should be

used with caution, see Theorem 2.

We follow Marinucci & Robinson (2001b) and Christensen & Nielsen (2006) and choose rather

narrow bandwidths for the NBLS and FMNBLS estimates, in this case m0 = m3 = bT 0:3c and
m0 = m3 = bT 0:4c, see also Assumption 7 and the discussion thereafter. The NBLS estimates are
of course in line with the results of Christensen & Nielsen (2006), with the parameter of interest, �,

estimated to be 0:84 which is not signi�cantly di�erent from unity when applying the asymptotic

distribution theory in Theorem 1. The FMNBLS procedure corrects for the possible correlation

between the regressor and the error term; those estimates are displayed in the �nal columns. With

our choice of m2 = bT 0:8c and m1 = bT 0:7c or m1 = bT 0:8c we obtain point estimates of � that are
now slightly above unity, but clearly still insigni�cantly di�erent from unity. Thus, all our estimates

support the long-run unbiasedness hypothesis, � = 1. Notice that both the NBLS and FMNBLS

estimates support an I(d)� I(0) relation with d around 0:35� 0:4, although the usual asymptotic
distribution may not apply for d̂û and d̂~u, see Theorem 2.

5.2 Ination Rate Harmonization in the European Union

We also examine consumer price indices of France and Spain. Methods for calculating the consumer

price index vary across di�erent countries, which makes international comparison more di�cult,

and because of this we use the harmonized index for consumer prices (HICP) developed within the

European Union based on a coordinated methodology.

Since the di�erentials between the ination rates of individual member countries of the European

Union are constrained, we expect that there exists a stable relationship between the ination rates.

Furthermore, based on evidence of long memory in ination rates in Doornik & Ooms (2004) we
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Table 6: Ination Rate Harmonization Application
Panel A: Long Memory Estimates, d̂

Spain France
Bandwidth yt = �S;t xt = �F;t
m1 = bT 0:5c 0:4007

(0:1443)
0:3048
(0:1443)

m1 = bT 0:6c 0:0990
(0:1118)

�0:0690
(0:1118)

m1 = bT 0:7c �0:1847
(0:0857)

�0:1377
(0:0857)

Panel B: Cointegration Analysis

NBLS FMNBLS

Bandwidths �̂m3 �̂m3
d̂û ~�m3

~�m3
d̂~u

m0 = bT 0:3c;m1 = bT 0:5c 0:0011 1:1395
(0:3139)

0:0852
(0:1443)

0:0006 1:4789
(0:2561)

0:0276
(0:1443)

m0 = bT 0:4c;m1 = bT 0:5c 0:0012 1:0577
(0:2965)

0:1063
(0:1443)

0:0007 1:4037
(0:2290)

0:0368
(0:1443)

Panel A reports local Whittle estimates of the fractional integration orders as described in Robinson

(1995a). Numbers in parentheses are asymptotic standard errors using
p
m1(d̂ � d)

d! N(0; 1=4).

Panel B reports NBLS and FMNBLS estimates with m2 = bT 0:8c and m3 = m0. The asymptotic

standard errors for the NBLS and FMNBLS estimates are based on (13) and (23), respectively.

Standard errors for d̂û and d̂~u are based on the same asymptotic distribution as d̂, and should be

used with caution, see Theorem 2.

expect that relationship to be one of stationary fractional cointegration. We calculate T = 159

monthly ination rates based on the HICP of France and Spain. This data was obtained from

Eurostat and covers the period January 1992 through April 2005.

Panel A of Table 6 shows that the memory estimates decrease as the bandwidth increases. This

may be due to an added noise perturbation or, more likely, due to the distinct seasonal patterns

in ination series; possibly reecting seasonal long memory, see Doornik & Ooms (2004). Instead

of �ltering this out by ad hoc procedures, we focus on the results for the lowest bandwidth, m1 =

bT 0:5c, which should be less sensitive to contamination from higher (e.g. seasonal) frequencies. For

this bandwidth, the memory estimates for both ination rates imply that the series are stationary.

Panel B of Table 6 again supports the notion of I(d) � I(0) cointegration with d around 0:35.

Here, the FMNBLS estimates appear somewhat higher than the NBLS estimates. In particular,

the FMNBLS estimates of the cointegration coe�cient are signi�cantly higher than unity at the

10% level in both cases, implying that the long-run rate of ination in Spain is higher than that

of France (by about 40% according to the point estimates). In addition, the estimates of d for the

residuals are lower for FMNBLS than for NBLS although all appear insigni�cantly di�erent from

zero (again, the usual asymptotic distribution may not apply, see Theorem 2).

5.3 Realized Volatility Relations

Finally, we analyze the relation between the realized volatility of the General Electric (GE) stock

and those of the Dow Jones Industrial Average and NASDAQ 100 indices. I.e., there are three

variables in this application. The realized volatilites are monthly and are constructed based on

daily returns calculated as the di�erence in log-close and log-open prices. The sample covers

January 1990 to December 2008, i.e. T = 228.
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Table 7: Realized Volatility Relations Application
Panel A: Long Memory Estimates, d̂

GE Dow Jones NASDAQ
Bandwidth yt = �

2
GE;t x1t = �

2
DJ;t x2t = �

2
ND;t

m1 = bT 0:6c 0:4350
(0:1000)

0:3526
(0:1000)

0:4383
(0:1000)

m1 = bT 0:7c 0:5114
(0:0754)

0:4192
(0:0754)

0:6119
(0:0754)

m1 = bT 0:8c 0:4027
(0:0574)

0:4319
(0:0574)

0:3894
(0:0574)

Panel B: Cointegration Rank Analysis

Eigenvalues of P L(u)
Bandwidths 1 2 3 u = 0 u = 1 u = 2

m0 = bT 0:3c;m1 = bT 0:6c 2:4673 0:5106 0:0221 �1:4241 �1:9273 �1:9420
m0 = bT 0:3c;m1 = bT 0:8c 2:4677 0:5102 0:0221 �1:4241 �1:9273 �1:9424
m0 = bT 0:4c;m1 = bT 0:6c 2:3523 0:5889 0:0588 �1:6942 �2:0706 �1:9170
m0 = bT 0:4c;m1 = bT 0:8c 2:3527 0:5885 0:0588 �1:6942 �2:0707 �1:9174
Panel C: Cointegration Regression Analysis

NBLS FMNBLS

Bandwidths �̂m3 �̂m3
d̂û ~�m3

~�m3
d̂~u

m0 = bT 0:3c;m1 = bT 0:6c �0:0000 1:6913
(0:1334)

0:1939
(0:0171)

�0:0048
(0:1000)

�0:0004 1:8408
(0:1570)

0:2103
(0:0220)

0:0137
(0:1000)

m0 = bT 0:3c;m1 = bT 0:8c �0:0000 1:6913
(0:1120)

0:1939
(0:0328)

0:0268
(0:0574)

�0:0004 1:8187
(0:2664)

0:2158
(0:0407)

0:0588
(0:0574)

m0 = bT 0:4c;m1 = bT 0:6c 0:0001 1:6478
(0:1337)

0:1825
(0:0208)

0:0192
(0:1000)

�0:0003 1:8434
(0:1345)

0:1892
(0:0179)

�0:0010
(0:1000)

m0 = bT 0:4c;m1 = bT 0:8c 0:0001 1:6478
(0:1091)

0:1825
(0:0307)

0:0296
(0:0574)

�0:0003 1:8081
(0:1430)

0:1924
(0:0351)

0:0420
(0:0574)

Panel A reports local Whittle estimates of the fractional integration orders as described in Robinson

(1995a). Numbers in parentheses are asymptotic standard errors using
p
m1(d̂ � d)

d! N(0; 1=4).

Panel B reports rank statistics from Robinson & Yajima (2002) and Panel C reports NBLS and

FMNBLS estimates with m2 = bT 0:8c and m3 = m0. The asymptotic standard errors for the NBLS

and FMNBLS estimates are based on (13) and (23), respectively. Standard errors for d̂û and d̂~u are

based on the same asymptotic distribution as d̂, and should be used with caution, see Theorem 2.

Panel A of Table 7 shows that the memory estimates of the three realized volatilities are very

similar and stable across bandwidths with point estimates around 0:4, except for the middle band-

width where point estimates are higher and suggest nonstationarity. Hence, we ignore bandwidth

m1 = bT 0:7c. A test of the hypothesis that all memory parameters are equal, see Robinson & Ya-
jima (2002, section 3), is insigni�cant at conventional levels for all bandwidth choices in the table.

In Panel B of Table 7 we present cointegration rank statistics from Robinson & Yajima (2002) using

bandwidth m0 for rank statistics and m1 to estimate memory parameters. In particular, Panel B

presents the eigenvalues of the correlation-type matrix P , and the value of the model determination

function L(u) (using v(T ) = m�0:4
0 ). The rank can be found as argminL(u), which clearly suggests

that the rank is one whenm0 = bT 0:4c and only narrowly indicates a rank of two whenm0 = bT 0:3c.
Thus, we conclude that a regression approach is appropriate in this multivariate system.

In Panel C we report estimates of the stationary fractional cointegration relation between the

realized volatilities of GE and the DJIA and NASDAQ indices. We are interested in analyzing how

the volatility of GE depends on the volatilities of the two indices, so we choose yt to be the realized

volatility of GE. It appears that the NBLS estimator underestimates the slope coe�cient on DJIA

in the cointegrating relation, although not by much. Both the NBLS and the FMNBLS results
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indicate that the volatility of GE depends mostly on that of the DJIA.

6 Concluding Remarks

We have considered estimation of the cointegrating relation in the stationary fractional cointegration

model. This model has found important application recently, especially in �nancial economics.

Previous research has considered Robinson's (1994) semiparametric frequency domain narrow-band

least squares (NBLS) estimator. For this estimator, a condition of non-coherence between regressors

and errors at the zero frequency has sometimes been imposed, e.g. Christensen & Nielsen (2006).

We have shown that in the absence of this condition, NBLS su�ers from an asymptotic bias although

it remains consistent as proven by Robinson (1994). We have also shown that the bias can be

consistently estimated, and consequently we have introduced a fully modi�ed NBLS (FMNBLS)

estimator which eliminates the bias while still having the same asymptotic variance as the NBLS

estimator. Indeed, FMNBLS enjoys a faster rate of convergence than NBLS in the general case

with non-zero coherence between the regressors and the errors at the origin.

Furthermore, the development of the asymptotic distribution theory is based on a di�erent

spectral density representation compared to much previous research. This representation is relevant

for multivariate fractionally integrated processes, e.g. fractionally integrated vector autoregressive

moving average models. It is demonstrated that the use of this spectral representation results in

lower asymptotic bias and variance of the narrow-band estimators.

In a simulation study we have documented the �nite sample feasibility of the proposed FMNBLS

estimator. The simulations clearly demonstrate the superiority with respect to bias of the fully

modi�ed estimator relative to NBLS in the presence of non-zero long-run coherence between the

regressors and the errors. Although this comes at the cost of increased �nite sample variance,

FMNBLS is superior in terms of RMSE in simulations with long-run coherence between regressors

and errors. The simulations also indicate that the bias correction method works well in the presence

of short-run dynamics in regressors and errors. To demonstrate the empirical relevance of our

proposed methodology we have considered a series of brief empirical illustrations, all of which

support the notion of a stationary fractional cointegration relation.

Appendix A: Proof of Theorem 1

First write

p
m0�

dp
m0�

�1
m0
(�̂m0

��) =

0@�m0�
�1
m0

2�
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m0X
j=1

Re (Ixx (�j)) �m0

1A�1 �m0�
dp�1
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p
m0
2�

T

m0X
j=1

Re (Ixp (�j)) :

From Lemma 5(c) it follows that �m0�
�1
m0

2�
T

Pm0
j=1Re (Ixx (�j)) �m0

P! K. Note that G, and thus

the leading (p� 1)� (p� 1) submatrix of G and therefore K, is invertible by Assumption 1.

For the second term we show that

p
m0

0@�m0�
dp�1
m0

2�

T

m0X
j=1

Re (Ixp (�j))�H

1A d! N (0; J) :
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By the Cramer-Wold device, for any (p� 1)-vector �, we need to examine

�0
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m0

�
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�
=

p�1X
a=1
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Re (fap (�j))�Ha
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where J (�j) is the periodogram of "t from Assumption 2.

By Lemma 5(a) it follows that (25) is OP (m
�1=6
0 (logm0)

2=3 +m
�1=2
0 (logm0) + T

�1=4), and by

Lemma 5(b) that (27) is O(m
min(1;�)+1=2
0 T�min(1;�)). Thus, both terms are oP (1) by Assumption

4.

Eq. (26) is
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Note that D = T�1
PT

t=1 "t"
0
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so that

(29) =
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a=1 �a�
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m0 A0a (�j) �Ap (�j). By de�ning the triangular array (subscript

T is omitted for brevity) z1 = 0 and zt = "0t
Pt�1

s=1 ct�s"s; t = 2; :::; T , we can apply the martingale

di�erence central limit theorem of Brown (1971) and Hall & Heyde (1980, chp. 3.2) if
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since zt is a martingale di�erence array with respect to the �ltration (Ft)t2Z, Ft = � (f"s; s � tg).
We �rst show (30). The �rst term on the left-hand side is
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It follows by slight modi�cation of Lemma 4 of Nielsen (2005) that the second term on the right-

hand side is oP (1). We need to show that the mean of the �rst term on the right-hand side of (32)

is asymptotically equal to
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Note that, from standard trigonometric identities, see also Lemma 3 of Shimotsu (2007),PT�1
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It is thus easily seen that (34) is of smaller order than (33), so we focus on (33),
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The last two terms cancel and the sum of the �rst two terms can be written as
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where the second of these terms is of smaller order by the trigonometric relations above. Using the

fact that 2Re (X) = X + �X and 2i Im (X) = X � �X for any complex matrix X, the �rst term can
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where the �rst equality follows from (12) and the second from the trigonometric identities above.
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for some constant C > 0 by Assumption 2. Using the arguments of Lemma 4 of Nielsen (2005),

this expression can be bounded by O(T (
PT

t=1 jjc2t jj)2) = O(T�1), which completes the proof.

Appendix B: Proof of Theorem 2

First we show that (log T ) (d̂p � dp)
P! 0. Rewriting equations (A.1)-(A.4), (A.24), (A.25), and

(A.30) from the proof of Theorem 3 of Robinson (1997) it su�ces to show that
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where q = exp(m�1
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Gpp�
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(39)

is a normalized measure of the impact of using the periodogram of residuals instead of the peri-

odogram of observed data. Our assumption that dp � 0 allows a simpli�cation of the conditions
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(35)-(38) compared to their counterparts in Robinson (1997) which shortens this proof somewhat.

It could easily be relaxed at the expense of a longer proof.

Note that, by Assumption 1, Theorem 1 above, (15), and the proof of Theorem 2 of Robinson

(1995b), the random variables hj satisfy

jhj j = OP ((j=m0)
��min + (j=m0)

�2�min): (40)

Using (40) and the fact that
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�min). We will need (41) through-

out, and we shall use it automatically and without special reference in what follows. Using the fact
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which is negligible by (35) and (37).

Thus, we have shown (log T )-consistency of d̂p and proceed to prove the rate and asymptotic

distribution results. With probability approaching one as T !1, d̂p satis�es
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�10); (42)��� ~Fk;û (dp)� ~Fk;u (dp)

��� P! 0; k = 0; 1; 2; (43)

where
~Gk;a (d) =

1
m1

Pm1
j=1 (log �j)

k �2dj Iaa (�j) ;

�G (d) = Gpp
1
m1

Pm1
j=1 �

2(d�dp)
j ;

~Fk;a (d) =
1
m1

Pm1
j=1 (log j)

k �2dj Iaa (�j) ;

29



with N� = fd : jdp � dj < �g for 0 < � < 1=2, then
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P! 4: (44)

Note that, following Andrews & Sun (2004, p. 600), in our eq. (42) we use (logm1)
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need only to show that j ~G0;û (dp)� ~G0;u (dp) j
P! 0. Based on the previous results, we easily get��� ~G0;û (dp)� ~G0;u (dp)

��� � 1

m1

m1X
j=1

����2dpj

�
Îpp (�j)� Ipp (�j)

���� � jGppj
m1

m1X
j=1

jhj j = OP

�
(m0=m1)

�min
�
;
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which is oP (1) by Assumption 5. Since ~G0;û (dp) = Gpp + oP (1) by (43) with k = 0 and Robinson

(1995a), (47) is of the same order as
p
m1j ~Hû (dp)� ~Hu (dp) j which is equal to

Gppp
m1

������
m1X
j=1

�jhj

������ = OP

0@(logm1)p
m1

m1X
j=1

jhj j

1A = OP

�
(logm1)

p
m1 (m0=m1)

�min
�
:

Hence, (46) is, in general, OP ((logm1)
p
m1 (m0=m1)

�min). By (45) it follows that
p
m1(d̂p � dp)

has the same asymptotic order of magnitude which proves the �rst statement of the theorem.

To prove the second statement of the theorem, we need to show that in fact
p
m1j ~Hû (dp) �

~Hu (dp) j
P! 0 if Gap = Gpa = 0 for a = 1; : : : ; p� 1. Thus,

p
m1j ~Hû (dp)� ~Hu (dp) j is equal to

Gppp
m1

������
m1X
j=1

�jhj

������ � Gppp
m1

������
m1X
j=1

�j�
2dp
j

h
(� � �̂m0

)0Re (Ixx (�j)) (� � �̂m0
)=2 + (� � �̂m0

)0Re (Ixp (�j))
i������

� Gpp
2
p
m1

������
m1X
j=1

�j�
2dp
j

p�1X
a=1

p�1X
b=1

(�a � �̂a;m0
)(�b � �̂b;m0

)Re (Iab (�j))

������ (49)

+
Gppp
m1

������
m1X
j=1

�j�
2dp
j

p�1X
a=1

(�a � �̂a;m0
)Re (Iap (�j))

������ : (50)

First, using summation by parts,

m1X
j=1

�j�
2dp
j Re (Iap (�j)) = �m1

m1X
j=1

�
2dp
j Re (Iap (�j))�

m1�1X
j=1

(�j+1 � �j)
jX

k=1

�
2dp
k Re (Iap (�k)) ;

and for �j we know that �m1 = O(1) and j�j+1 � �j j = O(j�1) uniformly in j (by a mean

value expansion). In the present case with Gap = Gpa = 0 for a = 1; : : : ; p � 1 we know from

Theorem 1 that �̂a;m0
� �a = OP (m

�1=2
0 �

da�dp
m0 ). This implies, in conjunction with Lemma 5(c)

with Gap = Gpa = 0 for a = 1; : : : ; p� 1, that (50) is

OP

 
1

p
m1

p�1X
a=1

�
da�dp
m0p
m0

�
dp�da
m1

�
m
1+min(1;�)
1 T�min(1;�) +m

1=2
1 (logm1)

�!

+OP

0@ 1
p
m1

p�1X
a=1

�
da�dp
m0p
m0

m1�1X
j=1

j�1�
dp�da
j

�
j1+min(1;�)T�min(1;�) + j1=2(log j)

�1A
= OP

 
1

p
m0

�
m0

m1

��min �
m
1=2+min(1;�)
1 T�min(1;�) + (logm1)

�!
;

which is negligible by Assumption 5. Similarly, we get that (49) is also negligible since

OP

 
p
m1

p�1X
a=1

p�1X
b=1

�
da+db�2dp
m0

m0
�
2dp�da�db
m1

!
= OP

 �
m0

m1

�2�min pm1

m0

!
:
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Appendix C: Proof of Theorem 3

To derive the asymptotic order of �
dp
m2�

�1
m2
�̂m2 �K�1H, �rst write

�
dp
m2�

�1
m2
�̂m2 =

0@�m2

1

m2 �m0

m2X
j=m0+1

Re (Ixx (�j)) �m2

1A�1 �m2�
dp
m2

1

m2 �m0

m2X
j=m0+1

Re(Îxp (�j)):

We then show that

�m2

1

m2 �m0

m2X
j=m0+1

Re (Ixx (�j)) �m2 �K = OP (l(m0;m2)) ; (51)

�m2�
dp
m2

1

m2 �m0

m2X
j=m0+1

Re(Îxp (�j))�H = OP (l(m0;m2) + (m0=m2)
�min); (52)

where

l(m0;m2) =
�m2

T

�min(1;�)
+m

�1=2
2 (logm2) +

�m0

T

�min(1;�)
;

which is su�cient to prove the desired result since

K�1 (1 +OP (l(m0;m2)))
�1H(1 +OP (l(m0;m2) + (m0=m2)

�min))

= K�1H (1 +OP (l(m0;m2))) (1 +OP (l(m0;m2) + (m0=m2)
�min))

= K�1H(1 +OP (l(m0;m2) + (m0=m2)
�min)):

The (a; b)'th element of the left-hand side of (51) is

�da+dbm2

m2 �m0

m2X
j=m0+1

Re (Iab (�j))�Kab

=
1

m2 �m0

0@�da+dbm2

m2X
j=1

Re (Iab (�j))�Kab

1A� 1

m2 �m0

0@�da+dbm2

m0X
j=1

Re (Iab (�j))�Kab

1A
= OP

�
(m2=T )

min(1;�) +m
�1=2
2 (logm2)

�
+OP

�
(m0=m2)

1�da�db(m0=T )
min(1;�) +m

1=2
0 m�1

2 (logm0)
�

by application of Lemma 5(c).

To prove (52) we write the a'th element of the left-hand side as

�
da+dp
m2

m2 �m0

m2X
j=m0+1

Re(Îap (�j))�Ha =
�
da+dp
m2

m2 �m0

m2X
j=m0+1

Re(Îap (�j)� Iap (�j)) (53)

+
�
da+dp
m2

m2 �m0

m2X
j=m0+1

Re (Iap (�j))�Ha: (54)

Since Îap (�j) = Iap (�j)+Iax (�j) (�� �̂m0
) = Iap(�j)+

Pp�1
b=1 Iab(�j)(�b� �̂b;m0

), eq. (53) depends

on �a � �̂a;m0
which is OP (�

da�dp
m0 ) by Theorem 1. Thus,

(53) =

p�1X
b=1

(�b � �̂b;m0
)
�
da+dp
m2

m2 �m0

m2X
j=m0+1

Re (Iab (�j))

= OP

 
p�1X
b=1

�
da+dp
m2 �

db�dp
m0 ��da�dbm2

!
= OP

 �
m0

m2

��min!
:
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Lastly, the term (54) is OP ((m2=T )
min(1;�) +m

�1=2
2 (logm2) + (m0=T )

min(1;�) +m
1=2
0 m�1

2 (logm0))

by the same argument as for (51).

The same proof can be applied for ��m2 , although Lemma 5(c) must be modi�ed as

�da+db�c�1r

Z �r

0
Re
�
ei�(da�db)=2�cfab (�)

�
d�

= �da+db�c�1r

Z �r

0
Gab�

c�da�db Re(ei�(da�db)=2) (1 +O (��)) d�

= �da+db�c�1r

Z �r

0
Gab�

c�da�db cos (� (da � db) =2) (1 +O(��))d�

=
(1� da � db)

(1 + c� da � db)
Kab(1 +O(�

�
r )):

Appendix D: Proof of Theorem 4

The result follows by application of the previous theorems. From (21) and (23),

p
m3�

dp
m3�

�1
m3
(~�m3

� �) =
p
m3�

dp
m3�

�1
m3
(�̂m3

� ��d̂pm3 �̂m3�
d̂p
m2�̂

�1
m2
��m2 � �)

=
p
m3�

dp
m3�

�1
m3
(�̂m3

� �)
�pm3�

dp
m2�

�1
m2
��m2(1 +OP ((log T ) (logm1)(m0=m1)

�min))

=
p
m3�

dp
m3�

�1
m3
(�̂m3

� �)�pm3�
dp
m2�

�1
m2
��m2 + oP (1) ;

where the second equality follows from �d̂a�dam3
= 1+OP ((log T ) (logm1)(m0=m1)

�min) and �
d̂p�d̂a
m2 =

�
dp�da
m2 (1+OP ((log T ) (logm1)(m0=m1)

�min)) for a = 1; :::; p, which is a consequence of Theorem 2,

and the third equality is by Assumption 7 (or (22) if m3 = m0). From Theorem 3 it follows that

p
m3�

dp
m2�

�1
m2
��m2 =

p
m3K

�1H +
p
m3OP

 �
m0

m2

��min
+m

�1=2
2 (logm2) +

�m2

T

��
+
�m0

T

��!
=

p
m3K

�1H + oP (1)

by Assumption 7 (or (22) if m3 = m0). The desired result now follows from Theorem 1.

Appendix E: Technical Lemma

Lemma 5 Under Assumptions 1-3, as T !1, for 1 � r � m and 0 � c � da + db;

(a) max
a;b

�da+db�cr

rX
j=1

Re
�
�cj [Iab (�j)�Aa (�j) J (�j)A�b (�j)]

�
= OP (r

1=3(log r)2=3 + (log r) + r1=2T�1=4);

(b) max
a;b

�da+db�cr

rX
j=1

Re

�
�cjfab (�j)� �c�da�dbr

(1� da � db)
(1 + c� da � db)

Kab

�
= OP

�
r1+min(1;�)T�min(1;�)

�
;

33



(c) max
a;b

�da+db�cr

rX
j=1

Re

�
�cjIab (�j)� �c�da�dbr

(1� da � db)
(1 + c� da � db)

Kab

�
= OP

�
r1+min(1;�)T�min(1;�) + r1=2(log r)

�
;

where J (�j) is the periodogram of "t from Assumption 2.

Proof. Decompose the terms inside the real operator as

H1j = �cj [Iab (�j)�Aa (�j) J (�j)A�b (�j)];
H2j = �cj [Aa (�j) J (�j)A

�
b (�j)� fab (�j)];

H3j = �cjfab (�j)� �c�da�dbr

(1� da � db)
(1 + c� da � db)

Kab:

The proof of Lemma 1(b) in Shimotsu (2007) applies also to our terms H1j and H2j which shows

that (a) holds and that maxa;b j
Pr

j=1H2j j = OP (r
1=2(log r)). For H3j we use Assumption 1 and

Re(ei�z) = 1 +O(�2); Im(ei�z) = O(�) as �! 0 for any z 2 R, which imply

Re(ei(���)(da�db)=2) = Re(ei�(da�db)=2)Re(e�i�(da�db)=2)� Im(ei�(da�db)=2) Im(e�i�(da�db)=2)
= cos(� (da � db) =2)(1 +O(�2))� sin(� (da � db) =2)O(�)

such that

�da+db�cr r�1
rX
j=1

Re
�
�cjfab (�j)

�
= �da+db�c�1r

Z �r

0
Re (�cfab (�)) d�+RT

= �da+db�c�1r

Z �r

0
Gab�

c�da�db Re(ei(���)(da�db)=2) (1 +O (��)) d�+RT

= �da+db�c�1r

Z �r

0
Gab�

c�da�db cos (� (da � db) =2) (1 +O(�min(1;�)))d�+RT

=
(1� da � db)

(1 + c� da � db)
Kab(1 +O(�

min(1;�)
r )) +RT :

The approximation error RT is O(T
c�da�db�1 (log r)) uniformly in r.
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