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Abstract

This paper formally compares the fit of various versions of the incomplete markets model with

aggregate uncertainty, relying on a simple Bayesian empirical framework. The models differ in the

degree of households’ heterogeneity, with a focus on the role of preferences. For every specification,

empirically motivated priors for the parameters are postulated to obtain the models’ predictive

distributions, which are interpreted as being the distributions of population moments. These

are in turn contrasted with the posterior distributions of the same moments obtained from an

atheoretical (Bayesian) econometric model. It is shown that aggregate data on consumption and

income contain valuable information to determine which models are more likely to have generated

the data. In particular, despite its generality, a model with both risk aversion and discount factor

heterogeneity displays a very low marginal likelihood, and should not be employed for the design

of macroeconomic policies and welfare analysis. It is also found that the other models display

similar posterior odds, with the Bayes factors ranging between 1 and 3. Finally, it is shown

that practitioners in the field should carefully calibrate the values of the unemployment rate in

booms and expansions, as they heavily affect the autocorrelation of aggregate consumption and

the correlation between consumption and income. This finding suggests that the magnitude of

welfare effects computations is likely to be influenced considerably by these two parameters.
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1 Introduction

Quantitative structural modeling represents a widely popular way of undertaking macroeconomic

analysis. Models with household-level heterogeneity, a mix of idiosyncratic and aggregate shocks, and

incomplete markets, as in Krusell and Smith (1998), are especially valuable because they allow to

perform counterfactual computational experiments, study the welfare implications of different policy

regimes, and evaluate the distributional impacts of various policy interventions. A number of contri-

butions assessing the welfare consequences of eliminating business cycles with this class of models have

found the welfare benefits of eliminating aggregate risk to be large, approximately an order of magni-

tude larger than those originally documented by Lucas (1987). Notable studies in this literature are

Storesletten, Telmer, and Yaron (2001), Mukoyama and Sahin (2006) and Krusell, Mukoyama, Sahin

and Smith (2009). Castaneda, Diaz-Gimenez and Rios-Rull (1998), Heathcote (2005) and Chiu and

Molico (2010) propose variants of the baseline framework to quantify the macroeconomic outcomes

and distributional effects of cyclical variations in the income distribution, and of fiscal and monetary

policy.

Although the use of sophisticated empirical methodologies has a long and well established tradition

in models with representative agents, the computational challenges of solving models with incomplete

markets and aggregate shocks make basic calibration procedures the most common methodology

to consider the quantitative implications of a model.1 It goes without saying that this approach

contributes to shape the quantitative answers in a deep and not always fully understood way. In order

to perform reliable welfare analyses and provide a sound guidance for policy design, it is desirable to

confront these models with the data in a systematic way. Furthermore, given that the researcher is free

to consider several different dimensions of heterogeneity, among other modeling choices, one would

like to be able to assess the relative performance of different models with an internally consistent

empirical framework.

In particular, this paper considers whether preference heterogeneity helps accounting for the time

series behavior of aggregate consumption and its correlation with income. These are two key ele-

ments of any dynamic macroeconomic model, because they are intimately linked to the households’

consumption smoothing behavior. In models with incomplete markets, the welfare consequences of a

policy intervention are affected by both the insurance properties of the policy being evaluated and by

the households’ response in terms of their consumption/saving decisions, which can trigger interesting

general equilibrium effects. Ultimately, the level of trust in the quantitative assessment of the welfare

effects arising from, say, a stabilization policy fundamentally rests on a model’s ability to adequately

1See, among others, the surveys by Krusell and Smith (2006), An and Schorfheide (2007), Canova (2009), Fernandez-

Villaverde (2010), and Fernandez-Villaverde, Guerron and Rubio-Ramirez (2010).
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capture the dynamics of consumption at business cycle frequencies, and its correlation with income.

Relying on the Krusell and Smith (1998) set-up as a starting point, more novel variants of the model

are proposed, where Panel Study of Income Dynamics (PSID) data are used to provide a parsimonious

specification for heterogeneity in risk aversion. The emphasis is on treating this aspect as observed

heterogeneity. The different versions of the incomplete markets model with aggregate uncertainty

are compared by means of the Minimal Econometric Interpretation (MEI) of the model, a Bayesian

empirical framework proposed by Geweke (2010), which in turn represents a generalization of DeJong,

Ingram and Whiteman (1996). The first goal is to assess the empirical performance of these models,

along the dimensions they are designed to tackle, namely the behavior of both consumption and income

in a time series sense. The second goal is to provide evidence on which specification of the model

is more likely to have generated the data, in an empirical framework that a) does not assume that

one of the competing models is the true one, b) interprets the model as a theoretical tool, providing

information on population moments.2 The third goal is to understand how the presence of parameter

uncertainty affects the quantitative findings. To the best of my knowledge, this paper is the first one

to evaluate formally models with heterogeneous agents and aggregate uncertainty.

The results show that all the models possess some empirical validity. However, using the Bayes

factor as a formal measure of fit, the most general model (featuring heterogeneity in both the risk

aversion and the rate of time preference) is clearly dominated by the other specifications (which shut

down at least one of these channels). It is also found that the simpler models display similar posterior

odds, with the related Bayes factors ranging between 1 and 3. Finally, it is shown that practitioners

in the field should carefully calibrate the values of the unemployment rate in booms and expansions,

as they heavily affect the autocorrelation of aggregate consumption and the correlation between con-

sumption and income. This finding suggests that the magnitude of welfare effects computations is

likely to be influenced considerably by these two parameters.

The rest of the paper is organized as follows. Section 2 briefly presents the models. Section

3 discusses the choice of prior distributions for the parameters. Section 4 outlines the empirical

methodology. Section 5 describes the main results, while Section 6 concludes. A set of appendices

discuss in more detail the numerical methods used and present some additional results.

2Perhaps implicitly, this is the interpretation that currently applies to most applications relying on models with

heterogeneous agents and aggregate uncertainty. The endogenous variables are typically obtained from arbitrarily long

simulations (after an indispensable burn-in), instead of considering the actual data series length. Since these models

have heterogeneous agents, the simulations are often performed with large synthetic panel data, with a cross sectional

dimension that doesn’t match the size of real longitudinal datasets. This comment is all the more true when the model’s

solution doesn’t rely on simulations, and the aggregate law of motion is solved for with projection methods, as described

in den Haan (2010).
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2 Preference Heterogeneity in Macroeconomic Models with

Aggregate Risk

Does preference heterogeneity help account for both the correlation between aggregate consumption

and income and the autocorrelation of aggregate consumption? In order to address this question, I

consider four versions of the incomplete markets model with heterogeneous agents and aggregate risk,

where the specific models differ in the degree of households’ heterogeneity. The starting point is the

framework proposed by Krusell and Smith (1998), and I am going to consider both their baseline

model (denoted as M1 (0)) and the extension with preference heterogeneity in the discount factors

β (denoted as M2 (β)). The other two models introduce another layer of heterogeneity, allowing agents

to differ also in their preferences for risk. One version of the model focuses only on heterogeneity in

risk aversion γ (denoted as M3 (γ)), while another version assumes that households’ preferences differ

not only in the relative risk aversion, but also in the degree of patience (denoted as M4 (β,γ)).
3

[Table 1 about here]

Table 1 lists the four specifications of the models that are going to be compared. The simplest

framework coincides with the standard model introduced by Krusell and Smith (1998). The only differ-

ence compared to their formulation consists of the income received by the unemployed. Following den

Haan, Judd and Juillard (2010), I assume the existence of a budget-balanced Unemployment Insurance

(UI) scheme, which raises contributions by taxing employed workers and distributes unemployment

benefits to workers without a job.

Time is discrete. The economy is populated by a measure one of infinitely lived agents. The

framework is a production economy with both idiosyncratic and aggregate risk. Aggregate produc-

tivity shocks hit the economy every period, inducing aggregate fluctuations. Idiosyncratic shocks are

correlated with aggregate shocks: agents face different employment histories and self-insure by accu-

mulating a single risky asset. An exogenous borrowing constraint (b) hampers households’ ability to

smooth consumption. Agents can be prevented from borrowing the desired amount of resources in

periods where they obtain a low income.

Technology: The production side of the economy is modeled as a constant returns to scale tech-

nology of the Cobb-Douglas form, which relies on aggregate capital Kt and labor Lt to produce final

3 In Cozzi (2014b) I show that a model with risk aversion heterogeneity and endogenous sorting into risky jobs

accounts for many features of the U.S. wealth distribution. That model, however, abstracts from aggregate uncertainty.
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output Yt = ztK
α
t L1−αt . The aggregate shock takes only two values: zt = {zG, zB}, with zG > zB.

The aggregate shock follows a symmetric first-order Markov chain such that booms and recessions

last the same number of periods. Capital depreciates at the exogenous rate δ and firms hire capital

and labor every period from competitive markets. Total labor services are Lt = lNt, namely they are

the product of the share of the time endowment devoted to market activities, l (normalized to 1), and

the employment rate Nt. The firm’s first order conditions give the expressions for the net real return

to capital rt and the wage rate wt:

rt = αzt

(
Lt

Kt

)1−α
− δ, (1)

wt = (1− α) zt

(
Kt

Lt

)α

. (2)

Government: The government taxes the employed agents’ labor income at rate τ t to finance a

budget-balanced UI scheme. Unemployed agents receive UI benefits equal to a fixed replacement

rate ρ of the going labor income. Since labor supply is fixed, and the aggregate unemployment rate

can only take two values (uG when zt = zG and uB when zt = zB), the equilibrium tax rate is

τ t = ρ(1−Nt)/Nt, with Nt = 1− ut.

Households: Agents’ preferences are assumed to be represented by a time-separable utility function

U(.). Every household i ∈ [0, 1] chooses consumption (ci,t) and future asset holdings (ai,t+1), and the

households objective function is:

max
{ci,t,ai,t+1}∞t=0

E0

∞∑

t=0

βt
i,t

c
1−γi,t
i,t − 1

1− γi,t

where E0 is the expectation operator. In the simplest set-up, preferences are homogeneous, and

all agents share the same discount factor β and the same risk aversion γ. In general, however, these

parameters will differ across agents and they are indexed by i to highlight this possibility. In particular,

I consider all possible combinations, namely a model without preference heterogeneity, a model with

heterogeneity in the discount factors, a model with heterogeneity in the risk aversion, and a model with

heterogeneity in both parameters. Furthermore, the parameters representing the agents’ preferences

are indexed by t to indicate that they can evolve over time.

βi,t ∈ (0, 1) is the agents’ discount factor, and can take up to three different values, βi,t ∈

{βl, βm, βh}, with βl < βm < βh. Each agent’s discount factor can vary over time according to

a three-state Markov chain. Similarly, the risk aversion γi,t > 0 can take up to three different values
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γi,t ∈ {γl, γm, γh}, with γl < γm < γh. The risk aversion parameter can also vary over time according

to a three-state Markov chain.

Agents can be employed, s = e, or unemployed, s = u. The employment probabilities follow a

first-order Markov process, and depend on both the idiosyncratic employment status s and on the

aggregate state of the economy z.

I use recursive methods to solve the model, and the value function associated with this problem

is denoted with V (a, β, γ, s, z,K). This represents the expected lifetime utility of an agent whose

current asset holdings are equal to a, whose current discount factor is β, whose current risk aversion

is γ, whose current employment status is s, facing the aggregate shock z and in an economy with K

units of aggregate capital. The Bellman equation is:

V (a, β, γ, s, z,K) = max
c,a′

{
c1−γ − 1

1− γ
+ βEβ′,γ′,s′,z′|β,γ,s,zV

(
a′, β′, γ′, s′, z′,K′

)}

s.t.

c+ a′ = (1 + r) a+ (1− τ)wl, if s = e

c+ a′ = (1 + r) a+ ρwl, if s = u

c ≥ 0, a′ ≥ b

The appropriate Markov chains for β, γ, s and z

lnK′ = θ0,j + θ1,j lnK, if z = zj , j = {G,B} (3)

Agents have to optimally set their consumption/savings plans. They enjoy utility from consumption

and face several uncertain events in the future. Notice that, according to the algorithm used to solve

this model, the relevant state variable in the agents’ problem is just aggregate capital K, rather than

the whole current endogenous distribution over idiosyncratic states. Hence, the agents forecast future

prices relying on the (equilibrium) evolution of the aggregate capital stock, the Aggregate Law of

Motion (ALM) being specified as the pair of equations (3). Moreover, every version of the model will

have the laws of motion (i.e., the Markov chains) for the evolution of the exogenous stochastic state

variables (β, γ, s and z) that apply to each specific case.
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3 Parameterizing the Models

The issue of parameter uncertainty is ubiquitous in quantitative macroeconomics. The models’ level of

abstraction frequently leads to mismatches between model variables and their empirical counterparts

(e.g., think of capital: housing represents a large component of households’ wealth, and it is usually

included in the value of the capital stock, but to what extent can we consider it as a factor of

production?). Similarly, the estimates for prices and quantities of interest (and their variability) often

depend on the time period chosen for the analysis (e.g., should we include the great recession data?).

Parameter uncertainty, however, can be easily accommodated by specifying prior distributions for the

parameters, embracing one of the building blocks of Bayesian empirical analysis.

[Table 2 about here]

Table 2 reports the list of prior distributions that are going to be used. This Table focuses on

the parameters that are common across all four models. Specifically, independent uniform priors are

specified, reflecting the idea that a-priori information on the model is not very informative, apart from

providing bounds for the parameters.

The bounds for the capital share α are chosen on the basis of the labor share values found in the

Penn World Tables 8.0. In the period 1950 − 2011 the labor share has fluctuated between 62% and

68%. Since the downward trend in the labor share seems to be very persistent, and still on-going, I

use an upper bound for the capital share of 40%. Moreover, since most studies in the RBC literature

use a capital share of 36%, it seems appropriate to center the prior distribution at this value.

The model considers only one type of capital, hence its depreciation rate δ is the weighted average

of the depreciation rates of many different capital goods. A range for δ between 8% and 10% on an

annual basis is broadly consistent with the estimates available in the literature.

The borrowing limit b is set between the most extreme case of market incompleteness, b = 0 such

that borrowing is not allowed, and a value corresponding to (minus) the average quarterly income,

b = −1.

As for the prior related to the exogenous labor supply l, Juster and Stafford (1991) documented

that the share of time devoted to market activities, averaged between males and females, is 31.9%.

Accordingly, the prior’s average is set to this value, l = 0.319. Since the consensus is that measurement

error is a pervasive issue in answers to the time allocation survey questions, I consider a range of ±10%

around this estimate.

For comparability with Krusell and Smith (1998), I work with their parameterization for the

(average) values of the unemployment rate during booms (uG) and recessions (uB): uB = 10% and
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uG = 4%. For both parameters, I consider a range which is ±1 percentage point around these

averages. In order to understand whether these ranges are plausible, I split the Bureau of Labor

Statistics data on the quarterly unemployment rates for the 1948Q1−2007Q4 period into two groups,

one group with the observations above the average unemployment rate of 5.59%, and the other group

with the observations below it. The 3% − 5% range corresponds to the 5th − 65th percentiles of

the unemployment rates below the average, while the 9% − 11% range corresponds to the top 5%

of the unemployment rate distribution for the unemployment rates above the average (with 10.7%

being the highest recorded unemployment rate). This statistic, hence the choice of the range for

the unemployment rate in recessions, might seem extreme. However, it should be interpreted as

including the marginally attached workers, an enlarged concept of the unemployment rate for which

consistent measurements are available only since 1994. In the last twenty years the special quarterly

unemployment rate, as it is labeled in the FRED database, has been 1.35 percentage points above the

standard unemployment rate. Considering this adjustment, the 7.65% − 9.65% unemployment rate

range corresponds to the 85th− 97th percentiles, which appears to be somewhat less extreme.

The priors for the remaining parameters are model dependent and are presented in Table 3.

[Table 3 about here]

The parameters whose priors still need to be discussed are the discount rate and the risk aversion.4

Because of current data limitations, discount rate heterogeneity must be considered as unobserved

heterogeneity. Differently, if one is willing to make a structural distributional assumption, (relative)

risk aversion heterogeneity can be obtained from the data, exploiting questions on attitudes towards

risk currently included in a number of large datasets, such as the PSID.

In the simpler version of the model M1 (0) these two parameters are the same for all the agents. In

this case, the range for γ is [1.0, 3.0], which spans most of the available estimates for this parameter

obtained with a variety of methods, surveyed for example by Attanasio and Weber (2010). Since there

is not much information on the subjective discount factor, choosing a prior is more complicated. I

work with a range for β equal to [0.990, 0.992] , because the equilibrium annual interest rate in the

corresponding complete markets economy is between 3% and 4%, and it is well known that in the

benchmark Krusell and Smith (1998) model precautionary savings have a limited quantitative impact.

In the model M2 (β) the range for γ is still [1.0, 3.0], while there are three time-varying discount

factor types. In this case, the range for βl is [0.9848, 0.9868], the range for βm is [0.9884, 0.9904], and

4Given the fairly limited number of replications that are computationally feasible, and the non trivial way of how

to impose that their probabilities add up to one, the probabilities in the various Markov chains are always kept fixed

across replications.
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the range for βh is [0.992, 0.994]. The three ranges are chosen for the discount factors never to overlap.

Furthermore, since in Cozzi (2014a) I found that this economy solved at the priors’ averages matches

a wealth Gini index of 0.80 and attains an average annual interest rate of 4%, I consider fairly tight

priors around that calibration.

Models M3 (γ) and M4 (β,γ) introduce heterogeneity in the agents’ preferences for risk. Unlike

discount rate’s heterogeneity, thanks to hypothetical lottery questions included in the PSID in 1996,

this can be dealt with as observed heterogeneity. In particular, I am going to apply the same procedure

proposed in Kimball, Sahm, and Shapiro (2008). With appropriate methods, I find that γ is log-

normally distributed in the population, according to LN
(
µγ = 1.07, σ

2
γ = 0.76

)
.5 Although the true

underlying distribution is a log-normal distribution, it is feasible to consider only three risk aversion

types. First, there is a data limitation issue that will be discussed below. Second, this model is

computationally costly, and I need to simplify the problem in order to solve it many times (I draw

2, 000 combinations of parameters from their priors). In particular, I partition the PSID data in three

groups with mass 20%, 30% and 50%. Then, exploiting the CDF of the true distribution, I consider

the conditional averages of γ for each of these subgroups. This provides me with the three desired

values for the risk aversion types γl = 0.92, γm = 2.12, and γh = 7.55. There are some additional facts

about the risk aversion distribution that are going to guide the next modeling choices. The first fact

is documented by Kimball, Sahm, and Shapiro (2008), using Health and Retirement Study (HRS)

data. In the HRS the lottery questions have been asked in several years to the same respondent,

leading to the conclusion that measurement error is large. Hence I consider fairly wide ranges for

each parameter. The range for γl is [0.62, 1.22], the range for γm is [1.82, 2.42], and the range for γh

is [7.25, 7.85]. Another finding is that the distribution of answers to the lottery questions is virtually

stationary over time. It is therefore appropriate to assume that the evolution of the risk aversion is

governed by a time invariant Markov chain. More in detail, I obtain an estimate for the Markov chain

probabilities by using a moment-matching procedure. I start by imposing appropriate restrictions on

the structure of the Markov Chain, so that it is parameterized by only three probabilities: pγl , pγm ,

and pγh .
6 Then I can use the observed cross sectional distribution of risk preferences to identify two

of these probabilities, while the third one is backed out to replicate the intergenerational correlation

between the risk aversion of parents and their children documented by Kimball, Sahm, and Shapiro

5Fore more details, see Cozzi (2014b). In that model I work with the assumption that preference types are permanent,

so it is worthwhile considering the implications of time varying risk aversions.
6Note that other parameterizations of the CRRA Markov chain suffer from identification issues. For example, it is

easy to show that a chain that imposes the additional restriction pγh = pγl cannot be identified. Similarly, more general

chains with four or more unknown probabilities would require more pieces of information from the data and cannot be

recovered.
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(2009). The Markov chain (Π) that I have to recover from the data is:

Π ≡ π
(
γi, γ

′
j

)
=




pγl 1− pγl 0

pγm 1− 2pγm pγm

0 1− pγh pγh


 , with i, j ∈ {l,m, h}

The stationarity of the risk aversion distribution allows me to consider the system of linear equa-

tions µ∗γ = Π
′µ∗γ , where µ∗γ =

[
µ∗γl , µ

∗
γm

, 1− µ∗γl − µ∗γm

]
denotes the stationary distribution over the

vector of risk aversions [γl, γm, γh]. Since the entries in µ∗γ must add up to one, I can use only

two fractions from the data to assign values to the Markov chain probabilities: µ̂∗γl = 0.201 and

µ̂∗γm = 0.303.

Exploiting the stationarity condition, it is possible to write the following system of equations:





µ∗γl = pγlµ
∗
γl
+ pγmµ∗γm

µ∗γm =
(
1− pγl

)
µ∗γl +

(
1− 2pγm

)
µ∗γm +

(
1− pγh

)
µ∗γh

µ∗γh = pγmµ∗γm + pγhµ
∗
γh

which, for given p̂γm , µ̂∗γl and µ̂∗γm , leads to the following expressions for the two remaining prob-

abilities:





p̂γl = 1− p̂γm
µ̂∗γm
µ̂∗γl

p̂γh = 1− p̂γm
µ̂∗γm
µ̂∗γh

(4)

The estimation procedure then relies on a simulated minimum distance estimator. The following

steps are considered: a) construct a fine grid for pγm , b) consider one grid point at a time, whose value

is denoted with p̃γm , c) get p̃γl and p̃γh from the system (4), d) simulate the implied Markov chain

for 200 periods (50 years × 4 quarters per year) with 100,000 agents (i.e., risk aversion types), d)

compute the intergenerational correlation ρΠγ , e) select p̂γm as p̂γm = Argmin
p̃γm

[
ρΠγ
(
p̃γm

)
− ρPSID

γ

]2
.

The procedure leads to the following estimates for the Markov chain probabilities: pγh = 0.9948, pγm =

0.0085 and pγl = 0.9872.
7

Finally, choosing a prior for the CRRA Markov chain probabilities boils down to choosing a range

for pγm . This is obtained by relying on the empirical distribution of 2, 000 minimum distance estimates

7As shown in Figure 5 in the Appendix, given two of the three probabilities, the remaining one is uniquely identified.
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obtained by simulating the chain with 5, 662 artificial agents, which corresponds to the cross sectional

dimension of the household heads in the PSID sample that provided an answer to the lottery questions.

A shortcoming of model M3 (γ) is that, at the average priors, its wealth Gini index of 0.42 is well

below the data counterpart. Hence I consider model M4 (β,γ), where the heterogeneity in the discount

factor is chosen for the model to display a plausible wealth Gini index. It was found that using the

same specification as in M2 (β), namely three discount factor types that evolve over time through a

Markov chain, was not increasing the wealth Gini index considerably. I then opted for a specification

with only two permanent discount factor types, βl and βh, with µβ denoting the share of low discount

factor types. In this case, the range for βl is [0.9785, 0.9805] , the range for βh is [0.9885, 0.9905] , and

the range for µβ is [0.83, 0.87]. This economy, when solved at the priors’ average, achieves an average

wealth Gini index of 0.81. Finally, the priors for the risk aversion types are kept the same as in model

M3 (γ).

4 The Empirical Framework

At this stage, the analysis does not have explicit empirical content, because the models provide

quantitative assessments about population moments. Moreover, for a given parameterization, each

model delivers a point for every moment of interest. By assuming priors for the parameters one

obtains the predictive distributions, namely the distributions of selected moments of the endogenous

variables generated by the parameter uncertainty. The framework needs another element to be able

to link the models’ implications to the information contained in the data, as stressed by DeJong,

Ingram and Whiteman (1996). This link takes the form of a reduced form Bayesian econometric

model, which allows us to relate the observables to the population moments. The interaction between

these two elements of the MEI equips the researcher with an empirical framework where formal model

comparison can be undertaken. Perhaps, one additional appealing feature of this approach is that

it treats symmetrically the uncertainty in the moments of both the theoretical model and the data.

Under the MEI, prior distributions are specified for both the theoretical and the empirical model,

which induce probability distributions over functions of interest. The degree of overlap between these

distributions is then used to assess the model’s fit.

Since the main focus of heterogeneous-agent models is to carefully microfound the determination of

consumption/saving decisions, I am going to assess their performance in two dimensions, both related

to the behavior of aggregate consumption.
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Data: The time period is 1948Q1− 2007Q4, and the number of observations is 240.8 Following the

basic principles of quantitative analysis, I make sure that model and measurement are consistent with

each other. As customary in the RBC literature, I consider as aggregate consumption Ct the sum of

the expenditures on Services and Non-Durables.9 Since all model economies are closed, and there is

no government, aggregate output Yt is defined as the sum of Services, Non Durables and Investment.

Both series are HP filtered, with a standard smoothing parameter of 1, 600.

A Bayesian VAR(1): In this framework there is the need to link the distributions of population

moments to the observables. In order to study the empirical characteristics of the autocorrelation

of consumption and its correlation with income, I specify a Bayesian VAR(1) process on detrended

aggregate income Yt and detrended aggregate consumption Ct. Vague (flat) priors are assumed for

all the parameters.


 Yt

Ct


 =


 a11 a12

a21 a22




 Yt−1

Ct−1


+


 ηYt

ηCt





 ηYt

ηCt


 iid
∼ N(


 0

0


 ,Σ =


 σ11 σ12

σ21 σ22


)

With a more compact notation, the VAR can be represented as Yt = AYt−1 + Et, where Yt is a

T × 2 matrix, whose columns are Yt and Ct, A is the 2 × 2 matrix of parameters to be estimated,

and Et is the T × 2 matrix of innovations. The error terms ηYt and ηCt are assumed to be normally

distributed, with a zero mean and a variance/covariance matrix denoted by Σ.

It is well known, see for example Koop and Korobilis (2009), that in VAR models with normally

distributed shocks the flat priors assumption allows one to get analytical formulas for the posteriors’

marginal distributions, which are multivariate t distributions centered around the OLS estimates.

However, since the objects of interest are not the posteriors of the parameters, but functions of them

(i.e., some moments), I use appropriate simulation methods to obtain draws from their posteriors. All

seven parameters (a11, a12, a21, a22, σ11, σ12, σ22) are then estimated with a posterior simulator.10

8The simple structure of the models’ aggregate shocks makes it impossible to generate a recession as severe as the

great recession. This suggests to drop the financial crisis years. Conducting the analysis with the whole sample, i.e.

until 2014Q1, doesn’t alter the main results.
9Notice that I exclude durables from the analysis. A possible alternative could be to include durables in investment.

Although the empirical results are fairly similar, this procedure would be inconsistent with the model’s assumption that

total investment contributes to the accumulation of capital.
10For more details on how the computations are actually implemented, see the Appendix. DeJong and Ripoll (2007)
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The incomplete markets models are evaluated by comparing the draws from the joint posteriors of

the autocorrelation of consumption (ρC) and the correlation between consumption and income (ρCY )

obtained from the Bayesian VAR with the draws for the same (population) moments predicted by the

theoretical models.

5 Results

In this section I present the results. I begin by discussing the model comparison with a simple Bayesian

approach. Then I report which parameters are the most important ones quantitatively in affecting

the cyclical behavior of consumption and its correlation with income. Finally, I examine model

performance along a number of dimensions that are not considered in their empirical evaluation.

5.1 Model Comparison

The model comparison is ultimately performed on the basis of the Bayes factors, and the models’

marginal likelihoods have to be computed as an intermediate step. These are reported in Table 4.

[Table 4 and Figure 1 about here]

Perhaps surprisingly, the model with the most general set-up, M4 (β,γ), is also the model with the

lowest log-marginal likelihood, which is −11.29. The other three models show log-marginal likelihoods

that are fairly similar, ranging from −3.70 for models M2 (β) and M3 (γ) to −2.66 for model M1 (0).

The model without preference heterogeneity displays the highest log-marginal likelihood, suggesting

that preference heterogeneity does not provide a quantitatively important improvement in accounting

for the consumption dynamics at business cycle frequencies.

Keeping the number of dimensions along which the models are confronted with the data to two has

the advantage of allowing to show a number of interesting plots. Figure 1 presents the scatter plots for

the minimal econometric interpretation. Every panel plots the distributions of the two autocorrelations

of interest: ρC and ρCY . The top and bottom rightmost panels represent the posterior distribution

obtained from the econometric model, plotted twice for convenience, while the other four panels

represent the predictive distributions of the four incomplete markets models.

A first comment relates to the models’ evaluation. A simple visual comparison of the scatter

plots reveals that all the models’ predictive distributions do overlap with the moments’ posterior

use a similar methodology, relying on the predictive distributions to perform model comparison. However, their models’

relatively simple set-up allows them to perform a full Bayesian estimation.
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distribution. The models possess some empirical validity, whose degree of success will be assessed

more formally below.

Another interesting result is that the models impose a non-trivial restriction on the data. As the

Figure shows, there is a systematic relationship between the autocorrelation of consumption and the

correlation between consumption and income. The posterior draws obtained from the VAR model

show a positive relationship between these two correlations, while the models predictive distributions

display the opposite outcome for a large portion of their supports.

[Figure 2 about here]

Figure 2 makes the same point by plotting the bivariate Kernel densities of the predictive distrib-

utions for each of the four incomplete markets models. Model M1 (0) (the top left plot), model M2 (β)

(the top right one), and model M3 (γ) (the bottom left one) display rather similar joint predictive

distributions. In contrast, it is evident that M4 (β,γ) (portrayed in the bottom right panel) delivers

the tightest predictions, with its predictive density being highly concentrated around values of ρCY

close to 1 and values of ρC close to 0.65.

The pairwise comparisons between all models are based on the Bayes factor, which is the ratio of

two models’ posterior odds. The computation of the posterior odds ratios, namely the ratios of the

models’ marginal likelihoods, is going to be achieved with bivariate kernel density approximations.

The Bayes factors can be computed for any pair of models Mi and Mj (i, j = 1, ..., 4), and they

are the ratio of two marginal likelihoods, P (Mi|data,E) and P (Mj |data,E), whose expressions are as

follows:

P (Mi|data,E)

P (Mj |data,E)
=

P (Mi|E)P (data|Mi,E)

P (Mj |E)P (data|Mj , E)

=
P (Mi|E)

∫ ∫
P (ρC , ρCY |Mi)P (data|ρC , ρCY , E)dρCdρCY

P (Mj |E)
∫ ∫

P (ρC , ρCY |Mj)P (data|ρC , ρCY , E)dρCdρCY

∝

∫ ∫
P (ρC , ρCY |Mi)P (ρC , ρCY |data,E

∗)dρCdρCY∫ ∫
P (ρC , ρCY |Mj)P (ρC , ρCY |data,E

∗)dρCdρCY

≈

1
NMi

NE∗

NMi∑

u=1

NE∗∑

v=1

K
(
ρMi

C,u, ρ
Mi

CY,u; ρ
E∗

C,v, ρ
E∗

CY,v

)

1
NMj

NE∗

NMj∑

u=1

NE∗∑

v=1

K
(
ρ
Mj

C,u, ρ
Mj

CY,u; ρ
E∗

C,v, ρ
E∗

CY,v

)
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Posterior odds ratios, denoted as P (Mi|data,E)/P (Mj |data,E), are a common tool in Bayesian

empirical work. Notice how these depend on both the data and an incomplete econometric model

denoted by E. This model is needed to provide the framework with empirical content. In par-

ticular, E specifies a conditional distribution of observables P (Y,C|ρC , ρCY , θ, E) together with a

prior for the parameters θ in the econometric model. This econometric model is incomplete, because

it does not provide a joint prior distribution for the moments ρC and ρCY . The prior is instead

provided by each theoretical model Mi in turn. Under appropriate conditions, see Geweke (2010),

the density P (data|ρC, ρCY , E) that appears in the double integral can be replaced by the density

P (ρC , ρCY |data,E
∗). The latter density is easy to work with, because it corresponds to the posterior

density for the moments of interest implied by an auxiliary econometric model E∗, which in this

application corresponds to the VAR model introduced above.

In the formula approximating the integrals, I rely on an independent bivariate normal kernel

K (.; .).11 The numbers NMi
and NE∗ stand for the number of draws for the theoretical models

(2, 000 each) and for the Bayesian VAR (10, 000).12

Intuitively, the marginal likelihood of each model Mi is a measure of the overlap between the

predictive distributions of a heterogeneous-agent model and the posterior distributions of the VAR

model. This overlap is easy to portray when focusing on one correlation at a time. In this case, the

marginal distributions are plotted for both the predictive density and the posterior.

[Figures 3 and 4 about here]

Figure 3 displays the four plots for ρCY , while Figure 4 for ρC . These plots confirm visually that

the models M1 (0), M2 (β) and M3 (γ) have similar marginal likelihoods, with large overlaps between

the predictive and posterior marginals. Differently, M4 (β,γ) has a much poorer fit, with the predictive

marginal densities being more concentrated for values of the correlations that are in the tails of the

posterior marginal densities.

[Table 5 about here]

11For all density approximations, I use Silverman’s “optimal” bandwidth. Using a fixed bandwidth equal to 0.01

doesn’t alter the results considerably.
12 It is worth mentioning that in both models with risk aversion heterogeneity the ALM doesn’t converge and shows

cycles in a non-trivial number of replications, which are discarded. This virtually never happens in the more traditional

versions of the model, and in Cozzi (2014a) I have shown with a perturbation approach that self-fulfilling equilibria are

not likely to arise in the incomplete markets model with aggregate shocks and discount factor heterogeneity.
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To conclude with, the six Bayes factors are reported in Table 5 and they are as follows. For the

comparison M1 (0) Vs. M2 (β) the Bayes factor is 2.83 : 1, for M1 (0) Vs. M3 (γ) it is 2.85 : 1, while for

M1 (0) Vs. M4 (β,γ) it is a stunning 5572.56 : 1. In the comparison M2 (β) Vs. M3 (γ) the Bayes factor

is 1.01 : 1, while in the M2 (β) Vs. M4 (β,γ) comparison it is 1966.93 : 1, and for M3 (γ) Vs. M4 (β,γ) it

is 1954.29 : 1.

An unambiguous result is that all pairwise comparisons between model M4 (β,γ) and any other

model provide decisive evidence in favor of the latter. Mostly because of the time-constant het-

erogeneity in the discount factor, the model with the highest degree of heterogeneity is also the

least reliable one when confronted with the data, and dominated by all the other alternatives. The

time-varying risk aversion notwithstanding, in model M4 (β,γ) the economy essentially consists of two

subgroups of agents. The patient/risk averse households, that are the wealthy ones, and the vast ma-

jority of agents, that are relatively impatient and wealth poor. The larger fraction of the latter group

is needed to match a high concentration of wealth. At the same time, this induces the noticeably high

correlation between aggregate consumption and income, with consumption almost tracking income for

most model parameterizations, due to the limited precautionary savings made by these agents. In this

model only few household types save extensively, allowing them to have smooth consumption profiles

over time and across states of the world. In the aggregate, these agents have a limited quantitative

importance, with the economy also displaying a very low autocorrelation of consumption.

Finally, the pairwise comparisons among the other three models do not provide strong evidence

favoring one of them.

5.2 Comparative dynamics

A quantitative framework that relies on prior distributions for the parameters allows us to address the

question of which parameters matter the most in shaping the model’s outcomes in a fairly straight-

forward way. Rather than taking the analytical derivative of one of the outcomes with respect to a

parameter, one can run a regression, with either the autocorrelation of consumption or the correlation

between consumption and income on the left hand side, and the corresponding combination of para-

meters that generated that moment on the right hand side. This represents a surrogate of comparative

dynamics analysis, performed around the mean of the moments under scrutiny.

It goes without saying that there is a deterministic mapping between a model’s parameters and

the related outcomes. However, this mapping can be extremely complex. A way to approximate this

relationship is to consider a simple linear regression. Even though the parameters are drawn randomly

from their priors, this regression does not have any meaningful interpretation in a statistical sense.

However, it can provide useful information on which parameters matter the most in affecting the
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results. Table 6 reports the OLS regression with the correlation between consumption and income as

the dependent variable, while Table 7 the OLS regression with the autocorrelation of consumption as

the dependent variable.13

[Tables 6 and 7 about here]

A first comment is that most regressions have a high R2, meaning that an approximation of the first

order adequately accounts for the response of the endogenous variables to changes in the parameters.

However, the R2 of models M3 (γ) and M4 (β,γ) is somewhat lower.

A second comment is that in most cases the same regression coefficient has opposite signs in the

two regressions. This is intuitive, as both have implications for the consumption smoothing behavior.

A (say) negative effect on ρCY implies a lower correlation between consumption and income, hence

stronger consumption smoothing. This is consistent with a positive effect on ρC, where the higher

autocorrelation is induced by the relatively flat dynamics of consumption in presence of a stronger

consumption smoothing. In a few cases, a regression coefficient has the same sign in the two regressions.

I interpret this outcome as being due to the mis-specification of the regression, especially for ρCY as

suggested by its lower R2. In this case, the coefficients are likely to be picking up also the effect of

higher order and interaction terms that are not included in the regression.

A third comment relates to the magnitude of the regression coefficients. Since the coefficients

reported in both Tables refer to standardized regressions (i.e., both the regressors -the models’

parameters- and the dependent variable are divided by their standard deviations), they provide direct

information on which parameters have the largest quantitative impact.

By inspecting both Tables, it is apparent that in models M1 (0), M2 (β) and M3 (γ) most parameters

have a small effect on the two correlations. There are only two parameters that consistently have a

very large effect: the unemployment rates in good and bad times. Since the range of their priors was

fairly small, this result tells us that even minor differences in the value of these parameters have a

sizable impact on the model’s outcomes. Although we have extremely good data on the unemployment

rate and its dynamics, the simple stochastic structure assumed in these models is too parsimonious

to capture in an unambiguous way how to parameterize the Markov chains. Furthermore, the model

is also too abstract with respect to its characterization of the labor market, making it hard to argue

that there is a dominant approach to calibrate it. Given the results, it follows that in these models

an extensive robustness analysis should always be performed along this margin. Interestingly, the two

unemployment rates have opposite effects on the two correlations, and the size of their coefficients

13All regressions include a constant term, not reported in the Tables.
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is quite similar, even though it is always larger for uB. The effect of uB is easy to rationalize, as a

higher unemployment rate in a recession is the worst outcome an agent could find himself in. This

increases the precautionary savings motive, and consequently the degree of consumption smoothing,

which is consistent with a negative effect on ρCY and a positive one on ρC. The effect of uG has a

similar interpretation. During a boom agents accumulate assets to be able to smooth consumption

when a recession will eventually hit the economy. However, a larger unemployment rate during a

boom reduces the share of individuals that are in a position to accumulate assets for future rainy

days. This explains the positive effect on ρCY and the negative one on ρC .

A different set of comments applies for M4 (β,γ). In this case, there are more parameters that have

an important role in shaping the two correlations, such as the capital share α, the capital depreciation

δ and the labor supply l. However, the relatively low R2 suggests to take these results with caution.

5.3 The Models’ Performance in other Dimensions

It goes without saying that the model has implications for other variables as well, and it is interesting

to consider them in some detail. Table 8 reports a number of statistics related to the predictive

distributions of the correlation between investment and income, the autocorrelation of investment,

and the correlation between consumption and investment. The corresponding sample statistics are

ρIY = 0.975, ρI = 0.821 and ρCI = 0.652, respectively.

[Table 8 about here]

Also for these moments, all variants of the incomplete markets model seem to put evident restric-

tions on the data.

The correlation between investment and income is very high and extremely concentrated around

its mean. The correlation’s range is really small, its largest range across models being [.988, .998],

and there is no overlap between the sample statistic and the models’ predictions. Nevertheless, this

does not represent conclusive evidence that the model is inconsistent with the data, because: a)

the discrepancy is quantitatively small, b) this comparison is far from being ideal, as argued by

Eichenbaum (1991), DeJong, Ingram and Whiteman (1996) and Geweke (2010).

A more troublesome aspect is related to the models’ implications for the time series behavior of

investment. Each variant of the model fails in getting close to the empirical autocorrelation. In all

models the largest autocorrelation of investment is always below .60, while the data counterpart is

remarkably higher. A way to address this shortcoming that has been used in several DSGE models

would be to consider a more general structure for the shocks. Adding investment or depreciation
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shocks could help the models getting closer to the data. However, this avenue would open the issue

of the sources of identification for those additional shocks.

Finally, for the correlation between investment and income all models seem to perform well. Also

in this case, model M4 (β,γ) has a mean (.88) which is noticeably different from the other models (.60

for M1 (0), .69 for M2 (β), and .70 for M3 (γ)), and far from the sample statistic. Differently, for the

other models the sample statistic is well within the support of their predictive distributions.

5.4 Calibration Vs. Estimation

The debate on whether DSGE models should be calibrated, and compared to the data with informal

procedures, or estimated, and tested with formal statistical methods, is a long-lived one. Calibrators

argue that DSGE models are too simple and abstract hence necessarily false, while econometricians

respond that without a coherent statistical apparatus it is impossible to assess whether a model is

suitable for policy analysis.

Analysing a workhorse DSGEmodel, Rios-Rull, Schorfheide, Fuentes-Albero, Kryshko and Santaeulalia-

Llopis (2012) stressed that the findings in quantitative work in macroeconomics are mostly affected

by the identification of key parameters, rather than the quantitative methodology chosen to select

parameter values per se (i.e., calibration Vs. Bayesian estimation).

Currently, for models with heterogeneous agents and aggregate shocks, this antagonism is vacuous.

Given their computational requirements, the Bayesian estimation of these models is still unlikely to

be feasible, even with supercomputers. In order to be confident that the sequence of draws in the

Monte Carlo-Markov Chain procedure accurately approximates the posterior distributions, hundred

of thousands of parameter draws (and model solutions) are necessary. This, together with the de-

manding step of computing the likelihood function through some non-linear filters, make the Bayesian

estimation of these models a very challenging endeavour. Given the computational requirements of

the models considered in this paper, my results suggest that even a parsimonious model would likely

take several months worth of computer time to be estimated.14

On the basis of these considerations, the MEI framework achieves a reasonable and viable com-

promise in this dispute. It is feasible, even for fairly sophisticated models, it allows for a formal

comparison among models that can all be false, and it embeds a global sensitivity analysis by default,

as explained in Canova (1994). However, the main drawback is that, by avoiding the computation

of the likelihood function, posterior estimates for the model’s parameters are not part of the em-

pirical framework, giving more importance to the prior distributions than what is done in Bayesian

14Parallelized over 8 cores on a top-of-the-line workstation, the sequence of 2, 000 parameterizations of each model

takes more than two weeks to complete.
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estimation.

Another related issue deserves some further discussion. Currently, in the literature on heterogeneous-

agent models without aggregate shocks there is a widespread belief that researchers are using a GMM

procedure to obtain parameters estimates. Although there are several careful applications, the reality

of the matter is that in a number of instances this is not the case.

The source of the confusion, I believe, arises from what can be considered as a moment in this

class of models. These models lack aggregate uncertainty, hence the economy is deterministic at the

aggregate level. As a consequence, estimation can be performed only on variables that have cross-

sectional variation, because only in this case is a moment well defined. Perhaps a simple example

will clarify the problem. A popular and, without any doubt, desirable property is for the model to

match a plausible interest rate. However, taken from the perspective of a stationary model, this is

not a moment condition. The interest rate is constant over time, and for most models it does not

vary in the cross sectional dimension, because there is only one asset and a common interest rate that

applies to all economic agents. Differently, the counterpart in the data is typically chosen to be the

rate of return between safe and risky assets averaged over time. The model delivers a number, while

the data consist of two time series. Clearly, there is a mismatch between the model and the empirical

dimension it is called to replicate.

Choosing parameters to match a number of empirical targets is not necessarily an application of a

method of moments estimator, hence it is not necessarily an estimation exercise. In some applications

this moment-matching methodology is not sound from a statistical perspective, because standard

errors cannot be computed. Moreover, often the model is implicitly used to quantify population

moments. Regardless, the model’s moments are directly compared to their sample counterparts, and

also this step is not free of potential pitfalls.

To conclude with, the models’ predictive distributions show that even for the model with the lowest

marginal likelihood there are calibrations that are consistent with the empirical correlations found in

the data. Searching in the parameter space to match these moments would lead to a successful

calibration exercise. However, this is where both prior information about the model’s parameters

and a well-posed criterion to confront these models with the data play a crucial role. With a very

popular and quite sophisticated moment/target matching procedure, a researcher would be able to

hit the empirical targets of interest. Abstracting from accumulated (prior) knowledge on some key

parameters shows that one could end up working with a fairly general model, which is shown to be

very fragile when evaluated empirically, such as the model with both risk aversion and discount factor

heterogeneity. These considerations provide an insight on the advantages of considering Bayesian

elements into the analysis.
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6 Conclusions

DSGE models are tools that sharpen our understanding of several macroeconomic phenomena. In

order to be used with confidence to inform policy design, the models have to be confronted with the

data in a systematic way. Consumption smoothing behavior is at the core of any dynamic macroeco-

nomic model, and models with agent heterogeneity in household wealth, employment status and other

characteristics have been developed to allow for a better representation of this phenomenon. Although

several solution methods for models with heterogeneous agents and aggregate shocks have been pro-

posed in the literature, surveyed by den Haan, Judd and Juillard (2010), the bulk of macroeconomic

analysis is still performed with models that abstract from heterogeneity, relying on the representative

consumer paradigm. This assumption narrows the scope of the welfare analysis that can be carried

out, limits our understanding of the distributional consequences of a policy reform, and neglects a

number of trends that have been documented for several countries, such as the spectacular increase

in residual wage inequality discussed in Krueger, Perri, Pistaferri and Violante (2010) and the other

contributions included in that volume.

This paper showed that it is finally possible to undertake formal model evaluation also in mod-

els with heterogeneous agents and aggregate uncertainty, relying on a simple Bayesian framework

developed by DeJong, Ingram and Whiteman (1996) and generalized by Geweke (2010).

I have shown how to incorporate observable heterogeneity in risk preferences, even though this

additional layer of heterogeneity ultimately does not improve the model’s fit. I have applied the MEI

showing that macroeconomic data can help discriminate between different specifications of the model.

In particular, when evaluating the model’s fit with respect to the correlation between consumption

and income, and the autocorrelation of consumption, it was found that the model with the lowest

marginal likelihood is also the model with the most general specification. The Bayes factors for the

other variants of the model are very similar, preventing us from favoring one specification over the

other two.

Finally, I showed which parameters have the largest effects on the outcomes of interest. It was found

that the unemployment rates in booms and recessions have by far the most important quantitative

impact. Typically, robustness checks along this dimension are not performed, which can potentially

lead to an unsound welfare analysis.

Given the infeasibility of fully Bayesian methods, currently the MEI represents a viable and coher-

ent approach for model comparison for fairly sophisticated versions of the incomplete markets model

with aggregate risk.
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Label Model Set-up

M1 (0) No Preference Heterogeneity

M2 (β) β Heterogeneity (No γ Heterogeneity)

M3 (γ) γ Heterogeneity (No β Heterogeneity)

M4 (β,γ) β and γ Heterogeneity

Table 1: Models Description.
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Parameter Description Min Max

α Capital share α = 0.32 α = 0.40

δ Capital depreciation rate δ = 0.020 δ = 0.025

b Borrowing limit b = −1.0 b = 0

l Hours worked (share of time endowment) l = 0.287 l = 0.351

uG Unemployment rate in expansions uG = 0.03 uG = 0.05

uB Unemployment rate in recessions uB = 0.09 uB = 0.11

Table 2: Model parameters and their prior’s support. The parameters in the table are common to the

four models and the priors are all uniformly distributed. The model period is a quarter.
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Model Parameter Description Min Max

M1 (0) β Discount Factor β = 0.990 β = 0.992

γ Relative Risk Aversion γ = 1.0 γ = 3.0

M2 (β) βh Discount Factor (type-specific) βh = 0.992 βh = 0.994

βm " βm = 0.9884 βm = 0.9904

βl " βl = 0.9848 βl = 0.9868

γ Relative Risk Aversion γ = 1.0 γ = 3.0

M3 (γ) β Discount Factor β = 0.983 β = 0.993

γh Relative Risk Aversion (type-specific) γh = 7.247 γh = 7.847

γm " γm = 1.818 γm = 2.418

γl " γl = 0.623 γl = 1.223

pγj CRRA Markov Chain Probabilities See text

M4 (β,γ) βh Discount Factor (type-specific) βh = 0.9885 βh = 0.9905

βl " βl = 0.9785 βl = 0.9805

µβ Share with low discount factor βl µβ = 0.83 µβ = 0.87

γh Relative Risk Aversion (type-specific) γh = 7.247 γh = 7.847

γm " γm = 1.818 γm = 2.418

γl " γl = 0.623 γl = 1.223

pγj CRRA Markov Chain Probabilities See text

Table 3: Model specific parameters and their prior’s support. The prior for the CRRA Markov Chain

probability is the empirical distribution of 2000 minimum distance estimates obtained by simulat-

ing the chain with 5662 artificial agents (which corresponds to the cross sectional dimension of the

household heads in the PSID sample). All other priors are uniformly distributed.
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Model Log Marginal Likelihood

M1 (0) - No Preference Heterogeneity −2.661

M2 (β) - β Heterogeneity −3.702

M3 (γ) - γ Heterogeneity −3.709

M4 (β,γ) - β and γ Heterogeneity −11.287

Table 4: Log Marginal Likelihoods under the Minimal Econometric Interpretation. Silverman’s "op-

timal" bandwidth is used for all density approximations.
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Comparison Bayes Factor

P (M1(0)|.)/P (M2(β)|.) 2.833

P (M1(0)|.)/P (M3(γ)|.) 2.851

P (M1(0)|.)/P (M4(β,γ)|.) 5572.561

P (M2(β)|.)/P (M3(γ)|.) 1.006

P (M2(β)|.)/P (M4(β,γ)|.) 1966.930

P (M3(γ)|.)/P (M4(β,γ)|.) 1954.286

Table 5: Model Comparison: Posterior Odds Ratios.
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Corr(Ct, Yt) M1 (0) M2 (β) M3 (γ) M4 (β,γ)

α −.055 −.089 .144 .632

δ .025 .026 −.005 −.218

b .003 .014 −.013 −.049

l −.009 −.002 .021 .201

uB −.678 −.664 −.602 −.378

uG .634 .624 .561 .316

β −.036 − −.090 −

βh − .079 − .044

βm − −.064 − −

βl − −.017 − −.087

µβ − − − .031

γ .076 −.076 − −

γh − − −.004 .015

γm − − −.009 −.009

γl − − .013 −.007

pγm − − .032 −

R2 .88 .86 .72 .67

Table 6: Comparative Dynamics - Linear Regressions, Standardized Beta Coefficients
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Corr(Ct, Ct−1) M1 (0) M2 (β) M3 (γ) M4 (β,γ)

α .008 .032 −.212 −.678

δ .019 .012 .055 .263

b .001 −.010 .020 .054

l −.002 −.002 −.023 −.196

uB .707 .712 .630 .421

uG −.650 −.666 −.588 −.351

β −.007 − −.020 −.064

βh − −.054 − −.015

βm − .035 − −

βl − .011 − .064

µβ − − − −.031

γ −.185 −.092 − −

γh − − .006 −.012

γm − − .005 .006

γl − − −.005 .007

pγm − − −.024 −

R2 .96 .97 .79 .78

Table 7: Comparative Dynamics - Linear Regressions, Standardized Beta Coefficients
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Min Max Mean Med S.d.

M1 (0)

Corr(Ct, Yt) −.229 .951 .658 .727 .235

Corr(Ct, Ct−1) .654 .933 .803 .799 .074

Corr(It, Yt) .991 .998 .997 .997 .001

Corr(It, It−1) .595 .598 .597 .598 .001

Corr(Ct, It) −.302 .932 .599 .668 .250

M2 (β)

Corr(Ct, Yt) −.003 .955 .757 .796 .151

Corr(Ct, Ct−1) .656 .924 .784 .777 .062

Corr(It, Yt) .988 .998 .995 .996 .002

Corr(It, It−1) .582 .597 .594 .595 .002

Corr(Ct, It) −.085 .933 .693 .735 .165

M3 (γ)

Corr(Ct, Yt) −.227 .973 .757 .805 .175

Corr(Ct, Ct−1) .638 .924 .769 .761 .070

Corr(It, Yt) .994 .998 .996 .996 .001

Corr(It, It−1) .592 .598 .597 .597 .001

Corr(Ct, It) −.297 .953 .704 .752 .189

M4 (β,γ)

Corr(Ct, Yt) .506 .992 .929 .947 .058

Corr(Ct, Ct−1) .629 .895 .689 .678 .040

Corr(It, Yt) .991 .996 .994 .993 .001

Corr(It, It−1) .577 .596 .592 .593 .003

Corr(Ct, It) .413 .971 .885 .905 .069

Table 8: Statistics of the Predictive Distributions for the four Models.
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Figure 1: The Minimal Econometric Interpretation. The top and bottom rightmost panels represent

the posterior distribution in the econometric model (blue crosses). The other four panels represent

the predictive distributions of the four incomplete markets models (black dots).
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Figure 2: Bivariate Kernel Density estimates of the predictive distributions for each of the four

incomplete markets models. The top left plot refers to model M1, the top center one to M2, the top

and bottom right ones to the Bayesian VAR, the bottom left one to M3 and the center right one to

M4.
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Figure 3: Models’ fit. Predictive distributions (dashed line) Vs. Posterior marginal (solid line) for

the correlation between aggregate income and aggregate consumption (ρCY ). Both the Predictive

distributions and the posterior marginal are approximated with a Gaussian kernel.
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Figure 4: Models’ fit. Predictive distributions (dashed lines) Vs. Posterior Marginal (solid line) for

the autocorrelation of consumption (ρC). Both the Predictive distributions and the posterior marginal

are approximated with a Gaussian kernel.

33



References

An, S., and Schorfheide, F. (2007). “Bayesian Analysis of DSGE Models,” Econometric Reviews, Vol.

26, 113-172.

Attanasio, O., and Weber, G. (2010). “Consumption and Saving: Models of Intertemporal Allocation

and Their Implications for Public Policy,” Journal of Economic Literature Vol. 48, 693-751

Canova, F. (2009). “How Much Structure in Empirical Models?” in Palgrave Handbook of Applied

Econometrics, edited by T. Mills and K. Patterson, Vol. 2, 68-97.

Canova, F. (1994). “Statistical Inference in Calibrated Models,” Journal of Applied Econometrics,

Vol. 9, S123-S144.

Castaneda, A., Diaz-Gimenez, J., and Rios-Rull, J.V. (1998). “Exploring the income distribution

business cycle dynamics,” Journal of Monetary Economics, Vol. 42, 93-130.

Cozzi, M. (2014a). “The Krusell-Smith Algorithm: Are Self-fulfilling Equilibria Likely?” Forthcoming

in Computational Economics.

Cozzi, M. (2014b). “Risk Aversion Heterogeneity, Risky Jobs and Wealth Inequality,” QED Working

Paper n. 1286.

Chiu, J., and Molico, M. (2010). “Liquidity, Redistribution, and the Welfare Cost of Inflation,” Journal

of Monetary Economics, Vol. 57, 428-38.

DeJong, D., Ingram, B., and Whiteman, C. (1996). “A Bayesian Approach to Calibration,” Journal

of Business and Economic Statistics, Vol. 14, 1-9.

DeJong, D., and Ripoll, M. (2007). “Do self-control preferences help explain the puzzling behavior of

asset prices?” Journal of Monetary Economics, Vol. 54, 1035-1050.

Eichenbaum, M. (1991). “Real business-cycle theory. Wisdom or whimsy?” Journal of Economic

Dynamics and Control, Vol. 15, 607-626.

Fernandez-Villaverde, J., Guerron, P., and Rubio-Ramirez, J. (2010). “The New Macroeconometrics:

a Bayesian Approach,” Handbook of Applied Bayesian Analysis, edited by O’Hagan and West, Oxford

University Press.

Fernandez-Villaverde, J. (2010). “The econometrics of DSGE models,” in SERIEs, Journal of the

Spanish Economic Association, Vol. 1, 3-49.

34



Geweke, J. (2010). Complete and Incomplete Econometric Models. Princeton University Press, Prince-

ton (NJ).

den Haan, W. (2010). “Comparison of solutions to the incomplete markets model with aggregate

uncertainty,” Journal of Economic Dynamics & Control, Vol. 34, 4-27.

den Haan, W., Judd, K., and Juillard, M. (2010). “Computational suite of models with heterogeneous

agents: Incomplete markets and aggregate uncertainty,” Journal of Economic Dynamics & Control,

Vol. 34, 1-3.

Heathcote, J. (2005). “Fiscal Policy with Heterogeneous Agents and Incomplete Markets.” Review of

Economic Studies, Vol. 72, 161-188.

Juster, T., and Stafford, F. (1991). “The Allocation of Time: Empirical Findings, Behavioral Models,

and Problems of Measurement,” Journal of Economic Literature, Vol. 29, 471-522.

Kimball, M., Sahm, C., and Shapiro, M. (2009). “Risk Preferences in the PSID: Individual Imputations

and Family Covariation,” American Economic Review: Papers & Proceedings, Vol. 99, 363-368.

Kimball, M., Sahm, C., and Shapiro, M. (2008). “Imputing Risk Tolerance From Survey Responses,”

Journal of the American Statistical Association, Vol. 103, 1028-1038.

Koop, G., and Korobilis, D. (2009). “Bayesian Multivariate Time Series Methods for Empirical Macro-

economics,” Foundations and Trends in Econometrics, Vol. 3, 267-358.

Krueger, D., Perri, F., Pistaferri, L., and Violante, G. (2010). “Cross Sectional Facts for Macroecono-

mists,” Review of Economic Dynamics, Vol. 13, 1-14.

Krusell, P., Mukoyama, T., Sahin, A., and Smith, A. (2009). “Revisiting the welfare effects of elimi-

nating business cycles,” Review of Economic Dynamics, Vol. 12, 393-404.

Krusell, P., and Smith, A. (2006). “Quantitative Macroeconomic Models with Heterogeneous Agents,”

in: Blundell, R., Newey, W., and Persson, T. (Eds), Advances in Economics and Econometrics: Theory

and Applications. Econometric Society Monographs 41, Cambridge University Press, 298-340.

Krusell, P., and Smith, A. (1998). “Income and Wealth Heterogeneity in the Macroeconomy,” Journal

of Political Economy, Vol. 106, 867-896.

Lucas, R. (1987). Models of Business Cycles. Basil Blackwell, Oxford.

Mukoyama, T., and Sahin, A. (2006). “Costs of business cycles for unskilled workers,” Journal of

Monetary Economics, Vol. 53, 2179-2193.

35



Rios-Rull, J.V., Schorfheide, F., Fuentes-Albero, C., Kryshko, M., and Santaeulalia-Llopis, R. (2012).

“Methods versus substance: Measuring the effects of technology shocks,” Journal of Monetary Eco-

nomics, Vol. 59, 826-846.

Storesletten, K., Telmer, C., and Yaron, A. (2001). “The welfare cost of business cycles revisited:

Finite lives and cyclical variation in idiosyncratic risk,” European Economic Review, Vol. 45, 1311-

1339.

36



Appendix A - Computation

• All codes solving the economies were written in the FORTRAN 95 language, relying on the Intel

Fortran Compiler, build 11.1.048 (with the IMSL library). They were compiled selecting the O3

option (maximize speed), and without automatic parallelization. They were run on a 64-bit PC

platform, running Windows 7 Professional Edition, with an Intel Xeon E5−2687Wv2 Octo-core

processor clocked at 3.4 Ghz.

• The 2, 000 replications are run in parallel across cores and take more than 15 days to complete.

Notice that typically from 8 to 15 iterations on the ALM are needed to find each equilibrium.

• In the actual solution of the model I need to discretize the continuous state variables a and K

(the discount factor heterogeneity β, the risk aversion heterogeneity γ, the employment status

s, and the aggregate productivity shock z are already discrete). For the household assets a I

rely on an unevenly spaced grid, with the distance between two consecutive points increasing

geometrically. This is done to allow for a high precision of the policy rules at low values of a,

where the change in curvature is more pronounced. In order to keep the computational burden

manageable, I use 101 grid points on the household assets space (75 grid points for model M4 ),

the lowest value being the borrowing constraint b and the highest one being a value amax high

enough not to be binding in the simulations (amax = 500). For the aggregate capital K I use a

fairly dense grid. Over the [3, 27] interval I use 25 points, which are far more than the typical

4-6. However, given the large number of parameterizations, in the iterative process on the ALM

parameters the simulations do visit regions for aggregate capital that are very far from the

support of the ergodic equilibrium distribution, causing convergence issues when using a coarse

grid.

• As for the solution method for the household problem, I use a time iteration procedure on the

set of Euler equations, guessing the future saving functions, and with linear interpolation in the

(a,K) dimensions. This method proved to be more stable than the relatively common value

function iteration scheme with cubic spline interpolation.

• A collocation method is implemented, that is I look for the policy functions such that the

residuals of the Euler equations are (close to) zero at the collocation points (which correspond

to the asset grid). It follows that for all possible combinations of state variables I need to

solve a non-linear equation. To get the optimal policy functions, I compute the first order

conditions with respect to a′ and through the envelope condition I obtain a set of Euler equations,

whose unknowns are the policy functions, a′(a, β, γ, s, z,K). I start from a set of guesses,

37



a′(a, β, γ, s, z,K)0, and keep on iterating until a fixed point is reached, i.e. until two successive

iterations satisfy:

Sup
a
|a′(a, β, γ, s, z,K)n+1 − a′(a, β, γ, s, z,K)n| < 10

−6, ∀β,∀γ,∀s,∀z,∀K.

• The aggregate dynamics are computed by simulating a large panel of individuals for 5, 000

periods, with the first 1, 000 periods being discarded as a burn-in. The panel size is 50, 000

agents for the economies with relative risk aversion heterogeneity, and 30, 000 agents for the

other two. As for the approximation method, I rely on a bi-linear approximation scheme for the

saving functions, for values of a and K falling outside the grid.

• If the numerical procedure fails to converge in some of its steps, the related results are discarded.
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Appendix B - Algorithm for the Models Solution

The computational procedure used to solve the model economies can be represented by the fol-

lowing algorithm:

1. Solve each version of the model at the average of the uniform prior distributions and store the

equilibrium ALM parameters Θ∗.

2. Consider model Mi, i = 1, ..., 4.

3. Draw 2, 000 combinations of parameters from their prior distributions and store them.

4. Begin the replications and set j = 1.

5. Calibrate the model by reading the first vector of simulated parameters and begin the model

solution.

6. Generate a discrete grid over the aggregate capital space [Kmin, ...,Kmax] .

7. Generate a discrete grid over the individual asset space [−b, ..., amax] .

8. Guess a vector of parameters Θg representing the ALM, using in the first iteration Θ∗, the

converged parameters for the model solved at the average of the priors.

9. Get the saving functions a′(a, β, γ, s, z,K).

10. Simulate the model under the guessed ALM, and compute an update Θg′ as the parameter

estimates of OLS regressions on the simulated data.

11. Repeat steps 8− 10 until the four parameters in Θ converge.

12. Compute the HP-filtered series for consumption and income, and get ρCY and ρC .

13. Save the output, set j = j + 1 and repeat steps 5− 12 NMi
times.

14. Move to the next model.
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Appendix C - Algorithm for the Bayesian VAR and the Moments’
Posteriors

The computational procedure used to obtain the posterior distributions for the moments of interest

can be represented by the following algorithm:

1. Get the OLS estimates ÂOLS for the VAR parameters and stack the estimates in the vector

âOLS = vec(ÂOLS).

2. Compute the residuals Yt−ÂOLSYt−1 and the associated matrix S =
(
Yt − ÂOLSYt−1

)′ (
Yt − ÂOLSYt−1

)
.

3. Get the inverse S−1 and V =
(
Y ′t−1Yt−1

)−1
.

4. Begin the replications and set j = 1.

5. Since the posterior for the matrix Σ is a Wishart distribution ΣPOST |data ∼ W (S, v), where v

denotes the degrees of freedom, draw from the inverse Wishart distribution Σ−1POST ∼W (S−1, v).

6. To obtain Wishart draws, get the Cholesky decomposition of S−1, draw v times from a correlated

bivariate normal (there are only two variables in the VAR), collect the draws in the matrix D,

and set Σ−1POST = D′D.

7. Get the inverse ΣPOST and use it to draw the VAR parameters from their posterior, which is a

correlated normal âPOST |Σ, data ∼ N (âOLS,Σ⊗ V ).

8. Set up a system of three linear equations, whose unknowns are the population second order

moments of Y and C. The entries in the vector of constants are the three distinct elements of

the current draw ΣPOST , while the entries in the matrix of coefficients are simple functions of

the current draws of the VAR parameters âPOST .

9. Solve the system for the current posterior draws, compute the correlations of interest and store

them.

10. Set j = j + 1 and repeat steps 5− 9 NE∗ times.
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Appendix D - Data
The time series were obtained from the Federal Reserve Bank of St. Louis FRED II data base. The

data are quarterly and the range is 1948:I - 2008:I (Source: http://research.stlouisfed.org/fred2/).

Aggregate output is defined as the sum of Services, Non Durables and Investment, and the corre-

sponding series are:

- Real personal consumption expenditures per capita: Nondurable goods (series ID: A796RX0Q048SBEA).

- Real personal consumption expenditures per capita: Services (series ID: A797RX0Q048SBEA).

- Real Gross Private Domestic Investment (series ID: GPDIC1).

Since the Investment series represents total investment in the economy, I divide it by the Civilian

Non-institutional Population (series ID: CNP16OV).

In the empirical analysis, all time series are HP filtered, and so are the simulated series obtained

from the model.
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Appendix E - Additional Plots
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Figure 5: Identification of the CRRA Markov chain probability pγm .
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Figure 6: The Models Macroeconomic Performance along all Dimensions.
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