
QED
Queen’s Economics Department Working Paper No. 1330

A Matlab program and user’s guide for the fractionally
cointegrated VAR model

Morten ÃŸrregaard Nielsen
Queen’s University and CREATES

MichaÅĆ Ksawery Popiel
Queen’s University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

5-2018

A Matlab program and user’s guide for

the fractionally cointegrated VAR model∗

version 1.4.0a

Morten Ørregaard Nielsen†

Queen’s University and CREATES
Email: mon@econ.queensu.ca

Micha l Ksawery Popiel
Queen’s University

Email: popielm@econ.queensu.ca

May 1, 2018

Abstract

This manual describes the usage of the accompanying freely available Matlab program for estimation
and testing in the fractionally cointegrated vector autoregressive (FCVAR) model. This program replaces
an earlier Matlab program by Nielsen and Morin (2014), and although the present Matlab program is
not compatible with the earlier one, we encourage use of the new program.

JEL codes: C22, C32.

Keywords: cofractional process, cointegration rank, computer program, fractional autoregressive model,
fractional cointegration, fractional unit root, Matlab, VAR model.

∗We are grateful to Federico Carlini, Andreas Noack Jensen, Søren Johansen, Maggie Jones, James MacKinnon, Jason
Rhinelander, and Daniela Osterrieder for comments, and to the Canada Research Chairs program, the Social Sciences and
Humanities Research Council of Canada (SSHRC), and the Center for Research in Econometric Analysis of Time Series (CRE-
ATES, funded by the Danish National Research Foundation DNRF78) for financial support.
†Corresponding author. If you find any bugs or other problems, please let us know.

1

Contents

1 Obtaining and using the software 4
1.1 Disclaimer . 4
1.2 Obtaining the Matlab program . 4
1.3 Citation . 4
1.4 Using the Matlab program . 4

2 The fractionally cointegrated VAR model 5
2.1 Deterministic terms . 5
2.2 Maximum likelihood estimation . 6
2.3 Cointegration rank tests . 6
2.4 Restricted models . 8
2.5 Forecasting from the FCVAR model . 8

3 Example session: replication JNP2014.m 10
3.1 Importing data . 10
3.2 Choosing options . 10
3.3 Lag-order selection . 12
3.4 Cointegration rank testing . 13
3.5 Unrestricted model estimation . 13
3.6 Hypothesis testing . 17

4 Additional examples: MoreExamples.m 23
4.1 Forecasting . 23
4.2 Bootstrap hypothesis test . 24
4.3 Bootstrap rank test . 25
4.4 Simulation . 27

5 Software description 27
5.1 EstOptions.m . 28
5.2 FCVARestn.m . 29
5.3 LagSelect.m . 30
5.4 RankTests.m . 31

5.4.1 get pvalues . 31
5.5 HypoTest.m . 31
5.6 FCVARforecast.m . 32
5.7 mv wntest.m . 32

5.7.1 LMtest . 32
5.7.2 Qtest . 33

5.8 FCVARboot.m . 33
5.9 FCVARbootRank.m . 33
5.10 FCVARsim.m . 34
5.11 Auxillary functions . 34

5.11.1 FCVARsimBS.m . 34
5.11.2 FCVARhess.m . 35
5.11.3 FCVARlike.m . 35
5.11.4 FCVARlikeMu.m . 35
5.11.5 FracDiff.m . 36
5.11.6 FreeParams.m . 36
5.11.7 FullFCVARlike.m . 36
5.11.8 GetParams.m . 37
5.11.9 GetResiduals.m . 37
5.11.10 Lbk.m . 37

2

5.11.11 LikeGrid.m . 38
5.11.12 RstrctOptm Switch.m . 39
5.11.13 SEmat2vecU.m . 40
5.11.14 SEvec2matU.m . 40
5.11.15 TransformData.m . 40
5.11.16 CharPolyRoots.m . 41
5.11.17 GetBounds.m . 41
5.11.18 FCVARsimBS.m . 42

A Version change log 43
A.1 Version 1.0.0: October 24, 2014 . 43
A.2 Version 1.1.0: October 30, 2014 . 43
A.3 Version 1.2.0: November 12, 2014 . 43
A.4 Version 1.2.1: November 17, 2014 . 44
A.5 Version 1.2.2: November 19, 2014 . 44
A.6 Version 1.2.3: July 21, 2015 . 45
A.7 Version 1.3.0: September 9, 2015 . 45
A.8 Version 1.3.1: December 7, 2015 . 45
A.9 Version 1.3.2: December 11, 2015 . 46
A.10 Version 1.3.3: January 26, 2016 . 46
A.11 Version 1.4.0: April 15, 2016 . 46
A.12 Version 1.4.0a: May 1, 2018 . 46

References 47

3

1 Obtaining and using the software

1.1 Disclaimer

We have done our best to make this program as functional and free from errors as possible, but no warranty
is given whatsoever. We cannot guarantee that we have been 100% successful in eliminating bugs, so if you
find any please let us know.

1.2 Obtaining the Matlab program

The Matlab program can be downloaded from the first author’s website at Queen’s University:

http://www.econ.queensu.ca/faculty/mon/software/

It is freely available for non-commercial, academic use. For a (nearly) complete change log, please see
Appendix A.

Although the Matlab program can run standalone, one of the functions, RankTests.m, makes an external
system call to a separately installed program, fdpval. This external program is the C++ implementation
of a Fortran program used to obtain simulated P -values from MacKinnon and Nielsen (2014). If the user
would like P -values for the cointegration rank tests to be automatically calculated, we recommend obtaining
this companion program, which is made available by Jason Rhinelander and can be downloaded from:

https://github.com/jagerman/fracdist/releases

It can be either installed or downloaded in a compressed folder. It is important to note where the program is
stored or installed, because the Matlab program requires the program location as an input in the estimation
options. For example, if the program is stored in the folder /usr/bin/ on a Linux system, the location
variable is defined as follows, progLoc = ’"/usr/bin/fdpval"’. For details see Sections 5.1 and 5.4.1.

We also make use of the excellent extrema.m and extrema2.m functions, which are written by Carlos
Adrián Vargas Aguilera and are freely available from the Mathworks website. For simplicity these are
included in the Auxiliary subfolder.

1.3 Citation

If you use this program, or any program or computer codes based on it, we ask that you please cite this
document. For example, you could add “The results were obtained using the computer program by Nielsen
and Popiel (2016)” in the main text or in a footnote of your paper and then add the following citation to
your list of references:

Nielsen, M. Ø. and M. K. Popiel (2016), “A Matlab program and user’s guide for the fractionally cointe-
grated VAR model,” QED working paper 1330, Queen’s University.

1.4 Using the Matlab program

The use of this program requires a functioning installation of Matlab. Any recent version should work. Unzip
the contents of the zip file into any directory which will be the working directory of the program.

The next section describes the FCVAR model and the restricted models that can be estimated with
this program. Section 3 describes the functioning of the main program, which is a replication of one of the
tables of results in Jones et al. (2014). Section 4 describes another example program, which demonstrates
some additional functionality of the software. Importantly, these are the only two files that would need to
be changed to apply the program for other empirical analyses. Section 5 describes how each of the major
program files work (each in a separate subsection). The Appendix contains a version change log.

4

http://www.econ.queensu.ca/faculty/mon/software/
https://github.com/jagerman/fracdist/releases

2 The fractionally cointegrated VAR model

The fractionally cointegrated vector autoregressive (FCVAR) model was proposed in Johansen (2008) and
analyzed by, e.g., Johansen and Nielsen (2010, 2012). For a time series Xt of dimension p, the fractionally
cointegrated VAR model is given in error correction form as

∆dXt = αβ′∆d−bLbXt +

k∑
i=1

Γi∆
d LibXt + εt, (1)

where εt is p-dimensional i.i.d.(0,Ω), ∆d is the fractional difference operator, and Lb = 1−∆b is the fractional
lag operator.1 Johansen and Nielsen (2012) imposed two restrictions on the parameter space, d ≥ b and
d− b < 1/2, in their asymptotic analysis. However, these restrictions were relaxed in Johansen and Nielsen
(2018a,b).

Model (1) includes the Johansen (1995) CVAR model as the special case d = b = 1; see Johansen and
Nielsen (2018b). Some of the parameters are well-known from the CVAR model and these have the usual
interpretations also in the FCVAR model. The most important of these are the long-run parameters α and
β, which are p × r matrices with 0 ≤ r ≤ p. The rank r is termed the cointegration, or cofractional, rank.
The columns of β constitute the r cointegration (cofractional) vectors such that β′Xt are the cointegrating
combinations of the variables in the system, i.e. the long-run equilibrium relations. The parameters in α are
the adjustment or loading coefficients which represent the speed of adjustment towards equilibrium for each
of the variables. The short-run dynamics of the variables are governed by the parameters Γ = (Γ1, . . . ,Γk)
in the autoregressive augmentation.

The FCVAR model has two additional parameters compared with the CVAR model, namely the fractional
parameters d and b. Here, d denotes the fractional integration order of the observable time series and b
determines the degree of fractional cointegration, i.e. the reduction in fractional integration order of β′Xt

compared to Xt itself. These parameters are estimated jointly with the remaining parameters. This model
thus has the same main structure as in the standard CVAR model in that it allows for modeling of both
cointegration and adjustment towards equilibrium, but is more general since it accommodates fractional
integration and cointegration.

In the next four subsections we briefly describe the accommodation of deterministic terms as well as
estimation and testing in the FCVAR model.

2.1 Deterministic terms

There are several ways to accommodate deterministic terms in the FCVAR model (1). The inclusion of the
so-called restricted constant was considered in Johansen and Nielsen (2012), and the so-called unrestricted
constant term was considered in Dolatabadi et al. (2016). A general formulation that encompasses both
models is2

∆dXt = α∆d−bLb(β
′Xt + ρ′) +

k∑
i=1

Γi∆
d LibXt + ξ + εt. (2)

The parameter ρ is the so-called restricted constant term (since the constant term in the model is restricted
to be of the form αρ′), which is interpreted as the mean level of the long-run equilibria when these are
stationary, i.e. Eβ′Xt + ρ′ = 0. The parameter ξ is the unrestricted constant term, which gives rise to
a deterministic trend in the levels of the variables. When d = 1 this trend is linear. Thus, the model
(2) contains both a restricted constant and an unrestricted constant. In the usual CVAR model, i.e. with
d = b = 1, the former would be absorbed in the latter, but in the fractional model they can both be present
and are interpreted differently. For the representation theory related to (2), and in particular for additional
interpretation of the two types of constant terms, see Dolatabadi et al. (2016).

An alternative formulation of deterministic terms was suggested by Johansen and Nielsen (2016), albeit
in a simpler model, with the aim of reducing the impact of pre-sample observations of the process. This

1Both the fractional difference and fractional lag operators are defined in terms of their binomial expansion in the lag
operator, L. Note that the expansion of Lb has no term in L0 and thus only lagged disequilibrium errors appear in (1).

2In Dolatabadi et al. (2016) the constants are included as ρ′πt(1) and ξπt(1), where πt(u) denotes coefficients in the binomial
expansion of (1− z)−u. This is mathematically convenient, but makes no difference in terms of the practical implementation.

5

model is

∆d(Xt − µ) = αβ′∆d−bLb(Xt − µ) +

k∑
i=1

Γi∆
d Lib(Xt − µ) + εt, (3)

which can be derived easily from the unobserved components formulation

Xt = µ+X0
t , ∆dX0

t = Lbαβ
′X0

t +

k∑
i=1

Γi∆
d LibX

0
t + εt. (4)

The formulation (3), or equivalently (4), includes the restricted constant, which may be obtained as ρ′ = β′µ.
More generally, the level parameter µ is meant to accommodate a non-zero starting point for the first
observation on the process, i.e., for X1. It has the added advantage of reducing the bias arising due to pre-
sample behavior of Xt, at least in simple models, even when conditioning on no initial values (see below).
For details, see Johansen and Nielsen (2016).

2.2 Maximum likelihood estimation

It is assumed that a sample of length T +N is available on Xt, where N denotes the number of observations
used for conditioning, for details see Johansen and Nielsen (2016). The models (1), (2), and (3) are estimated
by conditional maximum likelihood, conditional on N initial values, by maximizing the function

logLT (λ) = −Tp
2

(log(2π) + 1)− T

2
log det

{
T−1

T+N∑
t=N+1

εt(λ)εt(λ)′

}
, (5)

where the residuals are defined as

εt(λ) = ∆dXt − α∆d−bLb(β
′Xt + ρ′)−

k∑
i=1

Γi∆
d LibXt − ξ, λ = (d, b, α, β,Γ, ρ, ξ), (6)

for model (2), and hence also for submodels of model (2), such as (1), with the appropriate restrictions
imposed on ρ and ξ. For model (3) the residuals are

εt(λ) = ∆d(Xt − µ)− αβ′∆d−bLb(Xt − µ)−
k∑
i=1

Γi∆
d Lib(Xt − µ), λ = (d, b, α, β,Γ, µ). (7)

It is shown in Johansen and Nielsen (2012) and Dolatabadi et al. (2016) how, for fixed (d, b), the estimation
of model (2) reduces to regression and reduced rank regression as in Johansen (1995). In this way the
parameters (α, β,Γ, ρ, ξ) can be concentrated out of the likelihood function, and numerical optimization is
only needed to optimize the profile likelihood function over the two fractional parameters, d and b. In model
(3) we can similarly concentrate the parameters (α, β,Γ) out of the likelihood function resulting in numerical
optimization over (d, b, µ), making the estimation of model (3) slightly more involved numerically than that
of model (2).

For model (2) with ξ = 0, Johansen and Nielsen (2012) shows that asymptotic theory is standard when
b < 0.5, and for the case b > 0.5 asymptotic theory is non-standard and involves fractional Brownian motion
of type II. Specifically, when b > 0.5, Johansen and Nielsen (2012) shows that under i.i.d. errors with

suitable moment conditions, the conditional maximum likelihood parameter estimates (d̂, b̂, α̂, Γ̂1, . . . , Γ̂k)

are asymptotically Gaussian, while (β̂, ρ̂) are locally asymptotically mixed normal. These results allow
asymptotically standard (chi-squared) inference on all parameters of the model, including the cointegrating
relations and orders of fractionality, using quasi-likelihood ratio tests. As in the CVAR model, see Johansen
(1995), the same results hold for the same parameters in the full models (2) and (3), whereas the asymptotic
distribution theory for the remaining parameters, ξ and µ, is currently unknown.

2.3 Cointegration rank tests

Letting Π = αβ′, the likelihood ratio (LR) test statistic of the hypothesis Hr : rank(Π) = r against
Hp : rank(Π) = p is of particular interest because it deals with an important empirical question. This

6

statistic is often denoted the “trace” statistic. Let θ = (d, b) for model (2) and θ = (d, b, µ) for model (3)
denote the parameters for which the likelihood is numerically maximized. Then let L(θ, r) be the profile
likelihood function given rank r, where (α, β,Γ), and possibly (ρ, ξ) if appropriate, have been concentrated
out by regression and reduced rank regression; see Johansen and Nielsen (2012) and Dolatabadi et al. (2016)
for details.

The profile likelihood function is maximized both under the hypothesis Hr and under Hp and the LR

test statistic is then LRT (q) = 2 log(L(θ̂p, p)/L(θ̂r, r)), where

L(θ̂p, p) = max
θ
L(θ, p), L(θ̂r, r) = max

θ
L(θ, r),

and q = p − r. This problem is qualitatively different from that in Johansen (1995) since the asymptotic
distribution of LRT (q) depends qualitatively (and quantitatively) on the parameter b. In the case with
0 < b < 1/2 (sometimes known as “weak cointegration”), LRT (q) has a standard asymptotic distribution,
see Johansen and Nielsen (2012, Theorem 11(ii)), namely

LRT (q)
D→ χ2(q2), 0 < b < 1/2. (8)

On the other hand, when 1/2 < b ≤ d (“strong cointegration”), asymptotic theory is nonstandard and

LRT (q)
D→ Tr

{∫ 1

0

dW (s)F (s)′
(∫ 1

0

F (s)F (s)′ds

)−1 ∫ 1

0

F (s)dW (s)′

}
, b > 1/2, (9)

where the vector process dW is the increment of ordinary (non-fractional) vector standard Brownian motion
of dimension q = p−r. The vector process F depends on the deterministics in a similar way as in the CVAR
model in Johansen (1995), although the fractional orders complicate matters. The following cases have been
derived in the literature:

1. When no deterministic term is in the model, F (u) = Wb(u), where Wb(u) = Γ(b)−1
∫ u
0

(u−s)b−1dW (s)
is vector fractional Brownian motion of type II, see Johansen and Nielsen (2012, Theorem 11(i)).

2. When only the restricted constant term is included in model (2), F (u) = (Wb(u)′, u−(d−b))′, see
Johansen and Nielsen (2012, Theorem 11(iv)) for the result with d = b and an earlier working paper
version for the general result.

3. In model (3) the same result as in bullet 2. holds because β′µ = ρ′ is the restricted constant and β′⊥µ
has no influence on the asymptotic distribution (in a similar way to X0 in a random walk).

4. When both the restricted and unrestricted constants are included in model (2) with d = 1,

Fi(u) = Wb,i(u)−
∫ 1

0

Wb,i(u)du, i = 1, ..., q − 1,

Fq(u) = ub −
∫ 1

0

ubdu = ub − 1/(b+ 1),

Fq+1(u) = ub−1 −
∫ 1

0

ub−1du = ub−1 − 1/b,

see Dolatabadi et al. (2016).

Importantly, the asymptotic distribution (9) of the test statistic LRT (q) depends on both b and q = p−r.
The dependence on the unknown (true value of the) scalar parameter b complicates empirical analysis
compared to the CVAR model. Generally, the distribution (9) would need to be simulated on a case-by-case
basis. However, for model (1) and for model (2) with d = b and ξ = 0, and hence also for model (3) with
d = b in light of bullet 3. above, computer programs for computing asymptotic critical values and asymptotic
P values for the LR cointegration rank tests based on numerical distribution functions, are made available
by MacKinnon and Nielsen (2014). Their computer programs are incorporated in the present program for
the relevant cases/models as discussed and illustrated below.

7

2.4 Restricted models

Note that a reduced rank restriction has already been imposed on models (1)–(3), where the coefficient
matrix Π = αβ′ has been restricted to rank r ≤ p. Other restrictions on the model parameters can be
considered as in Johansen (1995). The most interesting restrictions from an economic theory point of view
would likely be restrictions on the adjustment parameters α and cointegration vectors β.

We formulate hypotheses as

Rψψ = rψ, (10)

Rαvec(α) = 0, (11)

Rβvec(β∗) = rβ , (12)

with β∗ = (β′, ρ′)′, and use the switching algorithm in (Boswijk and Doornik, 2004, p. 455) to optimize the
likelihood numerically subject to the restrictions. The switching algorithm can be improved by adding a line
search, see Doornik (2018). This is done by setting the option opt.LineSearch = 1, which is the default
setting.

The only limitation on the linear restrictions that can be imposed on (d, b, α, β∗) in (10)–(12) is that only
homogenous restrictions can be imposed on vec(α) in (11). Otherwise, any combination of linear restrictions
can be imposed on these parameters. For now, the remaining parameters cannot be restricted.

Note that, when the restricted constant term ρ is included in the model, restrictions on β and ρ must be
written in the form given by (12). This is without loss of generality.

The restrictions in (10)–(12) above can be implemented individually or simultaneously in the Matlab
program. The next section provides an example session illustrating the use of the program with a step-by-
step description of a typical empirical analysis, including several restricted models in Section 3.6.

2.5 Forecasting from the FCVAR model

Because the FCVAR model is autoregressive, the best linear predictor takes a simple form and is relatively
straightforward to calculate. Consider, for example, the model with level parameter in (3). We first note
that

∆d(Xt+1 − µ) = Xt+1 − µ− (Xt+1 − µ) + ∆d(Xt+1 − µ) = Xt+1 − µ− Ld(Xt+1 − µ)

and then rearrange (3) as

Xt+1 = µ+ Ld(Xt+1 − µ) + αβ′∆d−bLb(Xt+1 − µ) +

k∑
i=1

Γi∆
dLib(Xt+1 − µ) + εt+1. (13)

Since Lb = 1−∆b is a lag operator, so that LibXt+1 is known at time t for i ≥ 1, this equation can be used
as the basis to calculate forecasts from the model.

We let conditional expectation given the information set at time t be denoted Et(·), and the best linear
predictor forecast of any variable Zt+1 given information available at time t be denoted Ẑt+1|t = Et(Zt+1).
Clearly, we then have that the forecast of the innovation for period t+ 1 at time t is ε̂t+1|t = Et(εt+1) = 0,

and X̂t+1|t is then easily found from (13). Inserting also coefficient estimates based on data available up to

time t, denoted3 (d̂, b̂, µ̂, α̂, β̂, Γ̂1, . . . , Γ̂k), we have that

X̂t+1|t = µ̂+ Ld̂(Xt+1 − µ̂) + α̂β̂′∆d̂−b̂Lb̂(Xt+1 − µ̂) +

k∑
i=1

Γ̂i∆
d̂Li

b̂
(Xt+1 − µ̂). (14)

This defines the one-step ahead forecast of Xt+1 given information at time t.
Multi-period ahead forecasts can be generated recursively. That is, to calculate the h-step ahead forecast,

we first generalize (14) as

X̂t+j|t = µ̂+ Ld̂(X̂t+j|t − µ̂) + α̂β̂′∆d̂−b̂Lb̂(X̂t+j|t − µ̂) +

k∑
i=1

Γ̂i∆
d̂Li

b̂
(X̂t+j|t − µ̂), (15)

3To emphasize that these estimates are based on data available at time t, they could be denoted by a subscript t. However,
to avoid cluttering the notation we omit this subscript and let it be understood in the sequel.

8

where X̂s|t = Xs for s ≤ t. Then forecasts are calculated recursively from (15) for j = 1, 2, . . . , h to generate

h-step ahead forecasts, X̂t+h|t.
Clearly, one-step ahead and h-step ahead forecasts for the model (2) with a restricted constant term,

and possibly also an unrestricted constant term, instead of the level parameter can be calculated entirely
analogously.

9

3 Example session: replication JNP2014.m
The main file is replication_JNP2014.m and it serves as an example of what a typical session of estimation,
testing, and forecasting can include. This code replicates “Table 4: FCVAR results for Model 1” from Jones
et al. (2014) and follows the empirical procedure developed in that paper. This procedure includes the
following steps:

1. Importing data

2. Choosing estimation options

3. Lag selection

4. Cointegration rank selection

5. Model estimation

6. Hypothesis testing

It is important to note that all necessary commands for file execution and option modification can be
called from this script. All other files contained in the package (described in detail in the next section) do
not require any modification by the user.

To accommodate the sequential nature of the procedure, the main file is broken up into code sections4.
These code sections, known as cells in previous versions of Matlab, allow the user to execute specific parts
of a script individually. Each of the code sections are delimited by a double comment %% and the section
header.

3.1 Importing data

The first step is importing the data. Executing the code in Listing 1, shown below, assigns the data from
the file data_JNP2014.csv to a matrix called data.

Listing 1: Importing data

1 % -------- Import Data ----------%

2 clear all;

3 data = csvread(’data_JNP2014.csv’ ,1); % skip first row because var names.

4

5 % data for each model.

6 x1 = data(:, [1 3 5]);

7 x2 = data(:, [2 3 5]);

8 x3 = data(:, [1 2 3 5]);

9 x4 = data(:, [1 3 4 5 6]);

10 x5 = data(:, [2 3 4 5 6]);

11 x6 = data(:, [1 2 3 4 5 6]);

The columns contain the following variables: (1) aggregate support for the Liberal party, (2) aggregate
support for the Conservative party, (3) Canadian 3-month T-bill rates, (4) US 3-month T-bill rates, (5)
Canadian unemployment rate, and (6) US unemployment rate. Since each of the models in JNP (2014)
contain different combinations of these variables, the relevant columns of data for each model are assigned
to different matrices of variables named x1 through x6.

3.2 Choosing options

Once the data is imported, the user sets the program options. The script contains two sets of options:
variables set for function arguments in the script itself and model/estimation related options. Listing 2
shows the first of set of options.

4For more information see http://www.mathworks.com/help/matlab/matlab_prog/run-sections-of-programs.html

10

 http://www.mathworks.com/help/matlab/matlab_prog/run-sections-of-programs.html

Listing 2: Initialization of local variables

12 %% -------- INITIALIZATION ----------%

13 p = size(x1 , 2); % system dimension.

14 kmax = 3; % maximum number of lags for VECM.

15 order = 12; % number of lags for white noise test in lag selection.

16 printWNtest = 1; % to print results of white noise tests post -estimation.

The variable kmax determines the highest lag order for the sequential testing that is performed in the lag
selection, whereas p is the dimension of the system. The other variables are self-explanatory.

The next set of initialization commands, shown in Listing 3, assign values to the variables contained in
object opt defined by the class EstOptions.

Listing 3: Choosing estimation options

17 % -------- Choosing estimation options ----------%

18 opt = EstOptions; % Define variable to store Estimation Options (object).

19 opt.dbMin = [0.01 0.01]; % lower bound for d,b.

20 opt.dbMax = [2.00 2.00]; % upper bound for d,b.

21 opt.unrConstant = 0; % include an unrestricted constant? 1 = yes , 0 = no.

22 opt.rConstant = 0; % include a restricted constant? 1 = yes , 0 = no.

23 opt.levelParam = 1; % include level parameter? 1 = yes , 0 = no.

24 opt.constrained = 0; % impose restriction dbMax >= d >= b >= dbMin ?

25 % 1 = yes , 0 = no.

26 opt.restrictDB = 1; % impose restriction d=b ? 1 = yes , 0 = no.

27 opt.db0 = [.8 .8]; % set starting values for optimization algorithm.

28 opt.N = 0; % number of initial values to condition upon.

29 opt.print2screen = 1; % print output.

30 opt.printRoots = 1; % print roots of characteristic polynomial.

31 opt.plotRoots = 1; % plot roots of characteristic polynomial.

32 opt.gridSearch = 1; % For more accurate estimation , perform the grid search.

33 % This will make estimation take longer.

34 opt.plotLike = 0; % Plot the likelihood (if gridSearch = 1).

35 opt.progress = 0; % Show grid search progress indicator waitbar.

36 opt.updateTime = 5; % How often progress is updated (seconds).

37

38 % Linux example:

39 opt.progLoc = ’"/usr/bin/fdpval"’; % location path with program name

40 % of fracdist program , if installed

41 % Note: use both single (outside) and double

42 % quotes (inside). This is especially

important

43 % if path name has spaces.

44 DefaultOpt = opt; % Store the options for restoring them in between hypothesis

tests.

The first line initializes the object opt and assigns all of the default options set in EstOptions. The
user can see the full set of options by typing EstOptions (or opt after initialization) in the command line.
Listing 3 shows how to easily change any of the default options. Defining the program options in this
way allows the user to create and store several option objects with different attributes. This can be very
convenient when, for example, performing the same hypothesis tests on different data sets.

The set of available options can be broken into several categories: numerical optimization, model deter-
ministics and restrictions, output, grid search, and P -values for the rank test. We recommend that only
advanced users make changes to the numerical optimization options. Adding deterministics requires setting
the variable corresponding to the type of deterministic component to 1. For instance, in the present example,
a model estimated with options opt will include the level parameter µ but no restricted or unrestricted con-
stant. Output variables refer to either printing or plotting various information post-estimation and usually
take values 1 or 0 (on or off). For example, if the user is not interested in the estimates of Γ, they can be
suppressed by setting opt.printGammas = 0.

11

The bounds on the parameter space for d and b are specified in opt.dbMin and opt.dbMax. In this
example, these are both specified as 2-dimensional column vectors, in which case the first element specifies
the bound on d and the second element the bound on b. Alternatively, one can set opt.dbMin and opt.dbMax

as scalars, which imposes the same bounds on d and b.
An important feature in this package is the ability to pre-estimate by using a grid search. If the user

selects this option, they can view progress by setting opt.progress to 1 (waitbar) or 2 (output in command
line). The minimum frequency of these updates is set by opt.updateTime. The user also has the option
(opt.plotLike) to view a plot of the likelihood over d and/or b after the grid search completes. The output
of the grid search is a preliminary estimate of the fractional parameters. These are used as starting values in
the subsequent numerical optimization, and the bounds on d and b are set to these starting values plus/minus
0.1 but still within the original dbMin and dbMax settings.

As of v.1.4.0, the new option opt.LocalMax allows more control over the grid search. If opt.LocalMax = 0,
the function LikeGrid.m returns the parameter values corresponding to the global maximum of the likelihood
on the grid. If opt.LocalMax = 1, then LikeGrid.m returns the parameter values for the local maximum
corresponding to the highest value of b. This is meant to alleviate the identification problem discussed in
Johansen and Nielsen (2010, Section 2.3) and Carlini and de Magistris (2017). As of v.1.4.0, the default
setting is opt.LocalMax = 1.

Another new option in v.1.4.0 is the addition of a line search to the switching algorithm for estimation
of models with restrictions on α and/or β. This is added via the option opt.LineSearch = 1 and is the
default. See Doornik (2018, Section 2.2) for details.

In order to automatically obtain P -values for cointegration rank tests when b > 0.5, the user needs to
download and install the necessary program (see Section 1). The last option, opt.progLoc, identifies the
location of that program.

After all options have been set, the last line in Listing 3 stores them in DefaultOpt so that the user can
recall them at any point in the estimation. This is particularly useful if the user wants to change only a few
options in between estimations.

3.3 Lag-order selection

Once the options are set, the user moves to the next step, which involves choosing the appropriate lag
order. The relevant information is obtained with a call to LagSelect.m, shown in Listing 4, which performs
estimation of models with lag-orders from 0 to kmax. The program performs lag selection on the full-rank
unrestricted model.

Listing 4: Lag selection

45 %% --------- LAG SELECTION ---------- %

46 LagSelect(x1, kmax , p, order , opt);

The output generated by this function is shown below.

Lag Selection Results

Dimension of system: 3 Number of observations in sample: 316

Order for WN tests: 12 Number of observations for estimation: 316

Restricted constant: No Initial values: 0

Unrestricted constant: No Level parameter: Yes

k r d b LogL LR pv AIC BIC pmvQ pQ1 pLM1 pQ2 pLM2 pQ3 pLM3

3 3 0.676 0.676 456.42 7.31 0.605 -832.85 -682.62 0.94 0.72 0.46 0.49 0.89 0.51 0.47

2 3 0.581 0.581 452.77 20.59 0.015 -843.53* -727.11 0.82 0.69 0.45 0.29 0.75 0.54 0.40

1 3 1.043 1.043 442.47 56.99 0.000 -840.94 -758.31* 0.34 0.75 0.52 0.15 0.58 0.34 0.18

0 3 1.036 1.036 413.97 0.00 0.000 -801.95 -753.12 0.00 0.01 0.01 0.00 0.08 0.37 0.17

Estimates of d and b are reported for each lag (k) with rank (r) set to the number of variables in the
system. Note that in this example the restriction d = b has been imposed. The log-likelihood for each lag is

12

shown in column LogL. The likelihood ratio test-statistic LR is for the null hypothesis Γk = 0 with P -value
reported in column pv. This is followed by AIC and BIC information criteria. The next set of columns
provides P -values for white noise tests on the residuals. The first P -value, pmvQ, is for the multivariate
Q-test followed by univarite Q-tests as well as LM tests on the p individual residuals; that is, pQ1 and pLM1

are the P -values for the residuals in the first equation, pQ2 and pLM2 are for the residuals in the second
equation, and so on.

3.4 Cointegration rank testing

The user now chooses the lag-order based on the information provided above and can move to the next step,
which is cointegration rank testing. The next code section is shown in listing 5. The user first assigns the
lag augmentation, k = 2 in this case, and then calls the function RankTests.m.

Listing 5: Cointegration rank testing

47 %% --------- COINTEGRATION RANK TESTING ---------- %

48 k = 2;

49 rankTestStats = RankTests(x1 , k, opt);

Executing the code in Listing 5 produces the following output.

Likelihood Ratio Tests for Cointegrating Rank

Dimension of system: 3 Number of observations in sample: 316

Number of lags: 2 Number of observations for estimation: 316

Restricted constant: No Initial values: 0

Unestricted constant: No Level parameter: Yes

Rank d b Log-likelihood LR statistic P-value

0 0.643 0.643 440.040 25.454 0.043

1 0.569 0.569 451.174 3.186 0.820

2 0.576 0.576 452.707 0.120 0.947

3 0.581 0.581 452.767 ---- ----

The first block of output provides a summary of the model specification. The second block provides the
test results relevant for selecting the appropriate rank. The table is meant to be read sequentially from
lowest to highest rank, i.e. from top to bottom. Since we can reject the null of rank 0 against the alternative
of rank 3 we move to the test of rank 1 against rank 3. This test fails to reject with a P -value of 0.820, so
this is the appropriate choice in this case.

3.5 Unrestricted model estimation

With the rank and lag selected, the user can now move to the next code section, shown in Listing 6.

Listing 6: Unrestricted model estimation

50 %% --------- UNRESTRICTED MODEL ESTIMATION ---------- %

51 r=1;

52

53 opt1 = DefaultOpt;

54

55 m1 = FCVARestn(x1, k, r, opt1); % This model is now in the structure m1.

56

57 mv_wntest(m1.Residuals , order , printWNtest);

Here the user first specifies the choice for the rank based on the previously performed cointegrating rank
tests (thus setting r = 1 in this example). Next, the default options set in the initialization, see Section 3.2,
are assigned to opt1, which is used as an argument in the call to the function FCVARestn.m. This function is

13

the main part of the program since it performs the estimation of the parameters, obtains model residuals and
standard errors, and calculates many other relevant components such as the number of free parameters and
the roots of the characteristic polynomial. If opt1.print2screen=1 then, in addition to storing all of these
results in the Matlab structure m1, the function outputs the estimation results to the command window. To
see a list of variables stored in m1, the user can type m1 in the command line. After the unrestricted model
has been estimated, this code section concludes with a call to mv_wntest.m, which performs a series of white
noise tests on the residuals and prints the output in the command window.

The program output is shown below. It begins with a table summarizing relevant model specifications
and then the coefficients and their standard errors. The roots of the characteristic polynomial are displayed
at the bottom.

Fractionally Cointegrated VAR: Estimation Results

Dimension of system: 3 Number of observations in sample: 316

Number of lags: 2 Number of observations for estimation: 316

Restricted constant: No Initial values: 0

Unrestricted constant: No Level parameter: Yes

Starting value for d: 0.800 Parameter space for d: (0.010 , 2.000)

Starting value for b: 0.800 Parameter space for b: (0.010 , 2.000)

Cointegrating rank: 1 AIC: -848.348

Log-likelihood: 451.174 BIC: -746.943

log(det(Omega_hat)): -11.369 Free parameters: 27

Fractional parameters:

Coefficient Estimate Standard error

d 0.569 0.049

Cointegrating equations (beta):

Variable CI equation 1

Var1 1.000

Var2 0.111

Var3 -0.240

Note: Identifying restriction imposed.

Adjustment matrix (alpha):

Variable CI equation 1

Var 1 -0.180

SE 1 (0.064)

Var 2 0.167

SE 2 (0.194)

Var 3 0.037

SE 3 (0.014)

Note: Standard errors in parenthesis.

14

Long-run matrix (Pi):

Variable Var 1 Var 2 Var 3

Var 1 -0.180 -0.020 0.043

Var 2 0.167 0.019 -0.040

Var 3 0.037 0.004 -0.009

Level parameter (mu):

Var 1 -0.345

SE 1 (0.069)

Var 2 11.481

SE 2 (0.548)

Var 3 -2.872

SE 3 (0.033)

Note: Standard errors in parenthesis (from numerical Hessian) but asymptotic distribution is unknown.

Lag matrix 1 (Gamma_1):

Variable Var 1 Var 2 Var 3

Var 1 0.276 -0.032 -0.510

SE 1 (0.160) (0.026) (0.513)

Var 2 -0.148 1.126 -3.285

SE 2 (0.378) (0.196) (1.975)

Var 3 -0.052 0.008 0.711

SE 3 (0.022) (0.005) (0.170)

Note: Standard errors in parenthesis.

Lag matrix 2 (Gamma_2):

Variable Var 1 Var 2 Var 3

Var 1 0.566 0.106 0.609

SE 1 (0.182) (0.045) (0.612)

Var 2 0.493 -0.462 0.450

SE 2 (0.562) (0.198) (2.627)

Var 3 -0.039 -0.020 0.318

SE 3 (0.032) (0.008) (0.143)

Note: Standard errors in parenthesis.

Roots of the characteristic polynomial

Number Real part Imaginary part Modulus

15

1 -2.893 0.000 2.893

2 -1.522 0.000 1.522

3 1.010 0.927 1.371

4 1.010 -0.927 1.371

5 1.108 0.000 1.108

6 1.000 0.000 1.000

7 1.000 -0.000 1.000

8 0.944 0.261 0.980

9 0.944 -0.261 0.980

Restrictions imposed on the following parameters:

- Psi. For details see "options.R_psi"

At the end of the output, a notice is printed to remind the user that restrictions were imposed on Psi,
i.e. on (d, b). In this case, this is the restriction d = b imposed via opt.restrictDB = 1.

In addition to the coefficient estimates, we are also interested in testing the model residuals for serial
correlation. The results of the white noise tests, called in the last line of Listing 6, are shown below. For each
residual both the Q- and LM-test statistics and their P -values are reported, in addition to the multivariate
Q-test and P -value in the first line of the table. From the output of this table we can conclude that there
does not appear to be any problems with serial correlation in the residuals.

White Noise Test Results (lag = 12)

Variable | Q P-val | LM P-val |

Multivar | 97.868 0.747 | ---- ---- |

Var1 | 9.301 0.677 | 11.238 0.509 |

Var2 | 14.443 0.273 | 8.566 0.739 |

Var3 | 10.596 0.564 | 12.269 0.424 |

Because opt.plotRoots = 1 in Listing 3, the roots of the characteristic polynomial is also plotted along
with the unit circle and the transformed unit circle, Cb̂, see Johansen (2008). The plot is shown in Figure 1.

Figure 1: Roots of characteristic polynomial

16

Furthermore, the estimation was performed with the grid search and the plot option selected, i.e. with
opt.gridSearch = 1 and opt.plotLike = 1, which produces a plot of the log-likelihood. The plot for this
model is shown in Figure 2.

Figure 2: Plot of log-likelihood

The complete results for the unrestricted model are stored in the Matlab structure m1 and can be accessed
anytime. For instance, if the user would like to perform a more careful analysis of the residuals they are
stored in m1.Residuals.

3.6 Hypothesis testing

We now move into the hypothesis testing section of the code where we can test several restricted models and
perform inference. For restricted model estimation the grid search option is switched off because computation
can be very slow, especially in the presence of the level parameter. However, if the user wishes to verify
the accuracy of the results or if estimates are close to the upper or lower bound, the grid search option can
resolve these issues and give the user additional insight about the behaviour of the likelihood.

All hypotheses are defined as shown in (10)–(12). The first hypothesis test is H 1
d (for precise definitions

of each hypothesis, please see Jones et al. (2014)), and it is shown in Listing 7.

Listing 7: Hypothesis H 1
d

58 %% --------- IMPOSE RESTRICTIONS AND TEST THEM ---------- %

59

60 DefaultOpt.gridSearch = 0; % turn off grid search for restricted models

61 % because it’s too intensive.

62

63 %% Test restriction that d=b=1.

64 opt1 = DefaultOpt;

65 opt1.R_psi = [1 0];

66 opt1.r_psi = 1;

67

68 m1r1 = FCVARestn(x1, k, r, opt1); % This restricted model is now in the structure

69 % m1r1.

70

71 mv_wntest(m1r1.Residuals , order , printWNtest);

72

73 Hdb = HypoTest(m1 , m1r1); % Test the null of m1r1 against the alternative m1 and

74 % store the results in the structure Hdb.

Here we test the CVAR model (null hypothesis d = b = 1) against the FCVAR model (alternative
hypothesis d = b 6= 1). Since opt1.restrictDB=1 was selected in the choice of options in Listing 3, the

17

restriction that d = b is already imposed. Thus, the user needs to only impose an additional restriction
that either d or b is equal to one. In this example, the restriction that d = 1 is imposed by setting
opt1.R_psi = [1 0] and opt1.r_psi = 1, but the result would be the same if b = 1 were imposed instead.
The restricted model is then estimated and the results are stored in the Matlab structure m1r1. As before, the
user can perform a series of white noise tests on the residuals by calling the mv_wntest.m function. The next
step is to perform the actual test. With the results structures from the restricted and unrestricted models,
the user can call the function HypoTest.m and perform an LR test. This function takes the two model
result structures as inputs, automatically compares the number of free parameters to obtain the degrees of
freedom, computes the LR test statistic, and displays the output. The results of this test are then stored in
the Matlab structure Hdb and can be accessed at any time.

Since the output of the estimated model and the white noise tests are similar to the previous example,
we only show the output from the hypothesis test.

Unrestricted log-likelihood: 451.174

Restricted log-likelihood: 442.027

Test results (df = 1):

LR statistic: 18.295

P-value: 0.000

The log-likelihoods from both models are reported, along with the degrees of freedom, the LR test
statistic, and its P -value. In this case the test clearly rejects the null hypothesis that the model is a CVAR.
For more significant digits, or to access any of these values from the command window, the user can type
Hdb.

The next hypothesis of interest is H 1
β , which is a zero restriction on the first element of the cointegration

vector.

Listing 8: Hypothesis H 1
β

75 %% Test restriction that political variables do not enter the cointegrating

relation(s).

76 opt1 = DefaultOpt;

77 opt1.R_Beta = [1 0 0];

78

79 m1r2 = FCVARestn(x1, k, r, opt1); % This restricted model is now

80 % in the structure m1r2.

81

82 mv_wntest(m1r2.Residuals , order , printWNtest);

83

84 Hbeta1 = HypoTest(m1, m1r2); % Test the null of m1r2 against the alternative m1

85 % and store the results in the structure Hbeta1.

Since the object opt1 has the restriction d = b = 1 stored, the first step is to reset the options to default.
The restriction on β is then specified as in (12). There are two things to note here. First, the column length
of Rβ must equal p1r, where p1 = p + 1 if a restricted constant is present and p1 = p otherwise; recall
that p is the number of variables in the system and r is the number of cointegrating vectors. Second, zero
restrictions are the default and automatically imposed when rβ is empty. Therefore, the user only needs to
specify rβ if it includes non-zero elements. Recall that for restrictions on α only rα = 0 is allowed so that
there is no need to specify rα. As before, the restricted model is estimated with results stored in m1r2, the
residuals are tested for white noise, and the model under the null is tested against the unrestricted model
m1 with results stored in Hbeta1.

Again, since the estimation output is similar to the first example, we only show the results of the
hypothesis test here. With a P -value close to zero, this hypothesis is also strongly rejected.

Unrestricted log-likelihood: 451.174

Restricted log-likelihood: 444.395

Test results (df = 1):

LR statistic: 13.557

P-value: 0.000

18

Next, we move to tests on α.

Listing 9: Hypothesis H 1
α

86 %% Test restriction that political variable is long -run exogenous.

87 opt1 = DefaultOpt;

88 opt1.R_Alpha = [1 0 0];

89

90 m1r3 = FCVARestn(x1, k, r, opt1); % This restricted model is now in the structure

91 % m1r3.

92

93 mv_wntest(m1r3.Residuals , order , printWNtest);

94

95 Halpha1 = HypoTest(m1 , m1r3); % Test the null of m1r3 against the alternative m1

96 % and store the results in the structure Halpha1.

Again we first reset opt1 to the default options to clear previously imposed restrictions. Note that, if it
were the case that we failed to reject H 1

β and wanted to leave it imposed while adding a restriction on α, we
could either omit the first line opt1 = DefaultOpt;, or we could replace it with opt1 = m1r2.options;.
The latter assignment is preferred in this case because it is explicit about which model options we are leaving
imposed.

The hypothesis H 1
α is tested in the exact same way as before, only now we are changing the variable Rα

instead of Rβ . The results are shown below and we can see that this hypothesis is also rejected.

Unrestricted log-likelihood: 451.174

Restricted log-likelihood: 446.086

Test results (df = 1):

LR statistic: 10.176

P-value: 0.001

We next move to the remaining long-run exogeneity tests, H 2
α and H 3

α , shown in Listings 10 and 11,
respectively. The results of the tests are shown below each listing.

Listing 10: Hypothesis H 2
α

97 %% Test restriction that interest -rate is long -run exogenous.

98 opt1 = DefaultOpt;

99 opt1.R_Alpha = [0 1 0];

100

101 m1r4 = FCVARestn(x1, k, r, opt1); % This restricted model is now in the

102 % structure m1r4.

103

104 mv_wntest(m1r4.Residuals , order , printWNtest);

105

106 Halpha2 = HypoTest(m1 , m1r4); % Test the null of m1r4 against the alternative m1

107 % and store the results in the structure Halpha2.

Output:

Unrestricted log-likelihood: 451.174

Restricted log-likelihood: 450.857

Test results (df = 1):

LR statistic: 0.633

P-value: 0.426

Listing 11: Hypothesis H 3
α

108 %% Test restriction that unemployment is long -run exogenous.

109 opt1 = DefaultOpt;

19

110 opt1.R_Alpha = [0 0 1];

111 k=2; r=1;

112 m1r5 = FCVARestn(x1, k, r, opt1); % This restricted model is now in the structure

113 % m1r5.

114

115 mv_wntest(m1r5.Residuals , order , printWNtest);

116

117 Halpha3 = HypoTest(m1 , m1r5); % Test the null of m1r5 against the alternative m1

118 % and store the results in the structure Halpha3.

Output:

Unrestricted log-likelihood: 451.174

Restricted log-likelihood: 446.184

Test results (df = 1):

LR statistic: 9.979

P-value: 0.002

The only hypothesis that we fail to reject is H 2
α , under which interest rates are long-run exogenous.

Since this is the final restricted model, we provide the full estimation output. Note from the output that
α2 = 0 as imposed by the restriction.

Fractionally Cointegrated VAR: Estimation Results

Dimension of system: 3 Number of observations in sample: 316

Number of lags: 2 Number of observations for estimation: 316

Restricted constant: No Initial values: 0

Unrestricted constant: No Level parameter: Yes

Starting value for d: 0.800 Parameter space for d: (0.010 , 2.000)

Starting value for b: 0.800 Parameter space for b: (0.010 , 2.000)

Cointegrating rank: 1 AIC: -849.715

Log-likelihood: 450.857 BIC: -752.065

log(det(Omega_hat)): -11.367 Free parameters: 26

Fractional parameters:

Coefficient Estimate Standard error

d 0.575 0.048

Cointegrating equations (beta):

Variable CI equation 1

Var1 0.994

Var2 0.105

Var3 -0.181

Adjustment matrix (alpha):

Variable CI equation 1

Var 1 -0.189

20

SE 1 (0.065)

Var 2 0.000

SE 2 (0.000)

Var 3 0.039

SE 3 (0.014)

Note: Standard errors in parenthesis.

Long-run matrix (Pi):

Variable Var 1 Var 2 Var 3

Var 1 -0.188 -0.020 0.034

Var 2 0.000 0.000 0.000

Var 3 0.039 0.004 -0.007

Level parameter (mu):

Var 1 -0.310

SE 1 (0.067)

Var 2 11.538

SE 2 (0.553)

Var 3 -2.873

SE 3 (0.033)

Note: Standard errors in parenthesis (from numerical Hessian) but asymptotic distribution is unknown.

Lag matrix 1 (Gamma_1):

Variable Var 1 Var 2 Var 3

Var 1 0.269 -0.032 -0.512

SE 1 (0.157) (0.026) (0.507)

Var 2 -0.013 1.115 -3.001

SE 2 (0.345) (0.189) (1.909)

Var 3 -0.053 0.008 0.694

SE 3 (0.022) (0.005) (0.164)

Note: Standard errors in parenthesis.

Lag matrix 2 (Gamma_2):

Variable Var 1 Var 2 Var 3

Var 1 0.570 0.104 0.586

SE 1 (0.184) (0.044) (0.606)

Var 2 0.685 -0.371 0.223

SE 2 (0.508) (0.159) (2.509)

Var 3 -0.043 -0.020 0.330

SE 3 (0.032) (0.008) (0.138)

Note: Standard errors in parenthesis.

21

Roots of the characteristic polynomial

Number Real part Imaginary part Modulus

1 -2.710 0.000 2.710

2 -1.498 0.000 1.498

3 1.129 0.939 1.469

4 1.129 -0.939 1.469

5 1.098 0.000 1.098

6 1.000 0.000 1.000

7 1.000 0.000 1.000

8 0.934 0.281 0.976

9 0.934 -0.281 0.976

Restrictions imposed on the following parameters:

- Psi. For details see "options.R_psi"

- Alpha. For details see "options.R_Alpha"

White Noise Test Results (lag = 12)

Variable | Q P-val | LM P-val |

Multivar | 97.665 0.752 | ---- ---- |

Var1 | 9.084 0.696 | 11.267 0.506 |

Var2 | 14.931 0.245 | 9.338 0.674 |

Var3 | 10.729 0.552 | 12.241 0.426 |

Sometimes it is the case that the model output is not normalized with respect to the user’s variable of
interest, for example when restrictions are imposed on α or β. For this reason, we also include a code section
that normalizes the output, i.e. imposes an identity matrix in the first r× r block of β. Of course, this code
section should only be executed if it does not interfere with any restrictions imposed on the model.

Listing 12: Normalizing output

119 %% RESTRICTED MODEL OUTPUT - print normalized beta and alpha for model m1r4.

120 modelRstrct = m1r4;

121 G = inv(modelRstrct.coeffs.betaHat (1:r,1:r));

122 betaHatR = modelRstrct.coeffs.betaHat*G;

123 % alphaHat is post multiplied by G^{-1} so that pi= a(G^{-1})Gb ’ = ab ’

124 alphaHatR = modelRstrct.coeffs.alphaHat*inv(G)’;

125

126 display(betaHatR);

127 display(alphaHatR);

As an example of when this feature can be useful, consider model H 2
α . In the output above, we notice

that the cointegrating vector has not been normalized (because restrictions are imposed). The user assigns
the model of interest to the variable modelRstrct, in this case m1r4, and executes the cell. The output is
shown below.

22

betaHatR =

1.0000

0.1057

-0.1824

alphaHatR =

-0.1877

0

0.0386

4 Additional examples: MoreExamples.m
To show some additional functionality of the FCVAR software package, this section contains several other
examples, which are based on Jones et al. (2014), but are not part of that paper.

4.1 Forecasting

Listing 13 performs recursive one-step ahead forecasts for each of the variables as well as the equilibrium
relation.

Listing 13: Forecasting

128 %% --------- FORECAST ---------- %

129

130 % Forecast from the final restricted model.

131 NumPeriods = 12; % forecast horizon set to 12 months ahead.

132

133 % Assign the model whose coefficients will be used for forecasting.

134 modelF = m1r4;

135

136 xf = FCVARforecast(x1, modelF , NumPeriods);

137

138 % Series including forecast.

139 seriesF = [x1; xf];

140

141 % Equilibrium relation including forecasts.

142 equilF = seriesF*modelF.coeffs.betaHat;

143

144 % Determine the size of the vertical line to delimit data and forecast

145 % values.

146 T = size(x1 ,1);

147 yMaxS = max(max(seriesF));

148 yMinS = min(min(seriesF));

149 yMaxEq = max(max(equilF));

150 yMinEq = min(min(equilF));

151

152 % Plot the results.

153 figure

154 subplot (2,1,1);

155 plot(seriesF),

156 title(’Series including forecast ’), xlabel(’t’);

157 line([T T], [yMinS yMaxS], ’Color ’,’k’);

158 subplot (2,1,2);

159 plot(equilF),

160 title(’Equilibrium relation including forecasts ’), xlabel(’t’);

161 line([T T], [yMinEq yMaxEq], ’Color ’,’k’);

The user specifies the forecast horizon (NumPeriods) as well as the model (in this case, modelF = m1r1).
These two inputs, along with the data, are used in the call to the function FCVARforecast.m. This function

23

returns xf, a NumPeriods by p matrix of forecasted values of X. This code section also plots the original
series and the equilibrium relation along with the forecasts. These plots are shown in Figure 3.

The forecasts can be printed to screen by typing xf in the command window. For this example, the
forecast yields the following output:

xf =

-0.143651232445609 5.857045691984009 -2.636093400885282

-0.084880236401301 5.959876423543075 -2.654427734412809

-0.025317647188555 6.110372247993035 -2.673504395263888

0.023637193159649 6.291703833118448 -2.692354312615941

0.065948385719753 6.495095415827381 -2.710793696483187

0.101480482760750 6.712274724017515 -2.728550463910498

0.131038772676406 6.937036380068601 -2.745463810349039

0.155108028894535 7.164423215402036 -2.761407736878001

0.174198620780072 7.390568568007144 -2.776296703046935

0.188773441631705 7.612444943293763 -2.790074682226306

0.199275426254352 7.827704702527144 -2.802710965769232

0.206124920473081 8.034550676278421 -2.814195673339702

Figure 3: Forecast of final model 12 steps ahead

4.2 Bootstrap hypothesis test

Listing 14 demonstrates the use of the wild bootstrap for hypothesis tests on the parameters, as developed
by Boswijk et al. (2016) for the CVAR model. The user specifies two sets of options corresponding to two

24

different nested models, and the function FCVARboot.m returns the results of the wild bootstrap. The wild
bootstrap is programmed to perform under parallel processing. If the user has the capability to use multiple
processors, then computation time can be greatly reduced. If not, the function can still be performed, but
the bootstrap iterations will appear out of order since the loop is coded using parfor instead of for.

Listing 14: Bootstrap hypothesis test

162 %% --------- BOOTSTRAP HYPOTHESIS TEST ---------- %

163

164 % Test restriction that political variables do not enter the

165 % cointegrating relation(s).

166

167 % Turn off plots for bootstrapping.

168 DefaultOpt.plotRoots = 0;

169

170 % Define estimation options for unrestricted model (alternative)

171 optUNR = DefaultOpt;

172

173 % Define estimation options for restricted model (null)

174 optRES = DefaultOpt;

175 optRES.R_Beta = [1 0 0];

176

177 % Number of bootstrap samples to generate

178 B = 999;

179

180 % Call to open the distributed processing (comment out if unavailable)

181 % matlabpool (’open ’,4); % for versions 2013a and earlier.

182 % parpool; % for versions 2013b and later.

183

184 [LRbs , H, mBS , mUNR] = FCVARboot(x1 , k, r, optRES , optUNR , B);

185

186

187 %% Compare the bootstrap distribution to chi -squared distribution

188

189 % Estimate kernel density

190 [F,XI]= ksdensity(LRbs);

191

192 % Plot bootstrap density with chi -squared density

193 figure; plot(XI,F, XI, chi2pdf(XI,H.df))

194

195 legend ([’Bootstrap PDF with ’, num2str(B), ’ BS samples ’],...

196 [’Chi Squared with ’, num2str(H.df),’ df’])

An example output

Bootstrap results:

Unrestricted log-likelihood: 451.174

Restricted log-likelihood: 444.395

Test results (df = 1):

LR statistic: 13.557

P-value: 0.000

P-value (BS): 0.014

The user might also be interested in comparing the bootstrap likelihood ratio test statistic distribution
to the asymptotic one. The second part of Listing 14 performs this comparison by producing a plot of the
two distributions, shown in Figure 4.

4.3 Bootstrap rank test

Listing 15 shows how to perform a wild bootstrap rank test, following the methodology of Cavaliere et al.
(2010) for the CVAR model. This procedure works in much the same way as the bootstrap hypothesis test

25

Figure 4: Density of bootstrap LR test statistic

described in Section 4.2. The difference is that, instead of providing two sets of estimation options, the user
specifies two different ranks for comparison.

Listing 15: Bootstrap rank test

197 %% --------- BOOTSTRAP RANK TEST ---------- %

198

199 % Test rank 0 against rank 1

200 r1 = 0;

201 r2 = 1;

202

203 [LR_Rnk , H_Rnk , mBSr1 , mBSr2] = FCVARbootRank(x1 , k, DefaultOpt , r1 , r2 , B);

204

205 % Compare to P-value based on asymptotic distribution

206 fprintf(’P-value: \t %1.3f\n’, rankTestStats.pv(1));

207

208 % Close distributed processing (comment out if unavailable)

209 % matlabpool close;

The results are printed as

Bootstrap results:

Unrestricted log-likelihood: 451.174

Restricted log-likelihood: 440.040

Test results:

26

LR statistic: 22.268

P-value (BS): 0.033

P-value: 0.043

4.4 Simulation

Finally, Listing 16 shows how to simulate an FCVAR model for a given set of parameters. The user provides
data for starting values and a Matlab structure containing model parameters for simulation as well as the
number of periods to simulate. The simulated data is generated using Gaussian errors.

Listing 16: Simulation

210 %% --------- SIMULATION ---------- %

211

212 % Simulate the final restricted model , the same one used for forecasting

213 % above.

214

215 % Number of periods to simulate

216 T_sim = 100;

217

218 % Simulate data

219 xSim = FCVARsim(x1, modelF , T_sim);

220

221 % Plot the results

222 figure;

223 plot(xSim)

224 legend(’Support ’, ’Unemployment ’, ’Interest rate’)

For the example above, the generated data is shown in Figure 5.

5 Software description
This section describes the individual components of the software package in detail. The main folder contains
the following files:

• data_JNP2014.csv

• EstOptions.m

• FCVARestn.m

• FCVARforecast.m

• FCVARboot.m

• FCVARbootRank.m

• FCVARsim.m

• HypoTest.m

• LagSelect.m

• mv_wntest.m

• RankTests.m

• replication_JNP2014.m

• MoreExamples.m

27

Figure 5: Simulated data

There is one data file (data_JNP2014.csv), two scripts (replication_JNP2014.m and MoreExamples.m),
one class definition (EstOptions.m), and nine functions. These main functions depend on 17 auxiliary
functions stored in the subfolder Auxiliary, as well as the functions extrema.m and extrema2.m, which are
also in the subfolder Auxiliary. The replication script adds these auxiliary files to the path definition so
that the main functions have access to them.

We remark again that it should not really be necessary to modify any files except the scripts, i.e.
replication_JNP2014.m or MoreExamples.m. Only advanced users wishing to modify or extend the ac-
tual functionality of the programs will need to make any changes to the remaining files. The following
subsections briefly describe the functionality of each program file.

5.1 EstOptions.m

Listing 17: EstOptions.m

1 classdef EstOptions

2 % classdef EstOptions

3 % Written by Michal Popiel and Morten Nielsen (This version 04.11.2016)

4 %

5 % DESCRIPTION: This class defines the estimation options used in the FCVAR

6 % estimation procedure and the related programs. Assigning this class

7 % to a variable stores the default properties defined below in that

8 % variable. In addition to the properties , the methods section includes the

9 % function updateRestrictions which performs several checks on the

10 % user -specified options prior to estimation.

11 %___

28

EstOptions is a class definition which is assigned to an object and used in most of the functions. It
contains all the model specifications and options that are available to the user. Here is an example of the
contents when EstOptions is entered in the command line:

>> EstOptions

ans =

EstOptions with properties:

UncFminOptions: [1x1 struct]

ConFminOptions: [1x1 struct]

LineSearch: 1

LocalMax: 1

dbMax: 2

dbMin: 0.0100

db0: [1 1]

constrained: 1

restrictDB: 1

N: 0

unrConstant: 0

rConstant: 0

levelParam: 1

C_db: []

c_db: []

UB_db: []

LB_db: []

R_psi: []

r_psi: []

R_Alpha: []

r_Alpha: []

R_Beta: []

r_Beta: []

print2screen: 1

printGammas: 1

printRoots: 1

plotRoots: 1

gridSearch: 1

plotLike: 1

progress: 1

updateTime: 5

progLoc: ’"/usr/bin/fdpval"’

CalcSE: 1

5.2 FCVARestn.m

Listing 18: FCVARestn.m

1 function [results] = FCVARestn(x,k,r,opt)

2 % function [results] = FCVARestn(x,k,r,opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 04.09.2016)

4 %

5 % DESCRIPTION: This function performs estimation of the FCVAR system. It is

6 % the main function in the program with several nested functions , each

29

7 % described below. It estimates the model parameters , calculates the

8 % standard errors and the number of free parameters , obtains the residuals

9 % and the roots of the characteristic polynomial , and prints the output.

10 %

11 % Input = x (matrix of variables to be included in the system)

12 % k (number of lags)

13 % r (number of cointegrating vectors)

14 % opt (object containing the estimation options)

15 % Output = results (a Matlab structure containing estimation results)

16 % - results.startVals (Starting values used for optimization)

17 % - results.options (Estimation options)

18 % - results.like (Model log -likelihood)

19 % - results.coeffs (Parameter estimates)

20 % - results.rankJ (Rank of Jacobian for

21 % identification condition)

22 % - results.fp (Number of free parameters)

23 % - results.SE (Standard errors)

24 % - results.NegInvHessian (Negative of inverse Hessian matrix)

25 % - results.Residuals (Model residuals)

26 % - results.cPolyRoots (Roots of characteristic polynomial)

27 %___

This function is the central estimation function in the program. Calling this function returns a “results”
Matlab structure. An example of a typical results structure is shown here:

m1r4 =

startVals: [0.8000 0.8000 -0.0938 11.5400 -2.8633]

options: [1x1 EstOptions]

like: 450.8574

coeffs: [1x1 struct]

rankJ: 4

fp: 26

SE: [1x1 struct]

NegInvHessian: [25x25 double]

Residuals: [316x3 double]

cPolyRoots: [9x1 double]

5.3 LagSelect.m

Listing 19: LagSelect.m

1 function LagSelect(x, kmax , r, order , opt)

2 % function LagSelect(x, kmax , r, order , opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 3.31.2016)

4 %

5 % DESCRIPTION: This program takes a matrix of variables and performs lag

6 % selection on it by using the likelihood ratio test. Output and test

7 % results are printed to the screen.

8 %

9 % Input = x (matrix of variables to be included in the system)

10 % kmax (maximum number of lags)

11 % r (cointegration rank = number of cointegrating vectors)

12 % order (order of serial correlation for white noise tests)

13 % opt (object containing estimation options)

14 % Output = none (only output to screen)

15 %___

30

5.4 RankTests.m

Listing 20: RankTests.m

1 function [rankTestStats] = RankTests(x, k, opt)

2 % function [rankTestStats] = RankTests(x, k, opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 11.17.2014)

4 % Based on Lee Morin & Morten Nielsen (June 5, 2013)

5 %

6 % DESCRIPTION: Performs a sequence of likelihood ratio tests

7 % for cointegrating rank.

8 %

9 % The results are printed to screen if the indicator print2screen is 1.

10 %

11 % input = vector or matrix x of data.

12 % scalar k denoting lag length.

13 % opt (object containing estimation options)

14 %

15 % output = rankTestStats structure with results from cointegrating rank

16 % tests , containing the following (p+1) vectors with i’th element

17 % corresponding to rank = i-1:

18 % dHat (estimates of d)

19 % bHat (estimate of b)

20 % LogL (maximized log -likelihood)

21 % LRstat (LR trace statistic for testing rank r against rank p)

22 % pv (P-value of LR trace test , or "999" if P-value is not available)

23 %__

5.4.1 get pvalues

Listing 21: get pvalues.m

1 function [pv] = get_pvalues(q, b, consT , testStat , opt)

2 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

3 %

4 % DESCRIPTION: This function calls the program FDPVAL in the terminal and

5 % returns the P-value based on the user ’s inputs. The function ’s

6 % arguments must be converted to strings in order to interact with the

7 % terminal.

8 %

9 % Input = q (number of variables minus rank)

10 % b (parameter)

11 % consT (boolean variable indicating whether or not there is

12 % constant present)

13 % testStat (value of the test statistic)

14 % opt (object containing estimation options)

15 % Output = pv (P-value for likelihood ratio test)

16 % ___

5.5 HypoTest.m

Listing 22: HypoTest.m

1 function results = HypoTest(modelUNR , modelR)

2 % function results = HypoTest(modelUNR , modelR)

3 % Written by Michal Popiel and Morten Nielsen (This version 2.24.2015)

4 %

5 % DESCRIPTION: This function performs a likelihood ratio test of the null

6 % hypothesis: "model is modelR" against the alternative hypothesis:

31

7 % "model is modelUNR ".

8 %

9 % Input = modelUNR (structure of estimation results created for unrestricted model

)

10 % modelR (structure of estimation results created for restricted model)

11 % Output = results: a Matlab structure containing test results

12 % - results.loglikUNR (loglikelihood of unrestricted model)

13 % - results.loglikR (loglikelihood of restricted model)

14 % - results.df (degrees of freedom for the test)

15 % - results.LRstat (likelihood ratio test statistic)

16 % - results.p_LRtest (P-value for test)

17 %___

5.6 FCVARforecast.m

Listing 23: FCVARforecast.m

1 function xf = FCVARforecast(data , model , NumPeriods)

2 % function xf = FCVARforecast(data , model , NumPeriods)

3 % Written by Michal Popiel and Morten Nielsen (This version 11.17.2014)

4 %

5 % DESCRIPTION: This function calculates recursive forecasts. It uses

6 % FracDiff () and Lbk(), which are nested below.

7 %

8 % Input = data (T x p matrix of data)

9 % model (a Matlab structure containing estimation results)

10 % NumPeriods (number of steps ahead for forecast)

11 % Output = xf (NumPeriods x p matrix of forecasted values)

12 %___

5.7 mv wntest.m

Listing 24: mv wntest.m

1 function [Q, pvQ , LM, pvLM , mvQ , pvMVQ] = mv_wntest(x, maxlag , printResults)

2 % function [Q, pvQ , LM , pvLM , mvQ , pvMVQ] = ...

3 % mv_wntest(x, maxlag , printResults)

4 % Written by Michal Popiel and Morten Nielsen (This version 7.21.2015)

5 %

6 % DESCRIPTION: This function performs a multivariate Ljung -Box Q-test for

7 % white noise and univariate Q-tests and LM -tests for white noise on the

8 % columns of x.

9 % The LM test should be consistent for heteroskedastic series , Q-test is not

.

10 %

11 % Input = x (matrix of variables under test , typically model residuals)

12 % maxlag (number of lags for serial correlation tests)

13 % printResults (set =1 to print results to screen)

14 % Output = Q (1xp vector of Q statistics for individual series)

15 % pvQ (1xp vector of P-values for Q-test on individual series)

16 % LM (1xp vector of LM statistics for individual series)

17 % pvLM (1xp vector of P-values for LM -test on individual series)

18 % mvQ (multivariate Q statistic)

19 % pvMVQ (P-value for multivariate Q-statistic using p^2* maxlag df)

20 %___

5.7.1 LMtest

32

Listing 25: LMtest.m

1 function [LMstat , pv] = LMtest(x,q)

2 % Breusch -Godfrey Lagrange Multiplier test for serial correlation.

5.7.2 Qtest

Listing 26: Qtest.m

1 function [Qstat , pv] = Qtest(x, maxlag)

2 % (Multivariate) Ljung -Box Q-test for serial correlation , see

3 % Luetkepohl (2005 , New Introduction to Multiple Time Series Analysis , p.

169).

5.8 FCVARboot.m

The wild bootstrap procedure for hypothesis tests on the parameters is based on the procedure for the I(1)
model in Boswijk et al. (2016).

Listing 27: FCVARboot.m

1 function [LRbs , H, mBS , mUNR] = FCVARboot(x, k, r, optRES , optUNR , B)

2 % function [LRbs , H, mBS , mUNR] = FCVARboot(x, k, r, optRES , optUNR , B)

3 % Written by Michal Popiel and Morten Nielsen (This version 08.06.2015)

4 %

5 % DESCRIPTION: This function generates a distribution of a likelihood ratio

6 % test statistic using a Wild bootstrap , following the method of

7 % Boswijk , Cavaliere , Rahbek , and Taylor (2013). It takes

two sets

8 % of options as inputs to estimate the model under the null and the

9 % unrestricted model.

10 %

11 % Input = x (data - if k>0, actual data is used for initial values)

12 % k (number of lags)

13 % optRES (options object for restricted model under the null)

14 % optUNR (options object to estimate unrestricted model)

15 % B (number of bootstrap samples)

16 %

17 % Output = LRbs (B x 1 vector simulated likelihood ratio statistics)

18 % pv (approximate p-value for LRstat based on bootstrap

19 % distribution)

20 % H (a Matlab structure containing LR test results , it is

21 % identical to the output from HypoTest , with one addition ,

22 % namely H.pvBS which is the Bootstrap P-value)

23 % mBS (model estimates under the null)

24 % mUNR (model estimates under the alternative)

25 %___

5.9 FCVARbootRank.m

The wild bootstrap procedure for hypothesis tests on the parameters is based on the procedure for the I(1)
model in Cavaliere et al. (2010).

Listing 28: FCVARbootRank.m

1 function [LRbs , H, mBS , mUNR] = FCVARbootRank(x, k, opt , r1 , r2 , B)

2 % function [LRbs , H, mBS , mUNR] = FCVARbootRank(x, k, opt , r1 , r2 , B)

3 % Written by Michal Popiel and Morten Nielsen (This version 08.06.2015)

4 %

5 % DESCRIPTION: This function generates a distribution of a likelihood ratio

6 % test statistic for the rank test using a Wild bootstrap ,

33

7 % following the method of Cavaliere , Rahbek , and Taylor

(2010). It

8 % takes the two ranks as inputs to estimate the model under the

9 % null and the model under the alternative.

10 %

11 % Input = x (data - if k>0, actual data is used for initial values)

12 % k (number of lags)

13 % opt(estimation options)

14 % r1 (rank under the null)

15 % r2 (rank under the alternative)

16 % B (number of bootstrap samples)

17 %

18 % Output = LRbs (B x 1 vector simulated likelihood ratio statistics)

19 % pv (approximate p-value for LRstat based on bootstrap

20 % distribution)

21 % H (a Matlab structure containing LR test results , it is

22 % identical to the output from HypoTest , with one addition ,

23 % namely H.pvBS which is the Bootstrap P-value)

24 % mBS (model estimates under the null)

25 % mUNR (model estimates under the alternative)

26 %___

5.10 FCVARsim.m

Listing 29: FCVARsim.m

1 function xSim = FCVARsim(data , model , NumPeriods)

2 % function xSim = FCVARsim(data , model , NumPeriods)

3 % Written by Michal Popiel and Morten Nielsen (This version 08.06.2015)

4 %

5 % DESCRIPTION: This function simulates the FCVAR model as specified by

6 % input "model" and starting values specified by "data."

7 % Errors are drawn from a Normal distribution.

8 %

9 % Input = data (T x p matrix of data)

10 % model (a Matlab structure containing estimation results)

11 % NumPeriods (number of steps for simulation)

12 % Output = xSim (NumPeriods x p matrix of simulated values)

13 %___

5.11 Auxillary functions

5.11.1 FCVARsimBS.m

Listing 30: FCVARsim.m

1 function xBS = FCVARsimBS(data , model , NumPeriods)

2 % function xBS = FCVARsimBS(data , model , NumPeriods)

3 % Written by Michal Popiel and Morten Nielsen (This version 08.06.2015)

4 %

5 % DESCRIPTION: This function simulates the FCVAR model as specified by

6 % input "model" and starting values specified by "data." It

7 % creates a bootstrap sample by augmenting each iteration

8 % with a bootstrap error. The errors are sampled from the

9 % residuals specified under the "model" input and have a

10 % positive or negative sign with equal probability

11 % (Rademacher distribution).

12 %

13 % Input = data (T x p matrix of data)

34

14 % model (a Matlab structure containing estimation results)

15 % NumPeriods (number of steps for simulation)

16 % Output = xBS (NumPeriods x p matrix of simulated bootstrap values)

17 %___

5.11.2 FCVARhess.m

Listing 31: FCVARhess.m

1 function [hessian] = FCVARhess(x, k, r, coeffs , opt)

2 % function [hessian] = FCVARhess(x, k, r, coeffs , opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 %

5 % DESCRIPTION: This function calculates the Hessian matrix of the

6 % log -likelihood numerically.

7 %

8 % Input = x (matrix of variables to be included in the system)

9 % k (number of lags)

10 % r (number of cointegrating vectors)

11 % coeffs (coefficient estimates around which estimation takes place)

12 % opt (object containing the estimation options)

13 % Output = hessian (matrix of second derivatives)

14 %___

5.11.3 FCVARlike.m

Listing 32: FCVARlike.m

1 function [like] = FCVARlike(x, params , k, r, opt)

2 % function [like] = FCVARlike(x, params , k, r, opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 11.10.2014)

4 %

5 % DESCRIPTION: This function adjusts the variables with the level parameter ,

6 % if present , and returns the log -likelihood given d,b.

7 %

8 % Input = x (matrix of variables to be included in the system)

9 % params (a vector of parameters d,b, and mu (if option selected))

10 % k (number of lags)

11 % r (number of cointegrating vectors)

12 % opt (object containing the estimation options)

13 % Output = like (concentrated log -likelihood evaluated at given parameters)

14 %___

5.11.4 FCVARlikeMu.m

Listing 33: FCVARlikeMu.m

1 function [like] = FCVARlikeMu(y, db, mu, k, r, opt)

2 % function [like] = FCVARlikeMu(y, db , mu , k, r, opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 %

5 % DESCRIPTION: This function evaluates the likelihood for a given set of

6 % parameter values. It is used by the LikeGrid () function to numerically

7 % optimize over the level parameter for given values of the fractional

8 % parameters.

9 %

10 % Input = y (matrix of variables to be included in the system)

11 % db (fractional parameters d,b)

12 % mu (level parameter)

35

13 % k (number of lags)

14 % r (number of cointegrating vectors)

15 % opt (object containing the estimation options)

16 % Output = like (log -likelihood evaluated at specified parameter values)

17 %___

5.11.5 FracDiff.m

Listing 34: FracDiff.m

1 function [dx] = FracDiff(x, d)

2 % function [dx] = FracDiff(x,d)

3 % Andreas Noack Jensen & Morten Nielsen

4 % May 24, 2013

5 %

6 % FracDiff(x,d) is a fractional differencing procedure based on the

7 % fast fractional difference algorithm of Jensen & Nielsen (2014 , JTSA).

8 %

9 % input = x (vector or matrix of data)

10 % d (scalar value at which to calculate the fractional difference)

11 %

12 % output = vector or matrix (1-L)^d x of same dimensions as x.

13 %__

The function FracDiff.m is the implementation of the fast fractional difference algorithm by Jensen and
Nielsen (2014).

5.11.6 FreeParams.m

Listing 35: FreeParams.m

1 function [fp] = FreeParams(k, r, p, opt , rankJ)

2 % function [fp] = FreeParams(k, r, p, opt , rankJ)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 %

5 % DESCRIPTION: This function counts the number of free parameters based on

6 % the number of coefficients to estimate minus the total number of

7 % restrictions. When both alpha and beta are restricted , the rank condition

8 % is used to count the free parameters in those two variables.

9 %

10 % Input = x (matrix of variables to be included in the system)

11 % k (number of lags)

12 % r (number of cointegrating vectors)

13 % opt (object containing the estimation options)

14 % Output = fp (number of free parameters)

15 %___

5.11.7 FullFCVARlike.m

Listing 36: FullFCVARlike.m

1 function [like] = FullFCVARlike(x, k, r, coeffs , beta , rho , opt)

2 % function [like] = FullFCVARlike(x, k, r, coeffs , beta , rho , opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 % Based on Lee Morin & Morten Nielsen (August 22, 2011)

5 %

6 % DESCRIPTION: This function returns the value of the log -likelihood

7 % evaluated at the parameters provided as inputs.

8 %

9 % Input = x (matrix of variables to be included in the system)

36

10 % k (number of lags)

11 % r (number of cointegrating vectors)

12 % coeffs (Matlab structure of coefficients)

13 % beta (value of beta)

14 % rho (value of rho)

15 % opt (object containing the estimation options)

16 % Output = like (value of the log likelihood)

17 %___

5.11.8 GetParams.m

Listing 37: GetParams.m

1 function [estimates] = GetParams(x, k, r, db, opt)

2 % function [estimates] = GetParams(x, k, r, db , opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 04.13.2016)

4 % Based on Lee Morin & Morten Nielsen (August 22, 2011)

5 %

6 % DESCRIPTION: This function uses FWL and reduced rank regression to obtain

7 % the estimates of Alpha , Beta , Rho , Pi , Gamma , and Omega

8 %

9 % Input = x (matrix of variables to be included in the system)

10 % k (number of lags)

11 % r (number of cointegrating vectors)

12 % db (value of d and b)

13 % opt (object containing the estimation options)

14 % Output = estimates (Matlab structure containing the following)

15 % - estimates.db (taken directly from the input)

16 % - estimates.alphaHat

17 % - estimates.betaHat

18 % - estimates.rhoHat

19 % - estimates.piHat

20 % - estimates.OmegaHat

21 % - estimates.GammaHat (p x kp matrix [GammaHat1 ,..., GammaHatk])

22 %___

5.11.9 GetResiduals.m

Listing 38: GetResiduals.m

1 function [epsilon] = GetResiduals(x, k, r, coeffs , opt)

2 % function [epsilon] = GetResiduals(x, k, r, coeffs , opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 % Based on Lee Morin & Morten Nielsen (August 22, 2011)

5 %

6 % DESCRIPTION: This function calculates the model residuals.

7 %

8 % Input = x (matrix of variables to be included in the system)

9 % k (number of lags)

10 % r (number of cointegrating vectors)

11 % coeffs (Matlab structure of coefficients)

12 % opt (object containing the estimation options)

13 % Output = epsilon (matrix of residuals from model estimation evaluated at

14 % the parameter estimates specified in coeffs)

15 %___

5.11.10 Lbk.m

37

Listing 39: Lbk.m

1 function [Lbkx] = Lbk(x, b, k)

2 % function [Lbkx] = Lbk(x, b, k)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 % Based on Lee Morin & Morten Nielsen (May 24, 2013)

5 %

6 % DESCRIPTION: Lbk(x, b, k) is a lag polynomial in the fractional lag operator.

7 %

8 % Input = x (vector or matrix of data)

9 % b (scalar value at which to calculate the fractional lag)

10 % k (number of lags)

11 %

12 % Output = matrix [Lb^1 x, Lb^2 x, ..., Lb^k x] where Lb = 1 - (1-L)^b.

13 % The output matrix has the same number of rows as x but k times

14 % as many columns.

15 %

16 % Calls the function FracDiff(x, d)

17 %__

5.11.11 LikeGrid.m

Listing 40: LikeGrid.m

1 function [params] = LikeGrid(x,k,r,opt)

2 % function [params] = LikeGrid(x,k,r,opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 04.12.2016)

4 %

5 % DESCRIPTION: This function evaluates the likelihood over a grid of values

6 % for (d,b) (or phi). It can be used when parameter estimates are sensitive

to

7 % starting values to give an approximation of the global max which can

8 % then be used as the starting value in the numerical optimization in

9 % FCVARestn ().

10 %

11 % Input = x (matrix of variables to be included in the system)

12 % k (number of lags)

13 % r (number of cointegrating vectors)

14 % opt (object containing the estimation options)

15 % Output = params (row vector of d,b, and mu (if level parameter is selected)

16 % corresponding to a maximum over the grid

of (d,b), or phi)

17 %

18 % Note: If opt.LocalMax == 0, LikeGrid returns the parameter values

19 % corresponding to the global maximum of the likelihood on the grid.

20 % If opt.LocalMax == 1, LikeGrid returns the parameter values for the

21 % local maximum corresponding to the highest value of b. This

22 % alleviates the identification problem mentioned in Johansen and

23 % Nielsen (2010 , section 2.3).

24 %___

This function allows the user to pre-estimate to obtain starting values by using a grid search. There are
four types of estimation that the grid search can perform. If d and b are completely unconstrained, the grid
search is over two dimensions within the bounds specified by opt.dbMin and opt.dbMax. An example of
the likelihood obtained in an unconstrained grid search is shown in Figure 6(a). Next, if d ≥ b is imposed
via opt.constrained = 1 (imposed in Johansen and Nielsen (2012) but relaxed in Johansen and Nielsen
(2018b)) the computation can be cut in half. An example of this likelihood is shown in Figure 6(b). If the
restriction d = b is imposed, then the grid search is one-dimensional as shown in Figure 6(c). Finally, if a
restriction is imposed on either d or b via Rψ and rψ in (10), then the grid search is also one-dimensional.

38

An example of this situation is shown in Figure 6(d). Note that the x-axis is over the parameter φ and the
fractional parameters are found from [

d
b

]
= Hφ+ h, (16)

where H = (R′ψ)⊥ and h = R′ψ(RψR
′
ψ)−1rψ. The bounds on φ are derived from opt.dbMin and opt.dbMax

in a similar way.

Figure 6: Grid search

(a) Unconstrained (b) d ≥ b

(c) d = b (d) Restrictions imposed

5.11.12 RstrctOptm Switch.m

Listing 41: RstrctOptm Switch.m

1 function [betaStar , alphaHat , OmegaHat] = RstrctOptm_Switch(beta0 , S00 , S01 , S11 ,

T, p, opt)

2 % function [betaStar , alphaHat , OmegaHat]

3 % = RstrctOptm_Switch(beta0 , S00 , S01 , S11 , T, p, opt)

4 % Written by Michal Popiel and Morten Nielsen (This version 03.29.2016)

5 %

6 % DESCRIPTION: This function is imposes the switching algorithm of Boswijk

7 % and Doornik (2004 , page 455) to optimize over free parameters psi

8 % and phi directly , combined with the line search proposed by

39

9 % Doornik (2018 , Section 2.2). We translate between (psi , phi) and

10 % (alpha , beta) using the relation of R_Alpha*vec(alpha) = 0 and

11 % A*psi = vec(alpha ’), and R_Beta*vec(beta) = r_beta and

12 % H*phi+h = vec(beta). Note the transposes.

13 %

14 % Input = beta0 (unrestricted estimate of beta)

15 % S00 , S01 , S11 (product moments)

16 % T (number of observations)

17 % p (number of variables)

18 % opt (object containing the estimation options)

19 % Output = betaStar (estimate of betaStar)

20 % alphaHat (estimate of alpha)

21 % OmegaHat (estimate of Omega)

22 %___

5.11.13 SEmat2vecU.m

Listing 42: SEmat2vecU.m

1 function [param] = SEmat2vecU(coeffs , k, r, p , opt)

2 % function [param] = SEmat2vecU(coeffs , k, r, p , opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 % Based on Lee Morin & Morten Nielsen (August 22, 2011)

5 %

6 % DESCRIPTION: This function transforms the model parameters in matrix

7 % form into a vector.

8 %

9 % Input = coeffs (Matlab structure of coefficients in their usual matrix form)

10 % k (number of lags)

11 % r (number of cointegrating vectors)

12 % p (number of variables in the system)

13 % opt (object containing the estimation options)

14 % Output = param (vector of parameters)

15 %___

5.11.14 SEvec2matU.m

Listing 43: SEvec2matU.m

1 function [coeffs] = SEvec2matU(param , k, r, p, opt)

2 % function [coeffs] = SEvec2matU(param , k, r, p, opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 % Based on Lee Morin & Morten Nielsen (August 22, 2011)

5 %

6 % DESCRIPTION: This function transforms the vectorized model parameters

7 % into matrices.

8 %

9 % Input = param (vector of parameters)

10 % k (number of lags)

11 % r (number of cointegrating vectors)

12 % p (number of variables in the system)

13 % opt (object containing the estimation options)

14 % Output = coeffs (Matlab structure of coefficients in their usual matrix form)

15 %___

5.11.15 TransformData.m

Listing 44: TransformData.m

40

1 function [Z0, Z1, Z2, Z3] = TransformData(x, k, db, opt)

2 % function [Z0 , Z1 , Z2 , Z3] = TransformData(x, k, db , opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 10.22.2014)

4 % Based on Lee Morin & Morten Nielsen (May 24, 2013)

5 %

6 % DESCRIPTION: Returns the transformed data required for regression and

7 % reduced rank regression.

8 %

9 % Input = x (matrix of variables to be included in the system)

10 % k (number of lags)

11 % db (fractional differencing parameters d and b)

12 % opt (object containing the estimation options)

13 % Output = Z0 , Z1 , Z2 , and Z3 of transformed data.

14 %

15 % Calls the function FracDiff(x, d) and Lbk(x, b, k).

16 % ___

5.11.16 CharPolyRoots.m

Listing 45: CharPolyRoots.m

1 function cPolyRoots = CharPolyRoots(coeffs , opt , k, r, p)

2 % function cPolyRoots = CharPolyRoots(coeffs , opt , k, r, p)

3 % Written by Michal Popiel and Morten Nielsen (This version 12.07.2015)

4 % Based on Lee Morin & Morten Nielsen (May 31, 2013)

5 %

6 % DESCRIPTION: CharPolyRoots calculates the roots of the

7 % characteristic polynomial and plots them with the unit circle

8 % transformed for the fractional model , see Johansen (2008).

9 %

10 % input = coeffs (Matlab structure of coefficients

11 % opt (object containing the estimation options)

12 % k (number of lags)

13 % r (number of cointegrating vectors)

14 % p (number of variables in the system)

15 %

16 % output = complex vector cPolyRoots with the roots of the characteristic

polynomial.

17 %

18 % No dependencies.

19 %

20 % Note: The roots are calculated from the companion form of the VAR ,

21 % where the roots are given as the inverse eigenvalues of the

22 % coefficient matrix.

23 %__

5.11.17 GetBounds.m

Listing 46: GetBounds.m

1 function [UB, LB] = GetBounds(opt)

2 % function [UB , LB] = GetBounds(opt)

3 % Written by Michal Popiel and Morten Nielsen (This version 04.11.2016)

4 %

5 % DESCRIPTION: This function obtains upper and lower bounds on d,b or on

6 % phi , given by db = H*phi + h.

7 %

8 % Input = opt (object containing estimation options)

9 % Output = UB (a 2x1 or 1x1 upper bound for db or phi)

41

10 % LB (a 2x1 or 1x1 lower bound for db or phi)

11 %___

5.11.18 FCVARsimBS.m

Listing 47: FCVARsimBS.m

1 function xBS = FCVARsimBS(data , model , NumPeriods)

2 % function xBS = FCVARsimBS(data , model , NumPeriods)

3 % Written by Michal Popiel and Morten Nielsen (This version 02.09.2015)

4 %

5 % DESCRIPTION: This function simulates the FCVAR model as specified by

6 % input "model" and starting values specified by "data." It

7 % creates a bootstrap sample by augmenting each iteration

8 % with a bootstrap error. The errors are sampled from the

9 % residuals specified under the "model" input and have a

10 % positive or negative sign with equal probability

11 % (Rademacher distribution).

12 %

13 % Input = data (T x p matrix of data)

14 % model (a Matlab structure containing estimation results)

15 % NumPeriods (number of steps for simulation)

16 % Output = xBS (NumPeriods x p matrix of simulated bootstrap values)

17 %___

42

A Version change log

A.1 Version 1.0.0: October 24, 2014

First publicly available version.

A.2 Version 1.1.0: October 30, 2014

FCVARestn.m

• Fixed declaration of number of observations T so that it accounts for initial values opt.N. This affects
AIC, BIC calculations and printed number of observations in the output, but nothing else.

• Changed number of significant digits in the printed output for likelihood, AIC, BIC.

• Added redundancy check for restrictions in R_psi matrix and restrictDB.

• Changed estimation method when R_psi (together with restrictDB) has rank 2.

LikeGrid.m

• Changed output so that actual (restricted) d, b is shown in waitbar/terminal.

• Fixed how the endpoints for φ are calculated if R_psi is non-empty.

• Changed the way h is calculated (less efficient, more accurate).

A.3 Version 1.2.0: November 12, 2014

EstOptions.m

• Fixed typo in warning message.

• Changed the order in which R_psi matrices are checked for redundancies/errors; restrictDB with
R_psi non-empty had to be moved to before [1 -1] is imposed.

• Added a check to make sure that restrictions on ψ in the model restrictDB are imposed correctly.

• Added option CalcSE to turn off calculation of standard errors for faster computation.

LagSelect.m

• Turned off calculation of standard errors.

RankTests.m

• Turned off calculation of standard errors.

• Fixed typo in output (un’r’estriced).

FCVARestn.m

• Fixed typo in output (un’r’estriced).

• Changed the way that optimization is performed when linear restrictions on d, b are imposed.

• Transposed (d, b) in case of full identification (R_psi has two restrictions); this is done to match the
way that the rank test results are stored.

• Fixed the adjustment of UB and LB after grid search because it interfered with the d ≥ b constraint.

• Removed the fast inversion of Hessian for calculating standard errors because it wasn’t precise.

• Changed the way that the commutation matrix enters in the translation from vec(α′) to vec(α) and
vice versa in the rank condition for identification.

43

FCVARlike.m

• Adjusted the way that likelihood is calculated when linear restrictions on d, b are imposed.

• Changed how constrained option is imposed, regardless of linear restrictions.

GetBounds.m

• Added function for calculating upper and lower bounds.

GetParams.m

• Changed matrix inversion method to more precise method (i.e., now use inv() instead of and / in low
dimension situations).

LikeGrid.m

• Added the variable phi in the loop. Now, phi goes into FCVARlike and can be either a singleton
or 2x1 vector. db is reserved for FCVARlikeMU which does not make the translation from phi to db

automatically. It is also used in the output for the waitbar, fixing an issue where the waitbar displayed
d=b=phi in the case of a linear restriction.

RstrctOptm_Switch.m

• Added new function that replaces RstrctOptm.m and rLike.m, which were called for estimation when
either α or β or both were restricted.

• This function uses a switching algorithm from Boswijk and Doornik (2004) and performs much better
than the previous algorithm which used unconstrained numerical optimization.

A.4 Version 1.2.1: November 17, 2014

LikeGrid.m

• Fixed a problem when the grid search finds a non-unique maximum of the likelihood.

RankTests.m

• Fixed a bug where the wrong value of b was being used to calculate the P -value.

• Changed the output from a matrix to a Matlab struct.

FCVARforecast.m

• Changed rhoHatUNR to xiHat to use the same notation throughout.

FCVARestn.m

• Adjusted output of roots of characteristic polynomial to line them up properly.

A.5 Version 1.2.2: November 19, 2014

FCVARestn.m

• Fixed a problem with starting values from the grid search when d, b are unrestricted and level param-
eters are included.

44

A.6 Version 1.2.3: July 21, 2015

HypoTest.m

• Fixed a typo in the function description.

mv_wntest.m

• Added specified lag to output.

Lag_select.m

• Added model specification to output.

FreeParameters.m (function nested in FCVARestn.m)

• Set fDB = 2 instead of fDB = 1 + ∼opt.restrictDB because regardless of option restrictDB, opt.R_psi
is updated to incorporate that restriction and this results in a double count. This bug probably did not
affect previous hypothesis testing as long as tests were nested within a particular (d, b) model. Also, if
restrictions were imposed using R_psi directly, instead of restrictDB, then the program returned the
correct number of free parameters.

A.7 Version 1.3.0: September 9, 2015

FCVARestn.m

• Moved all nested functions to Auxiliary folder.

FCVARforecast.m

• Deleted all nested functions (these are now in Auxiliary folder).

replication_JNP2014.m

• Added line that adds the path of Auxiliary folder with all necessary functions.

• Removed forecasting subsection.

• Added variable to store output from rank tests.

Added the following new files/functions:
FCVARboot.m

• Performs wild bootstrap for hypothesis tests on parameters.

FCVARbootRank.m

• Performs wild bootstrap for rank tests.

FCVARsim.m

• Generates samples with errors drawn from Normal distribution.

FCVARsimBS.m (Auxillary function)

• Generates (wild) bootstrap samples.

MoreExamples.m

• Contains examples of forecasting, bootstrapping, simulation.

A.8 Version 1.3.1: December 7, 2015

LagSelect.m

• Fixed calculation of BIC to use (T - opt.N) for the penalty.

CharPolyRoots.m

• Imposed axis equal in plot.

45

A.9 Version 1.3.2: December 11, 2015

FCVARestn.m

• Fixed a bug in the calculation of standard errors when (d, b) are both unrestricted but restrictions are
imposed on other parameters.

A.10 Version 1.3.3: January 26, 2016

LagSelect.m

• Added missing index for multivariate white noise test variable.

A.11 Version 1.4.0: April 15, 2016

New features: Added opt.LocalMax and opt.LineSearch, see Sections 3.2 and 2.4, respectively. Also added
the ability to set separate bounds for the parameter space for d and b, see Section 3.2.
EstOptions.m

• Update assignment of upper and lower bounds for d and b to allow for different values for the two
parameters. Specifying just one upper and lower bound is still permitted for backwards compatibility.

• Added option opt.LocalMax.

• Added additional checks for validity of restrictions on d and/or b.

FCVARestn.m

• Changed the names of H matrices because there are multiple values for the same variable, left notation
H for Hessian.

• Changed output to report upper and lower bounds for both d and b regardless of the restrictions.

• Added notification about restrictions to output.

GetBounds.m

• Changed setting of bounds to allow for different limits on parameter space for d and b.

GetParams.m

• Changed input sent to switching algorithm. Now α and β are not normalized.

LagSelect.m

• Added asterisks to output next to values that minimize the AIC and BIC.

LikeGrid.m

• Modified code to allow for different upper and lower limits on parameter space for d and b.

• Created separate grids for d and b and changed the way that they are indexed as well as how the total
number of iterations is counted based on opt.constrained (i.e., on whether d ≥ b is imposed).

• Added code to accommodate the new option opt.LocalMax.

RstrctOpt_Switch.m

• Incorporated a line search for (much) faster and more accurate convergence of switching algorithm
when restrictions are imposed on either α or β.

A.12 Version 1.4.0a: May 1, 2018

Added some new references and updated some existing ones. No changes to the code.

46

References

Boswijk, H. P., G. Cavaliere, A. Rahbek, and A. M. R. Taylor (2016). Inference on co-integration parameters
in heteroskedastic vector autoregressions. Journal of Econometrics 192, 64–85.

Boswijk, H. P. and J. A. Doornik (2004). Identifying, estimating and testing restricted cointegrated systems:
An overview. Statistica Neerlandica 58, 440–465.

Carlini, F. and P. S. de Magistris (2017). On the identification of fractionally cointegrated VAR models with
the F(d) condition. Forthcoming in Journal of Business & Economic Statistics.

Cavaliere, G., A. Rahbek, and A. M. R. Taylor (2010). Testing for co-integration in vector autoregressions
with non-stationary volatility. Journal of Econometrics 158, 7–24.

Dolatabadi, S., M. Ø. Nielsen, and K. Xu (2016). A fractionally cointegrated VAR model with deterministic
trends and application to commodity futures markets. Journal of Empirical Finance 38B, 623–639.

Doornik, J. A. (2018). Accelerated estimation of switching algorithms: the cointegrated VAR model and
other applications. Forthcoming in Scandinavian Journal of Statistics.

Jensen, A. N. and M. Ø. Nielsen (2014). A fast fractional difference algorithm. Journal of Time Series
Analysis 35, 428–436.

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. New York:
Oxford University Press.

Johansen, S. (2008). A representation theory for a class of vector autoregressive models for fractional
processes. Econometric Theory 24, 651–676.

Johansen, S. and M. Ø. Nielsen (2010). Likelihood inference for a nonstationary fractional autoregressive
model. Journal of Econometrics 158, 51–66.

Johansen, S. and M. Ø. Nielsen (2012). Likelihood inference for a fractionally cointegrated vector autore-
gressive model. Econometrica 80, 2667–2732.

Johansen, S. and M. Ø. Nielsen (2016). The role of initial values in conditional sum-of-squares estimation
of nonstationary fractional time series models. Econometric Theory 32, 1095–1139.

Johansen, S. and M. Ø. Nielsen (2018a). Nonstationary cointegration in the fractionally cointegrated VAR
model. QED working paper 1405, Queen’s University.

Johansen, S. and M. Ø. Nielsen (2018b). Testing the CVAR in the fractional CVAR model. Forthcoming in
Journal of Time Series Analysis.

Jones, M., M. Ø. Nielsen, and M. K. Popiel (2014). A fractionally cointegrated VAR analysis of economic
voting and political support. Canadian Journal of Economics 47, 1078–1130.

MacKinnon, J. G. and M. Ø. Nielsen (2014). Numerical distribution functions of fractional unit root and
cointegration tests. Journal of Applied Econometrics 29, 161–171.

Nielsen, M. Ø. and L. Morin (2014). FCVARmodel.m: a Matlab software package for estimation and testing
in the fractionally cointegrated VAR model. QED working paper 1273, Queen’s University.

47

