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Abstract

We study measures of foreign exchange rate volatility based on high-frequency (5-

minute) $/DM exchange rate returns using recent nonparametric statistical techniques

to compute realized return volatility and its separate continuous sample path and jump

components, and measures based on prices of exchange rate futures options, allowing

calculation of option implied volatility. We find that implied volatility is an information-

ally efficient but biased forecast of future realized exchange rate volatility. Furthermore,

we show that log-normality is an even better distributional approximation for implied

volatility than for realized volatility in this market. Finally, we show that the jump com-

ponent of future realized exchange rate volatility is to some extent predictable, and that

option implied volatility is the dominant forecast of the future jump component.
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1 Introduction

The analysis and forecasting of asset return volatility is of great importance in the pricing

and hedging of financial assets and derivatives. Both current and past return records and con-

temporaneous derivative price observations may be used in constructing forecasts of unknown

future volatility. In an early study using daily data, Jorion (1995) documents the incremental

information on future volatility in derivative prices relative to that in past realized return

volatility on the foreign exchange market. This market is particularly important because of

its sheer size and liquidity, and it is furthermore interesting due to the round-the-clock trad-

ing feature of the spot exchange market. Recently, Andersen, Bollerslev, Diebold & Labys

(2001) study the properties of the volatility process in the foreign exchange market, showing

in particular that realized exchange rate return volatility is close to log-normally distributed.

Besides adding derivative prices to the return data set as in Jorion (1995), another route

to improvement of volatility forecasts involves using high-frequency return data and recent

statistical techniques that allow separating the continuous sample path and jump compo-

nents of the return volatility process and using them individually and in new combinations

to build volatility forecasts. Andersen, Bollerslev & Diebold (2005) present results from such

an analysis for the foreign exchange market, as well as for the U.S. stock and Treasury bond

markets. They show that for all markets, improved volatility forecasts may be obtained by

splitting realized return volatility into its continuous and jump components and combining

these optimally.

In the present paper, we investigate whether implied volatility from options on foreign

currency futures retains the incremental information discovered by Jorion (1995) in the daily

data even when assessed against improved volatility forecasts based on high-frequency (5-

minute) current and past spot exchange rate returns, using the recently available statistical

techniques to generate efficient measurements of realized volatility and its separate continu-

ous and jump components. Furthermore, we investigate the predictability of these separate

volatility components, including the role played by implied volatility in forecasting these.

The construction and analysis of realized volatility (essentially, the summation of squared

returns over a specified time interval) from high-frequency return data as a consistent esti-

mate of conditional volatility has received much attention in recent literature on the stock,

bond and foreign exchange markets, see e.g. French, Schwert & Stambaugh (1987), Schwert

(1989), Andersen & Bollerslev (1998), Andersen, Bollerslev, Diebold & Ebens (2001), Ander-

sen, Bollerslev, Diebold & Labys (2001), Barndorff-Nielsen & Shephard (2002a), and Andersen,

Bollerslev & Diebold (2004). In particular, Andersen, Bollerslev, Diebold & Labys (2003) and

Andersen, Bollerslev & Meddahi (2004) show that simple reduced form time series models

for realized volatility constructed from historical returns outperform commonly used GARCH

and related stochastic volatility models in forecasting future volatility. In recent theoreti-

cal contributions, Barndorff-Nielsen & Shephard (2003a, 2003b, 2004a, 2004b) derive a fully
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nonparametric separation of the continuous sample path and jump components of realized

volatility. They show that realized volatility is a consistent estimate of conditional volatility

as the frequency of return observations is increased even in the case of asset price processes

that include both stochastic volatility and jump components. Furthermore, the nonparametric

estimates of the separate components of realized volatility are consistent for the corresponding

continuous and jump components of true conditional volatility. Applying this nonparametric

separation technique, Andersen et al. (2005) extend results of Andersen et al. (2003) and An-

dersen, Bollerslev & Meddahi (2004) by including both the continuous and jump components

of past realized volatility as separate regressors in the forecasting of future realized volatility

in the stock, bond and foreign exchange markets. They show that the continuous sample path

and jump components of total volatility play very different roles in volatility forecasting in all

markets. Significant gains in forecasting performance are achieved by splitting the explanatory

variables into the separate continuous and jump components, compared to using only total

past realized volatility. While the continuous component of past realized volatility is strongly

serially correlated, the jump component is found to be distinctly less persistent, and almost

not forecastable.

Many recent studies have stressed the importance of separate treatment of the jump and

continuous sample path components in other markets, particularly the stock market. This work

has considered both the estimation of parametric stochastic volatility models (e.g. Andersen,

Benzoni & Lund (2002), Chernov, Gallant, Ghysels & Tauchen (2003), Eraker, Johannes

& Polson (2003), and Ait-Sahalia (2004)), nonparametric realized volatility modeling (e.g.

Barndorff-Nielsen & Shephard (2003a, 2004b) and Andersen et al. (2005), who also consider

the foreign exchange market, and Huang & Tauchen (2005)), and empirical option pricing

(e.g. Bates (1996) for the foreign exchange market, and Bates (1991) and Bakshi, Cao &

Chen (1997)). Indeed, in the stochastic volatility and realized volatility literatures, the jump

component is found to be far less predictable than the continuous sample path component,

clearly indicating separate roles for the two components in volatility forecasting.

Practitioners in the foreign exchange market typically consider implied volatility a much

more precise forecast of future volatility than anything based on past returns, as current op-

tion prices avoid obsolete information and are assumed to incorporate all relevant information

efficiently. Complete reliance on return data, even of high frequency (say, 5 minutes), may not

provide an efficient volatility forecast, given that option prices are clearly in investors’ infor-

mation set. Jorion (1995) considers more than seven years of daily data on $/DM currency

futures and associated options and finds that implied volatility outperforms return based alter-

natives as a forecast of future realized volatility, although it remains a biased forecast. Similar

results have been found recently by Covrig & Low (2003). The improved realized volatility

forecasting performance from return based measures achieved by using high-frequency return

data and differentiating the continuous and jump components begs the question of whether

implied volatility continues to be an even better forecast of future realized return volatility,
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once option prices are added to the data set. This question was addressed recently for the

stock market in Christensen & Nielsen (2005), but has never been investigated for the foreign

exchange market. In the stock market (the S&P 500 index and the associated SPX options),

implied volatility is a nearly unbiased forecast of high-frequency return based realized volatil-

ity, and contains incremental forecasting power relative to both past realized volatility and the

continuous and jump components of this. Nevertheless, past realized volatility and its contin-

uous component retain incremental information relative to implied volatility when variables

are measured in logarithms (the transformation leaving them closest to Gaussian), so implied

volatility does not appear to be a fully efficient forecast in the stock market.

There are reasons to believe that the results may be different in the foreign exchange

market. First, volume is tremendous in the currency options market, and combined with the

round-the-clock trading feature it is natural to expect an absence of frictions and a high degree

of efficiency in this market. Secondly, the relevant foreign exchange options are written on

a currency futures contract readily available for hedging purposes, whereas the SPX options

are written on the index, leaving hedging using SPX futures slightly imperfect and hedging

using the individual stocks comprising the index exceedingly costly. Lack of frictions, market

efficiency and inexpensive hedging suggest that arbitrage pricing should work particularly

well in the foreign exchange options market. Thirdly, exchange rate returns are generally less

skewed than stock index returns. Fourth, no dividends are paid to the exchange rate, whereas

the stocks comprising the index pay dividends. Lesser skewness and no dividends imply that

standard option pricing formulas should work better for foreign exchange options than for

stock index options. In sum, implied volatility may well be a better estimate of unknown

future volatility in the foreign exchange market than in the stock market. In particular, this

raises the question of whether the incremental forecasting power of past realized volatility and

its continuous sample path component relative to implied volatility from option prices in the

stock market is retained or disappears when moving to the foreign exchange market.

In this paper, we include implied volatility from option prices in the analysis, thus expand-

ing the set of variables from the information set used for forecasting purposes. Given that

Andersen et al. (2005) show that splitting past realized volatility into its separate components

yields an improved forecast, adding implied volatility allows examining whether the continuous

and jump components of past realized volatility span the relevant part of the information set.

Similarly, as Jorion (1995) and Covrig & Low (2003) show that implied volatility outperforms

past realized volatility as a forecast, it is of interest to test whether this conclusion holds up

after allowing the two components of past realized volatility to act separately. In addition,

the earlier literature on the relation between implied and realized volatility has considered re-

alized volatility constructed from daily return observations, due to data limitations, and this

could be one reason for imprecise measurement of realized volatility and might have biased

the results on forecasting performance in favor of implied volatility from option prices, c.f.

Poteshman (2000). In sum, by providing a joint analysis of the forecasting power of both im-
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plied volatility and the separate continuous and jump components of realized volatility, based

on high-frequency returns, we are able to address a host of issues from the literature in the

present paper.

We study high-frequency (5-minute) returns to the $/DM exchange rate and $/DM futures

options. We compute alternative volatility measures from the two separate data segments:

The return based measures, i.e., realized volatility and its continuous and jump components

from high-frequency $/DM exchange rate returns, and the measure based on option prices,

i.e., implied volatility. We first show that the logarithm of implied volatility is very close

to Gaussian, closer than implied volatility and implied variance, and closer than realized

volatility or any of its continuous or jump components under any of the three transformations.

This adds to the results of Andersen, Bollerslev, Diebold & Labys (2001), who showed that

the logarithm of realized volatility is quite close to Gaussian, closer than realized volatility

and realized variance. We then show that implied volatility contains incremental information

relative to both the continuous and jump components of realized volatility when forecasting

subsequently realized index return volatility. Indeed, we show that in the foreign exchange

market implied volatility subsumes the information content of both components of realized

volatility. This is an important difference from the findings for the stock market, where

specifications using log-volatilities indicate that past realized volatility and its continuous

component retain incremental information relative to implied volatility. Confirming the results

of Jorion (1995), we find that some degree of bias remains in the implied volatility forecast.

However, this bias is not explained by the components of realized volatility. This shows that

there is volatility information in option prices which is not contained in return data, and that

the continuous and jump components of realized volatility do not span investors’ information

set, whereas option prices fully reflect all relevant information in both components of realized

volatility. Furthermore, implied volatility from option prices retains its dominant role in a

forecasting context even when compared to realized volatility split into its separate components

and even when using high-frequency (as opposed to daily) returns in constructing these.

As an additional novel contribution, we consider separate forecasting of the continuous and

jump components of future realized volatility. Because of the different time series properties

of the continuous and jump components, as documented in Andersen et al. (2005), separate

forecasting of these is relevant for pricing and risk management purposes. Our results show

that implied volatility has predictive power for both components, and in particular that even

the jump component of realized volatility is, to some extent, predictable.

To examine the robustness of our conclusions, we conduct an number of additional analy-

ses. Since implied volatility is the new variable added in our study, compared to the realized

volatility literature, and since it may potentially be measured with error stemming from non-

synchronicity between sampled option prices and corresponding futures prices, bid-ask spreads,

model error, etc., we take special care in handling this variable. In particular, we consider an

instrumental variables approach, using lagged values of implied volatility along with the sepa-
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rate components of past realized volatility as instruments. In addition, we provide a structural

vector autoregressive (VAR) analysis of the system consisting of implied volatility in conjunc-

tion with the two separate components of realized volatility. Both the instrumental variables

analysis and the structural VAR analysis control for possible endogeneity of implied volatility

in the forecasting regression. Furthermore, the simultaneous system approach allows testing

interesting cross-equation restrictions. The results from these additional analyses reinforce our

earlier conclusions, in particular that implied volatility is the dominant forecasting variable

in investors’ information set, subsuming the information content of both the continuous and

jump components of past realized volatility, and that even the jump component of realized

volatility is, to some extent, predictable.

The results are interesting and complement both of the above mentioned strands of liter-

ature. Firstly, although implied volatility had earlier been found to forecast better than past

realized volatility, it might have been speculated that it would be possible to construct an

even better forecast of future volatility than that contained in option prices, either by simply

measuring past realized volatility more precisely, using high-frequency return data (Potesh-

man (2000) and Blair, Poon & Taylor (2001) suggest this in the context of the implied-realized

volatility relation), or by using the high-frequency data to extract and combine the separate

continuous and jump components of realized volatility optimally, e.g. with unequal coefficients.

We find that this is not so. Secondly, since recent high-frequency data analysis shows that

forecasts are improved by splitting realized volatility into its separate components, it might

have been anticipated that these together summarize the relevant information set. Again, we

reject the conjecture, showing that incremental information is contained in option prices.

The remainder of the paper is laid out as follows. In the next section we consider realized

volatility and the nonparametric identification of its separate continuous sample path and jump

components. In Section 3, we discuss the exchange rate derivative pricing model. Section 4

presents our data and Section 5 the empirical results. Finally, Section 6 offers some concluding

remarks.

2 The Econometrics of Jumps

A typical assumption in asset pricing is that the log-price p (t) is governed by a continuous

time stochastic volatility model (see e.g. Ghysels, Harvey & Renault (1996), Barndorff-Nielsen

& Shephard (2001) and the references therein) with an additive jump component. Thus, in

our foreign exchange case, we assume that the logarithm of the exchange rate, p (t) , follows

the general stochastic volatility jump diffusion model

dp (t) = μ (t) dt+ σ (t) dw (t) + κ (t) dq (t) , t ≥ 0, (1)

with the mean μ (·) continuous and locally bounded and the instantaneous volatility σ (·) > 0
càdlàg, both assumed independent of the driving standard Brownian motion w (·) , and the
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counting process q (t) normalized such that dq (t) = 1 corresponds to a jump at time t and

dq (t) = 0 otherwise. Hence, κ (t) is the jump size at time t if dq (t) = 1. We write λ (t)

for the possibly time varying intensity of the arrival process for jumps.1 Stochastic volatility

allows returns in the model (1) to have leptokurtic (unconditional) distributions and exhibit

volatility clustering, which is empirically relevant.

An important feature of the model (1) is that, in the absence of jumps, the conditional

distribution of the log-exchange rate given integrated drift and volatility is normal,

p (t)|
Z t

0

μ (s) ds, σ2∗ (t) ∼ N

µZ t

0

μ (s) ds, σ2∗ (t)
¶
. (2)

Here, the integrated volatility (or integrated variance)

σ2∗ (t) =
Z t

0

σ2 (s) ds (3)

is of particular interest. In option pricing, this is the relevant volatility measure, see Hull

& White (1987), and the estimation of integrated volatility is studied e.g. in Andersen &

Bollerslev (1998). Integrated volatility is closely related to quadratic variation [p] (t), defined

for any semimartingale (see Protter (2004)) by

[p] (t) = p lim
MX
j=1

(p (sj)− p (sj−1))
2
, (4)

where 0 = s0 < s1 < ... < sM = t and the limit is taken for maxj |sj − sj−1|→ 0 as M →∞.
In particular, the quadratic variation process for the model (1) is in wide generality given by

[p] (t) = σ2∗ (t) +
q(t)X
j=1

κ2 (tj) , (5)

where 0 ≤ t1 < t2 < ... are the jump times, dq (tj) = 1. From (5), jumps show up very

clearly in quadratic variation, which is written as integrated volatility plus the sum of squared

jumps that have occurred through time t (see e.g. Andersen, Bollerslev, Diebold & Labys

(2001, 2003)). Recent studies in other markets including Andersen et al. (2002), Chernov

et al. (2003), Eraker et al. (2003), Eraker (2004), Ait-Sahalia (2004), and Johannes (2004)

all find that jumps are an empirically important part of the price process. To investigate the

importance of jumps in the foreign exchange market, we follow Andersen et al. (2005) and

include the jump component explicitly in this market, too. Rather than modeling (1) directly

at the risk of adopting erroneous parametric assumptions, we use high-frequency exchange

rate return data and invoke a powerful nonparametric approach to identification of the two

separate components of the quadratic variation process (5), integrated volatility respectively

1Formally, Pr (q (t)− q (t− h) = 0) = 1 − R tt−h λ (s) ds + o (h), Pr (q (t)− q (t− h) = 1) =
R t
t−h λ (s) ds +

o (h), and Pr (q (t)− q (t− h) ≥ 2) = o (h). This rules out infinite activity Lévy processes, e.g. the normal

inverse Gaussian process, with infinitely many jumps in finite time.
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the sum of squared jumps, following Barndorff-Nielsen & Shephard (2003a, 2003b, 2004a,

2004b), and Andersen et al. (2005).

Assume that T months of intra-monthly exchange rate observations are available and

denote the M evenly spaced intra-monthly observations for month t on the logarithm of the

exchange rate by pt,j . The one month time interval is used in order to match the sequence

of consecutive nonoverlapping one month option lives available given the monthly option

expiration cycle. The continuously compounded intra-monthly returns for month t are

rt,j = pt,j − pt,j−1, j = 1, ...,M, t = 1, ..., T. (6)

Realized volatility for month t is given by the sum of squared intra-monthly returns,

RVt =
MX
j=1

r2t,j, t = 1, ..., T. (7)

Some authors refer to the quantity (7) as realized variance and reserve the term realized

volatility for the square root of (7), e.g. Barndorff-Nielsen & Shephard (2001, 2002a, 2002b),

but we shall use the more conventional term realized volatility. The nonparametric estimation

of the separate continuous sample path and jump components of quadratic variation, following

Barndorff-Nielsen & Shephard (2003a, 2003b, 2004a, 2004b), requires also the related bipower

and tripower variation measures. The (first lag) realized bipower variation is defined as

BVt =
1

μ21

MX
j=2

|rt,j | |rt,j−1| , t = 1, ..., T, (8)

where μ1 =
p
2/π. Both realized volatility and realized bipower variation are estimated

with a coarseness depending on the number of intra-monthly observations M . Theoretically,

a higher value of M improves the precision of the estimator, but in practice it also makes

it more susceptible to market microstructure effects, such as bid-ask bounces, stale prices,

measurement errors, etc., see Campbell, Lo & MacKinlay (1997). These effects potentially

introduce artificial (typically negative) serial correlation in returns. Huang & Tauchen (2005)

show that the resulting bias in (8) is mitigated by considering the staggered (second lag)

realized bipower variation

gBV t =
1

μ21(1− 2M−1)
MX
j=3

|rt,j | |rt,j−2| , t = 1, ..., T. (9)

By inserting an additional time interval between the two intervals covered by a pair of returns

multiplied together in the definition of the volatility measure, the staggered version avoids the

sharing of the price data pt,j−1 which by (6) enters the definition of both rt,j and rt,j−1 in the

non-staggered version (8). A further statistic necessary for construction of the relevant tests

is the realized tripower quarticity measure

TQt =
1

M
μ−34/3

MX
j=3

|rt,j |4/3 |rt,j−1|4/3 |rt,j−2|4/3 , t = 1, ..., T, (10)
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where μ4/3 = 2
2/3Γ (7/6) /Γ (1/2). The associated staggered realized tripower quarticity is

gTQt =
1

Mμ34/3(1− 4M−1)
MX
j=5

|rt,j |4/3 |rt,j−2|4/3 |rt,j−4|4/3 , t = 1, ..., T, (11)

which again avoids common prices in adjacent returns. As the staggered quantities gBV t andgTQt are asymptotically equivalent to their non-staggered counterpartsBVt and TQt, staggered

versions of test statistics can be constructed for robustness against market microstructure

effects without sacrificing asymptotic results.

As noted by Andersen & Bollerslev (1998), Andersen, Bollerslev, Diebold & Labys (2001)

and Barndorff-Nielsen & Shephard (2002a, 2002b), RVt in (7) is by definition a consistent

estimator of the monthly increment to the quadratic variation process (5) as M → ∞, using
(4), but not of month t integrated volatility, defined as σ2∗t =

R t
t−1 σ

2 (s) ds. The latter is the

component of the increment to quadratic variation due to continuous sample path movements

in the price process (1). Therefore, realized volatility is a consistent estimator of the key

integrated volatility measure, σ2∗t , only in the absence of jumps. As shown by Barndorff-

Nielsen & Shephard (2004b), an estimator that is consistent even in the presence of jumps is

given by realized bipower variation from (8), i.e.,

BVt →p σ
2∗
t , as M →∞. (12)

It follows that the jump component of the increment to quadratic variation is estimated

consistently as

RVt −BVt →p

q(t)X
j=q(t−1)+1

κ2 (tj) . (13)

That is, the difference between realized volatility and realized bipower variation converges to

the sum of squared jumps that have occurred during the course of the month. In applications,

non-negativity of the estimate of the jump component must be ensured, and this can be done

simply by imposing a non-negativity truncation on RVt − BVt. Of course, in finite samples,

RVt − BVt may be positive due to sampling variation even if there is no jump during month

t, so a notion of a "significant jump component" is needed. To this end, we employ the test

statistic Zt with the following definition and convergence property in the absence of jumps:

Zt =
√
M

(RVt −BVt)RV
−1
t¡¡

μ−41 + 2μ−21 − 5
¢
max{1, TQtBV

−2
t }¢1/2 →d N (0, 1) , as M →∞. (14)

Thus, Zt measures whether realized volatility exceeds realized bipower variation by more than

what can be ascribed to chance, so large positive values of Zt indicate the presence of jumps

during month t in the underlying price process. This statistic was introduced by Barndorff-

Nielsen & Shephard (2004b) and studied by Huang & Tauchen (2005), who showed that it

has better small sample properties than the alternative asymptotically equivalent statistics in
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Barndorff-Nielsen & Shephard (2003a, 2004b). Note that Zt depends on all of RVt, BVt and

TQt. By choosing the staggered versions (9) and (11) of the latter two, a staggered version eZt
of the test is available, and this is recommended by Huang & Tauchen (2005) and Andersen

et al. (2005).

With these definitions, the (significant) jump component of realized volatility is given by

Jt = I{Zt>Φ1−α} (RVt −BVt) , t = 1, ..., T, (15)

where I{A} is the indicator function of the event A, Φ1−α is the 100 (1− α)% point of the

standard normal distribution, and α is the chosen significance level. Thus, Jt is exactly the

portion of realized volatility not explained by realized bipower variation, and hence attribut-

able to jumps in the sample path. Accordingly, the estimator of the continuous component of

quadratic variation is

Ct = RVt − Jt, t = 1, ..., T, (16)

ensuring that the estimators of the jump and continuous sample path components add up to to-

tal realized volatility (otherwise we could have just used the realized bipower variation defined

in (8)). This way, the month t continuous component equals realized volatility when there is

no significant jump in month t, and it equals realized bipower variation when there is a jump,

i.e. Ct = I{Zt≤Φ1−α}RVt + I{Zt>Φ1−α}BVt. Since Zt and BVt enter the definition (15), there

are staggered and non-staggered versions of both the continuous and the jump component.

Consistency of the separate components of realized volatility as estimators of the correspond-

ing components of quadratic variation, i.e. Ct →p σ∗2t and Jt →p

Pq(t)
j=q(t−1)+1 κ

2 (tj) as

M → ∞ may be achieved if also α → 0 (possibly as a function of M). This should hold

whether staggered or non-staggered versions are used. Finally, for any standard significance

level α < 1/2, both Jt and Ct from (15) and (16) are automatically positive, since Φ1−α > 0

for α < 1/2. Hence, this high-frequency data approach allows for month-by-month separate

nonparametric consistent estimation of both components of quadratic variation, i.e. the jump

component and the continuous sample-path or integrated volatility component, as well as the

quadratic variation process itself.

3 The Exchange Rate Derivative Pricing Model

Besides computing volatility measures from observed returns, it is possible to get a volatility

estimate by comparing the current level of the exchange rate with a contemporaneous price

of an exchange rate derivative security and backing out the volatility that would justify the

derivative price for the given exchange rate. This is the implied volatility approach, and it

involves a choice of derivative pricing formula. None of the existing work on the continuous and

jump components of realized volatility from the previous section (e.g. Andersen et al. (2005))

has compared with such implied volatilities from option prices when assessing the volatility
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forecasting performance of realized volatility and its components. This is perhaps surprising,

since if option market participants are rational and markets are efficient, the exchange rate

derivative price should reflect all publicly available information about expected future exchange

rate volatility over the life of the option. The empirical findings of Jorion (1995) support this

notion.

Jorion (1995) uses the Black (1976) and Garman & Kohlhagen (1983) version of the Black

& Scholes (1973) and Merton (1973) (BSM) option pricing formula. This formula applies to

a European call option with τ periods to expiration and strike price K, written on a currency

futures contract with futures price F , and involves replacing the asset price in the BSM formula

with the discounted futures price e−rτF , where r is the riskless U.S. interest rate. However,

in currency markets, the underlying futures contract typically expires ∆ time periods later

than the option contract, where ∆ is several weeks or even months. Consequently, as shown

by Bates (1996), the option formula should be further modified to

c(F,K, τ ,∆, r, σ) = e−r(τ+∆)[FΦ(d)−KΦ(d− σ
√
τ)], (17)

d =
ln(F/K) + 1

2σ
2τ

σ
√
τ

,

where Φ is the standard normal c.d.f. and σ is the exchange rate volatility coefficient. Based

on an observed option price c, the associated implied volatility (IV 1/2) estimate2 is backed

out from the option pricing formula in (17) by numerical inversion of the nonlinear equation

with respect to IV 1/2,

c = c(F,K, τ, r,∆, IV 1/2). (18)

Newton’s method may be applied to compute the IV estimates by iterating on the equation

IV
1/2
n+1 = IV 1/2

n +
c− c(F,K, τ,∆, r, IV

1/2
n )

V(F,K, τ , r,∆, IV
1/2
n )

(19)

until convergence, where V(F,K, τ, r,∆, IV
1/2
n ) = F

√
τφ(d)e−r(τ+∆) is the vega of the option

formula (see e.g. Hull (2002)) and φ is the p.d.f. of the standard normal distribution. The

last (extra) term in vega enters since the futures price can be regarded as an asset paying a

continuous dividend yield equal to the risk free rate r. In our empirical work, the algorithm

is stopped when
¯̄̄
c− c(F,K, τ, r,∆, IV

1/2
n )

¯̄̄
< 10−7.

Note that in (17) the term to option expiration, τ , enters d, whereas term to futures

expiration, τ + ∆, is used for discounting both the futures price and the strike price. The

upshot is that although d is correct for this application in the Black (1976) and Garman &

Kohlhagen (1983) formula, the option price is exaggerated, by a proportional factor er∆. This

leads to a systematic upward bias in implied volatilities. Consider for example the markets

for $/DM futures and associated options as in Jorion (1995) and our empirical work below.

2 IV is used in the text as a general abbreviation of option implied volatility. When the explicit form of the

volatility is relevant, IV 1/2 and IV denotes standard deviation and variance measures, respectively.
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In our data ∆ ranges between 12
365 and

76
365 , which is not negligible. Using the upward biased

implied volatilities would generate a downward bias in the coefficient on implied volatility in

the forecasting relations, potentially explaining the finding of a bias in Jorion (1995). Thus,

we use the corrected formula (17) throughout when calculating implied volatility.

4 Data and Descriptive Statistics

Options on Deutsche Mark (DM) futures traded on the Chicago Mercantile Exchange (CME)

over the period January 1987 to May 1999 are used in the analysis. The delivery dates

of the underlying futures contract follows the quarterly cycle March, June, September, and

December. In 1987 serial futures options with monthly expiration cycle were introduced.

Thus, some of the options expire in the two months between the quarterly delivery dates of

the futures contracts.

The futures options are American with expiration dates two Fridays prior to the third

Wednesday of each month. The delivery dates of the underlying futures contracts are on

the third Wednesday of each of the months March, June, September, and December. Upon

exercise the holder of the option contract is provided with a position at the strike price in the

underlying futures contract on the following trading day. The delivery lag ∆ upon terminal

exercise varies between 12
365 and

76
365 in our data.

The data consist of daily closing prices obtained from the Commodity Research Bureau.

The US Eurodollar deposit 1 month middle rate (downloaded from Datastream) is used for

the risk-free rate. For the implied volatility (IV ) estimates we use at-the-money (ATM)

calls with one month to expiration. The prices are recorded two business days after the last

trading day of the preceding option contract. In total, a sample of 148 annualized monthly

IV observations of ATM calls are available. Hence, although the underlying futures contract

expires at a quarterly frequency, the IV estimates are based on option contracts covering

non-overlapping time intervals. Furthermore, as suggested by French (1984) and Hull (2002),

the option pricing formula in (17) is extended such that trading days are used for volatilities

(τ) and calender days for interest rates (τ +∆).

For estimation of realized volatility (RV from (7)) and its separate components we follow

Müller, Dacorogna, Olsen, Pictet, Schwarz & Morgenegg (1990), Dacorogna, Müller, Nagler,

Olsen & Pictet (1993) and Barucci & Reno (2002), among others, and use linearly interpolated

five-minute spot rates from the $/DM foreign exchange market, providing us with a total

of 288 high-frequency returns per day (rt,j from (6), M = 288, T = 148). The different

measures are annualized and constructed on a monthly basis to cover exactly the same period

as the IV estimates. Our time index refers to the month where implied volatility is sampled.

Furthermore, we use the timing convention that IVt is sampled two business days after the

recording of the last return entering the computation of RVt and its components Ct and Jt.

Thus, IVt can be regarded as a forecast of RVt+1, since implied volatility is sampled at the
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beginning of the month covered by realized volatility for time t+1. As suggested by Andersen

et al. (2005) a significance level of α = 0.1% is used to detect jumps, thus providing the

series for the jump component J from (15) and continuous component C from (16) of realized

volatility RV .

The $/DM spot exchange rate differs from the futures rate, which is the price of the

underlying asset for the option contract. However, through the interest rate parity lnF =

p+ (r$ − rDM )τ , well known from international finance, it is clear that the futures and spot

$/DM exchange rates only differ by the discounted interest rate differential. Using the spot rate

instead of the futures price for realized quantities implies that our estimates of the forecasting

power of IV (calculated from futures options) are on the conservative side.

The implied-realized volatility relation is examined for the following three different trans-

formations of the volatility measures x (where x = RV , C, J , IV ): 1) logarithmically trans-

formed variances, log x; 2) standard deviations, x1/2; and 3) raw variances, x. Note the slight

abuse of terminology — there is no correction for sample average, and 3) is simply RV from

(7). To avoid taking the logarithm of zero, the jump component Jt, which equals zero in the

case of no significant jump during the month, is for the logarithmic transformation 1) replaced

by J∗t , obtained by substituting the smallest non-zero value from the time series for each zero

observation. The smallest non-zero observation is in standard deviation form 0.014594 for

the non-staggered data and 0.014773 for the staggered counterpart. There are 51 out of 148

months (34.5%) without significant jumps for the non-staggered data. Perhaps surprisingly,

in the case of staggered data there is only one month without significant jumps. Our results

therefore indicate that there may be non-negligible differences between the statistical proper-

ties of staggered and non-staggered data. Consequently, when relevant, results are reported

for both measures.

Table 1 about here

Table 1 presents summary statistics for the four different annualized volatility measures,

using all three functional specifications. Furthermore, for the continuous component and the

jump component, statistics are shown for both staggered and non-staggered versions. Panel A

shows results for the logarithmic transformation of the variance measures, and Panels B and

C for the standard deviation and variance measures, respectively.

Confirming the results of Andersen, Bollerslev, Diebold & Labys (2001), the logarithmic

transform produces volatility measures closest to Gaussianity. In Panel A, the Jarque & Bera

(1980) test only rejects the null hypothesis of normality at the 5% level for the non-staggered

version of the jump component.

As a new result from our analysis, Table 1 reveals that option based IV is much closer

to Gaussianity than the other (realized) volatility measures. For the logarithmic transform,

the Jarque & Bera (1980) statistic is 3.3 for realized volatility, but as low as 0.4 for the

corresponding transformation of IV . Even for the standard deviation measure, Panel B, IV
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does not depart significantly from Gaussianity, whereas RV does.

Figures 1-3 about here

Figures 1-3 exhibit time series plots of the four volatility measures, with non-staggered

data in Panel A, and the staggered counterparts in Panel B of each figure. Each of the three

volatility transformations is provided in a separate figure. From the figures, the continuous

component of realized volatility is close to realized volatility itself. The new variable in our

analysis, implied volatility, is also close to realized volatility, but not as close as the continuous

component. The jump component computed using staggered data (Panel B) clearly behaves

differently from that using non-staggered data (Panel A), as expected from Table 1. None

of the two measures of the jump component is negligible, and the jump series clearly exhibit

less serial dependence and behave differently compared to the other series. Hence, Figures 1-3

provide clear indication of the importance of analyzing the continuous and jump components

separately in foreign exchange markets.

5 Empirical Results

In this section empirical results on the relation between realized exchange rate volatility, its

disentangled components and implied volatility for the $/DM currency and futures options

markets are provided. All tables are divided into three panels. Panel A contains results

for the logarithmically transformed volatility measures, Panel B for the square-root variables

(standard deviation form), and Panel C for the volatility measures in raw variance form.

Typeface in italic denotes results where the continuous and jump components are computed

using staggered measures of realized bipower variation (9) and realized tripower quarticity

(11).

5.1 Forecasting Realized Exchange Rate Volatility

Table 2 shows results of univariate and multivariate regressions of future realized exchange

rate volatility on variables in the information set at the beginning of the period. The general

form of the regressions is

RVt+1 = α+ βIVt + γxt + εt+1, (20)

where α is the intercept, β is the coefficient on implied volatility, hence measuring the degree of

bias in this forecast, xt is one of the lagged realized volatility measuresRVt, Ct, Jt, or the vector

(Ct, Jt), εt+1 is the forecast error, and β = 0 or γ = 0 is imposed if the corresponding variable

is not included in the particular regression specification. Panel A of Table 2 shows the results

for the log-volatilities (recall that J∗t replaces any Jt term in xt in the log-regressions), Panel
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B for volatilities in standard deviation form, and Panel C for the raw variances.3 Numbers

reported are coefficient estimates (estimated standard errors in parentheses), adjusted R2, and

the Breusch (1978)-Godfrey (1978) (henceforth BG) test statistic for residual autocorrelation

up to lag 12 (one year), which is used instead of the standard Durbin-Watson statistic due to

the presence of lagged endogenous variables in some of our specifications. The BG statistic is

asymptotically χ2 on 12 degrees of freedom under the null of no residual autocorrelation. The

final two columns of the table show likelihood ratio (LR) test statistics. Here, LR1 denotes

the test of the hypothesis of a coefficient of unity on implied volatility when this is included

as a regressor, i.e., this is the basic unbiasedness hypothesis that β = 1. LR2 is the test of the

stronger hypothesis of unbiasedness and efficiency of the implied volatility forecast against the

unrestricted null, i.e., the joint hypothesis β = 1, γ = 0. The asymptotic distributions of LR1
and LR2 are χ2 on 1 resp. 1+dim(xt) degrees of freedom under the relevant null hypotheses.

Table 2 about here

The results from the first regression in Panel A (log-volatility) show that as expected lagged

realized volatility, RVt, does have significant explanatory power for the future realization,

RVt+1. The first-order autocorrelation coefficient is .52, with an associated t-statistic of 7.5.

This serves as a useful benchmark for assessing the new nonparametric tools, as well as the

incremental information in option prices. Starting with the separation of the realized volatility

forecast RVt into its continuous and jump components Ct and Jt, the second regression in the

table allows investigating whether these play different roles in forecasting future volatility

RVt+1. The results show that they clearly do. The coefficient on the jump component is

significantly lower than that on the continuous component, showing the relevance of allowing

the two components to act separately in a forecasting context. Furthermore, the regression

has strong implications regarding the relative predictive powers of the continuous and jump

components. In particular, quite strikingly, the results in the second line of the table shows

that in fact all the information in RVt about future exchange rate volatility stems from the

continuous sample path component. Thus, Ct enters significantly in the regression, with

coefficient and standard error almost identical to those for RVt from the first regression,

whereas the jump component is entirely insignificant (t-statistic of .36). This shows that

jumps, which, by their very nature, are hard to predict (see Andersen et al. (2005)), also are

of little use in forecasting. The results are confirmed by the regression on the staggered versions

of the separate volatility components, shown in the third line of the table. This suggests that

market microstructure issues, though apparently present (as seen from the differences in Table

1 and Figures 1-3 between measures using staggered and non-staggered data), are of limited

consequence for forecasting purposes.

3 In the log-volatility regressions, variables in (20) and similar equations are implicitly understood to be

in log-form, i.e., we do not rewrite the equation for the logarithmic and standard deviation cases, for space

considerations.
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The main contributions of this paper are adding option prices to the data set and inves-

tigating the incremental forecasting power of implied volatility relative to measurements of

realized volatility that are based on high-frequency returns and that separate the continuous

sample path and jump components, as well as examining the role of implied volatility in fore-

casting the separate components of future realized volatility. We turn to the first of these

investigations in the next regressions. The regression in the fourth line of Table 2 shows that

implied volatility contains considerable forecasting power. The t-statistic exceeds 10, higher

than for any of the forecasts considered so far. Furthermore, from the adjusted R2, implied

volatility explains 41% of the variation in future exchange rate volatility, whereas none of the

regressions without implied volatility explain more than 28%. This would seem a major gain

in information by adding option price data.

To test whether the information obtained by including option prices is really incremental

relative to that contained in realized volatility and its components, we next add these as ex-

planatory variables. The results in the fifth line of the table show that when regressing on

both realized and implied volatility, the former, RVt, is completely insignificant (coefficient

of .02, t-statistic of .22). The coefficient on implied volatility, IVt, is hardly different from

that in the previous univariate regression, at .75, and remains strongly significant. The same

is true when splitting the realized volatility forecast into its separate continuous and jump

components, which is done in the next specification (sixth line). Both components of realized

volatility are insignificant in the regression when implied volatility is included, and the coef-

ficient on the latter is nearly unchanged and strongly significant. The last line of the table

shows that the results are confirmed when using the staggered volatility measures. Based on

the BG statistics, which are insignificant throughout the table, the findings do not appear to

be hampered by misspecification.

Our results show that not only does implied volatility contain incremental forecasting power

relative to high-frequency realized volatility and its separate components, it even subsumes

the information content of the latter. All relevant information about future exchange rate

volatility is reflected in the option prices. This shows that the conclusions of Jorion (1995) hold

up even when adding high-frequency return data and using the new nonparametric techniques

to disentangle and optimally combine the separate continuous and jump components of the

realized volatility forecast.

One further issue regards the presence of bias in the implied volatility forecast, given that

this has emerged from our analysis as the dominant forecasting variable. Jorion (1995) found

that implied volatility backed out from a basic Black (1976) and Garman & Kohlhagen (1983)

style option pricing formula is a biased forecast. As discussed in Section 3, our option pricing

formula has been corrected following Bates (1996), thus avoiding an upward bias in implied

volatility due to the delivery lag of the underlying futures contract (and hence a downward

bias in the associated coefficient) present in Jorion’s (1995) analysis. However, despite a non-

negligible delivery lag fluctuating between 12
365 and

76
365 in our data and hence suggesting the
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importance of correcting the bias in the measurement of implied volatility, our results in fact

confirm that implied volatility is a biased forecast of future realized volatility. All LR1-tests

in the first panel are significant at the 5% level or better, showing that the unbiasedness

hypothesis β = 1 is rejected. The LR2-tests examine the joint hypothesis of the IV forecast

being unbiased ( β = 1) and simultaneously subsuming all relevant information in other

variables (γ = 0). This unbiasedness and efficiency hypothesis is rejected, too.

Following Andersen et al. (2005), we also consider the corresponding results for the cases

where each volatility measure is in standard deviation form (Panel B of Table 2) or in variance

form (Panel C). The regression specifications are the same as (20) above, keeping in mind the

new definitions of RVt, IVt, and xt (standard deviations respectively variances replace the

logarithmic measures, and Jt is used instead of J∗t ). For all three transformations, realized

volatility is significant in the univariate regression, and its forecasting power stems from its

continuous sample path component. Particularly in the variance regressions (Panel C), where

the identity RVt = Ct + Jt is strictly valid, we thus reject the implicit constraint from the

first regression in the panel that the continuous and jump components should be combined in

the form of raw realized volatility for the purpose of volatility forecasting. The results show

that the two components should indeed be entered separately, using the new nonparametric

methodology, and have different coefficients in the forecasting regression. Next, when implied

volatility is included in the regression, adjusted R2 increases dramatically, and all other re-

gressors become insignificant, showing the informational efficiency of the implied volatility

forecast, even in the presence of high-frequency realized volatility appropriately separated

into its continuous and jump components. The coefficient on implied volatility is higher in the

standard deviation and variance regressions than in the log-volatility regressions. Indeed, ev-

idence against either the unbiasedness hypothesis or the joint unbiasedness and informational

efficiency hypothesis is weak in Panels B and C.

Recall that our measure of implied volatility is backed out from the modified BSM-type

option pricing formula (17), as is standard among practitioners and in the empirical literature

on currency options. Since the formula does not account for jumps in asset prices, although

it is consistent with a time-varying volatility process for a continuous sample path asset price

process, it would perhaps be natural to expect that exactly the jump component would not

be fully captured by implied volatility. However, our results show that implied volatility is in

fact a precise forecast of future exchange rate volatility, subsuming the information content

of past high-frequency return based volatility measures. This suggests that option prices may

somehow be calibrated to incorporate the effect of jumps, at least to some extent. Further

results below on the direct forecasting of the jump component of future volatility support

this interpretation. This reduces the empirical need to invoke a more general option pric-

ing formula allowing explicitly for jumps in exchange rates. Such an approach would entail

estimating additional parameters, including prices of volatility and jump risk. This would

be a considerable complication, but would potentially reveal that even more information is
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contained in option prices. Thus, our approach yields a conservative estimate of the infor-

mation content on future exchange rate volatility contained in option prices. Our results are

strong, showing that simple implied volatility plays the dominant role in a forecasting context

in the presence of jumps in exchange rates, more important than past realized volatility and

its separate continuous and jump components based on high-frequency data, and we leave the

alternative, more complicated analysis for future research.

5.2 Forecasting the Components of Exchange Rate Volatility

We now split realized exchange rate volatility, RVt+1, on the left hand side of the regression

into its separate continuous sample path and jump components, Ct+1 and Jt+1, and examine

which variables in the information set at t forecast each component. Issues regarding which

variables carry incremental information in forecasting the separate components of future ex-

change rate volatility have never been addressed before in settings including implied volatility

from the currency option markets. If implied volatility is more closely related to the continu-

ous component of realized volatility than to the jump component, then IVt should show up in

the regressions as more important in forecasting Ct+1 than in forecasting Jt+1. In particular,

if jumps are essentially unpredictable, both IVt and other variables should be insignificant in

the Jt+1 regressions.

Table 3 about here

Table 3 shows the results for forecasting the continuous component, Ct+1, of realized

volatility. The format is the same as in Table 2. The general regression specification is of the

form

Ct+1 = α+ βIVt + γxt + εt+1, (21)

i.e., Ct+1 replaces RVt+1 on the left hand side of the regression. Results are very similar to

the corresponding results in Table 2. This suggests that realized volatility and its continuous

component share important features, which seems natural. The BG tests show no sign of mis-

specification. Again, implied volatility gets higher coefficients and t-statistics than the other

variables (lagged realized volatility and its continuous and jump components), and adjusted

R2 is highest when implied volatility is included in the regression. Indeed, implied volatil-

ity subsumes the information content of the other variables under all three transformations,

showing that implied volatility is an informationally efficient (although slightly biased, from

the LR1 statistics) forecast also of the continuous component of future realized exchange rate

volatility.

Table 4 about here

To further investigate whether implied volatility in addition reflects information about

future jumps, we turn to Table 4, which reports results from regression of the future jump

component, Jt+1, on the same explanatory variables as in the two previous tables. The general
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regression specification is therefore

Jt+1 = α+ βIVt + γxt + εt+1. (22)

Considering first the initial regressions of the jump component on its own lagged value, the

results in all three panels show that this has significant explanatory power if and only if stag-

gered data are used, hence verifying the value of this approach. Furthermore, the continuous

component is insignificant when this is added to the regression. Thus, jumps are to some

extent predictable, and this is from their own past, not from past continuous sample path

movements. Next, when implied volatility is entered, this turns out to have even stronger

predictive power for future jumps. It gets higher t-statistics than the lagged jump component

and is significant in univariate and multivariate regressions, whether using staggered or non-

staggered data. The BG tests show no sign of misspecification. Indeed, the results show that

implied volatility subsumes the information content of both components of realized volatility

in forecasting the future jump component.

In general, coefficient estimates are clearly different from the previous two tables, showing

that the jump component is quite different from the continuous component, and that the latter

is most similar to realized volatility. This reinforces once again that the two components should

be treated separately. When doing so, we find both that implied volatility forecasts something

more than the continuous component of realized volatility, consistent with the notion that

option prices are calibrated to incorporate jump information, and that jumps are predictable

from variables in the information set, which is a result of interest in its own right.

5.3 Forecasting Implied Exchange Rate Volatility and Instrumental
Variable Analysis

The results so far show that the volatility implied in prices of exchange rate futures options is

an extremely powerful forecast. It subsumes the information content of both the continuous

sample path and jump components of realized volatility, not only in forecasting future realized

volatility, but also in forecasting the future continuous and even the future jump component.

It is thus of interest to examine the properties of implied exchange rate volatility in some more

detail.

Since implied volatility is derived from the prices option market participants are willing to

trade at, and since option traders presumably base their decisions on the information available

to them, it is natural to examine which variables in the information set implied volatility itself

depends on. Thus, we first investigate the forecasting of implied volatility. In addition, since

implied volatility is the new variable in our study, we subject this variable to special scrutiny,

considering in particular the possibility that it is measured with error. A classical errors-in-

variable (EIV) problem in implied volatility, stemming e.g. from misspecification of the option

pricing formula, bid-ask spreads, or nonsynchronicities between sampled futures option prices
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and corresponding underlying exchange rate futures prices, would induce a downward bias in

the coefficient β on implied volatility in (20)-(22), thus potentially explaining the finding so

far that implied volatility is a somewhat biased (although informationally efficient) forecast of

future realized volatility and its components. We use the results from the forecasting analysis

(of implied volatility) to implement a standard instrumental variables two-stages least squares

(2SLS) correction of the potential EIV problem and to test for the presence of the latter.

Table 5 about here

The results on forecasting implied volatility are presented in Table 5, which is laid out as

the previous tables. The generic forecasting regression takes the form

IVt+1 = α+ δzt+1 + εt+1, (23)

where zt+1 contains the relevant variables in the information set that implied volatility may

depend on. Since IVt+1 is measured at the end of month t+1, it may depend on the realized

volatility measures recorded over the course of month t + 1, i.e., Ct+1 and Jt+1, as well as

its own lagged value, implied volatility at the beginning of the month, IVt. The results in

Table 5 are similar across the three transformations considered, and the BG tests show no

sign of misspecification. The findings are that implied volatility depends on its own lag, which

gets a coefficient slightly above .5 in the univariate regression and explains about 30% of the

variation in implied volatility. However, this increases to more than 50% when the realized

volatility measures Ct+1 and Jt+1 enter the regression, whether or not lagged implied volatility

is retained. The continuous component gets a coefficient of about .5 which is strongly signif-

icant, whereas the coefficient on lagged implied volatility (when included) drops to about .1

and is only borderline significant at conventional levels. The coefficient on the jump compo-

nent is significant when using non-staggered versions of the realized variables and insignificant

when using staggered versions, and this holds regardless of whether lagged implied volatility

is included in the regression. We place most faith in the results using staggered data, and

conclude that implied volatility indeed reacts to variables in the information set, with the con-

tinuous sample path movements over the preceding month being the most important, and with

lagged implied volatility possibly containing relevant information, too. Thus, option market

participants use available information when setting prices, consistent with the interpretation

of implied volatility as a conditional expectation.

Table 6 about here

As the forecasting regression explains more than half the variation in implied volatility, the

forecasting variables on the right hand side are natural instruments for implied volatility in

an EIV context. It was found in Table 2 that implied volatility is an informationally efficient

but biased forecast, so the interesting possibility is that the bias is driven by measurement
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error. Thus, results of 2SLS estimation of the regression of realized on implied volatility are

presented in Table 6, using the instrumentation corresponding to the last line of each panel of

Table 5 for the implied volatility regressor. The column labeled RSS shows the results of the

residual sum-of-squares test of the unbiasedness hypothesis.

The results are similar across the three transformations (panels) and across the use of

staggered and non-staggered data in the instrumentation, and the BG statistics show no sign

of misspecification. The indication is that implied volatility is in fact slightly biased, judged

both by the asymptotic standard error and the RSS test, i.e. the results from Table 2 are

confirmed, and a classical EIV problem is not the sole source of the phenomenon. In fact, the

Hausman (1978) test in the column labelled EIV is insignificant, thus implying that there is

no appreciable measurement error in our implied volatility variable. Neither the delivery lag

nor an EIV problem explains the bias in the implied volatility forecast.

5.4 Structural Vector Autoregressive Analysis

We now introduce a simultaneous system approach for the joint analysis of the forecasting

equations for implied volatility and the separate continuous and jump components of realized

volatility. There are several advantages to the system approach. Firstly, the instrumental

variable treatment of the forecasting equation for realized volatility in the previous seubsec-

tion could equally be applied to the forecasting equations for both the continuous and jump

components, and joint analysis of the resulting equations is natural. Secondly, the main sub-

stantive conclusions so far, that implied volatility is an informationally efficient but slightly

biased forecast of future realized volatility and its continuous sample path component, and fur-

thermore has predictive power for the future jump component, are based on tests conducted

in different regression equations which are not independent, so the relevant joint hypothe-

sis actually involves cross-equation restrictions and should be tested in a system framework.

Thirdly, while even the simple EIV problem would generate correlation between the implied

volatility regressor and the error term, and thus a particular case of an endogeneity problem,

the simultaneous system approach provides an efficient method for handling endogeneity more

generally. Thus, we consider the structural vector autoregressive (VAR) system⎛⎜⎜⎝
1 0 0

0 1 0

B31 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

Ct+1

Jt+1

IVt+1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
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α2
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⎞⎟⎟⎠+
⎛⎜⎜⎝

A11 A12 β1

A21 A22 β2

0 0 A33

⎞⎟⎟⎠
⎛⎜⎜⎝

Ct

Jt

IVt

⎞⎟⎟⎠+
⎛⎜⎜⎝

ε1,t+1

ε2,t+1

ε3,t+1

⎞⎟⎟⎠ ,

(24)

comprising the forecasting equations for the separate components of realized volatility as well

as implied volatility. There are two sources of simultaneity in the structural VAR system.

Firstly, the off-diagonal term B31 in the leading coefficient matrix allows that IVt+1 depends

on Ct+1. Based on the findings from Table 5, it is imposed that IVt+1 does not depend on

Jt+1, i.e. B32 = 0 is imposed, but a non-zero value of B31 does imply simultaneity. Secondly,
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the system errors may be contemporaneously correlated.

Table 7 about here

Table 7 shows the results of Gaussian full information maximum likelihood (FIML) estima-

tion of the structural VAR system. The BG test shows no sign of misspecification, and results

are similar across the three transformations (panels). It turns out that Ct+1 gets a coefficient

slightly above unity in the IVt+1 equation, with an off-setting negative coefficient on lagged

implied volatility IVt. The system results confirm those from Tables 3 and 4, in particular

that the coefficient on implied volatility is strongly significant but slightly below unity in the

Ct+1 equation, whereas the lagged continuous and jump components are insignificant, and

that implied volatility is also significant in the Jt+1 equation. When using staggered versions

of the variables, both Ct and Jt are also significant in the jump equation under the logarithmic

and square-root transformations, and so is Ct in the raw variance representation, and in all

cases Ct gets a negative coefficient and Jt a positive coefficient. This suggests that jumps are

by no means unpredictable. With non-staggered data, both components of realized volatility

are insignificant under the first two transformations, but for the reasons given above we be-

lieve that staggering is most appropriate. Comparing to Table 4, the coefficient on implied

volatility in the jump equation is higher in the system estimation, reinforcing the impression

that option prices reflect future jump information.

Table 8 about here

Table 8 shows results of likelihood ratio (LR) tests of various hypotheses of interest. Over-

all, the earlier conclusions are confirmed by the structural VAR analysis. Thus, implied

volatility is an informationally efficient but possibly slightly biased forecast of future realized

volatility. Specifically, H1 : A11 = 0, A12 = 0 in (24) is the informational efficiency hypothesis,

and it is not rejected even at the 10% level in any of the panels (staggered versions). The

unbiasedness hypothesis H2 : β1 = 1 gets p-values between 1% and 5% in all three panels

(again staggered versions). The same is true for H3, the joint unbiasedness and informa-

tional efficiency hypothesis, in Panels B and C, but this drops to a p-value of .6% in Panel

A, log-volatilities. For raw variances, Panel C, we cannot reject at the 1% level even the

stronger hypothesis H4 of unbiasedness, informational efficiency, and zero intercept. All these

hypotheses are tested in the first equation, but simultaneity implies that testing in the system

framework is most appropriate.

Adding the restriction that implied volatility carries no information about the future jump

component of realized volatility, β2 = 0, to each of the hypotheses H1-H4 yields joint hy-

potheses H6-H9 across the two first equations in (24) which strictly require the system ap-

proach for their proper testing. Our results show that this restriction, whether tested by itself

(H5 : β2 = 0) or as part of a joint hypothesis, leads to strong rejection, both for staggered or
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non-staggered data. The implication is that option prices do contain incremental information

on future jumps.

6 Concluding Remarks

In this paper, we use measures of foreign exchange rate volatility from two separate data

sources, namely, high-frequency (5-minute) $/DM spot exchange rate returns, allowing the

computation of realized return volatility and its separate continuous sample path and jump

components using recent nonparametric statistical techniques, on the one hand, and prices of

exchange rate futures options, allowing calculation of option implied volatility, on the other.

We confirm earlier conclusions from Jorion (1995) who used daily data to compute realized

volatility and found that implied volatility was an informationally efficient but somewhat bi-

ased forecast of future realized exchange rate volatility. Thus, Jorion’s conclusions hold up

to the introduction of high-frequency returns and the disentangling and optimal combination

of the separate continuous and jump components of realized volatility, which was shown by

Andersen et al. (2005) to lead to improved forecasting of future realized volatility. We in-

vestigate two possible sources of the bias in implied volatility, in particular the delivery lag

entailed in the futures options, generating a bias in the formula used by Jorion (1995) that

would potentially explain his findings, and the possibility of measurement error in implied

volatility, the new variable in our study, compared to the recent realized volatility literature,

in particular Andersen et al. (2005). We find that the bias remains even after correcting the

option pricing formula and controlling for the potential errors-in-variable problem using an

instrumental variables approach. Our work also complements that of Andersen, Bollerslev,

Diebold & Labys (2001), who found that realized exchange rate return volatility is approxi-

mately log-normally distributed. We show that the log-normal approximation is even better

for implied volatility in this market. Finally, we show that the jump component of future real-

ized exchange rate volatility is to some extent predictable, and especially that option implied

volatility is the dominant forecast of the future jump component. This suggests that option

market participants in part base their trading strategies on information about future jumps.

References

Ait-Sahalia, Y. (2004), ‘Disentangling diffusion from jumps’, Journal of Financial Economics

74, 487—528.

Andersen, T. G., Benzoni, L. & Lund, J. (2002), ‘An empirical investigation of continuous-time

equity return models’, Journal of Finance 57, 1239—1284.

Andersen, T. G. & Bollerslev, T. (1998), ‘Answering the skeptics: Yes, standard volatility

models do provide accurate forecasts’, International Economic Review 39, 885—905.

23



Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2004), Parametric and nonparametric volatil-

ity measurement, in L. P. Hansen & Y. Ait-Sahalia, eds, ‘Handbook of Financial Econo-

metrics (Forthcoming)’, North-Holland, Amsterdam.

Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2005), ‘Roughing it up: Including jump

components in the measurement, modeling and forecasting of return volatility.’,Working

Paper, Universiy of Pennsylvania .

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Ebens, H. (2001), ‘The distribution of

realized stock return volatility’, Journal of Financial Economics 61, 43—76.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2001), ‘The distribution of

exchange rate volatility’, Journal of the American Statistical Association 96, 42—55.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2003), ‘Modelling and forecasting

realized volatility’, Econometrica 71, 579—625.

Andersen, T. G., Bollerslev, T. & Meddahi, N. (2004), ‘Analytical evaluation of volatility

forecasts’, International Economic Review 45, 1079—1110.

Bakshi, G., Cao, C. & Chen, Z. (1997), ‘Empirical performance of alternative option pricing

models’, Journal of Finance 52, 2003—2049.

Barndorff-Nielsen, O. E. & Shephard, N. (2001), ‘Non-Gaussian Ornstein-Uhlenbeck-based

models and some of their uses in financial economics (with discussion)’, Journal of the

Royal Statistical Society Series B 63, 167—241.

Barndorff-Nielsen, O. E. & Shephard, N. (2002a), ‘Econometric analysis of realized volatility

and its use in estimating stochastic volatility models’, Journal of the Royal Statistical

Society Series B 64, 253—280.

Barndorff-Nielsen, O. E. & Shephard, N. (2002b), ‘Estimating quadratic variation using real-

ized variance’, Journal of Applied Econometrics 17, 457—477.

Barndorff-Nielsen, O. E. & Shephard, N. (2003a), ‘Econometrics of testing for jumps in finan-

cial economics using bipower variation’, Forthcoming in Journal of Financial Economet-

rics .

Barndorff-Nielsen, O. E. & Shephard, N. (2003b), ‘Realised power variation and stochastic

volatility’, Bernoulli 9, 243—265.

Barndorff-Nielsen, O. E. & Shephard, N. (2004a), ‘Multipower variation and stochastic volatil-

ity’, Working paper, Oxford University .

Barndorff-Nielsen, O. E. & Shephard, N. (2004b), ‘Power and bipower variation with stochastic

volatility and jumps (with discussion)’, Journal of Financial Econometrics 2, 1—57.

24



Barucci, E. & Reno, R. (2002), ‘On measuring volatility and the GARCH forecasting perfor-

mance’, Journal of International Financial Markets, Institutions and Money 12, 183—200.

Bates, D. S. (1991), ‘The crash of ’87: Was it expected? The evidence from options markets’,

Journal of Finance 46, 1009—1044.

Bates, D. S. (1996), ‘Jumps and stochastic volatility: Exchange rate processes implicit in

deutsche mark options’, Review of Financial Studies 9, 69—107.

Black, F. (1976), ‘The pricing of commodity contracts’, Journal of Financial Economics

3, 167—179.

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’, Journal of

Political Economy 81, 637—654.

Blair, B. J., Poon, S. & Taylor, S. J. (2001), ‘Forecasting S&P 100 volatility: The incremental

information content of implied volatilities and high-frequency index returns’, Journal of

Econometrics 105, 5—26.

Breusch, T. S. (1978), ‘Testing for autocorrelation in dynamic linear models’, Australian Eco-

nomic Papers 17, 334—355.

Campbell, J. Y., Lo, A. W. & MacKinlay, A. C. (1997), The Econometrics of Financial

Markets, Princeton University Press, Princeton.

Chernov, M., Gallant, A. R., Ghysels, E. & Tauchen, G. (2003), ‘Alternative models of stock

price dynamics’, Journal of Econometrics 116, 225—257.

Christensen, B. J. & Nielsen, M. Ø. (2005), ‘The implied-realized volatility relation with jumps

in underlying asset prices’, Working paper, Cornell University .

Covrig, V. & Low, B. S. (2003), ‘The quality of volatility traded on the over-the-counter

market: A multiple horizons study’, Journal of Futures Markets 23, 261—285.

Dacorogna, M. M., Müller, U. A., Nagler, R. J., Olsen, R. B. & Pictet, O. V. (1993), ‘A

geographical model for the daily and weekly seasonal volatility in the foreign exchange

market’, Journal of International Money and Finance 12, 413—438.

Eraker, B. (2004), ‘Do stock prices and volatility jump? Reconciling evidence from spot and

option prices’, Journal of Finance 59, 1367—1403.

Eraker, B., Johannes, M. & Polson, N. (2003), ‘The impact of jumps in volatility and returns’,

Journal of Finance 58, 1269—1300.

French, D. W. (1984), ‘The weekend effect on the distribution of stock prices: Implications

for option pricing’, Journal of Financial Economics 13, 547—559.

25



French, K. R., Schwert, G. W. & Stambaugh, R. F. (1987), ‘Expected stock returns and

volatility’, Journal of Financial Economics 19, 3—30.

Garman, M. B. & Kohlhagen, S. (1983), ‘Foreign currency option values’, Journal of Interna-

tional Money and Finance 2, 231—237.

Ghysels, E., Harvey, A. C. & Renault, E. (1996), Stochastic volatility, in C. R. Rao & G. S.

Maddala, eds, ‘Statistical Methods in Finance’, North-Holland, Amsterdam, pp. 119—191.

Godfrey, L. G. (1978), ‘Testing against general autoregressive and moving average error models

when the regressors include lagged dependent variables’, Econometrica 46, 1293—1302.

Hausman, J. A. (1978), ‘Specification tests in econometrics’, Econometrica 46, 1251—1271.

Huang, X. & Tauchen, G. (2005), ‘The relative contribution of jumps to total price variance’,

Journal of Financial Econometrics 3, 456—499.

Hull, J. C. (2002), Options, Futures, and Other Derivatives, 5th edn, Prentice-Hall, Englewood

Cliffs, New Jersey.

Hull, J. C. & White, A. (1987), ‘The pricing of options on assets with stochastic volatilities’,

Journal of Finance 42, 281—300.

Jarque, C. M. & Bera, A. K. (1980), ‘Efficient tests for normality, homoskedasicity and serial

independence of regression residuals’, Economics Letters 6, 255—259.

Johannes, M. (2004), ‘The statistical and economic role of jumps in interest rates’, Journal of

Finance 59, 227—260.

Jorion, P. (1995), ‘Predicting volatility in the foreign exchange market’, Journal of Finance

50, 507—528.

Merton, R. C. (1973), ‘Theory of rational option pricing’, Bell Journal of Economics and

Management Science 4, 141—183.

Müller, U. A., Dacorogna, M. M., Olsen, R. B., Pictet, O. V., Schwarz, M. & Morgenegg, C.

(1990), ‘Statistical study of foreign exchange rates, empirical evidence of a price scaling

law, and intraday analysis’, Journal of Banking and Finance 14, 1189—1208.

Poteshman, A. M. (2000), ‘Forecasting future volatility from option prices’, Working Paper,

University of Illinois at Urbana-Champaign .

Protter, P. (2004), Stochastic Integration and Differential Equations, 2nd edn, Springer-Verlag,

New York.

Schwert, G. W. (1989), ‘Why does stock market volatility change over time?’, Journal of

Finance 44, 1115—1153.

26



Table 1: Summary statistics
Panel A: Variables in logarithmic form
Statistic lnRVt lnCt lnC t lnJ∗t lnJ ∗t lnIVt
Mean -4.5114 -4.5656 -4.6352 -7.6101 -6.7663 -4.5528
Std. dev. 0.4808 0.4875 0.4899 0.7993 0.6248 0.4160
Skewness 0.3417 0.2885 0.2803 0.4895 0.1174 -0.1288
Kurtosis 3.2690 3.2367 3.1691 2.3626 3.5916 2.9344
JB 3.3267 2.3989 2.1144 8.4162* 2.4988 0.4358
Panel B: Variables in std. dev. form

Statistic RV1/2t C1/2t C 1/2
t J1/2t J 1/2t IV1/2t

Mean 0,1079 0,1051 0,1016 0,0192 0,0356 0,1049
Std. dev. 0,0275 0,0270 0,0262 0,0161 0,0120 0,0217
Skewness 1,2176 1,1561 1,1397 0,2687 1,1429 0,4441
Kurtosis 5,8727 5,5489 5,5304 2,5916 6,1598 3,2225
JB 87,459* 73,032* 71,523* 2,8098 93,787* 5,1697
Panel C: Variables in variance form
Statistic RVt Ct C t Jt J t IVt

Mean 0,0124 0,0118 0,0110 0,0006 0,0014 0,0115
Std. dev. 0,0070 0,0066 0,0062 0,0008 0,0011 0,0048
Skewness 2,4225 2,3002 2,3058 2,3664 2,6638 1,0313
Kurtosis 12,723 11,644 11,840 11,376 12,509 4,4281
JB 727,68* 591,25* 613,06* 570,81* 732,67* 38,811*

Note: The annualized monthly realized volatility RVt and its continuous component Ct and
jump component Jt are constructed from 5-minute $/DM spot exchange rate returns
spanning the period from January 1987 through May 1999, for a total of 148 monthly

observations, each based on about 5,750 5-minute returns. Typeface in italic denotes that
the continuous and jump components are computed using the staggered measures of realized
bipower variation (9) and realized tripower quarticity (11). The monthly implied volatility
IVt is backed out from the option pricing formula (17) applied to the at-the-money call
option on $/DM futures expiring two Fridays prior to the third Wednesday of the contract
month and sampled two business days following the expiration date of the option contract of
the previous month. Each of the four volatility measures covers the same one-month interval
between two consecutive expiration dates. One asterisk denotes rejection of the null of

normality by the Jarque & Bera (1980) test at the 5% significance level.
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Table 2: Realized volatility regressions
Panel A: Dependent variable is lnRVt+1

Const. lnRVt lnCt lnJ∗t lnIVt Adj R2 BG LR1 LR2
−2.1539
(0.3167)

0.5237
(0.0698)

− − − 27.5% 7.31 − −
−2.0663
(0.3916)

− 0.5101
(0.0729)

0.0159
(0.0446)

− 27.3% 7.26 − −
−2 .0345
(0 .3808)

− 0 .4955
(0 .0902)

0 .0274
(0 .0709)

− 27 .5% 7 .68 − −
−1.0855
(0.3319)

− − − 0.7525
(0.0726)

41.2% 6.66 11.34
∗∗ −

−1.1020
(0.3316)

0.0226
(0.1031)

− − 0.7275
(0.1192)

42.0% 11.12 5.24
∗

11.97
∗∗

−1.3077
(0.3695)

− 0.0442
(0.0992)

−0.0540
(0.0413)

0.7507
(0.1209)

42.3% 10.50 4.31
∗

13.87
∗∗

−1 .1248
(0 .3741)

− 0 .0443
(0 .1107)

−0 .0110
(0 .0639)

0 .7161
(0 .1198)

41 .6% 11 .44 5 .67
∗

12 .09
∗∗

Panel B: Dependent variable is RV1/2t+1

Const. RV1/2t C1/2t J1/2t IV1/2t Adj R2 BG LR1 LR2
0.0538
(0.0079)

0.4982
(0.0709)

− − − 24.9% 7.90 − −
0.0540
(0.0079)

− 0.5036
(0.0752)

0.0356
(0.1262)

− 24.6% 7.27 − −
0 .0537
(0 .0079)

− 0 .5156
(0 .0999)

0 .0423
(0 .2182)

− 24 .9% 8 .15 − −
0.0218
(0.0085)

− − − 0.8218
(0.0797)

40.7% 6.41 4.98
∗ −

0.0219
(0.0085)

−0.0050
(0.0986)

− − 0.8230
(0.1249)

41.9% 13.24 2.04 5.32

0.0195
(0.0085)

− 0.0149
(0.0973)

−0.1951
(0.1152)

0.8606
(0.1265)

42.7% 11.61 1.24 8.29
∗

0 .0219
(0 .0085)

− 0 .0363
(0 .1150)

−0 .0869
(0 .1935)

0 .8114
(0 .1250)

41 .6% 13 .68 2 .32 5 .54

Panel C: Dependent variable is RVt+1

Const. RVt Ct Jt IVt Adj R2 BG LR1 LR2
0.0069
(0.0010)

0.4402
(0.0735)

− − − 19.3% 11.19 − −
0.0068
(0.0010)

− 0.4609
(0.0852)

0.0787
(0.7502)

− 18.8% 10.48 − −
0 .0068
(0 .0010)

− 0 .5260
(0 .1152)

−0 .2123
(0 .6793)

− 19 .2% 11 .27 − −
0.0020
(0.0012)

− − − 0.9065
(0.0939)

37.6% 9.55 1.00 −
0.0020
(0.0012)

−0.0463
(0.0953)

− − 0.9537
(0.1383)

38.9% 18.91 0.11 1.33

0.0017
(0.0012)

− −0.0014
(0.0977)

−1.2563
(0.6722)

0.9984
(0.1394)

39.8% 15.49 0.00 4.69

0 .0019
(0 .0012)

− 0 .0352
(0 .1230)

−0 .6613
(0 .5943)

0 .9523
(0 .1383)

38 .9% 20 .63 0 .12 2 .46

Note: The table shows ordinary least squares estimation results for the regression specification (20)
and the corresponding standard deviation and log-volatility regressions. Standard errors are in

parentheses, Adj R2 is the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic
(with 12 lags) of the null of no serial correlation in the residuals. LR1 is testing, where applicable,

the unbiasedness null hypothesis of β = 1, while LR2 examines the joint unbiasedness and
informational efficiency hypothesis of β = 1 and γ = 0. One and two asterisks denote rejection at
the 5% and 1% significance levels, respectively. Typeface in italic denotes results where the

continuous and jump components of realized volatility are computed using the staggered measures of
realized bipower variation (9) and realized tripower quarticity (11).
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Table 3: Continuous component regressions
Panel A: Dependent variable is lnCt+1
Const. lnCt lnJ∗t lnIVt Adj R2 BG LR1 LR2
−2.1496
(0.3191)

0.5303
(0.0695)

− − 28.2% 7.60 − −
−2 .1547
(0 .3222)

0 .5363
(0 .0691)

− − 28 .9% 7 .57 − −
−2.1516
(0.3962)

0.5305
(0.0738)

−0.0004
(0.0451)

− 27.7% 7.64 − −
−2 .1883
(0 .3857)

0 .5458
(0 .0914)

−0 .0115
(0 .0718)

− 28 .4% 7 .87 − −
−1.1729
(0.3422)

− − 0.7452
(0.0749)

39.3% 10.83 11.30
∗∗ −

−1 .2368
(0 .3446)

− − 0 .7465
(0 .0754)

38 .9% 10 .04 11 .05
∗∗ −

−1.4302
(0.3798)

0.0874
(0.1020)

−0.0669
(0.0424)

0.7139
(0.1242)

40.8% 15.25 5.35
∗

15.12
∗∗

−1 .3496
(0 .3870)

0 .1298
(0 .1145)

−0 .0469
(0 .0662)

0 .6603
(0 .1239)

39 .8% 15 .94 7 .53
∗∗

12 .99
∗∗

Panel B: Dependent variable is C1/2t+1

Const. C1/2t J1/2t IV1/2t Adj R2 BG LR1 LR2
0.0516
(0.0077)

0.5062
(0.0706)

− − 25.7% 8.81 − −
0 .0490
(0 .0074)

0 .5141
(0 .0701)

− − 26 .6% 8 .45 − −
0.0516
(0.0077)

0.5043
(0.0736)

0.0117
(0.1236)

− 25.2% 9.05 − −
0 .0493
(0 .0074)

0 .5306
(0 .0943)

−0 .0540
(0 .2060)

− 26 .1% 8 .83 − −
0.0219
(0.0085)

− − 0.7941
(0.0792)

39.4% 10.53 6.70
∗∗ −

0 .0211
(0 .0082)

− − 0 .7673
(0 .0769)

39 .1% 9 .78 8 .99
∗∗ −

0.0193
(0.0085)

0.0471
(0.0965)

−0.2042
(0.1143)

0.8052
(0.1255)

41.5% 16.42 2.45 10.65
∗

0 .0212
(0 .0082)

0 .1077
(0 .1106)

−0 .1680
(0 .1860)

0 .7157
(0 .1202)

40 .3% 18 .48 5 .64
∗

10 .76
∗

Panel C: Dependent variable is Ct+1
Const. Ct Jt IVt Adj R2 BG LR1 LR2
0.0064
(0.0010)

0.4533
(0.0730)

− − 20.5% 11.58 − −
0 .0058
(0 .0009)

0 .4630
(0 .0725)

− − 21 .4% 10 .42 − −
0.0064
(0.0010)

0.4565
(0.0805)

−0.0690
(0.7088)

− 19.9% 11.67 − −
0 .0059
(0 .0009)

0 .5081
(0 .1012)

−0 .3818
(0 .5967)

− 21 .1% 10 .59 − −
0.0020
(0.0011)

− − 0.8547
(0.0897)

37.0% 12.51 2.63 −
0 .0018
(0 .0010)

− − 0 .7987
(0 .0840)

36 .8% 11 .94 5 .72
∗ −

0.0016
(0.0011)

0.0327
(0.0932)

−1.2932
(0.6417)

0.9156
(0.1331)

39.4% 18.98 0.41 6.92

0 .0018
(0 .0010)

0 .0967
(0 .1096)

−0 .7581
(0 .5297)

0 .7983
(0 .1233)

38 .6% 24 .12
∗

2 .73 8 .14
∗

Note: The table shows ordinary least squares estimation results for the regression specification (21)
and the corresponding standard deviation and log-volatility regressions. Standard errors are in

parentheses, Adj R2 is the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic
(with 12 lags) of the null of no serial correlation in the residuals. LR1 is testing, where applicable,

the unbiasedness null hypothesis of β = 1, while LR2 examines the joint unbiasedness and
informational efficiency hypothesis of β = 1 and γ = 0. One and two asterisks denote rejection at
the 5% and 1% significance levels, respectively. Typeface in italic denotes results where the

continuous and jump components of realized volatility are computed using the staggered measures of
realized bipower variation (9) and realized tripower quarticity (11).
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Table 4: Jump component regressions
Panel A: Dependent variable is lnJ∗t+1
Const. lnCt lnJ∗t lnIVt Adj R2 BG LR1 LR2
−6.6161
(0.6275)

− 0.1315
(0.0820)

− 1.1% 17.88 − −
−4 .4732
(0 .5292)

− 0 .3395
(0 .0778)

− 11 .0% 17 .22 − −
−5.9787
(0.7588)

0.2092
(0.1412)

0.0898
(0.0863)

− 1.9% 15.67 − −
−4 .2167
(0 .5473)

0 .2189
(0 .1296)

0 .2275
(0 .1019)

− 12 .1% 16 .60 − −
−5.0870
(0.6960)

− − 0.5542
(0.1523)

7.1% 13.36 8.44
∗∗ −

−3 .2276
(0 .4862)

− − 0 .7773
(0 .1064)

25 .9% 10 .01 4 .38
∗ −

−5.1686
(0.7804)

−0.2884
(0.2095)

0.0152
(0.0871)

0.8017
(0.2553)

7.6% 16.44 0.62 10.68
∗

−2 .9078
(0 .5376)

−0 .4302
(0 .1590)

0 .1723
(0 .0919)

1 .0304
(0 .1721)

29 .2% 9 .79 0 .03 12 .60
∗∗

Panel B: Dependent variable is J1/2t+1

Const. C1/2t J1/2t IV1/2t Adj R2 BG LR1 LR2
0.0178
(0.0021)

− 0.0655
(0.0826)

− −0.3% 17.84 − −
0 .0242
(0 .0029)

− 0 .3174
(0 .0784)

− 9 .5% 12 .80 − −
0.0121
(0.0053)

0.0586
(0.0511)

0.0386
(0.0858)

− −0.0% 15.73 − −
0 .0212
(0 .0038)

0 .0606
(0 .0481)

0 .2292
(0 .1050)

− 9 .9% 12 .44 − −
0.0021
(0.0064)

− − 0.1627
(0.0599)

3.8% 14.15 125.61
∗∗ −

0 .0060
(0 .0042)

− − 0 .2814
(0 .0394)

25 .1% 8 .55 175 .63
∗∗ −

0.0023
(0.0065)

−0.0807
(0.0744)

−0.0272
(0.0881)

0.2454
(0.0967)

3.6% 16.31 52.13
∗∗

127.16
∗∗

0 .0063
(0 .0041)

−0 .1641
(0 .0558)

0 .1686
(0 .0938)

0 .3804
(0 .0606)

28 .8% 8 .57 80 .57
∗∗

184 .86
∗∗

Panel C: Dependent variable is Jt+1
Const. Ct Jt IVt Adj R2 BG LR1 LR2
0.0005
(0.0001)

− 0.1636
(0.0816)

− 2.0% 15.58 − −
0 .0011
(0 .0001)

− 0 .2429
(0 .0803)

− 5 .3% 12 .09 − −
0.0005
(0.0001)

0.0044
(0.0102)

0.1477
(0.0898)

− 1.5% 14.48 − −
0 .0010
(0 .0002)

0 .0179
(0 .0190)

0 .1694
(0 .1119)

− 5 .2% 12 .16 − −
0.0000
(0.0002)

− − 0.0517
(0.0123)

10.0% 13.83 553.29
∗∗ −

0 .0002
(0 .0002)

− − 0 .1078
(0 .0158)

23 .5% 9 .21 462 .97
∗∗ −

0.0000
(0.0002)

−0.0340
(0.0127)

0.0369
(0.0877)

0.0829
(0.0182)

13.4% 16.70 431.15
∗∗

558.21
∗∗

0 .0002
(0 .0002)

−0 .0614
(0 .0204)

0 .0968
(0 .0985)

0 .1540
(0 .0229)

27 .5% 8 .76 346 .02
∗∗

470 .66
∗∗

Note: The table shows ordinary least squares estimation results for the regression specification (22)
and the corresponding standard deviation and log-volatility regressions. Standard errors are in

parentheses, Adj R2 is the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic
(with 12 lags) of the null of no serial correlation in the residuals. LR1 is testing, where applicable,

the unbiasedness null hypothesis of β = 1, while LR2 examines the joint unbiasedness and
informational efficiency hypothesis of β = 1 and γ = 0. One and two asterisks denote rejection at
the 5% and 1% significance levels, respectively. Typeface in italic denotes results where the

continuous and jump components of realized volatility are computed using the staggered measures of
realized bipower variation (9) and realized tripower quarticity (11).
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Table 5: Implied volatility regressions
Panel A: Dependent variable is lnIVt+1

Const. lnCt+1 lnJ∗t+1 lnIVt Adj R2 BG

−1.7810
(0.3025)

− − 0.6094
(0.0662)

36.4% 11.54

−1.0105
(0.2404)

0.6207
(0.0447)

0.0931
(0.0274)

− 64.1% 13.14

−1 .2703
(0 .2378)

0 .6300
(0 .0563)

0 .0536
(0 .0443)

− 63 .0% 16 .33

−0.7357
(0.2634)

0.5417
(0.0552)

0.0854
(0.0271)

0.1526
(0.0642)

65.2% 13.34

−1 .0022
(0 .2583)

0 .5605
(0 .0622)

0 .0328
(0 .0443)

0 .1607
(0 .0657)

64 .2% 16 .87

Panel B: Dependent variable is IV1/2t+1

Const. C1/2t+1 J1/2t+1 IV1/2t Adj R2 BG

0.0442
(0.0073)

− − 0.5770
(0.0682)

32.6% 13.21

0.0400
(0.0045)

0.5678
(0.0432)

0.2681
(0.0725)

− 61.0% 11.16

0 .0392
(0 .0046)

0 .5908
(0 .0587)

0 .1593
(0 .1282)

− 59 .3% 14 .48

0.0333
(0.0056)

0.5016
(0.0545)

0.2585
(0.0720)

0.1317
(0.0672)

61.7% 12.36

0 .0327
(0 .0057)

0 .5343
(0 .0657)

0 .1213
(0 .1288)

0 .1289
(0 .0692)

60 .0% 15 .46

Panel C: Dependent variable is IVt+1

Const. Ct+1 Jt+1 IVt Adj R2 BG

0.0053
(0.0009)

− − 0.5356
(0.0705)

28.0% 14.96

0.0052
(0.0005)

0.4630
(0.0438)

1.3371
(0.3860)

− 55.7% 9.88

0 .0051
(0 .0005)

0 .5153
(0 .0604)

0 .4714
(0 .3560)

− 54 .3% 12 .23

0.0045
(0.0007)

0.4165
(0.0528)

1.2715
(0.3864)

0.1104
(0.0706)

56.1% 12.08

0 .0044
(0 .0007)

0 .4680
(0 .0669)

0 .4049
(0 .3564)

0 .1152
(0 .0717)

54 .8% 13 .80

Note: The table shows ordinary least squares estimation results for the regression specification (23)
and the corresponding standard deviation and log-volatility regressions. Standard errors are in

parentheses, Adj R2 is the adjusted R2 for the regression, and BG is the Breusch-Godfrey statistic
(with 12 lags) of the null of no serial correlation in the residuals. One and two asterisks denote

rejection at the 5% and 1% significance levels, respectively. Typeface in italic denotes results where
the continuous and jump components of realized volatility are computed using the staggered

measures of realized bipower variation (9) and realized tripower quarticity (11).
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Table 6: Instrumental variables volatility regressions
Panel A: Logarithmically transformed variances

Dep. var. Const. lnIVt BG EIV RSS

lnRVt+1 −1.1744
(0.4044)

0.7340
(0.0886)

10.78 0.08 9.14
∗∗

−1 .0952
(0 .4074)

0 .7514
(0 .0892)

8 .52 0 .00 7 .87
∗∗

lnCt+1 −1.2267
(0.4174)

0.7344
(0.0914)

12.54 0.02 8.56
∗∗

−1 .1614
(0 .4231)

0 .7641
(0 .0927)

9 .26 0 .16 6 .57
∗

lnJ∗t+1 −5.3897
(0.8544)

0.4893
(0.1871)

15.23 0.30 7.55
∗∗

−3 .8065
(0 .5866)

0 .6496
(0 .1285)

20 .87 2 .70 7 .54
∗∗

Panel B: Standard deviations

Dep. var. Const. IV1/2t BG EIV RSS

RV1/2t+1 0.0262
(0.0106)

0.7769
(0.0997)

12.12 0.46 5.08
∗

0 .0229
(0 .0107)

0 .8076
(0 .1009)

8 .81 0 .03 3 .68

C1/2t+1 0.0252
(0.0105)

0.7597
(0.0991)

14.43 0.26 5.96
∗

0 .0199
(0 .0103)

0 .7761
(0 .0974)

9 .67 0 .04 5 .36
∗

J1/2t+1 0.0045
(0.0080)

0.1387
(0.0757)

15.52 0.24 131.11
∗∗

0 .0122
(0 .0054)

0 .2219
(0 .0508)

13 .92 3 .55 237 .71
∗∗

Panel C: Variances

Dep. var. Const. IVt BG EIV RSS

RVt+1 0.0029
(0.0015)

0.8179
(0.1230)

14.19 1.17 2.22

0 .0026
(0 .0015)

0 .8499
(0 .1243)

11 .91 0 .43 1 .48

Ct+1 0.0027
(0.0014)

0.7849
(0.1175)

16.02 0.78 3.39

0 .0020
(0 .0013)

0 .7765
(0 .1110)

11 .62 0 .07 4 .11
∗

Jt+1 0.0002
(0.0002)

0.0330
(0.0163)

15.00 3.16 3557.56
∗∗

0 .0006
(0 .0003)

0 .0733
(0 .0215)

12 .14 6 .24
∗

1885 .76
∗∗

Note: The table shows results from the second stage of 2SLS estimation of the regression
specifications (20) with γ = 0 imposed, and the corresponding standard deviation and log-volatility
regressions. The first stage regression is (23) with results in the last line of each panel of Table 5.
Standard errors are in parentheses, and BG is the Breusch-Godfrey statistic (with 12 lags) for the
residuals. EIV denotes the Hausman (1978) test of measurement error in implied volatility. RSS is
the residual sum-of-squares test of the unbiasedness null hypothesis of β = 1. One and two asterisks
denote rejection at the 5% and 1% significance levels, respectively. Typeface in italic denotes results
where the continuous and jump components of realized volatility are computed using the staggered

measures of realized bipower variation (9) and realized tripower quarticity (11).
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Table 7: Structural VAR models
Panel A: Variables in logarithmic form

Dep. var. Constant lnCt+1 lnCt lnJ∗t lnIVt BG

lnCt+1 −1.3684
(0.3697)

− 0.1039
(0.0863)

−0.0613
(0.0392)

0.7023
(0.1075)

14.66

−1 .1748
(0 .3639)

− 0 .0663
(0 .1003)

0 .0101
(0 .0401)

0 .6792
(0 .1239)

13 .53

lnJ∗t+1 −5.1128
(0.7773)

− −0.3033
(0.2080)

0.0124
(0.0865)

0.8349
(0.2542)

16.03

−2 .7164
(0 .5260)

− −0 .4881
(0 .1532)

0 .2186
(0 .0843)

1 .0640
(0 .1704)

8 .53

lnIVt+1 −0.5002
(0.6513)

1.1216
(0.4979)

− − −0.2349
(0.3787)

10.42

0 .0315
(1 .9770)

1 .4938
(1 .5776)

− − −0 .5149
(1 .1863)

10 .46

Panel B: Variables in standard deviation form

Dep. var. Constant C1/2t+1 C1/2t J1/2t IV1/2t BG

C1/2t+1 0.0184
(0.0085)

− 0.0852
(0.0738)

−0.1811
(0.1057)

0.7699
(0.1035)

16.19

0 .0202
(0 .0082)

− 0 .0939
(0 .1100)

−0 .0522
(0 .1262)

0 .6989
(0 .1160)

16 .86

J1/2t+1 0.0016
(0.0065)

− −0.0862
(0.0739)

−0.0334
(0.0877)

0.2579
(0.0965)

16.07

0 .0055
(0 .0041)

− −0 .1712
(0 .0552)

0 .2023
(0 .0873)

0 .3823
(0 .0597)

7 .65

IV1/2t+1 0.0185
(0.0139)

1.2244
(0.5331)

− − −0.4031
(0.4321)

12.29

0 .0160
(0 .0273)

1 .3913
(1 .2686)

− − −0 .4980
(0 .9806)

12 .51

Panel C: Variables in variance form

Dep. var. Constant Ct+1 Ct Jt IVt BG

Ct+1 0.0016
(0.0011)

− 0.0889
(0.0708)

−1.1182
(0.6119)

0.8521
(0.1102)

19.31

0 .0017
(0 .0010)

− 0 .1246
(0 .1039)

−0 .5593
(0 .4858)

0 .7517
(0 .1082)

23 .68
∗

Jt+1 0.0000
(0.0002)

− −0.0340
(0.0127)

0.0365
(0.0874)

0.0838
(0.0182)

16.52

0 .0001
(0 .0002)

− −0 .0597
(0 .0200)

0 .1183
(0 .0961)

0 .1513
(0 .0222)

8 .37

IVt+1 0.0031
(0.0014)

1.1451
(0.5009)

− − −0.4493
(0.4380)

15.05

0 .0032
(0 .0016)

1 .1773
(0 .7567)

− − −0 .4101
(0 .6115)

14 .60

Note: The table shows FIML estimation results for the simultaneous system (24) and the
corresponding standard deviation and log-volatility systems. Standard errors are in parentheses and
BG is the Breusch-Godfrey statistic (with 12 lags) for the residuals. One and two asterisks denote
rejection at the 5% and 1% significance levels, respectively. Typeface in italic denotes results where

the continuous and jump components of realized volatility are computed using the staggered
measures of realized bipower variation (9) and realized tripower quarticity (11).
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Table 8: LR tests in structural VAR models
Panel A: Variables in logarithmic form
Hypothesis Test statistics d.f. p-values
H1 : A11 = 0, A12 = 0 5.4178 1.5599 2 0.0666 0.4584
H2 : β1 = 1 6.6489 6.0220 1 0.0099 0.0141
H3 : A11 = 0, A12 = 0, β1 = 1 16.504 12.437 3 0.0009 0.0060
H4 : A11 = 0, A12 = 0, β1 = 1, α1 = 0 16.946 20.251 4 0.0020 0.0004
H5 : β2 = 0 10.555 34.682 1 0.0012 0.0000
H6 : A11 = 0, A12 = 0, β2 = 0 17.767 47.871 3 0.0005 0.0000
H7 : β1 = 1, β2 = 0 21.850 66.944 2 0.0000 0.0000
H8 : A11 = 0, A12 = 0, β1 = 1, β2 = 0 31.315 73.957 4 0.0000 0.0000
H9 : A11 = 0, A12 = 0, β1 = 1, β2 = 0, α1 = 0 31.757 81.770 5 0.0000 0.0000
Panel B: Variables in std. dev. form
Hypothesis Test statistics d.f. p-values
H1 : A11 = 0, A12 = 0 7.3064 1.8779 2 0.0259 0.3910
H2 : β1 = 1 4.2538 5.0283 1 0.0392 0.0249
H3 : A11 = 0, A12 = 0, β1 = 1 13.882 10.806 3 0.0031 0.0128
H4 : A11 = 0, A12 = 0, β1 = 1, α1 = 0 13.896 15.666 4 0.0076 0.0035
H5 : β2 = 0 7.0634 36.810 1 0.0079 0.0000
H6 : A11 = 0, A12 = 0, β2 = 0 16.504 50.883 3 0.0009 0.0000
H7 : β1 = 1, β2 = 0 14.716 70.790 2 0.0006 0.0000
H8 : A11 = 0, A12 = 0, β1 = 1, β2 = 0 23.652 77.727 4 0.0001 0.0000
H9 : A11 = 0, A12 = 0, β1 = 1, β2 = 0, α1 = 0 23.666 82.587 5 0.0003 0.0000
Panel C: Variables in variance form
Hypothesis Test statistics d.f. p-values
H1 : A11 = 0, A12 = 0 8.2285 3.3805 2 0.0163 0.1845
H2 : β1 = 1 1.5853 3.8969 1 0.2080 0.0484
H3 : A11 = 0, A12 = 0, β1 = 1 10.786 9.0517 3 0.0129 0.0286
H4 : A11 = 0, A12 = 0, β1 = 1, α1 = 0 11.014 11.048 4 0.0264 0.0260
H5 : β2 = 0 19.996 40.490 1 0.0000 0.0000
H6 : A11 = 0, A12 = 0, β2 = 0 30.659 56.052 3 0.0000 0.0000
H7 : β1 = 1, β2 = 0 28.764 78.028 2 0.0000 0.0000
H8 : A11 = 0, A12 = 0, β1 = 1, β2 = 0 37.119 84.795 4 0.0000 0.0000
H9 : A11 = 0, A12 = 0, β1 = 1, β2 = 0, α1 = 0 37.347 86.792 5 0.0000 0.0000
Note: The table shows likelihood ratio test results for the simultaneous system (24) and the

corresponding standard deviation and log-volatility systems. Typeface in italic denotes results where
the continuous and jump components of realized volatility are computed using the staggered

measures of realized bipower variation (9) and realized tripower quarticity (11).
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Panel A: Non-staggered data
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Panel B: Staggered data
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Figure 1: Time series plots of volatility measures in logarithmic form
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Panel A: Non-staggered data
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Panel B: Staggered data
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Figure 2: Time series plots of volatility measures in standard deviation form
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Panel A: Non-staggered data
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Panel B: Staggered data
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Figure 3: Time series plots of volatility measures in variance form
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