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Abstract

Recent developments allow a nonparametric separation of the continuous sample path

component and the jump component of realized volatility. The jump component has very

di�erent time series properties than the continuous component, and accounting for this

allows improved forecasting of future realized volatility. We investigate the potential fore-

casting role of implied volatility backed out from option prices in the presence of these new

separate realized volatility components. We show that implied volatility has incremental in-

formation relative to both the continuous and jump components of realized volatility when

forecasting subsequently realized return volatility, and it appears to be an unbiased forecast.

Furthermore, implied volatility has predictive power for future values of each component

of realized volatility separately, showing in particular that even the jump component of

realized volatility is, to some extent, predictable.
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1 Introduction

The analysis of �nancial market volatility is of the utmost importance to asset pricing, derivative

pricing, hedging, and risk management. Several di�erent sources of information may be invoked

in generating forecasts of unknown future volatility. Besides measurements based on historical

return records, observed derivative prices are known from �nance theory to be highly sensitive

to and hence informative about future volatility. It is therefore natural to consider data on both

asset prices and associated derivatives when measuring, modelling and forecasting volatility.

Earlier literature has shown that implied volatility backed out from option prices provides a

better volatility forecast than sample volatility based on past daily returns, but more recent

literature shows that volatility forecasting based on past returns may be improved dramatically

by using high-frequency (e.g., 5-minute) returns, and explicitly allowing for jumps in asset prices

when computing forecasts. The important question addressed in the present paper is whether

implied volatility from option prices continues to be the dominant volatility forecast, even

when comparing to these new improved return based alternatives, using high-frequency data

and accommodating a jump component in asset prices.

The recent realized volatility literature has focussed much on the summation of high-

frequency squared returns as a robust way of consistently estimating conditional volatility,

see e.g. French, Schwert & Stambaugh (1987), Schwert (1989), Andersen & Bollerslev (1998a),

Andersen, Bollerslev, Diebold & Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001),

and Barndor�-Nielsen & Shephard (2002a), and for a recent survey, see Andersen, Bollerslev

& Diebold (2004). In particular, Andersen, Bollerslev, Diebold & Labys (2003) and Andersen,

Bollerslev & Meddahi (2004) show that simple reduced form time series models for realized

volatility thus constructed from historical returns outperform the commonly used GARCH and

related stochastic volatility models in forecasting future volatility. This is good news for volatil-

ity forecasters, academic as well as practitioners, since realized volatility is relatively easy to

compute, given the increasing availability of high-frequency historical return records.

Two main drawbacks to the approach of summing high-frequency squared returns are that,

�rstly, the reliance on past returns only completely ignores the presumably considerable infor-

mation content on volatility available through observable prices of traded derivative securities.

Implied volatility from option prices is commonly among practitioners expected to be a much

more precise forecast of future volatility than anything based on past returns, as current op-

tion prices avoid obsolete information and are assumed to incorporate all relevant information

e�ciently. Secondly, recent studies have stressed the importance of explicitly allowing separate
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treatment of the jump and continuous sample path components, both in estimating parametric

stochastic volatility models (e.g. Andersen, Benzoni & Lund (2002), Chernov, Gallant, Ghysels

& Tauchen (2003), Eraker, Johannes & Polson (2003), and Ait-Sahalia (2004)), in nonparamet-

ric realized volatility modelling (e.g. Barndor�-Nielsen & Shephard (2003a, 2004b), Huang &

Tauchen (2005), and Andersen, Bollerslev & Diebold (2005)), and in empirical option pricing

(e.g. Bates (1991) and Bakshi, Cao & Chen (1997)). In particular, in the stochastic volatil-

ity and realized volatility literatures, the jump component is found to be far less predictable

than the continuous sample path component, clearly indicating separate roles for these in a

forecasting context.

Complete reliance on return data only may not provide an e�cient volatility forecast,

given investors' information set. If option market participants are rational and markets are

e�cient, then implied volatility backed out from traded option prices should reect available

information about future volatility through expiration of the options, including that contained

in past returns. Ignoring option price data in forecasting volatility therefore does not seem

natural. In fact, Christensen & Prabhala (1998) consider more than a decade of return and

option price data for the S&P 100 index and �nd that implied index option (OEX) volatility

is an unbiased and e�cient forecast of future realized volatility, subsuming the information

content of past realized volatility as a forecast. Other studies documenting the incremental

information in implied volatility relative to past realized volatility include Day & Lewis (1992),

Lamoureux & Lastrapes (1993), Jorion (1995), Fleming (1998), and Blair, Poon & Taylor

(2001). It is therefore clearly of interest to examine the role of implied volatility from option

prices in the context of the most recent realized volatility modelling and forecasting literature.

The consistency of realized volatility as an estimate of true total volatility as the frequency

of return observations is increased extends to the case of asset price processes including both

stochastic volatility and jump components. However, for forecasting purposes, the behavior of

and information content in the continuous sample path and jump components of total volatility

may be very di�erent (Andersen et al. (2005)). Recent theoretical developments by Barndor�-

Nielsen & Shephard (2003a, 2003b, 2004a, 2004b) allow a fully nonparametric separation of

the continuous sample path and jump components of realized volatility. This separation into

two series is exactly the tool required to model and analyze the underlying continuous and

jump components individually, and lends itself to empirical application. Using this methodol-

ogy, Andersen et al. (2005) extend results of Andersen et al. (2003) and Andersen, Bollerslev

& Meddahi (2004) by including both the continuous and jump components of past realized
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volatility as separate regressors in the forecasting of future realized volatility. Andersen et al.'s

(2005) results show that signi�cant gains in forecasting performance may be achieved by split-

ting the explanatory variables into the separate continuous and jump components, compared

to using only total past realized volatility. While the continuous component of past realized

volatility is strongly serially correlated, the jump component is found to be distinctly less per-

sistent, and hence the two components play very di�erent roles in forecasting. The explanatory

power, judged in terms of adjusted R2; improves even more when forecasting volatility over

a full month than for shorter horizon forecasts. Thus, for one month forecasts of S&P 500

return volatility, R2 more than doubles when replacing explanatory variables based on daily

or lower frequency returns with their high-frequency counterparts and accounting for jumps,

and R2 triples resp. quadruples when considering variances resp. log-volatilities1 instead of

raw volatilities (standard deviations). Clearly, the enhanced forecasting performance begs the

question of whether implied volatility from option prices continues to come in as the dominant

forecast, even in the presence of past realized volatility measurements based on high-frequency

return data and di�erentiating the continuous and jump components.

In this paper, we include implied volatility from option prices in the analysis, thus expand-

ing the set of variables from the information set used for forecasting purposes. Given that

Andersen et al. (2005) show that splitting past realized volatility into its separate components

yields an improved forecast, adding implied volatility allows examining whether the continu-

ous and jump components of past realized volatility span the relevant part of the information

set. Similarly, as previous literature shows that implied volatility outperforms past realized

volatility as a forecast, it is of interest to test whether this conclusion holds up after allowing

the two components of past realized volatility to act separately. In addition, the earlier liter-

ature on the relation between implied and realized volatility has considered realized volatility

constructed from daily return observations, due to data limitations, and this could be one

reason for imprecise measurement of realized volatility and might have biased the results on

forecasting performance in favor of implied volatility from option prices. In sum, by providing

a joint analysis of the forecasting power of both implied volatility and the separate continuous

and jump components of realized volatility, we are able to address a host of issues from the

literature in the present paper.

1There are several advantages to using log-volatilities. Of the three transformations considered, it is closest

to Gaussianity, and so, as emphasized by Andersen et al. (2005, p. 6), it is more amenable to the use of standard

time series procedures. Furthermore, using log-volatilities automatically imposes non-negativity of the �tted

and forecasted volatilities.
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We study the S&P 500 index and the associated SPX options, which have the advantages

of being heavily traded and European style, i.e., there is no early exercise issue. We compute

alternative volatility measures from the separate data segments: Realized volatility and its

continuous and jump components from high-frequency index returns, and implied volatility

from option prices. We show that implied volatility contains incremental information relative to

both the continuous and jump components of realized volatility when forecasting subsequently

realized index return volatility. Indeed, implied volatility is found to be an unbiased forecast,

and in a few of our speci�cations even subsumes the information content of both components of

realized volatility. This shows that there is volatility information in option prices which is not

contained in return data, and that the continuous and jump components of realized volatility do

not span investors' information set. Furthermore, implied volatility from option prices retains

its dominant role in a forecasting context even when compared to realized volatility split into

its separate components and even when using high-frequency (as opposed to daily) returns

in constructing these. As an additional novel contribution, we consider separate forecasting

of the continuous and jump components of future realized volatility. Our results show that

implied volatility has predictive power for both components, and in particular that even the

jump component of realized volatility is, to some extent, predictable.

To verify the robustness of our conclusions, we conduct an number of additional analy-

ses. Since implied volatility is the new variable added in our study, compared to the realized

volatility literature, and since it may potentially be measured with error stemming from non-

synchronicity between sampled option prices and corresponding index levels, stale prices of

individual stocks making up the index, bid-ask spreads, model error, etc., we take special care

in handling this variable. In particular, we consider an instrumental variables approach, using

lagged values of implied volatility along with the separate components of past realized volatility

as instruments. In addition, we provide a structural vector autoregressive (VAR) analysis of

the systems consisting of implied volatility in conjunction with realized volatility or its two sep-

arate components. Both the instrumental variables analysis and the structural VAR analysis

control for possible endogeneity of implied volatility in the forecasting regression. Furthermore,

the simultaneous system approach allows testing interesting cross-equation restrictions. The

results from these additional analyses reinforce our earlier conclusions, namely, in particular,

that implied volatility is the dominant forecasting variable in investors' information set.

The results are interesting and complement both of the above mentioned strands of litera-

ture. First of all, although implied volatility had earlier been found to forecast better than past
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realized volatility, it might have been speculated that by measuring past realized volatility more

precisely, using high-frequency return data (Poteshman (2000) and Blair et al. (2001) suggest

this in the context of the implied-realized volatility relation), or by combining its separate con-

tinuous and jump components optimally, e.g. with unequal coe�cients, it would be possible to

construct an even better forecast of future volatility than that contained in option prices. We

�nd that this is not so. Secondly, since recent high-frequency data analysis shows that forecasts

are improved by splitting realized volatility into its separate components, it might have been

anticipated that these together summarize the relevant information set. Again, we reject the

conjecture, showing that incremental information may be obtained in the option market.

The remainder of the paper is laid out as follows. In the next section, we describe the

development of realized volatility and the nonparametric identi�cation of its separate continu-

ous sample path and jump components. In Section 3, we discuss the implied-realized volatility

relation. Section 4 presents our data and empirical results and Section 5 concludes.

2 Estimation of Jumps in Financial Markets

In a typical asset pricing model the log-price of a �nancial asset, p (t), is assumed to follow

a continuous time stochastic volatility model (see e.g. Ghysels, Harvey & Renault (1996)

or Barndor�-Nielsen & Shephard (2001) and the references therein for overviews of the vast

literature on this topic) with an additive jump process. In particular, we assume p (t) follows

the general jump di�usion model expressed in stochastic di�erential equation form as

dp (t) = � (t) dt+ � (t) dw (t) + � (t) dq (t) ; t � 0; (1)

where the mean process � (�) is continuous and locally bounded and the instantaneous volatility
process � (�) > 0 is c�adl�ag, and both are assumed to be independent of the standard Brownian
motion w (�). The simple counting process q (t) is normalized such that dq (t) = 1 corresponds
to a jump at time t and dq (t) = 0 otherwise. With this normalization, � (t) is the size of the

jump at time t in case dq (t) = 1. Furthermore, we denote by � (t) the possibly time varying

intensity of the arrival process for jumps.2

Allowing instantaneous volatility to be random (note that the c�adl�ag assumption in fact

allows for jumps in the instantaneous volatility process) and serially correlated, the model (1)

2Formally, Pr (q (t)� q (t� h) = 0) = 1�
R t
t�h � (s) ds+o (h), Pr (q (t)� q (t� h) = 1) =

R t
t�h � (s) ds+o (h),

and Pr (q (t)� q (t� h) � 2) = o (h). Note that this assumption rules out in�nite activity L�evy processes, e.g.

the normal inverse Gaussian process, with in�nitely many jumps in �nite time intervals.
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will generate returns with (unconditional) distributions that are fat-tailed and exhibit volatility

clustering. This replicates more closely actually observed processes than constant volatility, and

e.g. allows the model to overcome some of the shortcomings of the basic Black & Scholes (1973)

and Merton (1973) option pricing model, see Hull & White (1987).

An important feature of the model (1) is that, in the absence of jumps,

p (t)j
Z t

0
� (s) ds; �2� (t) � N

�Z t

0
� (s) ds; �2� (t)

�
; (2)

where

�2� (t) =

Z t

0
�2 (s) ds (3)

is called the integrated volatility (or integrated variance) and is an object of primary interest.

For instance, in pricing options this is the relevant volatility measure, see Hull & White (1987),

and for the econometrician this is an object to be estimated, see also Andersen & Bollerslev

(1998a).

Another related important quantity is the quadratic variation (or notional volatility/variance

in the terminology of Andersen, Bollerslev & Diebold (2004)) process of p (t), denoted [p] (t),

which is de�ned for any semimartingale (see e.g. Protter (1990)) by

[p] (t) = p2 (t)� 2
Z t

0
p (s�) dp (s) ; (4)

or equivalently

[p] (t) = p lim

MX
j=1

(p (sj)� p (sj�1))2 ; (5)

where 0 = s0 < s1 < ::: < sM = t and the limit is taken for maxj jsj � sj�1j ! 0 as M !1.
Under some very general regularity conditions, which allow the instantaneous volatility pro-

cess to exhibit many irregularities such as jumps, it is well known that the quadratic variation

process for the model (1) is given by

[p] (t) = �2� (t) +

q(t)X
s=0

�2 (s) ; (6)

i.e., the sum of integrated volatility and the squared jumps that have occured through time t,

see e.g. the discussion in Andersen, Bollerslev, Diebold & Labys (2001, 2003).

Direct modeling of price processes via jump di�usion models such as (1) is standard in

the �nancial asset pricing literature, and direct estimation of (1) has been considered recently
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by e.g. Andersen & Bollerslev (1998b) and Andersen, Bollerslev, Diebold & Vega (2004) for

information arrivals, see also Andersen et al. (2002), Chernov et al. (2003), Eraker et al. (2003),

Eraker (2004), Ait-Sahalia (2004), and Johannes (2004). These studies all �nd that jumps are

an integral part of the price process and thus point towards the importance of incorporating

jumps in the estimation of the parameters of the price process.

Instead of directly modeling (1), we take a di�erent nonparametric approach to identifying

the two components (integrated volatility resp. the jump term) of the quadratic variation

process (6) using high-frequency data, following Barndor�-Nielsen & Shephard (2003a, 2003b,

2004a, 2004b), Andersen et al. (2005), and others. Assume that T months of intra-monthly

observations are available and denote the intra-monthly observations for month t on the log-

price of the asset by pt;j . The time period could be any arbitrary period (e.g. intra-daily

or intra-weekly), but our empirical analysis below is based on intra-monthly observations in

order to estimate volatility components at a monthly frequency. Suppose nt intra-monthly

observations are available in month t. It is often desirable to have observations that are evenly

spaced in time, i.e. M evenly spaced observations may be desired based on the nt intra-

monthly and possibly irregularly spaced observations. To avoid the problem of irregularly

spaced data in high-frequency data sets, either linear interpolation or imputation (using the

last observed price) is typically used. In this way, a data set of M evenly spaced intra-monthly

price observations can be constructed based on an irregularly spaced high-frequency data set.

Using these M evenly spaced log-price observations we denote the (continuously com-

pounded) intra-monthly returns for month t by

rt;j = pt;j � pt;j�1; j = 1; :::;M; t = 1; :::; T: (7)

Using (5), quadratic variation can be estimated by

RVt =

MX
j=1

r2t;j ; t = 1; :::; T; (8)

which is denoted the realized volatility of the process p (�) for month t. Thus, a time series
of observations on realized volatility is obtained. Some authors refer to the quantity (8) as

the realized variance and reserve the name realized volatility for the square root of (8), e.g.

Barndor�-Nielsen & Shephard (2001, 2002a, 2002b), but we shall use the more conventional

name realized volatility.

Note that the coarseness of the realized volatility estimator is governed by the choice of M .

Choosing a higher number of intra-monthly returns improves the precision of the estimator,
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but at the same time makes it more sensitive to microstructure e�ects in the market, e.g. mea-

surement errors, bid-ask bounces, etc., see Campbell, Lo & MacKinlay (1997). Several studies

have considered the practical choice of M , e.g. Ait-Sahalia, Mykland & Zhang (2003), Bandi

& Russell (2003), Zhang, Mykland & Ait-Sahalia (2003), and Nielsen & Frederiksen (2004),

among many others. In our implementation, we follow the majority of the literature and use

5-minute returns. The 5-minute sampling frequency is close to optimal in the presence of mar-

ket microstructure noise, as argued theoretically by Bandi & Russell (2003) and in simulations

by Nielsen & Frederiksen (2004). For related (theoretical) results on optimal sampling schemes

for maximum likelihood estimation of di�usions in the presence of market microstructure noise,

see Ait-Sahalia et al. (2003).

As argued by Andersen & Bollerslev (1998a), Andersen, Bollerslev, Diebold & Labys (2001)

and Barndor�-Nielsen & Shephard (2002a, 2002b), RVt in (8) is by de�nition a consistent (in

probability and uniformly in t) estimator of the increment to the quadratic variation process

(6), using (5). The consistency result does not require that the observations are evenly spaced,

only that the maximum distance between observations goes to zero in the limit. Thus, as

M !1,

RVt !p

Z t

t�1
�2 (s) ds+

q(t)X
s=q(t�1)

�2 (s) = �2�t +

q(t)X
s=q(t�1)

�2 (s) ; (9)

de�ning the month t integrated volatility as �2�t =
R t
t�1 �

2 (s) ds. The latter is the component

of the quadratic variation process that is due to the continuous sample path element of the

price process (1). Therefore, realized volatility is a consistent estimator of the key integrated

volatility measure, �2�t , only in the absence of jumps. Furthermore, Barndor�-Nielsen & Shep-

hard (2002a) showed that (in the absence of jumps) RVt converges to �
2�
t in probability at rate

p
M and satis�es a mixed Gaussian asymptotic distribution theory.

In a recent series of papers, Barndor�-Nielsen & Shephard (2003a, 2003b, 2004a, 2004b)

have shown that separate nonparametric identi�cation of the two components in (6), i.e., the

continuous sample path and jump components, is possible using what is termed bipower and

tripower variation measures. In particular, the (�rst lag) realized bipower variation is de�ned

as

BVt = �
�2
1

MX
j=2

jrt;j j jrt;j�1j ; t = 1; :::; T; (10)
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where �1 =
p
2=�. Barndor�-Nielsen & Shephard (2004b) showed that

BVt !p

Z t

t�1
�2 (s) ds = �2�t ; as M !1; (11)

i.e. realized bipower variation is a consistent estimator of integrated volatility, that is, the

continuous component of the quadratic variation process (see Barndor�-Nielsen, Graversen &

Shephard (2004) and Barndor�-Nielsen & Shephard (2004a) for surveys of further results on

power variation). It follows that the jump component of the quadratic variation process can

be estimated consistently as

RVt �BVt !p

q(t)X
s=q(t�1)

�2 (s) : (12)

Two issues immediately arise in relation to the estimation of the jump component by the

di�erence between realized volatility and bipower variation. First, it is desirable in applications

to ensure non-negativity of the estimate of the jump component, and this can be done simply

by imposing a non-negativity truncation on RVt � BVt. Secondly, RVt � BVt can be positive
due to sampling variation even if there is no jump during month t, and thus we need the notion

of a "signi�cant jump". Barndor�-Nielsen & Shephard (2003a, 2004b) show that in the absence

of jumps,

p
M

RVt �BVt��
��41 + 2��21 � 5

� R t
t�1 �

4 (s) ds
�1=2 !d N (0; 1) ; as M !1; (13)

where
R t
t�1 �

4 (s) ds is called the integrated quarticity and needs to be estimated to make this a

feasible test of the signi�cance of the jump component for month t. The integrated quarticity

may be estimated by the realized tripower quarticity measure

TQt =
1

M
��34=3

MX
j=3

jrt;j j4=3 jrt;j�1j4=3 jrt;j�2j4=3 ; t = 1; :::; T; (14)

where �4=3 = 2
2=3� (7=6) =� (1=2) : This estimator is consistent, i.e.,

TQt !p

Z t

t�1
�4 (s) ds; as M !1: (15)

Combining the results in (13) and (15), a feasible test for the signi�cance of jumps may

be obtained by replacing the integrated quarticity by TQt. However, simulations by Huang
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& Tauchen (2005) suggest that the resulting test statistic has poor properties in �nite sam-

ples. Following Huang & Tauchen (2005) and Andersen et al. (2005), we therefore employ a

logarithmically transformed test statistic. Thus, in the absence of jumps,

Zt =
p
M

lnRVt � lnBVt��
��41 + 2��21 � 5

�
TQtBV

�2
t

�1=2 !d N (0; 1) ; as M !1; (16)

where the distribution follows by application of the delta rule. A feasible test for jumps is

obtained by identifying extreme (positive) values of Zt with a signi�cant jump during month

t: In particular, we de�ne the jump component of realized volatility by

Jt = IfZt>�1��g (RVt �BVt) ; t = 1; :::; T; (17)

where IfAg is the indicator function of the set A, �1�� is the 100 (1� �)% point of the standard
normal distribution, and � is the chosen signi�cance level. With Jt the estimator of the jump

component of quadratic variation, we lastly formally de�ne the estimator of the continuous

component of quadratic variation as

Ct = RVt � Jt; t = 1; :::; T; (18)

which is chosen to ensure that the estimators of the jump and continuous sample path com-

ponents add up to realized volatility (otherwise we could have just used the realized bipower

variation de�ned in (10)). In other words, the month t continuous component of realized volatil-

ity is equal to realized volatility if there is no jump in month t and equal to realized bipower

variation if there is a jump in month t, i.e. Ct = IfZt��1��gRVt + IfZt>�1��gBVt.

Thus, Jt and Ct from (17) and (18) are called the jump component respectively the contin-

uous component of realized volatility, and are estimators of the corresponding components of

quadratic variation in (6). It follows that the two components of quadratic variation may be

consistently estimated by the corresponding components of realized volatility, i.e. Ct !p �
�2
t

and Jt !p
Pq(t)
s=q(t�1) �

2 (s) as M !1 if also �! 0 (possibly as a function of M).

Note that using standard signi�cance levels (or any � < 1=2) ensures that both Jt and

Ct from (17) and (18) are automatically positive since �1�� > 0 for � < 1=2. Hence, this

high-frequency data approach allows for month-by-month separate nonparametric consistent

(as M ! 1) estimation of both components of quadratic variation, i.e. the jump component
and the continuous sample-path or integrated volatility component, as well as the quadratic

variation process itself.
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3 The Implied-Realized Volatility Relation

Existing empirical work on the continuous and jump components of realized volatility from the

previous section (e.g. Andersen et al. (2005)) has not considered the role of implied volatility

from option prices in forecasting future realized volatility and its components. Other previous

work has shown that implied volatility provides a rather precise forecast of future realized

volatility itself. Thus, if option market participants are rational and markets are e�cient, then

the price of a �nancial option should reect all publicly available information about expected

future return volatility of the underlying asset over the life of the option, and empirical evidence

supports this notion. Tests of this hypothesis have typically employed the option pricing

formula of Black & Scholes (1973) and Merton (1973) - henceforth the BSM formula. According

to this, the fair (arbitrage free) price of a European call option with � periods to expiration

and strike price k is given by

c (s; k; � ; r; �) = s� (�)� e�r�k�
�
� � �

p
�
�
; (19)

� =
ln (s=k) +

�
r + 1

2�
2
�
�

�
p
�

;

where s is the price of the underlying asset, r is the riskless interest rate, � is the standard

normal c.d.f., and � is the return volatility of the underlying asset through expiration of the

option (� periods hence).

Given an observation c of the price of the option, the implied volatility IV may be deter-

mined by inverting (19), i.e. solving the nonlinear equation

c = c
�
s; k; � ; r;

p
IV
�

(20)

numerically with respect to IV , for given data on s; k; � ; and r. If this is done every period t,

a time series IVt results. Each implied volatility IVt may now be considered as the market's

forecast of the actually realized return volatility of the underlying asset, from the time t where

IVt is calculated and until expiration of the option at t+ � .

Various versions of this approach have been adopted empirically e.g. by Day & Lewis (1992),

Lamoureux & Lastrapes (1993), Jorion (1995), Christensen & Prabhala (1998), Fleming (1998),

and Blair et al. (2001). For instance, Christensen & Prabhala (1998) considered regression

speci�cations of the type

yt = �+ �xt + "t; (21)

where yt is the chosen measure of realized volatility, either RV
1=2
t ; lnRVt, or RVt, measured

over the course of month t, and xt is the corresponding transformation of IVt, measured at
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the beginning of month t. The unbiasedness hypothesis of interest is that � = 1. In addition,

the hypotheses � = 0; no serial correlation in the residuals, or no correlation with other

variables in the information set at time t, can be tested. A monthly sampling frequency was

employed for xt and yt. The underlying asset was the S&P 100 stock market index, and yt was

calculated from daily returns. The options were at-the-money (kt = st) one-month (� = 1=12)

OEX contracts. Basic ordinary least squares regression in (21) produced a �-estimate less

than unity for both the square-root and log-transform. Correction for the potential errors-in-

variable problem in implied volatility (due to bid-ask spreads, nonsynchronicities, model error,

etc.) using an instrumental variables approach yielded a �-estimate insigni�cantly di�erent

from unity, consistent with the unbiasedness hypothesis. These results are broadly consistent

with others from the more recent literature, including Jorion (1995), who considered the foreign

exchange market, Fleming (1998), and Blair et al. (2001).

The results of Christensen & Prabhala (1998) suggest that when adding other variables

from the information set on the right-hand side of the regression, in particular lagged realized

volatility, then this does not improve the forecast, i.e., implied volatility is e�cient in this

sense. The new approach to decomposition of realized volatility, RVt, into its continuous

and jump components, Ct and Jt, allows re�ning this analysis, inspecting whether implied

volatility carries incremental information relative to each of the two components of lagged

realized volatility separately, or only relative to their simple sum (the case from the literature).

Furthermore, computing realized volatility from high-frequency (5-minute) returns instead of

daily returns allows examining whether poor measurement of realized volatility had biased the

forecasting results in favor of implied volatility in the earlier literature, as argued by Poteshman

(2000) and Blair et al. (2001). Finally, by splitting the left-hand side variable into its continuous

and jump components, di�erences with respect to how each of these is best forecast may be

investigated. It is these new analyses to which we turn in the empirical section below.

By focusing on the standard BSM formula, which is commonly used by practitioners, it is

possible to gauge whether implied volatility backed out from this formula is in fact calibrated

to incorporate jump risk, rather than merely forecasting the continuous component of future

volatility. On the other hand, explicitly accounting for stochastic volatility, the Hull & White

(1987) option pricing formula takes the form of an expected BSM formula with �2� replaced

by integrated volatility, ��2. Since the BSM formula is approximately linear in � for near-

the-money options (Feinstein (1988)), IV
1=2
t in this case approximately estimates expected

integrated volatility and so should forecast C
1=2
t+1. Again, our empirical analysis now allows
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investigating whether in fact IVt incorporates jump risk, too.

4 Empirical Results

4.1 Data and Summary Statistics

We analyze the U.S. stock market as represented by the S&P 500 index. The S&P 500 options

(SPX options) are traded frequently and heavily. When using the BSM formula (19), the

SPX options have the advantage over the OEX contracts considered by Day & Lewis (1992),

Christensen & Prabhala (1998), and Fleming (1998) that they are European style as assumed

in the formula. Thus, unlike the OEX options, the SPX options have no early exercise feature

and no built-in wildcard option stemming from nonsynchronicity between exercise price (index

level at NYSE close, 4:00 PM EST) and index level when exercising (until CBOE close at 3:15

PM CST), see Harvey & Whaley (1992). In addition, hedging using the heavily traded SPX

futures contracts should work better for SPX options than for OEX options, for which there is

no directly associated futures contract. Consequently, there is reason to believe that arbitrage

pricing is more precise for SPX than for OEX contracts.

To calculate the implied volatilities we use at-the-money calls with one month to expiration,

which were traded on the Chicago Board of Options Exchange on a monthly basis starting in

May 1986 (expiration month). By convention, SPX options expire on the third Saturday of

every month. We sample the call which is closest to being at-the-money at the following Monday

close and which expires the following month. We record the price as the bid-ask midpoint. This

produces a sequence of sampled options covering nonoverlapping intervals. We have option data

from the Berkeley Options Data Base (BODB) (see the BODB User's Guide or Rubinstein &

Vijh (1987) for a description) until December 1995, and supplement with data collected from

Wall Street Journal and Financial Times until December 2002 (expiration month). Thus, we

analyze more recent time periods than Day & Lewis (1992) who consider data only until 1989,

Christensen & Prabhala (1998) (data until May 1995), Fleming (1998) (data until April 1992),

and Blair et al. (2001) (data until 1999). From each sampled quote, an implied volatility is

backed out using the BSM formula (19), as described in the previous section. We correct

for dividends on the S&P 500 index as described in Merton (1973) and Hull (2002, pp. 268-

269). Dividend yields and risk-free interest rates (US Eurodollar deposit 1 month (bid, 11 AM,

London) middle rate) are obtained from Datastream. We use two di�erent measures of time

to expiration to reect that calendar days are relevant for interest and dividends, and trading
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days for volatilities, following French (1984) and Hull (2002, p. 252).

Realized volatility and its components are based on 5-minute S&P 500 returns using lin-

ear interpolation following M�uller, Dacorogna, Olsen, Pictet, Schwarz & Morgenegg (1990),

Dacorogna, M�uller, Nagler, Olsen & Pictet (1993), and Barucci & Reno (2002), among oth-

ers. We consider a monthly sampling frequency for each volatility measure (covering the same

nonoverlapping intervals as the implied volatilities), resulting in roughly 2,000 intra-monthly

return observations for each realized volatility (97 per day and approximately 20 trading days

per month). The remaining volatility measures are then constructed as in section 2 above using

a 0.1% signi�cance level, i.e. �1�� = 3:090, to detect jumps. For a more detailed description

of the construction of realized volatility and its components, see Andersen, Bollerslev, Diebold

& Vega (2004) or Andersen et al. (2005).

All variables are stated on a monthly basis resulting in a total of T = 200 observations.

We use the convention that our time index refers to the month where implied volatility is

sampled. Thus, implied volatility, IVt, is measured on the Monday immediately following

the time interval over which RVt and its components Ct and Jt are calculated. For example,

suppose t refers to the month of June in a given year. Implied volatility, IVt, is backed out

from an option price sampled on the Monday following the third Saturday of June. Realized

volatility, RVt, and its components, Ct and Jt, are measured over the interval starting the

Monday following the third Saturday of May and ending on expiration date t, i.e. the Friday

preceding the third Saturday of June. With this convention, we may consider IVt as a forecast

of RVt+1, since implied volatility is sampled at the beginning of the month covered by realized

volatility.

We conduct our entire analysis for three di�erent transformations of the data, the raw

variance form, the standard deviation form, and logarithmically transformed (log-volatility)

variables. To avoid taking the logarithm of zero, the jump component Jt; which equals zero in

the case of no signi�cant jumps during the month, is in the case of log-transformed volatility

measures replaced by ~Jt; obtained by substituting the smallest non-zero observation from the

time series for each zero observation. It turns out that 10% of the Jt observations are zero,

corresponding to 20 out of 200 months without signi�cant jumps, and that the smallest non-

zero observation is 0.0075 in standard deviation form. For comparison, Andersen et al. (2005)

found no signi�cant jumps in 91.8% of daily observations. Obviously, there are more true jumps

in a month than in a day on average under any model, e.g. the Poisson arrival model (1), and

so it is reasonable to �nd a larger proportion of signi�cant jumps at the monthly frequency
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than at the daily.

Table 1 about here

Table 1 presents summary statistics for the four annualized volatility measures under each of

the three transformations we consider. Con�rming the results of Andersen, Bollerslev, Diebold

& Ebens (2001), the logarithmic transform is the one bringing realized volatility closest to

Gaussianity (Panel A). It is seen from Table 1 that the same is true for both the continuous

component and the jump component, see also Andersen et al. (2005). Our results in Table

1 establish that it is also the logarithmic transform that leaves implied volatility, the new

variable in our study, closest to normal. All results in the remainder of the paper are shown for

all three transformations of the variables and presented in the same order as in Table 1, with

the logarithmic form being closest to Gaussianity and the variance form being most di�erent

from Gaussianity for all variables. From Panel C, the jump component constitutes 11.11%

of realized volatility, on average, and exhibits considerable variation itself. The coe�cient of

variation (standard deviation divided by mean) is close to 3 for Jt, compared to only about 2

for RVt.

Comparing across volatility measures, implied and realized volatility have roughly equal

means, consistent with the notion that the former is the unbiased expectation of the latter.

Both realized volatility and its continuous component have greater standard deviations than

implied volatility, further supporting the interpretation of implied volatility as a conditional

expectation. Finally, implied volatility is closer to normal than realized, even under the loga-

rithmic transform, where realized is quite close to Gaussian (c.f. Andersen, Bollerslev, Diebold

& Ebens (2001)).

Figure 1 about here

Figure 1 shows time series plots of the four volatility measures under each of the three

transformations. The October 19, 1987 stock market crash greatly a�ects the November 1987

(expiration month) observation, which is only shown in the top panel (log-volatility represen-

tation) in order not to distort the axes in the other panels, and implied volatility is seen to

hover above realized volatility for more than a year after the crash, possibly reecting increased

investor fears of a second crash, as suggested by Bates (1991). As expected, the measured jump

component for the crash month is very large. Still, it does not explain the entire movement

in realized volatility for the month, which makes sense, as a large jump may reasonably be
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expected to be accompanied by an increase in continuous sample path stochastic volatility.

Furthermore, towards the end of the sample period, there are several equally large jump com-

ponents, possibly associated with the September 11, 2001 terrorist attacks and subsequent

uncertainty, and possibly the Enron scandal. We choose to include the full time series in our

empirical analysis, rather than excluding the crash month and other months with large jumps

and introducing ad hoc subperiod analysis, since, in particular, our approach of nonparametri-

cally separating the continuous sample path and jump components is explicitly geared towards

accommodating jumps. In general, realized volatility and its continuous component follow

each other closely and are nearly indistinguishable in parts of the �gure. Implied volatility

is slightly above the two, especially in the earlier part of the sample period but nonetheless

exhibits a very similar pattern, even though it is calculated from a completely separate data

set on option prices rather than high-frequency returns. The jump component clearly behaves

di�erently, as expected from Table 1 and Andersen et al. (2005), but is by no means negligible,

hence reinforcing the importance of treating the individual components of realized volatility

separately.

4.2 The Information Content of the Continuous and Jump Components

Table 2 shows the results of regression of future realized volatility on variables in the information

set at the beginning of the period. Panel A of the table is for the logarithmically transformed

(log-volatility) series. Panel B shows results for the case where the square-root transform is

applied to all variables, i.e. volatilities are in standard deviation form, and Panel C for the

raw (variance) form of the variables. Within each of these three panels of the table, each

line corresponds to a single regression. Numbers reported are coe�cient estimates (estimated

standard errors in parentheses), adjusted R2, and the Breusch-Godfrey (henceforth BG) test

statistic for residual autocorrelation (up to lag 12), which is used instead of the standard

Durbin-Watson statistic due to the presence of lagged endogenous variables in some of our

speci�cations. The BG statistic is asymptotically �2 with 12 degrees of freedom under the null

of no residual autocorrelation.

Table 2 about here

The �rst four rows of each panel show the results of univariate regression on each of the

explanatory variables. The regression speci�cations corresponding to the �rst three lines take
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the form

RVt+1 = �+ xt + "t+1; (22)

where xt is the lagged value of realized volatility, RVt, or its continuous component, Ct, or jump

component, Jt (note that ~Jt replaces any Jt term in xt in the log-regressions, as explained

in Section 4.1 above). Here and in the following we leave out the explicit transformations

(logarithm or square-root) in our equations which are used to refer the all three transformations,

but the explicit transformations are used in the tables. Focussing �rst on Panel A (volatility

in logarithmic form), the �rst line shows that, as expected, lagged realized volatility, RVt,

does have signi�cant explanatory power for the future realization, RVt+1. The �rst-order

autocorrelation coe�cient is .77, and the regression explains 59% of the variation in future

realized volatility. It is now of interest to examine whether it is the continuous component, Ct,

or the jump component, Jt, of lagged realized volatility that has the majority of the forecasting

power. The second and third lines of the table show that both the continuous and jump

components of lagged realized volatility enter signi�cantly in the univariate regressions, but

that they get di�erent parameter estimates. The coe�cient on the continuous component is

.78, similar to that on lagged realized volatility from the �rst line, at .77. The coe�cient on the

jump component is much lower, .24, and in contrast to the previous two regressions, the BG

statistic shows clear signs of misspeci�cation. Neither the continuous nor the jump component

explains as much of the variation in future realized volatility as the 59% explained by lagged

realized volatility. The results suggest that the continuous and jump components should not

be combined in the form of raw realized volatility for the purposes of volatility forecasting, but

may instead have di�erent coe�cients. This indicates the potential usefulness of the general

approach of decomposing volatility into its various components in a forecasting context.

4.3 The Information Content of Implied Volatility

The next (fourth) line of Table 2 shows the regression of realized on implied volatility,

RVt+1 = �+ �IVt + "t+1; (23)

where implied volatility IVt is measured at the beginning of the time interval covered by

realized volatility RVt+1. The slope coe�cient is much higher, at 1.07, than those on realized

volatility or its continuous component in the �rst two lines of the table. It is strongly signi�cant,

with a t-statistic of 21.68, and the regression explains 70% of the variation in future realized

volatility, the maximum among the four univariate regressions. In fact, the coe�cient on
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implied volatility is insigni�cantly di�erent from unity at conventional levels (t-statistic of

1:35). Furthermore, in contrast to the previous three regressions, the intercept (�rst column of

the table) is insigni�cantly di�erent from zero in the regression of realized on implied volatility.

These results indicate that implied volatility is an unbiased predictor of future realized volatility,

and that it contains more predictive power than each of lagged realized volatility and the

continuous and jump components of this. While this con�rms earlier �ndings with respect to

lagged realized volatility, and extends these to recent time periods and to the case of measuring

realized volatility from high-frequency (5-minute) rather than daily returns, the comparison

between implied volatility and the separate components of lagged realized volatility is novel.

One caveat though, in this speci�cation, is that the BG statistic, at 32.27, shows signs of

misspeci�cation.

The remainder of Panel A shows the results of multivariate regression on various groups of

explanatory variables, of the form

RVt+1 = �+ �IVt + xt + "t+1; (24)

where xt is one of the lagged realized volatility measures RVt, Ct, Jt, or the vector (Ct; Jt), and

� = 0 is imposed if implied volatility is not included in the regression. The �rst question to

examine is whether implied volatility indeed carries incremental information relative to lagged

realized volatility and its separate continuous and jump components. This is addressed in the

results in the �fth line of the panel.3 It is seen that implied volatility gets a much higher

coe�cient, .81 (t-statistic of 9.64), than lagged realized volatility, whose coe�cient is rather

low in the bivariate regression, at .25, and less signi�cant (t-statistic of 3.80). Furthermore,

adjusted R2 only increases by 1.9 percentage points when adding lagged realized volatility

to the regression on implied volatility. These results suggest that implied volatility does carry

incremental information relative to lagged realized volatility. While this con�rms earlier results,

and shows that they carry over to our more recent data and to the case of high-frequency

realized volatility, we are now in a position to examine whether the conclusion holds even when

splitting lagged realized volatility into its separate continuous and jump components.

The next (sixth) line in Panel A focusses on the basic split between the two components

of lagged realized volatility. The coe�cients on the continuous component, .75, and the jump

3Results are shown for once-lagged realized volatility and the components of this. We experimented with

including further lags and found that these were all insigni�cant when implied volatility was included. In

particular, including only IVt, but not necessarily further lags, IVt�1 etc., su�ces for rendering the additional

lags of xt insigni�cant.
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component, .04, are still very di�erent from each other. Adjusted R2 is only 58.4%, i.e., 0.6

percentage point lower relative to the regression on lagged realized volatility (�rst line of the

table), and 11.8 percentage points less than in the regression on implied volatility alone (fourth

line). The latter �nding shows that it is not possible to combine the separate continuous and

jump components of lagged realized volatility to form a better forecast than implied volatility.

The bivariate regressions in the next two lines show that implied volatility subsumes the

information content in the jump component of lagged realized volatility, which has a t-statistic

of less than one, while the continuous component of lagged realized volatility remains signi�cant.

These results are con�rmed in the last line of Panel A, which shows the results from regression

of realized volatility on implied volatility together with both components of lagged realized

volatility. The continuous component, Ct, remains signi�cant and the jump component, Jt,

enters insigni�cantly. Implied volatility, IVt, remains the dominant forecasting variable, with a

coe�cient of .81, and a t-statistic of 9.77. Furthermore, BG shows no sign of misspeci�cation.

It is also remarkable that throughout the panel, the intercept is statistically insigni�cant if and

only if implied volatility enters the regression. All the results are consistent with the notion

that implied volatility carries the majority of the information about future realized volatility,

even when compared against the separate continuous and jump components of lagged realized

volatility. In this case, the regression on all three explanatory variables leaves both Ct and IVt

signi�cant, i.e., they both have incremental information.

For completeness, we follow Andersen et al. (2005) and show also the corresponding results

for the cases where each volatility measure is in standard deviation form (Panel B of Table 2)

or in variance form (Panel C). The regression speci�cations are the same as (22)-(24) above,

keeping in mind the new de�nitions of RVt, IVt, and xt (standard deviations resp. variances

replace the logarithmic measures, and Jt is used instead of ~Jt). In Panels B and C the same

pattern for adjusted R2 as in Panel A emerges. If implied volatility is included in the regression,

the adjusted R2 is orders of magnitude higher than when this variable is excluded. Thus, in

Panel B (standard deviations) adjusted R2 ranges between 19% and 29% when implied volatility

is excluded and is 74-75% when implied volatility is included. The corresponding adjusted R2's

for Panel C (variances) are 3-5% when implied volatility is excluded and 86-89% when it is

included. Furthermore, in the standard deviation speci�cation (Panel B), the coe�cients on

implied volatility are very close to unity, and indeed implied volatility subsumes the information

content of the other variables whose coe�cients are insigni�cant. In fact, if the continuous and

jump components are excluded and only implied volatility is used to forecast subsequent realized
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volatility, the BG test no longer shows signs of misspeci�cation (fourth line of Panels B and

C).

The results obtained so far contribute to the existing literature in interesting ways. It

has been known that lagged realized volatility carries little incremental information relative to

implied volatility (see Christensen & Prabhala (1998) and Blair et al. (2001)). The new �nding

is that when basing realized volatility on high-frequency rather than daily returns and splitting

lagged realized volatility into its continuous and jump components, implied volatility continues

to play the dominant role in a forecasting context. In fact, implied volatility is signi�cant

whenever it is included, and in the standard deviation speci�cation subsumes the information

content of both components of realized volatility. These would seem important results of the

relatively new approach to decomposition of realized volatility.

When interpreting the results, it should be recalled that implied volatility here is backed

out from the BSM formula, as is standard among practitioners and in the empirical literature.

Since the BSM formula does not account for jumps in asset prices, although it is consistent

with a time-varying volatility process for a continuous sample path asset price process, it would

perhaps be natural to expect that exactly the jump component would not be fully captured

by BSM implied volatility. In fact, there are signs in this direction (Table 2, line 8 of Panel

C). However, implied volatility retains the majority of the explanatory power, suggesting that

option prices have been calibrated to incorporate the e�ect of jumps to some extent. Of course,

an alternative line of attack would be to say that the BSM model is misspeci�ed and therefore

eliminate it altogether, and apply a more general option pricing formula allowing explicitly

for jumps in asset prices, e.g. as in Bates (1991) and Bakshi et al. (1997). Such an approach

would entail estimating additional parameters, including prices of volatility and jump risk, in

contrast to our simply backing out implied volatility directly from the BSM formula. Thus,

our approach yields a conservative estimate of the information content on future quadratic

variation of the log-price process contained in option prices. Our results show that simple BSM

implied volatility does play an important role in a forecasting context in the presence of jumps

in asset prices, more important than past realized volatility and its separate continuous and

jump components, and we leave the alternative, more complicated analysis for future research.
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4.4 The Role of Implied Volatility in Forecasting the Continuous and Jump

Components

Besides asking about the consequences of splitting lagged realized volatility into its separate

components when forecasting realized volatility, we may also split realized volatility, RVt+1,

on the left hand side of the regression and examine which variables forecast each of the com-

ponents, Ct+1 and Jt+1. If it is really the case that implied volatility is more closely related

to the continuous component of realized volatility than to the jump component, then it may

be expected that implied volatility plays a bigger role in forecasting Ct+1 than in forecasting

Jt+1. More generally, it is of interest to investigate which variables in the information set carry

incremental information in forecasting the continuous and jump components of future volatility

separately. This issue has not been addressed before in a setting including the implied volatility

from option markets.

Table 3 about here

Table 3 shows the results for forecasting the continuous component, Ct+1, of realized volatil-

ity. The format is the same as in Table 2. The general regression speci�cation is of the form

Ct+1 = �+ �IVt + xt + "t+1 (25)

in the variance representation, with xt containing lagged realized volatility or one or both

of its components, and similarly in the other two representations, applying the square-root

respectively the log-transformation to all variables. The results using the logarithmic form of

volatility (Panel A) are very similar to the corresponding results in Table 2. This suggests that

realized volatility and its continuous component share important features, which seems natural.

Again, implied volatility gets higher coe�cients and t-statistics than the other variables (lagged

realized volatility and its continuous and jump components), and adjusted R2 is highest when

implied volatility is included in the regression. When forecasting the continuous component of

realized volatility it is the lagged value of this and not of the jump component which potentially

carries incremental information relative to implied volatility. As in Table 2 Panel A, intercepts

are statistically insigni�cant if and only if implied volatility enters the regression.

Comparing with Panels B and C of Table 3 (standard deviations and variances), the same

pattern as in Table 2 emerges. In standard deviation form (Panel B) implied volatility subsumes

the information content of the other variables and is nearly unbiased. Indeed, when eliminating

the insigni�cant variables it can not be rejected at conventional signi�cance levels that implied
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volatility is an unbiased estimate of subsequent realized volatility. The t-statistic for a test of

unit coe�cient takes the value .74 (the similar statistic in Panel A is insigni�cant as well, at

1.06).

Table 4 about here

To further investigate whether implied volatility does have predictive power with respect

to the jump component of realized volatility, we turn to Table 4, which reports results from

regression of the future jump component, Jt+1, on the same explanatory variables as in the two

previous tables. The general regression speci�cation is therefore

Jt+1 = �+ �IVt + xt + "t+1 (26)

in the variance speci�cation, and similarly in the other two representations, operating the

square-root respectively the log-transform on all variables. The univariate regression results

of Table 4 show that all the forecasting variables considered have explanatory power for the

jump component of realized volatility (except in Panel C where lagged realized volatility and

its continuous component are insigni�cant). The multivariate regressions in Table 4 show that

both implied volatility and the lagged jump component of realized volatility remain signi�cant

whenever they are included. Indeed, in the standard deviation and variance forms (Panels B and

C), they subsume the information content of the other two variables, lagged realized volatility

and its continuous component. However, the BG statistics show clear signs of misspeci�cation

in all the regressions of Panels B and C, but not in Panel A, the logarithmic regressions.

In general, coe�cient estimates are clearly di�erent from the previous two tables, showing

that the jump component is quite di�erent from the continuous component, and that the

latter is most similar to realized volatility. Furthermore, implied volatility does not su�ce

for forecasting the jump component, but it does have incremental information relative to this.

Thus, it would appear that implied volatility to some extent does forecast something more than

the continuous component of realized volatility, consistent with the notion that option prices

are calibrated to incorporate at least some of the jump information.

4.5 Instrumental Variables Analysis

Given that the continuous and jump components of realized volatility evidently have di�erent

properties, and that implied volatility has been shown to possess incremental information in the

forecasting of both, it is of separate interest to investigate which variables in the information

set implied volatility itself depends on.
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Table 5 about here

Table 5, laid out as the previous three tables, shows results from the relevant regressions,

which take the form

IVt+1 = �+ �zt+1 + "t+1 (27)

in the variance representation, where zt+1 contains the lagged value of implied volatility, IVt,

one of the three realized volatility measures RVt+1, Ct+1, or Jt+1, or a combination of these

four variables, and similarly in the other two representations, applying the appropriate square-

root or log-transform to all variables. Each of the four explanatory variables considered is

highly signi�cant in univariate regression, showing that it is possible to predict not only future

realized volatility and its separate components, but also future option values. The multivariate

regressions show that all variables considered retain incremental information in explaining

implied volatility, with the lagged jump component being the least signi�cant regressor (t-

statistic of 1.79 in the last line of Panel A). Furthermore, the BG statistic shows some signs of

misspeci�cation throughout Panel A, although least so in the �fth and last lines (p-values of

3.2% and 3.1%, respectively). Results from standard deviation and variance regressions (Panels

B and C of Table 5) largely con�rm these conclusions.

The results from Table 5 suggest that a combination of variables in the information set

would provide a good instrument for implied volatility. This is relevant in an errors-in-variables

(EIV) context. In particular, implied volatility, which is the new regressor introduced in our

study relative to Andersen et al. (2005), may be measured with error and/or be correlated

with the regression error term. Possible reasons for such e�ects include misspeci�cation of

the BSM formula, bid-ask spreads, stale prices of individual stocks making up the index,

nonsynchronicities between sampled option prices and corresponding index levels due to delays

in time-stamping or later closing of the CBOE compared to the NYSE, and deviations from

the at-the-money target. See Christensen & Prabhala (1998) and Poteshman (2000) for further

details.

Table 6 about here

Thus, we consider in Table 6 the results from two-stage least squares (2SLS) estimation

of the regression speci�cations (23) and (24) from Table 2, i.e., forecasting realized volatility

from variables in the information set. Throughout, we use lagged implied volatility along with

both the continuous and jump components of realized volatility as the (three-dimensional)
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vector of additional instruments for implied volatility. In particular, these enter along with

the explanatory variables from (23) resp. (24) as zt in �rst stage regressions based on (27).

Therefore, only second stage regression results from (23) and (24) (replacing IVt by the �tted

values from the �rst stage regression) are reported in Table 6. We report 2SLS standard errors

which account for the �rst stage regressions, and drop adjusted R2's which do not have the

usual interpretation in the present instrumental variables framework.

The 2SLS results in Table 6 are more clear-cut than the corresponding OLS results from

Table 2. Implied volatility gets a coe�cient that is very close to unity, whether considering the

log-volatility, standard deviation, or variance forms (�rst line of each panel) and intercepts are

insigni�cant throughout the table. All other explanatory variables are insigni�cant at conven-

tional levels in Panels B and C, including past realized volatility and its separate continuous

and jump components, whether included individually or jointly. In all but two cases (�rst and

fourth lines of Panel A), the coe�cient on implied volatility is insigni�cantly di�erent from

unity, although the standard errors in some speci�cations are very high possibly due to mul-

ticollinearity problems. Finally, the BG statistics show the strongest signs of misspeci�cation

when the coe�cient on implied volatility is signi�cantly di�erent from unity (lines 1 and 4

of Panel A). Thus, the results (particularly Panels B and C) suggest more strongly than the

previous OLS results that implied volatility could be an unbiased and e�cient forecast of sub-

sequently realized volatility, possibly completely subsuming the information content of past

realized volatility and its separate continuous and jump components.

Table 7 about here

Table 7 shows the analogous 2SLS results when substituting the continuous component,

Ct+1, of realized volatility for RVt+1 as the dependent variable, corresponding to the ordinary

least squares results for (25) reported in Table 3. The �rst stage regressions are the same as in

Table 6. The results in Table 7 are similar to those in Table 6. The intercept is insigni�cant

throughout the table as is the coe�cient on the jump component of lagged realized volatility. In

Panels B and C all other explanatory variables except implied volatility are insigni�cant, too,

and the coe�cient on implied volatility is insigni�cantly di�erent from unity. In Panel A the

other explanatory variables, lagged realized volatitity and its continuous component, are only

barely signi�cant (t-statistics of 2.06 to 2.33). Thus, implied volatility is a powerful forecast

not only of realized volatility, but also of the continuous component of the latter. This begs

the question of which role implied volatility from option prices plays in predicting future jump

components, the question to which we turn next.
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Comparing across Tables 6 and 7, particularly Panels B and C, it is noted that the coe�cient

on implied volatility is higher and closer to unity when forecasting realized volatility (Table 6)

than when forecasting the continuous component of this (Table 7). Thus, it would appear that

implied volatility to some extent does forecast something more than the continuous component

of realized volatility, consistent with the notion that option prices are calibrated to incorporate

at least some of the jump information.

Table 8 about here

Table 8 shows the 2SLS results from the forecasting regressions with the future jump compo-

nent, Jt+1, of realized volatility as the dependent variable, corresponding to the ordinary least

squares results for (26) reported in Table 4. Here, the results are somewhat di�erent compared

to Tables 6 and 7. Implied volatility once again proves to have predictive power, which is of

course in itself striking, given that it is backed out from a formula not assuming jumps in stock

prices, and this is consistent with the calibration interpretation and the ordinary least squares

results from Table 4. The result goes counter to the conclusions of Andersen et al. (2005), who

�nd that the jump component of realized volatility is essentially unpredictable. What we �nd is

that a particular and well known variable in the information set at t, namely, implied volatility

from the option market, IVt, does in fact have statistically signi�cant predictive power relative

to Jt+1. Thus, the t-statistics range from 4.2 to 7.0 in univariate regressions of Jt+1 on IVt

(�rst line of each panel).

When other explanatory variables are added to the speci�cation, the signi�cance of implied

volatility is reduced, and in some cases disappears. Thus occurs mostly when the lagged jump

component, Jt, is included as a regressor, and the coe�cient on the latter is signi�cant or nearly

signi�cant at conventional levels in all but one speci�cation.

All in all, the instrumental variables results support the notion that implied volatility from

option prices is the most powerful of the predictors we consider, and that it forecasts not only

the continuous component of realized volatility, but may in fact be calibrated to forecast also

to some extent the expected future jump component. Here, the very forecastability of the

jump component is a rather novel result (see Andersen et al. (2005)). Further, if the goal is

to forecast future realized volatility in standard deviation or variance form as well as possible,

the predictor of choice is implied volatility itself, not some combination of this with past

realized volatility and its separate continuous and jump components. The preferred coe�cient

on implied volatility in constructing the best forecast is unity, and so needs not be set as a
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function of instrumental variables, although these were employed (in Table 6) in reaching the

conclusion.

4.6 Structural Vector Autoregressive Analysis

Essentially, the instrumental variables approach above is designed to handle potential endo-

geneity of implied volatility in the regressions of realized volatility or its components on implied

volatility. In particular, even simple mismeasurement of implied volatility would leave this vari-

able correlated with the error term in the equation. An alternative and possibly more e�cient

method for handling endogeneity is a simultaneous system approach. Hence, we consider the

structural vector autoregressive (VAR) system 
1 0

B21 1

! 
RVt+1

IVt+1

!
=

 
�1

�2

!
+

 
A11 �

0 A22

! 
RVt

IVt

!
+

 
"1;t+1

"2;t+1

!
: (28)

The �rst equation in the bivariate system corresponds to the regression of realized volatility

on its own lag and implied volatility. The speci�cation of the second equation reects our

�ndings that implied volatility depends on both realized volatility and its own lag, and is related

in this sense to the use of these variables as additional instruments in a 2SLS treatment of the

�rst equation. The sources of simultaneity are two: First, the leading matrix of coe�cients

on the left-hand side of the system is not simply the identity matrix. The o�-diagonal term

�� accommodates the relation between realized and implied volatility. Secondly, the system
errors "1;t+1 and "2;t+1 may be contemporaneously correlated. Indeed, since RVt+1 is measured

over the interval ending on the Friday preceding the third Saturday in month t+ 1 and IVt+1

is measured already on the following Monday, accomodating such a correlation would seem a

necessary extension of the modeling framework.

Table 9 about here

We estimate the structural VAR system by (Gaussian) full information maximum likelihood

(FIML) and construct likelihood ratio (LR) tests of relevant hypotheses. The estimation results

appear in Table 9. Panel A shows the results for variables in logarithmic form, and the results

for the standard deviation and variance forms are shown in Panels B and C, respectively. Each

panel has two lines, corresponding to the two equations of system (28). The results in the �rst

line, the regression of realized volatility on implied and past realized volatility, di�er from the

ordinary least squares results in Table 2 (�fth line of each panel), due to the correction for
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endogeneity in the structural system estimation. The results also di�er from the instrumental

variables results in Table 6 (second line of each panel) for two reasons. Firstly, as mentioned

above, system (28) is more closely related to a di�erent instrumentation, using RVt and IVt�1

as instruments for IVt instead of the three-dimensional vector of instruments used in the Table

6 results. Secondly, system (28) accommodates potentially important correlation between the

structural system errors, "1;t+1 and "2;t+1.

Across all three panels of Table 9, the (single equation) BG test statistics show virtually

no signs of misspeci�cation, which seems to be an improvement in the VAR system relative

to the previous univariate speci�cations.4 In the �rst equation of the system, the estimated

coe�cients on implied volatility are similar to those obtained in the ordinary least squares

regressions in Table 2. We turn next to testing the joint hypotheses of interest, which are

H1: � = 1; H2: � = 1; �1 = 0; and H3: � = 1; �1 = 0; A11 = 0: These hypotheses represent

increasingly restrictive versions of the general hypothesis that implied volatility from option

markets is an unbiased forecast of subsequently realized return volatility in the underlying.

In particular, H3 entails that implied volatility is not only an unbiased, but also an e�cient

forecast of realized volatility, in the sense that it subsumes the information content of past

realized volatility.

Table 10 about here

LR tests of the three hypotheses appear in Table 10. The LR test of H1 in Panel A (variables

in logarithmic form) takes the value 5.39, which in the asymptotic �21-distribution corresponds

to a p-value of 2%. This may be compared to a p-value of 71% from the asymptotic t-test

of the hypothesis � = 1 in the second line of Table 6. The di�erence is due to the di�erent

instrumentation, structural error correlation, and the fact that FIML controls e�ciently for

the endogeneity of implied volatility. The LR test of H2 takes the value 7.57 on two degrees

of freedom, i.e. a p-value of 2.3%. The tests of H1 and H2 show some evidence against the

unbiasedness hypothesis at the 5% level but not the 1% level, whether or not the intercept

restriction is included. Therefore we proceed to the test of H3, i.e. whether or not implied

volatility is an e�cient forecast in the sense of subsuming the information content of lagged

realized volatility. From the table, this test rejects strongly, indicating that implied volatility

is a nearly unbiased but ine�cient forecast of subsequently realized volatility.

4The LR test for zero correlation between the structural errors "1;t+1 and "2;t+1 in (28) takes the values

49.81, 207.99, and 439.27 in the three panels, on one degree of freedom in the asymptotic �2-distribution. This

points to the importance of controlling for endogeneity using the structural VAR system.
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The results in Panel B (variables in standard deviation form) con�rm that implied volatility

is nearly unbiased at the 1% level but again reject e�ciency, and all three hypotheses are

rejected in Panel C (variance form).5 These results are at odds with the �ndings from Table

6, Panels B and C, where unbiasedness and e�ciency are not rejected.

Given the di�erences between instrumental variables and VAR system results, and the fact

that the logarithmic transformation (Panel A) leaves the variables closest to Gaussian and

hence improving statistical e�ciency of the FIML procedure, we place most weight on the

results suggesting near unbiasedness albeit ine�ciency of the implied volatility forecast.6 This

also extends the �ndings from the instrumental variables analysis in Christensen & Prabhala

(1998), who considered data through May 1995, to more recent time periods through 2002, and

to the case of realized volatility based on high-frequency rather than daily returns.

The decomposition of realized volatility into its continuous and jump components leads

naturally to a trivariate generalization of the above system (28), namely,0BB@
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Here, the last line of the system corresponds to regression (27) from the last line of each panel

of Table 5, that is, the instrumentation for implied volatility in the second stage regressions

from Tables 6-8. The �rst two equations exactly facilitate splitting the second stage regression

into its continuous and jump components in a simultaneous system framework.

Table 11 about here

The results from FIML estimation of the structural system (29) appear in Table 11. Again,

Panels A, B, and C show the results for variables in log-volatility, standard deviation, and

5The non-diagonal structural error correlation matrix (see the above footnote) is not an additional source of

ine�ciency of the implied volatility forecast, since the error in the second equation, "2;t+1, is not known before

RVt+1 is realized. Serial correlation in "1;t+1 would reinforce ine�ciency, but there is very little evidence in this

direction from the BG tests.
6Andersen et al. (2005, p. 6) also emphasize that "... from a modeling perspective, the logarithmic realized

volatilities are more amenable to the use of standard time series procedures", noting in addition that "[m]odeling

and forecasting log volatility also has the virtue of automatically imposing non-negativity of �tted and forecasted

volatilities."
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variance forms, respectively.7 It is the coe�cients on implied volatility (�1 and �2 in (29)) that

in the larger system replace the single coe�cient � on implied volatility in the �rst equation of

(28). The results show that when forecasting the continuous and jump components of realized

volatility separately, �1 becomes closer to unity in three panels of Table 11 than the corre-

sponding coe�cient � in Table 9. The coe�cient �2 is considerably smaller than � from the

smaller system under all three transformations of the variables. The implication is that implied

volatility plays rather di�erent roles in forecasting the continuous respectively the jump com-

ponents of future realized volatility. Of course these di�erences can only be recovered due to

the new approach of separating the components of realized volatility In Panel A (variables in

logarithmic form) the lagged left-hand side variable has incremental forecasting power in both

the �rst equation (forecasting lnCt+1) and the second equation (forecasting ln ~Jt+1), whereas

neither component adds to the forecasting of the other. From the third equation, implied

volatility is forecast by the continuous component of realized volatility, and all three equations

appear well speci�ed according to the BG test. Looking across all three panels, the lagged jump

component Jt always comes in as an important predictor in the second equation (forecasting

Jt+1), and has the highest t-statistics in this equation in all panels. Indeed, jump components

prove quite predictable and the other explanatory variables in the Jt+1 equation are signi�cant,

too, except that the continuous component drops out in Panel A. It must be noted, though,

that the BG tests show signs of misspeci�cation of the jump equation in the last two panels of

the table. The other two are well speci�ed in all three panels and implied volatility comes in

as the only signi�cant forecasting variable in both the �rst equation of Panel B (the equation

for the continuous component) and the third equation of Panel C (implied volatility equation).

Table 12 about here

The results show that the continuous and jump components of realized volatility are forecast

in di�erent ways. Although �1 is close to unity, �2 is not, and the jump component is forecast

to a large extent by its own past. We test the hypotheses H1 : �1 = 1, H2 : �1 = 1; �1 = 0, and

H3 : �1 = 1; �1 = 0; A11 = 0; A12 = 0, now with 4 degrees of freedom in the test of H3. Here, the

restriction �1 = 1 is unbiasedness of implied volatility as a forecast of the continuous component

of realized volatility, only. In H3 the coe�cients A11 and A22 on both components of realized

7In the structural system (29) the LR test for diagonal error correlation matrix takes the values 46.08, 167.86,

and 460.37 in the three panels, now on three degrees of freedom. Again, this shows the importance of controlling

for endogeneity using the structural VAR approach, although contemporaneous correlation per se does not

constitute ine�ciency of the implied volatility forecast.
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volatility are restricted to zero to be compared to the single zero restriction added in H3 in the

bivariate system (28). LR test results appear in Table 12. The results for Panel A (variables in

logarithmic form) show that H1 is not rejected at the 1% level, i.e., implied volatility appears

unbiased as a predictor of the continuous component, Ct+1, further supporting the conclusions

from Table 7. The hypothesis H2, adding the zero constraint on the intercept, is not rejected

either (5% level). Adding the e�ciency conditions, H3 is rejected. Similarly, the results for

the standard deviation form in Panel B support near unbiasedness but not e�ciency of implied

volatility as a forecaster of the continuous component of future realized volatility. For variables

in variance form, Panel C, unbiasedness is rejected, but we place most weight on the Panel A

results where variables are closest to Gaussianity.

While the results from (29) are consistent with the �ndings from Tables 7 and 8, the

simultaneous system estimation in addition allows the testing of interesting cross-equation

restrictions. In particular, we consider the additional hypothesis H4 : �1 = 1; �2 = 0, inspecting

whether implied volatility indeed only forecasts the continuous component of realized volatility,

and not the jump component at all. Since it imposes restrictions on parameters in both the �rst

and second equation of system (29), this hypothesis is only testable in the simultaneous system

framework. Adding as before the zero intercept and e�ciency conditions in the �rst equation

(Ct+1) leads to the additional hypotheses H5 : �1 = 1; �2 = 0; �1 = 0 and H6 : �1 = 1; �2 =

0; �1 = 0; A11 = 0; A12 = 0. Thus, H4, H5, and H6 correspond to H1, H2, and H3, respectively,

but with the additional cross-equation restriction that implied volatility does not forecast the

jump component of realized volatility (viz. �2 = 0). The results, which are also included in

Table 12, suggest that this is not the case. Thus, in Panel A (variables in logarithmic form),

all the new hypotheses H4 through H6 are rejected at the 1% level or better, even though H1

and H2 were not. This indicates that implied volatility does not only forecast the continuous

component of realized volatility, but also to some extent the jump component (we have not

only �1 > 0, but in fact �1 � 1 and �2 > 0). In Panels B and C, the new hypotheses, H4

through H6, are rejected throughout, but again we place considerable weight on the results in

Panel A with log-volatilities.

Considering the nested hypotheses and testing H4 against H1, H5 against H2, respectively

H6 against H3, instead of always testing against the unrestricted model, the di�erence in LR

values is at least 6.37 in Panel A, 35.44 in Panel B, and 7.37 in Panel C, for p-values of 1.2%,

0.0%, and 0.7%, respectively, on one degree of freedom. Thus, maintaining unbiasedness of

implied volatility (in the sense of either H1 or H2) or maintaining unbiasedness and e�ciency
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(in the sense of H3), we reject in all three panels at the 5% level (and nearly at the 1% level)

that implied volatility carries no incremental information about future jump components. This

supports our �ndings from Tables 4 and 8, and is consistent with the notion that option market

participants to some extent calibrate implied volatility to accommodate expected future jumps.

5 Concluding Remarks

In this paper, we consider simultaneously two di�erent types of forecasts of future �nancial

market volatility. One is implied volatility, backed out from data on option prices. The other

type of forecast uses volatility measurements based on high-frequency historical return data, in

particular the separate continuous sample path and jump components of past realized volatility,

invoking recent nonparametric identi�cation methodology. We �nd that SPX option implied

volatility is the dominant forecasting variable for future realized S&P 500 return volatility.

In particular, implied volatility seems to be an unbiased forecast and it carries incremental

information about future volatility relative to both the continuous and jump components of past

realized volatility. Indeed, in a few of our speci�cations it is even an e�cient forecast, subsuming

all the information content of both components of past realized volatility. Furthermore, we

�nd that implied volatility carries incremental information about both the continuous and the

jump components of future realized volatility, thus showing in particular that even the jump

component is to some extent predictable, and that option market participants calibrate prices

to incorporate expected future jumps.

The dominant role of option implied volatility as a forecaster holds up to tests allowing the

individual continuous and jump components of past realized volatility to act separately, and to

measurement of realized volatility and its components from returns of higher frequency than

the daily, which has been employed in past literature on the implied-realized volatility relation.

Thus, while reduced form time series models for realized volatility and its components work

reasonably well, option prices should not be ignored when forecasting �nancial market volatility,

including for the purposes of asset pricing, derivative pricing, hedging, risk management, etc.

The inclusion of implied volatility in the modelling and forecasting of realized volatility

and its components opens several avenues for future research. For example, in addition to

S&P 500 realized volatility, Andersen et al. (2005) considered also realized volatility of foreign

exchange and interest rates. It would be interesting to apply our methodology to such data,

too, examining whether implied volatility retains its dominant role in forecasting volatility in
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these other markets. In addition, it would be of interest to study the information content

of prices of other options, including put options and options of longer maturity, as well as

out-of-the-money options, thus investigating the forecasting role of the observed smile/smirk

patterns in these markets. Finally, the realized volatility computations could be based on other

frequencies than the 5-minutes used here, and jumps could be identi�ed using other signi�cance

levels than our 0.1%, thus allowing further investigation of the generality of our new results.
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Table 1: Summary statistics
Panel A: Variables in logarithmic form

Statistic lnRVt lnCt ln~Jt lnIVt

Mean -3.9098 -4.0022 -6.8241 -3.6474

Std. dev. 0.8347 0.8168 1.4655 0.6580

Skewness 0.6467 0.5637 -0.0929 0.5756

Kurtosis 4.3520 4.3729 3.6877 3.1489

Panel B: Variables in std. dev. form

Statistic RV
1=2
t C

1=2
t J

1=2
t IV

1=2
t

Mean 0.1559 0.1481 0.0425 0.1711

Std. dev. 0.0851 0.0785 0.0407 0.0669

Skewness 4.1123 4.4573 3.3834 3.1195

Kurtosis 32.4320 38.5738 18.2111 23.2883

Panel C: Variables in variance form

Statistic RVt Ct Jt IVt

Mean 0.0315 0.0281 0.0035 0.0337

Std. dev. 0.0627 0.0569 0.0099 0.0401

Skewness 10.1374 11.0538 6.2254 8.5354

Kurtosis 124.1903 142.9701 45.4996 98.4287

Note: The monthly realized volatility RVt and its continuous component Ct and jump component Jt are

constructed from 5-minute S&P 500 index returns spanning the period from May 1986 through December

2002, for a total of 200 monthly observations, each based on about 2,000 5-minute returns. The monthly

implied volatility IVt is backed out from the BSM formula adjusted for dividends and applied to the

at-the-money SPX call option expiring on the Friday immediately preceding the third Saturday of the given

month and sampled on the Monday following the expiration date of the previous month. Each of the four

volatility measures covers the same one-month interval between two consecutive expiration dates.
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Table 2: Realized volatility regressions
Panel A: Dependent variable is lnRVt+1

Const. lnRVt lnCt ln~Jt lnIVt Adj R2 BG

�0:8851
(0:1827)

0:7726
(0:0456)

� � � 59:0% 20:126

�0:7743
(0:1922)

� 0:7827
(0:0470)

� � 58:2% 19:913

�2:2795
(0:2607)

� � 0:2384
(0:0373)

� 16:8% 102:700��

�0:0198
(0:1824)

� � � 1:0666
(0:0492)

70:2% 32:268��

0:0115
(0:1771)

0:2507
(0:0659)

� � 0:8050
(0:0835)

72:1% 17:595

�0:6392
(0:2180)

� 0:7499
(0:0533)

0:0390
(0:0299)

� 58:4% 15:973

0:0606
(0:1783)

� 0:2494
(0:0661)

� 0:8147
(0:0821)

72:1% 18:903

0:0541
(0:1994)

� � 0:0232
(0:0251)

1:0432
(0:0555)

70:2% 30:900��

0:0766
(0:1935)

� 0:2465
(0:0676)

0:0053
(0:0248)

0:8122
(0:0831)

71:9% 19:015

Panel B: Dependent variable is RV
1=2
t+1

Const. RV
1=2
t C

1=2
t J

1=2
t IV

1=2
t Adj R2 BG

0:0719
(0:0107)

0:5405
(0:0601)

� � � 28:7% 15:031

0:0724
(0:0110)

� 0:5654
(0:0659)

� � 26:8% 21:164�

0:1169
(0:0079)

� � 0:9305
(0:1360)

� 18:8% 34:320��

�0:0324
(0:0084)

� � � 1:1012
(0:0457)

74:4% 17:156

�0:0316
(0:0084)

�0:0725
(0:0484)

� � 1:1630
(0:0616)

74:6% 26:646��

0:0746
(0:0110)

� 0:4410
(0:0841)

0:3859
(0:1645)

� 28:4% 15:043

�0:0309
(0:0084)

� �0:0898
(0:0515)

� 1:1706
(0:0605)

74:7% 25:794�

�0:0323
(0:0085)

� � 0:0009
(0:0887)

1:1008
(0:0533)

74:3% 18:824

�0:0296
(0:0085)

� �0:1140
(0:0580)

0:0902
(0:0991)

1:1618
(0:0613)

74:7% 23:681�

Panel C: Dependent variable is RVt+1

Const. RVt Ct Jt IVt Adj R2 BG

0:0255
(0:0049)

0:1936
(0:0699)

� � � 3:3% 3:325

0:0263
(0:0049)

� 0:1901
(0:0773)

� � 2:5% 8:246

0:0265
(0:0046)

� � 1:4990
(0:4428)

� 5:0% 2:819

�0:0174
(0:0022)

� � � 1:4534
(0:0416)

86:0% 12:449

�0:0154
(0:0020)

�0:1722
(0:0259)

� � 1:5529
(0:0406)

88:5% 27:058��

0:0252
(0:0049)

� 0:0745
(0:0899)

1:2706
(0:5219)

� 4:9% 2:237

�0:0153
(0:0020)

� �0:1894
(0:0283)

� 1:5474
(0:0402)

88:5% 23:778�

�0:0171
(0:0021)

� � �0:5286
(0:1768)

1:4964
(0:0433)

86:5% 26:727��

�0:0153
(0:0020)

� �0:1874
(0:0320)

�0:0243
(0:1848)

1:5484
(0:0410)

88:5% 25:605�

Note: The table shows ordinary least squares estimation results for the regression speci�cations (22), (23), and

(24) and the corresponding standard deviation and log-volatility regressions. Standard errors are in

parentheses, Adj R2 is the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic (with 12

lags) for the residuals. One and two asterisks denote rejection of the null of no serial autocorrelation at 5% and

1% signi�cance level, respectively.
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Table 3: Continuous component regressions
Panel A: Dependent variable is lnCt+1

Const. lnRVt lnCt ln~Jt lnIVt Adj R2 BG

�1:0524
(0:1796)

0:7536
(0:0449)

� � � 58:7% 15:872

�0:9330
(0:1879)

� 0:7663
(0:0460)

� � 58:3% 22:568��

�2:4840
(0:2575)

� � 0:2221
(0:0368)

� 15:1% 105:160��

�0:1712
(0:1758)

� � � 1:0504
(0:0474)

71:1% 30:484��

�0:1438
(0:1715)

0:2248
(0:0638)

� � 0:8167
(0:0809)

72:7% 17:795

�0:8512
(0:2138)

� 0:7464
(0:0522)

0:0236
(0:0293)

� 58:2% 17:742

�0:0970
(0:1722)

� 0:2322
(0:0638)

� 0:8158
(0:0793)

72:8% 17:879

�0:1497
(0:1925)

� � 0:0069
(0:0242)

1:0435
(0:0536)

71:0% 30:263��

�0:1280
(0:1868)

� 0:2378
(0:0653)

�0:0104
(0:0240)

0:8206
(0:0802)

72:7% 18:506

Panel B: Dependent variable is C
1=2
t+1

Const. RV
1=2
t C

1=2
t J

1=2
t IV

1=2
t Adj R2 BG

0:0716
(0:0099)

0:4921
(0:0558)

� � � 28:0% 13:924

0:0711
(0:0102)

� 0:5208
(0:0609)

� � 26:7% 15:343

0:1152
(0:0074)

� � 0:7855
(0:1278)

� 15:7% 38:904��

�0:0280
(0:0074)

� � � 1:0298
(0:0404)

76:5% 14:069

�0:0271
(0:0074)

�0:0922
(0:0425)

� � 1:1086
(0:0541)

77:0% 22:217�

0:0725
(0:0102)

� 0:4444
(0:0782)

0:2366
(0:1531)

� 27:2% 13:913

�0:0264
(0:0074)

� �0:0982
(0:0453)

� 1:1058
(0:0533)

77:0% 21:733�

�0:0292
(0:0075)

� � �0:1132
(0:0780)

1:0643
(0:0469)

76:7% 17:327

�0:0271
(0:0075)

� �0:0859
(0:0511)

�0:0459
(0:0874)

1:1103
(0:0541)

76:9% 22:263�

Panel C: Dependent variable is Ct+1

Const. RVt Ct Jt IVt Adj R2 BG

0:0229
(0:0045)

0:1662
(0:0636)

� � � 2:9% 4:136

0:0234
(0:0045)

� 0:1675
(0:0702)

� � 2:3% 2:566

0:0243
(0:0042)

� � 1:1410
(0:4056)

� 3:4% 3:213

�0:0168
(0:0019)

� � � 1:3317
(0:0356)

87:5% 9:739

�0:0147
(0:0016)

�0:1708
(0:0214)

� � 1:4304
(0:0335)

90:5% 20:122

0:0227
(0:0044)

� 0:0883
(0:0822)

0:8702
(0:4775)

� 3:4% 2:116

�0:0147
(0:0017)

� �0:1811
(0:0235)

� 1:4217
(0:0335)

90:4% 19:202

�0:0163
(0:0018)

� � �0:7457
(0:1454)

1:3924
(0:0356)

88:9% 19:004

�0:0148
(0:0016)

� �0:1544
(0:0264)

�0:3301
(0:1520)

1:4353
(0:0338)

90:6% 21:479�

Note: The table shows ordinary least squares estimation results for the general regression speci�cation (25)

and the corresponding standard deviation and log-volatility regressions. Standard errors are in parentheses,

Adj R2 is the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic (with 12 lags) for the

residuals. One and two asterisks denote rejection of the null of no serial autocorrelation at 5% and 1%

signi�cance level, respectively.
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Table 4: Jump component regressions
Panel A: Dependent variable is ln~Jt+1

Const. lnRVt lnCt ln~Jt lnIVt Adj R2 BG

�3:6970
(0:4426)

0:7950
(0:1106)

� � � 20:4% 9:381

�3:6720
(0:4651)

� 0:7832
(0:1138)

� � 19:0% 12:286

�4:2608
(0:4617)

� � 0:3727
(0:0661)

� 13:5% 20:010

�3:2046
(0:5267)

� � � 0:9924
(0:1421)

19:3% 17:684

�3:1268
(0:5154)

0:4630
(0:1918)

� � 0:5126
(0:2450)

21:7% 12:141

�2:9382
(0:5184)

� 0:6046
(0:1267)

0:2119
(0:0712)

� 22:1% 7:221

�3:0583
(0:5207)

� 0:3912
(0:1930)

� 0:5988
(0:2398)

21:1% 14:248

�2:5149
(0:5565)

� � 0:2117
(0:0700)

0:7805
(0:1548)

23:0% 8:974

�2:4886
(0:5551)

� 0:2885
(0:1939)

0:1908
(0:0712)

0:5101
(0:2384)

23:5% 7:221

Panel B: Dependent variable is J
1=2
t+1

Const. RV
1=2
t C

1=2
t J

1=2
t IV

1=2
t Adj R2 BG

0:0122
(0:0055)

0:1964
(0:0310)

� � � 16:5% 44:280��

0:0145
(0:0057)

� 0:1904
(0:0342)

� � 13:1% 51:826��

0:0218
(0:0036)

� � 0:4984
(0:0627)

� 23:9% 30:561��

0:0152
(0:0066)

� � � 0:3371
(0:0360)

30:3% 53:908��

�0:0152
(0:0066)

0:0343
(0:0382)

� � 0:3076
(0:0486)

30:3% 53:253��

0:0170
(0:0054)

� 0:0494
(0:0412)

0:4374
(0:0807)

� 24:1% 30:781��

�0:0150
(0:0067)

� 0:0033
(0:0408)

� 0:3342
(0:0479)

30:1% 55:095��

�0:0120
(0:0064)

� � 0:2881
(0:0666)

0:2491
(0:0400)

36:2% 35:602��

�0:0098
(0:0064)

� �0:0935
(0:0434)

0:3613
(0:0743)

0:2990
(0:0459)

37:3% 35:985��

Panel C: Dependent variable is Jt+1

Const. RVt Ct Jt IVt Adj R2 BG

0:0026
(0:0008)

0:0274
(0:0110)

� � � 2:5% 83:696��

0:0028
(0:0008)

� 0:0226
(0:0122)

� � 1:2% 85:008��

0:0023
(0:0007)

� � 0:3580
(0:0670)

� 12:2% 66:530��

�0:0006
(0:0008)

� � � 0:1217
(0:0152)

24:0% 110:490��

�0:0006
(0:0008)

�0:0014
(0:0105)

� � 0:1225
(0:0165)

23:6% 111:050��

0:0025
(0:0007)

� �0:0138
(0:0136)

0:4004
(0:0789)

� 12:2% 67:160��

�0:0005
(0:0008)

� �0:0082
(0:0115)

� 0:1257
(0:0163)

23:8% 112:80��

�0:0008
(0:0008)

� � 0:2171
(0:0644)

0:1040
(0:0158)

27:8% 97:536��

�0:0005
(0:0008)

� �0:0330
(0:0124)

0:3058
(0:0717)

0:1131
(0:0159)

29:9% 109:970
��

Note: The table shows ordinary least squares estimation results for the general regression speci�cation (26)

and the corresponding standard deviation and log-volatility regressions. Standard errors are in parentheses,

Adj R2 is the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic (with 12 lags) for the

residuals. One and two asterisks denote rejection of the null of no serial autocorrelation at 5% and 1%

signi�cance level, respectively.
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Table 5: Implied volatility regressions
Panel A: Dependent variable is lnIVt+1

Const. lnRVt+1 lnCt+1 ln~Jt+1 lnIVt Adj R2 BG

�1:1124
(0:1287)

0:6475
(0:0321)

� � � 67:2% 24:680�

�1:0249
(0:1364)

� 0:6547
(0:0334)

� � 66:0% 24:966�

�2:2370
(0:2004)

� � 0:2062
(0:0287)

� 20:4% 101:850��

�0:9376
(0:1787)

� � � 0:7422
(0:0482)

54:4% 31:608��

�0:9243
(0:1500)

0:5322
(0:0581)

� � 0:1751
(0:0740)

67:9% 22:531�

�0:8813
(0:1539)

� 0:6198
(0:0376)

0:0415
(0:0212)

� 66:5% 24:109�

�0:8507
(0:1529)

� 0:5297
(0:0614)

� 0:1848
(0:0766)

66:8% 24:294�

�0:6943
(0:1913)

� � 0:0740
(0:0236)

0:6701
(0:0524)

56:4% 25:443�

�0:7313
(0:1660)

� 0:5056
(0:0625)

0:0376
(0:0210)

0:1736
(0:0764)

67:2% 22:608�

Panel B: Dependent variable is IV
1=2
t+1

Const. RV
1=2
t+1 C

1=2
t+1 J

1=2
t+1 IV

1=2
t Adj R2 BG

0:0891
(0:0074)

0:5271
(0:0415)

� � � 44:7% 29:975��

0:0883
(0:0076)

� 0:5598
(0:0456)

� � 43:0% 30:785��

0:1356
(0:0059)

� � 0:8444
(0:1022)

� 25:3% 57:063��

0:0688
(0:0105)

� � � 0:5992
(0:0573)

35:4% 19:709

0:0843
(0:0101)

0:4778
(0:0823)

� � 0:0730
(0:1050)

44:6% 30:157��

0:0897
(0:0076)

� 0:4777
(0:0583)

0:2545
(0:1140)

� 44:1% 30:229��

0:0827
(0:0102)

� 0:4922
(0:0947)

� 0:0910
(0:1116)

42:9% 31:403��

0:0750
(0:0103)

� � 0:4264
(0:1101)

0:4579
(0:0663)

39:7% 22:078�

0:0841
(0:0101)

� 0:4085
(0:1009)

0:2552
(0:1141)

0:0928
(0:1105)

44:0% 30:513��

Panel C: Dependent variable is IVt+1

Const. RVt+1 Ct+1 Jt+1 IVt Adj R2 BG

0:0263
(0:0030)

0:2356
(0:0423)

� � � 13:2% 17:024

0:0268
(0:0030)

� 0:2452
(0:0469)

� � 11:7% 16:049

0:0292
(0:0028)

� � 1:3550
(0:2742)

� 10:6% 16:570

0:0222
(0:0035)

� � � 0:3435
(0:0670)

11:3% 6:765

0:0262
(0:0040)

0:2321
(0:1136)

� � 0:0059
(0:1781)

12:7% 17:030

0:0262
(0:0029)

� 0:1691
(0:0544)

0:8363
(0:3161)

� 14:3% 12:785

0:0248
(0:0041)

� 0:1577
(0:1340)

� 0:1331
(0:1908)

11:5% 15:917

0:0228
(0:0034)

� � 0:8789
(0:3081)

0:2374
(0:0756)

14:4% 7:426

0:0241
(0:0041)

� 0:0786
(0:1353)

0:8383
(0:3165)

0:1375
(0:1879)

14:1% 12:806

Note: The table shows ordinary least squares estimation results for the regression speci�cation (27) and the

corresponding standard deviation and log-volatility regressions. Standard errors are in parentheses, Adj R2 is

the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic (with 12 lags) for the residuals.

One and two asterisks denote rejection of the null of no serial autocorrelation at 5% and 1% signi�cance level,

respectively.
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Table 6: Realized volatility instrumental variables regressions
Panel A: Dependent variable is lnRVt+1

Const. lnRVt lnCt ln~Jt lnIVt BG

0:3753
(0:2239)

� � � 1:1748
(0:0607)

27:078
��

�0:9688
(0:6501)

0:8214
(0:3651)

� � �0:0753
(0:5592)

10:777

�0:5023
(0:4748)

� 0:6090
(0:2853)

� 0:2654
(0:4310)

16:301

0:3674
(0:2281)

� � �0:0056
(0:0273)

1:1832
(0:0733)

27:401��

�0:8589
(0:6639)

� 0:9043
(0:4386)

0:0494
(0:0442)

�0:2493
(0:7012)

0:641

Panel B: Dependent variable is RV
1=2
t+1

Const. RV
1=2
t C

1=2
t J

1=2
t IV

1=2
t BG

�0:0176
(0:0122)

� � � 1:0150
(0:0690)

21:643�

0:00269
(0:0535)

0:1307
(0:3166)

� � 0:7776
(0:5960)

25:174�

�0:0288
(0:0324)

� �0:0763
(0:2052)

� 1:1464
(0:3599)

27:300��

�0:0049
(0:0154)

� � 0:1719
(0:1213)

0:8983
(0:1087)

15:486

0:2055
(0:2956)

� 1:1381
(1:5786)

0:7572
(0:8938)

�1:4593
(3:2871)

17:073

Panel C: Dependent variable is RVt+1

Const. RVt Ct Jt IVt BG

0:0015
(0:0055)

� � � 0:8935
(0:1469)

1:321

�0:0121
(0:0077)

�0:1427
(0:0718)

� � 1:4276
(0:2862)

16:445

�0:0096
(0:0063)

� �0:1374
(0:0616)

� 1:3354
(0:2231)

12:813

0:0160
(0:0126)

� � 1:0098
(0:6622)

0:3611
(0:4131)

6:141

0:0531
(0:0961)

� 0:2546
(0:6363)

2:1612
(3:1778)

�1:0649
(3:6621)

13:081

Note: The table shows results from instrumental variables estimation of the regression speci�cations (23) and

(24), and the corresponding log-volatility and variance regressions. The additional instrumentation of implied

volatility consists of both components of realized volatility as well as lagged implied volatility. Standard errors

are in parentheses and BG is the Breusch-Godfrey statistic (with 12 lags) for the residuals. One and two

asterisks denote rejection of the null of no serial autocorrelation at 5% and 1% signi�cance level, respectively.
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Table 7: Continuous component instrumental variables regressions
Panel A: Dependent variable is lnCt+1

Const. lnRVt lnCt ln~Jt lnIVt BG

0:1819
(0:2154)

� � � 1:1473
(0:0584)

25:478�

�1:2086
(0:6583)

0:8446
(0:3697)

� � �0:1405
(0:5662)

6:310

�0:7997
(0:4863)

� 0:6811
(0:2923)

� 0:1301
(0:4414)

10:965

0:1525
(0:2202)

� � �0:0210
(0:0263)

1:1786
(0:0708)

25:615�

�1:0318
(0:6412)

� 0:8734
(0:4236)

0:0321
(0:0427)

�0:2050
(0:6772)

7:274

Panel B: Dependent variable is C
1=2
t+1

Const. RV
1=2
t C

1=2
t J

1=2
t IV

1=2
t BG

�0:0092
(0:0109)

� � � 0:9197
(0:0616)

17:136

0:0356
(0:0586)

0:2790
(0:3468)

� � 0:4042
(0:6528)

9:904

0:0152
(0:0338)

� 0:1657
(0:2136)

� 0:6343
(0:37464)

18:577

�0:0076
(0:0135)

� � 0:0208
(0:1059)

0:9056
(0:0949)

15:705

0:2025
(0:2860)

� 1:1365
(1:5273)

0:6053
(0:8648)

�1:4487
(3:1805)

13:942

Panel C: Dependent variable is Ct+1

Const. RVt Ct Jt IVt BG

0:0037
(0:0053)

� � � 0:7251
(0:1427)

4:626

�0:0000
(0:0097)

�0:0392
(0:0899)

� � 0:8716
(0:3583)

15:606

�0:0003
(0:0074)

� �0:0489
(0:0731)

� 0:8823
(0:2649)

9:245

0:0117
(0:0106)

� � 0:5552
(0:5566)

0:4324
(0:3472)

4:284

0:0536
(0:0955)

� 0:2883
(0:6326)

1:8590
(3:1591)

�1:1823
(3:6405)

15:622

Note: The table shows results from instrumental variables estimation of the general regression speci�cation

(25) and the corresponding standard deviation and log-volatility regressions. The additional instrumentation of

implied volatility consists of both components of realized volatility as well as lagged implied volatility. Standard

errors are in parentheses and BG is the Breusch-Godfrey statistic (with 12 lags) for the residuals. One and two

asterisks denote rejection of the null of no serial autocorrelation at 5% and 1% signi�cance level, respectively.
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Table 8: Jump component instrumental variables regressions
Panel A: Dependent variable is ln~Jt+1

Const. lnRVt lnCt ln~Jt lnIVt BG

�2:4611
(0:6335)

� � � 1:1921
(0:1718)

17:386

�4:8666
(1:6624)

1:4757
(0:9338)

� � �1:0514
(1:4300)

6:994

�2:6363
(1:2605)

� 0:1216
(0:7576)

� 1:0105
(1:1442)

15:474

�2:2047
(0:6278)

� � 0:1831
(0:0750)

0:9191
(0:2017)

10:383

�4:8002
(1:7890)

� 1:9141
(1:1819)

0:2995
(0:1192)

�2:1129
(1:8895)

9:111

Panel B: Dependent variable is J
1=2
t+1

Const. RV
1=2
t C

1=2
t J

1=2
t IV

1=2
t BG

�0:0222
(0:0095)

� � � 0:3796
(0:0539)

65:735��

�0:0633
(0:0492)

�0:2503
(0:2911)

� � 0:8474
(0:5479)

34:784��

�0:1129
(0:0496)

� �0:6179
(0:3139)

� 1:4440
(0:5506)

8:4635

0:0086
(0:011590)

� � 0:4164
(0:0910)

0:0971
(0:0816)

38:265��

0:0613
(0:1093)

� 0:2851
(0:5837)

0:5630
(0:3305)

�0:4935
(1:2155)

0:655

Panel C: Dependent variable is Jt+1

Const. RVt Ct Jt IVt BG

�0:0022
(0:0015)

� � � 0:1684
(0:0398)

148:45��

�0:0120
(0:0065)

�0:1035
(0:0605)

� � 0:5560
(0:2413)

4:295

�0:0093
(0:0041)

� �0:0885
(0:0409)

� 0:4531
(0:1480)

3:706

0:0043
(0:0028)

� � 0:4546
(0:1451)

�0:0713
(0:0905)

63:849��

�0:0006
(0:0080)

� �0:0337
(0:0529)

0:3023
(0:2641)

0:1173
(0:3044)

190:05��

Note: The table shows results from instrumental variables estimation of the general regression speci�cation

(26) and the corresponding standard deviation and log-volatility regressions. The additional instrumentation of

implied volatility consists of both components of realized volatility as well as lagged implied volatility. Standard

errors are in parentheses and BG is the Breusch-Godfrey statistic (with 12 lags) for the residuals. One and two

asterisks denote rejection of the null of no serial autocorrelation at 5% and 1% signi�cance level, respectively.
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Table 9: VAR models using realized volatility
Panel A: Variables in logarithmic form

Dep. var. Constant lnRVt+1 lnRVt lnIVt BG

lnRVt+1 0:0130
(0:1786)

� 0:2512
(0:0664)

0:8058
(0:0838)

12:544

lnIVt+1 �0:9142
(0:1587)

0:8133
(0:2350)

� �0:1240
(0:2540)

16:012

Panel B: Variables in std. dev. form

Dep. var. Constant RV
1=2
t+1 RV

1=2
t IV

1=2
t BG

RV
1=2
t+1 �0:0316

(0:0084)
� �0:0729

(0:0487)
1:1630
(0:0617)

21:007

IV
1=2
t+1 0:0127

(0:0583)
�1:7417
(1:6790)

� 2:5170
(1:8520)

11:691

Panel C: Variables in variance form

Dep. var. Constant RVt+1 RVt IVt BG

RVt+1 �0:0154
(0:0020)

� �0:1718
(0:0260)

1:5532
(0:0407)

25:873�

IVt+1 0:0162
(0:0062)

�0:3524
(0:2838)

� 0:8558
(0:4189)

2:6751

Note: The table shows FIML estimation results for the simultaneous system (28) and the corresponding

standard deviation and log-volatility systems. Standard errors are in parentheses and BG is the

Breusch-Godfrey statistic (with 12 lags) for the residuals. One and two asterisks denote rejection of the null of

no serial autocorrelation at 5% and 1% signi�cance level, respectively.

Table 10: LR tests in VAR models using realized volatility
Panel A: Variables in logarithmic form

Hypothesis Test statistic d.f. p-value

H1 : � = 1 5.3859 1 0.0203

H2 : � = 1; �1 = 0 7.5704 2 0.0227

H3 : � = 1; �1 = 0; A11 = 0 74.125 3 0.0000

Panel B: Variables in std. dev. form

Hypothesis Test statistic d.f. p-value

H1 : � = 1 6.9592 1 0.0083

H2 : � = 1; �1 = 0 13.839 2 0.0010

H3 : � = 1; �1 = 0; A11 = 0 38.100 3 0.0000

Panel C: Variables in variance form

Hypothesis Test statistic d.f. p-value

H1 : � = 1 131.83 1 0.0000

H2 : � = 1; �1 = 0 131.95 2 0.0000

H3 : � = 1; �1 = 0; A11 = 0 140.46 3 0.0000

Note: The table shows LR test results for the simultaneous system (28) and the corresponding standard

deviation and log-volatility systems.
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Table 11: VAR models using jump and continuous components
Panel A: Variables in logarithmic form

Dep. var. Constant lnCt+1 lnCt ln~Jt+1 ln~Jt lnIVt BG

lnCt+1 �0:1123
(0:1892)

� 0:2388
(0:0654)

� �0:0086
(0:0242)

0:8202
(0:0804)

13:639

ln~Jt+1 �2:5833
(0:5608)

� 0:2826
(0:1938)

� 0:1801
(0:0718)

0:5126
(0:2382)

6:3450

lnIVt+1 �0:9275
(0:4365)

1:0382
(0:3361)

� �0:0501
(0:1302)

� �0:3010
(0:3083)

16:301

Panel B: Variables in std. dev. form

Dep. var. Constant C
1=2
t+1 C

1=2
t J

1=2
t+1 J

1=2
t IV

1=2
t BG

C
1=2
t+1 �0:0272

(0:0075)
� �0:0881

(0:0513)
� �0:0324

(0:0899)
1:1099
(0:0541)

17:896

J
1=2
t+1 �0:0097

(0:0064)
� �0:0905

(0:0435)
� 0:3426

(0:0762)
0:2995
(0:0459)

34:033��

IV
1=2
t+1 0:0186

(0:0430)
�1:5362
(1:2490)

� �0:4906
(0:7048)

� 2:3475
(1:3520)

11:278

Panel C: Variables in variance form

Dep. var. Constant Ct+1 Ct Jt+1 Jt IVt BG

Ct+1 �0:0148
(0:0016)

� �0:1561
(0:0264)

� �0:3027
(0:1552)

1:4352
(0:0337)

19:816

Jt+1 �0:0005
(0:0008)

� �0:0324
(0:0125)

� 0:2966
(0:0733)

0:1132
(0:0160)

110:07��

IVt+1 0:0161
(0:0062)

�0:3513
(0:2888)

� �0:4454
(1:1830)

� 0:8654
(0:4242)

2:7798

Note: The table shows FIML estimation results for the simultaneous system (29) and the corresponding

standard deviation and log-volatility systems. Standard errors are in parentheses and BG is the

Breusch-Godfrey statistic (with 12 lags) for the residuals. One and two asterisks denote rejection of the null of

no serial autocorrelation at 5% and 1% signi�cance level, respectively.
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Table 12: LR tests in VAR models using jump and continuous components
Panel A: Variables in logarithmic form

Hypothesis Test statistic d.f. p-value

H1 : �1 = 1 5.0420 1 0.0247

H2 : �1 = 1; �1 = 0 5.1091 2 0.0777

H3 : �1 = 1; �1 = 0; A11 = 0; A12 = 0 117.30 4 0.0000

H4 : �1 = 1; �2 = 0 11.911 2 0.0026

H5 : �1 = 1; �2 = 0; �1 = 0 11.978 3 0.0075

H6 : �1 = 1; �2 = 0; �1 = 0; A11 = 0; A12 = 0 123.67 5 0.0000

Panel B: Variables in std. dev. form

Hypothesis Test statistic d.f. p-value

H1 : �1 = 1 4.1633 1 0.0413

H2 : �1 = 1; �1 = 0 12.998 2 0.0015

H3 : �1 = 1; �1 = 0; A11 = 0; A12 = 0 76.931 4 0.0000

H4 : �1 = 1; �2 = 0 39.608 2 0.0000

H5 : �1 = 1; �2 = 0; �1 = 0 48.443 3 0.0000

H6 : �1 = 1; �2 = 0; �1 = 0; A11 = 0; A12 = 0 113.78 5 0.0000

Panel C: Variables in variance form

Hypothesis Test statistic d.f. p-value

H1 : �1 = 1 122.43 1 0.0000

H2 : �1 = 1; �1 = 0 125.70 2 0.0000

H3 : �1 = 1; �1 = 0; A11 = 0; A12 = 0 143.97 4 0.0000

H4 : �1 = 1; �2 = 0 129.81 2 0.0000

H5 : �1 = 1; �2 = 0; �1 = 0 133.07 3 0.0000

H6 : �1 = 1; �2 = 0; �1 = 0; A11 = 0; A12 = 0 151.34 5 0.0000

Note: The table shows LR test results for the simultaneous system (29) and the corresponding standard

deviation and log-volatility systems.
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Figure 1: Time series plots of volatility measures

Panel B: Volatility measures in standard deviation form
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Panel A: Volatility measures in logarithmic form
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