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Abstract

We study the forecasting of future realized volatility in the foreign exchange, stock,
and bond markets from variables in the information set, including implied volatility
backed out from option prices. Realized volatility is separated into its continuous and
jump components, and the heterogeneous autoregressive (HAR) model is applied with
implied volatility as an additional forecasting variable. A vector HAR (VecHAR) model
for the resulting simultaneous system is introduced, controlling for possible endogeneity
issues. We �nd that implied volatility contains incremental information about future
volatility in all three markets, relative to past continuous and jump components, and
it is an unbiased forecast in the foreign exchange and stock markets. Out-of-sample
forecasting experiments con�rm that implied volatility is important in forecasting fu-
ture realized volatility components in all three markets. Perhaps surprisingly, the jump
component is, to some extent, predictable, and options appear calibrated to incorporate
information about future jumps in all three markets.

Keywords: Bipower variation, HAR, Heterogeneous Autoregressive Model, implied
volatility, jumps, options, realized volatility, VecHAR, volatility forecasting.

JEL classi�cation: C22, C32, F31, G1.

1 Introduction
In both the theoretical and empirical �nance literatures, volatility is generally recog-

nized as one of the most important determinants of risky asset values, such as exchange
rates, stock and bond prices, and hence interest rates. Since any valuation procedure in-
volves assessing the level and riskiness of future payo¤s, it is particularly the forecasting
of future volatility from variables in the current information set that is important for asset
pricing, derivative pricing, hedging, and risk management.

A number of di¤erent variables are potentially relevant for volatility forecasting. In
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the present paper, we include derivative prices and investigate whether implied volatilities
(IV ) backed out from options on foreign currency futures, stock index futures, or Treasury
bond (T-bond) futures contain incremental information when assessed against volatility
forecasts based on high-frequency (5-minute) current and past returns on exchange rates,
stock index futures, and T-bond futures, respectively.

Andersen, Bollerslev, Diebold & Labys (2003) and Andersen, Bollerslev & Meddahi
(2004) show that simple reduced form time series models for realized volatility (RV ) out-
perform commonly used GARCH and related stochastic volatility models in forecasting
future volatility. In recent work, Barndor¤-Nielsen & Shephard (2004, 2006) derive a fully
nonparametric separation of the continuous sample path (C) and jump (J) components
of RV . Applying this technique, Andersen, Bollerslev & Diebold (2007) extend results of
Andersen et al. (2003) and Andersen et al. (2004) by using past C and J as separate regres-
sors when forecasting volatility. They show that the two components play very di¤erent
roles in forecasting, and that signi�cant gains in performance are achieved by separating
them. While C is strongly serially correlated, J is distinctly less persistent, and almost not
forecastable, thus clearly indicating separate roles for C and J in volatility forecasting.

In this paper, we study high-frequency (5-minute) returns to the $/DM exchange rate,
S&P 500 futures, and 30 year T-bond futures, as well as monthly prices of associated futures
options. Alternative volatility measures are computed from the two separate data segments,
i.e., RV and its components from high-frequency returns and IV from option prices. IV
is widely perceived as a natural forecast of integrated volatility over the remaining life of
the option contract under risk-neutral pricing. It is also a relevant forecast in a stochastic
volatility setting even if volatility risk is priced, and it should get a coe¢ cient below (above)
unity in forecasting regressions in case of a negative (positive) volatility risk premium
(Bollerslev & Zhou (2006)). Since options expire at a monthly frequency, we consider the
forecasting of one-month volatility measures. The issue is whether IV retains incremental
information about future integrated volatility when assessed against realized measures (RV ,
C, J) from the previous month. The methodological contributions of the present paper
are to use high-frequency data and recent statistical techniques for the realized measures,
and to allow these to have di¤erent impacts at di¤erent frequencies, when constructing the
return-based forecasts that IV is assessed against. These innovations ensure that IV is
put to a harder test than in previous literature when comparing forecasting performance.

The idea of allowing di¤erent impacts at di¤erent frequencies arises since realized mea-
sures covering the entire previous month very likely are not the only relevant yardsticks.
Squared returns nearly one month past may not be as informative about future volatility
as squared returns that are only one or a few days old. To address this issue, we apply the
heterogeneous autoregressive (HAR) model proposed by Corsi (2009) for RV analysis and
extended by Andersen et al. (2007) to include the separate C and J components of total re-
alized volatility (RV = C+J) as regressors. In the HAR framework, we include IV from op-
tion prices as an additional regressor, and also consider separate forecasting of both C and
J individually. As an additional contribution, we introduce a vector heterogeneous autore-
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gressive (labeled VecHAR) model for joint modeling of IV , C, and J . Since IV is the new
variable added in our study, compared to the RV literature, and since it may potentially be
measured with error stemming from non-synchronicity between sampled option prices and
corresponding futures prices, bid-ask spreads, model error, etc., we take special care in han-
dling this variable. The simultaneous VecHAR analysis controls for possible endogeneity
issues in the forecasting equations, and allows testing interesting cross-equation restrictions.

Based on in-sample Mincer & Zarnowitz (1969) forecasting regressions, we show that
IV contains incremental information relative to both C and J when forecasting subsequent
RV in all three markets. Furthermore, in the foreign exchange and stock markets, IV is
an unbiased forecast. Indeed, it completely subsumes the information content of the daily,
weekly, and monthly high-frequency realized measures in the foreign exchange market.
Moreover, out-of-sample forecasting evidence suggests that IV should be used alone when
forecasting monthly RV in all three markets. The mean absolute out-of-sample forecast
error increases if any RV components are included in constructing the forecast.

Using the HAR methodology for separate forecasting of C and J , our results show that
IV has predictive power for each. Forecasting monthly C is very much like forecasting RV
itself. The coe¢ cient on IV is slightly smaller, but in-sample qualitative results on which
variables to include are identical. The out-of-sample forecasting evidence suggests that IV
again should be used alone in the foreign exchange and stock markets, but that it should
be combined with realized measures in the bond market. Perhaps surprisingly, even the
jump component is, to some extent, predictable, and IV contains incremental information
about future jumps in all three markets.

The results from the VecHAR model reinforce the conclusions. In particular, when fore-
casting C in the foreign exchange market, IV completely subsumes the information content
of all realized measures. Out-of-sample forecasting performance is about unchanged for J
but improves for C in all markets by using the VecHAR model, relative to comparable uni-
variate speci�cations. The VecHAR system approach allows testing cross-equation restric-
tions, the results of which support the �nding that IV is a forecast of total realized volatility
RV = C + J , indeed an unbiased forecast in the foreign exchange and stock markets.

In the previous literature, a number of authors have included IV in forecasting regres-
sions, and most have found that it contains at least some incremental information, although
there is mixed evidence on its unbiasedness and e¢ ciency.1 None of these studies has in-
vestigated whether the �nding of incremental information in IV holds up when separating
C and J computed from high-frequency returns, or when including both daily, weekly, and
monthly realized measures in HAR-type speci�cations. An interesting alternative to using
individual option prices might have been to use model-free implied volatilities as in Jiang
& Tian (2005). However, Andersen & Bondarenko (2007) �nd that these are dominated
by the simpler Black-Scholes implied volatilities in terms of forecasting power.

1See, e.g., Jorion (1995), Xu & Taylor (1995), Covrig & Low (2003), and Pong, Shackleton, Taylor &
Xu (2004) on the foreign exchange market, Day & Lewis (1992), Canina & Figlewski (1993), Lamoureux &
Lastrapes (1993), Christensen & Prabhala (1998), Fleming (1998), and Blair, Poon & Taylor (2001) on the
stock market, and Amin & Morton (1994) on the bond market.

3



The remainder of the paper is laid out as follows. In the next section we brie�y describe
realized volatility and the nonparametric identi�cation of its separate continuous sample
path and jump components. In section 3 we discuss the derivative pricing model. Section 4
describes our data. In section 5 the empirical results are presented, and section 6 concludes.

2 The Econometrics of Jumps
We assume that the logarithm of the asset price, p (t), follows the general stochastic

volatility jump di¤usion model

dp (t) = � (t) dt+ � (t) dw (t) + � (t) dq (t) ; t � 0: (1)

The mean � (�) is assumed continuous and locally bounded, the instantaneous volatility
� (�) > 0 is càdlàg, and w (�) is the driving standard Brownian motion. The counting
process q (t) is normalized such that dq (t) = 1 corresponds to a jump at time t and
dq (t) = 0 otherwise. Hence, � (t) is the random jump size at time t if dq (t) = 1. The
intensity of the arrival process for jumps, � (t), is possibly time-varying, but does not al-
low in�nite activity jump processes. Note that the leverage e¤ect is accommodated in
(1) through possible dependence between � (�) and w (�), see Barndor¤-Nielsen, Graversen,
Jacod & Shephard (2006) and Barndor¤-Nielsen, Shephard & Winkel (2006).

The quadratic variation [p] (t) is de�ned for any semimartingale by

[p] (t) = p lim

KX
j=1

(p (sj)� p (sj�1))2 ; (2)

where 0 = s0 < s1 < ::: < sK = t and the limit is taken for maxj jsj � sj�1j ! 0 as
K !1. In the model (1), we have in wide generality

[p] (t) =

Z t

0
�2 (s) ds+

q(t)X
j=1

�2 (tj) ; (3)

where 0 � t1 < t2 < ::: are the jump times. In (3), quadratic variation is decomposed as
integrated volatility plus the sum of squared jumps through time t.

Assume that M + 1 evenly spaced intra-period observations for period t are available
on the log-price pt;j . The continuously compounded intra-period returns are

rt;j = pt;j � pt;j�1; j = 1; :::;M; t = 1; :::; T; (4)

where T is the number of periods in the sample. Realized volatility for period t is given
by the sum of squared intra-period returns,

RVt =
MX
j=1

r2t;j ; t = 1; :::; T: (5)

Following Barndor¤-Nielsen & Shephard (2004, 2006), the nonparametric separation
of the continuous sample path and jump components of quadratic variation in (3) can be
done through the related bipower and tripower variation measures. The staggered (skip-k,
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with k � 0) realized bipower variation is de�ned as

BVt = �
�2
1

M

M � (k + 1)

MX
j=k+2

jrt;j j jrt;j�k�1j ; t = 1; :::; T; (6)

where �1 =
p
2=�. In theory, a higher value of M improves precision of the estimators,

but in practice it also makes them more susceptible to market microstructure e¤ects, such
as bid-ask bounces, stale prices, measurement errors, etc., introducing arti�cial (typically
negative) serial correlation in returns, see, e.g., Hansen & Lunde (2006) and Barndor¤-
Nielsen & Shephard (2007). Huang & Tauchen (2005) show that staggering (i.e., setting
k � 1) mitigates the resulting bias in (6), since it avoids the multiplication of the adjacent
returns rt;j and rt;j�1 that by (4) share the log-price pt;j�1 in the non-staggered (i.e., k = 0)
version of (6). Further, staggered realized tripower quarticity is

TQt = �
�3
4=3

M2

M � 2(k + 1)

MX
j=2k+3

jrt;j j4=3 jrt;j�k�1j4=3 jrt;j�2k�2j4=3 ; t = 1; :::; T; (7)

where �4=3 = 22=3� (7=6) =� (1=2). We follow Huang & Tauchen (2005) and use k = 1 in
(6) and (7) in our empirical work. The choice of k has no impact on asymptotic results.

Combining (2) and (5), RVt is by de�nition a consistent estimator of the per-period
increment [p] (t)� [p] (t� 1) to quadratic variation as M !1. At the same time, BVt is
consistent for the integrated volatility portion of the increment,

BVt !p

Z t

t�1
�2 (s) ds as M !1; (8)

as shown by Barndor¤-Nielsen & Shephard (2004) and Barndor¤-Nielsen, Shephard &
Winkel (2006). It follows that the di¤erence RVt � BVt converges to the sum of squared
jumps that have occurred during the period. Of course, it may be non-zero in �nite
samples due to sampling variation even if no jump occurred during period t, so a notion
of a �signi�cant jump component�is needed. Following e.g. Huang & Tauchen (2005) and
Andersen et al. (2007), we apply the (ratio) test statistic

Zt =
p
M

(RVt �BVt)RV �1t��
��41 + 2��21 � 5

�
maxf1; TQtBV �2t g

�1=2 : (9)

In the absence of jumps, Zt !d N (0; 1) asM !1, and large positive values indicate that
jumps occurred during period t. Huang & Tauchen (2005) show that market microstructure
noise may bias the test against �nding jumps, but also that staggering alleviates the bias.

The (signi�cant) jump component of realized volatility is now

Jt = IfZt>�1��g (RVt �BVt) ; t = 1; :::; T; (10)

where IfAg is the indicator for the event A, �1�� the 100 (1� �)% point in the standard
normal distribution, and � the signi�cance level. When IfZt>�1��g = 1, Jt is excess
realized volatility above bipower variation, and hence attributable to jumps in prices. The
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continuous component of quadratic variation is estimated by the remainder of RVt,

Ct = RVt � Jt; t = 1; :::; T: (11)

This way, Ct equals RVt if there is no signi�cant jump during period t; and BVt if there
is, i.e., Ct = IfZt��1��gRVt + IfZt>�1��gBVt. For any standard signi�cance level � < 1=2,
both Jt and Ct from (10) and (11) are non-negative because �1�� is. Consistency of each
component as estimators of the corresponding components of quadratic variation, i.e.,

Ct !p

Z t

t�1
�2 (s) ds and Jt !p

q(t)X
j=q(t�1)+1

�2 (tj) ;

may be achieved by letting �! 0 andM !1 simultaneously. Hence, this high-frequency
data approach allows for period-by-period nonparametric consistent estimation of both
components of quadratic variation in (3).

3 Derivative Pricing Model
For the construction of implied volatility, we let c denote the call option price, X the

exercise or strike price, � the time to expiration of the option, F the price of the underlying
futures contract with delivery date � periods after option expiration, and r the riskless
interest rate. We use the futures option pricing formula, see Bates (1996a, 1996b),

c(F;X; �;�; r; �2) = e�r(�+�)[F�(d)�X�(d�
p
�2�)]; d =

ln(F=X) + 1
2�

2�p
�2�

; (12)

where � (�) is the standard normal c.d.f. and � the futures return volatility. The case� = 0
(no delivery lag) corresponds to the well-known Black (1976) and Garman & Kohlhagen
(1983) futures option formula. For general � > 0, regarding the futures contract as an
asset paying a continuous dividend yield equal to the riskless rate r, the asset price in the
standard Black & Scholes (1973) and Merton (1973) formula is replaced by the discounted
futures price e�r(�+�)F . Jorion (1995) applied (12) with � = 0 to the currency option
market, whereas Bates (1996a, 1996b) used delivery lags � speci�c to the Philadelphia
Exchange (PHLX) and the Chicago Mercantile Exchange (CME), respectively.

We consider serial $/DM and S&P 500 futures options with monthly expiration cycle
traded at the CME, and equivalent T-bond futures options traded at the Chicago Board
of Trade (CBOT). The contract speci�cations do not uniquely identify the particular T-
bond serving as underlying asset for the bond futures, requiring merely that it does not
mature and is not callable for at least 15 years from the �rst day of the delivery month
of the underlying futures. The delivery month of the underlying futures contracts follows
a quarterly (March) cycle, with delivery date on the third Wednesday of the month for
currency and bond futures, and the third Friday for stock index futures. The options expire
two Fridays prior to the third Wednesday of each month in the currency case, on the last
Friday followed by at least two business days in the month in the bond case, and on the
third Friday in the stock case, except every third month where it is shifted to the preceding
Thursday to avoid �triple witching hour�problems associated with simultaneous maturing
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of the futures, futures options, and index options. Upon exercise, the holder of the option
receives a position at the strike X in the futures, plus the intrinsic value F �X in cash, on
the following trading day, so the delivery lag is � = 3=365 (from Friday to Monday), except
� = 1=365 (Thursday to Friday) every third month in the stock case. Finally, following
French (1984), � is measured in trading days when used with volatilities (�2� in (12)) and
in calender days when concerning interest rates (in r(� +�)).

Given observations on the option price c and the variables F; X; �; �; and r, an implied
volatility (IV ) estimate in variance form can be backed out from (12) by numerical inversion
of the nonlinear equation c = c(F;X; �;�; r; IV ) with respect to IV . In our empirical work,
IV measured one month prior to expiration is used as a forecast of subsequent RV and its
components C and J (section 2), measured from high-frequency returns over the remaining
life of the option, i.e., the one-month interval ending at expiration. For stocks and bonds,
these are returns on the futures, i.e., the underlying asset. In the currency case, we use
returns to the $/DM spot exchange rate. Di¤erences between this and the futures rate
underlying the option stem mainly from the interest di¤erential in the interest rate parity

lnF = p+ (r$ � rDM )� (13)

from international �nance and should be slight. Condition (13) is exact for constant in-
terest rates, since then forward and futures prices coincide (Cox, Ingersoll & Ross (1981)),
and an approximation for stochastic rates. Indeed, under (13), the Garman & Kohlhagen
(1983) spot exchange rate option pricing formula reduces to (12). This European style
formula is here applied to American style options since early exercise premia are very small
for short-term, at-the-money (ATM, X = F ) futures options, as noted by Jorion (1995).

Although (12) is used as a common standard among practitioners and in the empirical
literature, its derivation does not accommodate jumps, and hence J may not be forecast
very well by IV backed out from this formula. On the other hand, it is consistent with a
time-varying volatility process for a continuous sample path futures price process, suggest-
ing that IV should have better forecasting power for C. In fact, our empirical results below
show that IV can predict both C and J , although it is con�rmed that J is the most di¢ cult
component to predict. The �ndings suggest that in practice, option prices are, at least to
some extent, calibrated to incorporate the possibility of future jumps. For our analysis,
this reduces the empirical need to invoke a more general option pricing formula explicitly
allowing for jumps. Such an extension would entail estimation of additional parameters,
including prices of volatility and jump risk, which would be a considerable complication.
If anything, the results would only reveal that option prices contain even more information
than that re�ected in our IV measure.

4 Data Description
Serial futures options with monthly expiration cycle were introduced in January 1987

(month where option price is sampled� expiration is the following month) in the $/DM
market and in October 1990 for 30 year T-bonds. Our option price data cover the period
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from inception through May 1999 for $/DM and through November 2002 for bonds, and
from January 1990 through November 2002 for S&P 500 futures options. We use open
auction closing prices of one-month ATM calls obtained from the Commodity Research
Bureau, recorded on the Tuesday after the expiration date of the preceding option con-
tract. The US Eurodollar deposit one-month middle rate from Datastream is used for the
risk-free rate r. The �nal samples are time series of length n of annualized IV measures
from (12), covering nonoverlapping one-month periods, with n = 149 for the currency
market2, 155 for the stock market, and 146 for the bond market.

For RV and its separate components we use the same data as Andersen et al. (2007).
These are based on �ve-minute observations on $/DM spot exchange rates, S&P 500 fu-
tures prices, and T-bond futures prices. There is a total of 288 high-frequency returns per
day (rt;j from (4)) for the currency market, 97 per day for the stock market, and 79 for the
bond market. We use the nonparametric procedure from section 2 to construct monthly
realized volatility measures (in annualized terms) covering exactly the same periods as the
IV estimates, so each of the n months has M about 6,336 (288 returns per day for ap-
proximately 22 trading days) for the foreign exchange market, 2,134 (22�97) for the stock
market, and 1,738 (22�79) for the bond market. As suggested by Andersen et al. (2007),
a signi�cance level of � = 0:1% is used to detect jumps and construct the series for J and
C from (10) and (11). We �nd signi�cant jumps in 148 out of the n = 149 months in the
foreign exchange market, in 120 of the 155 months in stock market, and in 138 of the 146
months in the bond market. Thus, jumps are non-negligible in all three markets.

If implied volatility were given by the conditional expectation of future realized volatil-
ity, we would expect that RV and IV had equal unconditional means, and RV higher
unconditional standard deviation in the time series than IV . This pattern is con�rmed
in the foreign exchange and stock markets, where both RV and C have higher sample
standard deviations (.007 and .006 in the foreign exchange market, .032 and .027 in the
stock market) than IV (.005 in the foreign exchange market and .024 in the stock market),
and almost in the bond market, where RV , C, and IV have about the same standard
deviation (.003). The unconditional sample mean of IV is slightly higher than that of RV
in the stock (.032 vs .029) and bond (.009 vs .007) markets, possibly re�ecting a negative
price of volatility risk (c.f. Bollerslev & Zhou (2006)), an early exercise premium, or the
overnight closing period in the stock and bond markets. The opposite is the case for the
foreign exchange market (.012 vs .013), where there is round-the-clock trading.

Time series plots of the four monthly volatility measures are exhibited in Figure 1, where
Panel A is for the foreign exchange market, Panel B the stock market, and Panel C the bond
market. In the foreign exchange and stock markets, the continuous component C of realized
volatility is close to RV itself. The new variable in our analysis, implied volatility IV , is also
close to RV , but not as close as C. In the bond market (Panel C), C is below RV , and IV

2Trading in $/DM options declined near the introduction of the Euro, and for January 1999 no one-
month currency option price is available, even though quarterly contract prices are. An IV estimate is
constructed by linear interpolation between IV for December 1998 and February 1999.
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Figure 1: Time series plots of monthly volatility measures
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hovers above both. In all three markets, the jump component J appears to exhibit less serial
dependence than the other volatility measures, consistent with Andersen et al. (2007). This
is evidence of the importance of analyzing the continuous and jump components separately.

5 Econometric Models and Empirical Results
In this section we study the relation between realized volatility together with its disen-

tangled components and implied volatility from the associated option contract. We apply
the Heterogeneous Autoregressive (HAR) model in our setting with implied volatility, and
we introduce a multivariate extension. Each table has results for the foreign exchange
market in Panel A, the stock market in Panel B, and the T-bond market in Panel C.

5.1 Heterogeneous Autoregressive (HAR) Model
In forecasting future realized volatility, it may be relevant to place more weight on recent

squared returns than on those from the more distant past. This is done in a parsimonious
fashion in the HAR model of Corsi (2009). When applying it to RV itself, we denote the
model HAR-RV, following Corsi (2009). When separating the RV regressors into their C
and J components, we denote the model HAR-RV-CJ, following Andersen et al. (2007).

We modify the HAR-RV-CJ model in three directions. First, we include implied volatil-
ity (IV ) as an additional regressor and abbreviate the resulting model HAR-RV-CJIV.
Secondly, in the following subsection the HAR approach is applied to separate forecasting
of C and J , rather than total realized volatility RV = C + J , and we denote the corre-
sponding models HAR-C-CJIV and HAR-J-CJIV, respectively. Thirdly, Andersen et al.
(2007) estimate HAR models with the regressand sampled at overlapping time intervals,
e.g., monthly RV is sampled at the daily frequency, causing serial correlation in the error
term. This does not necessarily invalidate the parameter estimates, although an adjust-
ment must be made to obtain correct standard errors. However, options expire according
to a monthly cycle (section 3), and the analysis in Christensen & Prabhala (1998) suggests
that use of overlapping data may lead to erroneous inferences in a setting involving both
IV and RV . Thus, in all our regression speci�cations, see e.g. (14) below, the regressand
and regressors cover nonoverlapping time intervals.

The h-day realized volatility in annualized terms is

RVt;t+h = 252h
�1 (RVt+1 +RVt+2 + : : :+RVt+h) :

Henceforth, we use t to indicate trading days. Thus, RVt is now the daily realized
volatility for day t from (5), while RVt;t+h is a daily (h = 1), weekly (h = 5), or
monthly (h = 22) realized volatility, and similarly for the continuous (Ct;t+h) and jump
(Jt;t+h) components, where the jump test Zt from (9) is implemented using h-day period
lengths for RV , BV , TQ, and M . Note that RVt;t+1 = 252RVt+1, and under stationarity
E [RVt;t+h] = 252E [RVt+1] for all h. Each monthly realized measure is constructed using
a value of h exactly matching the number of trading days covered by the associated im-
plied volatility, but for notational convenience we continue to write h = 22 for all monthly
realized measures. Finally, IVt denotes the implied volatility backed out from the price of
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Table 1: Realized volatility HAR models
Panel A: Foreign exchange data
Const. RVt�22;t RVt�5;t RVt Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0061
(0 .0011)

0:2186
(0 .1138)

0:0981
(0 .1438)

0:1706
(0 .0828)

� � � � � � � 26:0% 9:92 0:3376

0:0061
(0 .0011)

� � � 0:2355
(0 .1597)

0:0871
(0 .1623)

0:2407
(0 .0930)

0:1922
(0 .6783)

�0:8014
(0 .5640)

0:0898
(0 .2193)

� 26:9% 12:05 0:3774

0:0022
(0 .0011)

� � � � � � � � � 0:8917
(0 .0884)

40:7% 15:64 0:2938

0:0021
(0 .0011)

�0:1483
(0 .1178)

0:0769
(0 .1284)

0:0765
(0 .0754)

� � � � � � 0:8733
(0 .1419)

41:1% 21:50
�
0:3124

0:0022
(0 .0012)

� � � �0:0517
(0 .1526)

0:0097
(0 .1471)

0:1114
(0 .0869)

�0:7076
(0 .6319)

0:0996
(0 .5326)

�0:0474
(0 .1993)

0:8715
(0 .1515)

40:4% 23:90
�
0:3496

Panel B: S&P 500 data
Const. RVt�22;t RVt�5;t RVt Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0053
(0:0025)

0:6240
(0 .1132)

�0:3340
(0 .1039)

0:6765
(0 .1007)

� � � � � � � 53:0% 41:50
��

3:2011

0:0037
(0 .0023)

� � � 0:1568
(0 .1327)

0:0407
(0 .1353)

0:9646
(0 .1088)

0:2727
(0 .2720)

�0:1427
(0 .1812)

�0:7903
(0 .3873)

� 61:9% 25:08
�
2:8250

�0:0050
(0 .0027)

� � � � � � � � � 1:0585
(0 .0667)

62:1% 17:83 1:9912

�0:0052
(0 .0027)

0:0378
(0 .1311)

�0:1617
(0 .0943)

0:3177
(0 .1026)

� � � � � � 0:9513
(0 .1391)

64:0% 26:18
�
2:5089

�0:0051
(0 .0027)

� � � �0:1511
(0 .1336)

0:0633
(0 .1237)

0:6016
(0 .1194)

�0:4486
(0 .2809)

0:0454
(0 .1690)

�0:7019
(0 .3541)

0:7952
(0 .1447)

68:2% 24:87
�
2:2582

Panel C: Treasury bond data
Const. RVt�22;t RVt�5;t RVt Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0031
(0 .0005)

0:3600
(0 .1106)

0:1112
(0 .1143)

0:1389
(0 .0744)

� � � � � � � 32:5% 20:30 0:2253

0:0037
(0 .0005)

� � � 0:4203
(0 .1347)

0:1436
(0 .1363)

0:0826
(0 .0776)

�0:1502
(0 .2792)

�0:3379
(0 .2567)

0:3660
(0 .1764)

� 37:0% 19:17 0:2253

0:0023
(0 .0006)

� � � � � � � � � 0:5686
(0 .0641)

35:0% 29:45
��

0:2023

0:0018
(0 .0006)

0:0462
(0 .1254)

0:1835
(0 .1086)

0:0817
(0 .0710)

� � � � � � 0:3933
(0 .0882)

40:4% 22:75
�
0:2092

0:0023
(0 .0006)

� � � 0:1736
(0 .1355)

0:1424
(0 .1267)

0:0318
(0 .0729)

�0:7019
(0 .2842)

�0:0605
(0 .2457)

0:2812
(0 .1649)

0:4129
(0 .0867)

45:5% 21:70
�

0:2149

Note: The table shows HAR-RV-CJIV results for the speci�cation (14) with standard errors in parentheses.
Adj R2 denotes the adjusted R2 for the regression and AR12 is the LM test statistic (with 12 lags) for
the null of no serial correlation in the residuals. One and two asterisks denote rejection at the 5% and
1% signi�cance levels, respectively. The last column (MAFE) reports out-of-sample mean absolute forecast
errors (�100) for 24 rolling window one-step ahead forecasts based on n� 24 observations.

the relevant one-month option sampled on day t, and is in variance form.
The HAR-RV-CJIV model is the Mincer & Zarnowitz (1969) type regression

RVt;t+22 = �+ mxt�22;t+ wxt�5;t+ dxt+ �IVt+ "t;t+22; t = 22; 44; 66; : : : ; 22n; (14)

where "t;t+22 is the monthly forecasting error, and xt�h;t is either RVt�h;t or the vector
(Ct�h;t; Jt�h;t). When a variable is not included in the speci�c regression, � = 0 or
m = w = d = 0 is imposed. Note that xt�22;t contains lagged realized volatility mea-
sures covering a month, whereas xt�5;t and xt allow extracting information about future
volatility from the more recent (one week and one day) history of past squared returns.

Table 1 shows the results for the HAR-RV-CJIV model in (14). We report coe¢ cient
estimates (standard errors in parentheses) together with adjusted R2 and the Breusch-
Godfrey LM test for residual autocorrelation up to lag 12 (one year), denoted AR12, used
here instead of the standard Durbin-Watson statistic due to the presence of lagged en-
dogenous variables in several of the regressions. Under the null hypothesis of absence of
serial dependence in the residuals, the AR12 statistic is asymptotically �2 with 12 degrees
of freedom. The last column (MAFE) reports out-of-sample mean absolute forecast errors
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(�100) for 24 rolling window one-step ahead forecasts based on n� 24 observations.
In the �rst line of each panel, x = RV; so this is a monthly frequency HAR-RV model

(Corsi (2009)). In the foreign exchange market (Panel A), the combined impact from the
monthly, weekly, and daily RV on future realized volatility is :22+:10+:17 = :49, strikingly
close to the �rst order autocorrelation of monthly RV , which is .46. The t-statistics
are 1:92, :68, and 2:06, respectively, indicating that the weekly variable contains only
minor information concerning future monthly exchange rate volatility. In the stock market
(Panel B), all three RV measures are signi�cant, but the weekly measure with a negative
coe¢ cient. In contrast to the foreign exchange market, the AR12 test is signi�cant. Panel
C is for bond data and the results in the �rst line show that only monthly RV is signi�cant.

In row two of each panel of Table 1, x = (C; J), so this is a monthly frequency HAR-
RV-CJ model (Andersen et al. (2007)). The conclusions for C are similar to those for RV in
the �rst row, except that the monthly and weekly components become insigni�cant in the
stock market. The jump components are insigni�cant, except daily J in the stock and bond
markets. Adjusted R2 improves when moving from �rst to second line of each panel of Ta-
ble 1, thus con�rming the enhanced in-sample (Mincer-Zarnowitz) forecasting performance
obtained by splitting RV into its separate components also found by Andersen et al. (2007).
Out-of-sample forecasting performance (MAFE) improves in the stock market when sepa-
rating C and J , but remains unchanged in the bond market, and actually deteriorates in
the currency market, hence showing the relevance of including this criterion in the analysis.

Next, implied volatility is added to the information set at time t in the HAR regressions.
When RV is included together with IV , fourth row, all the realized volatility coe¢ cients
turn insigni�cant in the foreign exchange and bond markets, and only daily RV remains sig-
ni�cant in the stock market. Indeed, IV gets t-statistics of 6:15, 6:84, and 4:46 in the three
markets, providing clear evidence of the relevance of IV in forecasting future volatility. The
last row of each panel shows the results when including C and J together with IV , i.e., the
full HAR-RV-CJIV model (14). In the foreign exchange market, IV completely subsumes
the information content of both C and J at all frequencies. Adjusted R2 is about equally
high in the third line of the panel, where IV is the sole regressor and where also MAFE
takes the best (lowest) value in the panel. In the stock market, both daily components of
RV remain signi�cant, and the adjusted R2 increases from 62% to 68% relative to having
IV as the sole regressor, but again MAFE points to the speci�cation with only IV included
as the best forecast. In the bond market, IV gets the highest t-statistic, as in the other two
markets. In this case, the monthly jump component Jt�22;t is also signi�cant and adjusted
R2 improves markedly, both between lines three and four (adding realized volatility) and
between lines four and �ve (separating the RV components), but the ordering by MAFE
is the reverse. The AR12 test does show mild signs of misspeci�cation in all three markets.

The �nding so far is that IV as a forecast of future volatility contains incremental
information relative to return-based forecasts in all three markets, even when using the
new nonparametric jump separation technique for RV and exploiting potential forecasting
power of the C and J components at di¤erent frequencies using the HAR methodology.
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Table 2: Continuous component HAR models
Panel A: Foreign exchange data
Const. Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0053
(0 .0009)

0:2273
(0 .1128)

0:0634
(0 .1370)

0:1892
(0 .0779)

� � � � 28:6% 9:23 0:2987

0:0053
(0 .0009)

0:2651
(0 .1410)

0:0487
(0 .1433)

0:2176
(0 .0821)

�0:1025
(0 .5990)

�0:5571
(0 .4980)

0:0826
(0 .1936)

� 27:9% 10:98 0:3238

0:0020
(0 .0010)

� � � � � � 0:7857
(0 .0791)

39:9% 18:84 0:2632

0:0020
(0 .0010)

0:0209
(0 .1359)

�0:0171
(0 .1310)

0:1077
(0 .0774)

�0:8674
(0 .5628)

0:2088
(0 .4743)

�0:0340
(0 .1775)

0:7409
(0 .1349)

40:2% 24:24
�
0:3129

Panel B: S&P 500 data
Const. Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0031
(0 .0018)

0:1556
(0 .0989)

0:0959
(0 .0967)

0:7356
(0 .0783)

� � � � 67:2% 25:39
�
2:2421

0:0023
(0 .0017)

0:1246
(0 .0944)

0:0853
(0 .0962)

0:8636
(0 .0774)

0:3412
(0 .1934)

�0:3477
(0 .1288)

�0:4236
(0 .2753)

� 73:7% 14:25 1:8550

�0:0052
(0 .0021)

� � � � � � 0:9498
(0 .0520)

68:5% 24:99
�
1:4481

�0:0040
(0 .0019)

�0:0945
(0 .0949)

0:1014
(0 .0879)

0:6053
(0 .0848)

�0:1721
(0 .1997)

�0:2138
(0 .1201)

�0:3606
(0 .2517)

0:5659
(0 .1029)

78:1% 20:23 1:5407

Panel C: Treasury bond data
Const. Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0023
(0 .0004)

0:4028
(0 .1216)

0:1480
(0 .1236)

0:0959
(0 .0722)

� � � � 39:4% 27:14
��

0:2251

0:0030
(0 .0005)

0:4220
(0 .1221)

0:1082
(0 .1236)

0:1171
(0 .0703)

�0:4624
(0 .2531)

�0:3924
(0 .2327)

0:2856
(0 .1599)

� 43:1% 22:38
�
0:2199

0:0018
(0 .0006)

� � � � � � 0:4977
(0 .0637)

29:4% 42:16
��

0:2145

0:0019
(0 .0005)

0:2353
(0 .1259)

0:1073
(0 .1177)

0:0786
(0 .0678)

�0:8798
(0 .2641)

�0:1826
(0 .2282)

0:2214
(0 .1532)

0:3124
(0 .0806)

48:3% 20:50 0:2065

Note: The table shows HAR-C-CJIV results for (15), using the same de�nitions and layout as in Table 1.

Indeed, in the preferred speci�cation for the foreign exchange market, all realized measures
are insigni�cant or left out, showing that the conclusions of Jorion (1995), Xu & Taylor
(1995), and Pong et al. (2004) hold up even to these new improvements of the return-based
forecasts. In fact, the superiority of the implied volatility forecast of future volatility ex-
tends to all three markets based on out-of-sample forecasting, where MAFE within each
panel in Table 1 is minimized by the speci�cation with IV as the sole forecasting variable.

5.2 Forecasting the Continuous and Jump Components
We now split RVt;t+22 on the left hand side of (14) into its continuous and jump com-

ponents, Ct;t+22 and Jt;t+22, and forecast these separately. This is particularly interesting
because Andersen et al. (2007) show that the two components exhibit very di¤erent time
series properties, as also evident from Figure 1. Thus, forecasting should be carried out in
di¤erent manners for the two, and we modify the HAR methodology accordingly. Andersen
et al. (2007) did not consider separate forecasting of the components. Since our speci�ca-
tions include implied volatility as well, we are able to assess the incremental information
in option prices on the future continuous and jump components of volatility separately.

Our HAR-C-CJIV model for forecasting the future continuous component is

Ct;t+22 = �+ mxt�22;t + wxt�5;t + dxt + �IVt + "t;t+22; t = 22; 44; 66; : : : ; 22n; (15)

where Ct;t+22 replaces RVt;t+22 as regressand compared to (14) and x now contains either
C or the vector (C; J). Table 2 shows the results in the same format as in Table 1.

The results in Table 2 are similar to those in Table 1. This con�rms that C is as
amenable to forecasting as RV , hence demonstrating the value of the new approach of
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separate HAR modeling of C and J . The AR12 tests show only modest signs of misspeci�-
cation, except in the bond market. In the foreign exchange and bond markets, adjusted R2s
are similar to comparable speci�cations in Table 1, and in the stock market they are higher
than in Table 1. Implied volatility generally gets higher coe¢ cients and t-statistics than
the lagged C and J components, and adjusted R2 is highest when IV is included along with
these. In the foreign exchange market, IV completely subsumes the information content of
the realized measures, just as in Panel A of Table 1. The out-of-sample forecasting evidence
based on MAFE suggests using IV as the sole forecasting variable in the foreign exchange
and stock markets, and combining IV with the realized measures in the bond market.

We next consider the predictability of the jump component of realized volatility. The
relevant HAR-J-CJIV model takes the form

Jt;t+22 = �+ mxt�22;t + wxt�5;t + dxt + �IVt + "t;t+22; t = 22; 44; 66; : : : ; 22n; (16)

where x now contains either J or (C; J). Table 3 reports the results. Speci�cally, in line
three of each panel, IV is used to predict the jump component of future volatility. It is
strongly signi�cant in all three markets and gets higher t-statistics than all other vari-
ables considered. The highest adjusted R2s in the table are obtained in the fourth line
of each panel, where all variables are included. Here, the AR12 test shows no signs of
misspeci�cation in the foreign exchange and bond markets, although it rejects in the stock
market. Implied volatility remains highly signi�cant in all three markets and turns out to
be the strongest predictor of future jumps (in terms of t-statistics) even when the C and J
components at all frequencies are included. The coe¢ cient on IV ranges between .07 and
.23 across markets and speci�cations, consistent with the mean jump component being an
order of magnitude smaller than implied volatility in Figure 1. Indeed, in the bond market,
IV subsumes the information content of both C and J at all frequencies.

In the foreign exchange and stock markets, the out-of-sample forecasting evidence sug-
gests that IV should be used alone as the sole forecasting variable even when forecasting
only the future jump component. In the bond market, the MAFE criterion selects the
forecast using only past jump components.

Comparing across Tables 1-3, the results are most similar in Tables 1 and 2, so RV
and C behave similarly also in this forecasting context, and our results show that IV is
important in forecasting both. The di¤erence in results when moving to Table 3 reinforces
that C and J should be treated separately. When doing so, we �nd that, �rstly, jumps are
predictable from variables in the information set, and, secondly, IV retains incremental
information, thus suggesting that option prices incorporate jump information. Finally, the
out-of-sample forecasting evidence suggests using IV as the sole forecasting variable in the
foreign exchange and stock markets, whether forecasting RV or either of its components.

5.3 The Vector Heterogeneous Autoregressive (VecHAR) Model
We now introduce a simultaneous system approach for joint analysis of IV , C, and

J . The reason is that, �rstly, the results up to this point have been obtained in di¤erent
regression equations that are not independent, and some relevant joint hypotheses involve
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Table 3: Jump component HAR models
Panel A: Foreign exchange data
Const. Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0011
(0 .0001)

� � � 0:3272
(0 .0908)

�0:1192
(0 .0910)

�0:0167
(0 .0372)

� 7:3% 14:60 0:0607

0:0009
(0 .0002)

�0:0295
(0 .0265)

0:0384
(0 .0270)

0:0231
(0 .0155)

0:2947
(0 .1127)

�0:2443
(0 .0937)

0:0071
(0 .0364)

� 14:4% 15:15 0:0616

0:0002
(0 .0002)

� � � � � � 0:1060
(0 .0154)

24:1% 10:83 0:0529

0:0003
(0 .0002)

�0:0726
(0 .0259)

0:0268
(0 .0250)

0:0038
(0 .0148)

0:1598
(0 .1073)

�0:1092
(0 .0904)

�0:0134
(0 .0338)

0:1307
(0 .0257)

27:2% 11:09 0:0539

Panel B: S&P 500 data
Const. Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0031
(0 .0008)

� � � 0:0041
(0 .0992)

0:2036
(0 .0770)

�0:3052
(0 .1571)

� 4:0% 63:65
��

1:1983

0:0015
(0 .0010)

0:0321
(0 .0577)

�0:0446
(0 .0588)

0:1010
(0 .0473)

�0:0685
(0 .1182)

0:2049
(0 .0788)

�0:3668
(0 .1684)

� 6:2% 57:36
��

1:1494

0:0002
(0 .0012)

� � � � � � 0:1087
(0 .0288)

8:0% 59:37
��

1:0042

�0:0011
(0 .0012)

�0:0567
(0 .0613)

�0:0381
(0 .0568)

�0:0037
(0 .0548)

�0:2765
(0 .1290)

0:2592
(0 .0776)

�0:3413
(0 .1626)

0:2293
(0 .0664)

12:7% 51:56
��

1:1276

Panel C: Treasury bond data
Const. Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt Adj R2 AR12 MAFE
0:0007
(0 .0001)

� � � 0:3100
(0 .0867)

0:0438
(0 .0808)

0:0820
(0 .0553)

� 12:2% 17:12 0:0463

0:0007
(0 .0002)

�0:0017
(0 .0430)

0:0354
(0 .0436)

�0:0345
(0 .0248)

0:3122
(0 .0892)

0:0546
(0 .0821)

0:0804
(0 .0564)

� 11:6% 21:00 0:0516

0:0005
(0 .0002)

� � � � � � 0:0709
(0 .0207)

6:9% 34:70
��

0:0640

0:0004
(0 .0002)

�0:0617
(0 .0448)

0:0351
(0 .0419)

�0:0469
(0 .0241)

0:1780
(0 .0940)

0:1221
(0 .0812)

0:0598
(0 .0545)

0:1005
(0 .0287)

18:2% 19:46 0:0534

Note: The table shows HAR-J-CJIV results for (16), using the same de�nitions and layout as in Table 1.

cross-equation restrictions. Secondly, IV may be measured with error stemming from non-
synchronous option and futures prices, misspeci�cation of the option pricing formula, etc.
Such errors-in-variable problems generate correlation between regressor and error terms
in the forecasting equations for C and J , and thus an endogeneity problem. In addition,
the realized measures contain sampling error, as discussed in section 2. Our simultaneous
system approach provides an e¢ cient method for handling these endogeneity issues.3

Thus, we consider the vector heterogeneous autoregressive (VecHAR) system 
1 0 ��1
0 1 ��2
0 0 1

! 
Ct;t+22
Jt;t+22
IVt

!
=

 
�1
�2
�3

!
+

 
A11m A12m 0
A21m A22m 0
A31m A32m A33m

! 
Ct�22;t
Jt�22;t
IVt�1

!
(17)

+

 
A11w A12w
A21w A22w
A31w A32w

!�
Ct�5;t
Jt�5;t

�
+

 
A11d A12d
A21d A22d
A31d A32d

!�
Ct
Jt

�
+

0@ "1t;t+22
"2t;t+22
"3t;t+22

1A :
The �rst two equations comprise the forecasting equations (15) and (16) for C and J , and
the third endogenizes IV . There are two sources of simultaneity in the VecHAR system.
Firstly, the o¤-diagonal terms �1 and �2 in the leading coe¢ cient matrix accommodates
dependence of Ct;t+22 and Jt;t+22 on the endogenous variable IVt. Secondly, the system er-
rors may be contemporaneously correlated. In the third equation, option prices may re�ect
return movements during the previous month, and via the HAR type speci�cation more re-

3Engle & Gallo (2006) also consider a trivariate system, but for three realized quadratic variation mea-
sures, and without the HAR feature or jumps. Implied volatility is also not included in their system,
although it is in subsequent univariate regressions.
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Table 4: VecHAR models
Panel A: Foreign exchange data
Dep. var. Constant Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt IVt�1 AR12 MAFE
Ct;t+22 0:0024

(0 .0010)
0:0552
(0 .1770)

�0:0078
(0 .1418)

0:1231
(0 .0721)

�0:7601
(0 .5914)

0:1013
(0 .6028)

�0:0177
(0 .1441)

0:6369
(0 .1886)

� 33:88
��

0:3114

Jt;t+22 0:0004
(0 .0002)

�0:0658
(0 .0356)

0:0286
(0 .0311)

0:0068
(0 .0139)

0:1811
(0 .1191)

�0:1305
(0 .1037)

�0:0102
(0 .0258)

0:1100
(0 .0383)

� 15:16 0:0550

IVt 0:0013
(0 .0006)

�0:0668
(0 .0547)

�0:0521
(0 .0405)

0:0788
(0 .0365)

�0:0431
(0 .1431)

�0:3046
(0 .1874)

0:0242
(0 .0436)

� 0:9028
(0 .0665)

8:57 0:0766

Panel B: S&P 500 data
Dep. var. Constant Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt IVt�1 AR12 MAFE
Ct;t+22 �0:0054

(0 .0022)
�0:1432
(0 .1307)

0:1050
(0 .0882)

0:5478
(0 .1658)

�0:2863
(0 .1902)

�0:1840
(0 .1647)

�0:3466
(0 .3820)

0:6918
(0 .1599)

� 20:49 1:5277

Jt;t+22 �0:0015
(0 .0012)

�0:0732
(0 .0980)

�0:0369
(0 .0429)

�0:0232
(0 .0429)

�0:3152
(0 .1474)

0:2693
(0 .1895)

�0:3365
(0 .3471)

0:2720
(0 .1018)

� 59:32
��

1:1225

IVt 0:0009
(0 .0007)

�0:0144
(0 .0613)

0:0159
(0 .0454)

0:0307
(0 .0358)

0:3800
(0 .0547)

�0:0158
(0 .0450)

�0:3868
(0 .0956)

� 0:9349
(0 .0553)

28:36
��

0:6819

Panel C: Treasury bond data
Dep. var. Constant Ct�22;t Ct�5;t Ct Jt�22;t Jt�5;t Jt IVt IVt�1 AR12 MAFE
Ct;t+22 0:0019

(0 .0005)
0:2253
(0 .1209)

0:1073
(0 .1089)

0:0766
(0 .0646)

�0:9023
(0 .2598)

�0:1713
(0 .1815)

0:2180
(0 .0609)

0:3292
(0 .0806)

� 20:05 0:2042

Jt;t+22 0:0003
(0 .0002)

�0:0740
(0 .0479)

0:0350
(0 .0412)

�0:0494
(0 .0289)

0:1506
(0 .1142)

0:1358
(0 .0765)

0:0556
(0 .0589)

0:1210
(0 .0525)

� 17:60 0:0539

IVt 0:0001
(0 .0003)

0:0328
(0 .0447)

�0:0264
(0 .0375)

0:0517
(0 .0355)

0:2547
(0 .2282)

�0:0344
(0 .1091)

0:0448
(0 .0389)

� 0:9172
(0 .0400)

21:85
�
0:0404

Note: The table shows FIML results for the simultaneous VecHAR system (17) with robust (sandwich-
formula) standard errors in parentheses. AR12 and MAFE are de�ned as in Table 1.

cent returns may receive higher weight. In addition, our speci�cation allows dependence on
IVt�1, i.e., one-day lagged implied volatility sampled on Monday for the same option con-
tract as in IVt, which is sampled on Tuesday. The speci�cation of the third equation is simi-
lar to using IVt�1 as an additional instrument for IVt in an instrumental variables treatment
of the endogeneity problem, but the system approach in (17) is more general and e¢ cient.

In Table 4 we present the results of Gaussian full information maximum likelihood
(FIML) estimation of the VecHAR system with robust standard errors (sandwich-formula,
H�1V H�1, where H is the Hessian and V the outer-product-gradient matrix) in paren-
theses. Of course, the results are asymptotically valid even in the absence of Gaussianity.
The AR12 tests show only mild signs of misspeci�cation in the foreign exchange and bond
markets, although the tests are signi�cant in two of the equations for the stock market.

Implied volatility is strongly signi�cant in the forecasting equations for both C and J
in all three markets, showing that option prices contain incremental information beyond
that in high-frequency realized measures. In the foreign exchange market, IV subsumes
the information content of all other variables in forecasting both C and J .

Out-of-sample forecasting performance actually improves for C (�rst equation) in the
VecHAR system relative to comparable univariate speci�cations (last row of each panel in
Table 2). For J , out-of-sample forecasting performance is similar in the VecHAR system
and in the last row of each panel in Table 3, with a small improvement in the simultaneous
system for the stock market and a small deterioration in the other two markets.

Table 5 shows results of likelihood ratio (LR) tests of many hypotheses of interest in
the VecHAR model. First, the hypothesis H2 : A11w = 0; A12w = 0 in (17) is the relevant
forecasting e¢ ciency hypothesis in the C equation with respect to both weekly realized
components. This hypothesis is not rejected in any of the markets. Indeed, in the foreign
exchange market, IV subsumes the information content of C and J at all frequencies, with
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Table 5: LR tests in VecHAR models
Panel A: Currency data Panel B: S&P 500 data Panel C: Bond data

Hypothesis LR d.f. p-values LR d.f. p-values LR d.f. p-values
H1 : A11m = 0; A12m = 0 1.8922 2 0.3883 2.9715 2 0.2263 14.564 2 0.0007
H2 : A11w = 0; A12w = 0 0.0490 2 0.9758 3.8762 2 0.1440 1.4315 2 0.4888
H3 : A11d = 0; A12d = 0 2.6273 2 0.2688 32.824 2 0.0000 3.2478 2 0.1971
H4 : �1 = 1 5.8950 1 0.0152 6.7789 1 0.0092 46.199 1 0.0000
H5 : A11m = 0; A12m = 0; �1 = 1 14.560 3 0.0022 20.427 3 0.0001 85.798 3 0.0000
H6 : A11w = 0; A12w = 0; �1 = 1 7.1047 3 0.0686 9.1775 3 0.0270 47.871 3 0.0000
H7 : A11d = 0; A12d = 0; �1 = 1 6.9558 3 0.0733 35.498 3 0.0000 46.400 3 0.0000
H8 : �Am = 0; �Aw = 0; �Ad = 0 29.377 12 0.0035 81.304 12 0.0000 73.212 12 0.0000
H9 : �2 = 0 13.227 1 0.0003 13.403 1 0.0003 15.036 1 0.0001
H10 : �1 + �2 = 1 2.2915 1 0.1301 0.0512 1 0.8210 29.054 1 0.0000
Note: The table shows LR test results for the simultaneous VecHAR system (17) where the matrix notation
�Ak =

�
A11k A12k
A21k A22k

�
, k = m;w; d, is used.

p-values of H1 : A11m = 0; A12m = 0 and H3 : A11d = 0; A12d = 0 of 39% and 27% in this
market. IV subsumes the information content of the monthly measures (H1) in the stock
market, and the daily measures (H3) in the bond market. Unbiasedness of IV as a forecast
of C (H4 : �1 = 1) is rejected at the 5% level in all three markets. The estimated coe¢ cient
on IV is below unity in all three markets in Table 4, showing that IV is upward biased
as a forecast of future C. Possible reasons for this phenomenon are that volatility risk is
priced (c.f. Bollerslev & Zhou (2006)) or that IV re�ects information about future J as
well, which we return to in H9 and H10.

In H5-H7, the unbiasedness hypothesis H4 is tested jointly with the e¢ ciency hypothe-
ses H1-H3. Consistent with previous results, H5-H7 are strongly rejected in the stock and
bond markets and H6-H7 (e¢ ciency with respect to daily and weekly measures along with
unbiasedness) are not rejected at the 5% level in the foreign exchange market.

Next, we consider cross-equation restrictions which hence require the system approach.

Using the matrix notation �Ak =
�
A11k A12k
A21k A22k

�
; k = m;w; d, we examine in H8 : �Am =

0; �Aw = 0; �Ad = 0 the hypothesis that all realized components in both the continuous and
jump equations are jointly insigni�cant. This is rejected in all three markets.

In H9 : �2 = 0, we examine the hypothesis that IV carries no incremental information
about future J , relative to the realized measures. This is strongly rejected in all three mar-
kets. Finally, in H10 : �1+�2 = 1, again a cross-equation restriction, we test the hypothesis
that IVt is an unbiased forecast of total realized volatility, RVt;t+22 = Ct;t+22+ Jt;t+22. Al-
though unbiasedness of IV as a forecast of future C, H4 : �1 = 1, is rejected at the 5%
level or better in all markets, H10 : �1 + �2 = 1 is not rejected in the foreign exchange and
stock markets. This reinforces earlier conclusions that IV does forecast more than just
the continuous component, that jumps are, to some extent, predictable, and, indeed, that
option prices are calibrated to incorporate information about future jumps.

6 Conclusions and Discussion
This paper examines the role of implied volatility in forecasting future realized volatil-

ity and jumps in the foreign exchange, stock, and bond markets. Realized volatility is
separated into its continuous sample path and jump components, since Andersen et al.
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(2007) show that this leads to improved forecasting performance. We assess the incremen-
tal forecasting power of implied volatility relative to Andersen et al. (2007).

On the methodological side, we apply the HAR model proposed by Corsi (2009) and
applied by Andersen et al. (2007). We include implied volatility as an additional regressor,
and also consider forecasting of the separate continuous and jump components of realized
volatility. Furthermore, we introduce a vector HAR (VecHAR) model for simultaneous
modeling of implied volatility and the separate components of realized volatility, control-
ling for possible endogeneity issues.

On the substantive side, our empirical results using both in-sample Mincer & Zarnowitz
(1969) regressions and out-of-sample forecasting show that in all three markets, option im-
plied volatility contains incremental information about future return volatility relative to
both the continuous and jump components of realized volatility. Indeed, implied volatility
subsumes the information content of several realized measures in all three markets. In
addition, implied volatility is an unbiased forecast of the sum of the continuous and jump
components, i.e., of total realized volatility, in the foreign exchange and stock markets.
The out-of-sample forecasting evidence con�rms that implied volatility should be used in
forecasting future realized volatility or the continuous component of this in all three mar-
kets. Finally, our results show that even the jump component of realized return volatility
is, to some extent, predictable, and that option implied volatility enters signi�cantly in the
relevant jump forecasting equation for all three markets.

Overall, our results are interesting and complement the burgeoning realized volatility
literature. What we show is that implied volatility generally contains additional ex-ante
information on volatility and its continuous sample path and jump components beyond
that in realized volatility and its components. This ex-ante criterion is not everything that
realized volatility may be used for, and it is possibly not the most important use. For ex-
ample, realized volatility and its components can be used for ex-post assessments of what
volatility has been, whether there have been jumps in prices or not, etc. Implied volatility
(even ex-post implied volatility) is not well suited for these purposes.
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