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Abstract

We apply the fractionally cointegrated vector autoregressive (FCVAR) model to analyze the
relationship between spot and futures prices in five commodity markets (aluminium, copper,
lead, nickel, and zinc). To this end, we first extend the FCVAR model to accommodate de-
terministic trends in the levels of the processes. The methodological contribution is to provide
representation theory for the FCVAR model with deterministic trends, where we show that
the presence of the deterministic trend in the process induces both restricted and unrestricted
constant terms in the vector error correction model. The consequences for the cointegration
rank test are also briefly discussed. In our empirical application we use the data from Figuerola-
Ferretti and Gonzalo (2010), who conduct a similar analysis using the usual (non-fractional)
cointegrated VAR model. The main conclusion from the empirical analysis is that, when using
the FCVAR model, there is more support for the cointegration vector (1,−1)′ in the long-run
equilibrium relationship between spot and futures prices, and hence less evidence of long-run
backwardation, compared to the results from the non-fractional model. Specifically, we reject
the hypothesis that the cointegration vector is (1,−1) using standard likelihood ratio tests only
for the lead and nickel markets.

JEL codes: C32, G14.
Keywords: backwardation, contango, deterministic trend, fractional cointegration, futures
markets, vector error correction model.

1 Introduction

A large empirical literature is aimed at assessing to what extent futures markets are efficient.
Letting st and ft denote log-spot and log-futures prices, respectively, this has traditionally involved
assessing whether the parameter β2 is equal to unity in relationships of the type st = β2ft+ρ. When
the pair Xt = (st, ft) is an integrated time series (of order one), there is a large literature focusing on
investigating this one-for-one relationship using cointegration methods. In that framework, letting
β denote the cointegration vector, the issue is to assess a version of long-run efficiency, i.e. whether
(i) cointegration exists such that β′Xt is a stationary relation, and (ii) the cointegration vector is
β = (1,−1)′.
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Series (CREATES, funded by the Danish National Research Foundation) is gratefully acknowledged.
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Despite the widespread acceptance of efficient markets in theory, the cointegration vector β =
(1,−1)′ that it postulates has been difficult to verify in empirical work, see, e.g., Chowdhury
(1991), Brenner and Kroner (1995), and Kellard, Newbold, Rayner, and Ennew (1999) for some
early evidence, and Chow et al. (2000) for a survey. In particular, although the presence of unit
roots in both spot and futures prices is generally accepted under standard no-arbitrage conditions,
most of the early empirical evidence based on the usual I(1) vs I(0) paradigm has rejected the
one-for-one cointegration hypothesis, see e.g. Chow et al. (2000) and Westerlund and Narayan
(2013) for detailed discussions and reviews of the empirical evidence. Recently, Figuerola-Ferretti
and Gonzalo (2010) (FG hereafter) develop an equilibrium model with finite elasticity of supply of
arbitrage services and endogenously modeled convenience yields, and show how this model implies
cointegration between spot and futures prices, although the cointegration vector β need not be
equal to (1,−1)′. When the slope of the cointegration vector β2 > 1 (β2 < 1) the market is said to
be under long-run backwardation (in contango). Generally, backwardation (contango) exists when
prices decline (increase) with time to delivery, so that spot prices are greater (lower) than futures
prices (Routledge, Seppi, and Spatt, 2000), e.g. due to convenience yields, storage costs, etc.

In recent literature, there has been much research on the potential presence of fractional inte-
gration (or long memory) in the equilibrium relation between spot and futures prices, i.e. in β′Xt

or st − ft. This implies fractional cointegration between futures and spot prices in the sense that,
although the prices themselves are I(1), β′Xt is fractionally integrated of a lower order between zero
and one. This generalizes the usual notion of cointegration where β′Xt would be I(0). Specifically,
with respect to futures markets, recent studies have found evidence of fractional integration in the
forward or futures premium; see, e.g., Baillie and Bollerslev (1994), Lien and Tse (1999), Maynard
and Phillips (2001), Kellard and Sarantis (2008), and Coakley, Dollery, and Kellard (2011).

One of the latest developments in the (fractional) cointegration literature is the fractionally
cointegrated vector autoregressive (FCVAR) model of Johansen (2008) and Johansen and Nielsen
(2012). This model generalizes Johansen’s (1995) cointegrated vector autoregressive (CVAR) model
to allow for fractionally integrated time series that cointegrate to a lower (fractional) order. Asymp-
totic theory for estimation and inference in the FCVAR model was developed recently in a series
of papers by Johansen and Nielsen (2010, 2012, 2015). They prove asymptotic distribution results
for the maximum likelihood estimators and for the likelihood ratio test for cointegration rank. Fur-
thermore, Nielsen and Popiel (2015) provide a accompanying Matlab programs for calculation of
estimators and test statistics, and MacKinnon and Nielsen (2014) provide computer programs for
calculation of P values and critical values for the cointegration rank tests.

The FCVAR model has many advantages when estimating a system of fractional time series
variables that are potentially cointegrated. The flexibility of the model permits one to determine
the cointegrating rank, or number of equilibrium relations, via statistical tests and to jointly esti-
mate the adjustment coefficients and the cointegrating relations, while accounting for the short-run
dynamics. Each of these features will typically be relevant to the research question in empirical
work. For example, in our empirical application, the cointegrating rank is the number of long-run
equilibria that exist between the spot and futures prices, while the cointegrating relations them-
selves are the linear combinations of these variables that form a stationary equilibrium, which we
can investigate for the presence of backwardation or contango. The only potential limitation of
the FCVAR framework in relation to empirical application to asset prices is that the analysis in
Johansen (2008) and Johansen and Nielsen (2010, 2012, 2015) allows at most a non-zero mean (a
so-called restricted constant term), but no deterministic trend in the observed variables.

This paper aims to make two distinct contributions. The first is a methodological contribution
to allow for deterministic linear time trends in the observed variables in the FCVAR model, i.e.
a drift in the price processes in our application. We provide the necessary representation theory
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for the model with deterministic trend and derive the relevant error correction (regression-type)
equation to be estimated. In the fractional case, the presence of deterministic trends in the process
induces both so-called restricted and unrestricted constant terms in the error correction model.
The consequences for the cointegration rank (trace) test are also briefly discussed.

Our second contribution is to apply the FCVAR model to re-analyze the empirical application
in FG, who apply the usual non-fractional CVAR model. To justify this application of the FCVAR
model from economic theory, we first suggest a variation of the equilibrium model developed by
FG from which it follows that spot and futures prices are fractionally cointegrated. We thus
apply the FCVAR model to the dataset from FG which consists of daily observations from the
London Metal Exchange on spot and futures prices in five commodity markets for non-ferrous metals
(aluminium, copper, lead, nickel, and zinc) from January 1989 to October 2006. In all markets the
spot and futures prices are cointegrated, and for all markets except copper the fractional integration
parameter is highly significant, showing that the usual non-fractional model is not appropriate.

The first main finding in our empirical application is that, when allowing for fractional inte-
gration in the long-run equilibrium relations, fewer lags appear to be needed in the autoregressive
formulation compared to the non-fractional model, further stressing the usefulness of the fractional
model. Secondly, compared to the results from the non-fractional model, there is more evidence
in favor of cointegration vector β = (1,−1)′. That is, there is more support for stationarity of the
spread, st − ft, and hence less support for long-run backwardation or contango, compared to the
analysis in FG based on the CVAR model. Specifically, we reject the hypothesis that the coin-
tegration vector is β = (1,−1)′ using standard likelihood ratio tests only for the lead and nickel
markets, whereas FG reject the hypothsis for all markets except copper.

The remainder of the paper is organized as follows. Section 2 presents the FCVAR model and
the representation theory to allow for deterministic time trends. Section 3 presents the equilibrium
model in FG and the extension that results in fractional cointegration. In Section 4 we describe
the data and empirical results and Section 5 concludes.

2 The FCVAR model with a deterministic linear trend

In our empirical analysis we use the FCVAR model of Johansen (2008) and Johansen and Nielsen
(2010, 2012, 2015). This model is a generalization of Johansen’s (1995) CVAR model to allow for
fractional processes of order d that cointegrate to order d − b. However, the development of the
model in Johansen (2008) and Johansen and Nielsen (2010, 2012, 2015) does not accommodate
drift in prices, i.e. deterministic linear trends in the observed variables. In this section we develop
an extension of the model to allow such linear time trends.

2.1 Fractional differencing and fractional integration

The fractional (or fractionally integrated) time series models are based on the fractional difference
operator,

∆dXt =
∞∑
n=0

πn(−d)Xt−n, (1)

where the fractional coefficients πn(u) are defined in terms of the binomial expansion (1− z)−u =∑∞
n=0 πn(u)zn, i.e.,

πn(u) =
u(u+ 1) · · · (u+ n− 1)

n!
≤ cnu−1 (2)

for some c < ∞ that does not depend on n or u. Many other details and intermediate results
regarding this expansion and the fractional coefficients are given in, e.g., Johansen and Nielsen
(2015, Appendix A). Calculating fractional differences can be computationally very demanding,
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but efficient calculation using the fast Fourier transform, which we apply in our estimation, is
discussed in Jensen and Nielsen (2014).

Given the definition of the fractional difference operator in (1), a time series Xt is said to be
fractional of order d, denoted Xt ∈ I(d), if its d’th difference is fractional of order zero, i.e. if
∆dXt ∈ I(0). The I(0) property can be defined in the frequency domain as having spectral density
that is finite and non-zero near the origin or in terms of the linear representation coefficients if
the sum of these is non-zero and finite, see, e.g., Johansen and Nielsen (2012). For example, the
stationary and invertible ARMA model is I(0).

2.2 The FCVAR model without deterministic terms

The FCVAR model is most easily derived starting from the well-known non-fractional CVAR model.
To that end, let Yt, t = 1, . . . , T , be a p-dimensional I(1) time series. Then the CVAR model for Yt
is

∆Yt = αβ′Yt−1 +
k∑
i=1

Γi∆Yt−i + εt = αβ′LYt +
k∑
i=1

Γi∆L
iYt + εt, (3)

where, as usual, εt is p-dimensional independent and identically distributed with mean zero and
covariance matrix Ω. On the right-hand side of (3) the lag and difference operators, ∆ and L =
1−∆, are written explicitly, and the FCVAR model is derived by replacing these by their fractional
counterparts, ∆b and Lb = 1−∆b, respectively. We then obtain

∆bYt = αβ′LbYt +
k∑
i=1

Γi∆
bLibYt + εt, (4)

and applying this model to Yt = ∆d−bXt we obtain the FCVAR model,

∆dXt = αβ′Lb∆
d−bXt +

k∑
i=1

Γi∆
dLibXt + εt. (5)

Some of the parameters in the FCVAR model are well-known parameters from the CVAR model
and these have the usual interpretations also in the FCVAR model. Most importantly are the long-
run parameters α and β, which are p× r matrices with 0 ≤ r ≤ p. The columns of β constitute the
cointegrating vectors such that β′Xt are the stationary linear combinations of the variables in the
system, i.e. the long-run equilibrium relations. The parameters in α are the adjustment or loading
coefficients which represent the speed of adjustment towards equilibrium for each of the variables.
The short-run dynamics of the variables are governed by the parameters Γi in the autoregressive
augmentation.

The FCVAR model has two additional parameters compared with the CVAR model, namely
the fractional parameters d and b. First, d denotes the fractional integration order of the observable
time series. Presumably, most financial assets would have d = 1 based on standard no-arbitrage
arguments, so we assume in our empirical study that d = 1, which is also in accordance with
Assumptions B.3 and C.3 in the economic model below. The consequence is that we consider
d = 1 to be fixed and known, and therefore not estimated as would usually be the case. Next, b
determines the degree of fractional cointegration, i.e. the reduction in fractional integration order
of β′Xt compared to Xt itself. We do not fix this parameter but rather estimate it jointly with
the remaining parameters. There are two relevant ranges for b, namely (0, 1/2], in which case the
equilibrium errors are fractional of order greater than 1/2, and are thus non-stationary although
mean reverting, and (1/2, 1], in which case the equilibrium errors are fractional of order less than
1/2 and are thus stationary. Finally note that when d = b = 1 the FCVAR model reduces to the
CVAR model, which is therefore nested in the FCVAR model as a special case.
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The FCVAR model has several advantages and features that it shares with the CVAR model. It
(i) admits statistical tests to determine how many long-run equilibrium relations exist, (ii) enables
simultaneous modeling of the long-run equilibria, the adjustment responses to deviations from the
equilibria, and the short-run dynamics of the system, and (iii) enables evaluation of model fit,
i.e. whether the assumptions underlying the asymptotic distribution theory are likely satisfied, by
examining the model residuals using, for instance, tests for serial correlation.

2.3 Introducing a linear trend in the FCVAR model

In many empirical applications, including our application to spot and futures prices, and follow-
ing our Assumption C.3 in the economic equilibrium model below, we want to accommodate a
deterministic linear trend in the variables. For convenience in the mathematical derivations we use

πt(1) = 1{t≥0} and πt(2) = (t+ 1)1{t≥0} (6)

as the constant (mean) and linear trend terms, respectively, where πt(·) is defined in (2) and 1{A}
denotes the indicator function of the event A. These simple πt(·) coefficients are preferred instead of
the usual (1, t) because of the property ∆bπt(a) = πt(a− b) which is not shared by (1, t). However,
assuming the data started at some finite time in the past, (πt(1), πt(2)) could be replaced by (1, t)
in what follows at the cost of a small asymptotically negligible approximation error.

We thus assume that Xt is generated by the unobserved components model

Xt = τ1πt(1) + τ2πt(2) +X0
t , (7)

where X0
t is the zero-mean FCVAR in (5). The deterministic terms in (6) are therefore defined

such that the parameters τ1 and τ2 in (7) allow for a linear deterministic trend in Xt. However, the
trend is not empirically warranted in the equilibrium relation β′Xt, and consequently we impose
the restriction β′τ2 = 0, see also (19) below. Recall that, when deriving the representation theory,
we are discussing the data generating process, and hence all parameters are interpreted as true
values.

The representation theory for the zero-mean FCVAR model (5) is given in Johansen (2008) and
Johansen and Nielsen (2012, Theorem 2). Under the conditions imposed there, X0

t has solution

X0
t = C∆−d+ εt + ∆

−(d−b)
+ Yt + φt, t = 1, . . . , T, (8)

when d ≥ 1/2, where the subscript “+” on ∆ denotes that the summation in the fractional difference
operator (2) is truncated at n = t−1, Yt is an I(0) process with zero mean, φt is a term that depends
only on the initial values of X0

t , and the matrix C is given by

C = β⊥(α′⊥Γβ⊥)−1α′⊥, Γ = Ip −
k∑
i=1

Γi, (9)

with β⊥ defined such that β′⊥β = β′β⊥ = 0 and similarly for α⊥. When X0
t is stationary, i.e.

d < 1/2, the representation is instead

X0
t = C∆−dεt + ∆−(d−b)Yt, t = 1, . . . , T. (10)

In terms of the representations (8) and (10), we can now define the restriction β′τ2 = 0 such that
the trend parameter τ2 is proportional to β⊥, that is we can model τ2 = Cθ for θ freely varying.

The purpose of this section is to derive the vector error correction model that corresponds to
the unobserved components representation (7), i.e. the implied FCVAR model. To that end, we
apply

Π(L) = Ip∆
d − αβ′Lb∆d−b −

k∑
i=1

ΓiL
i
b∆

d (11)
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to Xt in (7), where we find that the stochastic term is Π(L)X0
t = εt for t ≥ 1, see (5). For the

deterministic terms we find the following result.

Theorem 1. Let Π(L) be given by (11) and define the deterministic coefficients πt(·) as in (2).
Then

Π(L)(τ1πt(1) + τ2πt(2)) =− αβ′τ1Lb∆d−bπt(1)1{d−b≤1/2} (12)

+ Γτ1πt(1− d)1{d≤1/2} + Γτ2πt(2− d)1{d≤3/2} (13)

+

max{k,[(1/2−d)/b]}∑
j=1

(
k

j

)
Ψjτ1πt(1− d− jb) (14)

+

max{k,[(3/2−d)/b]}∑
j=1

(
k

j

)
Ψjτ2πt(2− d− jb) + ζt (15)

for t ≥ 1, where ζt has finite information in the sense that
∑T

t=1 ζ
2
t <∞ and [·] denotes the integer

part of the argument.

Proof. We apply Π(L) in (11) to τ1πt(1) + τ2πt(2) and find, using β′τ2 = 0, that

Π(L)(τ1πt(1) + τ2πt(2)) =− αβ′τ1Lb∆d−bπt(1) + Γτ1πt(1− d) + Γτ2πt(2− d)

+

k∑
i=1

Γi(Ip − Lib)(τ1πt(1− d) + τ2πt(2− d))

=− αβ′τ1Lb∆d−bπt(1) + Γτ1πt(1− d) + Γτ2πt(2− d)

+
k∑
i=1

Γi(τ1πt(1− d) + τ2πt(2− d))

−
k∑
i=1

Γi(1−∆b)i(τ1πt(1− d) + τ2πt(2− d))

=− αβ′τ1Lb∆d−bπt(1) + Γτ1πt(1− d) + Γτ2πt(2− d)

−
k∑
i=1

Γi

i∑
j=1

(
i

j

)
(−1)j∆jb(τ1πt(1− d) + τ2πt(2− d)),

where the last equality follows from the binomial theorem applied to (1 − ∆b)i. Defining the
parameters Ψj = (−1)j+1

∑j
i=1 Γi and reversing the summations over i and j we obtain

−
k∑
i=1

Γi

i∑
j=1

(
i

j

)
(−1)j∆jb(τ1πt(1− d) + τ2πt(2− d)) =

k∑
j=1

(
k

j

)
Ψj∆

jb(τ1πt(1− d) + τ2πt(2− d))

=

k∑
j=1

(
k

j

)
Ψj(τ1πt(1− d− jb) + τ2πt(2− d− jb)).

Finally, we use the fact that all πt(a) terms with argument a < 1/2 have finite information because∑T
t=1 πt(a)2 ≤ c

∑T
t=1 t

2a−2 ≤ c. These become part of ζt, and the result follows. �

From (12)–(15) in Theorem 1 it is clear that the simple deterministic trend introduced in the
model for the observed variables via the unobserved components formulation (7) gives rise to many
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deterministic trend-type terms in the vector error correction model. The term on the right-hand
side of (12) is the so-called restricted constant term in the terminology of Johansen (1995), while
(13)–(15) are so-called unrestricted deterministic terms. In the non-fractional CVAR model with
d = b = 1 these are such that the arguments in the πt(·) coefficients are always integers, in
which case the many terms in (13)–(15) can be combined and the associated parameters are freely
varying. However, in the present fractional setup, there are many “trends” introduced in the form
of πt(·) coefficients with different arguments, and these do not necessarily combine into simple
expressions. Moreover, these new terms in the vector error correction model have parameters that
are complicated nonlinear functions of the underlying model parameters, and they are therefore
not really “unrestricted”.

Note that the indicator functions in (12) and (13) and the upper summation limits in (14) and
(15) imply that the deterministic terms may not even be present. This generalizes the well-known
results that one cannot consistently estimate the mean of a random walk or unit root process (which
has d = 1). In the present model, this situation occurs if the integration order, d, of the variables
and/or the integration order, d − b of the equilibrium errors are too high to enable estimation of
mean and trend terms.

However, in applications it will often be the case that d = 1, as for example in the case of asset
prices based on a no-arbitrage argument. Furthermore, it will often be assumed that b > 1/2 such
that the equilibrium errors are stationary, i.e. have fractional integration order d− b = 1− b < 1/2.
In this special case Theorem 1 simplifies in a nice way, which is stated as a corollary.

Corollary 1. Under the assumptions of Theorem 1 with d = 1 and b > 1/2 we find

Π(L)(τ1πt(1) + τ2πt(2)) = −αLb∆1−bρ′πt(1) + ξπt(1) + ζt (16)

for t ≥ 1, where ζt has finite information and the parameters ρ′ = β′τ1 and ξ = Γτ2 are freely
varying.

Proof. The result follows from Theorem 1 by setting d = 1, b > 1/2, and using that πt(0) = 0 for
t ≥ 0. �

The result in Corollary 1 implies a relatively simple vector error correction equation for Xt,
which is obtained by application of Π(L) to Xt and using (5) and (16). Then,

∆Xt = αLb∆
1−b(β′Xt − ρ′πt(1)) +

k∑
i=1

Γi∆L
i
bXt + ξπt(1) + εt, (17)

where the negligible term ζt in (16) is ignored (or absorbed into εt). Here, ρ is interpreted as the
mean of the stationary linear combinations, β′Xt, and ξ gives rise to the linear deterministic trend
in the levels of the variables. In the terminology of Johansen (1995), (17) contains both a restricted
constant, ρ′πt(1), and an unrestricted constant, ξπt(1).

To interpret the model and the representation results obtained, we examine the behavior of
Xt in different directions. This will also be useful in a discussion of the asymptotic distribution
of the test for cointegration rank. Combining (7) and (8), the process Xt is given by, under the
assumptions of Corollary 1,

Xt = τ1πt(1) + Cθπt(2) + C
T∑
t=1

εt + ∆
−(1−b)
+ Yt + φt, t = 1, . . . , T. (18)

In the cointegrating directions, β, we find that

β′Xt = β′(τ1πt(1) + Cθπt(2) +X0
t ) = ρ′πt(1) + β′∆

−(1−b)
+ Yt + β′φt, (19)
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which is I(1− b) with a non-zero mean given by ρ′ (apart from the asymptotically negligible term
arising from the initial values component φt).

In the trend direction given by τ̄2 = τ2(τ
′
2τ2)

−1, we find that

T−1τ̄ ′2X[Tu] = T−1τ̄ ′2τ1π[Tu](1) + T−1π[Tu](2) + T−1τ̄ ′2X
0
[Tu] = u+ oP (1)

indeed generates the trend. The quantity relevant to the asymptotic theory is

T−bτ̄ ′2∆
1−bX[Tu] =

1

Γ(1 + b)
ub + oP (1), (20)

where Γ(·) denotes the Γ function.1

Finally, let γ be orthogonal to (β′, τ ′2)
′ so that γ denotes the remaining, non-stationary direc-

tions. In these directions we obtain

γ′Xt = γ′(τ1πt(1) + τ2πt(2) +X0
t ) = γ′τ1πt(1) + γ′X0

t

and it is seen that the last term on the right-hand side dominates. In this case, the relevant term
for the asymptotic theory is

T 1/2−bγ′∆1−bX[Tu] = T 1/2−bγ′τ1π[Tu](b) + T 1/2−bγ′∆1−bX0
[Tu]

= o(1) + T 1/2−bγ′∆1−bX0
[Tu] ⇒Wb−1(u), (21)

where “⇒” denotes weak convergence and Wb−1(u) = Γ(b)−1
∫ u
0 (u−s)b−1dW (s) is fractional Brow-

nian motion (fBM) of type II, see e.g. Johansen and Nielsen (2012, Equation (6)), and W (s) is
p-dimensional Brownian motion generated by εt.

Based on the above discussion and interpretation of the process Xt in the different directions
β, τ̄2, and γ, and with some inspiration from the non-fractional CVAR model, see Johansen (1995,
Chapter 6), and the FCVAR model without trend, see Johansen and Nielsen (2012, Section 5), we
make the following conjectures regarding the asymptotic distribution of the likelihood ratio (LR)
test for cointegration rank (the so-called trace test). When b < 1/2, this will be χ2((p − r)2) as
in Johansen and Nielsen (2012, Theorem 11(ii)). When b > 1/2, the asymptotic distribution will
have the usual form,

tr

{(∫ 1

0
F (u)dB(u)′

)′(∫ 1

0
F (u)F (u)′du

)−1(∫ 1

0
F (u)dB(u)

)}
, (22)

where B(u) is (p− r)-dimensional standard Brownian motion. In the basic case without determin-
istic terms, F (u) = Bb−1(u) is (p− r)-dimensional standard fBM, see Johansen and Nielsen (2012,
Theorem 11(i)). However, inspired by the analysis of the CVAR model, we make the following
observations:

a) The trend direction (20) dominates the non-stationary directions (21), such that, because the
trend direction is one-dimensional, the last fBM in F (u) is replaced by ub.

b) Because an unrestricted constant is included in the vector error correction model (17), the
process F (u) should be demeaned.

c) When a restricted constant is in the model, the process F (u) should be extended by ub−1,
see Johansen and Nielsen (2012, Theorem 11(iv)).

1This notation is unfortunate, since Γ also denotes the parameter Ip −
∑k

i=1 Γi, see (9). However, the two uses
are both very standard in the literature, and because the two are used in different places and play very different roles
in the analysis, the notation hopefully shouldn’t cause any confusion.
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Thus, we conjecture that the asymptotic distribution of the LR test for cointegration rank is given
by (22) with

Fi(u) = Bi,b−1(u)−
∫ 1

0
Bi,b−1(u)du, i = 1, ..., p− r − 1,

Fp−r(u) = ub −
∫ 1

0
ubdu = ub − 1/(b+ 1),

Fp−r+1(u) = ub−1 −
∫ 1

0
ub−1du = ub−1 − 1/b.

Of course, as in the cases considered by Johansen and Nielsen (2012), this asymptotic distribution
depends on the unknown (true value of the) scalar parameter b, so it will need to be simulated on
a case-by-case basis, which is what we do in our empirical application.

2.4 Other estimation and inference results for the FCVAR model

The asymptotic theory of estimation and inference for the model is discussed in Johansen and
Nielsen (2012), and practical implementation as well as Matlab computer programs for the calcula-
tion of estimators and test statistics are provided in Nielsen and Popiel (2015). The latter programs
are also applicable to our model with linear trends. Specifically, maximum likelihood estimation of
(17) can be performed as follows. For fixed b, (17) is estimated by reduced rank regression of ∆Xt

on Lb∆
1−b(X ′t,−πt(1))′ corrected for {∆LibXt}ki=1 and πt(1). This results in a profile likelihood

which is a function only of b that can be maximized numerically.
Note that the fractional difference operator in (1) is defined in terms of an infinite series.

However, any observed sample has only a finite number of observations, thus prohibiting calculation
of fractional differences as defined. A popular simplifying assumption in the literature, which would
allow calculation of the fractional differences, is that Xt were zero before the start of the sample.
However, this would hardly ever be the case in practice, and we certainly cannot reasonably make
such an assumption in our empirical application. Johansen and Nielsen (2015) use higher-order
expansions in a simpler model to analyze the bias introduced by making such an assumption to
allow calculation of the fractional differences, and they suggest several ways to alleviate the bias.
In particular, they show, following ideas in Johansen and Nielsen (2010, 2012), that the bias
can be alleviated by splitting the observed sample into initial values to be conditioned upon and
observations to include in the likelihood. This is therefore similar to the well-known way in which,
in estimation of AR(k) models, a sample is divided into k initial values and T − k observations
to reduce conditional maximum likelihood estimation to least squares regression. In our empirical
analysis we will apply maximum likelihood inference conditional on initial values.

The asymptotic distribution theory derived in Johansen and Nielsen (2012) shows that the
maximum likelihood estimator of (b, α,Γ1, . . . ,Γk) is asymptotically normal, while the maximum
likelihood estimator of (β, ρ) is asymptotically mixed normal when the true value b0 > 1/2 and
asymptotically normal when b0 < 1/2. The important implication of these results is that asymptotic
χ2-inference can be conducted on the parameters (b, ρ, α, β,Γ1, . . . ,Γk) using ordinary LR tests.

We will test a number of interesting hypotheses on the model parameters in our empirical
analysis, specifically on b and β. In this context, it is important to recall that β itself is not
identified; only the span of β is identified. Hence we can not interpret or conduct tests on the
absolute value of parameters in β, but only on the relative value of these. The general theory
of hypothesis testing on β for the CVAR model (Johansen, 1995, Chapter 7) carries over almost
unchanged to the FCVAR model. In particular, the degrees of freedom is equal to the number of
overidentifying restrictions under the null. Although counting the degrees of freedom in tests on β
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is non-standard because of the normalization required to separately identify α and β, this is done
in the same way for the FCVAR model as for the CVAR model. In particular, the main hypothesis
of interest on β can be formulated as

β = Hϕ, (23)

where the known p × s matrix H specifies the restriction(s) and ϕ is an s × r matrix of freely
varying parameters. In this case the same restriction is imposed on each cointegrating relation, as
is relevant in our empirical analysis. The degrees of freedom of the test is given by df = (p− s)r.

Using the framework in (23) with one cointegration vector, i.e. r = 1, the hypothesis Hβ : β =
(1,−1)′ can be formulated with

H
p×s

=

[
1
−1

]
,

where (p, s, r) = (2, 1, 1) and ϕ is a freely varying scalar. The degrees of freedom for the test of Hβ

is thus df = (p− s)r = (2− 1)1 = 1.

3 Economic equilibrium model

The economic model for the dynamics of spot and futures prices that will provide the foundation
for our empirical analysis is a variation of the equilibrium model developed by FG which in turn
builds on Garbade and Silber (1983) and a long tradition of models known as “cost-of-carry” models
going back to Kaldor (1939). We first briefly review the FG model by presenting the two cases of
their model separately: (i) infinite elasticity of supply of arbitrage services and (ii) finite elasticity
of supply of arbitrage services. In the third subsection we then discuss a simple variation of their
model that will establish a natural connection to the FCVAR model described in Section 2 above.

3.1 FG equilibrium model of spot and futures prices with infinite elasticity of supply
of arbitrage services

The following set of standard market conditions are collectively referred to as Assumption A.

A.1 No taxes or transaction costs.

A.2 No limitations on borrowing.

A.3 No costs other than financing a futures position (short or long) and storage costs.

A.4 No limitations on short sale in the spot market.

Let the log-spot price of a commodity in period t be denoted st and the contemporaneous log-
futures price for a one-period-ahead futures contract be denoted ft. For that same period t, let rt
and ct denote the continuously compounded interest rate and storage cost, respectively. The time
series behavior of these variables is described in the following conditions, collectively referred to as
Assumption B.

B.1 rt = r̄ + urt, where r̄ denotes the mean of rt and urt denotes an I(0) process with mean zero
and finite positive variance.

B.2 ct = c̄+ uct, where c̄ denotes the mean of ct and uct denotes an I(0) process with mean zero
and finite positive variance.

B.3 ∆st is an I(0) process with mean zero and finite positive variance.

Under Assumption A, no-arbitrage equilibrium conditions imply that the cost of the futures
position should be the same as the spot price plus interest and storage cost, i.e.,

ft = st + rt + ct. (24)
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Imposing Assumption B on (24) we obtain

ft − st = r̄ + c̄+ urt + uct, (25)

which implies that st and ft are both I(1) and cointegrate to I(0) with cointegration vector (1,−1).

3.2 FG equilibrium model of spot and futures prices with finite elasticity of supply
of arbitrage services

The next step in the development of the equilibrium model of FG is to assume finite elasticity of
arbitrage services. This could reflect the existence of factors such as basis risk, convenience yields,
constraints on storage space and other factors that make arbitrage transactions risky. Convenience
yield, in particular, is the benefit associated with storing the commodity instead of holding the
futures contract (Kaldor, 1939) and is the key element in the FG model. Generally, by the definition
of Brennan and Schwartz (1985), convenience yield is “the flow of services that accrues to an owner
of the physical commodity but not to an owner of a contract for future delivery of the commodity”.
Accordingly, backwardation can now be given an economic interpretation, defined by FG as “the
present value of the marginal convenience yield of the commodity inventory”. When this is negative,
the market is said to be in contango.

Let the convenience yield be denoted by yt. Then the no-arbitrage condition (24) is modified
to

ft + yt = st + rt + ct. (26)

In the literature, the convenience yield is generally characterized as a (linear or nonlinear) function
of st, ft, and possibly other variables as well. FG approximate yt by a linear combination of st and
ft, i.e. yt = γ1st − γ2ft with γi ∈ (0, 1) for i = 1, 2. Imposing Assumption B on (26) then implies
the equilibrium condition

st = β2ft + ρ+ urt + uct, (27)

where β2 and ρ are simple functions of the model parameters. In particular, β2 can take three
different values (with the interpretations assuming a small enough value of ρ):

(i) β2 > 1: there is long-run backwardation (st > ft).

(ii) β2 < 1: there is long-run contango (st < ft).

(iii) β2 = 1: there is neither backwardation nor contango in the long run.

Item (iii) is therefore seen to be a special case of the economic equilibrium model, which,
in general, admits the (empirically warranted) theoretical possibility of having a cointegration
parameter β2 different from unity as in items (i) and (ii). It is exactly the hypothesis (iii) that we
will test in the empirical application.

3.3 Fractionally cointegrated equilibrium model

We now propose a simple variation of the FG model described in the previous subsection, which
will link this theoretical framework to the FCVAR model. It is seen from the above analysis that
the I(0) term, urt+uct, in the equilibrium (cointegrating) relationship (27) stems from Assumptions
B.1 and B.2, where interest rates and storage costs are assumed to be I(0). While storage costs
are basically unobserved, interest rates are observed and are typically not found to be I(0). In
addition, Assumption B.3 implies that spot prices are drift-less (∆st has mean zero), which may
not be realistic from an empirical point of view. For example, it does not appear obvious from
Figure 1, which presents the data series analyzed in the empirical section below, whether the series
considered in our empirical analysis are drift-less, and hence it seems prudent to allow a possible
drift rather than to rule it out a priori.
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To obtain a model with both fractional cointegration and drift, we therefore replace Assump-
tion B by the following conditions, collectively referred to as Assumption C.

C.1 rt = r̄+ vrt, where r̄ denotes the mean of rt and vrt denotes an I(1− b) process with b > 1/2,
mean zero, and finite positive variance.

C.2 ct = c̄+ vct, where c̄ denotes the mean of ct and vct denotes an I(1− b) process with b > 1/2,
mean zero, and finite positive variance.

C.3 ∆st is an I(0) process with mean µ and finite positive variance.

Here, Assumptions C.1 and C.2 generalize B.1 and B.2 to fractionally integrated interest rates
and storage costs, and Assumption C.3 allows a drift in spot prices when µ 6= 0.

To simplify notation we assume that interest rates and storage costs have the same order of
fractional integration, i.e. that both vrt and vct are I(1−b). If the b parameters for the two processes
were in fact different, then the b parameter in the following analysis would be replaced simply by
the minimum of the two. The assumption that b > 1/2 ensures that the processes vrt and vct are
stationary, since then 1− b < 1/2. The latter assumption is not critical, nor even necessary for the
economic equilibrium model, but the condition is useful in the FCVAR model with a linear trend
(see Corollary 1). If, instead, b < 1/2, then vrt would not be stationary and in that case we would
define r̄ simply as a constant, rather than interpret it as the mean of rt, and vrt would denote an
I(1− b) process initialized at zero. Similarly for vct.

When we impose Assumption C on (26) instead of Assumption B, we no longer obtain (27),
but instead obtain the equilibrium condition

st = β2ft + ρ+ vrt + vct. (28)

Note that the no-arbitrage argument leading to (24) implies that the drifts in ∆st and ∆ft, i.e.
the linear trends in st and ft, must be such that the trend disappears in (28). In other words, in
the terminology of the FCVAR model with a linear trend, it follows from the economic equilibrium
model that β′τ2 = 0.

In summary, replacing Assumption B in the FG model with Assumption C implies the same
cointegration vector. However, the equilibrium condition differs from that in the FG model in that
the long-run equilibrium errors are fractionally integrated of order 1− b rather than I(0). It follows
that st and ft are fractionally cointegrated such that the FCVAR model is directly applicable to
this economic model.

4 Data and empirical results

4.1 Model selection

As a preliminary step before we can estimate the FCVAR model and test our hypotheses of interest,
we have to make some model selection choices. First, for all our results we apply estimation
conditional on N = 21 initial values corresponding to one month of trading days. For robustness,
we also computed results (unreported) with N = 5 and N = 63, and these were similar to those
reported.

Second, we have to specify the lag length, k, in the vector error correction model (17). We
apply several different statistics to carefully select the lag length, namely the Bayesian Information
Criterion (BIC), the LR test statistic for significance of Γk, and univariate Ljung-Box Q tests (with
h = 10 lags) for each of the two residual series, in each case based on the model that includes
all the deterministic components considered and has full rank r = p. In addition, we examined
the unrestricted estimates of b and β2 which, when the lag length is misspecified, will sometimes
be very far from what should be expected. In particular, due to a non-identification issue in the
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FCVAR model with misspecified lag length, it is sometimes found that, e.g., b̂ = 0.05 or similar,
see Johansen and Nielsen (2010, Section 2.3) and Carlini and Santucci de Magistris (2014) for a
theoretical discussion of this phenomenon. For each commodity, we first use the BIC as a rough
guide to the lag length, and starting from there we find the nearest lag length which satisfies the
criteria (i) Γk is significant based on the LR test, (ii) the unrestricted estimates of b and β2 are
reasonable (very widely defined), and (iii) the Ljung-Box Q tests for serial correlation in the two
residual series do not show signs of misspecification.

Third, we select the deterministic components and the cointegrating rank, r. We maintain
the hypothesis that the restricted constant, ρπt(1), is present based on the theoretical framework
in Section 3. Therefore, the selection of deterministic components comes down to the absence
or presence of the unrestricted constant, ξπt(1), i.e. the trend component. Because the limit
distribution of the test of cointegrating rank depends on the presence or absence of the trend as
well as on the actual cointegrating rank, we have to simultaneously decide the cointegration rank
and whether or not to include the trend. The rank and deterministic terms can be determined
jointly in the same way as for the CVAR model; see the detailed discussion in Johansen (1995,
pp. 170–174). In our model with dimension p = 2, we first note that the models with rank r = 0
are always rejected regardless of the presence or absence of the trend. Given this fact, the method
reduces to selecting the model with rank r = 1 and both constant terms if the model with rank
r = 1 and only a restricted constant is rejected, and selecting the model with rank r = 1 and only
a restricted constant term if it is not rejected.

4.2 Data description

To facilitate comparison with the analysis in FG, which is based on the usual non-fractional CVAR
model, we use the same data set as in their empirical analysis. This data set includes daily
observations (business days only) from the London Metal Exchange on spot and 15-month futures
prices2 for aluminium, copper, lead, nickel, and zinc for the period from January 1989 to October
2006 and the sample period has approximately 4484 observations. The data from the London
Metal Exchange has the advantage that there are simultaneous spot and futures prices, for fixed
maturities, on every business day. For details, see FG.

The (logarithmic) data is shown in Figure 1. From casual inspection of the graphs in Figure 1,
it is not clear whether the log-prices have a non-zero drift or not. In this respect the graphs are
inconclusive, and for that reason it seems prudent to allow for at least the possibility of a drift in
the analysis rather than to rule it out a priori. Furthermore, inspection of the graphs does not
appear to reveal any obvious patterns of behavior between st and ft that would be informative
with respect to possible backwardation or contango.

4.3 Futures vs forward contracts

3 It is relevant at this point to distinguish between forwards and futures. In more complicated multi-
period models, instead of the one-period model discussed in Section 3 above, futures contracts are
normally marked-to-market which forward contracts are not. That is, the profit or loss from a
forward contract is realized at maturity, whereas the profit or loss made on the price change in a
futures contract is settled at the end of each trading day by the brokerage house with whom the
account is held. This generates cash-flow and consequent interest payments in intermediate periods
and has implications for optimal futures pricing and hedging, see e.g. Hodrick (1987), Baillie and

2As pointed out by an anonymous referee, although FG describe their data as forward prices (e.g. their p. 100), the
historical data from the London Metal Exchange in fact appear to be futures prices. Implications of this difference
are discussed below in Section 4.3.

3We thank an anonymous referee for comments that essentially developed into this subsection.
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Figure 1: Daily spot and futures log-prices

(a) aluminium (b) copper

(c) lead (d) nickel

(e) zinc
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Myers (1991), and Chow et al. (2000).
The implications of the mark-to-market feature of futures contracts for the cointegration prop-

erties and cointegrating relation between spot and futures prices are discussed in, e.g., Chow et al.
(2000, Section 4.4.2), who show that marking-to-market implies an additional non-stochastic term
in the intercept of the cointegrating relation, i.e., in (27) or (28). Indeed, Chow et al. (2000, p.
216) argue that in empirical work “For practical purposes, therefore, it is customary to assume that
forward and futures prices are equivalent.”

A related implication is the possibility that the interest rate should be explicitly included in
the cointegrating relation and hence in the model. For example, Baillie and Myers (1991, eqn. (2))
arrive at essentially the same equilibrium condition as our eqn. (24), and they argue that if the
interest rate, rt, is I(1) then it should be included in the model and hence included explicitly in the
cointegrating relation. On the other hand, FG make the explicit assumption that the interest rate
is I(0), see Assumption B.1, and hence forms part of the error term in the cointegrating relation
(27). In our analysis, and in our economic equilibrium model in Section 3.3, we attempt to strike
a balance between these two conflicting views by assuming that the interest rate is fractionally
integrated of order 1 − b, see Assumption C.1, leading to the cointegrating relation (28). Thus,
in our analysis, if the economic model is otherwise true, but the interest rate is in fact I(1), then
cointegration between st and ft should be rejected. The same conclusion is reached by Baillie and
Myers (1991, p. 113) in their setup. However, Assumption C.1 of our model allows the generality
of fractional integration of the interest rate and hence is able to accommodate both views, i.e. that
the interest rate is I(1) and I(0), as special cases.

Thus, we continue with the analysis of the pair (st, ft) and leave the interest rate as specified
in Assumption C.1 of the economic model. Nonetheless, to further investigate the implication that
the interest rate should be included in the model, and as a robustness analysis, we also briefly
consider at the end of Section 4.4 estimation of trivariate systems that include the interest rate as
an additional variable.

4.4 Empirical results

The results of our empirical analysis are presented in Tables 1–6 with one table for each of the five
metals (two for zinc). The tables are laid out in the same way and each have up to six panels. The
first panel presents the LR tests for cointegration rank, as well as critical values for the 1%, 5%,
and 10% significance level. Here, Mr denotes the model with rank r including both restricted and
unrestricted constant terms, and M ∗

r denotes the model with rank r but only a restricted constant.
The selected model is highlighted in bold. In the next two panels the unrestricted estimation results
are shown for the model selected in the first panel. Standard errors are in parentheses below b̂ and
P values are in parentheses below Qε̂i , which is the Ljung-Box Q test for serial correlation in the
i’th residual (i = 1, 2). The fourth panel is a subtable with the results of the tests of the three
hypotheses of main interest,

Hb : b = 1, (49)

Hβ : β = (1,−1)′, (50)

Hb ∩Hβ : b = 1 and β = (1,−1)′, (51)

where P values in bold denote non-rejected hypotheses. The latter are then imposed in the restricted
model which is presented in the final two panels, except for lead and nickel where all hypotheses
are rejected.

In terms of model specification, we first find that, allowing for the possibility of fractional
cointegration, fewer lags are needed to adequately model the data. In FG, using the non-fractional
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Table 1: FCVAR results for aluminium

Rank tests:

r LR(Mr|Mp) CV 1% CV 5% CV 10% LR(M ∗
r |M ∗

p ) CV 1% CV 5% CV 10%

0 27.080 13.277 9.488 7.779 24.921 13.277 9.488 7.779
1 4.319 9.505 5.816 4.642 0.085 10.885 7.259 5.821

Unrestricted model:

∆

([
st
ft

])
= Lb̂∆

1−b̂
[
−0.036

0.015

]
zt +

5∑
i=1

ΓiL
i
b̂
∆

([
st
ft

])
+ ε̂t (29)

b̂ = 0.738
(0.043)

, Qε̂1(10) = 7.722
(0.655)

, Qε̂2(10) = 7.132
(0.712)

, log(L ) = 30433.383

Equilibrium relation:
st = −0.930 + 1.121ft + zt (30)

Hypothesis tests: Hb Hβ Hb ∩Hβ

df 1 1 2
LR 22.632 3.721 29.204

P value 0.000 0.054 0.000

Restricted model:

∆

[
st
ft

]
= ∆1−b̂

[
−0.030

0.013

]
zt +

5∑
i=1

ΓiL
i
b̂
∆

[
st
ft

]
+ ε̂t (31)

b̂ = 0.739
(0.040)

, Qε̂1(10) = 7.751
(0.653)

, Qε̂2(10) = 7.223
(0.704)

, log(L ) = 30431.523

Equilibrium relation:
st = −0.039 + ft + zt (32)

Notes: The first panel of the table shows FCVAR cointegration rank tests with the selected model highlighted in bold,
where Mr denotes the model with rank r including both restricted and unrestricted constant terms and an asterisk
denotes models with only a restricted constant. The next two panels show the unrestricted estimation results for the
selected model. Standard errors are in parentheses below b̂ and P values are in parentheses below Qε̂i , which is the
Ljung-Box Q test for serial correlation in the i’th residual. In the fourth panel are the results of the hypothesis tests,
where P values in bold denote non-rejected hypotheses that are imposed in the restricted model, which is presented
in the final two panels. The sample size is T = 4487.

CVAR model they select k = 17, 14, 15, 18, and 16 lags for aluminium, copper, lead, nickel, and zinc,
respectively, based on the Akaike Information Criterion (AIC). However, using our lag selection
method described above, we select k = 5, 4, 4, 4, and 1 lags for the five metals. Thus, allowing
for b to be fractional we can select a much smaller number of lags while maintaining white noise
residuals, although part of the difference can likely be attributed to FG’s use of the AIC for lag
length selection. For cointegration rank, all five metals clearly have r = 1 as expected from theory,
and also in accordance with the CVAR analysis in FG.

The first set of results are for aluminium and are presented in Table 1. The selection of
deterministic terms shows that the trend is not needed for aluminium, so the model with only a
restricted constant term is estimated. We first note that the Ljung-Box serial correlation tests
for the residuals show no signs of model misspecification. The unrestricted point estimate of the
fractional parameter is b̂ = 0.738 with a standard error of 0.043. The hypothesis Hb in (49), i.e.
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Table 2: FCVAR results for copper

Rank tests:

r LR(Mr|Mp) CV 1% CV 5% CV 10% LR(M ∗
r |M ∗

p ) CV 1% CV 5% CV 10%

0 21.503 24.267 19.147 16.835 17.197 24.067 19.325 16.975
1 8.263 9.297 6.043 4.664 4.128 12.380 8.732 7.033

Unrestricted model:

∆

([
st
ft

])
= Lb̂∆

1−b̂
[
−0.001

0.005

]
zt +

4∑
i=1

ΓiL
i
b̂
∆

([
st
ft

])
+ ε̂t (33)

b̂ = 0.950
(0.094)

, Qε̂1(10) = 8.652
(0.565)

, Qε̂2(10) = 4.179
(0.938)

, log(L ) = 27554.320

Equilibrium relation:
st = 0.335 + 0.957ft + zt (34)

Hypothesis tests: Hb Hβ Hb ∩Hβ

df 1 1 2
LR 0.197 0.061 0.198

P value 0.657 0.805 0.906

Restricted model:

∆

[
st
ft

]
= ∆1−b̂

[
−0.001

0.004

]
zt +

4∑
i=1

ΓiL
i
b̂
∆

[
st
ft

]
+ ε̂t (35)

b̂ = 1, Qε̂1(10) = 9.093
(0.523)

, Qε̂2(10) = 4.476
(0.923)

, log(L ) = 27554.221

Equilibrium relation:
st = 0.012 + ft + zt (36)

Notes: The first panel of the table shows FCVAR cointegration rank tests with the selected model highlighted in bold,
where Mr denotes the model with rank r including both restricted and unrestricted constant terms and an asterisk
denotes models with only a restricted constant. The next two panels show the unrestricted estimation results for the
selected model. Standard errors are in parentheses below b̂ and P values are in parentheses below Qε̂i , which is the
Ljung-Box Q test for serial correlation in the i’th residual. In the fourth panel are the results of the hypothesis tests,
where P values in bold denote non-rejected hypotheses that are imposed in the restricted model, which is presented
in the final two panels. The sample size is T = 4496.

that b = 1, is formally tested in the hypothesis tests subtable, where it is strongly rejected with
an LR statistic of 22.632 and a P value of 0.000. Because the estimate of the fractional parameter
b is greater than one-half it follows that β′Xt is a stationary process with long memory, i.e. with
integration order 1 − b in the range (0, 1/2). More generally, because the fractional parameter b
is significantly different from one, this lends support to the FCVAR model specification over the
non-fractional CVAR model that has b = 1 imposed.

The cointegration parameter β2 is estimated at β̂2 = 1.121, which suggests some long-run
backwardation. However, from the hypothesis tests subtable, the hypothesis Hβ in (50) that the
cointegration vector is in fact β = (1,−1)′ cannot be rejected at the 5% level with an LR statistic
of 3.721 and a P value of 0.054. The final test in the hypothesis tests subtable is the joint test of
Hb ∩Hβ in (51), which is strongly rejected. The implication of the non-rejection of the hypothesis
Hβ is that the long-run equilibrium is β = (1,−1)′ such that there is neither backwardation nor
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Table 3: FCVAR results for lead

Rank tests:

r LR(Mr|Mp) CV 1% CV 5% CV 10% LR(M ∗
r |M ∗

p ) CV 1% CV 5% CV 10%

0 48.221 20.286 16.038 13.893 48.757 20.228 15.868 13.734
1 0.946 9.443 6.111 4.668 0.920 10.811 7.337 5.673

Unrestricted model:

∆

([
st
ft

])
= Lb̂∆

1−b̂
[
−0.007

0.045

]
zt +

4∑
i=1

ΓiL
i
b̂
∆

([
st
ft

])
+ ε̂t (37)

b̂ = 0.739
(0.046)

, Qε̂1(10) = 11.554
(0.315)

, Qε̂2(10) = 17.667
(0.060)

, log(L ) = 25662.232

Equilibrium relation:
st = −1.076 + 1.162ft + zt (38)

Hypothesis tests: Hb Hβ Hb ∩Hβ

df 1 1 2
LR 16.390 5.917 27.912

P value 0.000 0.015 0.000

Notes: The first panel of the table shows FCVAR cointegration rank tests with the selected model highlighted in
bold, where Mr denotes the model with rank r including both restricted and unrestricted constant terms and an
asterisk denotes models with only a restricted constant. The next two panels show the unrestricted estimation results
for the selected model. Standard errors are in parentheses below b̂ and P values are in parentheses below Qε̂i , which
is the Ljung-Box Q test for serial correlation in the i’th residual. In the fourth panel are the results of the hypothesis
tests. The sample size is T = 4428.

contango in the long run.
To complete the empirical results for aluminium, the last two panels of the table show the final

restricted model, including serial correlation tests for the residuals that show no signs of serial
correlation, thus indicating that the model is well specified. As expected (because the imposed
hypothesis is not rejected in the unrestricted model), the results in the restricted model are very
similar to those in the unrestricted model.

Next, Table 2 shows the results for copper. Again the model with only a restricted constant is
selected and the Ljung-Box serial correlation tests show no signs of model misspecification. The
unrestricted estimation results show b̂ = 0.950, and in fact copper is the only metal for which
Hb : b = 1 is not rejected. It therefore appears that a CVAR is in fact adequate to model copper
spot and futures prices. Furthermore, the hypothesis Hβ and the joint hypothesis Hb ∩Hβ, i.e.
the hypothesis that b = 1 and β = (1,−1)′ are both supported by the data with P values of 0.805
and 0.906, respectively. It follows that for copper, as was found for aluminium, there is neither
backwardation nor contango in the long run. The results of the restricted model, i.e. imposing
Hb ∩Hβ, are in agreement with those of the unrestricted model and the Ljung-Box tests again
show no signs of misspecification.

For lead and nickel, with results presented in Tables 3 and 4, we first note that again we select
the model with only a restricted constant term, that there are no signs of model misspecification
based on the Ljung-Box tests, and that b̂ is significantly different from one. Furthermore, we find
from both the unrestricted β̂ estimates and from the hypothesis tests that these markets are in
long-run backwardation. The unrestricted point estimates are β̂2 = 1.162 and β̂2 = 1.244 for lead
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Table 4: FCVAR results for nickel

Rank tests:

r LR(Mr|Mp) CV 1% CV 5% CV 10% LR(M ∗
r |M ∗

p ) CV 1% CV 5% CV 10%

0 41.899 13.277 9.488 7.779 39.153 13.277 9.488 7.779
1 8.199 9.070 6.066 4.640 0.531 10.095 6.606 5.149

Unrestricted model:

∆

([
st
ft

])
= Lb̂∆

1−b̂
[
−0.059

0.035

]
zt +

4∑
i=1

ΓiL
i
b̂
∆

([
st
ft

])
+ ε̂t (39)

b̂ = 0.636
(0.065)

, Qε̂1(10) = 8.183
(0.610)

, Qε̂2(10) = 4.452
(0.924)

, log(L ) = 25441.641

Equilibrium relation:
st = −2.206 + 1.244ft + zt (40)

Hypothesis tests: Hb Hβ Hb ∩Hβ

df 1 1 2
LR 15.972 11.532 30.710

P value 0.000 0.000 0.000

Notes: The first panel of the table shows FCVAR cointegration rank tests with the selected model highlighted in
bold, where Mr denotes the model with rank r including both restricted and unrestricted constant terms and an
asterisk denotes models with only a restricted constant. The next two panels show the unrestricted estimation results
for the selected model. Standard errors are in parentheses below b̂ and P values are in parentheses below Qε̂i , which
is the Ljung-Box Q test for serial correlation in the i’th residual. In the fourth panel are the results of the hypothesis
tests. The sample size is T = 4484.

and nickel, respectively. Since all hypotheses are rejected for these two metals, we do not show any
restricted estimation results.

Finally, for zinc the model selection results are inconclusive with respect to the absence or
presence of the unrestricted constant term. Specifically, the model with only a restricted constant
term is rejected at 10% level and its unrestricted estimate of α1 has the wrong sign such that spot
prices do not move towards the equilibrium. We therefore present two sets of results for zinc: with
a restricted constant only (denoted zinc (a) and shown in Table 5) and with both a restricted and
an unrestricted constant term (denoted zinc (b) and shown in Table 6).

The results from the two specifications for zinc are quite similar. We first note that the estimate
of the fractional parameter b is less than 1/2 in both cases, suggesting that β′Xt is not actually a
stationary process, although it is mean reverting. That is, there is a weaker form of fractional coin-
tegration for zinc than for the other metals where b was estimated to be greater than 1/2. In terms
of the equilibrium relation we find that, although the unrestricted estimates of the cointegration
parameter appear slightly different at β̂2 = 0.964 and β̂2 = 1.117, respectively, the hypothesis Hβ

is not rejected under either specification (P values of 0.830 and 0.506, respectively). It follows that
there is neither backwardation nor contango in the long run for zinc regardless of which of the two
model specifications are applied.

To summarize our empirical results using the new FCVAR framework, we have found that the
fractional parameter b is significantly different from one in all markets except copper, suggesting
that the FCVAR model is more appropriate for modeling these data than the non-fractional CVAR
model. For the cointegration vector, we have found that it is significantly different from β = (1,−1)′
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Table 5: FCVAR results for zinc (a)

Rank tests:

r LR(Mr|Mp) CV 1% CV 5% CV 10% LR(M ∗
r |M ∗

p ) CV 1% CV 5% CV 10%

0 29.344 13.277 9.488 7.779 28.204 13.277 9.488 7.779
1 5.620 6.635 3.841 2.706 3.730 6.635 3.841 2.706

Unrestricted model:

∆

([
st
ft

])
= Lb̂∆

1−b̂
[

0.015
0.173

]
zt +

1∑
i=1

ΓiL
i
b̂
∆

([
st
ft

])
+ ε̂t (41)

b̂ = 0.339
(0.041)

, Qε̂1(10) = 18.499
(0.047)

, Qε̂2(10) = 13.343
(0.205)

, log(L ) = 27810.399

Equilibrium relation:
st = −0.028 + 0.964ft + zt (42)

Hypothesis tests: Hb Hβ Hb ∩Hβ

df 1 1 2
LR 32.724 0.046 42.826

P value 0.000 0.830 0.000

Restricted model:

∆

[
st
ft

]
= ∆1−b̂

[
0.009
0.163

]
zt +

1∑
i=1

ΓiL
i
b̂
∆

[
st
ft

]
+ ε̂t (43)

b̂ = 0.349
(0.042)

, Qε̂1(10) = 18.448
(0.047)

, Qε̂2(10) = 13.251
(0.209)

, log(L ) = 27810.376

Equilibrium relation:
st = −0.240 + ft + zt (44)

Notes: The first panel of the table shows FCVAR cointegration rank tests with the selected model highlighted in bold,
where Mr denotes the model with rank r including both restricted and unrestricted constant terms and an asterisk
denotes models with only a restricted constant. The next two panels show the unrestricted estimation results for the
selected model. Standard errors are in parentheses below b̂ and P values are in parentheses below Qε̂i , which is the
Ljung-Box Q test for serial correlation in the i’th residual. In the fourth panel are the results of the hypothesis tests,
where P values in bold denote non-rejected hypotheses that are imposed in the restricted model, which is presented
in the final two panels. The sample size is T = 4493.

only for lead and nickel, and for both these metal markets the point estimates suggest that there
is long-run backwardation. For the remaining metal markets, i.e. aluminium, copper, and zinc, we
did not reject the hypothesis Hβ : β = (1,−1)′ and conclude that for these markets there is neither
backwardation nor contango in the long run.

In contrast, the findings in FG based on the non-fractional CVAR model are that all markets
are in long-run backwardation, with the exception of copper for which they do not reject β =
(1,−1)′. Moreover, with the exception of nickel, the unrestricted point estimates of the cointegration
parameter β2 are all greater in magnitude in FG than in our results. Overall, our analysis using
the newly developed FCVAR model therefore gives much more support to the cointegration vector
β = (1,−1)′ in the long-run equilibrium relationship between spot and futures prices compared
with the analysis in FG using the CVAR model.

Finally, as discussed in Section 4.3, to further investigate the implication that the interest rate
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Table 6: FCVAR results for zinc (b)

Rank tests:

r LR(Mr|Mp) CV 1% CV 5% CV 10% LR(M ∗
r |M ∗

p ) CV 1% CV 5% CV 10%

0 29.344 13.277 9.488 7.779 28.204 13.277 9.488 7.779
1 5.620 6.635 3.841 2.706 3.730 6.635 3.841 2.706

Unrestricted model:

∆

([
st
ft

])
= Lb̂∆

1−b̂
[
−0.003

0.102

]
zt +

1∑
i=1

ΓiL
i
b̂
∆

([
st
ft

])
+ 10−3

[
0.197
0.436

]
+ ε̂t (45)

b̂ = 0.441
(0.057)

, Qε̂1(10) = 18.594
(0.045)

, Qε̂2(10) = 13.736
(0.185)

, log(L ) = 27811.441

Equilibrium relation:
st = −0.690 + 1.117ft + zt (46)

Hypothesis tests: Hb Hβ Hb ∩Hβ

df 1 1 2
LR 33.707 0.443 43.956

P value 0.000 0.506 0.000

Restricted model:

∆

[
st
ft

]
= ∆1−b̂

[
0.009
0.135

]
zt +

1∑
i=1

ΓiL
i
b̂
∆

[
st
ft

]
+ 10−3

[
0.203
0.317

]
+ ε̂t (47)

b̂ = 0.385
(0.046)

, Qε̂1(10) = 18.551
(0.046)

, Qε̂2(10) = 13.806
(0.182)

, log(L ) = 27811.219

Equilibrium relation:
st = −0.020 + ft + zt (48)

Notes: The first panel of the table shows FCVAR cointegration rank tests with the selected model highlighted in bold,
where Mr denotes the model with rank r including both restricted and unrestricted constant terms and an asterisk
denotes models with only a restricted constant. The next two panels show the unrestricted estimation results for the
selected model. Standard errors are in parentheses below b̂ and P values are in parentheses below Qε̂i , which is the
Ljung-Box Q test for serial correlation in the i’th residual. In the fourth panel are the results of the hypothesis tests,
where P values in bold denote non-rejected hypotheses that are imposed in the restricted model, which is presented
in the final two panels. The sample size is T = 4493.

should be included in the model, and as a robustness analysis, we also briefly consider estimation
of trivariate systems that include the interest rate as an additional variable. That is, albeit without
the full model selection procedure, we re-estimated (not reported) all the above FCVAR models
as trivariate systems including rt as an additional variable given by the 3-month U.S. Treasury
bill rate. In these systems, we first tested the hypothesis that the adjustment coefficient in the
equation for rt is zero, i.e. weak exogeneity of the interest rate, and this was not rejected in any of
the models (P values between 0.189 and 0.977). We also tested the hypothesis that the coefficient
on rt in the cointegrating relation is zero, and this was also not rejected in any of the models (P
values between 0.050 and 0.721). We further tested the joint hypothesis, which was not rejected
in any of the models either (P values between 0.121 and 0.881). Similar conclusions have been
found in other empirical studies that include interest rates; for a discussion, see Chow et al. (2000,
Section 5) and the references therein. At least for the data we analyze, it thus appears reasonable

21



to leave the interest rate as specified in Assumption C.1 of the economic model in Section 3.3, with
the detailed results discussed earlier in this section.

5 Concluding remarks

In this paper we have applied the recently developed fractionally cointegrated vector autoregressive
(FCVAR) model to the dynamics of spot and futures prices for five different commodities (alu-
minium, copper, lead, nickel, and zinc). To apply the model we first developed an extension of
the FCVAR model to accommodate drift in the prices, i.e. a linear deterministic time trend in the
data. Specifically, we provide a representation theory for the extended model showing that the
trend gives rise to both restricted and unrestricted constant terms in the vector error correction
model. We also briefly discussed the consequences for the distribution of the LR trace test for
cointegration rank.

The empirical model has economic foundation using a variation of the economic equilibrium
model of FG that is able to generate both fractional cointegration and to capture the existence of
backwardation and contango in the long-run equilibrium relationship of spot and futures prices. In
our empirical analysis we found that spot and futures prices for all metals are cointegrated, and—
with the exception of copper—the cointegration is of the fractional type. Our first finding is that,
when allowing for fractional integration in the long-run equilibrium relations, fewer lags appear to
be needed in the autoregressive formulation. Furthermore, compared to the results from the non-
fractional model in FG, there is more evidence in favor of the cointegration vector β = (1,−1) and
hence less evidence of long-run backwardation or contango. Specifically, we reject the hypothesis
that the cointegration vector is (1,−1) using standard likelihood ratio tests only for the lead and
nickel markets.
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