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1 Introduction

Whether by chance or by design, actions and scientific experiments sometimes result in

consequences that, prior to their discovery, were unimaginable or, for lack of appropriate

language, indescribable. Examples include the discovery of HIV and the discovery of the

structure of DNA. Habituation to such consequences is an important aspect of human

experience, and the anticipation of additional such discoveries shapes our future outlook,

manifesting itself in our choice behavior.

In this paper, which builds on Karni and Vierø (2013, 2015), we propose a choice-based

theory that captures a decision maker’s anticipation of becoming aware of consequences

that she is currently unaware of and analyze its behavioral implications. Our presumptions

are that although a decision maker cannot know what it is that she does not know, she

can entertain the belief that there are unimaginable aspects of the universe yet to be

discovered, and that this belief manifests itself in her choice behavior. Because we adhere

to the revealed preference methodology, we require that the decision maker’s choice set

consists only of objects that are well-defined given her level of awareness. In other words,

when uncertainty resolves, it must be possible to meaningfully settle any bet or trade that

the decision maker may have engaged in.

The main thrust of Karni and Vierø (2013, 2015) is the evolution of decision makers’

beliefs as they become aware of new acts, consequences, and the links among them. In

these models, however, decision makers can be interpreted as being myopic, believing

themselves, at every stage, to be fully aware of the scope of their universe. Formally, in these

models, decision makers act as if they consider the state space that resolves the uncertainty

associated with the feasible courses of action and consequences of which they are aware,

to be a sure event. Consequently, even though it happened before, decision makers fail to

anticipate the possibility of discoveries that would require expansions of the state space.

In a major break with our earlier work, this paper extends the analytical framework to

incorporate decision makers’ awareness of their potential ignorance, and the anticipation

that actions may reveal consequences that were unspecified in the original formulation of

the decision problem. The resulting state space is partitioned into a set of fully describable

states and a set of states that are only partially describable or nondescribable. By contrast,

in our earlier work the state space consisted solely of fully describable states. We discuss

this issue in further details in section 2.1, following the construction of the state space, and
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again in section 3.1, where we illustrate how the predictions of choice behavior of the two

models might differ.

This work also departs from the analytical framework we employed before in a dif-

ferent respect. Specifically, in Karni and Vierø (2013, 2015) the state space, constructed

from finite sets of feasible acts and consequences, is finite, and the choice set consisted

of conceivable Anscombe-Aumann (1963) acts, (that is, mappings from the state space to

the set of lotteries on the feasible consequences). This formulation is based on the tacit

assumption that the decision maker can conceive of acts whose state-contingent payoffs are

lotteries on the set of feasible consequences. While analytically convenient, this construc-

tion is not entirely satisfactory. If lotteries on feasible consequences instead of the feasible

consequences themselves are used to construct the state space then, by construction, the

state space is infinite. This would complicate the analysis. To avoid the aforementioned

inconsistency and, at the same time, to maintain the finiteness of the state space, in this

work we redefine conceivable acts to be functions from states to feasible consequences. We

then assume that decision makers can imagine choosing among conceivable acts randomly.

Hence, the choice space is the set of probability distributions over the conceivable acts,

dubbed mixed conceivable acts.

Within the new analytical framework we develop an axiomatic model of choice under

uncertainty and analyze the behavioral implications of a decision maker’s awareness of her

unawareness. The sense that there might be consequences, lurking in the background, of

which one is unaware may inspire fear or excitement, thereby affecting individual choice

behavior. Our model assigns utility to the unknown consequences, thereby capturing the

decision maker’s attitude toward the discovery of unknown, or indescribable, consequences

and the emotions it evokes. For instance, if the predominant emotion evoked by the

unknown is fear, then confidence that one is unlikely to encounter unknown consequences

would beget boldness of action while the lack of it would induce more prudent behavior.

To represent the attitude toward unawareness, we need to enrich the framework of Karni

and Vierø (2013, 2015). In particular, because we require that bets should be possible to

settle once uncertainty resolves, decision makers cannot meaningfully form preferences

over acts that assign indescribable consequences to fully describable states. Therefore, to

represent the attitudes toward indescribable consequences, we expand the set of conceivable

acts to include acts that assign, to partially describable states only, consequences that will

be discovered if these states obtain. The resulting model is a generalization of subjective
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expected utility with an extra parameter that captures the decision maker’s “utility of the

unknown.” Comparing two decision makers, the one with the higher value of this utility

of the unknown exhibits excitement, or optimism, toward the unknown, relative to the

decision maker with the lower value, which reflects fear, or pessimism. The representation

thus allows us to explicitly and formally express this attitude toward the unknown.

Another main thrust of this work is the analysis of the evolution of the decision maker’s

beliefs about her ignorance in the wake of the discovery of new consequences. We show

that, with respect to such discoveries, the model of reverse Bayesian updating of Karni

and Vierø (2013) is a special case of the present one. Furthermore, depending on the

nature of the discoveries, the sense of ignorance, or the ‘residual’ unawareness, may shrink,

grow, or remain unchanged. For instance, as unsuspected regions of the Earth or the solar

system were discovered, fewer regions remained to be explored, and the sense of ignorance

diminished. By contrast, some scientific discoveries, such as atoms or the structure of the

DNA, resolved certain outstanding issues in physics and biology and, at the same time,

opened up new vistas. These discoveries enhanced the sense that our ignorance is, in fact,

greater than what was previously believed. Our model is designed to accommodate all the

aforementioned possibilities of evolution of the sense of ignorance.

On a more mundane level, decision makers are routinely confronted with the need to

make decisions in specific situations. For example, a decision maker about to embark on

a trip must choose a means of transportation to get from here to there, or, following a

diagnosis of illness, a decision maker must decide which treatment to seek. It is natural to

approach such decisions by identifying the relevant courses of action and the outcomes that

these actions may produce. It might happen, however, that due to lack of imagination or

insufficient attention, the chosen course of action results in an outcome that the decision

maker has failed to consider. Therefore, when facing a specific decision, a decision maker

worries that she might fail to take into account all the relevant outcomes. The awareness

that an outcome that should have been considered is, inadvertently, neglected, bears re-

semblance to awareness of unawareness and it similarly affects individual choice behavior.

We discuss this similarity between awareness of unawareness and “small worlds” in further

detail in the concluding remarks.

In the next section we present the analytical framework. In section 3, we present a

subjective expected utility theory that captures the anticipated discovery of indescribable

consequences. In section 4, we introduce additional axioms linking distinct levels of un-
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awareness and a representation theorem that captures the evolution of a decision maker’s

beliefs in the wake of new discoveries. In section 5, we discuss a number of points, includ-

ing small worlds, the evolution of beliefs, the behavioral manifestations of awareness of

unawareness, the implications of applying our approach to defining “unknown unknowns”

to the standard subjective expected utility models, and the related literature. The proofs

are collected in the Appendix.

2 The Analytical Framework

In Karni and Vierø (2013, 2015), we modeled and analyzed the evolution of a decision

maker’s beliefs when her universe, formalized as a state space, expands in the wake of

discoveries of new actions and/or consequences.1 In this work, our investigation focuses on

the effects of anticipating the discovery of unexpected consequences on a decision maker’s

choice behavior, and on the evolution of her beliefs and her sense of ignorance following

such discoveries. In view of the differences in both the nature of the discoveries and the

evolution of the state space, we leave the investigation of the anticipation of discovery of

new feasible actions for future work.

The prospect of discovering consequences which the decision maker is unaware of and

the sentiments, such as fear or excitement, that it evokes, presumably affects her choice

behavior. Our first goal is to obtain a representation of preferences that assigns utility to

unspecified consequences that may not even exist. The utility of unimaginable consequences

represents the decision maker’s emotions evoked by the prospect of their discovery.

2.1 Conceivable states and the objects of choice

Let A be a finite, nonempty, set of basic actions with generic element a, and C be a

finite, nonempty, set of feasible consequences with generic element c. The elements of

C are consequences that the decision maker is aware of. The key innovation compared

to Karni and Vierø (2013, 2015) is that the decision maker may also entertain the idea

that there might be consequences, of which she is unaware, that are unimaginable. We

define x = ¬C to be the abstract “consequence” that has the interpretation “none of the
1The state space evolves differently depending on whether a new action or a new consequence is discov-

ered. For details, see Karni and Vierø (2013).
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above.” There may, in fact, be one consequence, any finite number, or an infinite number

of consequences that the decision maker is unaware of, or no such consequence at all. The

abstract consequence x captures all of these possibilities.2 Ex ante, the decision maker

cannot know which of these is true.3 Let Ĉ = C ∪ {x}, which we will refer to as the

set of extended consequences, with generic element ĉ. Together these sets determine the

augmented conceivable state space, defined as

ĈA := {s : A→ Ĉ}.

That is, the augmented conceivable state space is the set of all functions from A to Ĉ

and is, by definition, exhaustive.4 The sets A and C also determine the subset of fully

describable conceivable states, CA := {s : A→ C}.
To illustrate, consider the following situation: there are two different medications,

designed to treat the same health problem, that must be taken regularly. For simplicity

suppose that each medication can lead to one of two known outcomes, success and failure

(e.g., reducing the cholesterol level below a target threshold). Suppose that one of the

medications has been used for some time, while the second medication was just approved

but tests show it to be more effective. Each of the medications might have long-term,

unforeseen, side effects that will not be known for some time. We can describe the situation

as follows: Corresponding to the two medications there are two basic actions, A = {a1, a2},
and corresponding to the two known possible outcomes there are two feasible consequences,

C = {c1, c2}. The unknown possible side-effects are denoted by x. The resulting augmented

conceivable state space consists of nine states as depicted in the following matrix:
2In section 4 we discuss the evolution of the decision maker’s beliefs about the likelihood of the sets of

partially-describable and nondescribable states. These beliefs are represented by a subjective probability

distribution representing how likely the decision maker finds it that consequences she is currently unaware

of will be discovered. One interpretation of this likelihood is that it reflects the decision maker’s beliefs

about the size of the set of consequences of which she is unaware.
3Machina (2003) mentions the possibility of capturing the anticipation of the unexpected by specifying

a catch-all state, with a label like “none of the above.” Unlike our approach, according to which “none of

the above” refers to unspecified consequences, Machina applies the term to unspecified states.
4This method of constructing the state space from the primitive sets of feasible acts and consequences

appears in Schmeidler and Wakker (1987) and Karni and Schmeidler (1991). It was used in Karni and Vierø

(2013, 2015). The idea was also discussed in the philosophical literature (see Stalnaker [1972], Gibbard

and Harper [1978]). The augmentation due to “none of the above” is specific to the present paper.
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A \ S s1 s2 s3 s4 s5 s6 s7 s8 s9

a1 c1 c2 c1 c2 x x c1 c2 x

a2 c1 c1 c2 c2 c1 c2 x x x

(1)

The subset of fully describable conceivable states in this example is CA = {s1, ..., s4}.
The situation described in this example can be used to highlight the difference between

the present model and the model of Karni and Vierø (2013). In our earlier work there is

no analogue of x. Thus, the only consequences that the decision maker can conceive of are

c1 and c2. Therefore, the state space that represents her conception of the world consists

of the subset of fully describable states (in this example that is CA = {s1, ..., s4}). In other

words, despite her past experience, which includes discoveries of consequences of which

she was unaware, the decision maker believes that her current conception of the universe

is complete and fully describable. The model excludes the analysis of choice behavior

of decision makers who, having repeatedly learned that their conception of the possible

consequences of their actions was incomplete, anticipate future discoveries of inconceivable

consequences. In section 3.1 below we pursue this comparison and show that the two

models might yield opposite predictions.

Define the set of conceivable acts, F , to be the set of all the mappings from the aug-

mented conceivable state space to the set of feasible consequences.5 Formally,

F := {f : ĈA → C}. (2)

Because conceivable acts are functions whose domain is the state space, adding them to

the list of acts does not require further expansion of the state space. In other words, once

the state is known, all uncertainty regarding the outcome of a conceivable act is resolved

and no new states are created. By contrast, if a new basic action is either designed or

discovered then, by definition, it assigns all the consequences to each state in ĈA. Thus,

each state in ĈA becomes an event in the newly defined state space. Consider the example

in which there are two basic actions and two feasible consequences. If a new basic action is

discovered, the state (ci, cj) becomes the event {(ci, cj , c1) , (ci, cj , c2) , (ci, cj , x)}, i, j = 1, 2.

5Note that the definition of conceivable acts in the present paper differs from the definition of conceivable

acts in Karni and Vierø (2013, 2015). In our previous work, conceivable acts were functions from conceivable

states to lotteries over consequences (i.e., Anscombe-Aumann (1963) acts). For the reasons discussed in

the introduction, the approach taken here is more satisfactory.
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That is, because the payoff of the new basic action in this prior state can be c1, c2 , or x, a

new basic action means that the prior state (ci, cj) no longer resolves the uncertainty. By

contrast, the states (ci, cj) , i, j = 1, 2, completely resolves the uncertainty regarding the

payoff of the new conceivable acts.6

By definition, the payoffs of the conceivable acts are restricted to feasible consequences

(that is, their range does not include x). Because we adhere to the revealed preference

methodology, we require that, for a given level of awareness, acts must be meaningfully

described and their consequences effectuated once the uncertainty is resolved. Thus, if one

must be able to effectuate the consequences specified by conceivable acts once uncertainty

is resolved, then the specification in (2) is the most general possible. Including the abstract

consequence “none of the above,” or x, in the range of the conceivable acts would create

a conceptual problem in fully describable states (e.g., the states s1, ..., s4 in the example

in matrix (1)). In these states, x remains abstract, so a conceivable act that pays off x

cannot be settled in those states and is, therefore, meaningless. While the decision maker

could potentially describe such acts (as we just did), it is too farfetched to suppose that

she could express preferences over them. Since the range of the basic actions includes x,

the set F of conceivable acts does not include the basic actions.

The argument in the preceding paragraph only applies if we restrict the set of acts to

maps whose range is the same set of consequences in all states. Without this restriction,

we can expand the set of acts that preferences can meaningfully be expressed over. In

particular, in states whose partial or complete descriptions include x, this abstract con-

sequence takes a concrete meaning ex post, and conceivable acts that pay off x in one or

more of these states can be settled. In the above example, with the state space depicted

in (1), an act that assigns a consequence, which is neither c1 nor c2 and which will be

discovered in the event {s5, ..., s9}, to one or more of the states s5, . . . , s9, is well-defined.

In other words, the decision maker can promise to deliver a newly discovered consequence,

whatever it may be, if such a consequence is discovered, and she will be able to keep her

promise if such a discovery is made.

To explore the possibility of assigning utility to unknown consequences, x, we extend

the set of acts by adding functions whose range includes x as a possible payoff in the

imperfectly describable states ĈA \CA. Formally, we define the set of extended conceivable
6For more detailed discussion of the implications of discovering new basic actions, see Karni and Vierø

(2013).
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Figure 1: Illustration of the set of extended conceivable acts
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acts F ∗ as follows:

F ∗ := {f∗ : ĈA → Ĉ | f∗−1(x) ⊆ ĈA \ CA}. (3)

By definition, the consequences of extended conceivable acts are restricted to elements of C

in the fully describable states, but can be any element of Ĉ, including x, in the imperfectly

describable states. A schematic illustration in the context of the example in matrix (1) is

given in Figure 1. The range of the extended conceivable acts is C in {s1, . . . , s4}, and Ĉ

in {s5, . . . , s9}.
Note that the set, A, of basic actions, and the set, F , of conceivable acts are (disjoint)

subsets of the set of extended conceivable acts. Each basic action a ∈ A is identified with

the extended conceivable act f∗ ∈ F ∗ for which f∗(s) = s(a), for all s ∈ ĈA. Note also

that F ∗ does not include, among others, the constant act whose payoff is x. Given the

decision maker’s awareness, the set of extended conceivable acts F ∗ is the most that can

be both meaningfully expressed and settled ex post.

We consider lotteries over extended conceivable acts. Formally, denote by ∆(F ∗) the set

of all probability distributions on F ∗, and by ∆(F ) its subset of all probability distributions

on F . A generic element µ ∈ ∆(F ∗) selects an extended conceivable act in F ∗ according

to the distribution µ. We refer to the elements of ∆(F ∗) by the name mixed extended

conceivable acts. The set ∆(F ∗) of all such lotteries is the choice set. Decision makers are
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supposed to be able to form and express preferences over ∆(F ∗).7 It turns out that having

the decision maker express preferences over the set of mixed extended conceivable acts is, in

fact, sufficient to obtain a representation with a utility of unknown consequences. However,

this representation requires a non-standard approach because the domain of preferences is

“non-rectangular”.

We abuse notation and denote by c also the constant act that assigns c to every state

in ĈA, and by f the degenerate mixed extended conceivable act that assigns the unit

probability mass to the conceivable act f . For all µ, µ′ ∈ ∆(F ∗) and α ∈ [0, 1] , let

αµ + (1− α)µ′ ∈ ∆(F ∗) be defined as pointwise mixtures on the support of the mixed

conceivable acts (that is, (αµ+ (1− α)µ′) (f) = αµ (f) + (1− α)µ′ (f) , for all f ∈ F ∗).
Then ∆(F ∗) is a convex set. Finally, for any f, g ∈ F ∗ and E ⊂ ĈA, let gEf denote the

act in F ∗ defined by (gEf) (s) = g (s) , if s ∈ E, and (gEf) (s) = f (s) otherwise.

3 Subjective Expected Utility with Unknown Consequences

Consider next a decision maker whose choices are characterized by a (strict) preference

relation � on ∆(F ∗). We assume that � satisfies the well-known axioms of expected

utility theory.

(A.1) (Preorder) The preference relation � on ∆(F ∗) is asymmetric and negatively

transitive.8

(A.2) (Archimedean) For all µ, µ′, µ′′ ∈ ∆(F ∗), if µ � µ′ and µ′ � µ′′ then there are

α, β ∈ (0, 1) such that αµ+ (1− α)µ′′ � µ′ and µ′ � βµ+ (1− β)µ′′.

(A.3) (Independence) For all µ, µ′, µ′′ ∈ ∆(F ∗) and α ∈ (0, 1], µ � µ′ if and only if

αµ+ (1− α)µ′′ � αµ′ + (1− α)µ′′.

Define the weak preference relation, <, to be the negation of the strict preference

relation, (i.e., <= ¬ (≺)), and the indifference relation, ∼, to be the symmetric part of <.
7We suppose implicitly that decision makers are able to use devices to randomize their choices. Evidence

suggesting that decision makers deliberately randomize their choice is provided in Agranov and Ortelova

(2016).
8This implies that � is irreflexive and transitive (see Kreps [1988], proposition 2.3).
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Then, < is a weak order (i.e., complete and transitive) satisfying the corresponding version

of independence.

Because the choice set is the set of mixed extended conceivable acts, which is less

structured than the set of Anscombe-Aumann (1963) acts, we need additional structure

from the axioms to obtain an expected utility representation.9 For this purpose, we consider

the mapping ϕ : ∆(F ∗)→ (∆(Ĉ))Ĉ
A

, where, for all s ∈ ĈA, ĉ ∈ Ĉ and µ ∈ ∆(F ∗),

ϕs(µ)(ĉ) :=
∑

{f∈Supp(µ)|f(s)=ĉ}

µ(f). (4)

The mapping ϕ transforms each mixed extended conceivable act into an Anscombe-Aumann

act. More specifically, for each s ∈ ĈA, the vector ϕs(µ) ∈ ∆(Ĉ) is the lottery that ϕ(µ)

assigns to the state s. It is important to note that the support of the lotteries in the

resulting Anscombe-Aumann acts is a subset of C in the fully describable states CA, and

a subset of Ĉ in the imperfectly describable states ĈA \ CA. Thus, the set of Anscombe-

Aumann acts defined by the mapping in (4) inherits the non-rectangular shape of the set

of extended conceivable acts.

Henceforth, for {µ : Supp(µ) ⊆ F} we also denote by ϕs(µ) the mixed conceivable

act that assigns the probability ϕs(µ)(c) to the constant conceivable act c. Under this

convention, the set ∆(C) also denotes the subset of mixed conceivable acts whose supports

are restricted to the constant conceivable acts (that is, ∆(C) ⊂ ∆(F )).

Whereas the mapping ϕ yields a unique Anscombe-Aumann act for each µ ∈ ∆(F ∗),

in general, every Anscombe-Aumann act in the set derived from ∆(F ∗) using the mapping

ϕ corresponds to multiple mixed extended conceivable acts. Hence the need for an extra

axiom.10 The next axiom asserts that the decision maker is indifferent among mixed

extended conceivable acts whose images under ϕ are the same (that is, the decision maker

is indifferent between mixed extended conceivable acts that are transformed to the same

Anscombe-Aumann act).

(A.4) (Extended Indifference) For all µ, µ′ ∈ ∆(F ∗), if ϕ(µ) = ϕ(µ′) then µ ∼ µ′.
9Here we follow a procedure mentioned in Kreps (1988), Chapter 7. The next axiom is suggested there.

10Notice that everything could be done directly with this non-rectangular set of extended Anscombe-

Aumann acts, but for the reasons discussed in the introduction, we find the starting point of mixed extended

conceivable acts more satisfactory. If one were to start from the extended Anscombe-Aumann acts, one

would not need axiom (A.4).
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The next Lemma shows that preference relations restricted to ∆(F ) satisfying (A.1) -

(A.4) have expected utility (over conceivable acts) and additively separable (across states)

representations. To state the Lemma, we invoke the following definition: A set of real-

valued functions {Ws}s∈ĈA on C, representing a preference relation � on ∆(F ), is unique

up to cardinal unit-comparable transformation if the set {Ŵs}s∈ĈA on C also represents

the same preference relation if and only if Ŵs = bWs + ds, b > 0.

Lemma 1. A preference relation � on ∆(F ) satisfies (A.1) - (A.4) if and only if there

exist real-valued functions {Ws}s∈ĈA on C, unique up to cardinal unit-comparable trans-

formation, such that, for all µ, µ′ ∈ ∆(F ),

µ � µ′ ⇔
∑
f∈F

µ(f)
∑
s∈ĈA

Ws(f(s)) >
∑
f∈F

µ′(f)
∑
s∈ĈA

Ws(f(s)). (5)

Following Savage (1954), a state s ∈ ĈA is said to be null if ĉ{s}f ∼ ĉ′{s}f, for all

ĉ, ĉ′ ∈ Ĉ, for all f ∈ F ∗. A state is said to be nonnull if it is not null.

To state the next axiom we use the following notation: Let F̃ := {f̃ : ĈA \ CA →
Ĉ} (that is, F̃ is the set of all functions from the set of imperfectly describable states to

the set of extended consequences). Define sets of conditional extended conceivable acts as

follows: For every f ∈ F , let

FĈA\CA(f) := {f̃ĈA\CAf ∈ F ∗ | f̃ ∈ F̃}

(that is, FĈA\CA(f) is the set of all acts in F ∗ that are extensions of f ∈ F ). A schematic

illustration is given in Figure 2. The range of f is C and the acts in FĈA\CA(f) all agree

with f on CA and return any consequence in Ĉ in the states in ĈA \ CA. Note that

∪f∈FFĈA\CA(f) = F ∗.

We denote by ∆
(
FĈA\CA(f)

)
the corresponding set of mixed conditional extended

conceivable acts. For each f ∈ F and p̂ ∈ ∆(Ĉ), let p̂ĈA\CAf denote the distribution in

∆(F ∗) that, for all ĉ ∈ Ĉ, assigns the probability p̂(ĉ) to the extended conceivable act

ĉĈA\CAf .

Given f ∈ F ∗, let F ∗(f, s) := {c{s}f ∈ F ∗ | c ∈ C} if s ∈ CA and F̃ (f, s) := {ĉ{s}f ∈
F ∗ | ĉ ∈ Ĉ} if s ∈ ĈA \ CA. Denote by ∆(F ∗(f, s)) and ∆(F̃ (f, s)) the subsets of mixed

extended conceivable acts whose supports are F ∗ (f, s) and F̃ (f, s), respectively.

(A.5) (Monotonicity) For all f ∈ F ∗, (a) For all nonnull s ∈ CA, µ, µ′ ∈ ∆(F ∗(f, s)),

and ϕs (µ) , ϕs (µ′) ∈ ∆(C) ⊂ ∆(F ∗), it holds that µ � µ′ if and only if ϕs (µ) �

12



Figure 2: Illustration of the set of conditional extended conceivable acts for a particular f
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ϕs (µ′). (b) For all µ, µ′ ∈ ∆(F̃ (f, s)) and nonnull s ∈ ĈA \ CA, it holds that µ � µ′

if and only if ϕs(µ)ĈA\CAf � ϕs(µ′)ĈA\CAf.

In the monotonicity axiom the mixed conceivable acts, µ and µ′, have as their supports

conceivable acts whose payoffs differ in a single state, s. The Anscombe-Aumann acts,

induced by µ and µ′, agree in every state except s, in which they yield ϕs(µ) and ϕs(µ′),

respectively. The axiom states that the direction of preference between µ and µ′ is the same

as the direction of preference between the mixed conceivable acts that have distributions

ϕs(µ) and ϕs(µ′) over the constant conceivable acts. Similarly, the mixed extended con-

ceivable acts µ, µ′ ∈ ∆(F̃ (f, s)), have the same conditional distributions ϕs(µ)ĈA\CAf and

ϕs(µ′)ĈA\CAf over the conditional (on ĈA \ CA) constant conceivable acts.11 Thus, our

monotonicity axiom is of the same spirit and plays the same role as the monotonicity axiom

in the Anscombe-Aumann model. However, its expression is different because the decision

maker’s choice set consists of mixed extended conceivable acts.12

The next axiom requires that the decision maker is not indifferent among all mixed

extended conceivable acts.
11In part (b) of the axiom, we abuse notation slightly by letting ϕs(µ)ĈA\CAf and ϕs(µ′)ĈA\CAf denote

mixed extended conceivable acts whose support include extended conceivable acts that are constant at x

on ĈA \ CA.
12It is not straightforward to extend Axiom (A.5) to F ∗, because F ∗ does not contain the constant act

x.
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(A.6) (Nontriviality) The strict preference relation � on ∆(F ∗) is nonempty.

Note that (A.6) implies the existence of consequences, c∗, c∗ ∈ Ĉ, such that c∗ � c∗.

Proposition 1. Let � be a preference relation on ∆(F ∗), then the following two conditions

are equivalent:

(i) The preference relation � satisfies (A.1) - (A.6).

(ii.a) There exist a real-valued, continuous, nonconstant, affine, function, U on ∆(C),

and a probability measure, π on ĈA, such that, for all µ, λ ∈ ∆(F ),

µ � λ⇔
∑
s∈ĈA

π(s)U(ϕs(µ)) >
∑
s∈ĈA

π(s)U(ϕs(λ)). (6)

(ii.b) For every f ∈ F, there exist a real-valued, non-constant, affine, function, U∗f on

∆(Ĉ), and a probability measure, φ on ĈA \ CA, such that, for all µ and λ in

∆(FĈA\CA (f)),

µ � λ⇔
∑

s∈ĈA\CA

φ(s)U∗f (ϕs(µ)) >
∑

s∈ĈA\CA

φ(s)U∗f (ϕs(λ)). (7)

Moreover, each of the functions U and U∗f is unique up to positive linear transforma-

tions, the probability measures, π and φ, are unique, and π(s) = φ(s) = 0 if and only

if s is null.

The proof is in the appendix.

By the affinity of U, U(ϕs(µ)) = Σc∈Supp(ϕs(µ))ϕs(µ)(c)u(c), where u is a real-valued

function on C. Similarly, for each f ∈ F, U∗f (ϕs(µ) = Σĉ∈Supp(ϕs(µ))ϕs(µ)(ĉ)uf (ĉ), where

uf is a real-valued function on Ĉ.

Since the sets ∆(F ) and ∆
(
FĈA\CA(f)

)
intersect (see Figures 1 and 2), the represen-

tations in (6) and (7) together imply that U∗f (p) = U(p), for all f ∈ F and p ∈ ∆(C), and

that φ(s) = π(s)/π(ĈA \ CA), for all s ∈ ĈA \ CA. However, the utility of the abstract

consequence x, U∗f (x), may depend on the act f . The next axiom, separability, links the

conditional representations in Proposition 1. The axiom requires that the ranking of mixed

conditional extended conceivable acts whose supports are constant on the set of partially
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describable states, ĈA \ CA, be independent of the conditioning act. This separability is

not implied by the independence axiom because the payoff x is not defined on the subset

of fully describable states.

(A.7) (Separability) For all f, g ∈ F ∗ and p̂, q̂ ∈ ∆(Ĉ), q̂ĈA\CAf � p̂ĈA\CAf if and only

if q̂ĈA\CAg � p̂ĈA\CAg.

In the next theorem, we use the separability axiom to combine the representations in

(6) and (7). This allows us to obtain a general subjective expected utility representation

that includes an assignment of utility to the abstract consequence x.

Theorem 1. Let � be a preference relation on ∆(F ∗), then the following conditions are

equivalent:

(i) The preference relation satisfies axioms (A.1) - (A.7).

(ii) There exist real-valued, non-constant, affine, functions, U on ∆(C) and U∗ on ∆(Ĉ),

and a probability measure, π on ĈA, such that, for all µ,λ ∈ ∆(F ∗), µ � λ if and

only if∑
s∈CA

π(s)U(ϕs(µ))+
∑

s∈ĈA\CA

π(s)U∗(ϕs(µ)) >
∑
s∈CA

π(s)U(ϕs(λ))+
∑

s∈ĈA\CA

π(s)U∗(ϕs(λ)).

(8)

Moreover, the functions U and U∗ are unique up to positive linear transformations

and they agree on ∆(C).13 Also, the probability measure is unique, with π(s) = 0 if

and only if s is null.

The proof is in the appendix. By the affinity of U∗, U∗(ϕs(µ)) = Σĉ∈Supp(ϕs(µ))ϕs(µ)(ĉ)u∗(ĉ),

where u∗ is a real-valued function on Ĉ.14

As Theorem 1 shows, enriching the framework to include extended conceivable acts

has allowed us to obtain an expected utility representation that assigns utility to unknown

consequences. The representation consists of three elements: beliefs over states, a Bernoulli
13A different way of saying that U and U∗ agree on ∆(C) is to say that U∗ is an extension of U .
14Recall that we use ϕs(µ) to also denote the mixed conceivable act that assigns the probability ϕs (µ) (c)

to the constant conceivable act c. For expository convenience, we use this shorthand notation in the

representation. To emphasize, the representation indeed evaluates mixed extended conceivable acts.
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utility function over known consequences, and a parameter, u∗(x), that captures the de-

cision maker’s utility of, or attitude toward, the unknown. This utility reflects whether

the decision maker faces the unknown with fear, excitement, or indifference. Comparing

two decision makers, the one with the higher value of u∗(x) exhibits excitement toward the

unknown relative to the decision maker with the lower value, who is more fearful toward

the unknown. If the set of imperfectly describable states is null, the decision maker is a

standard subjective expected utility maximizer.

3.1 An Example

One advantage of our framework is that it distinguishes between states in which different

basic actions result in new consequences, as illustrated in the matrix (1) in Section 2.1.

Therefore this framework accommodates viewing different actions as being more or less

likely to increase awareness. If unforeseeable consequences generate excitement, actions

that are perceived as more likely to result in such consequences are expected to be preferred

over similar actions that are less likely to result in unforeseeable consequences. Consider,

for example, the matrix (1). Suppose that the decision maker is confident that the action

a1 is unlikely to reveal an unforeseen consequence. Specifically, the medication a1 has

been in use for some time and has shown no side-effects. Suppose that the decision maker

believes that if she chooses a1 either the consequence c1, success, or c2 failure, will obtain.

In other words, on the basis of past experience, the decision maker believes that if a1 is

implemented it is impossible that “neither c1 nor c2” (that is, x) will obtain. Formally,

she considers the event {s5, s6, s9} to be null. By contrast, she considers x to be a real

possibility if the new medication, a2, is chosen. Thus, the event {s7, s8} is assigned positive

probability. By the representation (8),

a1 7→ U(c1) [π(s1) + π(s3) + π(s7)] + U(c2) [π(s2) + π(s4) + π(s8)] ,

and

a2 7→ U(c1) [π(s1) + π(s2)] + U(c2) [π(s3) + π(s4)] + U∗(x) [π(s7) + π(s8)] .

Therefore, a choice of a2 over a1 yields a higher probability of encountering unforeseeable

side-effects, or consequence, x. If U(c1) < U∗(x) and π(s3) ≤ π(s2)+π(s8), then a2 � a1.
15

15Note that U(c1) > U(c2). If U(c1) = U∗(x), then a2 < a1 reduces to [U(c1) − U(c2)][π(s3) − π(s2) −
π(s8)] ≤ 0, which is satisfied given the assumption about the probabilities. If U(c1) < U∗(x), we have that
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To grasp the difference in the analysis if the same issue is addressed in the model of

Karni and Vierø (2013), recall that in that model the state space consists solely of the fully

describable states. Consequently, that model is silent on the distinction between the null

event {s5, s6, s9} and the event {s7, s8}. Neither of these events, nor their union, can be

expressed in that model. Hence, according to Karni and Vierø (2013), the utility associated

with the two medications are:

a1 7→ U(c1) [π̂(s1) + π̂(s3)] + U(c2) [π̂(s2) + π̂(s4)] ,

and

a2 7→ U(c1) [π̂(s1) + π̂(s2)] + U(c2) [π̂(s3) + π̂(s4)] ,

where π̂ is the subjective probability measure that figured in that work. It is possible,

therefore, that our (2013) ‘reverse Bayesianism’ model would predict that a1 is chosen

over a2 (that is, if π̂(s3) > π̂(s2)) while the present model predicts the opposite choice

behavior. Furthermore, if π(s8) > 0 then the opposite predictions may arise even when

the two models are consistent in the sense of having the same likelihood ratios of s3 and

s2 (that is, π(s2)/π(s3) = π̂(s2)/π̂(s3)).

4 Growing Awareness and the Evolution of Beliefs

Thus far our attention was restricted to the axiomatic structure and representation of

preference relations for a given level of awareness. We now turn to the study of the decision

maker’s growing awareness and the evolution of her beliefs in response to such expansions.

The decision maker’s awareness expands when she discovers a new consequence that was

hidden behind a “veil of ignorance,” that we referred to as “none of the above”. As

the analysis that follows makes clear, the characterization of the evolution of a decision

maker’s beliefs in the wake of her growing awareness does not require assigning utility to

the abstract consequence “none of the above.”

Henceforth, we use the subscript 0 to index the various sets under the prior level

of awareness and the subscript 1 to index the various sets under the posterior level of

awareness. Thus, C0, x0, Ĉ0, CA0 , ĈA0 , F0, F ∗0 , etc. refer to the respective sets under the

prior level of awareness, with the analogous notation for the posterior sets.

a2 � a1.
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As awareness grows, the state space evolves as follows. If a new consequence, c′ /∈ C0,

is discovered, the set of feasible consequences expands to C1 = C0 ∪ {c′}. At the same

time, the abstract consequence that has the interpretation “none of the above” becomes

x1 = ¬C1, and the extended set of consequences becomes Ĉ1 = C1 ∪ {x1}. The posterior

conceivable state space is ĈA1 . In our illustrating example, if a new consequence c3 is

discovered, the augmented conceivable state space becomes

A/S s1 s2 s3 s4 s′5 s5 s′6 s6 s′7 s7 s′8 s8 s′9 s′′9 s′′′9 s9

a1 c1 c2 c1 c2 c3 x1 c3 x1 c1 c1 c2 c2 c3 c3 x1 x1

a2 c1 c1 c2 c2 c1 c1 c2 c2 c3 x1 c3 x1 c3 x1 c3 x1

(9)

The set of fully describable states also expands and is now CA1 = CA0 ∪ {s′5, s′6, s′7, s′8, s′9}.
Thus, when a new feasible consequence is discovered, each of the prior fully describable

states remains as before, while each of the prior imperfectly describable states is split

into a fully describable state and one, or more, posterior imperfectly describable states.

Hence, elements are added to the subset of fully describable states and, simultaneously, the

number of imperfectly describable states increases16. As the decision maker’s augmented

conceivable state space expands, so does the set of conceivable acts, to F1 := {f : ĈA1 →
C1}, and the set of extended conceivable acts to F ∗1 := {f∗ : ĈA1 → Ĉ1 | f∗−1(x1) ⊆
ĈA1 \CA1 }. The corresponding set of mixed conceivable acts is ∆(F1) and the set of mixed

extended conceivable acts is ∆(F ∗1 ).

Because the set of conceivable acts is variable in our model, the preference relation must

be redefined on the extended domain. Therefore, a decision maker is characterized by a

collection of preference relations, one for each level of awareness over the corresponding set

of mixed extended conceivable acts. We denote the strict preference relation on ∆(F ∗i ) by

�i, i = 0, 1. In particular, the prior preference relation is denoted by �0 on ∆(F ∗0 ) and the

posterior preference relation by �1 on ∆(F ∗1 ). We denote by ϕi the mapping given by (4)

16At first glance, the introduction of the abstract consequence x may seem to make the discovery of new

consequences similar to the discovery of new actions as the two types discoveries can be expressed in terms

of refinement of the original state-space. However, the two refinements are different. Unlike the discovery

of new actions which refines the state space by associating to every state in the prior state space a set of

states, one for each consequence, (see Karni and Vierø [2013]), the refinement of the prior space induced

by the discovery of consequences of which the decision maker was unaware, is confined to the originally

partially and non-describable states and takes the specific form as illustrated in (9). A formal definition of

the refinement appears in the discussion preceding the introduction of axiom (A.10) below.
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for awareness level i.

4.1 Reverse Bayesian Updating

To link the preference relations across expanding sets of mixed extended conceivable acts,

we invoke the relevant part of the invariant risk preferences axiom introduced in Karni and

Vierø (2013), asserting the commonality of risk attitudes across levels of awareness.17 Re-

call that ∆(C0) ⊂ ∆(F0) also denotes the subset of mixed conceivable acts whose supports

are the constant conceivable acts in F0, and note that, for C1 ⊃ C0, we also have that

∆(C0) ⊂ ∆(F1).

(A.8) (Invariant risk preferences) For �i on ∆(Fi), i = 0, 1, and for all µ, µ′ ∈ ∆ (C0) ,

it holds that µ �0 µ
′ if and only if µ �1 µ

′.

Assuming that �i on ∆(Fi), i = 0, 1, are non-trivial, there are c∗i , c
i
∗ ∈ Ci such that

c∗i �i ci∗, i = 0, 1. One implication of the invariant risk preferences axiom is that we may

choose c∗0 = c∗1 = c∗ and c0∗ = c1∗ = c∗. Hence, for this particular purpose, we can simply

write c∗ �i c∗, i = 0, 1.

The following two axioms depict additional links between the preference relations across

different levels of awareness. The first axiom, dubbed Awareness Consistency I, asserts that

the discovery of new consequences does not alter the decision maker’s preferences condi-

tional on the events that consist of a-priori fully describable states. Thus, such discoveries

do not affect the part of her preferences that only concerns the initially fully describ-

able and well-understood part of her universe. Formally, for every h ∈ Fi and E ⊂ ĈAi ,

let Fi(h;E) := {fEh ∈ Fi | f ∈ Fi}, i = 0, 1. For all E ⊆ CA0 , λ ∈ ∆(F0(h;E)), and

λ′ ∈ ∆(F1(h′;E)) define λ = λ′ on E if ϕ0
s (λ) = ϕ1

s (λ′) , for all s ∈ E. That is, λ = λ′ on

E if the mapping ϕ generates the same lottery for λ and λ′ in all states in E.
17The axiom appears in almost all works on unawareness and unforseen contingencies. In particular, it

is implicit in Maskin and Tirole (1999), Halpern and Rego (2014), Grant and Quiggin (2013), Heifetz et

al. (2013), Auster (2013), and Schipper and Woo (2015). Ma and Schipper (2016) test the invariant risk

preferences axiom experimentally and cannot reject it. Mengel, Tsakas, and Vostroknutov (2016) find that

risk preferences are affected by exposure to an environment with imperfect knowledge of the state space.

Ma and Schipper observe that Mengel et al.’s experimental design is likely to leave subjects suspecting that

they are still unaware of some states after the initial exposure. Hence their result might capture changes

in the subjects’ attitude toward the unknown rather than in their risk preferences.
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(A.9) Awareness consistency I: For all E ⊆ CA0 , for all h ∈ F0, λ, µ ∈ ∆(F0(h;E)),

h′ ∈ F1, and λ′, µ′ ∈ ∆(F1(h′;E)), such that, on E, λ = λ′ and µ = µ′, it holds that,

λ ∼0 µ if and only if λ′ ∼1 µ
′.

The second axiom, dubbed Awareness Consistency II, asserts that the discovery of

new consequences does not alter the decision maker’s preferences conditional on the events

that consist of, a-priori, not fully describable states. In other words, the decision maker’s

ranking of a-priori measurable acts is independent of the detail with which she can describe

the a-priori measurable sub-events. To state the axiom, we need additional notation and

definitions. If C0 ⊂ C1 then, for each s ∈ ĈA0 \ CA0 , there corresponds an event E′(s) ⊂
ĈA1 \ CA0 , defined by

E′(s) = {ŝ ∈ ĈA1 \ CA0 | ∀a ∈ A, if a(s) ∈ C0, then a(ŝ) = a(s),

and if a(s) = x0 then a(ŝ) ∈ {x1} ∪ (C1 \ C0)}. (10)

For each E ⊆ ĈA0 \CA0 let E′(E) := ∪s∈EE′(s). A conceivable act f ′ ∈ F1 is said to be

measurable with respect to ĈA0 if for all c ∈ C1, (f ′)−1(c) = E′(E), for some E ⊆ ĈA0 . Let

F1(ĈA0 ) be the subset of the conceivable acts in F1 that are measurable with respect to ĈA0 .

There is a one-to-one correspondence between acts in F0 and acts in F1(ĈA0 ): For f ∈ F0

and f ′ ∈ F1(ĈA0 ), we write f ' f ′ if f ′(s′) = f(s), for all s′ ∈ E′(s) and s ∈ ĈA0 . For

every h′ ∈ F1(ĈA0 ) and E ⊂ ĈA0 , let F1(ĈA0 ;h′;E′(E)) := {fE′(E)h
′ | f ∈ F1(ĈA0 )} (that

is, F1(ĈA0 ;h′;E′(E)) is the set of ĈA0 -measurable acts in F1 that agree with h′ outside of

E′(E)). For λ ∈ ∆(F0(h;E)) and λ′ ∈ ∆(F1(ĈA0 ;h′;E′(E))), we write λ ' λ′ if λ(f) =

λ′(f ′) when f ' f ′.

(A.10) Awareness consistency II: For all E ⊆ ĈA0 \CA0 , h ∈ F0, λ, µ ∈ ∆(F0(h;E)),

h′ ∈ F1(ĈA0 ) and λ′, µ′ ∈ ∆(F1(ĈA0 ;h′;E′(E))), such that λ ' λ′ and µ ' µ′, it holds

that λ ∼0 µ if and only if λ′ ∼1 µ
′.

For preference relations satisfying the aforementioned axioms, Theorem 2 below asserts

the existence and describes the uniqueness properties of a subjective expected utility repre-

sentation for each level of awareness. More importantly, it describes the evolution of beliefs

about the relative likelihoods of fully describable events and about the relative likelihoods

of imperfectly describable events, in the wake of increasing awareness.
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Theorem 2. For each C0 ⊂ C1 and the corresponding preference relations �0 on ∆(F0)

and �1 on ∆(F1), the following two conditions are equivalent:

(i) The preference relations �0 and �1 satisfy (A.1) - (A.6) and, jointly, they satisfy

(A.8) - (A.10).

(ii) There exist real-valued, continuous, nonconstant, affine, functions, U0 on ∆(C0) and

U1 on ∆(C1), and probability measures, π0 on ĈA0 and π1 on ĈA1 , such that for all

µ, λ ∈ ∆(F0),

µ �0 λ⇔
∑
s∈ĈA

0

π0(s)U0(ϕ0
s(µ)) >

∑
s∈ĈA

0

π0(s)U0(ϕ0
s(λ)), (11)

and, for all µ′, λ′ ∈ ∆(F1),

µ′ �1 λ
′ ⇔

∑
s∈ĈA

1

π1(s)U1(ϕ1
s(µ
′)) >

∑
s∈ĈA

1

π1(s)U1(ϕ1
s(λ
′)). (12)

The functions U0 and U1 are unique up to positive linear transformations and for all

p ∈ ∆ (C0) , U0 (p) = U1 (p) . The probability measures π0 and π1 are unique and, for

all s, s′ ∈ CA0 ,

π0(s)
π0(s′)

=
π1(s)
π1(s′)

(13)

and, for all s, s′ ∈ ĈA0 \ CA0 ,

π0(s)
π0(s′)

=
π1(E′(s))
π1(E′(s′))

. (14)

By the affinity of Ui, Ui(ϕis(µ)) = Σc∈Supp(ϕi
s(µ))ϕ

i
s(µ)(c)ui(c), where ui is a real-valued

function on Ci, for i = 0, 1. That U0(p) = U1(p) for all p ∈ ∆(C0) follows from axiom

(A.8). Property (13) follows from axiom (A.9) and asserts that, in the wake of discoveries

of new consequences, conditional on the initial set of fully describable states, the decision

maker’s subjective beliefs about the relative likelihoods of fully describable states remain

unchanged. Property (14) follows from axiom (A.10) and asserts that the decision maker’s

subjective beliefs about the relative likelihood of events corresponding to a-priori partially

describable states is the same as the relative likelihood of the corresponding states. Prop-

erty (13) is reverse Bayesian updating following the discovery of a new consequence as in
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Karni and Vierø (2013). Thus, insofar as the discovery of new consequences is concerned,

the model of Karni and Vierø (2013) is nested within the present one and corresponds to

the special case when πi(CAi ) = 1 for all i. That is, in Karni and Vierø (2013), for any level

of awareness the decision maker acts as if he assigns probability zero to future expansions

of his awareness.

Remark: The main objective of Theorem 2 is the depiction of the evolution of the

decision maker’s beliefs. To attain this objective it is not necessary to consider the utility

of the abstract consequences x0 and x1. Therefore, unlike in Theorem 1, in Theorem 2

the domains of the utility functions U0 and U1 are ∆(C0) and ∆(C1), respectively. It is a

straightforward exercise to extend the representations in Theorem 2 to include utilities of

the abstract consequences x0 and x1.

4.2 Decreasing and increasing sense of ignorance

A decision maker can respond to the discovery of a new consequence in one of three different

ways: First, she could think that fewer consequences remain to be discovered. Second, the

discovery of new consequences could reveal that the decision maker is more ignorant than

she believed herself to be, and that more consequences than she suspected are waiting

to be discovered. Third, she could consider that the current discovery has no effect on

the prevalence of unknown consequences. Thus, the discovery of unforeseen consequences

expands the decision maker’s universe and, depending on their nature, may be accompanied

by diminishing, growing, or unchanged sense of ignorance. These reactions have revealed

preference manifestations that can be expressed axiomatically.

The next axiom captures the preferential expression of decreasing (increasing) sense of

ignorance. In both cases, the axiom describes the decision maker’s willingness to bet on,

or against, discoveries of unforeseen consequences.

(A.11) (Decreasing (Increasing) Sense of Ignorance) For all C0 ⊂ C1, the cor-

responding sets of mixed conceivable acts ∆(F0) and ∆(F1), η ∈ [0, 1], and λ =

ηc∗ + (1− η) c∗ ∈ ∆(F0), λ′ = ηc∗ + (1− η) c∗ ∈ ∆(F1), µ = c∗CA
0
c∗ ∈ ∆(F0), and

µ′ = c∗CA
1
c∗ ∈ ∆(F1), if λ ∼0 µ then λ′ <1 (41)µ′.

Note that this is a decreasing (increasing) sense of ignorance in the weak sense. It

includes the cases of strictly decreasing (increasing) sense of ignorance, λ′ �1 (≺1) µ′,

22



and constant sense of ignorance, λ′ ∼1 µ
′, as special instances. The mixed conceivable

acts λ and λ′ only involve objective uncertainty, while µ and µ′ are bets on discovering

unforeseen consequences. A decision maker has a constant sense of ignorance if she is

equally inclined to bet on something unforeseen arising (that is, on the realization of an

imperfectly describable state) before and after the discovery of a new consequence. She

has a strictly decreasing (increasing) sense of ignorance if she is less (more) inclined to bet

on the realization of imperfectly describable states after the discovery.

Theorem 3 below quantifies decreasing (increasing) sense of ignorance by subjective

probabilities. Specifically, if growing awareness is accompanied by decreasing (increas-

ing) sense of ignorance, the subjective probability assigned to the ‘residual’ unawareness

diminishes (grows).

Theorem 3. For each pair C0 ⊂ C1 and the corresponding preference relations, �0 on

∆(F0) and �1 on ∆(F1), the following statements are equivalent:

(i) The preference relations �0 and �1 satisfy (A.1) - (A.6) and, jointly, they satisfy

(A.8) - (A.11).

(ii) There exists a representation as in Theorem 2 and, in addition,

π0(ĈA0 \ CA0 ) ≥ (≤) π1(ĈA1 \ CA1 ). (15)

Inequality (15) includes the case of strictly decreasing (increasing) sense of ignorance,

π0(ĈA0 \ CA0 ) > (<) π1(ĈA1 \ CA1 ) , and the case of constant ignorance, π0(ĈA0 \ CA0 ) =

π1(ĈA1 \ CA1 ), as special instances.

The model of Karni and Vierø (2013, 2015) is the special case of growing awareness in

which the decision maker exhibits a constant sense of ignorance, assigning zero probability

to discovery of new consequences. In those works, discoveries of unforeseen consequences

are unanticipated.

5 Concluding Remarks

5.1 Small Worlds

The definitions of the state space and the set of conceivable acts, derived from the entire sets

of basic actions and consequences, depict the grand world. When facing specific decisions,
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however, it is natural to suppose that the decision maker constructs the relevant choice

set as follows: First, she identifies the relevant courses of action, or relevant basic actions,

available (e.g., lists the means of transportation and routes to go from here to there, lists the

available treatments of an illness). Second, she identifies the relevant consequences of the

relevant basic actions (e.g., getting there late or not at all, allergic reaction to medication

or bad outcome of surgery). Third, she constructs the relevant state space. For a given

specific decision problem, let Ar ⊂ A and Cr ⊂ C denote, respectively, the relevant set of

basic actions and consequences. Using these primitives, construct the relevant state space,

CAr
r . The set of relevant conceivable acts is Fr (that is, the set of all mappings from CAr

r to

Cr). The set of all mixtures of these, ∆(Fr), constitutes the relevant choice set. Suppose

that the decision maker’s preferences on ∆(Fr) is the restriction of � to ∆(Fr).

In this context, unawareness amounts to failure (e.g., due to lack of attention, forget-

fulness) to consider some relevant consequences when constructing the choice set for the

decision problem at hand. In other words, some consequences that the decision maker

is aware of and that should have been included in the set of relevant consequences, are

neglected.

Analogously to awareness of unawareness, the decision maker may anticipate that she

may have neglected to include in her deliberation some relevant consequences. Define

an abstract consequence xr = ¬Cr to represent neglected relevant consequences. Then,

application of the analysis of section 2 yields the probability the decision maker assigns to

the possibility of failing to include relevant consequences, and the utility of the concern

(fear) that relevant consequences have been neglected.

5.2 The evolution of beliefs about describable events

Theorem 2 concerns the evolution of the relative likelihoods of fully describable (and also of

the relative likelihoods of imperfectly describable) events, in the wake of discovery of new

consequences, but is silent on the absolute likelihoods. By contrast, Theorem 3 concerns

the evolution of the absolute likelihoods of the imperfectly describable event. Therefore,

combining the results of the two theorems makes it possible to discuss the magnitude

of the change in beliefs about the likelihoods of fully describable events. For instance,

suppose that a new discovery is accompanied by a constant sense of unawareness. By

Theorem 3, π0(ĈA0 \ CA0 ) = π1(ĈA1 \ CA1 ). But Σs∈CA
0
π0(s) + π0(ĈA0 \ CA0 ) = 1 and
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Σs∈CA
0
π1(s) + Σs∈CA

1 \CA
0
π1(s) + π1(ĈA1 \CA1 ) = 1. Hence, probability mass must be shifted

from the set of originally fully describable states CA0 to CA1 \ CA0 , proportionally (that is,

the probabilities of all the states in CA0 must be reduced equiproportionally). Similarly, an

increasing sense of unawareness requires that probability mass must be shifted from CA0

to ĈA1 \ CA0 proportionally, and that some of this probability must be shifted to ĈA1 \ CA1 .

Decreasing sense of unawareness implies that some probability mass of the event ĈA0 \CA0
is shifted toward the newly describable event CA1 \ CA0 . In the latter instance, the effect

of growing awareness on the subjective probability assigned to the set of originally fully

describable states, CA0 , is unpredictable.

5.3 Awareness of unawareness: Behavioral manifestations

The theory advanced in this paper presumes that decision makers are aware of their un-

awareness. In other words, we suppose that decision makers are aware of the possible

existence of indescribable consequences but have no clue as to what they might be. To

elicit a decision maker’s probability of the partially describable event we specify bets that

mention the payoff in this event. This procedure is justified on the aforementioned pre-

sumption.

Our approach raises a methodological issue, namely, is there a way of testing the pre-

sumption that a decision maker is aware of his unawareness?18 Put differently, how can an

observer infer, from a decision maker’s choice behavior, that she is aware of her unaware-

ness? Below we describe possible patterns of choice that would indicate that the decision

maker is indeed aware of being unaware.19

Partially specified bets: Consider the example in Section 3.1 of two basic actions and

two feasible consequences. The augmented conceivable state space is depicted in matrix

(1). Let c1 � c2 and consider the set of partially specified bets: B := {b : CA → C}. Note

that the domain of these bets is the event, CA, that consists of all the fully describable

states, and the payoffs are feasible consequences.

Consider two bets: b1 is a bet on the event that a1 results in c1, and b2 is the bet that

a2 results in c1. Formally, b1 = c1{s1,s3}c2 and b2 = c1{s1,s2}c2, where the states si, i = 1, 2, 3

are the states depicted in matrix (1). Note that b1 specifies the payoffs as follows: Pay c1
18We thank Larry Epstein for raising this issue.
19The issue of detecting unawareness itself is investigated in Schipper (2013).
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in the event {s1, s3} and c2 otherwise. Hence, in the description of b1 there is no mention

of any event other than {s1, s3}. In particular, there is no mention of the event {s5, ..., s9}
that consists of partially describable and non describable states. Similarly, for b2.20

The following choice patterns indicate that the decision maker is aware that the domain

of the bets may include the partially describable states:

Pattern 1: b1 ∼ b2 and ¬(a1 ∼ a2). The indifference, b1 ∼ b2, means that the decision

maker regards the events “a1 pays c1” and “a2 pays c1” as equally likely. If the decision

maker is only aware of the fully describable states then b1 and b2 are replicas of a1 and a2,

respectively. Therefore, a1 and a2 should be indifferent to one another. The fact that they

are not is an indication that the decision maker considers possible events that are not fully

describable.

Pattern 2: bi � bj , and aj < ai, i = 1, 2, j 6= i. By the same reasoning as above, if the

decision maker is only aware of the fully describable states, b1 and b2 are replicas of a1 and

a2, respectively. Hence, b1 � b2 would imply that a1 � a2. The fact that it is not indicates

that the decision maker considers possible events that are partially describable events.

To illustrate this point consider again the example of the two medications described

above. A decision maker may bet that the new, untried, medication, which proved more

effective in clinical trials, is more likely to result in success than the old, tried, one. Yet,

being worried by the prospect of unknown side-effects and believing that such effects are

more likely if the newly approved medication is used, she chooses to take the tried medica-

tion. These choice patterns indicate not only that the decision maker is aware of partially

describable events. They suggest that she regards the occurrence of such events more likely

under one basic action than under another.

5.4 “Unknown unknown” consequences in subjective expected utility

theory

The main objectives of this paper are to (a) provide a framework for the study of deci-

sion makers’ anticipation that there may be consequences of which they are unaware, (b)

quantify the decision makers’ subjective beliefs regarding the likelihood of such event and
20The standard practice in decision theory is that bets specify the payoffs in every state. By contrast,

partially specified bets are defined on the fully describable part of the state space. This partial specification

is intended to allow the decision maker to complete the supports of the bets, if the unmentioned part of

the state space exists in her mind, in any way she can imagine.
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how these beliefs change upon discoveries of consequences of which they were unaware, and

(c) quantify decision makers’ attitudes toward possible discovery of consequences of which

they are unaware. A key idea invoked in this investigation is a “catch-all” consequence, de-

fined as “none of the existing consequences,” designed to capture the notion of “unknown

unknown” consequences. A natural question is: Could this investigation be conducted

by incorporating the “catch-all” consequence into a standard expected utility setting à la

Anscombe and Aumann (1963) or Savage (1954)?

Consider the Anscombe-Aumann model. Let S be a finite set of states and denote by

X a finite set of outcomes. Let x̂ denote the “catch-all” outcome “none of the outcomes

in X” (that is, x̂ = ¬X). Define X̂ = X ∪ {x̂} and denote by ∆X̂ the set of probability

distributions on X̂. Extending Anscombe and Aumann’s approach, the choice set consists

of all mappings from S to ∆X̂, representing alternative courses of action. This formula-

tion of the Anscombe-Aumann model requires that acts assign objective probabilities to

the non-describable “catch-all” outcome x̂. It also requires that the decision maker can

consider a choice that includes the constant act that pays off x̂ in every state (that is,

receiving x̂ for sure) when, by definition, this “unknown unknown” consequence cannot be

described in a meaningful way.21 Put differently, such formulation assumes the existence

of x̂ and that it is treated like any other consequence, thus defeating the purpose of in-

ferring from the decision maker’s behavior whether, and to what degree, he believes that

consequences of which he is unaware exists. If one did admit acts whose range is ∆X̂,

the subjective expected utility model would assign utility to x̂, similarly to the result in

Section 3 above. However, because the state space is fixed, the model cannot accommo-

date the assignment of subjective probability to the discovery of consequences of which the

decision maker is unaware, or the analysis of the change of these beliefs upon the discovery

of such consequences, including the changes in the decision maker’s sense of unawareness.

In other words, adding a “catch-all” consequence to the standard models will defeat some

of the main objectives of this work. These observations are not restricted to the subjective

expected utility models, rather they apply to all models based on analytical frameworks

that take the state space to be a primitive concept.
21The fact that x̂ can be described, abstractly, negatively as “none of the elements in X” does not lend

it concrete meaning.
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5.5 Related literature

The exploration of the issue of (un)awareness in the literature has pursued three different

approaches; the epistemic approach, the game-theoretic or interactive decision making

approach, and the choice-theoretic approach.

The epistemic approach is taken in Fagin and Halpern (1988), Dekel, Lipman, and

Rustichini (1998), Modica and Rustichini (1999), Halpern (2001), Heifetz, Meier, and

Schipper (2006, 2008), Li (2009), Hill (2010), Board and Chung (2011), Walker (2014) and

Halpern and Rego (2009, 2013). Among these, Board and Chung (2011), Walker (2014)

and Halpern and Rego (2009, 2013) consider awareness of unawareness. Halpern and Rego

(2009) provide a logic that allows for an agent to explicitly know that there exists a fact

of which he is unaware. They do so by introducing quantification over variables in their

language. In Halpern and Rego (2009), it is impossible for an agent to consider it possible

that he is aware of all formulas in the language and also consider it possible that he is not

aware of all formulas. Halpern and Rego (2013) remedies this problem, such that an agent

can be uncertain about whether he is aware of all formulas. The choice theoretic model we

present is in line with the latter Halpern and Rego approach. Schipper (2015) provides an

excellent overview of the epistemic literature as well as of the literature on awareness and

unawareness more generally.

The game-theoretic, or interactive decision making, approach is taken in Halpern and

Rego (2008, 2014), Heifetz, Meier, and Schipper (2013a, 2013b), Heinsalu (2014), and Grant

and Quiggin (2013). The last develops a model of games with awareness in which inductive

reasoning may cause an individual to entertain the possibility that her awareness is limited.

Individuals thus have inductive support for propositions expressing their own unawareness.

In this paper, we implicitly assume inductive reasoning to motivate considering awareness

of unawareness.

The choice-theoretic approach to unawareness or related issues is taken in Li (2008),

Ahn and Ergin (2010), Schipper (2013), Lehrer and Teper (2014), Kochov (2010), Walker

and Dietz (2011), Alon (2015), and Grant and Quiggin (2015). The former four are dis-

cussed in detail in Karni and Vierø (2013). Walter and Dietz (2011), Kochov (2010),

and Grant and Quiggin (2015) consider decision makers who are aware of their potential

unawareness, and are thus the papers closest related to the present paper.

Walker and Dietz (2011) take a choice theoretic approach to static choice under “con-
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scious unawareness.” In their model, unawareness materializes in the form of coarse contin-

gencies (that is, their state space does not resolve all uncertainty). Their representation is

similar to Klibanoff, Marinacci, and Mukerji’s (2005) smooth ambiguity model. The model

of Walker and Dietz (2011) differs from ours in several respects: theirs is a static model

and thus does not consider the issue of updating when awareness increases, their approach

to modeling the state space differs from ours, and in their model a decision maker’s beliefs

are not represented by a single probability measure.

Kochov (2010) develops an axiomatic model of dynamic choice in which a decision

maker knows that her perception of the environment may be incomplete. This implies that

the decision maker’s beliefs are represented by a set of priors, and that as the decision

maker’s perception of the universe becomes more precise, the priors are updated according

to Bayes rule. Kochov’s work differs from ours in the way the state space and its evolution

are modeled, and in the representation of decision makers’ beliefs.

Grant and Quiggin (2015) model unawareness by augmenting a standard Savage state

space with a set of “surprise states”. They also augment the set of standard consequences,

which is an interval, by two unforeseen consequences, which are divided into two types: one

favorable which is better than any standard consequence, and one unfavorable, which is

worse than any standard consequence. Unforeseen consequences can only arise in surprise

states. Their representation can be interpreted as if the decision maker follows a two-stage

decision procedure, first categorizing each act as being subject to favorable, unfavorable,

or no surprises, and second ranking acts. All acts subject to favorable surprises are, by

assumption, better than all acts subject to no surprise, which are in turn better than all

acts subject to unfavorable surprises. Within each category, acts are evaluated according to

an expected uncertain utility (EUU) representation. Unlike Grant and Quiggin, we make

no assumptions about the nature of unforeseen consequences, rather the utility of the

unknown that we derive reflects how the decision maker ranks these consequences relative

to the existing consequences. Thus, in our model, an act which the decision maker views

as possibly leading to an unforeseen consequence need not be ranked extreme relative to

acts that she views as not leading to something unforeseen. Also, in our model, beliefs

over states determine how likely the decision maker views a particular act to reveal new

consequences, while in Grant and Quiggin the decision maker cannot quantify the likelihood

of surprise states.

Statistical theories of inductive inference have long wrestled with the problem of how to
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deal with the potential existence of unknown and unsuspected phenomena and how, once

such phenomena occur, to incorporate the new knowledge into the corpus of the decision

maker’s prior beliefs. Zabell (1992) describes a particular instance of this issue, known

as the sampling of species problem, involving repeated sampling which may result in an

observation whose existence was not suspected (e.g., a new species).22 “On the surface there

would appear to be no way of incorporating such new information into our system of beliefs,

other than starting from scratch and completely reassessing our subjective probabilities.

Coherence of old and new makes no sense here: there are no old beliefs for the new to

cohere with.” (Zabell [1992], p. 206). Zabell proceeds to detail a process, anticipated by

De Morgan, that accommodates situations in which the possible species to be observed is

not supposed to be known ahead of time.23

Despite the similarity of the objectives, and to some extent structure (think of repeated

sampling as different acts and observed species as consequences) the solution for the sam-

pling of species problem and the conclusion of our approach, dubbed ‘reverse Bayesianism’,

are quite distinct. Perhaps the most important distinction is the specification of the prior.

In the solution to the sampling of species problem, the prior is induced by exchangeability

applied to the distinguished class of random partitions. In other words, it is implied by

the stochastic structure of the problem and, as a result, loses its subjective flavor. For

instance, the De Morgan rule creates an additional category: “new species not yet ob-

served” and assigns it the probability (N+ t+1)−1, where N is the number of observations

and t the number of known species.24 By contrast, in ‘reverse Bayesianism’ the prior is a

representation of the decision maker’s subjective beliefs, which includes an assignment of

subjective probability to the event of observing an indescribable consequence. Moreover,

unlike our model of ‘reverse Bayesianism’, the solution to the sampling of species problem

neither requires, nor does it yield, a utility valuation of the newly observed species or of

the anticipated, yet indescribable, species.
22We are grateful to Teddy Seidenfeld for calling our attention to Zabell’s work.
23The process is based on the idea of exchangeability of random partitions and it yields a representation

theorem, a distinguished class of random partitions, and a rule of succession, describing the updated beliefs

following the discovery of new species.
24See Zabell (1992), p. 209.
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6 Appendix

6.1 Proof of Lemma 1

(Sufficiency) Since ∆(F ) is a convex set and � satisfies (A.1) - (A.3), by the expected

utility theorem, there exists a real-valued function, V : F → R, such that � on ∆(F ) is

represented by expected utility: For all µ, µ′ ∈ ∆(F ),

µ � µ′ ⇔
∑
f∈F

µ(f)V (f) >
∑
f∈F

µ′(f)V (f) (16)

Moreover, V is unique up to positive linear transformation.

To show that V (f) =
∑
s∈ĈA

Ws(f(s)), fix f∗ ∈ F and, for each f ∈ F and s ∈ ĈA, let

fs = f{s}f
∗ ∈ F be defined by: fs(s) = f(s) and fs(t) = f∗(t) if t 6= s.

Let | ĈA |= n. Consider the mixed conceivable acts, µ ∈ ∆(F ) that assigns probability

1/n to f and probability (n− 1) /n to f∗, and µ′ ∈ ∆(F ) that assigns probability 1/n to

each f s, s ∈ ĈA. Then, by the definition in (4), ϕ(µ) = ϕ(µ′). Thus, by (A.4), µ ∼ µ′. By

the representation in (16), the last indifference is equivalent to

1
n
V (f) +

n− 1
n

V (f∗) =
1
n

∑
s∈ĈA

V (fs). (17)

For each s ∈ ĈA, define Ws(·) : C → R as follows:25

Ws(c) = V (c{s}f
∗)− n− 1

n
V (f∗) ,

Thus, for f ∈ F̂ , Ws(f(s)) = V (fs) − n−1
n V (f∗). This implies that

∑
s∈ĈA Ws(f(s)) =∑

s∈ĈA V (fs)− (n− 1)V (f∗). Multiplying by 1/n on both sides together with (17) implies

that

V (f) =
∑
s∈ĈA

Ws(f(s)). (18)

Plugging (18) into (16), we get

µ � µ′ ⇔
∑
f∈F

µ(f)
∑
s∈ĈA

Ws(f(s)) >
∑
f∈F

µ′(f)
∑
s∈ĈA

Ws(f(s)). (19)

(Necessity) This is immediate.
25Recall that c denotes both the outcome c and the constant act whose payoff is c in every state.
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(Uniqueness) The uniqueness of {Ws}s∈ĈA follows from that of V. To see this, define

Ŵs(·) = bWs(·) + ds, b > 0, for all s ∈ ĈA. By definition, for all s ∈ ĈA and c ∈ C,

Ŵs(c) = b
[
V (c{s}f∗)− n−1

n V (f∗)
]

+ ds. Hence,∑
s∈ĈA

Ŵs(f(s)) = b
∑
s∈ĈA

Ws(f(s)) +
∑
s∈ĈA

ds = bV (f) + d,

where d =
∑

s∈ĈA ds. Since V is unique up to positive linear transformation, V̂ = bV + d

represents the same preferences as V . Hence, {Ŵs}s∈ĈA represents the same preferences

as {Ws}s∈ĈA . It is easy to show that Ŵs(c) = V̂ (c{s}f∗)− n−1
n V̂ (f∗) . ♠

6.2 Proof of Proposition 1

(Sufficiency) By (A.1) - (A.4) and Lemma 1, we have that for all µ, µ′ ∈ ∆(F ),

µ � µ′ ⇔
∑
f∈F

µ(f)
∑
s∈ĈA

Ws(f(s)) >
∑
f∈F

µ′(f)
∑
s∈ĈA

Ws(f(s)).

By definition (4), ∑
f∈F

µ(f)
∑
s∈ĈA

Ws(f(s)) =
∑
s∈ĈA

∑
c∈C

ϕs(µ)(c)Ws(c).

Fix a non-null s′ ∈ ĈA (that such s′ exists is an implication of (A.6)) and define, for

p ∈ ∆(C), U(p) =
∑

c∈CWs′(c)p(c). By (A.5), for any p, q ∈ ∆(C),∑
c∈C

Ws′(c)p(c) >
∑
c∈C

Ws′(c)q(c)⇔
∑
c∈C

Ws(c)p(c) >
∑
c∈C

Ws(c)q(c)

for all non-null s ∈ ĈA.

Thus, standard arguments imply that

µ � µ′ ⇔
∑
s∈ĈA

U (ϕs(µ))π(s) >
∑
s∈ĈA

U
(
ϕs(µ′)

)
π(s),

where U is continuous, non-constant, affine, real-valued, and unique up to positive linear

transformations, and the the probability measure π is unique and π(s) = 0 if and only if s

is null. This completes the proof of (ii.a).
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For all f ∈ F , a result analogous to Lemma 1 holds for � on ∆(FĈA\CA(f)). That is,

for all f ∈ F , and for all µ, µ′ ∈ ∆(FĈA\CA(f)),

µ � µ′ ⇔
∑

g∈F
ĈA\CA (f)

µ(g)
∑
s∈ĈA

Ws(g(s)) >
∑

g∈F
ĈA\CA (f)

µ′(g)
∑
s∈ĈA

Ws(g(s)).

Furthermore, arguments analogous to those just used to prove (ii.a) serve to prove (ii.b).

In particular, fix f ∈ F . Then (A.5) implies that, for any p̂, q̂ ∈ ∆(Ĉ) and, for all non-null

s, s′ ∈ ĈA \ CA∑
ĉ∈Ĉ

Ws′(ĉ)p̂(ĉ) >
∑
ĉ∈Ĉ

Ws′(ĉ)q̂(ĉ)⇔
∑
ĉ∈Ĉ

Ws(ĉ)p̂(ĉ) >
∑
ĉ∈Ĉ

Ws(ĉ)q̂(ĉ).

Hence, by (A.5), we have that for all µ, µ′ ∈ ∆(FĈA\CA(f)),

µ � µ′ ⇔
∑

s∈ĈA\CA

U∗f (ϕs(µ))φ(s) >
∑

s∈ĈA\CA

U∗f
(
ϕs(µ′)

)
φ(s),

where U∗f is continuous, non-constant, affine, real-valued, and unique up to positive linear

transformations, and the probability measure φ is unique, and φ (s) = 0 if and only if s is

null. This completes the proof of (ii.b).

(Necessity) The proof that (ii.a) and (ii.b) imply (A.1)-(A.6) on the respective do-

mains is straightforward. Since ∪f∈FFĈA\CA(f) = F ∗ and FĈA\CA(f)) ∩ F 6= ∅ for all

f ∈ F , the axioms necessarily hold on all of ∆(F ∗).

(Uniqueness) Follows from standard arguments. ♠

6.3 Proof of Theorem 1

(Sufficiency) We give the part of the proof that does not follow directly from Proposition

1. The representations (6) and (7) imply that, for all f ∈ F and for all p, q ∈ ∆(C),

pĈA\CAf � qĈA\CAf if and only if U∗f (p) > U∗f (q) . Hence, with appropriate normalization,

for all p ∈ ∆(C), U∗f (p) = U (p) , for all f ∈ F. Therefore, U∗f (p) is independent of f .

Suppose that c∗ � x � c∗, let p̂ = αc∗ + (1− α) c∗ be such that p̂ĈA\CAf ∼ xĈA\CAf .

By representation (7), this is equivalent to U∗f (p̂) = U∗f (x). Then, by axiom (A.7) and

representation (7) we have that U∗g (p̂) = U∗g (x), for all g ∈ F . But U∗f (p̂) = U∗f (x) is

equivalent to

U∗f (x) = αU (c∗) + (1− α)U (c∗) ,
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and U∗g (p̂) = U∗g (x) is equivalent to

U∗g (x) = αU (c∗) + (1− α)U (c∗) .

Hence, U∗f (x) = U∗g (x) := u (x) , for all f, g ∈ F .

Suppose instead that x < c∗ � c∗, and let p̂ = αx+ (1− α) c∗ be such that p̂ĈA\CAf ∼
c∗
ĈA\CA

f . By representation (7), this is equivalent to U∗f (p̂) = U∗f (c∗). Then, by axiom (A.7)

and representation (7) we have that U∗g (p̂) = U∗g (c∗) for all g ∈ F . But U∗f (p̂) = U∗f (c∗) is

equivalent to

αU∗f (x) + (1− α)U(c∗) = U(c∗),

and U∗g (p̂) = U∗g (x) is equivalent to

αU∗g (x) + (1− α)U(c∗) = U(c∗).

Solving for U∗f (x) and U∗g (x) we get,

U∗f (x) = U∗g (x) =
U(c∗)− U(c∗)

α
+ U(c∗) := u(x)

for all f, g ∈ F .

Finally, if c∗ � c∗ < x let p̂ = αc∗ + (1− α)x such that p̂ĈA\CAf ∼ c∗ĈA\CAf then, by

the same argument,

u∗f (x) = u∗g(x) =
U(c∗)− αU(c∗)

1− α
:= u(x)

for all f, g ∈ F .

It follows that U∗(p̂) =
∑

c∈C p̂(c)U(c) + p̂(x)u(x), for all p̂ ∈ ∆(Ĉ).

The uniqueness of the subjective probabilities is implied by the uniqueness of the sub-

jective probabilities in Proposition 1.26

(Necessity) The necessity of axioms (A.1) - (A.6) follows from Proposition 1. The

necessity of (A.7) is immediate. ♠

6.4 Proof of Theorem 2

Necessity is immediate. We shall prove sufficiency.

26The uniqueness of π in conjunction with Proposition 1 imply that φ(s) = π(s)/π(ĈA \ CA), for all

s ∈ ĈA \ CA.

34



Suppose that (i) holds. The representations (11) and (12) are implied by Proposition 1.

By (11) and (12), the restriction of �0 and �1 to the mixed conceivable acts in ∆(C0) whose

support is the subset of constant conceivable acts in F0, implies that, for any p, q ∈ ∆(C0),

U0(p) > U0(q) if and only if p �0 q and that U1(p) > U1(q) if and only if p �1 q. By (A.8),

p �0 q if and only if p �1 q. Thus, by the uniqueness of the representations, U0 and U1 can

be chosen so that U0 = U1 on ∆(C0).

To prove (13), let λ, µ ∈ ∆(F0(h;E)), and λ′, µ′ ∈ ∆(F1(h′;E)) be as in (A.9). By

definition of the functions ϕi, ϕ0
s(λ) = ϕ0

s(µ), for all s ∈ ĈA0 \ E and ϕ1
s(λ
′) = ϕ1

s(µ
′), for

all s ∈ ĈA1 \ E. Hence, λ ∼0 µ if and only if∑
s∈E

π0(s)
[
U(ϕ0

s(λ))− U(ϕ0
s(µ))

]
= 0 (20)

and λ′ ∼1 µ
′ if and only if∑

s∈E
π1(s)

[
U(ϕ1

s(λ
′))− U(ϕ1

s(µ
′))
]

= 0. (21)

Axiom (A.9) together with (20) and (21) imply that∑
s∈E

π0(s)
π0(E)

[
U(ϕ0

s(λ))− U(ϕ0
s(µ))

]
=
∑
s∈E

π1(s)
π1(E)

[
U(ϕ1

s(λ
′))− U(ϕ1

s(µ
′))
]
. (22)

By the hypothesis of axiom (A.9) (that is, λ = λ′ and µ = µ′ on E) and the definition of

the functions ϕi, for all s ∈ E, ϕ0
s (λ) = ϕ1

s (λ′) and ϕ0
s (µ) = ϕ1

s (µ′) . Hence, for all s ∈ E,
U(ϕ0

s (λ)) = U(ϕ1
s (λ′)) and U(ϕ0

s (µ)) = U(ϕ1
s (µ′)). Thus, by (22),∑

s∈E

[
π0(s)
π0 (E)

− π1(s)
π1 (E)

] [
U(ϕ0

s (λ))− U
(
ϕ0
s (µ)

)]
= 0. (23)

The last equation implies (13). 27

27To see this, let E = {s, s′} ⊂ CA
0 , such that, U

`
ϕ0

s (λ)
´
− U

`
ϕ0

s (µ)
´

= A > 0, U
`
ϕ0

s′ (λ)
´
−

U
`
ϕ0

s′ (µ)
´

:= B < 0, and U
`
ϕ0

s′′ (λ)
´

= U
`
ϕ0

s′′ (µ)
´
, for all s′′ ∈ CA

0 \E. Then, by (23),»
π0(s)

π0 (s) + π0 (s′)
− π1(s)

π1 (s) + π1 (s′)

–
A+

»
π0(s′)

π0 (s) + π0 (s′)
− π1(s′)

π1 (s) + π1 (s′)

–
B = 0. (24)

But
π0(s′)

π0 (s) + π0 (s′)
= 1− π0(s)

π0 (s) + π0 (s′)
and

π1(s′)

π1 (s) + π1 (s′)
= 1− π1(s)

π1 (s) + π1 (s′)
. (25)

35



To prove (14), let λ, µ ∈ ∆(F0(h;E)) and λ′, µ′ ∈ ∆(F1(ĈA0 , h
′;E′(E))) be as in (A.10).

Then, ϕs(λ) = ϕs(µ), for all s ∈ ĈA0 \E and ϕs(λ′) = ϕs(µ′), for all s ∈ ĈA1 \E′(E). Hence,

by Theorem 1, λ ∼0 µ if and only if∑
s∈E

π0(s)
π0(E)

[U(ϕs(λ))− U (ϕs(µ))] = 0

and λ′ ∼1 µ
′ if and only if∑

s∈E

π1(E(s))
π1 (E′(E))

[
U(ϕs(λ′))− U

(
ϕs(µ′)

)]
= 0.

By the hypothesis of axiom (A.10), for all s ∈ E, ϕŝ (λ′) = ϕs(λ) and ϕŝ(µ′) = ϕs(µ), for

all ŝ ∈ E(s). Hence, U(ϕs(λ)) = U(ϕŝ(λ′)) and U(ϕs(µ)) = U(ϕŝ(µ′)), for all ŝ ∈ E(s).

Thus, ∑
s∈E

[
π0(s)
π0(E)

− π1(E(s))
π1 (E′(E))

]
[U(ϕs(λ))− U (ϕs(µ))] = 0.

By the same argument as in footnote 27, the last equation implies (14).

The uniqueness is an implication of the uniqueness in Proposition 1. ♠

6.5 Proof of Theorem 3

(Sufficiency) That the axioms imply existence of a representation as in Theorem 2 follows

from the proof of Theorem 2. Let λ, µ ∈ ∆(F0) and λ′, µ′ ∈ ∆(F1) be as in Axiom (A.11).

Suppose that µ ∼0 λ. But µ ∼0 λ if and only if

c∗CA
0
c∗ ∼0 ηc∗ + (1− η) c∗. (30)

Substituting we obtain»
π0(s′)

π0 (s) + π0 (s′)
− π1(s′)

π1 (s) + π1 (s′)

–
= −

»
π0(s)

π0 (s) + π0 (s′)
− π1(s)

π1 (s) + π1 (s′)

–
. (26)

Hence, (24) reduces to »
π0(s)

π0 (s) + π0 (s′)
− π1(s)

π1 (s) + π1 (s′)

–
(A−B) = 0. (27)

But A−B > 0. Therefore, it must be that

π0(s)

π1(s)
=
π0 (s) + π0 (s′)

π1 (s) + π1 (s′)
. (28)

Thus,
π0(s)

π1(s)
=
π0(s′)

π1(s′)
. (29)
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By the representation in (11) the last indifference holds if and only if

U0 (c∗)π0(CA0 ) + U0 (c∗)
(
1− π0(CA0 )

)
= U0 (c∗) η + U0 (c∗) (1− η) . (31)

But, U0 (c∗) > U0 (c∗). Hence, (31) holds if and only if

η = π0(CA0 ). (32)

By Axiom (A.11), µ ∼0 λ implies that λ′ <1 µ
′, which is equivalent to

ηc∗ + (1− η) c∗ <1 c∗CA
1
c∗. (33)

By the representation in (12), (33) holds if and only if

U1 (c∗) η + U1 (c∗) (1− η) ≥ U1 (c∗)π1(CA1 ) + U1 (c∗)
(
1− π1(CA1 )

)
. (34)

Hence, by the same argument as above, (34) holds if and only if

π1(CA1 ) ≥ η. (35)

By (32) and (35) we have that

π1(CA1 ) ≥ π0(CA0 ), (36)

which is equivalent to π1(ĈA1 \ CA1 ) ≤ π0(ĈA0 \ CA0 ). The inequality in (36) is strict if and

only if λ′ �1 µ
′ in Axiom (A.11), and holds with equality if and only if λ′ ∼1 µ

′ in Axiom

(A.11).

(Necessity) The necessity of axioms (A.1) - (A.10) follows from the proof of Theorem

2. To show that (A.11) holds, let µ, λ ∈ ∆(F0) and µ′, λ′ ∈ ∆(F1) be as in (A.11). By (11),

µ ∼0 λ if and only if

U0 (c∗)π0(CA0 ) + U0 (c∗)
(
1− π0(CA0 )

)
= U0 (c∗) η + U0 (c∗) (1− η) . (37)

Since U0 (c∗) > U0 (c∗), (37) holds if and only if

η = π0(CA0 ). (38)

Suppose now that µ′ �1 λ
′. By (12), µ′ �1 λ

′ if and only if

U1 (c∗)π1(CA1 ) + U1 (c∗)
(
1− π1(CA1 )

)
> U1 (c∗) η + U1 (c∗) (1− η) .
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Since U0 (c∗) > U0 (c∗), this holds if and only

π1(CA1 ) < η. (39)

Now, expressions (38) and (39) imply that

π0(CA0 ) > π1(CA1 ). (40)

However, by (15), π0(CA0 ) ≤ π1(CA1 ), which contradicts (40). ♠
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