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Abstract

In this paper we analyze the influence of observed and unobserved initial values on
the bias of the conditional maximum likelihood or conditional sum-of-squares (CSS, or
least squares) estimator of the fractional parameter, d, in a nonstationary fractional
time series model. The CSS estimator is popular in empirical work due, at least in part,
to its simplicity and its feasibility, even in very complicated nonstationary models.
We consider a process, Xt, for which data exist from some point in time, which we

call −N0 + 1, but we only start observing it at a later time, t = 1. The parameter
(d, µ, σ2) is estimated by CSS based on the model∆d

0(Xt−µ) = εt, t = N+1, . . . , N+T ,
conditional on X1, . . . , XN . We derive an expression for the second-order bias of d̂ as a
function of the initial values, Xt, t = −N0 + 1, . . . , N , and we investigate the effect on
the bias of setting aside the first N observations as initial values. We compare d̂ with
an estimator, d̂c, derived similarly but by choosing µ = C. We find, both theoretically
and using a data set on voting behavior, that in many cases, the estimation of the
parameter µ picks up the effect of the initial values even for the choice N = 0.
If N0 = 0, we show that the second-order bias can be completely eliminated by a

simple bias correction. If, on the other hand, N0 > 0, it can only be partly eliminated
because the second-order bias term due to the initial values can only be diminished by
increasing N .
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1 Introduction
One of the most commonly applied inference methods in nonstationary autoregressive (AR)
models, and indeed in all time series analysis, is based on the conditional sum-of-squares
(CSS, or least squares) estimator, which is obtained by minimizing the sum of squared resid-
uals. The estimator is derived from the Gaussian likelihood conditional on initial values and
is often denoted the conditional maximum likelihood estimator. For example, in the AR(k)
model we set aside k observations as initial values, and conditioning on these implies that
Gaussian maximum likelihood estimation is equivalent to CSS estimation. This methodology
was applied in classical work on ARIMA models by, e.g., Box and Jenkins (1970), and was
introduced for fractional time series models by Li and McLeod (1986) and Robinson (1994),
in the latter case for hypothesis testing purposes. The CSS estimator has been widely ap-
plied in the literature, also for fractional time series models. In these models, the initial
values have typically been assumed to be zero, and as remarked by Hualde and Robinson
(2011, p. 3154) a more appropriate name for the estimator may thus be the truncated sum-
of-squares estimator. Despite the widespread use of the CSS estimator in empirical work,
very little is known about its properties related to the initial values and specifically related
to the assumption of zero initial values.
Recently, inference conditional on (non-zero) initial values has been advocated in the-

oretical work for univariate nonstationary fractional time series models by Johansen and
Nielsen (2010) and for multivariate models by Johansen and Nielsen (2012a)– henceforth
JN (2010, 2012a)– and Tschernig, Weber, and Weigand (2013). In empirical work, these
methods have recently been applied by, for example, Carlini, Manzoni, and Mosconi (2010)
and Bollerslev, Osterrieder, Sizova, and Tauchen (2013) to high-frequency stock market data,
Hualde and Robinson (2011) to aggregate income and consumption data, Osterrieder and
Schotman (2011) to real estate data, and Rossi and Santucci de Magistris (2013) to futures
prices.
In this paper we assume the processXt exists for t ≥ −N0+1, and we derive the properties

of the process from the model given by the truncated fractional filter∆d0
−N0(Xt−µ0) = εt with

εt ∼ i.i.d.(0, σ2), for some d0 > 1/2. However, we only observe Xt for t = 1, . . . , T0 = N +T,
and so we estimate (d, µ, σ2) from the conditional Gaussian likelihood for XN+1, . . . , XN+T

given X1, . . . , XN , which defines the CSS estimator d̂. Our first result is to prove consistency
and asymptotic normality of the estimator of d. This is of interest in its own right, not only
because of the usual issue of non-uniform convergence of the objective function, but also
because the estimator of µ is in fact not consistent when d0 > 1/2. We then proceed to
derive an analytical expression for the asymptotic second-order bias of d̂ via a higher-order
stochastic expansion of the estimator. We apply this to investigate the magnitude of the
influence of observed and unobserved initial values, and to discuss the effect on the bias of
setting aside a number of observations as initial values, i.e., of splitting a given sample of
size T0 = N +T into N initial values and T observations for estimation. We compare d̂ with
an estimator, d̂c, derived from centering the data at C by restricting µ = C. We find, both
theoretically and using a data set on voting behavior as illustration, that in many cases, the
parameter µ picks up the effect of the initial values even for the choice N = 0.
Finally, in a number of relevant cases, we show that the second-order bias can be elimi-

nated, either partially or completely, by a bias correction. In the most general case, however,
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it can only be partly eliminated, and in particular the second-order bias term due to the
initial values can only be diminished by increasing the number of initial values, N .
In the stationary case, 0 < d < 1/2, there is a literature on Edgeworth expansions of

the distribution of the (unconditional) Gaussian maximum likelihood estimator based on
the joint density of the data, (X1, . . . , XT ) in the model (1). In particular, Lieberman and
Phillips (2004) find expressions for the second-order term, from which we can derive the
main term of the bias in that case. We have not found any results on the nonstationary case,
d > 1/2, for the estimator based on conditioning on initial values.
The remainder of the paper is organized as follows. In the next section we present the

fractional models and in Section 3 our main results. In Section 4 we give an application of
our theoretical results to a data set of Gallup opinion polls. Section 5 concludes. Proofs of
our main results and some mathematical details are given in the appendices.

2 The fractional models and their interpretations
A simple model for fractional data is

∆d(Xt − µ) = εt, εt ∼ i.i.d.(0, σ2), t = 1, . . . , T, (1)

where d ≥ 0, µ ∈ R, and σ2 > 0. The fractional filter ∆dXt is defined in terms of the
fractional coeffi cients πn(u) from an expansion of (1− z)−u =

∑∞
n=0 πn(u)zn, i.e.,

πn(u) =
u(u+ 1) . . . (u+ n− 1)

n!
=

Γ(u+ n)

Γ(u)Γ(n+ 1)
∼ nu−1

Γ(u)
as n→∞, (2)

where Γ(u) denotes the Gamma function and “∼”denotes that the ratio of the left- and
right-hand sides converges to one. More results are collected in Appendix A.
For a given value of d such that 0 < d < 1/2, we have

∑∞
n=0 πn(d)2 < ∞. In this case,

the infinite sum Xt = ∆−dεt =
∑∞

n=0 πn(d)εt−n exists as a stationary process with a finite
variance, and gives a solution to equation (1) because ∆dµ =

∑∞
n=0 πn(−d)µ = 0.

When d > 1/2, the solution to (1) is nonstationary. In that case, we discuss below two
interpretations of equation (1) as a statistical model. First as an unconditional (joint) model
of the stationary process ∆X1, . . . ,∆XT when 1/2 < d < 3/2, and then as a conditional
model for the nonstationary process XN+1, . . . , XN+T given initial values when d > 1/2. In
the latter case we call Xt an initial value if t ≤ N and denote the initial values Xn, n ≤ N,
and we assume, see Section 2.2, that the variables we are measuring started at some point
−N0 + 1 in the past, and we truncate the fractional filter accordingly.

2.1 The unconditional fractional model and its estimation

One approach to the estimation of d from model (1) with nonstationary data is the difference-
and-add-back approach based on Gaussian estimation for stationary processes. If we have the
a priori information that 1/2 < d < 3/2, say, then we could transform the data X0, . . . , XT

to ∆XT = (∆X1, . . . ,∆XT )′ and note that (1) can be written

∆d−1∆(Xt − µ) = εt,

so that ∆Xt is stationary and fractional of order −1/2 < d− 1 < 1/2. Note that ∆µ = 0, so
the parameter µ does not enter. To calculate the unconditional Gaussian likelihood function,
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we then need to calculate the T × T variance matrix Σ = Σ(d, σ2) = V ar(∆XT ), its inverse,
Σ−1, and its determinant, det Σ. This gives the Gaussian likelihood function,

−1

2
log det Σ− 1

2
∆X′TΣ−1∆XT . (3)

A general optimization algorithm can then be applied to find the maximum likelihood es-
timator, d̂stat, if Σ can be calculated. This is possible by the algorithm in Sowell (1992).
The estimator d̂stat is not a CSS estimator, which is the class of estimators we study in this
paper, but it was applied by Byers, Davidson, and Peel (1997) and Dolado, Gonzalo, and
Mayoral (2002) in the analysis of the voting data, and by Davidson and Hashimzade (2009)
to the Nile data.
The estimator d̂stat was analyzed by Phillips and Lieberman (2004) for true value d0 <

1/2. They derived an asymptotic expansion of the distribution function of T 1/2(d̂stat − d0),
from which a second-order bias correction of the estimator can be derived, see Section 3.2.
In more complicated models than (1), the calculation of Σ may be computationally

diffi cult. This is certainly the case in, say, the fractionally cointegrated vector autoregressive
model of JN (2012a). However, even in much simpler models such as the usual autoregressive
model, a conditional approach has been advocated for its computational simplicity, e.g.,
Box and Jenkins (1970), because conditional maximum likelihood estimation simplifies the
calculation of estimators by reducing the numerical problem to least squares. For this reason,
the conditional estimator has been very widely applied to many models, including (1). For
a discussion and comparison of the numerical complexity of Gaussian maximum likelihood
as in (3) and the CSS estimator, see e.g. Doornik and Ooms (2003).

2.2 The observations and initial values

It is diffi cult to imagine a situation where {Xs}T−∞ is available, so that (1) could be applied.
In general, we assume data could potentially be available from some (typically unknown)
time in the past, −N0 + 1, say. We therefore truncate the filter at time −N0; that is, define
∆d
−N0Xt =

∑t+N0−1
n=0 πn(−d)Xt−n, and consider

∆d
−N0(Xt − µ) = εt, t = 1, . . . , T0. (4)

as the model for the data we actually observe, namely Xt for t = 1, . . . , N + T = T0. In
practice, when N0 > 0, we do not observe all the data, and so we have to decide how to split
a given sample of size T0 = N + T into (observed) initial values {Xn}Nn=1 and observations
{Xt}Tt=N+1 to be modeled, and then calculate the likelihood based on the truncated filter
∆d

0, as an approximation to the conditional likelihood based on (4). In the special case with
N0 = 0, the equations in (4) become

X1 = µ+ ε1, (5)

X2 = −π1(−d)X1 + µ+ π1(−d)µ+ ε2,

etc., and µ can thus be interpreted as the initial mean or level of the observations. Clearly, if
µ is not included in the model, the first observation is X1 = ε1 with mean zero and variance
σ2. The lag length builds up as more observations become available.
As an example we take (an updated version of) the Gallup poll data from Byers et al.

(1997) to be analyzed in Section 4. The data is monthly from January 1951 to November
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2000 for a total of 599 observations. In this case the data is not available for all t simply
because the Labour party was founded in 1900, and the Gallup company was founded in
1935, and in fact the regular Gallup polls only started in January 1951, which is denoted
−N0 + 1.
As a second example, consider the paper by Andersen, Bollerslev, Diebold, and Ebens

(2001) which analyzes log realized volatility for companies in the Dow Jones Industrial
Average from January 2, 1993, to May 28, 1998. For each of these companies there is an
earlier date, which we call −N0 + 1, where the company became publicly traded and such
measurements were made for the first time. The data analyzed in Andersen et al. (2001) was
not from −N0 +1, but only from the later date when the data became available on CD-ROM,
which was January 2, 1993, which we denote t = 1. We thus do not have observations from
−N0 + 1 to 0.
We summarize this in the following display, which we think is representative for most, if

not all, data in economics:

. . . , X−N0︸ ︷︷ ︸
Data does not exist

, X−N0+1, . . . , X0︸ ︷︷ ︸
Data exists

but is not observed

, X1, . . . , XN︸ ︷︷ ︸
Data is observed
(initial values)

, XN+1, . . . , XT0︸ ︷︷ ︸
Data is observed
(estimation)

(6)

Thus, we consider estimation of

∆d
0(Xt − µ) = εt, t = 1, . . . , T0, (7)

as an approximation to model (4). Unlike for (4), the conditional likelihood for (7) can
be calculated based on available data from 1 to T0. For a fast algorithm to calculate the
fractional difference, see Jensen and Nielsen (2014).
In summary, we use ∆d

−N0(Xt−µ) = εt as the model we would like to analyze. However,
because we only have data for t = 1, . . . , T0, we base the likelihood on the model∆d

0(Xt−µ) =
εt, for which an approximation to the conditional likelihood from (4) can be calculated with
the available data. We then try to mitigate the effect of the unobserved initial values by
conditioning on X1, . . . , XN .

2.3 The conditional fractional model

Let parameter subscript zero denote true values. In the conditional approach we interpret
equation (4) as a model for Xt given the past Ft−1 = σ(X−N0+1, . . . , Xt−1) and therefore
solve the equation for Xt as a function of initial values, errors, and the initial level, µ0. The
solution to (1) is given in JN (2010, Lemma 1) under the assumption of bounded initial
values, and we give here the solution of (4).

Lemma 1 The solution of model (4) forXN+1, . . . , XT0 , conditional on initial valuesXn,−N0 <
n ≤ N , is, for t = N + 1, . . . , T0, given by

Xt = ∆−d0N εt −∆−d0N

t+N0−1∑
n=t−N

πn(−d0)Xt−n + ∆−d0N πt+N0−1(−d0 + 1)µ0. (8)

We find the conditional mean and variance by writing model (4) as Xt − µ = (1 −
∆d
−N0)(Xt − µ) + εt. Because (1−∆d

−N0)(Xt − µ) is a function only of the past, we find

E(Xt − µ|Ft−1) = (1−∆d
−N0)(Xt − µ) and V ar(Xt|Ft−1) = V ar(εt) = σ2.
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As an example we get, for d = 1 and µ = 0, the well-known result from the autoregressive
model that E(Xt|Ft−1) = Xt−1 and V ar(Xt|Ft−1) = σ2. In model (4) this implies that the
prediction error decomposition given Xn,−N0 < n ≤ N , is the conditional sum of squares,

T0∑
t=N+1

(Xt − E(Xt|Ft−1))2

V ar(Xt|Ft−1)
= σ−2

T0∑
t=N+1

(∆d
−N0(Xt − µ))2,

which is used in the conditional Gaussian likelihood function (9) below.

2.4 Estimation of the conditional fractional model

We would like to consider the conditional (Gaussian) likelihood of {Xt, N + 1 ≤ t ≤ T0}
given initial values {Xn,−N0 + 1 ≤ n ≤ N}, which is given by

−T
2

log σ2 − 1

2σ2

T0∑
t=N+1

(∆d
−N0(Xt − µ))2. (9)

If in fact we have observed all available data, such that N0 = 0 as in, e.g., the Gallup poll
data we can use (9) for N0 = 0. More commonly, however, data is not available all the way
back to inception at time −N0 + 1, so we consider the situation that the series exists for
t > −N0, but we only have observations for t ≥ 1, as in the volatility data example. We
therefore replace the truncated filter ∆d

−N0 by ∆d
0 and suggest using the (quasi) likelihood

conditional on {Xn, 1 ≤ n ≤ N},

L(d, µ, σ2) = −T
2

log σ2 − 1

2σ2

T0∑
t=N+1

(∆d
0(Xt − µ))2. (10)

That is, (10) is an approximation to the conditional likelihood (9), where (10) has the
advantage that it can be calculated based on available data from t = 1 to T0 = N + T . It is
clear from (10) that we can equivalently find the (quasi) maximum likelihood estimators of
d and µ by minimizing

L(d, µ) =
1

2

T0∑
t=N+1

(∆d
0(Xt − µ))2 (11)

with respect to d and µ.
We find from (46) in Lemma A.4 that

∆d
0(Xt − µ) = ∆d

0Xt −
t−1∑
n=0

πn(−d)µ = ∆d
0Xt − πt−1(−d+ 1)µ = ∆d

0Xt − κ0t(d)µ,

where we have introduced κ0t(d) = πt−1(−d+ 1). The estimator of µ for fixed d is

µ̂(d) =

∑T0
t=N+1(∆d

0Xt)κ0t(d)∑T0
t=N+1 κ0t(d)2

,

provided
∑T0

t=N+1 κ0t(d)2 > 0. The conditional quasi-maximum likelihood estimator of d can
then be found by minimizing the concentrated objective function

L∗(d) =
1

2

T0∑
t=N+1

(∆d
0Xt)

2 − 1

2

(
∑T0

t=N+1(∆d
0Xt)κ0t(d))2∑T0

t=N+1 κ0t(d)2
, (12)
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which has no singularities at the points where
∑T0

t=N+1 κ0t(d)2 = 0, see Theorem 1. Thus,
the conditional quasi-maximum likelihood estimator d̂ can be defined by

d̂ = arg min
d∈D

L∗(d) (13)

for a parameter space D to be defined below.
This is a type of conditional-sum-of-squares (CSS) estimator for d. The first term of (12)

is standard, and the second takes into account the estimation of the unknown initial level µ
at the inception of the series at time −N0 + 1.
For d = d0 and µ = µ0 we find, provided

∑T0
t=N+1 κ0t(d0)2 > 0, that

µ̂(d0)− µ0 =

∑T0
t=N+1 εtκ0t(d0)∑T0
t=N+1 κ0t(d0)2

,

which has mean zero and variance σ2
0(
∑T0

t=N+1 κ0t(d0)2)−1 that does not go to zero when
d0 > 1/2 because then σ−2

0

∑T0
t=N+1 κ0t(d0)2 is bounded in T0, see (59) in Lemma B.1. Thus

we have that, even if d = d0, µ̂(d0) is not consistent.
In the following we also analyze another estimator, d̂c, constructed by choosing to center

the observations by a known value rather than estimating µ as above. The known value,
say C, used for centering, could be one of the observed initial values, e.g. the first one, or
an average of these, or it could be any known constant. This can be formulated as choosing
µ = C in the likelihood function (10) and defining

d̂c = arg min
d∈D

L∗c(d), (14)

L∗c(d) =
1

2

T0∑
t=N+1

(∆d
0(Xt − C))2, (15)

which is also a CSS estimator. A commonly applied estimator is the one obtained by not
centering the observations, i.e. by setting C = 0. In that case, an initial non-zero level of
the process is therefore not taken into account.
The introduction of centering and of the parameter µ, interpreted as the initial level

of the process, thus allows analysis of the effects of centering the observations in different
ways (and avoid the, possibly unrealistic, phenomenon described immediately after (5) when
µ = 0). We analyze the conditional maximum likelihood estimator, d̂, where the initial
level is estimated by maximum likelihood jointly with the fractional parameter, and we also
analyze the more traditional CSS estimator, d̂c, where the initial level is “estimated”using
a known value C, e.g. zero or the first available observation, X1.
In practice we split a given sample of size T0 = N + T into (observed) initial values

{Xn}Nn=1 and observations {Xt}N+T
t=N+1 to be modeled, and then calculate the likelihood (12)

based on the truncated filter ∆d
0 as an approximation to the model (4) starting at −N0 + 1.

In order to discuss the error implied by using this choice in the likelihood function, we
derive in Theorem 2 a computable expression for the asymptotic second-order bias term in
the estimator of d via a higher-order stochastic expansion of the estimator. This bias term
depends on all observed and unobserved initial values and the parameters. In Corollary 1
and Theorems 3 and 4 we further investigate the effect on the bias of setting aside the data
from t = 1 to N as initial values.



Initial values in CSS estimation of fractional models 8

2.5 A relation to the ARFIMA model

The simple model (1) is a special case of the well-known ARFIMA model,

A(L)∆dXt = B(L)εt, t = 1, . . . , T,

where A(L) and B(L) depend on a parameter vector ψ and B(z) 6= 0 for |z| ≤ 1. For this
model, the conditional likelihood depends on the residuals

εt(d, ψ) = B(L)−1A(L)∆dXt = b(ψ,L)∆dXt,

and when b(ψ,L) = 1 we obtain model (1) as a special case.
For the ARFIMA model the analysis would depend on the derivatives of the conditional

likelihood function, which would in turn be functions of the derivatives of the residuals.
Again, to focus on estimation of d we consider the remaining parameter ψ fixed at the
true value ψ0. For a function f(d) we denote the derivative of f with respect to d as
Df(d) = ∂

∂d
f(d) (Euler’s notation), and the relevant derivatives are

Dmεt(d, ψ)|d0,ψ0 = b(ψ0, L)Dm∆dXt|d0 = (log ∆)mb(ψ0, L)∆d0Xt = (log ∆)mεt.

Thus, for this more general model, the derivatives of the conditional likelihood with respect
to d, when evaluated at the true values, are identical to those of the residuals from the simpler
model (1). We can therefore apply the results from the simpler model more generally, but
only if we know the parameter ψ0. If ψ has to be estimated, the analysis becomes much
more complicated. We therefore focus our analysis on the simple model.

3 Main results
Our main results hold only for the true value d0 > 1/2, that is, for nonstationary processes,
which is therefore assumed in the remainder of the paper. However, we maintain a large
compact parameter set D for d in the statistical model, which does not assume a priori
knowledge that d0 > 1/2, see Assumption 2.

3.1 First-order asymptotic properties

The first-order asymptotic properties of the CSS estimators d̂ and d̂c derived from the like-
lihood functions L∗(d) and L∗c(d) in (12) and (15), respectively, are given in the following
theorem, based on results of JN (2012a) and Nielsen (2015). To describe the results, we use
Riemann’s zeta function, ζs =

∑∞
j=1 j

−s, s > 1, and specifically

ζ2 =
∞∑
j=1

j−2 =
π2

6
' 1.6449 and ζ3 =

∞∑
j=1

j−3 ' 1.2021. (16)

We formulate two assumptions that will be used throughout.

Assumption 1 The errors εt are i.i.d.(0, σ2
0) with finite fourth moment.

Assumption 2 The parameter set for (d, µ, σ2) is D × R× R+, where D = [d, d̄], 0 < d <
d̄ <∞. The true value is (d0, µ0, σ

2
0), where d0 > 1/2 is in the interior of D.

Theorem 1 Let the model for the data Xt, t = 1, . . . , N + T, be given by (4) and let As-
sumptions 1 and 2 be satisfied. Then the functions L∗(d) in (12) and L∗c(d) in (15) have no
singularities for d > 0, and the estimators d̂ and d̂c derived from L∗(d) and L∗c(d), respec-
tively, are both

√
T -consistent and asymptotically distributed as N (0, ζ−1

2 ).
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3.2 Higher-order expansions and asymptotic bias

To analyze the asymptotic bias of the CSS estimators for d, and in particular how initial
values influence the bias, we need to examine higher-order terms in a stochastic expansion
of the estimators, see Lawley (1956). The conditional (negative profile log) likelihoods L∗(d)
and L∗c(d) are given in (12) and (15). We find, see Lemma B.4, that the derivatives satisfy
DL∗(d0) = OP (T 1/2), D2L∗(d0) = OP (T ), andD3L∗(d) = OP (T ) uniformly in a neighborhood
of d0, and a Taylor series expansion of DL∗(d̂) = 0 around d0 gives

0 = DL∗(d̂) = DL∗(d0) + (d̂− d0)D2L∗(d0) +
1

2
(d̂− d0)2D3L∗(d∗),

where d∗ is an intermediate value satisfying |d∗ − d0| ≤ |d̂ − d0|
P→ 0. We then insert

d̂ − d0 = T−1/2G̃1T + T−1G̃2T + OP (T−3/2) and find G̃1T = −T 1/2DL∗(d0)/D2L∗(d0) and
G̃2T = −1

2
T (DL∗(d0))2D3L∗(d∗)/(D2L∗(d0))3, which we write as

T 1/2(d̂− d0) = −T
−1/2DL∗(d0)

T−1D2L∗(d0)
− 1

2
T−1/2(

T−1/2DL∗(d0)

T−1D2L∗(d0)
)2T

−1D3L∗(d∗)

T−1D2L∗(d0)
+OP (T−1). (17)

Based on this expansion, we find another expansion T 1/2(d̂ − d0) = G1T + T−1/2G2T +

oP (T−1/2) with the property that (G1T , G2T )
D→ (G1, G2) and E(G1T ) = E(G1) = 0. Then

the zero- and first-order terms of the bias are zero, and the second-order asymptotic bias
term is defined as T−1E(G2).
We next present the main result on the asymptotic bias of d̂. In order to formulate

the results, we define some coeffi cients that depend on N,N0, T , and on initial values and
(µ0, σ

2
0, d) (we suppress some of these dependencies for notational convenience),

η0t(d) = −
0∑

n=−N0+1

πt−n(−d)(Xn − µ0), (18)

η1t(d) =
t−1−N∑
k=1

k−1

N∑
n=−N0+1

πt−n−k(−d)(Xn − µ0)−
N∑
n=1

Dπt−n(−d)(Xn − µ0), (19)

κ0t(d) = πt−1(−d+ 1), and κ1t(d) = −Dπt−1(−d+ 1). (20)

For two sequences {ut, vt}∞t=1, we define the product moment 〈u, v〉T = σ−2
0

∑T0
t=N+1 utvt,

see e.g. Lemma B.1. The main contributions to the bias are expressed for d = d0 in terms of

ξN,T (d) = 〈η0, η1〉T −
〈η0, κ0〉T
〈κ0, κ0〉T

(〈η0, κ1〉T + 〈η1, κ0〉T ) +
〈η0, κ0〉2T
〈κ0, κ0〉2T

〈κ1, κ0〉T , (21)

ξCN,T (d) = 〈η0, η1〉T − (C − µ0)(〈η0, κ1〉T + 〈η1, κ0〉T ) + (C − µ0)2〈κ1, κ0〉T , (22)

τN,T (d) = σ−2
0

∑
N≤s<t≤N+T−1

(t− s)−1πt(−d+ 1)πs(−d+ 1)/〈κ0, κ0〉T . (23)

Note that (21)—(23) are all invariant to scale because of the normalization by σ2
0. Also note

that, even if 〈κ0, κ0〉T = 0, the ratio 〈η0, κ0〉T/〈κ0, κ0〉T as well as τN,T (d) are well defined,
see Theorem 1 and Appendix C.1.
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Theorem 2 Let the model for the data Xt, t = 1, . . . , N + T, be given by (4) and let As-
sumptions 1 and 2 be satisfied. Then the asymptotic biases of d̂ and d̂c are

bias(d̂) = −(Tζ2)−1[3ζ3ζ
−1
2 + ξN,T (d0) + τN,T (d0)] + o(T−1), (24)

bias(d̂c) = −(Tζ2)−1[3ζ3ζ
−1
2 + ξCN,T (d0)] + o(T−1), (25)

where limT→∞ |ξN,T (d0)| <∞, limT→∞ |τN,T (d0)| <∞, and limT→∞ |ξCN,T (d0)| <∞.

The leading bias terms in (24) and (25) are of the same order of magnitude in T , namely
O(T−1). First, the fixed term, 3ζ3ζ

−2
2 , derives from correlations of derivatives of the likelihood

and does not depend on initial values or d0. The second term in (24), ξN,T (d0), is a function
of initial values and d0, and can be made smaller by including more initial values (larger N)
as shown in Corollary 1 below. The third term in (24), τN,T (d0), only depends on (N, T, d0).
If we center the data by C, and do not correct for µ, we get the term ξCN,T (d0) in (25).
However, if we estimate µ we get ξN,T (d0) + τN,T (d0) in (24), where τN,T (d0) is independent
of initial values and only depends on (N, T, d0). The coeffi cients η0t(d) and η1t(d) are linear
in the initial values, and hence the bias terms ξN,T (d) and ξCN,T (d) are quadratic in initial
values scaled by σ0.
The fixed bias term, 3ζ3ζ

−2
2 , is the same as the bias derived by Lieberman and Phillips

(2004) for the estimator d̂stat, based on the unconditional likelihood (3) in the stationary
case, 0 < d0 < 1/2. They showed that the distribution function of ζ1/2

2 T 1/2(d̂stat − d0) is

FT (x) = P (ζ
1/2
2 T 1/2(d̂stat − d0) ≤ x) = Φ(x) + T−1/2ζ3ζ

−3/2
2 φ(x)(2 + x2) +O(T−1),

where Φ(x) and φ(x) denote the standard normal distribution and density functions, respec-
tively. Using Dφ(x)(2 + x2) = −φ(x)x3, we find that an approximation to the expectation
of ζ1/2

2 T 1/2(d̂stat − d0), based on the first two terms, is given by

−T−1/2ζ3ζ
−3/2
2

∫
xφ(x)x3dx = −T−1/23ζ3ζ

−3/2
2 ,

which shows that the second-order bias of d̂stat, derived for 0 < d0 < 1/2, is the same as the
the second-order fixed bias term of d̂ derived for d0 > 1/2 in Theorem 2.
The dependence of the bias in Theorem 2 on the number of observed initial values, N ,

is explored in the following corollary.

Corollary 1 Under the assumptions of Theorem 2, we obtain the following bounds for the
components of the bias terms for d̂ and d̂c when d > 1/2,

max(|ξCN,T (d)|, |ξN,T (d)|) ≤ c(1 +N)−min(d,2d−1)+ε for any 0 < ε < min(d, 2d− 1). (26)

The result in Corollary 1 shows how the bias term arising from not observing all initial
values decays as a function of the number of observed values set aside as initial values, N .
More generally, the results in this section shows that a partial bias correction is possible.

That is, by adding the terms (Tζ2)−13ζ3ζ
−1
2 and (Tζ2)−1τN,T (d̂), the second-order bias in

d̂ and d̂c can be partly eliminated, but the bias due to (Tζ2)−1ξN,T (d0) can only be made
smaller by increasing N .
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A different type of bias correction was used by Davidson and Hashimzade (2009, eqn.
(4.4)) in an analysis of the Nile data. They considered the CSS estimator when all initial
values are set to zero in the stationary case. To capture the effect of the left-out initial
values, they introduce a few extra regressors that are found as the first principal components
of the variance matrix of the n = 150 variables x∗∗ = {

∑∞
k=s πk(−d)Xs−k}ns=1.

3.3 Further results for special cases

The expressions for ξN,T (d), ξCN,T (d), and τN,T (d) in (21)—(23) show that they depend on
(N, T, d) and, in the case of ξN,T (d) and ξCN,T (d), also on all initial values. In order to get an
impression of this dependence, we derive simple expressions for various special cases.
First, when d is an integer, we find simple results for ξN,T (d), ξCN,T (d), and τN,T (d), and

hence the asymptotic bias, as follows.

Theorem 3 Under the assumptions of Theorem 2 it holds that ξCN,T (d) = ξN,T (d) = 0 in the
following two cases:
(i) If d = k for an integer k such that 1 ≤ k ≤ N ,
(ii) If d = 1 and N ≥ 0.
In either case, the asymptotic biases of d̂ and d̂c are given by

bias(d̂) = −(Tζ2)−1(3ζ3ζ
−1
2 + τN,T (d0)) + o(T−1),

bias(d̂c) = −(Tζ2)−13ζ3ζ
−1
2 + o(T−1).

(iii) If d0 = N+1 then τN,T (d0) = 0 and bias(d̂) = −(Tζ2)−1(3ζ3ζ
−1
2 +ξN,T (N+1))+o(T−1).

It follows from Theorem 3(i) that for d = 1 we need one initial value (N ≥ 1) and for
d = 2 we need two initial values (N ≥ 2), etc., to obtain ξCN,T (d) = ξN,T (d) = 0. Alternatively,
for d0 = 1, Theorem 3(ii) shows that there will be no contribution from initial values to the
second-order asymptotic bias even if N = 0, and Theorem 3(iii) shows that when N = 0, it
also holds that τ0,T (1) = 0 such that bias(d̂) = −(Tζ2)−13ζ3ζ

−1
2 +o(T−1). Since the bias term

is continuous in d0, the same is approximately true for a (small) neighborhood of d0 = 1.
Note that the results in Theorem 3 show that in the cases considered, the estimators d̂

and d̂c can be bias corrected to have second-order bias equal to zero.
We finally consider the special case with N0 = 0, where all available data is observed.

We use the notation Ψ(d) = D log Γ(d) to denote the Digamma function.

Theorem 4 If N0 = 0 and N ≥ 0 then ξN,T (d0) = 0 and the biases of d̂ and d̂c are given by

bias(d̂) = −(Tζ2)−1[3ζ3ζ
−1
2 + τN,T (d0)] + o(T−1), (27)

bias(d̂c) = −(Tζ2)−1[3ζ3ζ
−1
2 + ξCN,T (d0)] + o(T−1), (28)

where τN,T (d0) is defined in (23) and ξCN,T (d0) simplifies to

ξCN,T (d0) = −(C − µ0)〈κ0, η1〉T + (C − µ0)2〈κ0, κ1〉T . (29)

In particular, for N0 = N = 0 we get the analytical expressions

bias(d̂) = −(Tζ2)−1[3ζ3ζ
−1
2 − (Ψ(2d0 − 1)−Ψ(d0))] + o(T−1), (30)

bias(d̂c) = −(Tζ2)−1[3ζ3ζ
−1
2 −

(C − µ0)2

σ2
0

(
2d0 − 2

d0 − 1

)
(Ψ(2d0 − 1)−Ψ(d0))] + o(T−1). (31)
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It follows from Theorem 4 that if we have observed all possible data, that is N0 = 0,
then we get a bias of d̂ in (27) and of d̂c in (28) and (29). The bias of d̂ comes from the
estimation of µ and the bias of d̂c depends on the distance C − µ0.
With N0 = 0 as in Theorem 4, we note that the biases of d̂ and d̂c do not depend on

unobserved initial values. It follows that (27) can be used to bias correct the estimator d̂
and (28) to bias correct the estimator d̂c. For d̂ this bias correction gives a second-order bias
of zero, but for d̂c the correction is only partial due to (29).
Although the asymptotic bias of d̂ is of order O(T−1), we note that the asymptotic

standard deviation of d̂ is (Tζ2)−1/2, see Theorem 1. That is, for testing purposes or for
calculating confidence intervals for d0, the relevant quantity is in fact the bias relative to the
asymptotic standard deviation, and this is of order O(T−1/2). To quantify the distortion of
the quantiles (critical values), we therefore focus on the magnitude of the relative bias, for
which we obtain the following corollary by tabulation.

Corollary 2 Letting T0 = N + T be fixed and tabulating the relative bias,

(Tζ2)1/2bias(d̂) = −((T0 −N)ζ2)−1/2[3ζ3ζ
−1
2 + τN,T0−N(d0)],

see (27), for N = 0, . . . , T0 − 2 and d0 > 1/2, the minimum value is attained for N = 0.
Thus, we achieve the smallest relative (and also absolute) bias of d̂ by choosing N = 0.

4 Application to Gallup opinion poll data
As an application and illustration of the results, we consider the monthly Gallup opinion
poll data on support for the Conservative and Labour parties in the United Kingdom. They
cover the period from January 1951 to November 2000, for a total of 599 months. The two
series have been logistically transformed, so that, if Yt denotes an observation on the original
series, it is mapped into Xt = log(Yt/(100 − Yt)). A shorter version of this data set was
analyzed by Byers et al. (1997) and Dolado et al. (2002), among others.
Using an aggregation argument and a model of voter behavior, Byers et al. (1997) show

that aggregate opinion poll data may be best modeled using fractional time series methods.
The basic finding of Byers et al. (1997) and Dolado et al. (2002) is that the ARFIMA(0,d,0)
model, i.e. model (1), appears to fit both data series well and they obtain values of the
integration parameter d in the range of 0.6—0.8.

4.1 Analysis of the voting data

In light of the discussion in Section 2.2, we work throughout under the assumption that Xt

was not observed prior to January 1951 because the data series did not exist, and we truncate
the filter correspondingly, i.e., we consider model (4). Because we observe all available data,
we estimate d (and µ, σ) by the estimator d̂ setting N = N0 = 0 and take T = 599 following
Theorem 4 and Corollary 2.
The results are presented in Table 1. Since we have assumed that N = N0 = 0, we can

bias correct the estimator using (30) in Theorem 4, and the resulting estimate is reported in
Table 1 as d̂bc. Two conclusions emerge from the table. First, the estimates of d (and σ) are
quite similar for the two data series, but the estimates of µ are quite different. Second, the
bias corrections to the estimates are small. More generally, the estimates obtained in Table
1 are in line with those from the literature cited above.
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Table 1: Estimation results for Gallup opinion poll data
Conservative Labour

d̂ 0.7718 0.6940

d̂bc 0.7721 0.6914
µ̂ 0.0097 −0.4313
σ̂ 0.1098 0.1212
Note: The table presents parameter estimates for the Gallup opinion poll data with T = 599 andN0 = N = 0.

The subscript ‘bc’denotes the bias corrected estimator, c.f. (30). The asymptotic standard deviation of d̂ is

given in Theorem 1 as (Tπ2/6)−1/2 ' 0.032.

4.2 An experiment with unobserved initial values

We next use this data to conduct a small experiment with the purpose of investigating how
the choice of N influences the bias of the estimators of d, if there were unobserved initial
values. For this purpose, we assume that the econometrician only observes data starting
in January 1961. That is, January 1951 through December 1960 are N0 = 120 unobserved
initial values. We then split the given sample of T0 = 479 observations into initial values
(N) and observations used for estimation (T ), such that N + T = 479. We can now ask the
questions (i) what is the consequence in terms of bias of ignoring initial values, i.e. of setting
N = 0, and (ii) how sensitive is the bias to the choice of N for this particular data set.
To answer these questions we apply (24) and (25) from Theorem 2. We note that ξN,T (d)

and ξCN,T (d) depend on the unobserved initial values, i.e. on Xn,−N0 < n ≤ 0, which in this
example are the 120 observations from January 1951 to December 1960. To apply Theorem
2 we need (estimates of) d0, µ0, σ0. For this purpose we use (d̂bc, µ̂, σ̂) from Table 1.
The results are shown in Figure 1. The top panels show the logistically transformed

opinion poll data for the Conservative (left) and Labour (right) parties. The shaded areas
mark the unobserved initial values January 1951 to December 1960. The bottom panels
show the relative bias in the estimators of d as a function of N ∈ [0, 24], and the starred
straight line denotes the value of the fixed (relative) bias term, −(T0 − N)−1/23ζ3ζ

−3/2
2 .

The estimators are d̂ in (13) and d̂c in (14) either with C chosen as the average of the T0

observations, denoted d̂c in the graph, or with C = 0, denoted d̂0 in the graph. That is, for
d̂0 the series have not been centered, and for d̂c the series have been centered by the average
of the T0 observed values. The latter two estimators are the usual CSS estimators with and
without centering of the series.
In Figure 1 we note that the relative bias of d̂0 is larger for the Labour party series because

the last unobserved initial values are larger in absolute value than those of the Conservative
party series. In particular, if one does not condition on initial values and uses N = 0, the
relative bias of d̂0 is 0.45 for the Labour party series and −0.05 for the Conservative party
series. It is clear from the figure that the relative bias of d̂0 for the Labour party series can
be reduced substantially and be made much closer to the fixed bias value by conditioning
on just a few initial values. The same conclusions can be drawn for d̂c but reversing the
roles of the two series. The reason is that, after centering the series by the average of the
T0 observations, it is now for the Conservative party series that the last unobserved initial
values are different from zero, while those of the Labour party series are close to zero.
Finally, for d̂, where the initial level or centering parameter, µ, is estimated jointly with
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Figure 1: Application to Gallup opinion poll data
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Note: The top panels show (logistically transformed) opinion poll time series and the bottom panels show

the relative bias for three estimators of d as a function of the number of chosen initial values, N , when the

first N0 = 120 observations have been reserved as unobserved initial values (shaded area). The estimators

are d̂ in (13) and d̂c in (14) either with C chosen as the average of the T0 observations, denoted d̂c in

the graph, or with C = 0, denoted d̂0 in the graph. The starred line denotes the fixed (relative) bias,

−(T0 −N)−1/23ζ3ζ
−3/2
2 .

d, we find that the relative bias is increasing in N . The reason for this is that τN,T (d)
dominates ξN,T (d), at least for this particular data series. With N = 0 the relative bias is
very small and the estimator d̂ is better than the other two estimators.

5 Conclusion
In this paper we have analyzed the effect of unobserved initial values on the asymptotic bias
of the CSS estimators, d̂ and d̂c, of the fractional parameter in a simple fractional model, for
d0 > 1/2. We assume that we have data Xt for t = 1, . . . , T0 = N + T, and model Xt by the
truncated filter ∆d0

−N0(Xt−µ0) = εt for t = 1, . . . , T0 and N0 ≥ 0. We derive estimators from
the models ∆d

0(Xt − µ) = εt or ∆d
0(Xt − C) = εt by maximizing the respective conditional

Gaussian likelihoods of XN+1, . . . , XT0 given X1, . . . , XN .
We give in Theorem 2 an explicit formula for the second-order bias of d̂, consisting of

three terms. The first is a constant, the second, ξN,T (d0), depends on initial values and
decreases with N , and the third, τN,T (d0), does not depend on initial values. The first and
third terms can thus be used in general for a (partial) bias correction. In Theorem 4 we
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simplify the expressions for the case when N0 = 0, so that all data are observed. In this
case we can completely bias correct the estimator d̂, at least to second order. We further
find that for d̂ the smallest bias appears for the choice N = 0. This choice is used for the
analysis of the voting data in Section 4.1 where the bias correction is also illustrated.
In Section 4.2 we illustrate the general results with unobserved initial values, again using

the voting data. Here we show that, when keeping N0 = 120 observations for unobserved
initial values, the estimator d̂ with N = 0 has the smallest bias. Thus, the idea of letting the
parameter µ capture the initial level of the process eliminates the effect of the unobserved
initial values, at least in this example.

Appendix A The fractional coeffi cients
In this section we first give some results of Karamata. Because they are well known we
sometimes apply them in the remainder without special reference.

Lemma A.1 For m ≥ 0 and c <∞,
N∑
n=1

(1 + log n)mnα ≤ c(1 + logN)mNα+1 if α > −1, (32)

∞∑
n=N

(1 + log n)mnα ≤ c(1 + logN)mNα+1 if α < −1. (33)

Proof. See Theorems 1.5.8—1.5.10 of Bingham, Goldie, and Teugels (1987).
We next present some useful results for the fractional coeffi cients (2) and their derivatives.

Lemma A.2 Define the coeffi cient aj = 1{j≥1}
∑j

k=1 k
−1, where 1{A} denotes the indicator

function for the event A. The derivatives of πj(·) are

Dm log πj(u) = (−1)m+1

j−1∑
i=0

1

(i+ u)m
for u 6= 0,−1, . . . ,−j + 1 and m ≥ 1, (34)

Dπj(u) = (−1)−u
(−u)!(j + u− 1)!

j!
for u = 0,−1, . . . ,−j + 1 and j ≥ 2, (35)

D2πj(u) = 2Dπj(u)(aj+u−1 − a−u) for u = 0,−1, . . . ,−j + 1 and j ≥ 2. (36)

Proof of Lemma A.2. The result (34) follows by taking derivatives in (2) for u 6=
0,−1, . . . ,−j + 1. For u = −i and i = 0, 1, . . . , j − 1 we first define

P (u) = u(u+ 1) . . . (u+ j − 1), Pk(u) =
P (u)

u+ k
, Pkl(u) =

P (u)

(u+ k)(u+ l)
for k 6= l.

noting that πj(u) = P (u)/j!, see (2). We then find

DP (u) =
∑

0≤k≤j−1

Pk(u) and D2P (u) =
∑

0≤k 6=l≤j−1

Pkl(u),

which we evaluate at u = −i for i = 0, 1, . . . , j − 1. However, for such i we find Pk(−i) = 0
unless k = i and Pkl(−i) = 0 unless k = i or l = i. Thus,

DP (u)|u=−i = Pi(−i) = (−i)(−i+ 1) . . . (−1)× (1)(2) . . . (j − 1− i) = (−1)ii!(j − i− 1)!
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and (35) follows because Dπj(u) = DP (u)/j!, see (2). Similarly (36) follows from

D2P (u)|u=−i =
∑
k 6=i

Pki(−i) +
∑
l 6=i

Pil(−i) = 2
∑
k 6=i

Pki(−i)

= 2
∑
k 6=i

Pi(−i)
k − i = 2Pi(−i)

∑
k 6=i

1

k − i = 2Pi(−i)(aj−i−1 − ai).

For u = 0,−1,−2, . . ., we note that πj(u) = 0 for j ≥ −u + 1, but Dmπj(u) remains
non-zero even for such values of j where πj(u) = 0.

Lemma A.3 Let N be an integer and assume j ≥ N , then

πj(u) =

j∏
i=1

i+ u− 1

i
= πN(u)

j∏
i=N+1

(1 + (u− 1)/i) = πN(u)αN,j(u) (37)

with αN,j(u) =
∏j

i=N+1(1 + (u− 1)/i) for j > N and αN,j(u) = 1 for j = N .
For m ≥ 0 and j ≥ 1 it holds that

|Dmπj(u)| ≤ c(1 + log j)mju−1, (38)

|DmαN,j(u)| ≤ c(1 + log j)mju−1. (39)

For m ≥ 0 and j ≥ 1 we also have the more precise evaluations

πj(u) =
ju−1

Γ(u)
(1 + ε1j(u)), (40)

where supu∈K |ε1j(u)| → 0 as j →∞ for any compact set K⊂ R\{0,−1, . . . }, and

αN,j(u) =
N !

Γ(u+N)
ju−1(1 + ε2j(u)), (41)

where supv∈K |ε2j(u)| → 0 as j →∞ for any compact set K⊂ R\{−N,−(N + 1), . . . }.

Proof. To show (37), we first note that for j = N the result is trivial. For j > N we
factor out the first N coeffi cients,

∏N
i=1(i+ u− 1)/i = πN(u). The product of the remaining

coeffi cients is denoted αN,j(u). The results (38) and (40) for πj(u) can be found in JN (2012a,
Lemma A.5), and the results (39) and (41) for αN,j(u) can be found in the same way from
a Taylor’s expansion of

∑j
i=j0

log(1 + (u− 1)/i) for j > j0 ≥ 1− u.

Lemma A.4 Let aj = 1{j≥1}
∑j

k=1 k
−1. Then,

π0(u) = 1 and π1(u) = u for any u, (42)

Dmπ0(u) = 0 and Dmπ1(u) = 1{m=1} for m ≥ 1 and any u, (43)

Dπj(0) = j−11{j≥1} and D2πj(0) = 2j−1aj−11{j≥2}, (44)

|Dmπj(0)| ≤ cj−1(1 + log j)m−11{j≥1} ≤ cj−1+δ for m ≥ 1 and any δ > 0, (45)
k∑
n=j

Dmπn(−u) = Dmπk(−u+ 1)− Dmπj−1(−u+ 1) for m ≥ 0 and any u, (46)
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∞∑
n=j

Dmπn(−u) = −Dmπj−1(−u+ 1) for m ≥ 0 and u > 0, (47)

k∑
n=0

πn(u)πk−n(v) = πk(u+ v) for any u, v. (48)

Proof of Lemma A.4. Result (42) is well known and follows trivially from (2), and (43)
follows by taking derivatives in (42). Next, (44) and (45) follow from Lemmas A.2 and A.3.
To prove (46) with m = 0 multiply the identity

(
u
n

)
=
(
u−1
n

)
+
(
u−1
n−1

)
by (−1)n to get

(−1)n
(
u

n

)
= (−1)n

(
u− 1

n

)
− (−1)n−1

(
u− 1

n− 1

)
.

Summation from n = j to n = k yields a telescoping sum such that
k∑
n=j

(−1)n
(
u

n

)
= (−1)k

(
u− 1

k

)
− (−1)k−1

(
u− 1

j − 1

)
,

which in terms of the coeffi cients πn(·) gives the result. Take derivatives to find (46) with
m ≥ 1. From (38) of Lemma A.3, Dmπk(−u + 1) ≤ c(1 + log k)mk−u → 0 as k → ∞ when
u > 0 which shows (47). Finally, (48) follows from the Chu-Vandermonde identity, see Askey
(1975, pp. 59—60).

Lemma A.5 For any α, β it holds that
t−1∑
n=1

nα−1(t− n)β−1 ≤ c(1 + log t)tmax(α+β−1,α−1,β−1). (49)

For α + β < 1 and β > 0 it holds that
∞∑
k=1

(k + h)α−1kβ−1(1 + log(k + h))n ≤ chα+β−1(1 + log h)n. (50)

Proof of Lemma A.5. (49): See JN (2010, Lemma B.4).
(50): We first consider the summation from k = 1 to h:

h1−α−β
h∑
k=1

(k + h)α−1kβ−1(1 + log(k + h))n ≤ c(1 + log 2h)nh−1

h∑
k=1

(
k

h
+ 1)α−1(

k

h
)β−1

≤ c(1 + log h)n
∫ 1

0

(1 + u)α−1uβ−1du.

The integral is finite for β > 0 and all α because 1 ≤ 1 + u ≤ 2.
To evaluate the summation from k = h+1 to∞ we note that log(k+h) ≤ log(2k) ≤ c log k

for h ≤ k. This gives the bound
∞∑

k=h+1

(k + h)α−1kβ−1(1 + log(k + h))n ≤ c

∞∑
k=h+1

(h+ k)α−1kβ−1(1 + log k)n

≤ c
∞∑
k=h

kα+β−2(1 + log k)n ≤ chα+β−1(1 + log h)n,

see (33) of Lemma A.1.
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Lemma A.6 For d > 1/2 and 2d− 1− u > 0 it holds that

∞∑
n=0

(
d− 1

n

)(
d− 1− u

n

)
=

Γ(2d− 1− u)

Γ(d)Γ(d− u)
=

(
2d− 2− u
d− 1

)
,

∞∑
n=0

(
d− 1

n

)
∂

∂u

(
d− 1− u

n

)∣∣∣∣
u=0

= −
(

2d− 2

d− 1

)
(Ψ(2d− 1)−Ψ(d)).

Proof of Lemma A.6. With the notation a(n) = a(a + 1) · · · (a + n − 1), Gauss’s Hyper-
geometric Theorem, see Abramowitz and Stegun (1964, p. 556, eqn. 15.1.20), shows that

∞∑
n=0

a(n)b(n)

c(n)n!
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) for c > a+ b.

For a = −d+ 1, b = −d+ 1 + u, and c = 1, we have c− a− b = 2d− 1− u > 0 so that

∞∑
n=0

(
d− 1

n

)(
d− 1− u

n

)
=
∞∑
n=0

(−d+ 1)(n)

n!

(−d+ 1 + u)(n)

n!

=
Γ(1)Γ(2d− 1− u)

Γ(d)Γ(d− u)
=

(
2d− 2− u
d− 1

)
with derivative with respect to u as given, using ∂ log Γ(d+ u)/∂u|u=0 = Ψ(d).

Appendix B Asymptotic analysis of the derivatives
We first analyze ∆d

0(Xt − C) and introduce some notation. From Lemma 1 we have an
expression for Xt, t = 1, . . . , N + T, and we insert that into ∆d

0Xt and find, using ∆d
0Xt =∑t−1

n=0 πn(−d)Xt−n and (46), that for t ≥ N + 1 we have

∆d
0(Xt − C) = ∆d

NXt +
t−1∑

n=t−N
πn(−d)Xt−n −

t−1∑
n=0

πn(−d)C

= ∆d−d0
N εt −∆d−d0

N {
t+N0−1∑
n=t−N

πn(−d0)Xt−n − πt+N0−1(−d0 + 1)µ0}

+
t−1∑

n=t−N
πn(−d)Xt−n − πt−1(−d+ 1)C

= ∆d−d0
N εt + ηt(d)− κ0t(d)(C − µ0), (51)

where

ηt(d) = −
t−1−N∑
k=0

πk(d0 − d)
N∑

n=−N0+1

πt−n−k(−d0)Xn +
N∑
n=1

πt−n(−d)Xn

+
t−1−N∑
k=0

πk(d0 − d)πt+N0−k−1(−d0 + 1)µ0 − πt−1(−d+ 1)µ0.
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The derivatives of ∆d
0(Xt − C) with respect to d, evaluated at d = d0, are of the form

Dm∆d0
0 (Xt − C) = S+

mt + ηmt(d0)− κmt(d0)(C − µ0), (52)

where
κmt(d) = (−1)mDmπt−1(−d+ 1)

and the stochastic term S+
mt is defined, for t ≥ N + 1, as

Smt = (−1)m
∞∑
k=0

Dmπk(0)εt−k = S+
mt + S−mt,

S+
mt = (−1)m

t−1−N∑
k=0

Dmπk(0)εt−k and S−mt = (−1)m
∞∑

k=t−N

Dmπk(0)εt−k.

The main deterministic term is

ηmt(d) = (−1)m+1[
N∑

n=−N0+1

t−1−N∑
k=0

Dmπk(0)πt−k−n(−d)Xn −
N∑
n=1

Dmπt−n(−d)Xn (53)

−
t−1−N∑
k=0

Dmπk(0)πt+N0−k−1(−d+ 1)µ0 + Dmπt−1(−d+ 1)µ0].

We use the notation 〈u, v〉T = σ−2
0

∑N+T
t=N+1 utvt → σ−2

0

∑∞
t=N+1 utvt = 〈u, v〉, if the limit

exists.
We first give the order of magnitude of the deterministic terms and product moments

containing these.

Lemma B.1 The functions ηmt(d) satisfy

|η0t(d)| ≤ ct−d, (54)

|ηmt(d)| ≤ c(t−N)−min(1,d)+δ for m ≥ 1, t ≥ N + 1, and any δ > 0. (55)

For d > 1/2 it follows that, for any 0 < ε < min(d, 2d− 1),

〈ηm, ηn〉T → 〈ηm, ηn〉 <∞, m, n ≥ 0, (56)

|〈ηm, κn〉T | ≤ c(1 +N)−min(d,2d−1)+ε, m, n ≥ 0, (57)

max(|〈η0, η1〉T |, |〈κ1, κ0〉T |) ≤ c(1 +N)−min(d,2d−1)+ε. (58)

If N = 0 it holds that

〈κ0, κ0〉T → σ−2
0

(
2d− 2

d− 1

)
and 〈κ0, κ1〉T → −σ−2

0

(
2d− 2

d− 1

)
(Ψ(2d− 1)−Ψ(d)) . (59)

If Assumption 1 holds then

〈S+
m, ηn〉T

P→ 〈S+
m, ηn〉, m, n ≥ 0, (60)

〈S+
m, κn〉T

P→ 〈S+
m, κn〉, m, n ≥ 0, (61)

where E(〈S+
m, ηn〉T ) = E(〈S+

m, κn〉T ) = E(〈S+
m, ηn〉) = E(〈S+

m, κn〉) = 0.
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Proof of Lemma B.1. (54): The expression for η0t(d) is

η0t(d) = −
0∑

n=−N0+1

πt−n(−d)Xn + πt+N0−1(−d+ 1)µ0 − πt−1(−d+ 1)µ0

= −
0∑

n=−N0+1

πt−n(−d)(Xn − µ0), (62)

see (46) of Lemma A.4. Using the bound |πt−n(−d)| ≤ c(t−n)−d−1 we find
∑0

n=−N0+1 |πt−n(−d)| ≤
ct−d for n ≤ 0, see (38) of Lemma A.3, and the result follows.
(55): The remaining deterministic terms withm ≥ 1 are evaluated using |(−1)m+1Dmπk(0)| ≤
ck−1+δ1{k≥1} for δ > 0, see (45) of Lemma A.4, and we find, for t ≥ N + 1,

|ηmt(d)| ≤ c
∞∑

n=−N

t−1−N∑
k=1

k−1+δ(t− k + n)−d−1 + c
N∑
n=1

(t− n)−d−1+δ

+ c
t−1−N∑
k=1

k−1+δ(t+N0 − k − 1)−d + c(t− 1)−d+δ

≤ c[
t−1−N∑
k=1

k−1+δ(t− k −N)−d + (t−N)−d+δ]

≤ c[(1 + log(t−N))(t−N)−min(1,d)+δ + (t−N)−d+δ] ≤ c(t−N)−min(1,d)+2δ,

where we have used (49) of Lemma A.5.
(56): From (55) we find |ηmt(d)ηnt(d)| ≤ c(t − N)−2 min(1,d)+2δ so that |〈ηm, ηm〉| < ∞ by
choosing 2δ < 2 min(1, d)− 1 = min(1, 2d− 1), which is possible for d > 1/2.
(57): Similarly we find 〈ηn, κm〉T ≤ c

∑∞
t=1 t

−min(1,d)+δ(t+N −1)−d. If 1/2 < d < 1 we apply
(50) of Lemma A.5 to obtain the result

∑∞
t=1(t+N)−dt−d+ε ≤ c(1 +N)1−2d+ε, and if d ≥ 1

we use (t+N)−d ≤ (1 +N)−d+2εt−2ε for 2ε < d and find

∞∑
t=1

(t+N)−dt−1+ε ≤ (1 +N)−d+2ε

∞∑
t=1

t−1−ε ≤ c(1 +N)−d+2ε.

(58): The proofs for 〈η0, η1〉T and 〈κ1, κ0〉T are the same as for (57).
(59): For N = 0 we find 〈κ0, κ0〉T =

∑T−1
n=0

(
d−1
n

)2
and 〈κ0, κ1〉T = 1

2
D
∑T

t=1 κ0t(d)2 such that
the result follows from Lemma A.6.
(60): We have

∞∑
t=N+T+1

S+
mtηnt(d) =

∞∑
t=N+T+1

ηnt(d)(−1)m+1

t−1−N∑
k=1

Dmπt−k(0)εk (63)

=

∞∑
k=1

[

∞∑
t=max(T,k)+N+1

ηnt(d)(−1)m+1Dmπt−k(0)]εk.
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For some small δ > 0 to be chosen subsequently, we use the evaluations |ηnt(d)| ≤ c(t −
N)−min(1,d)+δ, |Dmπt−k(0)| ≤ c(t− k)−1+δ1{t−k≥1}, and t−min(1,d)+δ = (t− k + k)−min(1,d)+δ ≤
(t− k)−2δk−min(1,d)+3δ. Then

V ar(

∞∑
t=N+T+1

S+
mtηnt(d)) ≤ c

∞∑
k=1

[

∞∑
t=max(T,k)+1

t−min(1,d)+δ(t+N − k)−1+δ]2

≤ c

∞∑
k=1

k−2 min(1,d)+6δ[

∞∑
t=max(T,k)+1

(t− k)−1−δ]2.

For T → ∞ we have
∑∞

t=max(T,k)+1(t − k)−1−δ → 0, and because
∑∞

k=1 k
−2 min(1,d)+6δ < ∞

we get by dominated convergence that V ar(
∑∞

t=N+T+1 S
+
mtηnt(d)) → 0. This shows that

〈S+
m, ηn〉T

P→ 〈S+
m, ηn〉 =

∑∞
t=N+1 S

+
mtηnt(d).

(61): We use (63) and find
∑∞

t=N+T+1 S
+
mtκnt(d) =

∑∞
k=1[

∑∞
t=max(T,k)+1 κnt(d)(−1)m+1Dmπt−k(0)]εk,

and the proof is completed as for (60).
We next define the (centered) product moments of the stochastic terms,

M+
mnT = σ−2

0 T−1/2

N+T∑
t=N+1

(S+
mtS

+
nt − E(S+

mtS
+
nt)), (64)

as well as the product moments derived from the corresponding stationary processes,

MmnT = σ−2
0 T−1/2

N+T∑
t=N+1

(SmtSnt − E(SmtSnt)).

The next two lemmas give their asymptotic behavior, where we note that

E(S+
0tS

+
mt) = E(S0tSmt) = 0 for m ≥ 1. (65)

Lemma B.2 Suppose Assumption 1 holds and let ζ2 =
∑∞

j=1 j
−2 = π2/6 ' 1.6449 and

ζ3 =
∑∞

j=1 j
−3 ' 1.2021, see (16). Then

E(M2
01T ) = σ−2

0 T−1

N+T∑
t=N+1

E(S2
1t) = ζ2, (66)

E(M01TM02T ) = σ−4
0 T−1

N+T∑
s,t=N+1

E(S0tS1tS0sS2s) = σ−2
0 T−1

N+T∑
t=N+1

E(S1tS2t) = −2ζ3,

(67)

E(M01TM11T ) = σ−4
0 T−1

N+T∑
s,t=N+1

E(S0tS1tS
2
1s) = −4ζ3, (68)

E(〈S+
0 , κ0〉T 〈S+

1 , κ0〉T = σ−4
0

N+T∑
s,t=N+1

E(S+
0sκ0s(d)S+

1tκ0t(d)) (69)

= −σ−2
0

∑
N≤s<t≤N+T−1

(t− s)−1πt(−d+ 1)πs(−d+ 1).
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It follows that, for N = 0 and T →∞,

τ0,T (d) = −E(〈S+
0 , κ0〉T 〈S+

1 , κ0〉T )

〈κ0, κ0〉T
→ −(Ψ(2d− 1)−Ψ(d)). (70)

Furthermore, for T fixed and N →∞, see also (37),

τN,T (d) =

∑
N≤s<t≤N+T−1(t− s)−1αN,t(−d+ 1)αN,s(−d+ 1)∑

N+1≤t≤N+T αN,t−1(−d+ 1)2
→

T−1∑
t=1

t−1 − (T − 1)/T. (71)

Proof of Lemma B.2. (66): From S0t = εt, S1t = −
∑∞

k=1 k
−1εt−k, and (65) we find

E(M2
01T ) = σ−4

0 E[T−1/2

N+T∑
t=N+1

εt

∞∑
k=1

k−1εt−k]
2 = σ−2

0 T−1

N+T∑
t=N+1

E[

∞∑
k=1

k−1εt−k]
2 =

∞∑
k=1

k−2 = ζ2.

(67): We find using the expressions for S0t, S1t, and S2t = 2
∑∞

j=2 j
−1aj−1εt−j, aj = 1{j≥1}

∑j
k=1 k

−1,
together with (65) that

E(M01TM02T ) = −2σ−4
0 T−1E[

N+T∑
t=N+1

εt

∞∑
k=1

k−1εt−k][
N+T∑
s=N+1

εs

∞∑
j=2

(j−1aj−1)εs−j] = σ−2
0 T−1

N+T∑
t=N+1

E(S1tS2t)

and

σ−2
0 T−1

N+T∑
t=N+1

E(S1tS2t) = −2σ−2
0 T−1

N+T∑
t=N+1

E[
∞∑
k=1

k−1εt−k

∞∑
j=2

(j−1aj−1)εt−j]

= −2T−1

N+T∑
t=N+1

∞∑
j=2

j−2

j−1∑
k=1

k−1 = −2
∞∑
j=2

j−2

j−1∑
k=1

k−1 = −2κ3 (72)

for κ3 =
∑∞

j=2 j
−2
∑j−1

k=1 k
−1. We thus need to show that κ3 = ζ3.

Let f(λ) = log(1 − eiλ) = 1
2
c(λ) + iθ(λ), where i =

√
−1 is the imaginary unit, c(λ) =

log(2(1− cos(λ)), θ(λ) = arg(1− eiλ) = −(π−λ)/2 for 0 < λ < π, and θ(−λ) = −θ(λ). The
transfer function of Smt is Dm(1 − eiλ)d−d0|d=d0 = f(λ)m, so that the cross spectral density
between Smt and Snt is f(λ)mf(−λ)n and E(SmtSnt) =

σ20
2π

∫ π
−π f(λ)mf(−λ)ndλ. Because

c(λ) is symmetric around zero and θ(λ) is anti-symmetric around zero, i.e. θ(−λ) = −θ(λ),
it follows that

c(λ)3 = (f(λ) + f(−λ))3 = f(λ)3 + 3f(λ)2f(−λ) + 3f(λ)f(−λ)2 + f(−λ)3.

Noting that the transfer function of S0t = εt is f(λ)0 = 1 and integrating both sides we find

σ2
0

2π

∫ π

−π
c(λ)3dλ = E(S3tS0t) + 3E(S2tS1t) + 3E(S1tS2t) + E(S0tS3t).

The left-hand side is given as −12σ2
0ζ3 in Lieberman and Phillips (2004, p. 478) and the

right-hand side is −12σ2
0κ3 from (65) and (72), which proves the result.
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(68): We find, using the expressions for Smt and (65), that E(M01TM11T ) is

σ−4
0 T−1

N+T∑
s,t=N+1

E(S0tS1tS
2
1s) = −T−1

N+T∑
s,t=N+1

E[εt

t−1∑
k=−∞

(t−k)−1εk

s−1∑
j=−∞

(s−j)−1εj

s−1∑
i=−∞

(s−i)−1εi].

The only contribution comes for t = j > k = i or t = i > k = j and therefore t < s. These
two contributions are equal, so we find, using s− k = s− t+ t− k,

2T−1

N+T∑
t=N+1

N+T∑
s=t+1

t−1∑
k=−∞

(t−k)−1(s−t)−1(s−k)−1 = 2T−1

N+T∑
t=N+1

N+T∑
s=t+1

t−1∑
k=−∞

[(t−k)−1+(s−t)−1](s−k)−2.

Next we introduce u = s− k [≥ 2] and v = t− k [1 ≤ v < u] and find

2

∞∑
u=2

u−1∑
v=1

[v−1 + (u− v)−1]u−2 = 4

∞∑
u=2

u−2

u−1∑
v=1

v−1 = 4κ3 = 4ζ3,

which proves (68).
(69): From S+

0s = εs, S+
1t = −

∑t−1−N
k=1 k−1εt−k = −

∑t−1
k=N+1(t − k)−1εk, and κ0t(d) =

πt−1(−d+ 1) we get

E〈S+
0 , κ0〉T 〈S+

1 , κ0〉T = σ−4
0

N+T∑
s,t=N+1

E(S+
0sκ0s(d)S+

1t(d)κ0t(d)

= −σ−2
0

∑
N+1≤s<t≤N+T

(t− s)−1πt−1(−d+ 1)πs−1(−d+ 1).

(70): For N = 0 we use Dπt−s(u)|u=0 = (t− s)−11{t−s≥1} and find the limit

∑
0≤s<t<∞

Dπt−s(u)|u=0πs(−d+ 1)πt(−d+ 1) =
∞∑
t=1

Dπt(−d+ 1 + u)|u=0πt(−d+ 1)

=

∞∑
t=1

D

(
d− 1− u

t

)
|u=0

(
d− 1

t

)
= −

(
2d− 2

d− 1

)
(Ψ(2d− 1)−Ψ(d))

using (48) and Lemma A.6. From (59) we find the limit of 〈κ0, κ0〉T .
(71): From (37) we find the representation in (71), where we have cancelled the factor

πN(−d+1)2. Note that
∑

N+1≤t≤N+T αN,t−1(−d+1)2 ≥ αN,N(−d+1)2 = 1 and αN,t(−d+1) =∏t
i=N+1(1− d/i)→ 1 for N →∞ and t ≥ N + 1, so that τN,T (d)→ T−1

∑
N≤s<t≤N+T−1(t−

s)−1 =
∑T−1

i=1 i
−1 − (T − 1)/T .

Lemma B.3 Suppose Assumption 1 holds. Then, for T →∞, it holds that {MmnT}0≤m,n≤3

are jointly asymptotically normal with mean zero, and some variances and covariances can
be calculated from (66), (67), and (68) in Lemma B.2. It follows that the same holds for
{M+

mnT}0≤m,n≤3 with the same variances and covariances.
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Proof of Lemma B.3. {MmnT}: We apply a result by Giraitis and Taqqu (1998) on limit
distributions of quadratic forms of linear processes. We define the cross covariance function

rmn(t) = E(Sm0Snt) = σ2
0(−1)m+n

∞∑
k=0

Dmπk(0)Dnπt+k(0)

and find r00(t) = σ2
01{t=0}, rm0(t) = σ2

0(−1)mDmπ−t(0)1{t≤−1}, and r0n(t) = σ2
0(−1)nDnπt(0).

For m,n ≥ 1 we find that |rmn(t)| is bounded for a small δ > 0 by

c
∞∑
k=1

(1 + log(t+ k))m−1(1 + log k)n−1(t+ k)−1k−1 ≤ c
∞∑
k=1

(t+ k)−1+δk−1+δ ≤ ct−1+3δ,

using the bound (t+ k)−1+δ ≤ k−2δt−1+3δ. Thus
∑∞

t=−∞ rmn(t)2 <∞, and joint asymptotic
normality of {MmnT}0≤m,n≤3 then follows from Theorem 5.1 of Giraitis and Taqqu (1998).
The asymptotic variances and covariances can be calculated as in (66), (67), and (68) in
Lemma B.2.
{M+

mnT}: We show that E(MmnT −M+
mnT )2 → 0. We find

MmnT −M+
mnT = σ−2

0 T−1/2

N+T∑
t=N+1

(S+
mtS

−
nt +S−mtS

+
nt +S−mtS

−
nt−E(S+

mtS
−
nt +S−mtS

+
nt +S−mtS

−
nt)),

(73)
and show that the expectation term converges to zero and that each of the stochastic terms
has a variance tending to zero.

T−1/2
∑N+T

t=N+1E(S+
mtS

−
nt + S−mtS

+
nt + S−mtS

−
nt) → 0: The first two terms are zero because

S+
mt and S

−
nt are independent. For the last term we find using (45) of Lemma A.4 that

|E(S−mtS
−
nt)| = σ2

0

∞∑
k=t−N

|Dmπk(0)Dnπk(0)| ≤ c
∞∑

k=t−N

k−2+δ ≤ c(t−N)−1+δ,

so that

T−1/2

N+T∑
t=N+1

E(S−mtS
−
nt) ≤ cT−1/2+δ → 0. (74)

V ar(T−1/2
∑N+T

t=N+1 S
+
mtS

−
nt) → 0: The first two terms of (73) are handled the same way.

We find because (S+
mt, S

+
ns) is independent of (S−mt, S

−
ns) that

V ar(T−1/2

N+T∑
t=N+1

S+
mtS

−
nt) = T−1

N+T∑
s,t=N+1

E(S+
mtS

−
ntS

+
msS

−
ns) = T−1

N+T∑
s,t=N+1

E(S+
mtS

+
ms)E(S−ntS

−
ns).

Then replacing the log factors by a small power, δ > 0, we find for |Dmπt−i(0)| ≤ c(t −
i)−1(1 + log(t− i))m ≤ c(t− i)−1+δ that

|E(S+
mtS

+
ms)| = |E(

t−1−N∑
i=1

Dmπt−i(0)εi

s−1−N∑
j=1

Dmπs−j(0)εj)| = σ2
0

min(s,t)−1−N∑
i=1

|Dmπt−i(0)Dmπs−i(0)|

≤ c

min(s,t)−1−N∑
i=1

(t− i)−1+δ(s− i)−1+δ.
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Now take s > t and evaluate (s− i)−1+δ = (s− t+ t− i)−1+δ ≤ (s− t)−1+3δ(t− i)−2δ and

|E(S+
mtS

+
ms)| ≤ c(s− t)−1+3δ

t−1−N∑
i=1

(t− i)−1−δ ≤ c(s− t)−1+3δ.

Similarly for

E(S−ntS
−
ns) = E(

N∑
i=−∞

Dnπt−i(0)εi

N∑
j=−∞

Dnπs−j(0)εj) = σ2
0

N∑
i=−∞

Dnπt−i(0)Dnπs−i(0)

we find

|E(S−ntS
−
ns)| ≤ c

N∑
i=−∞

(t− i)−1+δ(s− i)−1+δ = c

∞∑
i=−N

(t+ i)−1+δ(s+ i)−1+δ

≤ c(s− t)−1+3δ

∞∑
i=−N

(t+ i)−1−δ ≤ c(s− t)−1+3δ(t−N)−δ.

Finally, we can evaluate the variance as

V ar(T−1/2

N+T∑
t=N+1

S+
mtS

−
nt) ≤ cT−1

∑
N+1≤t<s≤N+T

(s− t)−1+3δ(t−N)−δ(s− t)−1+3δ

= cT−1

T−1∑
h=1

h−2+6δ

T−h∑
t=1

t−δ ≤ cT−1T 1−δ → 0.

V ar(T−1/2
∑N+T

t=N+1 S
−
mtS

−
nt)→ 0: The last term of (73) has variance

V ar(T−1/2

N+T∑
t=N+1

S−mtS
−
nt) = T−1E([

N+T∑
t=N+1

S−mtS
−
nt]

2)− T−1[
N+T∑
t=N+1

E(S−mtS
−
nt)]

2

and the first term is T−1
∑N+T

s,t=N+1E(S−mtS
−
ntS
−
msS

−
ns) which equals

T−1

N+T∑
s,t=N+1

N∑
i,j,k,p=−∞

E(Dmπt−i(0)εiD
nπt−j(0)εjD

mπs−k(0)εkD
nπs−p(0)εp).

There are contributions from E(εiεjεkεp) in four cases which we treat in turn.
Case 1, i = j 6= k = p: This gives the expectation squared, T−1[

∑N+T
t=N+1E(S−mtS

−
nt)]

2,
which is subtracted to form the variance.
Cases 2 and 3, i = k 6= j = p and i = p 6= j = k: These are treated the same way. We

find for Case 2 the contribution

A1 ≤ cT−1

N+T∑
s,t=N+1

∞∑
i=−N

(1 + log(t+ i))m(1 + log(s+ i))m(t+ i)−1(s+ i)−1

×
∞∑

j=−N
(1 + log(t+ j))n(1 + log(s+ j))n(s+ j)−1(t+ j)−1

≤ cT−1

N+T∑
s,t=N+1

[

∞∑
i=−N

(t+ i)−1+δ(s+ i)−1+δ]2 ≤ cT−1
∑

N+1≤t<s≤N+T

[

∞∑
i=−N

(t+ i)−1+δ(s+ i)−1+δ]2.
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We evaluate (s+ i)−1+δ = (s− t+ t+ i)−1+δ ≤ (s− t)−1+3δ(t+ i)−2δ so that

∞∑
i=−N

(t+ i)−1+δ(s+ i)−1+δ ≤
∞∑

i=−N
(s− t)−1+3δ(t+ i)−1−δ ≤ (s− t)−1+3δ(t−N)−δ

and hence

A1 ≤ cT−1
∑

N+1≤t<s≤N+T

(s− t)−2+6δ(t−N)−2δ = cT−1

T−1∑
h=1

h−2+6δ

T−h∑
t=1

t−2δ ≤ cT−1T 1−2δ → 0.

Case 4, i = j = p = k: This gives in the same way the bound

T−1

N+T∑
s,t=N+1

∞∑
i=−N

(t+ i)−2+δ(s+ i)−2+δ ≤ cT−1

∞∑
i=−N

[

N+T∑
t=N+1

(t+ i)−2−δ]2 ≤ cT−1

∞∑
i=1

i−2−2δ → 0.

We now apply the previous Lemmas B.1, B.2, and B.3, and find asymptotic results for
the derivatives DmL∗(d0).

Lemma B.4 Let the model for the data Xt, t = 1, . . . , N+T, be given by (4) and let Assump-
tions 1 and 2 be satisfied. Then the (normalized) derivatives of the concentrated likelihood
function L∗(d), see (12), satisfy

σ−2
0 T−1/2DL∗(d0) = A0 + T−1/2A1 +OP (T−1), (75)

σ−2
0 T−1D2L∗(d0) = B0 + T−1/2B1 +OP (T−1(log T )), (76)

σ−2
0 T−1D3L∗(d0) = C0 +OP (T−1/2), (77)

where

A0 = M+
01T , E(A1) = ξN,T (d0) + τN,T (d0), (78)

B0 = ζ2, B1 = M+
11T +M+

02T , (79)

C0 = −6ζ3. (80)

Here ξN,T (d0), τN,T (d0), and M+
mnT , are given in (21), (23), and (64), respectively, and

ζ2 = π2/6 and ζ3 ' 1.2021, see (16).
The (normalized) derivatives of L∗c(d), see (15), satisfy (75)—(77) and (79)—(80), but (78)

is replaced by
A0 = M+

01T , E(A1) = ξCN,T (d0), (81)

where ξCN,T (d0) is given by (22).

Proof of Lemma B.4. The concentrated sum of squared residuals is given in (12). We
note that the first term is OP (T ), and from Lemmas B.1 and B.2 the next is OP (1), so the
second term has no influence on the asymptotic distribution of d̂. However, for the bias we
need to analyze it further.
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We need an expression for the derivatives of the concentrated likelihood, i.e., DmL∗(d).
Recall L(d, µ) from (11) and denote derivatives with respect to d and µ by subscripts. Then
L∗(d) = L(d, µ(d)) and therefore

DL∗(d) = Ld(d, µ(d)) + Lµ(d, µ(d))µd(d)

D2L∗(d) = Ldd(d, µ(d)) + 2Ldµ(d, µ(d))µd(d) + Lµµ(d, µ(d))µd(d)2 + Lµ(d, µ(d))µdd(d),

but µ̂ is determined from Lµ(d, µ(d)) = 0, which implies Ldµ(d, µ(d))+Lµµ(d, µ(d))µd(d) = 0,
and hence

DL∗(d) = Ld(d, µ(d)), (82)

D2L∗(d) = Ldd(d, µ(d))− Ldµ(d, µ(d))2

Lµµ(d, µ(d))
. (83)

We find the derivatives for d = d0 and suppress the dependence on d0 in the following. Thus
κ0t = κ0t(d0) and κ1t = κ1t(d0), etc.
(75) and (78): We find from (52) that Dm∆d0

0 (Xt − µ) = S+
mt + ηmt − κmt(µ − µ0), and

therefore from (82),

σ−2
0 T−1/2DL∗ = σ−2

0 T−1/2

N+T∑
t=N+1

(S+
0t + η0t − (µ̂− µ0)κ0t)(S

+
1t + η1t − (µ̂− µ0)κ1t),

where µ̂−µ0 = µ̂(d0)−µ0 = (〈S+
0 , κ0〉T +〈η0, κ0〉T )/〈κ0, κ0〉T . Since E(XY ) = E(X)E(Y )+

Cov(X, Y ) and E(µ̂− µ0) = 〈η0, κ0〉T/〈κ0, κ0〉T we get

E(σ−2
0 T−1/2DL∗) = σ−2

0 T−1/2

N+T∑
t=N+1

(η0t −
〈η0, κ0〉T
〈κ0, κ0〉T

κ0t)(η1t −
〈η0, κ0〉T
〈κ0, κ0〉T

κ1t)

+ σ−2
0 T−1/2

N+T∑
t=N+1

Cov((S+
0t −
〈S+

0 , κ0〉T
〈κ0, κ0〉T

κ0t), (S
+
1t −
〈S+

0 , κ0〉T
〈κ0, κ0〉T

κ1t)).

The first term is T−1/2ξN,T , see (21). The second term is, using Cov(S+
0t, S

+
1t) = 0, see (65),

equal to T−1/2 times

− E〈S+
0 , κ0〉T 〈S+

0 , κ1〉T
〈κ0, κ0〉T

− E〈S+
1 , κ0〉T 〈S+

0 , κ0〉T
〈κ0, κ0〉T

+
E〈S+

0 , κ0〉2T 〈κ0, κ1〉T
〈κ0, κ0〉2T

= −〈κ0, κ1〉T
〈κ0, κ0〉T

− E〈S+
1 , κ0〉T 〈S+

0 , κ0〉T
〈κ0, κ0〉T

+
〈κ0, κ1〉T
〈κ0, κ0〉T

= −E〈S
+
1 , κ0〉T 〈S+

0 , κ0〉T
〈κ0, κ0〉T

= τN,T ,

see (69) and (23).
(76) and (79): The first term of T−1D2L∗ in (83) is analyzed below and is of the order of 1
and T−1/2. In the second term of (83) we find Lµµ(d0, µ(d0)) = σ2

0〈κ0, κ0〉T = O(1) and

Ldµ(d0, µ(d0)) = T−1

N+T∑
t=N+1

(S+
0t+η0t−(µ̂−µ0)κ0t)κ1t+T

−1

N+T∑
t=N+1

κ0t(S
+
1t+η1t−(µ̂−µ0)κ1t) = OP (1),
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and hence T−1Ldµ(d0, µ(d0))2/Lµµ(d0, µ(d0)) = OP (T−1) and can be ignored. Thus we get

σ−2
0 T−1D2L∗ = σ−2

0 T−1

N+T∑
t=N+1

(S+
1t + η1t − (µ̂− µ0)κ1t)

2

+ σ−2
0 T−1

N+T∑
t=N+1

(S+
0t + η0t − (µ̂− µ0)κ0t)(S

+
2t + η2t − (µ̂− µ0)κ2t) +OP (T−1).

By Lemma B.1 it holds that 〈ηm, ηn〉T = O(1) and 〈S+
m, ηn〉T = OP (1) such that

σ−2
0 T−1D2L∗ = σ−2

0 T−1

N+T∑
t=N+1

E(S+
1t)

2 + T−1/2(M+
11T +M+

02T ) +OP (T−1)

= ζ2 + T−1/2(M+
11T +M+

02T ) +OP (T−1(log T ))

using also (66) and (74).
(77) and (80): For the third derivative it can be shown that the extra terms involving
derivatives µd(d0) and µdd(d0) can be ignored and we find

σ−2
0 T−1D3L∗ = σ−2

0 3T−1

N+T∑
t=N+1

(S+
1t + η1t − (µ̂− µ0)κ1t)(S

+
2t + η2t − (µ̂− µ0)κ2t)

+ σ−2
0 T−1

N+T∑
t=N+1

(S+
0t + η0t − (µ̂− µ0)κ0t)(S

+
3t + η3t − (µ̂− µ0)κ3t) +OP (T−1)

= 3T−1/2M+
12T + 3σ−2

0 T−1

N+T∑
t=N+1

E(S+
1tS

+
2t) + T−1/2M+

03T +OP (T−1) = −6ζ3 +OP (T−1/2),

where the second-to-last equality uses Lemma B.1 and the last equality uses Lemmas B.2
and B.3, (67), and (74).
(81): For the function L∗c(d), see (15), we find

σ−2
0 T−1/2DL∗c = σ−2

0 T−1/2

N+T∑
t=N+1

(S+
0t + η0t − (C − µ0)κ0t)(S

+
1t + η1t − (C − µ0)κ1t),

with expectation given by

σ−2
0 T−1/2

N+T∑
t=N+1

(η0t − (C − µ0)κ0t)(η1t − (C − µ0)κ1t) + σ−2
0 T−1/2

N+T∑
t=N+1

Cov(S+
0t, S

+
1t)

= σ−2
0 T−1/2

N+T∑
t=N+1

(η0t − (C − µ0)κ0t)(η1t − (C − µ0)κ1t) = T−1/2ξCN,T (d0).

The remaining derivatives give the same results as for L∗. Notice that the two factors in the
sum in the score are independent so there is no term corresponding to τN,T .
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Appendix C Proofs of main results
C.1 Proof of Theorem 1

We first show that the likelihood functions have no singularities. When t ≥ N + 1 we can
use the decomposition πt−1(−d + 1) = πN(−d + 1)αN,t−1(−d + 1), see (37). We find in the
second term of L∗(d) in (12) that the factor πN(−d+ 1)2 cancels and

(
∑N+T

t=N+1(∆d
0Xt)κ0t(d))2∑N+T

t=N+1 κ0t(d)2
=

[
∑N+T

t=N+1(∆d
0Xt)αN,t−1(−d+ 1)]2∑N+T

t=N+1 αN,t−1(−d+ 1)2
.

This is a differentiable function of d because
∑N+T

t=N+1 αN,t−1(−d+ 1)2 ≥ αN,N(−d+ 1)2 = 1,
see (37). Note, however, that µ̂(d) has singularities at the points d = 1, 2, . . . , N .
We next discuss the estimator d̂. The proof for d̂c is similar, but simpler because in

that case µ̂(d) = C does not depend on d. The arguments generally follow those of JN
(2012a, Theorem 4) and Nielsen (2015, Theorem 1). To conserve space we only describe the
differences in detail.

C.1.1 Existence and consistency of the estimator

The function L∗(d) in (12) is the sum of squares of

∆d
0(Xt − µ̂(d)) = ∆d−d0

N εt + ηt(d)− (µ̂(d)− µ0)κ0t(d),

see (51), so that we need to analyze product moments of the terms on the right-hand side,
appropriately normalized. The deterministic term ηt(d) was analyzed under the assumption
of bounded initial values in JN (2012a, Lemma A.8(i)) as Dit(ψ) with b = d, i = k = 0, and
α0 = β0 = 0, where it was shown that

sup
−1/2−κ≤d−d0≤d̄−d0

|ηt(d)| → 0 and sup
d−d0≤d−d0≤−1/2−κ

max
1≤t≤T

|td−d0+1/2ηt(d)| → 0 as t→∞.

This shows that ηt(d) is uniformly smaller than ∆d−d0
N εt (appropriately normalized on the

intervals −1/2−κ ≤ d−d0 ≤ d̄−d0 and d−d0 ≤ d−d0 ≤ −1/2−κ), and is enough to show
that in the calculation of product moments we can ignore ηt(d), which will be done below.
The product moment of the stochastic term,

∑N+T
t=N+1(∆d−d0

N εt)
2, is analyzed in Nielsen

(2015) under Assumption 1 of finite fourth moment. Following that analysis, for some
0 < κ < 1/2 to be determined, we divide the parameter space into intervals where ∆d−d0

N εt is
nonstationary, “near critical”, or (asymptotically) stationary according to d− d0 ≤ −1/2−
κ, −1/2− κ ≤ d− d0 ≤ −1/2 + κ, or −1/2 + κ ≤ d− d0.
Clearly, d0 is contained in the interval −1/2 + κ ≤ d − d0, and we show that on this

interval the contribution from the second term in the objective function

RT (d) = T−1

N+T∑
t=N+1

(∆d−d0
N εt)

2 − T−1
[
∑N+T

t=N+1 ∆d−d0
N εtαN,t−1(1− d)]2∑N+T

t=N+1 αN,t−1(1− d)2

= T−1

N+T∑
t=N+1

(∆d−d0
N εt)

2 − T−1AT (d)2

BT (d)
, (84)
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say, is negligible. It then follows that the objective function is only negligibly different
from the objective function obtained without the parameter µ, see e.g. Nielsen (2015), and
existence and consistency of d̂ follows for the interval d− d0 ≥ −1/2 + κ.
The two intervals covering d − d0 ≤ −1/2 + κ require a more careful analysis, which is

given subsequently. Following the strategy of JN (2012a) and Nielsen (2015), we show that
for any K > 0 there exists a (fixed) κ > 0 such that, for these intervals,

P (inf RT (d) > K)→ 1 as T →∞. (85)

This implies that P (d̂ ∈ {d : d − d0 ≥ −1/2 + κ}) → 1 as T → ∞, so that the relevant
parameter space is reduced to {d : d− d0 ≥ −1/2 + κ} on which existence and consistency
has already been shown.

C.1.2 Tightness of product moments

We want to show that the remainder term, T−1AT (d)2/BT (d), in (84) is dominated by the
first term on various compact intervals. The function BT (d) is discussed below, and we want
to find the supremum of the suitably normalized product momentMT (d) = Tα+βd(log T )γAT (d)
by considering it a continuous process on a compact interval K; that is, we consider it a
process in C(K), the space of continuous functions on K endowed with the uniform topology.
The usual technique is then to prove that the process MT is tight in C(K), which implies
that also supd∈K |MT (d)| is tight, by the continuity of the mapping f 7→ supu∈K |f(u)|, that
is supd∈KMT (d) = OP (1).
Tightness of MT can be proved by applying Billingsley (1968, Theorem 12.3), which

states that it is enough to verify the two conditions

EMT (d0)2 ≤ c, (86)

E(MT (d1)−MT (d2))2 ≤ c(d1 − d2)2 for d1, d2 ∈ K. (87)

In one case we will also need the weak limit of the process MT , and in that case we apply
Billingsley (1968, Theorem 8.1), which states that if MT is tight then convergence of the
finite dimensional distributions implies weak convergence. Thus, instead of working with the
processes themselves, we need only evaluate their second moments and finite dimensional
distributions.
Specifically, by a Taylor series expansion of the coeffi cients we find

πm(d0 − d1)αN,t+m−1(1− d1)− πm(d0 − d2)αN,t+m−1(1− d2)

= −(d1 − d2){Dπm(d0 − d∗m,t)αN,t+m−1(1− d∗m,t) + πm(d0 − d∗m,t)DαN,t+m−1(1− d∗m,t)}
for some d∗m,t between d1 and d2. It follows that if d1 and d2 are in the interval K, then also
d∗m,t ∈ K, so that any uniform bound we find for EDMT (d)2 for d ∈ K will also be valid for
d∗m,t. This shows that to prove tightness of MT (d), it is enough to verify

sup
d∈K

EMT (d)2 ≤ c and sup
d∈K

E(DMT (d))2 ≤ c. (88)

C.1.3 Evaluation of product moments

We evaluate product moments on intervals of the form d ≥ 1/2− ξ or d ≤ 1/2− ξ, as well as
d− d0 ≥ −1/2− κ or d− d0 ≤ −1/2− κ. Some of these intervals may be empty, depending
on d and d̄, in which case the proof simplifies easily, so we proceed assuming all intervals are
non-empty.
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The product moment BT (d) =
∑N+T

t=N+1 αN,t−1(1− d)2. We first find that

inf
d≥0

BT (d) ≥ 1 (89)

because BT (d) ≥ αN,N(1− d) = 1.
Next there are constants c1, c2 such that

0 < c1 ≤ sup
d≤d≤1/2−ξ

T 2d−1BT (d) ≤ c2 <∞. (90)

This follows from (41) because

T 2d−1

N+T∑
t=N+1

αN,j(1− d)2 = (
N !

Γ(1− d+N)
)2T−1

N+T∑
t=N+1

(
t

T
)−2d(1 + ε2t(d)),

which converges uniformly in d ∈ [d, 1/2−ξ] to (N !/Γ(1−d+N))2/(1−2d) which is bounded
between c1 and c2 because 2ξ ≤ 1− 2d ≤ 1− 2d.
Finally,

inf
1/2−ξ≤d≤1/2+ξ

T 2d−1BT (d) ≥ c
1− ((N + 1)/T )2ξ

2ξ
, (91)

which again follows from (41) because (t/T )−2d ≥ (t/T )2ξ−1 which implies that

T 2d−1BT (d) ≥ cT−1

N+T∑
t=N+1

(
t

T
)2ξ−1 ≥ cT−2ξ

∫ T

N+1

u2ξ−1du = c
1− ((N + 1)/T )2ξ

2ξ
.

The product moment AT (d) =
∑N+T

t=N+1 ∆d−d0
N εtαN,t−1(1− d). We find that

AT (d) =
N+T∑
t=N+1

εtφN,t(d), φN,t(d) =
N+T−t∑
m=0

πm(d0 − d)αN,t+m−1(1− d).

From (38) and (39) we find |φN,t(d)| ≤ c
∑N+T−t

m=0 md0−d−1(t+m)−d, and

EAT (d)2 = σ2
0

N+T∑
t=N+1

φN,t(d)2 ≤ c

N+T∑
t=N+1

{
N+T−t∑
m=0

md0−d−1(t+m)−d}2,

while DAT (d) contains an extra factor log(m(t+m)).
We give in Table 2 the bounds for EAT (d)2 for various intervals and normalizations.

These follow from first using the inequalities (t + m)−d ≤ (t + m)−1/2+ξ when d ≥ 1/2 − ξ
and T d(m+ t)−d ≤ ((m+ t)/T )−1/2+ξ when d ≤ 1/2− ξ, and similarly for d− d0. We then
apply the result that

T−1

N+T∑
t=N+1

{T−1

N+T−t∑
m=0

(
m

T
)−1/2+κ(

t+m

T
)−1/2+ξ}2 = O(1)

because the left-hand side converges to
∫ 1

0
{
∫ 1−v

0
u−1/2+κ(u+ v)−1/2+ξdu}2dv.
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Table 2: Bounds for AT (d)
Second moment d d− d0 Upper bound on second moment Order
EAT (d)2 ≥ 1/2− ξ ≥ −1/2− κ

∑
(
∑
m−1/2+κ(t+m)−1/2+ξ)2 T 1+2ξ+2κ

ET 2dAT (d)2 ≤ 1/2− ξ ≥ −1/2− κ
∑

(
∑
m−1/2+κ( t+m

T
)−1/2+ξ)2 T 2+2κ

ET 2(d−d0+1)AT (d)2 ≥ 1/2− ξ ≤ −1/2− κ
∑

(
∑

(m
T

)−1/2+κ(t+m)−1/2+ξ)2 T 2+2ξ

ET 4d−2d0+2AT (d)2 ≤ 1/2− ξ ≤ −1/2− κ
∑

(
∑

(m
T

)−1/2+κ( t+m
T

)−1/2+ξ)2 T 3

Note: Uniform upper bounds on the normalized second moment of AT (d) for different restrictions on d and

d− d0. The bounds are also valid if we replace κ by −κ or ξ by −ξ.

Table 3: Bounds for CT,M(d)
Second moment d d− d0 Upper bound on second moment Order
ECT,M(d)2 ≥ 1/2− ξ ≥ −1/2− κ

∑
(
∑
m−1/2+κ(t+m)−1/2+ξ)2 M1+2κT 2ξ

ET 2dCT,M(d)2 ≤ 1/2− ξ ≥ −1/2− κ
∑

(
∑
m−1/2+κ( t+m

T
)−1/2+ξ)2 M1+2κT

Note: Uniform upper bounds on the normalized second moment of CT,M (d) for different restrictions on d

and d− d0.

The product moment CM,T =
∑N+T

t=N+M+1{
∑M−1

n=0 πn(d0 − d)εt−n}αN,t−1(1 − d). Now
we analyze another product moment, which we find by truncating the sum ∆d−d0

N εt =∑t−N−1
n=0 πn(d0 − d)εt−n at M = Tα for α < 1, and define

CT,M(d) =
N+T∑
t=N+2

εtψN,M,t(d), ψN,M,t(d) =

min(M−1,N+T−t)∑
m=max(N+M+1−t,0)

πm(d0−d)αN,t+m−1(1−d). (92)

The coeffi cients are the same as for AT (d), but the sum ψN,M,t(d) only contains at most M
terms. We give in Table 3 the bounds for the second moment of CT,M(d), which are derived
using the same methods as for AT (d).
We now apply the above evaluations to study the objective function in the three intervals

d− d0 ≥ −1/2 + κ,−1/2− κ ≤ d− d0 ≤ −1/2 + κ, and −1/2− κ ≤ d− d0.

C.1.4 The stationarity interval: {d− d0 ≥ −1/2 + κ} ∩ D
We want to show that

sup
{d−d0≥−1/2+κ}∩D

|T−1AT (d)2

BT (d)
| = oP (1),

and consider two cases because of the different behavior of BT (d).
Case 1: If d ≥ 1/2 − ξ we let K = {d ≥ 1/2 − ξ, d − d0 ≥ −1/2 + κ} ∩ D and use

(89) to eliminate BT (d) and focus on AT (d). From Table 2 we find using (ξ,−κ) that
supKE(T−1AT (d)2) = O(T 2ξ−2κ). For the derivative we get an extra factor log T in the
coeffi cients and find supKE(T−1(DAT (d))2) = O((log T )2T 2ξ−2κ).
It then follows from (86) and (87) that MT (d) = T−1/2+κ−ξ(log T )−1AT (d) is tight. Be-

cause convergence in probability and tightness implies uniform convergence in probability it
follows that

sup
d∈K

T−1AT (d)2 = OP (T−2κ+2ξ(log T )2) = oP (1) for ξ < κ.
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Case 2: If d ≤ 1/2− ξ we define K = {d ≤ 1/2− ξ, d− d0 ≥ −1/2 + κ} ∩ D. From (90)
we find that supKE(T−1AT (d)2/BT (d)) ≤ c supKE(T 2d−2AT (d)2). From Table 2 we then
find for (ξ,−κ) that supKE(T 2d−2AT (d)2) = O(T−2κ). For the derivative we get an extra
factor log T . Thus, supKE(DT d−1/2AT (d))2 = O((log T )2T−2κ) and (log T )−1T κT d−1AT (d)
is tight, so that

sup
d∈K
|T−1AT (d)2

BT (d)
| ≤ c sup

d∈K
T 2d−2AT (d)2 = OP ((log T )2T−2κ) = oP (1).

C.1.5 The critical interval: {−1/2− κ ≤ d− d0 ≤ −1/2 + κ} ∩ D
For this interval we show that (85) holds by setting κ suffi ciently small. As in JN (2012a)
and Nielsen (2015) we apply a truncation argument. With M = Tα, for some α > 0 to be
chosen below, let

∆d−d0
N εt =

M−1∑
n=0

πn(d0 − d)εt−n +
t−n−1∑
n=M

πn(d0 − d)εt−n = w1t + w2t, t ≥M +N + 1,

such that the objective function (84) is

RT (d) = T−1

N+T∑
t=N+1

(∆d−d0
N εt − αN,t−1(1− d)

AT (d)

BT (d)
)2 ≥ T−1

N+T∑
t=N+M+1

(w1t + vt)
2 , (93)

where vt = w2t − αN,t−1(1− d)AT (d)
BT (d)

. We further find that

RT (d) ≥ T−1

N+T∑
t=N+M+1

w2
1t + 2T−1

N+T∑
t=N+M+1

w1tw2t − 2T−1CT,M(d)
AT (d)

BT (d)
, (94)

where CT,M(d) is given by (92). The first two terms in (94) are analyzed in Nielsen (2015),
where it is shown that by setting κ suffi ciently small, the first term can be made arbitrarily
large while the second is oP (1), uniformly on |d−d0 +1/2| ≤ κ1 for some fixed κ1 > κ. Thus
it remains to be shown that the third term of (94) is asymptotically negligible, uniformly on
the critical interval, that is,

sup
|d−d0+1/2|≤κ1

|T−1CT,M(d)
AT (d)

BT (d)
| = oP (1).

We consider two cases depending on d.
Case 1: Let K = {1/2− ξ ≤ d,−1/2−κ1 ≤ d−d0 ≤ −1/2 +κ1}∩D. From (89) we have

BT (d)−1 ≤ 1 and from Table 2 we find for (ξ, κ1) that supKEAT (d)2 = O(T 1+2κ1+2ξ) and
supKE(DAT (d))2 = O((log T )2T 1+2κ1+2ξ) such that supK |AT (d)| = OP ((log T )T 1/2+κ1+ξ).
From Table 3 for (ξ, κ1) we then find supKECT,M(d)2 = O(M1+2κ1T 2ξ) = O(Tα(1+2κ1)+2ξ)

and also supKE(DCT,M(d))2 = O((log T )2M1+2κ1T 2ξ) = O((log T )2Tα(1+2κ1)+2ξ), such that
supK |CT,M(d)| = OP ((log T )Tα(1/2+κ1)+ξ). This shows that

sup
d∈K
|T−1CT,M(d)

AT (d)

BT (d)
| = OP ((log T )2Tα(1/2+κ1)−(1/2−κ1−2ξ)) = oP (1)
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for α < (1/2− κ1 − 2ξ)/(1/2 + κ1).
Case 2: Let K = {d ≤ 1/2 − ξ,−1/2 − κ1 ≤ d − d0 ≤ −1/2 + κ1} ∩ D. From (90)

we find supK |T 1−2dBT (d)−1| ≤ c, and we find from Table 2 that supKE(T d−1AT (d))2 =
O(T 2κ1) and therefore supKE(DT d−1AT (d))2 = O((log T )2T 2κ1). From Table 3 we get
supKE(T d−1CT,M(d))2 = O(M1+2κ1T−1) = O(Tα(1+2κ1)−1) and supKE(DT d−1CT,M(d))2 =
O((log T )2M1+2κ1T−1) = O((log T )2Tα(1+2κ1)−1). Hence

sup
d∈K
|T−1CT (d)

AT (d)

BT (d)
| = OP ((log T )2Tα(1/2+κ1)−(1/2−κ1)) = oP (1)

for α < (1/2− κ1)/(1/2 + κ1).

C.1.6 The nonstationarity interval: {d− d0 ≤ −1/2− κ} ∩ D
We give different arguments for different intervals of d, and we distinguish three cases.
Case 1: Let K = {1/2+ξ ≤ d, d−d0 ≤ −1/2−κ}∩D. For this interval the main term of

RT (d) in (84) has been shown by Nielsen (2015) to satisfy (85), and it is suffi cient to show,
with the normalization relevant to the nonstationarity interval, that

sup
d∈K

T 2(d−d0)AT (d)2

BT (d)
= oP (1). (95)

We use (89) to evaluateBT (d)−1 ≤ 1 and find fromTable 2 for (−ξ, κ) that supKE(T 2(d−d0)AT (d)2) =
O(T−2ξ) so that E(DT d−d0AT (d))2 = O((log T )2T−2ξ), which shows that

sup
d∈K

T 2(d−d0)AT (d)2

BT (d)
= OP ((log T )2T−2ξ) = oP (1).

Case 2: Let K = {1/2− ξ ≤ d ≤ 1/2 + ξ, d− d0 ≤ −1/2− κ} ∩D. Again the main term
of RT (d) in (84) has been shown by Nielsen (2015) to satisfy (85), and we therefore want to
show that

sup
d∈K
|T 2(d−d0)AT (d)2

BT (d)
| ≤ supd∈K T

2(d−d0)T 2d−1AT (d)2

infd∈K |T 2d−1BT (d)| = OP (1), (96)

but can be made arbitrarily small by choosing ξ suffi ciently small.
It follows from (91) that the denominator T 2d−1BT (d) of (96) can be made arbitrarily

large by choosing ξ suffi ciently small, because (1 − ((N + 1)/T )2ξ)/2ξ → log(T/(N + 1))
for ξ → 0. We next prove that the numerator of (96) is uniformly OP (1), which proves the
result for Case 2. From Table 2 for (κ, ξ) we find supKE(T 2(d−d0)T 2d−1AT (d)2) = O(1). The
derivative of T d−d0T dφN,t(d) is bounded by

T−1

N+T−[Tv]∑
m=N+1

(
m

T
)d0−d−1(

[Tv] +m

T
)−d log(

m

T
(
m+ [Tv]

T
)),

which converges to
∫ 1−v

0
ud0−d−1(v + u)−d log(u(u + v))du < ∞ for d ∈ K. Thus no extra

log T factor is needed in this case, and we find that T d−d0T d−1/2AT (d) is tight, which proves
that supK |T d−d0T d−1/2AT (d)| = OP (1).
Case 3: Finally, we assume d ≤ d ≤ 1/2 − ξ and d − d0 ≤ d − d0 ≤ −1/2 − κ. We

note that on this set the term T 1−2dBT (d)−1 is uniformly bounded and uniformly bounded
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away from zero, see (90), so we factor it out of the objective function. We thus analyze the
objective function

R∗T (d) = T 2d−2

N+T∑
t,s=N+1

(
(∆d−d0

N εt)
2αN,s−1(1− d)2 − (∆d−d0

N εs)αN,s−1(1− d)(∆d−d0
N εt)αN,t−1(1− d)

)
.

The most straightforward approach would be to obtain the weak limit of T 2(d−d0+1/2)R∗T
from the weak convergence of T d−d0+1/2∆d−d0

N εt on d− d0 ≤ 1/2−κ and the uniform conver-
gence of T dαN,[Tu]−1(1−d)→ N !

Γ(1−d+N)
u−d. However, the former would require the existence

of E|εt|q for q > 1/(d − d0 − 1/2) ≥ 1/κ with κ arbitrarily small, see JN (2012b), which
we have not assumed in Assumption 1. We therefore introduce ∆d−d0−1

N εt, the cumula-
tion of ∆d−d0

N εt, to increase the fractional order suffi ciently far away from the critical value
d − d0 = −1/2, so the number of moments needed is q > 1/(1 + κ). To this end we first
prove the following.

Lemma C.1 Let at, bt, t = 1, . . . , T , be real numbers and At =
∑t

s=1 as, Bt =
∑t

s=1 bs. Then

2

T (T − 1)

T∑
t,s=1

(a2
t b

2
s − atbsasbt) ≥ (

2

T (T − 1)

T−1∑
t=1

(btAT − btAt − bt+1At))
2.

Proof. We first find
T∑
t=1

T∑
s=1

(a2
t b

2
s − atbsasbt) =

∑
1≤s<t≤T

(a2
t b

2
s + a2

sb
2
t − 2atbsasbt) =

∑
1≤s<t≤T

(atbs − asbt)2.

The proof is then completed by using the Cauchy-Schwarz inequality,

(
2

T (T − 1)

∑
1≤s<t≤T

(atbs − asbt))2 ≤ 2

T (T − 1)

∑
1≤s<t≤T

(atbs − asbt)2,

together with
∑

1≤s<t≤T (atbs − asbt) =
∑T−1

s=1 bs(AT − As)−
∑T

t=2 btAt−1.
Applying Lemma C.1 to T 2−2d 2

T (T−1)
R∗T (d) we find that for at = ∆d−d0

N εt and bt =

αN,t−1(1− d) it holds that R∗T (d) ≥ 2T 2(d0−d)−1QT (d)2 where

QT (d) = T 2d−d0−1/2T−1

N+T−1∑
t=N+1

(αN,t−1(1−d)(∆d−d0−1
N εN+T−1)−(αN,t−1(1−d)+αN,t(1−d))(∆d−d0−1

N εt)).

(97)
Following the arguments in JN (2012a) and Nielsen (2015), we show that QT (d) converges
weakly (in the space of continuous functions of d) to a random variable that is positive
almost surely.
Let K = {d − d0 − 1 ≤ −3/2 − κ, d ≤ −1/2 − ξ} ∩ D. Assumption 1 ensures that we

have enough moments, q > max(2, 1/(1+κ)), to apply the fractional functional central limit
theorem, e.g. Marinucci and Robinson (2000, Theorem 1), and find for each d ∈ K that

T dαN,[Tu]−1(1−d)T d−d0−1/2∆d−d0−1
N ε[Tu] ⇒

N !

Γ(N + 1− d)
u−dWd0−d(u) as T →∞ on D[0, 1],
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where “⇒”denotes weak convergence andWd0−d(u) = (Γ(d0−d+ 1))−1
∫ u

0
(u− s)d0−ddW (s)

denotes fractional Brownian motion (of type II) and W denotes Brownian motion generated
by εt.
Because the integral is a continuous mapping of D[0, 1] to R it holds that

QT (d)⇒ Q(d) =
N !

Γ(N + 1− d)

∫ 1

0

u−d(Wd0−d(1)− 2Wd0−d(u))du as T →∞ (98)

for any fixed d ∈ K. We can establish tightness of the continuous processQT (d) by evaluating
the second moment, using the methods above. For all terms we see that it has the same
form as AT (d) except that (d − d0, d) is replaced by (d − d0 − 1, d) and hence the result
follows as the results for AT (d). This establishes tightness of QT (d) and hence strengthens
the convergence in (98) to weak convergence in the space of continuous functions of d on K
endowed with the uniform topology.
It thus holds that

inf
d∈K

R∗T (d) ≥ 2 inf
d∈K

T 2(d0−d)−1QT (d)2 + oP (1) ≥ 2T 2κ inf
d∈K

QT (d)2 + oP (1),

where infd∈KQT (d)2 > 0 almost surely and κ > 0. It follows that, for any K > 0,

P (inf
d∈K

R∗T (d) > K)→ 1 as T →∞,

which shows (85) and hence proves the result for Case 3.

C.1.7 Asymptotic normality of the estimator

To show asymptotic normality of d̂ we apply the usual expansion of the score function,

0 = DL∗(d̂) = DL∗(d0) + (d̂− d0)D2L∗(d∗),

where d∗ is an intermediate value satisfying |d∗ − d0| ≤ |d̂− d0|
P→ 0. The product moments

in D2L∗(d) are shown in JN (2010, Lemma C.4) and JN (2012a, Lemma A.8(i)) to be
tight, or equicontinuous, in a neighborhood of d0, so that we can apply JN (2010, Lemma
A.3) to conclude that D2L∗(d∗) = D2L∗(d0) + oP (1), and we therefore analyze DL∗(d0)
and D2L∗(d0). From Lemma B.4 we find that σ−2

0 T−1/2DL∗(d0) = M+
01T + OP (T−1/2) and

σ−2
0 T−1D2L∗(d0) = ζ2 +OP (T−1/2) = π2/6+OP (T−1/2), and the result follows from Lemmas
B.2 and B.3.

C.2 Proof of Theorem 2

First we note that, as in the proof of Theorem 1 in Appendix C.1.7, we can apply JN (2010,
Lemma A.3) to conclude that D3L∗(d∗) = D3L∗(d0) + oP (1). We thus insert the expressions
(75), (76), and (77) into the expansion (17) and find

T 1/2(d̂− d0) = −A0 + T−1/2A1

B0 + T−1/2B1

− 1

2
T−1/2(

A0 + T−1/2A1

B0 + T−1/2B1

)2 C0

B0 + T−1/2B1

+ oP (T−1/2),

which, using the expansion 1/(1 + z) = 1− z + z2 + . . ., reduces to

T 1/2(d̂− d0) = −A0

B0

− T−1/2(
A1

B0

− A0B1

B2
0

+
1

2

A2
0C0

B3
0

) + oP (T−1/2).



Initial values in CSS estimation of fractional models 37

We find that E(A0) = E(M+
01T ) = 0, so the bias of T (d̂− d0) is, from (78)—(80),

− (
E(A1)

B0

− E(A0B1)

B2
0

+
1

2

E(A2
0)C0

B3
0

) + o(1) (99)

= −(
ξN,T (d0) + τN,T (d0)

ζ2

− E(M+
01T (M+

11T +M+
02T )) + 3E(M+2

01T )ζ3ζ
−1
2

ζ2
2

) + o(1).

From Lemma B.2,

E(M+
01T (M+

11T +M+
02T )) + 3E(M+2

01T )ζ3ζ
−1
2 = −4ζ3 − 2ζ3 + 3ζ3 = −3ζ3,

see (66)—(68), so that we get the final result −(ξN,T (d0) + τN,T (d0) + 3ζ3ζ
−1
2 )ζ−1

2 + o(1).
For the estimator d̂c we get the expansion (99), but use (81) instead of (80).

C.3 Proof of Corollary 1

We suppress the argument d and want to evaluate ξN,T and ξCN,T , see (21) and (22). From
(57) and (58) we find that 〈η0, η1〉T , 〈η0, κ1〉T , 〈η1, κ0〉T , and 〈κ1, κ0〉T are all bounded by
(1 + N)−min(d,2d−1)+ε, which shows the result for ξCN,T . To find the result for ξN,T , it only
remains to be shown that 〈η0, κ0〉T/〈κ0, κ0〉T is bounded. We find from (62) that |η0t(d)| ≤
c
∑N0−1

j=0 |πt+j(−d)|. We apply (37) and note that, for a given d and t > N > d, the

coeffi cients πt+j(−d) = πN(−d)αN,t+j(−d) = πN(−d)
∏t+j

i=N+1(1 − (d + 1)/i) are all of the
same sign for j ≥ 0. If this is positive, we have, see (47),

N0−1∑
j=0

|πt+j(−d)| ≤
∞∑
j=0

πt+j(−d) = −πt−1(−d+ 1) > 0

because t − 1 ≥ N , and a similar relation holds if the coeffi cients are negative. Thus,
|η0t(d)| ≤ c|κ0t(d)| and therefore

|〈η0, κ0〉T | = σ−2
0 |

N+T∑
t=N+1

η0t(d)κ0t(d)| ≤ cσ−2
0

N+T∑
t=N+1

κ0t(d)2 = c〈κ0, κ0〉T .

C.4 Proof of Theorem 3

(i): We note that, because t ≥ N + 1, we have κ0t(d) = πt−1(−d + 1) = 0 for d = 1, . . . , N .
Similarly, because t+ n ≥ N + 1 for n ≥ 0, we have

η0t(d) =

N0−1∑
n=0

πt+n(−d)(µ0 −X−n) = 0 for d = 0, 1, . . . , N + 1,

and hence 〈η0, η1〉T = 〈η0, κ1〉T = 〈η1, κ0〉T = 〈κ1, κ0〉T = 0 for d = 1, . . . , N . This implies
that ξN,T and ξCN,T are zero.
(ii): Next assume d = 1. The case with N ≥ 1 is covered by part (i), so we only need to show
the result for N = 0. For N = 0 we have κ0t (1) = πt−1(0) = 1(t=1) and κ1t(1) = −Dπt−1(0) =

−(t − 1)−11{t−1≥1}, see (44). From (18) we find η0t(1) =
∑0

n=−N0+1 1(t−n=1)(Xn − µ0) =
1(t=1)(X0 − µ0), whereas η1t(1) is non-zero only for t ≥ 2 because otherwise the summation
over k in (19) is empty. Thus, η0t(1) and κ0t(1) are non-zero only if t = 1, but η1t(1) and
κ1t(1) are non-zero only if t ≥ 2, and therefore ξC0,T (1) = ξ0,T (1) = 0.
(iii): From (37) it follows that αN,t(−d+ 1)|d=N+1 =

∏t
i=N+1(i−N − 1)/i = 0 for t ≥ N + 1

and therefore (71) shows that τN,T (d) = 0 for d = N + 1.
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C.5 Proof of Theorem 4

(27): For N0 = 0 we find from (18) that η0t(d0) =
∑−1

n=0 πt+n(−d0)(µ0−X−n) = 0, and that
is enough to show that ξN,T (d0) = 0, see (21).
(28) and (29): We also find for η0t(d0) = 0 that ξCN,T (d0) simplifies to

ξCN,T (d0) = σ−2
0

N+T∑
t=N+1

(−(C−µ0)κ0t)(η1t−(C−µ0)κ1t) = −(C−µ0)(〈κ0, η1〉T−(C−µ0)〈κ0, κ1〉T ).

(30): The result follows from (27) and (70).
(31): If further N = 0, then both summations over n in (19) are empty, and hence zero,
such that η1t(d0) = 0. It then follows from (28) that ξCN,T (d0) = (C − µ0)2〈κ0, κ1〉T , which
can be replaced by its limit, see (59).
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