
QED
Queen’s Economics Department Working Paper No. 1336

Instrument-free Identification and Estimation of
Differentiated Products Models

David Byrne
University of Melbourne

Susumu Imai
UTS and Queen’s University

Vasilis Sarafidis
Monash University

Masayuki Hirukawa
Setsunan University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

1-2015



Instrument-free Identification and Estimation of

Differentiated Products Models∗.

David P. Byrne† Susumu Imai‡

Vasilis Sarafidis§ and Masayuki Hirukawa¶

January 15, 2015

Abstract

We propose a new methodology for estimating the demand and cost functions of differen-

tiated products models when demand and cost data are available. The method deals with the

endogeneity of prices to demand shocks and the endogeneity of outputs to cost shocks, but

does not require instruments for identification. We establish non-parametric identification,

consistency and asymptotic normality of our estimator. Using Monte-Carlo experiments,

we show our method works well in contexts where instruments are correlated with demand

and cost shocks, and where commonly-used instrumental variables estimators are biased and

numerically unstable.
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1 Introduction

In this paper, we develop a new methodology for estimating models of differentiated products

markets. Our approach requires commonly used demand-side data on products’ prices, market

shares, observed characteristics, some firm-level cost data, and the common assumption that

firms set prices to maximize profits. The key novelty of our method is it does not require

instruments variables to deal with the endogeneity of prices to demand shocks in estimating

demand, nor the endogeneity of outputs to cost shocks in estimating cost functions.

Our study is motivated by questions surrounding the validity of instrument-based identifica-

tion strategies for differentiated products models, and by recent applications that use cost data

for model identification and testing. The frameworks of interest are the logit and random coeffi-

cient logit models of Berry (1994) and Berry et al. (1995) (hereafter, BLP), methodologies that

have had a substantial impact on empirical research in IO and various other areas of economics.1

These models incorporate unobserved heterogeneity in product quality, and use instruments to

deal with the endogeneity of prices to these demand shocks.2 As Berry and Haile (2014) and

others point, as long as there are instruments available, fairly flexible demand functions can be

identified using market-level data. Further, in the absence of cost data, firms’ marginal cost

functions can be recovered with a consistently estimated demand system, and the assumption

that firms set prices to maximize profits given their rivals’ prices.

A central issue then for the asymptotic properties of these estimators and the predictions

they deliver is instrument validity. Commonly used instruments include cost shifters such as

market wages, product characteristics of other products in a market (“BLP instruments”), and

the price of a given product in other markets (“Hausman instruments”). As with most IV-based

1Leading examples from IO include measuring market power (Nevo, 2001), quantifying welfare gains from new
products (Petrin, 2002), or merger evaluation (Nevo, 2000). Applications of these methods to other fields include
measuring media slant (Genzkow and Shapiro, 2010), evaluating trade policy (Berry et al., 1999), and identifying
sorting across neighborhoods (Bayer et al., 2007).

2We will use the terms unobserved heterogeneity and demand shock interchangeably.
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identification strategies, there are potential concerns with all of these instruments. Market-

level cost shifters such as wages tend to exhibit little variation across firms or over time. This

implies they generate little exogenous variation in prices conditional on market and firm fixed

effects. Recent work on endogenous product characteristics raises questions about validity of

BLP instruments.3 As with prices, firms are potentially strategic in determining their product

lines, which can create correlation between product characteristics and unobserved demand

shocks. Hausman instruments are compromised if demand shocks are correlated across markets,

perhaps due to spatial correlation in demand or national advertising campaigns.4

Despite these concerns, studies regarding instrument validity in the estimation of BLP models

are scarce. Indeed, virtually all methodological innovations and applications based on the BLP

model have relied on price instruments and profit maximization to identify demand and cost

parameters.5 Recent applications have, however, started incorporating cost data as an additional

source of identification. For instance, Houde (2012) combines wholesale gasoline prices with

first order conditions that characterize stations’ optimal pricing strategies to identify stations’

marginal cost function parameters. Crawford and Yurukoglu (2012) and Byrne (2014) similarly

exploit first order conditions and firm-level cost data to identify the cost functions of cable

companies.6 Using some cost data, Kutlu and Sickles (2012) estimate market power while

allowing for inefficiency in production. Like previous research, all of these applications use

instrumental variables to identify demand in a first step.

Motivated by this recent rise in the use of cost data to empirically study oligopoly, we study

3See Crawford (2012) for an overview of this burgeoning literature. A commonly held view among empirical
IO researchers is that product lines tend to be fixed in the short run and firms mainly compete on prices. The
longer the time horizon of a given study, the more endogenous product characteristics becomes a concern.

4See Hausman (1997) and Bresnahan (1997) for a lively debate on the validity of Hausman instruments.
5There has been some research assessing numerical difficulties with the BLP algorithm (Dube, Fox, and Su,

2012), Knittel and Metaxoglou, 2014), and the use of optimal instruments to help alleviate these difficulties
(Reynart and Verboven,2014). All of these studies use instruments for identification.

6A number of papers have also used demand and cost data to test assumptions regarding conduct in oligopoly
models. See, for instance, Byrne (2014), McManus (2007), Clay and Trosken (2003), Kim and Knittel (2003),
Wolfram (1999).
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identification in BLP-type models when researchers have access to standard demand-side data

(prices, market shares, product characteristics), and some firm-level cost data.7 The type of

cost data we have in mind comes from firms’ income statements and balance sheets, among

other sources. Such data has been used extensively in a large parallel literature on cost function

estimation in empirical IO.8 Our approach is unifying in that it combines data typically used

this and the differentiated products literature.

Our main theoretical finding is that by combining these data, one can jointly identify non-

parametric demand and cost functions using variation in market size and the profit maximization

assumption (market size does not have to be exogenous). Neither price nor quantity instruments

are needed to correct for the endogeneity of prices and quantities to unobserved demand and cost

shocks. The methodology is thus robust to fundamental specification concerns over instrument

validity in empirical research on differentiated products and cost function estimation.9

Getting into specifics, we develop an econometric model and approach that is based on the

parametric model of demand from Berry (1994) and BLP. Our identification and estimation

strategy combines three ideas. First, we note that because unobserved demand shocks in the

BLP model perfectly rationalize the data, the model’s predicted marginal revenue can be written

as a function of demand data and demand parameters only.10 Second, assuming firms act

as differentiated Bertrand price competitors, marginal revenue will equal marginal costs for

7At a broader level, our paper shares a common theme with De Loecker (2011). In particular, he investigates the
usefulness of previously unused demand-side data in identifying production functions and measuring productivity.

8Numerous studies have used such data to estimate flexible cost functions (e.g., quadratic, translog, generalized
leontief) to identify economies of scale or scope, measure marginal costs, and quantify markups for a variety of
industries. For identification, researchers either use instruments for quantities, or argue that in the market they
study quantities are effectively exogenous from firms’ point of view.

9Recent skepticism over instrument validity has led many researchers in fields such as empirical labor and
development to favor using randomized field experiments, random or quasi-random natural experiments, and
discontinuities in the endogenous regressor of interest. Implementing randomized experiments with firms in
differentiated products markets is particularly challenging because of profit maximization motives. In particular,
firms are hesitant to publish new insights and data from academic collaborations that provide them with a
competitive advantage over their rivals. Even if one were to implement a field experiment or have access to a
handful of natural experiments or discontinuties, they likely would not provide enough variation to identify all
the parameters of a differentiated products model, which importantly include firm and market fixed effects that
account for unobserved demand and cost shocks.

10Importantly, we also prove that marginal revenue uniquely identifies the demand parameters.
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firms in a Nash Equilibrium. Given a non-parametric cost function that is increasing in cost

shocks, we can exploit these equilibrium conditions to recover each product’s cost shock as an

unspecified function of cost-related observables and marginal revenue. That is, assuming profit

maximization, we can use marginal revenue to construct a “control function” for cost shocks.

An important insight that we exploit for this step in our procedure is that marginal revenue is

a function of market shares in BLP models, whereas marginal cost is a function of output.

Finally, we use cost data to estimate a nonparametric cost function, where we control for the

cost shock with marginal revenue. We call such cost function pseudo-cost function.11 It turns

out that marginal revenue works as a proper control function only when the demand parameters

are at their true values; in that case, the pseudo-cost function best fits the cost data. Therefore,

we jointly estimate the pseudo-cost function, control function, and hence demand parameters,

where the pseudo-cost function is nonparametrically specified as a sieve function of output, input

price, and marginal revenue.

We then demonstrate that with cost data, instrument-free identification does not require any

functional form assumptions on the demand side either. We prove that marginal revenue and

marginal cost are jointly nonparametrically identified by the sample analog of the first order

condition, which corresponds to two close points in the data that equates marginal revenue and

cost. From the marginal revenue one can locally identify a nonparametric nonparametric market

share function.

We believe our instrument-free, nonparametric identification results make a fundamental con-

tribution to broader literature and persistent debates over structural econometrics. Specifically,

they can be viewed as a counterexample to the commonly held view that structural estimation

11This control function approach to cost estimation is similar to the approach of Olley and Pakes (1996) and
other control function approaches to production function estimation. They derive a control function based on
the first order condition of the underlying economic model and use it to control for the unobserved productivity
shock. In their case, the first order conditions govern firms’ strategic investment decisions. Using investment,
capital, and labor cost data, these equations can be inverted to construct a control function for firms’ productivity
shocks.
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necessarily requires functional form assumptions or exclusion restrictions.12 We demonstrate

that neither are needed to identify the demand and cost functions of differentiated products

models. Only the structure of the economic model is required for identification (e.g., Bertrand-

Nash Equilibrium pricing among firms with regular cost functions).

We further show how our estimator can be adapted to incorporate a number of additional

features that often arise in practice. These include endogenous product characteristics, impos-

ing restrictions to ensure properly-defined cost functions (e.g., homogeneity in input prices)13,

allowing for differences between economic and accounting costs, missing cost data for certain

products or firms, the presence of multi-product firms, and estimating fixed costs. Through

a set of Monte-Carlo experiments, we illustrate the ability of our estimator to deliver consis-

tent demand parameter estimates when prices and output are correlated with demand and cost

shocks; and when cost shocks, input prices and market size are all correlated with the demand

shocks (e.g. when there are no valid instruments to account for the endogeneity of prices).14

The only other paper that we could find that exploits first order conditions to estimate de-

mand parameters is Smith (2004). He estimates a demand model using consumer-level choice

data for supermarket products. He does not, however, have product-level price data. To over-

come this missing data problem, he develops a clever identification strategy that uses data on

national price-cost margins, and identifies the price coefficient in the demand model as that

which rationalizes these national margins. Our study differs considerably in that we focus on

the more common situation where a researcher has data on prices, aggregate market shares and

12See Angrist and Pischke (2010) for such a critical view of structural methods. See also Keane (2009) for an
overview of these common criticisms of structural models and arguments in support of the notion that econometric
research - both structural and atheoretic reduced form “experimentalist” approaches - cannot avoid making
numerous assumptions.

13Keeping with the cost-function estimation literature, we check for convexity in output after estimation.
14A further result from the experiments speaks to the relative numerical performance of ours and instrumental

variable estimators. Whereas we easily obtain convergence in our estimation routines, for most Monte-Carlo
samples, like Dube et al. (2012) and Knittel and Metaxoglou (2014) we find the BLP algorithm to be quite
unstable.
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total costs, but not marginal costs. Indeed, we directly build on the general BLP framework.15

This paper is organized as follows. In Section 2, we specify the differentiated products

model of interest and review the IV based estimation approach in the literature. In Section 3,

we propose our semiparametric sieve based Nonlinear Least Squares (NLLS)-GMM estimator,

and discuss parametric and nonparametric identification of the model. We then analyze the

large sample properties of our sieve NLLS-GMM estimator in Section 4. Section 5 contains

a Monte-Carlo study that illustrates the effectiveness of our estimator in environments where

standard approaches to demand estimation yield biased results. In Section 6 we conclude.

2 Differentiated products models and IV estimation

2.1 Differentiated products models

Consider the following standard differentiated products discrete choice demand model. Con-

sumer i in market m gets the following utility from consuming one unit of product j:

uijm = x′jmβ + αpjm + ξjm + εijm, (1)

where xjm is aK×1 vector of observed product characteristics, pjm is price, ξjm is the unobserved

product quality (or demand shock) that is known to both consumers and firms but unknown to

researchers, and εijm is an idiosyncratic taste shock. Denote the demand parameter vector by

θ =
[
β′, α

]′
where β is a K × 1 vector.

Suppose there are m = 1 . . .M isolated markets that have respective market sizes Qm.16

15Genesove and Mullin (1998) also use data on marginal cost to estimate the conduct parameters of the ho-
mogenous goods oligopoly model.

16With panel data, the m index corresponds to a market-period.
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Each market has j = 0 . . . Jm products whose aggregate demand across individuals is

qjm = sjmQm,

where qjm denotes output and sjm denotes the market share. In the case of the Berry (1994)

logit demand model which assumes εijm has a logit distribution, the aggregate market share for

product j in market m is

sjm(θ) ≡ s (pm,Xm, ξm, j,θ) =
exp

(
x′jmβ + αpjm + ξjm

)
∑Jm

k=0 exp
(
x′kmβ + αpkm + ξkm

) =
exp (δjm)∑Jm
k=0 exp (δkm)

, (2)

where pm = [p0m, p1m, ..., pJmm]′ is a (Jm + 1) × 1 vector, Xm = [x0m,x1m, ...,xJmm]′ is a

(Jm + 1) × K matrix, ξm = [ξ0m, ξ1m, ..., ξJmm]′ is a (Jm + 1) × 1 vector, and δjm = x′jmβ +

αpjm + ξjm is the “mean utility” of product j. Notice from the definition of mean utility

that we can also denote the share equation by s (δ(θ), j) ≡ s (pm,Xm, ξm, j,θ) where δ(θ) =

[δ0m(θ), δ1m(θ), . . . , δJmm(θ)]′ is a Jm + 1 by 1 vector of mean utilities.

Following standard practice, we label good j = 0 as the “outside good” that corresponds

to not buying any one of the j = 1, . . . , Jm goods. We normalize the outside good’s product

characteristics, price, and demand shock to zero (e.g., x0m = 0, p0m = 0, and ξ0m = 0 for all

m), which implies δ0m(θ) = 0. This normalization, together with the logit assumption for the

distribution of εijm, identifies the level and scale of utility.

In the case of BLP, one allows the price coefficient and the coefficients on the observed

characteristics to be different for different consumers. Specifically, α has a distribution function

Fα (.;θα), where θα is the parameter vector of the distribution, and similarly, β has a distribution

function Fβ (.;θβ) with parameter vector θβ. The probability a consumer with the coefficients α

and β purchases product j is identical to that provided by the market share formula in equation
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(2). The aggregate market share is obtained by integrating over the distribution of α and β,

s (pm,Xm, ξm, j,θ) =

ˆ
α

ˆ
β

exp
(
x′jmβ + αpjm + ξjm

)
∑Jm

j=0 exp
(
x′jmβ + αpjm + ξjm

)dFβ (β;θβ) dFα (α;θα) . (3)

Often the distributions of α and each element of β are assumed to be independently normal,

implying that the parameters consist of mean and standard deviation, i.e., θα = [µα, σα]′,

θβk = [µβk, σβk]
′, k = 1, ...,K. The mean utility is then defined to be δjm = x′jmµβ+µαpjm+ξjm,

with δ0m = 0 for the outside good.

Recovering demand shocks

Given θ and data on market shares, prices and product characteristics, we can solve for the

vector δm through market share inversion. This involves finding the values of vector δm for

market m that solve s(δm,θ)− sm = 0, where sm = (s0m, s1m, ..., sJmm)′ is the observed market

share and s (δm(θ), j,θ) is the market share of firm j in the model, i.e.

s (δm(θ), j,θ)− sjm = 0, for j = 0, . . . , Jm, (4)

and therefore,

δm(θ) = s−1(sm,θ), (5)

That is, we find the vector of mean utilities that perfectly align the model’s predicted market

shares to those observed in the data.

In the context of the logit model, Berry (1994) shows we can easily recover the mean

utilities for product j using its market share and the share of the outside good as δjm(θ) =

log(sjm) − log(s0m), j = 1, . . . , Jm (with δ0m normalized to 0). In the random coefficient case,

there is no such closed form formula for market share inversion. Instead, BLP propose a contrac-
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tion mapping algorithm that recovers the unique δm(θ) that solves (5) under some regularity

conditions.

With the mean utilities in hand, recovering the structural demand shocks is straightforward,

ξjm(θ) ≡ ξ (pm,Xm, ξm, j,θ) = δjm(θ)− x′jmβ − αpjm

for the logit model. For the BLP model, we use µβ instead of β and µα instead of α as

coefficients.

IV estimation of demand

A simple regression analysis of δjm(θ) = x′jmβ + αpjm + ξjm with δjm(θ) being the dependent

variable and x′jm and pjm being the RHS variables won’t give us unbiased estimates of the price

coefficient because of the likely correlation between the product price pjm and the unobserved

product quality ξjm. Such endogeneity problem naturally arises in differentiated product markets

since firms tend to charge higher prices if their products have higher unobserved product quality.

Researchers use a variety of excluded demand instruments to overcome this issue. That is,

using the inferred values of ξjm for all products and markets, we can construct a GMM estimator

for θ by assuming the following population moment conditions are satisfied at the true value of

the demand parameters θ0: E[ξjm(θ0)zjm] = 0, where zjm is an L× 1 vector of instruments.

However, as discussed below, each type of instrument has its pitfalls. Cost shifters are often

used as price instruments. This is in line with traditional market equilibrium analysis which

identifies the demand curve from shifts in the supply curve caused by cost shifters. Popular

examples are input prices, wjm. However, one cannot rule out the possibility that the exclusion

restriction of cost shifters in the demand function does not hold. Input prices, like wages, may

affect demand of the products in the same local market through changes in consumer income.
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Changes in other input prices such as gasoline or electricity could reasonably be expected to

affect both firms’ and consumers’ choices. Even further, higher input prices may induce firms

to reduce product quality.

In instances where cost shifters are likely to satisfy exclusion restrictions, they are often

weak instruments. For example, if one assumes that input prices are exogenously determined in

some external market (such as the labor market), then all firms will face the same input prices.

Therefore, cost shifters may not have sufficient within-market variation across firms to identify

the demand parameters, especially if market fixed effects are included in demand specification.

In the absence of cost shifters, researchers often use product characteristics of rivals’ products

or market structure characteristics like the number of firms as price instruments. One naturally

would worry that these variables are endogenous with respect to unobserved demand shocks.17

A final commonly-used set of instruments is the set of prices of product j in markets other

than m (Nevo (2001); Hausman (1997)). The strength of these instruments comes from common

cost shocks for product j across markets that create cross-market correlation in product j’s

prices. These instruments are invalid, however, if there is spatial correlation in demand shocks

across markets. Regional demand shocks, for example, could generate such correlation.18

2.2 Supply

The cost of producing qjm units of product j is assumed to be a strictly increasing function of

output, L× 1 vector of input prices wjm, and a cost shock υjm. That is,

Cjm = C (qjm,wjm, υjm, τ ) , (6)

17Indeed, Crawford and Yurukoglu (2012), Fan (2013), Byrne (2014), and others have documented that product
characteristics are strategic choices made by firms that depend on demand shocks.

18Firm, market, and year fixed effects are typically included in the set of instruments when panel data are
available. So the exclusion restriction fails if the innovation in the demand shock in period t for product j is
correlated across markets.

11



where Cjm is the total cost of producing product j in market m, and τ is a cost parameter

vector. In addition, C () is assumed to be continuously differentiable and convex with respect

to output. Given this cost function and the demand model above, we can write firm j’s profit

function19 as

πjm = pjm × s (pm,Xm, ξm, j,θ)×Qm − C (s (pm,Xm, ξm, j,θ)×Qm,wjm, υjm, τ ) , (7)

We assume that firms act as differentiated products Bertrand price competitors. Therefore, the

optimal price and quantity of product j in market m is determined by the first order condition

(F.O.C.) that equates marginal revenue and marginal cost

pjm + sjm

[
∂s (pm,Xm, ξm, j,θ)

∂pjm

]−1

︸ ︷︷ ︸
MRjm

=
∂C (qjm,wjm, υjm, τ )

∂qjm︸ ︷︷ ︸
MCjm

, (8)

It follows from the inversion in (4) and the specification of mean utility δjm that ξm is a function

of Xm, pm, sm and θ. Therefore, marginal revenue is also a function of those variables. That

is,

MRjm ≡MRjm(θ) ≡MR(Xm,pm, sm, j,θ).

Cost function estimation

The above discussion implies that once the cost function is estimated, one can take the derivative

to obtain the marginal cost, and thereby identify the marginal revenue, and thus, the demand

parameters. Below, we briefly discuss the cost function estimation. Similar to the inversion

procedure in demand, the unobserved cost shock satisfies:

Cjm = C (qjm,wjm, υjm, τ )⇒ υjm(τ ) = C−1 (qjm,wjm, Cjm, τ ) . (9)

19Here, we are assuming there is one firm for each product. We will relax this later.
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As in demand estimation, there are important endogeneity concerns with standard approaches

to cost function estimation. That is, output qjm would potentially be negatively correlated with

the cost shock υjm. This would be especially troublesome for demand estimation since it is

based on the endogenous choice of output, i.e. quantity demanded. Traditionally, researchers

have either argued that the problem can be ignored20 or tried to find instruments for output.

In principle, one can estimate the cost function parameters by using the excluded demand

shifters as instruments for output. We denote the vector of cost instruments by z̃jm. We can

estimate τ assuming that the following population moments are satisfied at the true value of

the cost parameters τ 0: E [υjm(τ 0)z̃jm] = 0. This approach potentially involves issues that are

similar to the ones we discussed in applying the IV strategy to demand estimation. That is,

typical instruments such as demand shifters (e.g., market demographics) affect all firms, thus

generating insufficient within-market across-firm variation in equilibrium output for identifica-

tion. Furthermore, one cannot completely rule out the possibility of correlation between demand

shifters and the cost shock.

Instead, we jointly estimate demand and cost functions consistently with endogenous price

and output but without any instruments. Below, we discuss the basic idea behind the instrument-

free identification and estimation strategy.21

20See, for example, Arocena et al. (2012) for an application that exploits the institutional environment to
identify cost functions.

21There is literature that estimates cost or production functions under imperfect competition without instru-
ments. Examples of works are: Roeger (1995) and Klette (1999). Most of them impose restrictions on the
production function, or on the demand side, in addition to the demand model specification. For example, Roeger
(1995) assumes a constant returns to scale production function. In Klette (1999), mark-up is based on the “con-
jectured” price elasticity of demand, which is not determined endogenously from the equilibrium of the model.
Recent literature on production function estimation, such as Olley and Pakes (1996), Levinsohn and Petrin (2003),
Ackerberg, et. al. (2006) and Gandhi et. al. (2014) estimate production function in a way that is robust to the
product market structure and endogeneity of inputs, but imposes some functional form assumptions and “timing”
and other assumptions on the input and productivity processes.
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3 Instrument-free identification and estimation of the price co-

efficient

Instead of using instruments, we estimate the demand and cost parameters directly from the

first order condition of profit maximization. The following six assumptions are the main ones

needed for the identification. We begin by focusing on identification of the price coefficient and

the cost function; other assumptions will be added and discussed later as we extend our analysis

to include the other demand parameters.

Assumption 1 Researchers have data on outputs, product prices, market shares, input prices,

and observed product characteristics of firms. In addition, data on total cost are available.

Assumption 2 Marginal revenue is a function of observed product characteristics, product

prices and market shares. Marginal cost is a function of output, input prices and cost shock.

Assumption 3 The cost function is strictly increasing, continuously differentiable and strictly

convex in output, and strictly increasing and continuously differentiable in cost shock and input

price. Furthermore, the marginal cost function is strictly increasing and continuous in cost

shock.

Assumption 4 Markets are isolated. Market size is not a deterministic function of demand/supply

shocks, and/or demand/supply shifters.22

Assumption 5 Firms are profit maximizing, and set prices such that marginal cost equals

marginal revenue, taking as given their rivals’ prices.

Assumption 6 The support of the supply shock υjm is in R+ and the support of the demand

shock ξm is in RJm. However, only firms that have υjm, ξm, Xm, pm and sm such that under

22Notice that the residual variation of market size, which is independent to demand/supply shocks, and/or
demand/supply shifters, cannot be used as instruments because demand/supply shocks are not observed.
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the true parameter vector θ0, δ0 − 1 ≤
[
∂lns(Xm,pm,ξm,j,θ0)

∂lnpjm

]−1
≤ −δ0 for a small δ0 > 0, are

observed in the market. The rest of the firms are out of the market. Furthermore, for the sake

of simplicity, we assume α < 0 for the logit model and µα < 0 for the BLP random coefficient

model.23

Notice that none of these assumptions implies an instrumental variables restriction. In order

to identify the coefficient on the observed characteristics (β or µβ)we also need the following

assumption.

Assumption 7 Unobserved quality ξm is orthogonal to observed product characteristics Xm.24

It is worth noting that the orthogonality condition in Assumption 7 is not required for identifi-

cation of either the price parameters, nor for σβ.

3.1 Identification of the Logit model

Before developing our general identification results, we first present our main idea using a simple

example based on the Berry (1994) logit model of demand without measurement error in the

cost data. We then extend our analysis of identification to the BLP (1995) random coefficient

model of demand with measurement error in the cost data. Finally, we prove identification for a

nonparametric model of demand with measurement error in the cost data. Since the main issue

is identification of the coefficient on endogenous prices, we initially abstract from the treatment

of controls Xm.

23We believe Assumption 6 is often overlooked in the BLP setup. If we generate demand shocks that have
reasonably large variance and are independent to other exogenous variables and cost shocks, then even for many
parameter values with negative µα some outcomes will have market shares with positive slope with respect to
price. In effect, previous researchers may have either: (1) allowed positive slopes to happen in the data; (2)
implicitly avoided parameters that generate these anomalies; or (3) implicitly assumed that only demand shocks
that generate negative slope are selected in the data. It is clear that the latter two strategies results in bias of
the price coefficient estimate. As we will see later, since our identification and estimation strategy of the price
coefficient do not use any orthogonality conditions involving demand shocks, they not subject to this form of
selection bias. However, our estimator for β or µβ will be subject to some bias.

24One can use other instruments for the orthogonality conditions as well.
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Consider a pair of firms (Qm,wjm, sjm, pjm) and
(
Qm′ ,wj′m′ , sj′m′ , pj′m′

)
in different mar-

kets (e.g., m 6= m′) whose demand shocks are ξjm and ξj′m′ , respectively. Under the logit

specification, we their respective market shares are

sjm =
exp (αpjm + ξjm)∑Jm
k=0 exp (αpkm + ξkm)

, sj′m′ =
exp

(
αpj′m′ + ξj′m′

)∑Jm
k′=0 exp (αpk′m′ + ξk′m′)

,

where 0 < sjm < 1 and 0 < sj′m′ < 1. Lemma 1 below formalizes the source of identification

for this parametric demand model. To prove it, we need the following assumption in addition

to Assumptions 1-6.

Assumption 8 There exists a pair of observations that satisfies Qm 6= Qm′, wjm = wj′m′,

qjm = sjmQm = qj′m′ = sj′m′Qm′ and Cjm = Cj′m′.

Before stating and proving the lemma, we make one final change to our differentiated products

model from Section 2. Specifically, we drop the cost parameter vector τ as we will treat the cost

function C(·) as being nonparametric for the remainder of the paper.

Lemma 1 Suppose Assumptions 1-6 and Assumption 8 are satisfied. Then, υjm = υj′m′ and

under the logit model of demand, α is identified by

α = − 1

pjm − pj′m′

[
1

1− sjm
− 1

1− sj′m′

]
. (10)

Proof. Suppose υjm > υj′m′ . Then, from strict monotonicity of the cost function in terms of

the cost shock υ

C (qjm,wjm, υjm) = C
(
qj′m′ ,wj′m′ , υjm

)
> C

(
qj′m′ ,wj′m′ , υj′m′

)
,

contradicting Cjm = Cj′m′ . A similar contradiction obtains for υjm < υj′m′ . Therefore, υjm =
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υj′m′ . As a result, the marginal cost of the two observations is the same. That is,

MC (sjmQm,wjm, υjm) = MC
(
sj′m′Qm′ ,wj′m′ , υj′m′

)
.

Because marginal revenue equals marginal cost, for these two data points, their marginal rev-

enues must be the same. Then, in the case of logit model,

pjm +
1

(1− sjm)α
= pj′m′ +

1(
1− sj′m′

)
α
.

Since Qm 6= Qm′ , sjm 6= sj′m′ and thus, for bounded negative α, pjm 6= pj′m′ . It then follows

that α is identified from such a pair of data points as follows:

α = − 1

pjm − pj′m′

[
1

1− sjm
− 1

1− sj′m′

]
.

It is important to note that at no point do we explicitly or implicitly use market size Qm

as an instrument in identifying α. Instead, we exploit residual variation in market size that is

independent of the demand and supply shocks and/or demand and supply shifters. In other

words, for the same level of output, differences in market size imply differences in market share.

These differences can be used to separately identify the demand and cost function parameters.

Of course, in practice Assumption 8 is unrealistic. However, a similar argument can be made

for pairs that satisfy the equalities in Assumption 8 approximately.

The above example highlights the importance of the variation of market size Qm for identi-

fication. If all the data came from a single market, or from two markets with the same market

size, then qjm = qj′m′ implies sjm = sj′m′ , and thus α cannot not be identified from (10).

Two issues are likely to arise in practice with this estimation strategy. First, suppose there
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exist two pairs that satisfy Assumption 8 and each pair may provide a different estimate of α.

This would immediately lead a practitioner to conclude that the model is misspecified since, if

the model is correct, it is impossible to have two such pairs of markets that deliver different α

estimates. This issue arises because the specification of the model is too strong. According to

the model, given output and input price, cost data uniquely identify cost shocks. The second

issue with the strategy is that it is widely accepted that cost data are measured with error.25

To handle both issues, in the next assumption we explicitly introduce an additive measure-

ment error in the cost function.

Assumption 9 The observed cost of firm j in market m, Cdjm differs from the true cost Cjm

by measurement error, i.e.

Cdjm = Cjm + ηjm. (11)

Measurement error ηjm is i.i.d. distributed with mean 0 and variance σ2
η. In addition, measure-

ment error is independent of (qjm,wjm,pm, sm,Xm), for all j, m.

3.2 Pseudo cost function

We now define the pseudo-cost function, which is the core component of our new estimator.

Definition 1 A pseudo-cost function is defined to be PC(qjm,wjm,MCjm), where MCjm de-

notes the marginal cost for product j in market m.

Next, we state and prove a lemma that relates the cost function to the pseudo-cost function.

The lemma shows that given output and input prices, marginal cost, if observable, can be used

as a proxy for the cost shock. Because we assume profit maximization, we know that marginal

revenue equals marginal cost at all points in the data. Now recall from the discussion in Section

2.2 that marginal revenue can be expressed strictly as a function of demand parameters and

25For a discussion of this issue see, for example, Wang (2003)
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data. Together with the profit maximization assumption, this implies that when the demand

parameters are at their true values, marginal cost is, in effect, observable. This allows us to

relate the cost function to the pseudo-cost function in practice. The lemma formalizes this idea.

Lemma 2 Suppose that Assumptions 2, 3, 5 and 6 are satisfied. Then, C (qjm,wjm, υjm) =

PC (qjm,wjm,MRjm(θ0)) , and the pseudo-cost function is increasing and continuous in marginal

revenue.

Proof. First, we show that C (qjm,wjm, υjm) = PC (qjm,wjm,MCjm) . Note that because

MC is an increasing and continuous function of υjm given qjm and wjm, there exists an inverse

function on the domain of MC (qjm,wjm, υjm) such that υjm = υ (qjm,wjm,MCjm), where υ

is an increasing and continuous function of MC. This implies that we can use (an unspecified

function of) qjm, wjm and MCjm: υ (qjm,wjm,MCjm), to control for υjm. Substituting this

“control function” for υjm into the cost function, we obtain the pseudo-cost function from Def-

inition 1: C (qjm,wjm, υjm) = PC (qjm,wjm,MCjm) . From the F.O.C. we know that marginal

revenue must equal marginal cost when the demand parameters are at their true values, θ0. We

can therefore substitute MRjm(θ0) in for MCjm in the pseudo-cost function:

C (qjm,wjm, υjm) = PC (qjm,wjm,MCjm) = PC (qjm,wjm,MRjm(θ0)) .

Finally, because υjm is an increasing and continuous function of MCjm given qjm, wjm, and

because MRjm(θ0) = MCjm at θ0, PC is also an increasing and continuous function of MR.

This lemma allows us to use the pseudo-cost function instead of the cost function in estima-

tion. The advantage in doing so is that the former is only a function of data and parameters,

whereas the latter depends on the unobservable cost shock υ.
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3.3 Proposed estimator

We now present our estimator. It selects demand parameters to fit the pseudo-cost function to

the cost data using a nonparametric sieve regression (Chen (2007); Bierens (2014)). We thus

assume

Assumption 10 The true pseudo-cost function can be expressed as a linear function of an

infinite sequence of polynomials.

PC (qjm,wjm,MRjm(θ0)) =
∞∑
l=1

γlψl (qjm,wjm,MRjm(θ0)) , (12)

where ψ1 (·) , ψ2 (·) , . . . are the basis functions for the sieve and γ1, γ2, . . . is a sequence of their

coefficients, satisfying
∑∞

l=1 γ
2
l <∞.26

Our estimator is derived from the approximation of (12). It is useful to introduce some

additional notation before formally defining it. Let M be the number of markets, and LM

an integer that increases with M . For some bounded but sufficiently large constant T > 0,

let Γk (T ) = {πkγ : ‖πkγ‖ ≤ T} where πk is the operator that applies to an infinite sequence

γ = {γn}∞n=1
, replacing γk, k > n with zeros. The norm ‖x‖ is defined as ‖x‖ =

√∑∞
k=1 x

2
k
. We

will prove later that at the true value of θ and γ = [γ1, . . .]
′, the population distance between

the cost data and the sieve-approximated pseudo-cost function is minimized. That is

[θ0,γ0] = arg min
(θ,γ)∈Θ×Γ

E

[
Cdjm −

∑
l

γlψl (qjm,wjm,MRjm(θ))

]2

, (13)

26Suppose the vector (qjm,wjm,MRjm) comes from a compact finite dimensional Euclidean space, W. Then,
if PC (qjm,wjm,MCjm) is a continuous function overW, from the Stone-Weierstrass Theorem it follows that the
function can be approximated arbitrarily well by an infinite sequence of polynomials.
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where Θ is the demand parameter space, and Γ = limM→∞ΓLM (T ). Our estimator solves the

sample analogue of (13), given a sample of M markets:

[
θ̂M , γ̂M

]
= arg min

(θ,γ)∈Θ×ΓLM (T )

1∑
m Jm

∑
j,m

[
Cdjm −

∑
l

γlψl (qjm,wjm,MRjm (θ))

]2

. (14)

The set ΓLM (T ) makes explicit the fact that the complexity of the sieve is increasing in the

sample’s number of markets.27

3.3.1 Identification

We now prove identification of the estimator. First, we state the assumption that marginal

revenue identifies the demand function parameters.

Assumption 11 Marginal revenue identifies the demand function parameters. More concretely,

consider two firms jm and j′m′ in different markets m 6= m′ with the number of firms being Jm

and Jm′, respectively. Denote ν̃ to be the vector of the first firm’s output, input price, prices

and market shares of all firms in the same market, and ˜̃ν being the same vector of the second

firm. We assume the two firms have the same output and input price, i.e.,

ν̃ = (q,w, p̃, s̃) , ˜̃ν =
(
q,w, ˜̃p, ˜̃s

)
, ν̃ 6= ˜̃ν.

If θ 6= θ0, then there exist two such firms with outcomes ν̃ 6= ˜̃ν, that satisfy and the following

properties

27In the actual estimation exercise, the objective function can be constructed in the following 2 steps.

Step 1: Given a candidate parameter vector θ, derive the marginal revenueMRjm (θ) for each j, m, j = 1, ..., Jm,
m = 1, ...,M .

Step 2: Derive the estimates of γ̂l, l = 1, ..., LM by OLS, where the dependent variable is Cdjm and the RHS
variables are ψl (qjm,wjm,MRjm (θ)), l = 1, ..., LM . Then, construct the objective function, which is the

average of squared residuals QM (θ) = 1∑
m Jm

∑
j,m

[
Cdjm −

∑LM
l=1 γ̂lψl (qjm,wjm,MRjm (θ))

]2
.

We choose θ that minimizes the objective function QM (θ). In sum, we search for the demand parameters in an
outer loop, and find the best fitting cost function on an inner loop for each candidate set of demand parameters.
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1 q > 0, wl > 0, for l = 1, ..., L and p̃l > 0, 0 < s̃l < 1 for l = 1, ..., Jm and ˜̃pl > 0, 0 < ˜̃sl < 1,

for l = 1, .., Jm′, and 0 <
∑Jm

l=1 s̃l < 1, 0 <
∑Jm′

l=1
˜̃sl < 1.

2 MRjm(p̃, s̃,θ) = MRj′m′
(

˜̃p, ˜̃s,θ
)

and MRjm(p̃, s̃,θ0) 6= MRj′m′
(

˜̃p, ˜̃s,θ0

)
.28

3 For any open sets A including (q, w), B̃ including (p̃, s̃) and ˜̃B including
(

˜̃p, ˜̃s
)

, Prob
(
A× B̃

)
>

0, Prob
(
A× ˜̃B

)
> 0.

Proposition 1 Suppose Assumptions 1-6, 9-11 hold. Then, equation (13) identifies θ0.

Proof. See Appendix.

We have shown above that in fitting the pseudo-cost function to the cost data, we identify the

demand parameters. Notice that in the above estimation, the assumption we actually impose

is somewhat weaker than profit maximization (i.e. marginal revenue equals marginal cost). We

only require that marginal cost is an increasing function of marginal revenue.29

Our sieve NLLS approach deals with issues of endogeneity by adopting a control function

approach for the unobserved cost shock υjm. With our estimator, the right hand side of (14) is

minimized only when the demand parameters are at their true value θ0 so that the computed

28As we will see later, this is essentially equivalent to assuming nonlinearity of the marginal revenue function.
29One may argue that a more straightforward estimation strategy is to construct a pairwise differenced estimator

that pairs up firms in different markets with similar outputs, input prices, and marginal revenues. Specifically,

θ∗JM = argminθ∈Θ

∑
j,m

∑
j′,m′:(j′,m′)6=(j,m)

[(
Cdjm − Cdj′m′

)2

Wh

(
qdjm − qdj′m′ ,wjm −wj′m′ ,MRjm(θ)−MRj′m′(θ)

)]
,

where pairs are a weighted as a function of the difference in their outputs, input prices, and marginal revenues,

Wh (qjm − qj′m′ ,wjm −wj′m′ ,MRjm(θ)−MRj′m′(θ))

≡
Khq (qjm − qj′m′)Khw (wjm −wj′m′)KhMR (MRjm(θ)−MRj′m′(θ))∑

k,n

∑
k′,n′:(k′,n′)6=(k,n) Khq (qkn − qk′n′)Khw (wkn −wk′n′)KhMR (MRkn(θ)−MRk′n′(θ))

where Kh(·) is a kernel with bandwidth h. Since we are not pairing up firms with exactly the same marginal
revenues, by construction, the monotone relationship between marginal revenue and marginal cost does not always
hold within a pair, which results in a loss of efficiency for this estimator. In contrast, the sieve- based approach
is built on the assumption that the monotone relationship between marginal revenue and marginal cost holds
exactly for each firm. This additional constraint can be shown to increase efficiency. Furthermore, as we will see
later, the sieve NLLS estimator is more flexible in dealing with some practical data issues such as multi-product
firms than a pairwise differenced estimator.
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marginal revenue equals the true marginal revenue, e.g., the marginal cost, and thus works as a

control function for the supply shock υjm. If θ 6= θ0, then using the false marginal revenue adds

noise, which increases the right hand size of the sum of squared residuals in (14). In this sense,

we are adopting a pseudo-control function approach, but without any need for instruments. As

the above argument makes clear, the true demand parameter θ0 can be obtained as a by-product

of this control function approach.

3.3.2 Identification of marginal revenue

It is important to note that Assumption 11 is a high level assumption; it is not necessarily

satisfied in all demand models. For example, if marginal revenue is a linear function of θ,

then for any positive constant a > 0, if we set θ = aθ0, then, for any (p̃m, s̃m) and
(

˜̃pm, ˜̃sm

)
,

MR (p̃m, s̃m, j,θ) = MR
(

˜̃pm, ˜̃sm, j,θ
)

impliesMR (p̃m, s̃m, j,θ) = aMR (p̃m, s̃m, j,θ0), MR
(

˜̃pm, ˜̃sm, j,θ
)

=

aMR
(

˜̃pm, ˜̃sm, j,θ0

)
. Hence, MR (p̃m, s̃m, j,θ0) = MR

(
˜̃pm, ˜̃sm, j,θ0

)
. Hence, Assumption 11

is violated. The important question, then, is whether standard differentiated products demand

models satisfy Assumption 11. The lemma below answers this question.

Lemma 3 Assumption 11 is satisfied for the logit model. It holds as well as for BLP model of

demand without observed product characteristics for monopoly markets if

µα0

σα0
< − 1

2φ (0)
. (15)

Proof. See Appendix.

Inequality (15) needs to be satisfied so that there exists (p, s) that generates negative slope

of the market share with respect to price and the positive marginal revenue.30

30We have conducted extensive numerical studies, computing monopoly equilibria with different demand and
supply shocks. We could not find any price and market share combination that has both negative market share-
price slope and positive marginal revenue if the inequality is not satisfied. If it is satisfied, then, it can be shown
that the point (p, s) where s = 1/2 and p sufficiently large satisfies both conditions.
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Next, we include controls Xm into the demand model, and show that the cost data identifies

the parameters of the random coefficients on price (µα, σα), and σβ, the standard deviation of

the distribution of β.

Lemma 4 Suppose that the logit or BLP model now includes the exogenous demand controls

Xm. Assumption 11 is still satisfied for the logit model with respect to α. Assumption 11 is

satisfied for the BLP model of demand for the parameters (µα, σα) and σβ under monopoly as

well.

Proof. See Appendix.

In the proof for the BLP model, we had to rely on firms with very high prices for identification.

That is unattractive, but necessary to deal with the complexity in separately identifying the

parameters of the distribution of the random coefficients.31 As we will see later, nonparametric

identification of the marginal revenue and the market share equation does not rely on having

such firms.

Proving Assumption 11 for the BLP model for oligopoly markets is a straightforward exten-

sion of Lemma 3 and is thus omitted. It requires data that contains firms with high and similar

prices, e.g. p1m = p2m = ...pJmm = p for sufficiently high p. Despite the need for these strong

assumptions in the formal argument for parametric identification for the BLP model, we later

show with Monte-Carlo experiments that our estimator identifies the coefficients of the logit

model and the BLP model very well in datasets without such firms with high prices.

Estimating taste parameters for product characteristics

Recall that our estimator in equation (14) abstracted from having product characteristics xjm

in the demand model. Allowing for them now, we can identify β for the logit model and µβ for

31We conducted simulation exercises to see the conditions that are required to observe data are satisfied with
such high prices, i.e., the market share having negative slope with respect to price, and the marginal revenue to be
positive. What we need is that the demand shock increases with price such that the resulting monopoly market
share is not below 15 percent.
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BLP if we include additional moment conditions in our estimator that leverage the (common)

assumption that E
[
ξjm|Xm

]
= 0. Our modified estimator simply minimizes the weighted

sum of the original NLLS objective function and the GMM objective function based on the

sample analog of these orthogonality conditions between the observed and unobserved product

characteristics. That is,

[
θ̂M , γ̂M

]
= argmin(θ,γ)∈Θ×ΓLM

1∑
m Jm

∑
jm

[
Cdjm −

LM∑
l=1

γlψl (qjm,wjm,MRjm (θ))

]2

+A

[∑M
m=1

∑Jm
j=1 ξ̂jm (θ) Xm∑M

m=1

∑Jm
j=1 1

]′
WM

[∑M
m=1

∑Jm
j=1 ξ̂jm (θ) Xm∑M

m=1

∑Jm
j=1 1

]

where

WM =

 1∑M
m=1

∑Jm
j=1 1

M∑
m=1

Jm∑
j=1

ξ̂jm (θM ) XmX′mξ̂jm (θM )

−1

and A is a positive constant.

3.4 Nonparametric identification of marginal revenue function

We have so far assumed Berry (1994) logit or BLP random coefficient logit functional forms of

demand. In this section, we show that marginal revenue is nonparametrically identified, and that

the market share function can be recovered from nonparametric marginal revenue estimates. In

practice, however, identification and estimation will be subject to a Curse of Dimensionality.

This provides motivation for the use of the parametric methods described above in practice.

To simplify our discussion, we first focus on monopoly markets; this allows us to drop the j

subscript. In addition, for the sake of brevity in notation below, we will not explicitly state the

dependence of marginal revenue MR(·) and market shares s(·) on product characteristics xjm,

nor the dependence of marginal costs MC(·) on input prices wjm. After establishing nonpara-

metric identification in monopoly markets, we then discuss how the logic can be straightforwardly
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extended to oligopoly markets.

We begin by making the following auxiliary assumptions:

Assumption 12 The marginal revenue function MR(p, ξ) is strictly increasing in price. Fur-

thermore, for any two pairs of prices and market shares (p1, s1) and (p2, s2) such that s1 = s2

and p1 > p2,

MR1 > MR2,

where MRi is the marginal revenue of firm i in the pair, and MR (p, ξ) is the marginal revenue

specified as a function of price p and the demand shock ξ.

Assumption 13 The market share function s (p, ξ) is strictly decreasing and continuous in p

and strictly increasing and continuous in ξ. Furthermore,

limξ↓−∞s (p, ξ) = 0, limξ↑∞s (p, ξ) = 1 and limp↑∞s (p, ξ) = 0.

Assumption 3′ The marginal cost function is strictly increasing and continuous in υ. Further-

more, for any q > 0,

limυ↓0MC (q, υ) = 0, and limυ↑∞MC (q, υ) =∞.

Formally, we prove the following proposition:

Proposition 2 Suppose Assumptions 1, 2, 3′, 4, 5, 6 and Assumptions 9, 12 and 13 are satis-

fied. Consider data on firms with the same product characteristics x and input prices w.

a. Given q, the ordering of marginal revenue is nonparametrically identified from the cost data.

b. Suppose we have two points, (Q1, q1, p1, s1) and (Q2, q2, p2, s2), with the same demand shocks

(ξ1 = ξ2 = ξ) and cost shocks (υ1 = υ2 = υ) and different market sizes Q1 < Q2. It follows
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that

s1 > s2, p1 < p2, q1 < q2, (16)

and

p1

[
1 +

lnp2 − lnp1

lns2 − lns1

]
=
E
[
Cd| (q2, p2, s2)

]
− E

[
Cd| (q1, p1, s1)

]
q2 − q1

+O (|Q2 −Q1|) . (17)

c. Suppose we have two close points, (Q1, q1, p1, s1) and (Q2, q2, p2, s2), such that both (16) and

(17) hold. Then, the true marginal cost at at (Q1, q1, p1, s1), MC1 satisfies

MC1 =
E
[
Cd| (q2, p2, s2)

]
− E

[
Cd| (q1, p1, s1)

]
q2 − q1

+O (|Q2 −Q1|)

Part a of the Proposition clarifies the source of identification in parametric demand models

discussed earlier. The parameters of the logit and random coefficient logit models are identified

from the ordering of the marginal revenues, which in turn is identified by the ordering of the

nonparametrically derived average cost conditional on price, market share, output, observed

product characteristics, and input prices.

Parts b and c of the Proposition go further in terms of identification; they state that the

level of marginal revenue can be identified. Hence, linear marginal revenue models are now

identifiable, which was not the case if we only had the ordering of the marginal revenue as the

source of identification. Parts b and c say that if we find two nearby points with the same

xm and wm, satisfying some inequalities relating their market shares, prices and outputs, and

if the first order condition using these points is approximately satisfied, then a nonparametric

estimate of marginal cost can be computed from these points as the local slope of the average

cost, where the average is taken over the total cost conditional on output, input price, observed
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product characteristics, prices, and market shares:

M̂C1 =
E
[
Cd| (q2,w, p2, s2,x)

]
− E

[
Cd| (q1,w, p1, s1,x)

]
q2 − q1

.

In practice E
[
Cd| (q,w, p, s,x)

]
could be nonparametrically estimated in a first step. Assuming

profit maximization, we can directly obtain a nonparametric marginal revenue estimate M̂R1

from this marginal cost estimate, M̂R1 = M̂C1.32

It is fairly straightforward to see that Assumption 12 is satisfied for the logit model. For

the random coefficient logit model, we conducted an extensive numerical analysis in monopoly

markets and found that when market share is low (e.g., less than or equal to 15 percent of the

market size), sometimes marginal revenue decreases with an increase in price. Even though this

is an exceptional case of a monopolist having a very low market share, it shows that one cannot

completely rule out the possibility of Assumption 12 not being satisfied. Fortunately, it can be

tested. To do so, consider two monopoly firms whose output, market size, and market shares

are close to each other. In particular, for the point (Q1, q1, p1, s1), take another close point

(Q2, q2, p2, s2) that has the same x1 = x2 = x and w1 = w2 = w, and that satisfies Q1 = Q2,

s1 = s2 = s, hence q1 = q2, but p1 < p2. Then, if E
(
Cd|q2,w, p2, s2,x

)
> E

(
Cd|q1,w, p1, s1,x

)
,

it implies that C (q2, υ2) > C (q1, υ1), thus, υ2 > υ1, and given q1 = q2, MR1 = MC (q1, υ1) <

MC (q2, υ2) = MR2, and Assumption 12 holds. If, on the other hand, E
(
Cd|q2,w, p2, s2,x

)
≤

E
(
Cd|q1,w, p1, s1,x

)
, then MR1 = MC (q1, υ1) ≥MC (q2, υ2) = MR2 and Assumption 12 does

not hold. Therefore, by testing the hypothesis E
(
Cd|q2,w, p2, s2,x

)
> E

(
Cd|q1,w, p1, s1,x

)
,

one can test Assumption 12.

We next consider oligopoly models with J firms. We apply the same argument to firm j = 1

32Recall that with parametric identification, we only needed to assume that marginal revenue was an increasing
function of marginal cost. For Proposition 2 however, to prove nonparametric identification, we require that
marginal revenue to equal marginal cost. It is the parametric functional form restriction that helped weaken the
profit maximization assumption previously.
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in two different markets. Define s−jm and p−jm to be the market share and price vectors of

firms other than firm j in market m. As in Proposition 2, we need to find two close points in

the data, e.g. two oligopoly outcomes in different markets that are similar. We denote the first

outcome to be (Q1, q11, p11, s11, s−11,p−11)33 where q11, p11, and s11 are the quantity, price and

market share of the firm 1 in market 1, and s−11, p−11 are market share and price vectors of

firms other than 1 in market 1. We similarly define (Q2, q12, p12, s12, s−12,p−12) to be the vector

of variables of market 2. These two points are chosen to satisfy the following properties

Q1 < Q2, s11 > s12, p11 < p12, s11Q1 < s12Q2 and p−11 = p−12,

and

p11

[
1 +

lnp12 − lnp11

lns12 − lns11

]
=
E
[
Cd| (q12,p2, s2)

]
− E

[
Cd| (q11,p1, s1)

]
q12 − q11

+O (|Q2 −Q1|) .

Then, with only slight modifications to the proof of Proposition 2 for the monopoly case, we can

prove nonparametric identification of the marginal revenue function for the oligopoly case.34

3.4.1 Recovering the market share function

We can use this marginal revenue estimate to recover a non-parametric estimate of the market

share function. Denote the non-parametric marginal revenue estimate of firm 1 evaluated at

point (Xm,pm, sm) by M̂R(Xm,pm, sm, 1).35 Using the definition of marginal revenue, we can

33We again suppress Xm and wjm as we continue to condition on having firms that also have the same Xm

and wjm for these identification proofs.
34The relevant lemma, Lemma 5 and its proof are in Subsection C.2 of the Appendix.
35Notice that by conditioning on the point Xm, pm, sm, we are effectively conditioning on the demand shock

ξm as well since (recall) it perfectly rationalizes sm given Xm and pm.
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recover the derivative of the market share function at this point as

∂s(Xm,pm, sm, 1)

∂p1m
=

[
MR(Xm,pm, sm, 1)− p1m

s1m

]−1

.

A non-parametric estimate of the market share derivative around the point Xm,pm, sm for firm

1 can then be calculated as

̂∂s(X,p, s, 1)

∂p1
=
∑
m

[
M̂R(Xm,pm, sm, 1)− p1m

s1m

]−1
Kh (X−Xm,p− pm, s− sm)∑
nKh (X−Xn,p− pn, s− sn)

,

where Kh(·) is a kernel with bandwidth vector h.

We can use this non-parametric estimate of the market share derivative to recover a non-

parametric estimate of the demand function. Starting from the point X̄, p̄, s̄ (where s̄ =

s
(
X, p̄, ξ, 1

)
for some ξ), we derive the approximation of s

(
X, p̄ + ∆p, ξ, 1

)
, that is, the market

share of firm 1 with price vector p̄+ ∆p where ∆p = [∆p1m, 0, . . . , 0]′ and where ∆p1m is small.

The approximation is computed as

ŝ(X, p̄ + ∆p, ξ, 1) = s̄+
̂∂s(X, p̄, s̄, 1)

∂p

′

∆p,

where
̂∂s(X,p̄,s̄,1)
∂p =

[
̂∂s(X,p,s,1)
∂p1

, 0, . . . , 0

]′
. The market share function can be iteratively recovered

in a similar fashion, where at iteration k the share estimate at price p̄ + k∆p is

ŝ
(
X, p̄ + k∆p, ξ, 1

)
= ŝ

(
X, p̄ + (k − 1) ∆p, ξ, 1

)
+

̂∂s
(
X, p̄ + (k − 1) ∆p, s̄, 1

)
∂p

′

∆p.
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Then,

ŝ
(
X, p̄ + k∆p, ξm, 1

)
= s

(
X, p̄ + k∆p, ξ, 1

)
+

k∑
l=1

 ̂∂s
(
X, p̄ + l∆p, ξ, 1

)
∂p

−
∂s
(
X, p + l∆p, ξ, 1

)
∂p

′∆p +O
(
‖∆p‖2

) .
Therefore,

ŝ
(
X, p̄ + k∆p, ξ, 1

)
= s

(
X, p̄ + k∆p, ξ, 1

)
+O

(
k‖∆p‖2

)
+ kop (1) ‖∆p‖.

Hence, we can obtain a non-parametric market share function estimate given X and p.

3.4.2 Curse of Dimensionality

In practice, a non-parametric estimator for the demand and cost parameters based on parts b and

c of Proposition 2 will likely suffer from a Curse of Dimensionality. To implement such an esti-

mator, one would need to obtain a non-parametric estimate of E[Cdjm|(qjm,wjm,Xm,pm, sm)].

For most markets of interest, Xm will contain a number of product characteristics across a

non-negligible number of firms. This makes the dimensionality problem potentially quite severe.

Because of this dimensionality issue, in what follows we pursue the common practice where

researchers use parametric restrictions to reduce the dimensionality of the estimation problem,

essentially transforming the non-parametric estimation exercise into a semi-parametric one. In

particular, we adopt the Berry (1994) logit or BLP (1995) random coefficients demand model.

This relaxes the need to condition on the individual variables Xm,pm, sm in our pseudo-cost

function estimator: we only need to control for a single MRjm index, which is a parametric

function of these variables.
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3.5 Cost function estimation

After estimating the model’s parameters with our pseudo-cost estimator in (14), we can recover

the cost function from the marginal revenue estimates; the steps in doing so are similar to those

used in recovering of the market share function from marginal revenue.36

The cost function can be recovered from the pseudo-cost function estimates in two steps.

First, we non-parametrically estimate marginal cost for a given point (q,w, C) as follows,

M̂C (q,w, C) =
∑
jm

MRjm (θM )Wh

(
q − qjm,w −wjm, C − P̂C (qjm,wjm,MRjm (θM ) ,γM )

)

where θM is the estimated demand parameter obtained from our pseudo-cost estimator, P̂C(·)

is the predicted value of the estimated pseudo-cost function, and Wh is a kernel-based weight

function.37 Second, for a given input price w, starting at output q̄ and total cost C̄, there

exists a cost shock υ that corresponds to MC (q̄,w, ῡ) = MR.38 Knowing this, we can use the

following iteration for k = 1, . . . to recover the total cost for different levels of output given the

cost shock ῡ,

Ĉ (q̄ + k∆q,w, ῡ) = Ĉ (q̄ + (k − 1) ∆q,w, ῡ)+M̂C
(
q̄ + (k − 1) ∆q,w, Ĉ (q̄ + (k − 1) ∆q,w, ῡ)

)
∆q.

where ∆q represents a small change in quantity.39 It is important to note that this procedure

does not impose any constraints on the cost function. The additional source of information for

recovering the cost function comes from the demand side of the model.

36Marginal revenue function can be parametric as well as nonparametric.
37

Wh

(
q − qjm,w −wjm, C − P̂Cjm

)
=

Khq (q − qjm)KhW (w −wjm)KhMR

(
C − P̂Cjm

)
∑
klKhq (q − qkl)KhW (w −wkl)KhMR

(
C − P̂Ckl

) .
38We do not need to derive the value of υ, only the corresponding MR.
39In Appendix D we provide detailed instructions on how to implement this iterative procedure and recover the

cost function for a given w, starting from a given set of q̄, C̄ and MR values.
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3.6 Further issues

We have thus far worked with the standard differentiated products model from Berry (1994) and

BLP. Depending on the empirical context, however, a number a specification and data-related

issues can potentially arise. In this section, we demonstrate that with some modifications of the

NLLS part of the objective function in (14) our estimator can be adapted to various empirical

settings.

Endogenous Product Characteristics.

So far, we have followed the literature and assumed Xm to be exogenous. However, if firms

strategically choose prices and product characteristics, then elements of Xm will be correlated

with the demand shock ξm. Researchers often abstract from this possibility by assuming they

are studying a sufficiently short time horizon such that firms effectively take their product lines

as fixed and compete strictly on prices. Over longer time horizons, this assumption likely breaks

down in most markets. To accommodate endogenous product characteristics, researchers have

recently started estimating BLP models that include first order conditions for optimal prices

and product characteristics.40 To estimate the demand parameters in this setting, one needs

instruments to deal with the endogeneity of prices and product characteristics. In addition, the

typical set of “BLP instruments” for prices based on product characteristics become invalid.

That is, researchers need more instruments and have fewer options for IVs when trying to

estimate differentiated products models with endogenous product characteristics

In our framework, we can explicitly incorporate endogeneity of product characteristics by

adding the marginal revenue with respect to product characteristics choice in the pseudo-cost

40See, for example, Chu (2010), Fan (2013), and Byrne (2014). For an excellent overview of the empirical
literature on endogenous product characteristics see Crawford (2012). It is worth noting that these applications
all maintain the static decision-making assumption of BLP; firms are allowed to adjust their product characteristics
period-by-period but are not forward-looking in doing so. A recent paper by Gowrisankaran and Rysman (2012)
develops and estimates a dynamic version of a differentiated products oligopoly model, though the solution and
estimation methods are computationally burdensome.
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function as follows,

PC
(
qjm,wjm,MRqjm (θ0) ,MRXjm (θ0)

)
,

whereMRqjm is the marginal revenue with respect to quantity choice andMRXjm is the marginal

revenue with respect to the product characteristics choice. Then, the modified NLLS part would

be

1∑
m Jm

∑
j,m

[
Cdjm −

∑
l

γlψl
(
qjm,wjm,MRqjm (θ) ,MRXjm (θ)

)]2

.

Cost Function Restrictions.

We have thus far not imposed any assumptions about the shape of the pseudo-cost function

except that it is a smooth function of output, input price, and marginal revenue. Hence, the

cost function that is recovered is not guaranteed to have properties such as homogeneity of

degree one in input prices, nor convexity in output, which are required for the cost function to

be well-defined.

Imposing the restriction of homogeneity in input prices in estimation is straightforward. If

the cost function is homogenous of degree one with respect to input price, so is the marginal

cost function. Hence for some input price w1,jm,

C(qjm,wjm, υjm) = w1,jmC(qjm,
wjm

w1,jm
, υjm)

and

MC(qjm,wjm, υjm) = w1,jm
∂C(qjm,wjm/w1,jm, υjm)

∂q
.

We can thus modify the NLLS component of our pseudo-cost estimator to impose the homo-
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geneity restriction as follows,

1∑
m Jm

∑
j,m

[
Cdjm
w1,jm

−
∑
l

γlψl

(
qjm,

w−1,jm

w1,jm
,
MRjm (θ)

w1,jm

)]2

, (18)

where w−1,jm = (w2,jm, . . . , wL,jm) are all the other input prices except for input price w1,jm.

We do not, however, impose convexity in output in estimation. Rather, we follow numerous

papers in the cost function estimation literature and check that convexity is satisfied after

estimating the cost function.

Economic versus Accounting Cost

The cost data we envision using comes from the accounting statements of the firm.41 Such data

do not necessarily reflect the economic cost that the firm considers in making input and output

choices. More concretely, by imposing profit maximization, we may not be appropriately taking

into account the opportunity cost of the resources that are used in purchasing the necessary

input to produce output. Fortunately, from accounting statements we may be able to obtain

information on other activities that the firm may be pursuing in addition to the production

of an output. For example, we may find details on firms’ financial investments including their

rate of return.42 Suppose that the return on a unit of a financial investment is rjm. Then, the

opportunity cost of production is rjm and the firm will produce and sell output until marginal

revenue equals marginal cost that accounts for this cost,

MRjm (θ) = MC (qjm,wjm, υjm) + rjm.

41Indeed, accounting data are typically used in previous applications that estimate cost functions to evaluate
market power, measure economies of scale or scope, and so on.

42In the application of our estimator to U.S. banking such information is readily available. Most large industries
like banking that are subject to some form of regulatory oversight are likely to report such data. The cable TV
industry is another good example; see, for example, the data described in Kelly and Ying (2003) or Byrne (2014).
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Substituting this into our estimator, we obtain the modified NLLS part as follows:

1∑
m Jm

∑
j,m

[
Cdjm −

∑
l

γlψl (qjm,wjm,MRjm (θ)− rjm)

]2

.

That is, as long as we can obtain information on the financial opportunities that the firm has

other than production, we can incorporate them into our estimator. In such cases, the estimator

will not be subject to bias even if the cost data we use corresponds to accounting costs.

Fixed costs

So far we have implicitly assumed that the cost data corresponds to variable costs. For the more

general case where only total cost is given, our method can still be applied if we impose some

additional assumptions on the firm’s cost structure. For example, suppose there are fixed costs

that correspond to rental payments, licensee fees, and so on that vary with variables in xjmf ,

but that do not vary with qjm, wjm nor MRjm. We can modify the NLLS part of our estimator

to account for such fixed costs as follows,

1

M

∑
jm

[
Cdjm −

∑
l

γlψl (qjm,wjm,MRjm(θ))− xjmfζ

]2

,

where ζ is an additional fixed cost parameter to be estimated.

Missing cost data and multi product firms

Until now we have assumed cost data are available for all firms in the sample. In the data, it

could very well be the case that we only observe costs for some firms and not others. In that

case, we can estimate the structural parameters consistently by constructing the NLLS part

using only firms for which we have cost data. Because the NLLS part of our estimator does

not involve any instruments, only choosing firms with available cost data in estimation will not
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result in selection bias. It is important to notice, however, that we still need demand-side data

for all firms in the same market to compute the marginal revenue and the GMM part of the

objective function. Luckily, such demand-side data tends to be available to researchers for many

industries.43

A more difficult case of unobservable costs would be when firms produce multiple products,

but only the total cost across all products is observable in the data.44 Suppose that each firm

produces F outputs. Then, as long as the numbers of products is not too large (otherwise,

we would face a Curse of Dimensionality issues in estimation), the NLLS component can be

extended as follows,

1

M

∑
jm

[
Cdjm −

∑
l

γlψl (qjm,1:F ,wjm,MRj1:F (Xm1:F ,pm1:F , sm1:F ,θ))

]2

,

where qm1:F = (qm1, ..., qmF ) is the vector of output of product 1 to product F . Xm1:F , pm1:F

and sm1:F are similarly defined.

If the number of products is large, one should consider imposing more structure on the

pseudo-cost function to avoid the Curse of Dimensionality.45 Such a cost function could be

specified as:

Cdf =
∑
jm

C (qjm,wjm, υjm, τ ) Ijm (f)+ηf =
∑
jm

PC (qjm,wjm,MR (Xm,pm, sm,θ0)) Ijm (f)+ηf

where Ijm (f) is an indicator function that equals 1 if branch j in market m belongs to firm f

and 0 otherwise. Cf is the total cost of the firm that includes the cost of all branches, and ηf

is the i.i.d. distributed measurement error of firm f ’s total cost. Denoting F to be the total

43This is evidenced by the large number of applications across many industries in empirical IO the followed
Berry (1994) and BLP.

44This is practical issue for our U.S. banking application. We have total costs for a given bank in a local market,
however we do not know the individual branch-level costs for the bank within a market.

45This will likely be the case in our U.S. banking application where banks have potentially many branches in
some Metropolitan Statistical Areas.
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number of firms in the data, the NLLS component of our estimator can be modified as follows,

1

F

∑
f

Cdf −∑
jm

∑
l

γlψl (qjm,wjm,MRjm(θ)) Ijm (f)

2

.

4 Large Sample Properties

Our estimator is derived from minimizing the objective function that is the sum of two com-

ponents. The first NLLS component is sieve based, and the second component is the GMM

objective function. In the Appendix, we prove consistency and asymptotic normality of the es-

timator. These proofs are based on the asymptotic analysis of sieve estimators by Chen (2007)

and Bierens (2014), and the GMM asymptotics by Newey and McFadden (1994) and others.

5 Monte Carlo Experiments

This section presents results from some Monte-Carlo experiments that highlight the finite sample

performance of our estimator. To generate samples, we use the following random coefficients

logit demand model:

sjm(θ) =

ˆ
α

ˆ
β

exp (xjmβ + αpjm + ξjm)∑Jm
j=0 exp (xjmβ + αpjm + ξjm)

1

σα
φ

(
α− µα
σα

)
1

σβ
φ

(
β − µβ
σβ

)
dαdβ,

where we set the number of product characteristics K to be 1, and φ() is the density for the

standard normal distribution. We assume that each market has four firms that each produce

one product (e.g., J = 4). Hence consumers in each market have a choice of j = 1, . . . , 4

differentiated products or not purchasing at all (j = 0).

On the supply-side, we assume firms compete on prices ala differentiated Bertrand taking

product characteristics as exogenously given, use labor and capital inputs in production, and
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have Cobb-Douglas production functions. We further assume input prices to be the same for all

firms in a given market; the assumption is motivated by the practical reality that researchers

typically only have access to market-level aggregate cost data. Then, given output, input prices

w = [w r]′ (where w is the wage and r is the rental rate of capital) and a productivity shock,

total cost and marginal cost functions are specified as,

C (q, w, r, υ) =

[
wαcrβc

B

(
βc
αc

+
αc
βc

)
υq

] 1
αc+βc

MC (q, w, r, υ) =

[
wαcrβc

B

(
βc
αc

+
αc
βc

)
υ

] 1
αc+βc 1

αc + βc
q

1
αc+βc

−1
.

Notice that in the above specification the cost function is homogenous of degree 1 in input

prices.46

To create our Monte-Carlo samples, we generate wages, rental rates, cost shocks υ, market

size Q, the idiosyncratic component of the demand shock %ξ, and observable product character-

istics x as follows,

w ∼ TN (µw, σw) , e.g., w = µw + %w, %w ∼ TN (0, σw)

r ∼ TN (µr, σr) , e.g., r = µr + %r, %r ∼ TN (0, σr)

υ ∼ TN (µυ, συ) , e.g., υ = µυ + %υ, %υ ∼ TN (0, συ)

Q ∼ U (QL, QH) , %ξ ∼ TN (0, 1) , x ∼ TN (µx, σx) .

We draw variables from the truncated normal distribution TN (·) to ensure that the true cost

46The cost function given the Cobb-Douglas production technology is defined as

C (q, w, r, υ) = argminL,KwL+ rK subject to q = Bυ−1LαcKβc .
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function is positive and bounded, and the compactness of the set W (which recall contains

(q,w,MR)). We truncate both upper and lower 0.82 percentiles. We further assume market

size to be uniformly distributed with lower bound QL and upper bound QH .

Importantly, we specify the unobserved quality so as to allow for correlation between ξ and

input price, cost shock and market size. Specifically, we set:

ξ = δ0 + δ1%ξ + δ2%w + δ3%r + δ4%υ + δ5Φ−1

(
Q−QL
QH −QL

)

where Φ is the cumulative distribution function of the standard normal distribution. We set

δl > 0 for l = 1, ..., 5. Hence, by construction, no variable can be used as a valid instrument for

prices in demand estimation.

To solve for the equilibrium price, quantity, and market share for each monopolist, we use

golden section search on price.47 In our Monte-Carlo experiments, we explicitly solve for the

equilibrium price, market share, and quantity. Therefore, in our case, the impact of instruments

47For the oligopoly market, we compute the equilibrium for each market m as follows.

Step 1 : We generate Qm, Xm, wm, rm, υm and ξm based on the above specification.

Step 2 : For firm j in market m, given other firms’ price, market share and output p−jm, s−jm, we solve for
the optimal price pjm, market share sjm, and output qjm by using the F.O.C. of profit maximization.

MRjm = pmj +

[
∂s (pm,Xm, ξm, j,θ)

∂pjm

]−1

sjm = MCmj =
∂C (qjm, wm, rm, υjm)

∂qjm

where qjm = Qmsjm. We do so by first bracketing pjm, e.g., finding the interval pjm ∈
(
p, p
)

so that p,
and the corresponding s, q satisfies

p+

[
∂s
(
p,p−jm,Xm, ξm, j,θ

)
∂p

]−1

s <
∂C
(
q, wm, rm, υjm

)
∂q

A similar procedure for p, s, and q yields

p+

[
∂s (p,p−jm,Xm, ξm, j,θ)

∂p

]−1

s >
∂C (q, wm, rm, υjm)

∂q
.

Then, we use the bisection method to compute the equilibrium price pjm ∈
(
p, p
)

that satisfies

pjm +

[
∂s (pm,Xm, ξm, j,θ)

∂pjm

]−1

sjm =
∂C (qmj , wm, rm, υjm)

∂qjm
.

We repeat the above algorithm for each j = 1, . . . , Jm until convergence, e.g. the F.O.C. condition for
profit maximization being satisfied for each firm in market m.
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Table 1: Monte-Carlo Parameter Values
µα σα µβ σβ µX σX αc βc µw σw
2.0 0.5 1.0 0.2 1.0 0.5 0.4 0.4 2.0 0.2

µr σr µυ συ QL QH δ0 σξ A B

2.0 0.2 0.5 0.2 5.0 10.0 4.0 0.5 0.01 1.0

on the endogenous variable is highly nonlinear and heterogeneous.

Table 1 summarizes the parameter setup of the Monte-Carlo experiments. Table 2 presents

sample statistics from the corresponding simulated data where the sample size is set to 1000

market-firm observations (e.g., there are 250 local markets). We set the standard deviation of

measurement error to be 0.1, about five percent of the total cost. The parameter estimates are

obtained by the following minimization algorithm,

[
θ̂M , γ̂M

]
= argmin(θ,γ)∈Θ×ΓkM (T )

[ 1∑M
m=1 Jm

∑
jm

[
Cdjm
rm
−
∑
l

γlψl

(
qjm,

wm
rm

,
MRjm (θ)

rm

)]2

+A

[∑M
m=1

∑Jm
j=1 ξ̂jm (θ) Xm∑M

m=1

∑Jm
j=1 1

]′
WM

[∑M
m=1

∑Jm
j=1 ξ̂jm (θ) Xm∑M

m=1

∑Jm
j=1 1

]
,

where note that in estimation we restrict the cost function to be homogenous of degree one in

input price. Further, we set the weighting matrix WM to be

WM =


∑M

m=1

∑Jm
j=1

(
ξ̂jm (θ) Xm

)(
ξ̂jm (θ) Xm

)′
∑M

m=1

∑Jm
i=1 1


−1

We adopt the continuously updating GMM approach and estimate the weighting matrix WM

simultaneously with the estimation of the parameters.

In Table 3, we present the Monte-Carlo results for our NLLS-GMM estimator. We report

the mean, standard deviation, and square root of the mean squared errors (RMSE) from 100

Monte-Carlo simulation/estimation replications. From the table, we see that as sample size

increases, the standard deviation and the RMSE of the parameter estimates decrease. This
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Table 2: Sample Statistics of Simulated Data.
variables Mean Std. Dev

Price (pm) 3.3532 0.8352
Output (qm) 1.1865 0.9068
Quality (ξm) 3.9932 0.4385

Market Share (sm) 0.1578 0.1104
Wage (wm) 2.0011 0.1961
Rent (rm) 1.9842 0.1781
Cost (Cm) 1.7935 0.7600

xm 0.9791 0.4636

Measurement error std. dev.: ση = 0.1

highlights the consistency of our estimator. It is noteworthy that the means of the estimates

are quite close to their true values even with a small sample size of 100. Furthermore, since

the estimated parameter values are very close to their true values, the standard deviations and

RMSEs are very close to each other as well. Overall, these Monte-Carlo results demonstrate the

validity of our approach.48

In Table 4, we report and additional set of Monte-Carlo results where we estimate µα, σα,

and σβ by minimizing the NLLS objective function, whereas µβ is estimated by minimizing the

GMM objective function. Overall, the means of the parameter estimates are again close to their

true values, and the standard deviations and RMSEs continue to decrease with sample size.

Moreover, the standard deviations and RMSEs tend to be larger than those of the NLLS-GMM

estimates from Table 3, with the following exceptions: standard deviation and RMSE of µ̂α are

lower on average than those of the NLLS-GMM estimator for a sample size of 100, and standard

deviation and RMSE of µ̂β are lower on average than those of the NLLS-GMM estimator for a

sample size of 1,000. We conclude that the NLLS component of the estimator is sufficient for

the estimation of µα, σα, and σβ. However, the additional GMM component in the NLLS-GMM

is effective in improving efficiency, in particular the efficiency of σ̂α and σ̂β, coefficients that

determine the degree of heterogeneity and price elasticity in random coefficient models.

48Results with measurement error standard deviations larger than 0.1 are similar to the one presented, but with
larger standard deviations and RMSEs.
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Table 3: NLLS-GMM Estimator of Random Coefficient Demand Parameters.
µ̂α σ̂α

Market Size Sample Size No. Poly Mean Std. Dev RMSE Mean Std. Dev RMSE

25 100 27 -2.0264 0.5345 0.5325 0.4702 0.1271 0.1299
50 200 32 -2.0104 0.2628 0.2617 0.4978 0.0626 0.0623
100 400 38 -1.9972 0.1271 0.1265 0.4987 0.0369 0.0367
250 1000 48 -1.9986 0.0672 0.0668 0.4979 0.0194 0.0194

True -2.0000 0.5

µ̂β σ̂β Obj. Fct.

Market Size Sample Size No. Poly Mean Std. Dev RMSE Mean Std. Dev RMSE

25 100 27 0.9892 0.1633 0.1628 0.1939 0.0716 0.0715 1.737D-3
50 200 32 0.9936 0.0864 0.0862 0.1985 0.0529 0.0526 2.029D-3
100 400 38 1.0074 0.0650 0.0653 0.2023 0.0197 0.0198 2.138D-3
250 1000 48 0.9993 0.0374 0.0372 0.2017 0.0108 0.0108 2.194D-3

True 1.0000 0.2

Measurement error std. deviation: 0.1

Table 4: Two-Step Estimator of Random Coefficient Demand Parameters.
µ̂α σ̂α

Market Size Sample Size No. Poly Mean Std. Dev RMSE Mean Std. Dev RMSE

25 100 27 -2.0077 0.4924 0.4900 0.4572 0.1449 0.1504
50 200 32 -2.0289 0.2718 0.2719 0.5011 0.0774 0.0770
100 400 38 -2.0002 0.1492 0.1485 0.5025 0.0407 0.0406
250 1000 48 -1.9878 0.0874 0.0878 0.4996 0.0237 0.0236

True -2.0000 0.5

µ̂β σ̂β Obj. Fct.

Market Size Sample Size No. Poly Mean Std. Dev RMSE Mean Std. Dev RMSE

25 100 27 0.9921 0.1695 0.1688 0.1957 0.1178 0.1173 1.546D-3
50 200 32 1.0042 0.1177 0.1172 0.2031 0.0547 0.0545 1.896D-3
100 400 38 1.0103 0.0768 0.0771 0.2044 0.0404 0.0404 2.069D-3
250 1000 48 0.9974 0.0360 0.0359 0.1991 0.0203 0.0203 2.150D-3

True 1.0000 0.2

Measurement error std. deviation: 0.1

In Table 5, we present Monte-Carlo results where we estimate parameters using the stan-

dard IV approach. We use wage, rental rate and market size as instruments. We experienced

numerical instability when we used the GMM estimator from BLP for the random coefficient

model for this exercise. Since our main focus is on potential bias of the IV estimator, and not

numerical issues, we decided to instead use the simpler and numerically more stable logit model.

All parameter settings are the same as those from the BLP Monte-Carlo exercise, except for the

restriction that σα = 0 and σβ = 0 and different values for δi, i = 2, . . . , 5, which we will discuss
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Table 5: IV Estimator for Logit Demand Parameters.

α̂ β̂

Sample Size Mean Std. Dev MSE Mean Std. Dev MSE

1000 NLLS-GMMa -1.9963 0.0623 0.0621 1.0015 0.0320 0.0319

1000 IV1b -2.0163 0.1263 0.1267 1.0057 0.0451 0.0452
1000 IV2c -0.8365 0.2276 1.1853 0.6906 0.0789 0.3192

True -2.0000 1.0

a: δ2 = δ3 = δ4 = δ5 = δ1, b: δ2 = δ3 = δ4 = δ5 = 0, c: δ2 = δ3 = δ4 = δ5 = 0.3δ1

in detail later. We also change the notation and use α instead of µα and β instead of µβ to be

consistent with Berry (1994).

In the first row of the table, we show results of the NLLS-GMM estimator. We still obtain

parameter estimates that are close to their true values. The results in the second row are the

ones for the IV estimator where instruments are not correlated with the demand shock, and

thus, valid (e.g., where we set δ2 = δ3 = δ4 = δ5 = 0). We can see that means of the estimated

parameters are close to their true values, although the standard deviations are relatively large.

This is because of the inefficiency of the simple IV. In the third row, we show results where

the instruments are invalid. We first tried the specification of δ2 = δ3 = δ4 = δ5 = δ1, as in

the NLLS-GMM case. However, we faced numerical instability during estimation even for the

simple IV estimator. We then reduced the degree of endogeneity to δ2 = δ3 = δ4 = δ5 = 0.3δ1

and reported the results from this exercise. We can see that in this case the estimated price

coefficient is much higher than the true value of −2.0, e.g., we have an upward bias. The positive

direction of bias is reasonable because the error term, which is the unobserved quality, is set up

to be positively correlated with the instruments.

6 Conclusion

In this paper, we developed a new methodology for estimating demand and cost parameters of

the differentiated goods models when cost data and input prices are available, in addition to
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the standard data on aggregate market shares and prices of products. Our approach, which

exploits cost data and profit maximization of firms can, without instruments, identify demand

parameters in the presence of price endogeneity, and the cost function nonparametrically in the

presence of output endogeneity. Moreover, we have shown that the marginal revenue function

is nonparametrically identified.

As the Monte-Carlo experiments show, our method works well in situations where instru-

ments are correlated with structural unobservables in the model, and thus standard IV based

estimation methods break down.

This is the reason why the estimator proposed in this paper could be useful in policy analysis,

such as Anti-Trust cases, where governments may prefer to use the detailed cost data, which in

some cases it may have the authority to obtain via subpoena, rather than instruments, whose

choice could be a source of disagreement among various parties.

We believe that our results have implications for estimation of the models that assume

profit maximization by firms. In most empirical literature on firm behavior, researchers have

essentially used methods that are similar to the ones used in estimation of optimal behavior

of individuals. The assumption behind it is that the researcher cannot observe any data on

the objective function of individuals, i.e. their utility. On the other hand, for firms, we can

actually observe a measure of the objective function, i.e. their revenue and cost, hence, their

profit. Our results show that with data on the objective function, the exogenous variation that

is conventionally used in nonparametric identification and estimation of structural parameters

is no longer necessary.

Finally, when cost data is available, by comparing the results with cost data and without

cost data but with instruments, one could check the validity of various instruments, which would

be a useful guide on instrument choice even for industries whose cost data is not available.

45



References

Ackerberg, D. A., C. Kevin, and F. Garth (2006): “Structural Identification of Production
Functions,” Unpublished Manuscript, UCLA Economics Department.

Angrist, J. D. and J. S. Pischke (2010): “The Credibility Revolution in Empirical Eco-
nomics: How Better Research Design is Taking the Con out of Econometrics,” Journal of
Economic Perspectives, 24, 3–30.

Arocena, P., S. D. S., and T. Coelli (2012): “Vertical and Horizontal Scope Economies in
the Regulated U.S. Electricity Power Supply Industry,” Journal of Industrial Economics, 60,
434–467.

Bayer, P., F. Ferreira, and R. McMillan (2007): “A Unified Framework for Measuring
Preferences for Schools and Neighborhoods,” Journal of Political Economy, 115, 588–638.

Berry, S. T. (1994): “Estimating Discrete-Choice Models of Product Differentiation,” RAND
Journal of Economics, 25, 242–262.

Berry, S. T. and P. Haile (2014): “Identification in Differentiated Products Markets Using
Market Level Data,” Econometrica, 82, 1749–1797.

Berry, S. T., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market Equilib-
rium,” Econometrica, 63, 841–890.

——— (1999): “Voluntary Export Restraints on Automobiles: Evaluating a Strategic Trade
Policy,” American Economic Review, 89, 400–430.

Bierens, H. (2014): “Consistent and Asymptotic Normality of Sieve ML Estimators Under
Low-Level Conditions,” Econometric Theory, 30, 1021–1076.

Bresnahan, T. (1997): “Comment on Valuation of New Goods Under Perfect and Imperfect
Competition,” in The Economics of New Goods, ed. by T. Bresnahan and R. Gordon, Chicago:
University of Chicago Press, 209–248.

Byrne, D. P. (2014): “Testing Models of Differentiated Products Markets: Consolidation in
the Cable TV Industry,” International Economic Review, forthcoming.

Chen, X. (2007): “Large Sample Sieve Estimation of Semi-Nonparametric Models,” in Hand-
book of Econometrics, ed. by J. Heckman and E. Leamer, Oxford: North-Holland, 5549–5632.

Chu, C. S. (2010): “The Effect of Satellite Entry on Cable Television Prices and Product
Quality,” RAND Journal of Economics, 41, 730–764.

Clay, K. and W. Troesken (2003): “Further Tests of Static Oligopoly Models: Whiskey,
1882-1898,” Journal of Industrial Economics, 51, 151–166.

Crawford, G. S. (2012): “Accommodating Endogenous Product Choices: A Progress Report,”
International Journal of Industrial Organization, 30, 315–320.

Crawford, G. S. and A. Yurukoglu (2012): “The Welfare Effects of Bundling in Multi-
channel Television Markets,” American Economic Review, 102, 301–317.

De Loecker, J. (2011): “Product Differentiation, Multiproduct Firms, and Estimating the
Impact of Trade Liberalization on Productivity,” Econometrica, 79, 1407–1451.

46



Dube, J.-P., J. T. Fox, and C.-L. Su (2012): “Improving the Numerical Performance of
Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation,”
Econometica, 5, 2231–2267.

Fan, Y. (2013): “Ownership Consolidation and Product Characteristics: A Study of the US
Daily Newspaper Market,” American Economic Review, 103, 1598–1628.

Genesove, D. and W. P. Mullin (1998): “Testing Static Oligopoly Models: Conduct and
Cost in the Sugar Industry, 1890-1914,” RAND Journal of Economics, 29, 355–377.

Gentzkow, M. and J. M. Shapiro (2010): “What Drives Media Slant? Evidence from U.S.
Daily Newspapers,” Econometrica, 78, 35–71.

Ghandi, A., S. Navarro, and D. Rivers (2014): “On the Identification of Production
Functions: How Heterogenous is Productivity?” Journal of Political Economy, forthcoming.

Gowrisankaran, G. and M. Rysman (2012): “Dynamics of Consumer Demand for New
Durable Goods,” Journal of Political Economy, 120, 1173–1219.

Hausman, J. (1997): “Valuation of New Goods Under Perfect and Imperfect Competition,” in
The Economics of New Goods, ed. by T. Bresnahan and R. Gordon, Chicago: University of
Chicago Press, 209–248.

Houde, J. F. (2012): “Spatial Differentiation and Vertical Mergers in Retail Markets for Gaso-
line,” American Economic Review, 102, 2147–2182.

Keane, M. P. (2009): “Structural vs. Atheoretic Approaches to Econometrics,” Journal of
Econometrics, 156, 3–20.

Kelly, M. T. and J. S. Ying (2003): “On Measuring Competitive Viability and Monopoly
Power in Cable: An Empirical Cost Approach,” The Review of Economics and Statistics, 85,
962–970.

Kim, D.-W. and C. R. Knittel (2003): “Biases in Static Oligopoly Models? Evidence from
the California Electricity Market,” Journal of Industrial Economics, 54, 451–470.

Klette, J. T. (1999): “Market Power, Scale Economies and Productivity: Estimates from a
Panel of Establishment Data,” Journal of Industrial Economics, 47, 451–476.

Knittel, C. and K. Metaxoglou (2014): “Estimation of Random-Coefficient Demand Mod-
els: Two Empiricists’ Perspective,” Review of Economics and Statistics, 96, 34–59.

Kutlu, L. and R. Sickles (2012): “Estimation of Market Power in the Presence of Firm
Leven Inefficiencies,” Journal of Econometrics, 168, 141–155.

Levinsohn, J. and A. Petrin (2003): “Estimation of Production Functions Using Inputs to
Control for Unobservables,” Review of Economic Studies, 70, 317–341.

McManus, B. (2007): “Nonlinear Pricing in an Oligopoly Market: The Case of Specialty
Coffee,” Rand Journal of Economics, 38, 512–532.

Nevo, A. (2000): “Mergers with Differentiated Products: The Case of the Ready-to-Eat Cereal
Industry,” RAND Journal of Economics, 31, 395–421.

——— (2001): “Measuring Market Power in the Ready-to-Eat Cereal Industry,” Econometrica,
69, 307–342.

47



Newey, W. K. and D. L. McFadden (1994): “Large Sample Estimation and Hypothesis
Testing,” in Handbood of Econometrics, Volume 4, ed. by R. F. Engle and D. L. McFadden,
Amsterdam: Elsevier B.V., 2111–2245.

Olley, S. G. and A. Pakes (1996): “The Dynamics of Productivity in the Telecommunica-
tions Equipment Industry,” Econometrica, 64, 1263–1297.

Petrin, A. (2002): “Quantifying the Benefits of New Products: The Case of the Minivan,”
Journal of Political Economy, 110, 705–729.

Reynaert, M. and F. Verboven (2014): “Improving the Performance of Random Coefficients
Demand Models: The Role of Optimal Instruments,” Journal of Econometrics, 179, 83–98.

Roeger, W. (1995): “Can Imperfect Competition Explain the Difference between Primal and
Dual Productivity Measures? Estimates for U.S. Manufacturing,” Journal of Political Econ-
omy, 103, 316–330.

Smith, H. (2004): “Supermarket Choice and Supermarket Competition in Market Equilibrium,”
Review of Economic Studies, 71, 235–263.

Wang, C. J. (2003): “Productivity and Economies of Scale in the Production of Bank Service
Value Added,” FRB Boston Working Papers Series, 03-7.

W.K.A, A. D. (1988): “Laws of large Numbers for Dependent Non-identically Distributed
Random Variables,” Econometric Theory, 4, 458–467.

Wolfram, C. (1999): “Measuring Duopoly Power in the British Electricity Spot Market,”
American Economic Review, 89, 805–826.

48



Appendix

A Proof of Proposition 1

Proof. For each firm the observed cost is
Cdjm = Cjm + ηjm

for firm/product j in market m, and ηjm is the measurement error. Denote the sieve function of qjm, wjm and
MRjm as

ψ (qjm,wjm,MRjm(θ),γ) ≡
∞∑
l=1

γlψl (qjm,wjm,MRjm(θ)) .

Then, because of Assumption 9,

E

[(
Cdjm − ψ (qjm,wjm,MRjm(θ),γ)

)2
]

= E
[
(Cjm − ψ (qjm,wjm,MRjm(θ),γ))2]+ 2E [(Cjm − ψ (qjm,wjm,MRjm(θ),γ)) ηjm] + E

(
η2
jm

)
= E

[
(Cjm − ψ (qjm,wjm,MRjm(θ),γ))2]+ σ2

η.

From Assumption 10, there exists an infinite sequence γ0 = {γ0l}∞l=1 such that

Cjm = PC (qjm,wjm,MRjm (θ0)) = ψ (qjm,wjm,MRjm(θ0),γ0) =

∞∑
l=1

γ0lψl (qjm,wjm,MRjm (θ0)) .

Therefore,

E

[(
Cdjm −

∞∑
l=1

γ0lψl (qjm,wjm,MRjm (θ0))

)2

|qjm = q,wjm = w,MRjm (θ0)

]
= 0 + σ2

η.

From Assumption 11. 2, if θ 6= θ0,

MR (p̃m, s̃m, j,θ) = MR
(

˜̃pm, ˜̃sm, j,θ
)

MR (p̃m, s̃m, j,θ0) 6= MR
(

˜̃pm, ˜̃sm, j,θ0

)
.

Hence,
∞∑
l=1

γ0lψl (q,w,MR (p̃m, s̃m, j,θ)) =

∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃pm, ˜̃sm, j,θ

))
.

Because the true pseudo-cost function is strictly increasing in MR, MR (p̃m, s̃m, j,θ0) 6= MR
(

˜̃pm, ˜̃sm, j,θ0
)

implies
∞∑
l=1

γ0lψl (q,w,MR (p̃m, s̃m, j,θ0)) 6=
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃pm, ˜̃sm, j,θ0

))
.

Then, given γ and γ0 from continuity of pseudo-cost function with respect to marginal cost, and continuity of
marginal revenue function with respect to p and s, for sufficiently small open ball B̃ that contains (p̃m, s̃m) and
˜̃B that contains

(
˜̃pm, ˜̃sm

)
,

supb̃∈B̃

∣∣∣ψ (q,w,MR
(
b̃, j,θ

)
, γ̃
)
− ψ (q,w,MR (p̃m, s̃m, j,θ) , γ̃)

∣∣∣ < ε

16
, γ̃ = γ,γ0,

sup˜̃
b∈ ˜̃B

∣∣∣ψ (q,w,MR
(

˜̃
b, j,θ

)
, γ̃)− ψ(q,w,MR

(
˜̃pm, ˜̃sm, j,θ

)
, γ̃
)∣∣∣ < ε

16
, γ̃ = γ,γ0,

supb̃∈B̃

∣∣∣ψ (q,w,MR
(
b̃, j,θ0

)
, γ̃)− ψ(q,w,MR (p̃m, s̃m, j,θ0) , γ̃

)∣∣∣ < ε

16
, γ̃ = γ,γ0,

sup˜̃b∈ ˜̃B

∣∣∣ψ (q,w,MR
(

˜̃
b, j,θ0

)
, γ̃)− ψ(q,w,MR

(
˜̃pm, ˜̃sm, j,θ0

)
, γ̃
)∣∣∣ < ε

16
, γ̃ = γ,γ0 (19)
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are satisfied for ε such that

0 < ε <

∣∣∣∣∣
∞∑
l=1

γ0lψl (q,w,MR (p̃m, s̃m, j,θ0))−
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃pm, ˜̃sm, j,θ0

))∣∣∣∣∣ .
Then, from Assumption 11, for any b̃ ∈ B̃,

˜̃
b ∈ ˜̃B,∣∣∣∣∣

∞∑
l=1

γlψl
(
q,w,MR

(
b̃, j,θ

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

))∣∣∣∣∣ < ε

8
,

and ∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))
−
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j,θ0

))∣∣∣∣∣ > 7

8
ε.

Then,

7

8
ε <

∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))
−
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j,θ0

))∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
b̃, j,θ

))∣∣∣∣∣
+

∣∣∣∣∣
∞∑
l=1

γlψl
(
q,w,MR

(
b̃, j,θ

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

))∣∣∣∣∣
+

∣∣∣∣∣
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

))
−
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j, ,θ0

))∣∣∣∣∣ ,
implying

3

4
ε <

∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
b̃, j,θ

))∣∣∣∣∣
+

∣∣∣∣∣
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

))
−
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j,θ0

))∣∣∣∣∣ .
Hence, given b̃ ∈ B̃ and

˜̃
b ∈ ˜̃B, either

3

8
ε <

∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
b̃, j,θ

))∣∣∣∣∣
or

3

8
ε <

∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j,θ0

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

))∣∣∣∣∣
or both. Now, because of equation (19), this implies that either

1

8
ε < supb̃∈B̃

∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
b̃, j,θ

))∣∣∣∣∣
or

1

8
ε < sup˜̃

b∈ ˜̃B

∣∣∣∣∣
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j,θ0

))
−
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

))∣∣∣∣∣
or both.

This implies that either

E

[(
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))

−
∞∑
l=1

γlψl
(
qjm,wjm,MR

(
b̃, j,θ

)))2

|
(
q,w, b̃

)
∈ A× B̃

]
> 0,
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or

E

[(
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j,θ0

))

−
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

)))2

|
(
q,w,

˜̃
b
)
∈ A× ˜̃B

]
> 0,

or both. Therefore, integrating over q, w and MR, we obtain that for θ 6= θ0,

E

[(
Cjm −

∞∑
l=1

γlψl (qjm,wjm,MRjm(θ))

)2]

= E

[(
∞∑
l=1

γ0lψl (qjm,wjm,MRjm(θ0))−
∞∑
l=1

γlψl (qjm,wjm,MRjm(θ))

)2]

≥ E

[(
∞∑
l=1

γ0lψl
(
q,w,MR

(
b̃, j,θ0

))

−
∞∑
l=1

γlψl
(
qjm,wjm,MR

(
b̃, j,θ

)))2

|
(
q,w, b̃

)
∈ A× B̃

]
Prob

(
A× B̃

)
+E

[(
∞∑
l=1

γ0lψl
(
q,w,MR

(
˜̃
b, j,θ0

))

−
∞∑
l=1

γlψl
(
q,w,MR

(
˜̃
b, j,θ

)))2

|
(
q,w,

˜̃
b
)
∈ A× ˜̃B

]
Prob

(
A× ˜̃B

)
> 0

Therefore,

E

[(
Cdjm −

∞∑
l=1

γlψl (q,w,MRjm (θ))

)2]
≥ σ2

η,

with equality only holding for θ = θ0.

B Parametric Identification of marginal revenue

B.1 Proof of Lemma 3: Logit Model

Proof. It is easy to show that the Berry (1994) logit demand model satisfies Assumption 11. For the parameter
α 6= α0, pick the two firms j and j′ in two different markets m, m′ with prices pjm, pj′m′ and market shares sjm,
sj′m′ such that under α their marginal revenues are equated, i.e.

pjm +
1

(1− sjm)α
= pj′m′ +

1

(1− sj′m′)α
⇒ α = − 1

pjm − pj′m′

[
1

1− sjm
− 1

1− sj′m′

]
.

Then, for α 6= α0,

α0 6= −
1

pjm − pj′m′

[
1

1− sjm
− 1

1− sj′m′

]
,

thus,

pjm +
1

(1− sjm)α0
6= pj′m′ +

1

(1− sj′m′)α0
.

Therefore, the price coefficient satisfies Assumption 11.
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B.2 Proof of Lemma 3: BLP Model.

Proof. Next, we prove that the random coefficient BLP model also satisfies Assumption 11 in monopoly markets.
We consider the data with x = 0. Then, per period log utility component of a purchase is u = pα + ξ, where
α ∼ N (µα, σα). Consider the pair (s, p, ξ) and (s′, p′, ξ′) that satisfy the share equation. Then,

ˆ
α

exp (ξ + pα)

1 + exp (ξ + pα)

1

σα
φ

(
α− µα
σα

)
dα =

ˆ
α

exp (p (α+ ξ/p))

1 + exp (p (α+ ξ/p))

1

σα
φ

(
α− µα
σα

)
dα = s

and ˆ
α

exp (p′ (α+ ξ′/p′))

1 + exp (p′ (α+ ξ′/p′))

1

σα
φ

(
α− µα
σα

)
dα = s′

and we assume that they have the same marginal revenue:

MR = p+ p

[ˆ
α

p exp (p (α+ ξ/p))

[1 + exp (p (α+ ξ/p))]2
α

1

σα
φ

(
α− µα
σα

)
dα

]−1

s

= p′ + p′
[ˆ

α

p′ exp (p′ (α+ ξ′/p′))

[1 + exp (p′ (α+ ξ′/p′))]2
α

1

σα
φ

(
α− µα
σα

)
dα

]−1

s′.

Now, denote η = µα/σα, η0 = µα0/σα0, a (p) = ξ/ (pσα), a′ (p) = ξ′/ (p′σα), and a0 (p) = ξ/ (pσα0), a′0 (p) =
a′/ (p′σα0). Furthermore, denote α̃ = α/σα and α̃′ = α′/σα. Then, by change of variables,

ˆ
α

exp (pσα (α̃+ a (p)))

1 + exp (pσα (α̃+ a (p)))
φ (α̃− η) dα̃ = s,

ˆ
α

exp (p′σα (α̃+ a′ (p)))

1 + exp (p′σα (α̃+ a′ (p)))
φ (α̃− η) dα̃ = s′ (20)

and the marginal revenue equation becomes

MR = p+ p

[ˆ
α̃

pσα exp (pσα (α̃+ a (p)))

[1 + exp (pσα (α̃+ a (p)))]2
α̃φ (α̃− η) dα̃

]−1

s

= p′ + p′
[ˆ

α̃

p′σα exp (p′σα (α̃+ a′ (p)))

[1 + exp (p′σα (α̃+ a′ (p)))]2
α̃φ (α̃− η) dα̃

]−1

s′. (21)

Suppose Assumption 11 does not hold, then given (η, σα) and (η0, σα0) such that (η, σα) 6= (η0, σα0), for any (s, p)
and (s′, p′) such that (s, p) 6= (s′, p′) satisfying equations (20) and (21),

ˆ
α̃

exp (pσα0 (α̃+ a0 (p)))

1 + exp (pσα0 (α̃+ a0 (p)))
φ (α̃− η0) dα̃ = s,

ˆ
α̃

exp (p′σα0 (α̃+ a′0 (p)))

1 + exp (p′σα0 (α̃+ a′0 (p)))
φ (α̃− η0) dα̃ = s′ (22)

and

MR0 = p+ p

[ˆ
α̃

pσα0 exp (pσα0 (α̃+ a0 (p)))

[1 + exp (pσα0 (α̃+ a0 (p)))]2
α̃φ (α̃− η0) dα̃

]−1

s

= p′ + p′
[ˆ

α̃

p′σα0 exp (p′σα0 (α̃+ a′0 (p)))

[1 + exp (p′σα0 (α̃+ a′0 (p)))]2
α̃φ (α̃− η0) dα̃

]−1

s′. (23)

Consider first the case η0 6= η. Using integration by parts, we obtain
ˆ
α̃

exp (pσα (α̃+ a (p)))

[1 + exp (pσα (α̃+ a (p)))]
φ (α̃− η) dα̃ = 1−

ˆ
α̃

pσαexp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
Φ (α̃− η) dα̃ (24)

Then, applying Taylor series expansion of Φ (α̃− η) around −a (p), we obtain

( 24) = 1−
ˆ
α̃

pσαexp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
[Φ (−a (p)− η) + (α̃+ a (p))φ (−a (p)− η)

+
1

2
(α̃+ a (p))2 φ′ (−a (p)− η) +

1

6
(α̃+ a (p))3 φ′′ (−α (p)− η) +

1

24
(α̃+ a (p))4 φ′′′ (a∗ (α̃)− η)

]
dα̃

where a∗ (α̃) is a continuous function of α̃, and supα̃ |φ′′′ (a∗ (α̃)− η)| < B for some bounded constant B > 0.

Notice that pσαexp[pσα(α̃+a(p))]

[1+exp[pσα(α̃+a(p))]]2
is symmetric around −a (p). Hence,

ˆ
α̃

pσαexp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
(α̃+ a (p)) dα̃ =

ˆ
α̃

pσαexp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
(α̃+ a (p))3 dα̃ = 0.
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Furthermore, from the formula for the variance of the logistic function,

ˆ
α̃

pσαexp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
(α̃+ a (p))2 dα̃ =

π2

3p2

and from the fourth central moment, we can derive that∣∣∣∣ 1

24

ˆ
α̃

pσαexp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
(α̃+ a (p))4 φ′′′ (a∗ (α̃)− η) dα̃

∣∣∣∣
≤
∣∣∣∣ 1

24

ˆ
α̃

pσαexp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
(α̃+ a (p))4 Bdα̃

∣∣∣∣ ≤ BC π4

p4

(
24 − 2

)
= O

(
p−4)

where C > 0 is a constant.
Together, we obtain,

( 24) = 1− Φ (−a (p)− η)− π2

6p2
φ′ (−a (p)− η) +O

(
p−4) = s = 1− Φ (−a− η) = Φ (a+ η) .

where a = Φ−1 (s)− η = limp→∞a (p). Therefore,

− (a− a (p))φ (−a∗ (p)− η)− π2

6p2
φ′ (−a (p)− η) +O

(
p−4) = 0

where a∗ (p) is in between a and a (p). Hence,

(a− a (p)) = − φ′ (−a (p)− η)π2

6φ (−a∗ (p)− η) p2
+O

(
p−4) = O

(
p−2)

and

φ′ (−a (p)− η)

6φ (−a∗ (p)− η)
=
φ′ (−a− η)

6φ (−a− η)
− (a (p)− a)

φ′′ (−a (p)− η)

6φ (−a∗ (p)− η)
+ (a∗ (p)− a)

φ′ (−a− η)φ′ (−a∗ (p)− η)

6φ2 (−a∗ (p)− η)

+ O
(
(a (p)− a)2)+O

(
(a∗ (p)− a)

2
)

+O ((a (p)− a) (a∗ (p)− a)) =
φ′ (−a− η)

6φ (−a− η)
+O

(
p−2) .

Therefore,

(a− a (p)) = − φ
′ (−a− η)π2

6φ (−a− η) p2
+O

(
p−4)

Similarly, by applying Taylor series approximation of φ (α̃− η) with respect to α̃ around−a (p), we obtain

ˆ
α̃

pσα exp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
α̃φ (α̃− η) dα̃ =

ˆ
α̃

pσα exp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
(α̃+ a (p))φ (α̃− η) dα̃

−a (p)

ˆ
α̃

pσα exp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
φ (α̃− η) dα̃

=

ˆ
α̃

pσα exp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
[
(α̃+ a (p))φ (−a (p)− η) + (α̃+ a (p))2 φ′ (−a (p)− η)

+
1

2
(α̃+ a (p))3 φ′′ (−a (p)− η) +

1

6
(α̃+ a (p))4 φ′′′ (−a∗ (α̃)− η)

]
dα̃

−a (p)

ˆ
α̃

pσα exp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
[
φ (−a (p)− η) + (α̃+ a (p))φ′ (−a (p)− η)

+
1

2
(α̃+ a (p))2 φ′′ (−a (p)− η) +

1

6
(α̃+ a (p))3 φ′′′ (−a (p)− η) +

1

24
(α̃+ a (p))4 φ′′′′ (−a∗ (α̃)− η)

]
dα̃
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Therefore,
ˆ
α̃

pσα exp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
α̃φ (α̃− η) dα̃

= −a (p)φ (−a (p)− η) +

[
φ′ (−a (p)− η)− a (p)

2
φ′′ (−a (p)− η)

]
π2

6p2
+O

(
p−4)

= −aφ (−a− η) +

[(
−φ (−a− η) + aφ′ (−a− η)

) φ′ (−a− η)

φ (−a− η)
+ φ′ (−a− η)− a

2
φ′′ (−a− η)

]
π2

6p2

+O
(
p−4) (25)

= −aφ (−a− η) +O
(
p−2)

Therefore,

MR = p
[
1−

[(
Φ−1 (s)− η

)
φ
(
Φ−1 (s)

)
+O

(
p−2)]−1

s
]
.

Then, obtain from the data all the market shares s whose corresponding prices p satisfy p > p for a large p < P ,
and let the set of market share with such a price to be V. Then, because of Assumption 6, we need to make sure
that price derivative of market share is negative and marginal revenue is positive. Therefore, we only focus on
the parameters that satisfy η < infs∈V

[
Φ−1 (s)− 1/

(
φ
(
Φ−1 (s)

)
s
)]

. Then, there exist (s, p), and (s′, p′); s 6= s′

with p and p′ large enough satisfying those two conditions.
We pick different values of s, s′ ∈ S, and the relative prices P = p/p′ so that they satisfy the following

equation.

MR = p

[
1− s

(Φ−1 (s)− η)φ (Φ−1 (s)) +O (p−2)

]
= p′

[
1− s′

(Φ−1 (s′)− η)φ (Φ−1 (s′)) +O (p′−2)

]
. (26)

Such two points can be chosen because given the relative price P , in the above equation, both sides are roughly
constant function of p and p′ for large p and p′. Equation (26) can be rewritten as,

MR = p−
psφ−1

(
Φ−1 (s)

)
(Φ−1 (s)− η) +O (p−2)

= p′ −
p′s′φ−1

(
Φ−1 (s′)

)
(Φ−1 (s′)− η) +O (p′−2)

.

Now, consider p̃ and p̃′ such that

p̃−
p̃sφ−1

(
Φ−1 (s)

)
(Φ−1 (s)− η)

= p̃′ −
p̃′s′φ−1

(
Φ−1 (s′)

)
(Φ−1 (s′)− η)

. (27)

Denote B ≡ Φ−1 (s), B′ ≡ Φ−1 (s′), C ≡ s/φ
(
Φ−1 (s)

)
, C′ ≡ s′/φ

(
Φ−1 (s′)

)
, and P̃ = p̃′/p̃. Then,[

1− C

B − η

]
= P̃

[
1− C′

B′ − η

]
(B − η)

(
B′ − η

) (
1− P̃

)
− C

(
B′ − η

)
+ P̃C′ (B − η) = 0

η2 −
[
B +B′ − C − P̃C′

1− P̃

]
η +BB′ − CB′ − P̃C′B

1− P̃
= 0

Then,

η =
1

2

[
B +B′ − C − P̃C′

1− P̃

]
± 1

2
A, A =

√[
B +B′ − C − P̃C′

1− P̃

]2

+ 4
CB′ − P̃C′B

1− P̃
− 4BB′.

Now, set s = 1/2, hence, B = 0 and C = 1/ (2φ (0)). Then, from the assumption, it is easy to see that the slope
of market share with respect to price C/η is negative and the marginal revenue 1 +C/η is positive. In that case,

η =
1

2

[
B′ − C − P̃C′

1− P̃

]
± 1

2
A, A =

√[
B′ − C − P̃C′

1− P̃

]2

+ 4
CB′

1− P̃
.

[
1 +

C

η

]
= P̃

[
1− C′

B′ − η

]
Then, for B′ < 0 such that B′ > η close to η, C′/ (B′ − η) can be made arbitrarily large. Hence, from Intermediate
Value Theorem, one can choose s′ < s, B′ < 0 such that −C/η < C′/ (B′ − η) < 1. Then, P̃ > 1, hence
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CB′/
(

1− P̃
)
> 0. Then, if we denote

η1 =
1

2

[
B +B′ − C − P̃C′

1− P̃

]
+

1

2
A η2 =

1

2

[
B +B′ − C − P̃C′

1− P̃

]
− 1

2
A,

η1 > 0, and η2 < 0. Hence, only η2 is consistent with the negative demand curve slope. Furthermore η = η2

satisfying equation (27) can be made arbitrarily close to η satisfying equation (26). Therefore, claim holds.
Next, consider the case where η0 = η, σα0 6= σα. First, consider σα such that σα0 > σα. Suppose Assumption

11 is not satisfied. Then, consider s 6= s′, and p, p′in the data such that the following holds: Given a (p), a′ (p)
satisfying

ˆ
α̃

exp (pσα (α̃+ a (p)))

[1 + exp (pσα (α̃+ a (p)))]
φ (α̃− η) dα̃ = s

ˆ
α̃

exp (p′σα (α̃+ a′ (p)))

[1 + exp (p′σα (α̃+ a′ (p)))]
φ (α̃− η) dα̃ = s′,

then,

p+ p

[ˆ
α̃

pσα exp [pσα (α̃+ a (p))]

[1 + exp [pσα (α̃+ a (p))]]2
α̃φ (α̃− η) dα̃

]−1

s

= p′ + p′
[ˆ

α̃

p′σα exp [p′σα (α̃+ a′ (p))]

[1 + exp [p′σα (α̃+ a′ (p))]]2
α̃φ (α̃− η) dα̃

]−1

s′.

Now, because of the assumption of nonidentification, the same relationship holds for σα0 instead of σα, that is,
given a0 (p), a′0 (p) satisfying

ˆ
α̃

exp (pσα0 (α̃+ a0 (p)))

[1 + exp (pσα0 (α̃+ a0 (p)))]
φ (α̃− η) dα̃ = s

ˆ
α̃

exp (p′σα0 (α̃+ a′0 (p)))

[1 + exp (p′σα0 (α̃+ a′0 (p)))]
φ (α̃− η) dα̃ = s′,

then,

p+ p

[ˆ
α̃

pσα0 exp [pσα0 (α̃+ a0 (p))]

[1 + exp [pσα0 (α̃+ a0 (p))]]2
α̃φ (α̃− η) dα̃

]−1

s

= p′ + p′
[ˆ

α

p′σα0 exp [p′σα0 (α̃+ a′0 {p})]
[1 + exp [p′σα0 (α̃+ a′0 (p))]]2

α̃φ (α̃− η) dα̃

]−1

s′ (28)

In that case, if we define p(1) and p(1)′ such that p(1)σα = pσα0, p(1)′σα = p′σα0 then, p(1) = (σα0/σα) p > p,
p(1)′ = (σα0/σα) p′ > p′and

(28)× σα0 = p(1)σα + p(1)σα

ˆ
α̃

p(1)σα exp
[
p(1)σα (α̃+ a (p))

]
[1 + exp [p(1)σα (α̃+ a (p))]]

2 α̃φ (α̃− η) dα̃

−1

s

= p(1)′σα + p(1)′σα

ˆ p(1)′σα exp
[
p(1)′σα (α̃+ a0 (p))

]
[1 + exp [p(1)′σα (α̃+ a0 (p))]]

2 α̃φ (α− η) dα̃

−1

s′.

This way, we can generate an increasing sequence of prices
(
p(0), p(0)′

)
,
(
p(1), p(1)′

)
,...,
(
p(k), p(k)′

)
,... such
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that
(
p(0), p(0)′

)
= (p, p′),

(
p(k), p(k)′

)
=
(

(σα0/σα)k p, (σα0/σα)k p′
)

, and for any integer k ≥ 1 such that.

p(k) + p(k)

ˆ
α̃

p(k)σα exp
[
p(k)σα

(
α̃+ a(k)

)]
[1 + exp [p(k)σα (α̃− η)]]

2 α̃φ
(
α̃+ a(k)

)
dα̃

−1

s

= p(k)′ + p(k)′

ˆ
α̃

p(k)′σα exp
[
p(k)′σα

(
α̃+ a(k)′

)]
[1 + exp [p(k)′σα (α̃+ a(k)′)]]

2 α̃φ
(
α̃+ a(k)′

)
dα̃

−1

s′

p(k) + p(k)

ˆ
α̃

p(k)σα0 exp
[
p(k)σα0

(
α̃+ a

(k)
0

)]
[
1 + exp

[
p(k)σα0

(
α̃+ a

(k)
0

)]]2 α̃φ(α̃+ a
(k)
0

)
dα̃


−1

s

= p(k)′ + p(k)′

ˆ
α̃

p(k)′σα0 exp
[
p(k)′σα0

(
α̃+ a

(k)′
0

)]
[
1 + exp

[
p(k)′σα0

(
α̃+ a

(k)′
0

)]]2 α̃φ (α̃− η) dα̃


−1

s′

where a(k) satisfies ˆ
α̃

exp
(
p(k)σα

(
α̃+ a(k)

))
[1 + exp (p(k)σα (α̃+ a(k)))]

φ (α̃− η) dα̃ = s

anda
(k)
0 satisfies

ˆ
α̃

exp
(
p(k)σα0

(
α̃+ a

(k)
0

))
[
1 + exp

(
p(k)σα0

(
α̃+ a

(k)
0

))]φ (α̃− η) dα̃ = s

and a(k)′ satisfying
ˆ
α̃

exp
(
p(k)′σα

(
α̃+ a(k)′

))
[1 + exp (p(k)′σα (α̃+ a(k)′))]

φ (α̃− η) dα̃ = s′

anda
(k)′
0 satisfies

ˆ
α̃

exp
(
p(k)′σα0

(
α̃+ a

(k)′
0

))
[
1 + exp

(
p(k)′σα0

(
α̃+ a

(k)′
0

))]φ (α̃− η) dα̃ = s′

Therefore,

p(k+1)′

p(k+1)
=

1 +

[´
α̃

p(k+1)σα exp[p(k+1)σα(α̃+a(k+1))]
[1+exp[p(k+1)σα(α̃+a(k+1))]]2

α̃φ (α̃− η) dα̃

]−1

s

1 +

[´
α̃

p(k+1)′σα exp[p(k+1)′σα(α̃+a(k+1)′)]
[1+exp[p(k+1)′σα(α̃+a(k+1)′)]]2

α̃φ (α̃− η) dα̃

]−1

s′

=

1 +

[´
α̃

p(k)σα exp[p(k)σα(α̃+a(k))]
[1+exp[p(k)σα(α̃+a(k))]]2

α̃φ (α̃− η) dα̃

]−1

s

1 +

[´
α̃

p(k)′σα exp[p(k)′σα(α̃+a(k)′)]
[1+exp[p(k)′σα(α̃+a(k)′)]]2

α̃φ (α̃− η) dα̃

]−1

s′
=
p(k)′

p(k)
= ... =

p′

p
(29)

and by taking the limit,

limk→∞

1 +

[´
α̃

p(k)σα exp[p(k)σα(α̃+a(k))]
[1+exp[p(k)σα(α̃+a(k))]]2

α̃φ (α̃− η) dα̃

]−1

s

1 +

[´
α̃

p(k)′σα exp[p(k)′σα(α̃+a(k)′)]
[1+exp[p(k)′σα(α̃+a(k)′)]]2

α̃φ (α̃− η) dα̃

]−1

s′
=

1 +
[(
η − Φ−1 (s)

)
φ
(
Φ−1 (s)

)]−1
s

1 + [(η − Φ−1 (s′))φ (Φ−1 (s′))]−1 s′
=
p′

p
.

Thus, for any k

G ≡ p′

p
=

1 +
[(
η − Φ−1 (s)

)
φ
(
Φ−1 (s)

)]−1
s

1 + [(η − Φ−1 (s′))φ (Φ−1 (s′))]−1 s′
=

1 +

[´
α̃

p(k)σα exp[p(k)σα(α̃+a(k))]
[1+exp[p(k)σα(α̃+a(k))]]2

α̃φ (α̃− η) dα̃

]−1

s

1 +

[´
α̃

p(k)′σα exp[p(k)′σα(α̃+a(k)′)]
[1+exp[p(k)′σα(α̃+a(k)′)]]2

α̃φ (α̃− η) dα̃

]−1

s′
.
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Hence, if we denote

B(k) =

ˆ
α

p(k)σα exp
[
p(k)σα

(
α̃+ a(k)

)]
[1 + exp [p(k)σα (α̃+ a(k))]]

2 α̃φ (α̃− η) dα̃,

B′(k) =

ˆ
α

p′(k)σα exp
[
p′(k)σα

(
α̃+ a(k)′

)]
[1 + exp [p′(k)σα (α̃+ a(k)′)]]

2 α̃φ (α̃− η) dα̃

1 +B(k)−1s

1 +B′(k)−1s′
=

p′

p
≡ G

B′(k)s−GB(k)s′ = B(k)B′(k) (G− 1)

Now, denote B(k) = B+B
(
p(k)

)
, B′(k) = B′+B′

(
Gp(k)

)
, where B = limp→∞B (p) =

(
η − Φ−1 (s)

)
φ
(
Φ−1 (s)

)
,

B′ = limp→∞B
′ (p) =

(
η − Φ−1 (s′)

)
φ
(
Φ−1 (s′)

)
.(

B′ +B′
(
Gp(k)

))
s−G

(
B +B

(
p(k)

))
s′ =

(
B +B

(
p(k)

))(
B′ +B′

(
Gp(k)

))
(G− 1)

Because

B′s−GBs′ = BB′ (G− 1) ,

B′
(
Gp(k)

)
s−GB

(
p(k)

)
s′ =

[
BB′

(
Gp(k)

)
+B′B

(
p(k)

)
+B′

(
Gp(k)

)
B
(
p(k)

)]
(G− 1)

s−B (G− 1)

B (p(k))
=

B′ (G− 1) +Gs′

B′ (Gp(k))
+ (G− 1)

Now, from equation (25), we know that

B (p) =

[(
−φ (−a− η) + aφ′ (−a− η)

) φ′ (−a− η)

φ (−a− η)
+ φ′ (−a− η)− a

2
φ′′ (−a− η)

]
π2

6p2
+O

(
p−4)

B′ (p) =

[(
−φ
(
−a′ − η

)
+ a′φ′

(
−a′ − η

)) φ′ (−a′ − η)

φ (−a′ − η)
+ φ′

(
−a′ − η

)
− a′

2
φ′′
(
−a′ − η

)] π2

6G2p2
+O

(
p−4)

Therefore, we can write the above equation as

s−B (G− 1)

p(k)2b (p(k))
=

B′ (G− 1) +Gs′

(G2p(k)2) b′ (Gp(k))
+ (G− 1)

where

b (p) =

[(
−φ (−a− η) + aφ′ (−a− η)

) φ′ (−a− η)

φ (−a− η)
+ φ′ (−a− η)− a

2
φ′′ (−a− η)

]
π2

6
+O

(
p−2)

b′ (p) =

[(
−φ
(
−a′ − η

)
+ a′φ′

(
−a′ − η

)) φ′ (−a′ − η)

φ (−a′ − η)
+ φ′

(
−a′ − η

)
− a′

2
φ′′
(
−a′ − η

)] π2

6G2
+O

(
p−2) .

Hence,

[s−B (G− 1)] b′
(
Gp(k)

)
−

[B′ (G− 1) +Gs′] b
(
p(k)

)
G2

= (G− 1) p(k)2b′
(
Gp(k)

)
b
(
p(k)

)
Notice that B′ (G− 1) +Gs′ = B′s/B, (s−B (G− 1)) = GBs′/B′. Hence,

GBs′

B′
b′
(
Gp(k)

)
−
B′sb

(
p(k)

)
BG2

= (G− 1) p(k)2b′
(
Gp(k)

)
b
(
p(k)

)
The RHS is a linear function of p(k)2 and p(k)2O

(
p−(k)2

)
, whereas the LHS is a linear function of constant and

O
(
p−(k)2

)
. Therefore, in order for the equation to hold, either G = 1, or b′

(
Gp(k)

)
= O

(
p−(k)2

)
or b

(
p(k)

)
=

O
(
p−(k)2

)
has to hold for any large k. That is, either G = 1 (implies p(k) = p′(k)), or b′

(
Gp(k)

)
= O

(
p−(k)2

)
or b

(
p(k)

)
= O

(
p−(k)2

)
. Now, consider b

(
p(k)

)
, whose constant term is

(
−φ (−a− η) + aφ′ (−a− η)

) φ′ (−a− η)

φ (−a− η)
+ φ′ (−a− η)− a

2
φ′′ (−a− η) =

[
(a+ η)2 + 1

] a
2
φ (−a− η) ,
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which is not 0 unless φ (−a− η) = 0, i.e. a = ±∞ or a = 0. If a = ±∞, then s = Φ (a+ η) either equals 1 or 0.

If a = 0, then s = Φ (η). That is, in order for b
(
p(k)

)
= O

(
p−(k)2

)
to hold at high k, s has to be either close to

0 or 1, or close to Φ (η). Similarly for s′. Therefore, as long as both s, s′ take on values that are not close to 0,
or 1, or Φ (η), equation (29) cannot hold for large k. Therefore, for those s, s′, and p 6= p′, claim holds.

Next, consider the case for σα > σα0. Similarly, we generate a decreasing sequence of prices
(
p(0), p(0)′

)
,

(
p(1), p(1)′

)
,...,
(
p(k), p(k)′

)
,... such that

(
p(0), p(0)′

)
= (p, p′), p(k) = (σα0/σα)k p < p(k−1). Then, consider an

arbitrarily large
(
p(0), p(0)′

)
= (p, p′). Then, as before, we can show identification. Therefore, claim holds.

B.3 Proof of Lemma 4

Proof. The identification of the price coefficient α of the logit model of demand with covariates Xm is the same
as in the proof of Lemma 3. Next, consider including the observed product characteristics into the BLP random
coefficient model. Since we have shown in Lemma 3 that Assumption 11 is satisfied for µα,σα for the data with
Xm = 0, we assume that µα,σα are identified. Here, for simplicity, we assume its dimension to be one, and denote
it as X. Then,

ˆ
α

exp (ξ + pα+Xβ)

1 + exp (ξ + pα+Xβ)

1

σα
φ

(
α− µα
σα

)
1

σβ
φ

(
β − µβ
σβ

)
dαdβ =

ˆ
α

exp (ξ + p (α+AXβ))

1 + exp (ξ + p (α+AXβ))

1

σα
φ

(
α− µα
σα

)
1

σβ
φ

(
β − µβ
σβ

)
dαdβ.

Now, for identification, we choose in the data only firms whose observed control X is highly correlated with the
observed price p. That is, we choose data with X such that X = AXp for some positive constant AX . Since α and
β are assumed to be normally distributed and independent, γ = α+AXβ ∼ N (µγ , σγ), where µγ = µα +AXµβ ,

and σγ =
√
σ2
α +A2

Xσ
2
β . Similarly, we choose the other constant A′X 6= AX such that X ′ = A′Xp

′. Without loss

of generality, we assume A′X > AX ≥ 0. Then, as before, find s, s′, p and p′ such that

ˆ
α,β

exp (ξ + pα+Xβ)

1 + exp (ξ + pα+Xβ)

1

σα
φ

(
α− µα
σα

)
1

σβ
φ

(
β − µβ
σβ

)
dαdβ =

ˆ
γ

p exp (p (γ + ξ/p))

1 + exp (p (γ + ξ/p))

1

σγ
φ

(
γ − µγ
σγ

)
dγ = s.

and ˆ
γ

exp (p′ (γ + ξ′/p′))

1 + exp (p′ (γ + ξ′/p′))

1

σγ
φ

(
γ − µγ
σγ

)
dγ = s′

and if we denote σXβ = AXσβ , µXβ = AXµβ , the corresponding marginal revenue equations are:

MR = p+ p

[ˆ
γ

ˆ
α

p exp (p (γ + ξ/p))

[1 + exp (p (γ + ξ/p))]2
α

1

σα
φ

(
α− µα
σα

)
1

σXβ
φ

(
(γ − α)− µXβ

σXβ

)
dαdγ

]−1

s

= p′ + p′
[ˆ

γ

ˆ
α

p′ exp (p′ (γ + ξ′/p′))

[1 + exp (p′ (γ + ξ′/p′))]2
α

1

σα
φ

(
α− µα
σα

)
1

σX′β
φ

(
(γ − α)− µX′β

σX′β

)
dαdγ

]−1

s′

Now, we have(
α− µα
σα

)2

+

(
α+ µXβ − γ

σXβ

)2

=

(
α− µα
σα

)2

+

(
α− µα + µγ − γ

σXβ

)2

=
1

σ2
Xβ

[(
σγ
σα

(α− µα)

)2

− 2 (α− µα) (γ − µγ) + (γ − µγ)2

]

=
1

σ2
Xβ

[
σγ
σα

(α− µα)−
(
σα
σγ

)
(γ − µγ)

]2

−

[
σ2
α − σ2

γ

σ2
Xβσ

2
γ

]
(γ − µγ)2 =

σ2
γ

σ2
Xβσ

2
α

[
α− µα −

(
σα
σγ

)2

(γ − µγ)

]2

+

[
1

σ2
γ

]
(γ − µγ)2

where, if we set g (p) = ξ/ (σγp),
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ˆ
α

p exp (p (γ + ξ/p))

[1 + exp (p (γ + ξ/p))]2
α

1

σα
φ

(
α− µα
σα

)
1

σXβ
φ

(
(γ − α)− µXβ

σXβ

)
dα

= exp

(
−1

2

(
γ − µγ
σγ

)2
)

1

σασXβ

p exp (p (γ + σγg (p)))

[1 + exp (p (γ + σγg (p)))]2

ˆ
α

αexp

−1

2

α− µα −
(
σα
σγ

)2

(γ − µγ)

(σXβσα) /σγ


2 dα

=
p exp (p (γ + σγg (p)))

[1 + exp (p (γ + σγg (p)))]2
1

σγ

[
µα +

(
σα
σγ

)2

(γ − µγ)

]
exp

(
−1

2

(
γ − µγ
σγ

)2
)

Hence, for large p,

ˆ
γ

ˆ
α

p exp (p (γ + ξ/p))

[1 + exp (p (γ + ξ/p))]2
α

1

σα
φ

(
α− µα
σα

)
1

σXβ
φ

(
(γ − α)− µXβ

σXβ

)
dαdγ

=

ˆ
γ

p exp (p (γ + σγg (p)))

[1 + exp (p (γ + σγg (p)))]2
1

σγ

[
µα +

(
σα
σγ

)2

(γ − µγ)

]
exp

(
−1

2

(
γ − µγ
σγ

)2
)
dγ

=

[
µα
σγ

+

(
σα
σγ

)2

(−g (p)− ηγ)

]
exp

(
−1

2
(−g (p)− ηγ)2

)
+O

(
p−1)

=

[
µα
σγ
−
(
σα
σγ

)2

Φ−1 (s)

]
exp

(
−1

2
Φ−1 (s)2

)
+O

(
p−1) .

Furthermore, ˆ
γ

exp (pσγ (γ̃ + g (p)))

1 + exp (pσγ (γ̃ + g (p)))
φ (γ̃ − ηγ) dγ̃ = Φ (g (p) + ηγ) +O

(
p−1) = s,

where
g = limp→∞g (p) , g = Φ−1 (s)− ηγ ,

ηγ =
µγ
σγ

=
µα +AXµβ√
σ2
α +A2

Xσ
2
β

.

Now, take A′X > 0,AX = 0 and s′ = s. Then, σγ = σα. Choose large p, p′ such that the two points have the
same marginal revenue, i.e.

MR = p+ p

[[
µα
σα
− Φ−1 (s)

]
exp

(
−1

2
Φ−1 (s)2

)
+O

(
p−1)]−1

s

= p′ + p′
[[
µα
σ′γ
−
(
σα
σ′γ

)2

Φ−1 (s)

]
exp

(
−1

2
Φ−1 (s)2

)
+O

(
p′−1)]−1

s. (30)

Let ν′ = 1/σ′γ be the precision of γ′. If we define G = p′/p, then for large p, p′, the below equation is approximately
satisfied.

MR− p′

p′
[
ν′µα − σ2

αΦ−1 (s) ν′2
]
exp

(
−1

2
Φ−1 (s)2

)
= s (31)

σ2
αΦ−1 (s) ν′2 − µαν′ − sexp

(
1

2
Φ−1 (s)2

)
p′

p′ −MR
= 0

, whose RHS is a function of v′. Because the constant term is negative, LHS is negative if ν′ = 0. Therefore, if
we choose s > 1/2, Φ−1 (s) > 0, then one solution of ν′ is positive and the other negative. Because v′ has to be
positive, there is only one value that satisfies the above equation. Since ν′ = 1/σ′γ satisfying equation (31) can
be made arbitrarily close to ν′ = 1/σ′γ satisfying equation (30) by making p′arbitrarily large, σ′γ = ν′−1 > 0 is
identified. Furthermore, if s = 1/2, Φ−1 (s) = 0, then

1 + 1/

[
2µα
σα

]
= G+G/

[
2µα
σ′γ

]
holds approximately for large p, p′ and thus, σ′γ is identified in the same manner. Therefore, using data on market
share satisfying s ≥ 1/2, we can identify σβ .
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C Nonparametric Identification of Marginal Revenue.

C.1 Proof of Proposition 2

Proof.

a. Given the above model set-up, we can write the conditional expectation of the firm’s total cost as:

E
[
Cdm| (qm, pm, sm)

]
= E [Cm + ηm| (qm, pm, sm)]

= PC(qm,MR(pm, sm))

= Cm

where the first equality follows from Assumption 9, while the remaining equalities use Lemma 2 as well. Notice
also that the pseudo-cost function can be expressed as a function of q, p and s because it is a function of p, w and
MR, where w is suppressed and MR can be expressed as a function of p and s. For qm = qm′ = q it immediately
follows from Lemma 2,

MRm > MRm′ ⇔ E
[
Cd| (q, pm, sm)

]
> E

[
Cd| (q, pm′ , sm′)

]
MRm < MRm′ ⇔ E

[
Cd| (q, pm, sm)

]
< E

[
Cd| (q, pm′ , sm′)

]
and

MRm = MRm′ ⇔ E
[
Cd| (q, pm, sm)

]
= E

[
Cd| (q, pm′ , sm′)

]
.

Therefore,

MR (pm, sm) = ζ
(
q, E

[
Cd| (q, pm, sm)

])
,

where ζ is an increasing and continuous function of the second element. That is, E
[
Cd| (q, pm, sm)

]
, is the

nonparametric estimator of the relative ranking of the marginal revenue, given q.
b. Under the profit maximization assumption, MRi = MCi at both points i = 1, 2. Given Q1 < Q2, it follows
from the strict convexity of the cost function that

MR (p1, ξ) <
∂C (Q2s1, υ)

∂q
(32)

C (Q2s2, υ) is the cost function specification, where Q2s2 is the output and υ the cost shock. Furthermore,
consider s̃ such that Q2s̃ = Q1s1, which implies s̃ < s1. From Assumption 12, there exists p̃ > p1 such that
s̃ = s (p̃, ξ). Since, from Assumption 12, MR (p, ξ) is strictly increasing in p,

MR (p̃, ξ) >
∂C (Q2s̃, υ)

∂q
=
∂C (Q1s1, υ)

∂q
= MR (p1, ξ) . (33)

It follows from equations (32) and (33), and the Intermediate Value Theorem that there exists p2 > p1 and s2

such that s̃ < s2 = s (p2, ξ) < s1,

MR (p2, ξ) =
∂C (Q2s2, υ)

∂q

are satisfied. Furthermore, q1 = Q2s̃ < Q2s2 = q2. It is also straightforward to show that s2 − s1 is a continuous
function of Q2 −Q1 given ξ and υ remaining unchanged.
To complete the proof of part b. it remains to show that,

p1

[
1 +

lnp2 − lnp1

lns2 − lns1

]
=
E
[
Cd| (q2, p2, s2)

]
− E

[
Cd| (q1, p1, s1)

]
q2 − q1

+O (|Q2 −Q1|) .

It is easy to show that the first order condition for profit maximization can be re-written as,

MR1 = p1

[
1 +

(
∂lns (p1, ξ)

∂lnp

)−1
]

= MC1 =
∂C (Q1s1, υ)

∂q
,

where
(
∂lns(p1,ξ)
∂lnp

)
is the elasticity of demand. Marginal cost can be approximated using finite differences in total

costs and quantities between points 1 and 2:

∂C (Q1s1, υ)

∂q
=
C (Q2s2, υ)− C (Q1s1, υ)

Q2s2 −Q1s1
+O (|Q2s2 −Q1s1|) =

C (Q2s2, υ)− C (Q1s1, υ)

Q2s2 −Q1s1
+O (|Q2 −Q1|) .

60



Now, notice that both price p and market share s can be expressed as a function of exogenous variables (Q, ξ, υ),
i.e., p = p (Q, ξ, υ) and s = s (Q, ξ, υ), where we continue to simplify notation and suppress the dependence on
observed product characteristics x and input prices w. This is because, given p, ξ uniquely determins s, i.e.,
s = s (p, ξ). Then, given Q, q = Qs and ξ, υ uniquely determins p by,

MR = p

[
1 +

(
∂lns (p, ξ)

∂lnp

)−1
]

= MC =
∂C (q, υ)

∂q
,

Then, similarly as before, the elasticity of demand can be approximated using finite differences in prices and
market shares between points 1 and 2:(

∂lns (p1, ξ)

∂lnp

)−1

=
ln (p (Q2, ξ, υ))− ln (p (Q1, ξ, υ))

ln (s (Q2, ξ, υ))− ln (s (Q1, ξ, υ))
+O (|Q2 −Q1|) .

The last part of the proposition immediately follows from the above re-written first order condition and these two
approximations.

c. In proving the final part of the proposition, it is useful to distinguish between the true marginal cost and
its estimate. We denote the true marginal cost as

MC1 =
∂C (q1, υ1)

∂q
,

and M̂C1 as the marginal cost estimate at (q1, υ1). From the first order condition, we know that the true marginal
cost and marginal revenue are equal to each other. That is,

MC1 = MR (p1, ξ1) = p1

[
1 +

[
∂lns (p1, ξ1)

∂lnp

]−1
]
,

which can be re-arranged to obtain the following equation,(
∂lns (p1, ξ1)

∂lnp

)−1

=
MC1

p1
− 1.

Recall from our proof of part b that for sufficiently small ∆Q > 0, the points (p (Q1 + ∆Q, ξ1, υ1) , s (Q1 + ∆Q, ξ1, υ1))
satisfy the following equation,

p (Q1, ξ1, υ1)

[
1 +

ln (p (Q1 + ∆Q, ξ1, υ1))− ln (p (Q1, ξ1, υ1))

ln (s (Q1 + ∆Q, ξ1, υ1))− ln (s (Q1, ξ1, υ1))

]
= MC1 +O ((∆Q)) .

Hence,
ln (p (Q1 + ∆Q, ξ1, υ1))− ln (p (Q1, ξ1, υ1))

ln (s (Q1 + ∆Q, ξ1, υ1))− ln (s (Q1, ξ1, υ1))
=

MC1

p (Q1, ξ1, υ1)
− 1 +O ((∆Q))

Now, suppose that the estimated marginal cost is less than the true marginal cost, i.e., M̂C1 < MC1. Then,
consider a vector of price and market share (p̂, ŝ) such that ŝ = s (Q1 + ∆Q, ξ1, υ1)49 and p̂ satisfy

p (Q1, ξ1, υ1)

[
1 +

ln (p̂)− ln (p (Q1, ξ1, υ1))

ln (ŝ)− ln (s (Q1, ξ1, υ1))

]
= M̂C1.

That is,

ln (p̂)− ln (p (Q1, ξ1, υ1))

ln (ŝ)− ln (s (Q1, ξ1, υ1))
=

M̂C1

p (Q1, ξ1, υ1)
− 1 <

MC1

p (Q1, ξ1, υ1)
− 1 +O (∆Q) .

for sufficiently small ∆Q > 0. Hence, for sufficiently small ∆Q > 0, we have

ln (p̂)− ln (p (Q1, ξ1, υ1))

ln (ŝ)− ln (s (Q1, ξ1, υ1))
<
ln (p (Q1 + ∆Q, ξ1, υ1))− ln (p (Q1, ξ1, υ1))

ln (s (Q1 + ∆Q, ξ1, υ1))− ln (s (Q1, ξ1, υ1))
< 0.

Given ŝ = s (Q1 + ∆Q, ξ1, υ1) < s (Q1, ξ1, υ1) and Assumption 13, for the above inequality to hold it must follow
that p̂ > p (Q1 + ∆Q, ξ1, υ1).

We now show that there exists such pair (ŝ, p̂): specifically that there exists (ξ2, υ2) such that ŝ = s (Q1 + ∆Q, ξ2, υ2)
and p̂ = p (Q1 + ∆Q, ξ2, υ2). For that, we need to show that ξ2 satisfying ŝ = s (p̂, ξ2) and υ2 satisfying
MR (p̂, ξ2) = MC (ŝ (Q1 + ∆Q) , υ2) exist. s (p, ξ) being a continuous and decreasing function of price, and

49Since Q1 + ∆Q > Q1, s (Q1 + ∆Q, ξ1, υ1) < s (Q1, ξ1, υ1)
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p̂ > p (Q1 + ∆Q, ξ1, υ1) imply s (p̂, ξ1) < s (p (Q1 + ∆Q, ξ1, υ1) , ξ1). Since from Assumption 13, limξ↑∞s (p̂, ξ) =
1 > s (p (Q1 + ∆Q, ξ1, υ1) , ξ1), it follows from the Intermediate Value Theorem that there exists such ξ2 > ξ1.

Next, we show that there exists υ2 that equates marginal revenue to marginal cost at (p̂, ŝ). The marginal
revenue of the point (p̂, s (p̂, ξ2)) is

MR (p̂, ξ2) = p̂

[
1 +

(
∂lns (p̂, ξ2)

∂lnp

)−1
]
.

Since in Assumption 3’, we assue thatMC is an increasing and continuous function of υ, limυ↓0MC (ŝ (Q1 + ∆Q) , υ) =
0 and limυ↑∞MC (ŝ (Q1 + ∆Q) , υ) =∞, again, by Intermediate Value Theorem, we can find such υ2 that satisfies
MR (p̂, ξ2) = MC (ŝ (Q1 + ∆Q) , υ2).

Figure 1 provides an illustrative exposition of the above argument, where (p (Q1 + ∆Q, ξ2, υ2) , s (Q1 + ∆Q, ξ2, υ2))
is point F on the (incorrect) red demand curve one would infer based on the incorrect marginal cost esti-

mate. Since the inferred demand curve (in red) has a steeper slope
[̂
∂lnp
∂lns

]
) than the true demand curve

(in blue) in the figure, point F necessarily lies above the true demand curve going through point E. Because
ŝ = s (p (Q1 + ∆Q, ξ2, υ2) , ξ2) = s (p (Q1 + ∆Q, ξ1, υ1) , ξ1) and p (Q1 + ∆Q, ξ2, υ2) > p (Q1 + ∆Q, ξ1, υ1), from
Assumption 12 we know that the marginal revenue is higher at such a point (e.g., point F in the example):

MR (p (Q1 + ∆Q, ξ2, υ2) , ξ2) > MR (p (Q1 + ∆Q, ξ1, υ1) , ξ1)

The two red downward sloping lines in Figure 2 are the (true) demand curve going through point F, and its
marginal revenue curve. Furthermore,

s (Q1 + ∆Q, ξ2, υ2) (Q1 + ∆Q) = s (Q1 + ∆Q, ξ1, υ1) (Q1 + ∆Q) ≡ q1 + ∆q.

Therefore,

MR (p (Q1 + ∆Q, ξ2, υ2) , ξ2) =
∂C (q1 + ∆q, υ2)

∂q
>
∂C (q1 + ∆q, υ1)

∂q
= MR (p (Q1 + ∆Q, ξ1, υ1) , ξ1) ,

which implies that υ2 > υ1. The upward sloping red line in Figure 2 is the marginal cost curve with υ2. Therefore,

MC (q1, υ2) > MC (q1, υ1) > M̂C1

and thus, for sufficiently small ∆q > 0,

C (q1 + ∆q, υ2)− C (q1, υ1)

∆q
>
C (q1 + ∆q, υ2)− C (q1, υ2)

∆q
> M̂C1

and (C (q1 + ∆q, υ2)− C (q1, υ1)) /∆q − M̂C1 won’t converge to zero as ∆q goes to zero. Therefore, equation
(17) does not hold. The proof for the case with the estimated marginal cost is greater than the true marginal

cost (e.g., M̂C1 > MC1) follows similarly.
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Figure 2 

C.2 Nonparametric Identification of Oligopoly Marginal Revenue.

Let pm = (p1m,p−1m), where p1m is the price of firm 1 in market m and p−1m is the vector of prices of firms
other than 1. Market share and other variables of market m are denoted similarly. Market share can be expressed
as a function of price pm and the unobserved product characteristics ξm, i.e. s (pm, ξm). Let s (pm, ξm, j) be the
corresponding market share of firm j in market m. Then, marginal revenue of firm 1 can be expressed as a function
of own price p1m, price of other firms p−1m, and the vector of unobserved product (firm) characteristics ξm of all
firms in the market, i.e., MR(p1m,p−1m, ξm, 1). Here, we again suppress observed product characteristics X and
input price w. They are assumed to be the same for all markets under consideration in the following Lemma. .
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Next, we impose the following two assumptions, which are similar to Assumptions 11 and 12 for the monopoly
case.

Assumption 14 Marginal revenue is strictly increasing in own price p1m given p−1m and ξm. Furthermore,
suppose that we have two markets with (p1, s1, ξ1) and (p2, s2, ξ2), such that s11 = s12 ≡ s, p11 > p12, and
p−11 = p−12 ≡ p−1. Then,

MR1 (p11,p−1, s, s−11, ξ1, 1) > MR(p12,p−1, s, s−12, ξ2, 1).

Assumption 15 Given the price p and the unobserved quality of other firms ξ−1, market share of firm 1,
s
(
p, ξ, ξ−1, 1

)
is strictly increasing and continuous in ξ. Furthermore, given the other firms’ prices p−1 and the

unobserved characteristics ξ, market share of firm 1, s (p,p−1, ξ, 1) is strictly decreasing and continuous in p.
Furthermore,

limξ↓−∞s
(
p, ξ, ξ−1, 1

)
= 0, limξ↑∞s

(
p, ξ, ξ−1, 1

)
= 1 and limp↑∞s (p,p−1, ξ, 1) = 0.

Lemma 5 Suppose Assumptions 1,2,3’,4,5 and Assumptions 13,14 are satisfied. Then,

a. Given q, the ordering of marginal revenue is nonparametrically identified from the cost data.

b. Suppose we have two points, (Q1,q1,p1, s1) and (Q2,q2,p2, s2), with the same demand shocks (ξ1 = ξ2 = ξ),
cost shocks that satisfy υ11 = υ12 = υ, and different market sizes: Q1 < Q2. Then, there exist cost shocks
υ−11 and υ−12 that are consistent with p−11 = p−12 = p−1. Furthermore, it follows that

s11 > s12, p11 < p12, q11 < q12, (34)

and

p11

[
1 +

lnp12 − lnp11

lns12 − lns11

]
=
E
[
Cd| (q12,p2, s2)

]
− E

[
Cd| (q11,p1, s1)

]
q12 − q11

+O (|Q2 −Q1|) . (35)

50

c. Consider two close points, (Q1,q1,p1, s1) and (Q2,q2,p2, s2), such that

Q1 < Q2, s11 > s12, p11 < p12, q11 < q12, and p−11 = p−12 = p−1,

and

p11

[
1 +

lnp12 − lnp11

lns12 − lns11

]
=
E
[
Cd| (q12,p2, s2)

]
− E

[
Cd| (q11,p1, s1)

]
q12 − q11

+O (|Q2 −Q1|) .

Then, the true marginal cost at point 1, MC1 satisfies

MC1 =
E
[
Cd| (q12,p2, s2)

]
− E

[
Cd| (q11,p1, s1)

]
q12 − q11

+O (|Q2 −Q1|)

Proof.
a. The proof is the same as in Proposition 2, except for the price and market share being the vector pm, sm
instead of the scalar pm, sm.
b. Under the profit maximization assumption, MR1m = MC1m at both markets m = 1, 2. Given Q2 > Q1, it
follows from the strict convexity of the cost function,

MR (p11,p−1, ξ; 1) <
∂C (Q2s11, υ)

∂q
(36)

Furthermore, consider s̃ such that Q2s̃ = Q1s11 which implies s̃ < s11. From Assumption 14, there exists p̃ > p11

such that s̃ = s (p̃,p−1, ξ, 1). Since, from Assumption 13, MR (p,p−1, ξ, 1) is strictly increasing in p,

MR (p̃,p−1, ξ, 1) >
∂C (Q2s̃, υ)

∂q
=
∂C (Q1s11, υ)

∂q
= MR (p11,p−1, ξ, 1) . (37)

Because both marginal revenue and marginal cost functions are continuous, it follows from equations (36) and (37),
and the Intermediate Value Theorem that there exists p12 > p11 and s12 such that s̃ < s12 = s (p12,p−1, ξ, 1) < s11

and

MR (p12,p−1, ξ, 1) =
∂C (Q2s12, υ)

∂q
.

50The notation Cd (q,p, s), where q is the own firm’s (or, wlog. firm j’s) output and p, s are the vectors of
prices and market shares of all firms in the market, is valid because, suppressing w, the pseudo-cost function is
defined to be PC (q,MRj (p, s)).
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Then, q12 = Q2s12 > Q1s̃ = q11.
We also need to show that cost shocks υ−11 and υ−12 can be chosen at such level such that p−11 = p−12 = p−1

is satisfied. But this is obvious from Assumption 3’, i.e. for any j 6= 1, one can find υj1 such that

MR (p11,p−1, ξ, j) =
∂C (Q1s (p11,p−1, ξ, j) , υj1)

∂q

and similarly, one can find υj2 such that

MR (p12,p−1, ξ, j) =
∂C (Q1s (p12,p−1, ξ, j) , υj2)

∂q
.

Finally, it remains to show that,

p11

[
1 +

lnp12 − lnp11

lns12 − lns11

]
=
E
[
Cd| (q12,p2, s2)

]
− E

[
Cd| (q11,p1, s1)

]
q12 − q11

+O (|Q2 −Q1|) .

It is easy to show that the first order condition for profit maximization for firm 1 can be re-written as,

p1

[
1 +

(
∂lns (p1,p−1, ξ, 1)

∂lnp

)−1
]

= MC1 =
∂C (Q1s1, υ)

∂q
,

where

(
∂lns(p1,p−1ξ,1)

∂lnp

)
is the elasticity of demand. Further, marginal cost can be approximated using finite

differences in total costs and quantities of firm 1 in markets 1 and 2,

∂C (Q1s11, υ)

∂q
=
C (Q2s12, υ)− C (Q1s11, υ)

Q2s12 −Q1s11
+O (|Q2s12 −Q1s11|) =

C (Q2s12, υ)− C (Q1s11, υ)

Q2s12 −Q1s11
+O (|Q2 −Q1|) .

because both s11 and s12, are continuous functions of Q1, Q2, respectively. Now, we can also express price and
market share of firm 1 as functions of relevant exogenous variables (market size Q, demand shock ξ, own cost shock
υ) and the price of other firms p−1. The argument for this is similar as the one for the monopoly case. That is,
given p−1 and p, from market share equation, ξ uniquely determines s1 as a function of p by s1 = s (p,p−1, ξ, 1).
Then, given Q, q = Qs1, and υ uniquely determines q, p and s1 from the F.O.C:

p

[
1 +

(
∂lns (p,p−1, ξ, 1)

∂lnp

)−1
]

= MC1 =
∂C (q, υ)

∂q
.

To see this, suppose that for the same Q,ξ and υ, we have two values of own price p∗, p′ such that p∗ > p′ that
satify the F.O.C. Then, because marginal revenue is increasing in p, MR∗ > MR′. On the other hand, since
s∗1 < s′1, q∗ < q′, and thus, MC∗ < MC′, contradicting the F.O.C. Therefore, the elasticity of demand can be
approximated using finite differences in prices and market shares of firm 1 in markets 1 and 2,(

∂lns (p1,p−1, ξ, 1)

∂lnp

)−1

=
ln (p (Q2, ξ, υ,p−1, 1))− ln (p (Q1, ξ, υ,p−1, 1))

ln (s (Q2, ξ, υ,p−1, 1))− ln (s (Q1, ξ, υ,p−1, 1))
+O (|Q2 −Q1|) .

The last part of the proposition immediately follows from the above re-written first order condition and these two
approximations.
c. In proving the final part of the proposition it is useful to distinguish between the true marginal cost and its
estimate. Denote the true marginal cost as

MC1 =
∂C (q11, υ1)

∂q11
,

and let M̂C1 be the marginal cost estimate at (q11, υ1). From the first order condition we know that true marginal
cost and marginal revenue must be equal

MC1 = MR (p11,p−1, ξ1, 1) = p11

[
1 +

∂lns (p11,p−1, ξ1, 1)

∂lnp11

]−1

,

which can be re-arranged to obtain the following equation,(
∂lns (p11,p−1, ξ1, 1)

∂lnp11

)−1

=
MC1

p11
− 1.
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Recall from our proof of part b that for sufficiently small ∆Q > 0, the points (p (Q1 + ∆Q, ξ1, υ11,p−1, 1) , s (Q1 + ∆Q, ξ1, υ11,p−1, 1))
satisfy the following equation,

p (Q1, ξ1, υ11,p−1, 1)

[
1 +

ln (p (Q1 + ∆Q, ξ1, υ11,p−1, 1))− ln (p (Q1, ξ1, υ11,p−1, 1))

ln (s (Q1 + ∆Q, ξ1, υ11,p−1, 1))− ln (s (Q1, ξ1, υ11,p−1, 1))

]
= MC1 +O ((∆Q)) .

Hence,

ln (p (Q1 + ∆Q, ξ1, υ11,p−1, 1))− ln (p (Q1, ξ1, υ11,p−1, 1))

ln (s (Q1 + ∆Q, ξ1, υ11,p−1, 1))− ln (s (Q1, ξ1, υ11,p−1, 1))
=

MC1

p (Q1, ξ1, υ11,p−1, 1)
− 1 +O ((∆Q))

Now, suppose that the estimated marginal cost for firm 1 is less than the true marginal cost, i.e., M̂C1 < MC1.
Then, consider a vector of price and market share (p̂, ŝ) such that ŝ = s (Q1 + ∆Q, ξ1, υ11,p−1, 1) and p̂ satisfies

p (Q1, ξ1, υ11,p−1, 1)

[
1 +

ln (p̂)− ln (p (Q1, ξ1, υ11,p−1, 1))

ln (ŝ)− ln (s (Q1, ξ1, υ11,p−1, 1))

]
= M̂C1.

ln (p̂)− ln (p (Q1, ξ1, υ11,p−1, 1))

ln (ŝ)− ln (s (Q1, ξ1, υ11,p−1, 1))
=

M̂C1

p (Q1, ξ1, υ11,p−1, 1)
− 1 <

MC1

p (Q1, ξ1, υ11,p−1, 1)
− 1 +O (∆Q) .

Hence, for sufficiently small ∆Q > 0, we have

ln (p̂)− ln (p (Q1, ξ1, υ11,p−1, 1))

ln (ŝ)− ln (s (Q1, ξ1, υ11,p−1, 1))
<
ln (p (Q1 + ∆Q, ξ1, υ11,p−1, 1))− ln (p (Q1, ξ1, υ11,p−1, 1))

ln (s (Q1 + ∆Q, ξ1, υ11,p−1, 1))− ln (s (Q1, ξ1, υ11,p−1, 1))
< 0.

Given ŝ = s (Q1 + ∆Q, ξ1, υ11,p−1, 1) < s (Q1, ξ1, υ11,p−1, 1), for the above inequality to hold, it must follow
that p̂ > p (Q1 + ∆Q, ξ1, υ11,p−1, 1).
We now show that there exists such pair (ŝ, p̂), specifically that there exists (ξ2,υ2) such that ξ12 > ξ11, ξ−12 =
ξ−11, and ŝ = s (Q1 + ∆Q, ξ2, υ12,p−1, 1), p̂ = p (Q1 + ∆Q, ξ2, υ12,p−1, 1). s (p, ξ,p−1, 1) being a continuous and
decreasing function of price and p̂ > p (Q1 + ∆Q, ξ1, υ11,p−1, 1) implies s (p̂, ξ1,p−1, 1) < s (p (Q1 + ∆Q, ξ1, υ11,p−1, 1) , ξ1,p−1, 1).
Since s

(
p, ξ, ξ−1,p−1, 1

)
is continuous in ξ and limξ↑∞s

(
p̂, ξ, ξ−12,p−1, 1

)
= 1 > s (p (Q1 + ∆Q, ξ1, υ11,p−1, 1) , ξ1,p−1, 1),

it follows from the Intermediate Value Theorem that there exists such ξ2.
Next, we show that there exists υ2 that equates marginal revenue to marginal cost. The marginal revenue of

the point (p̂, s (p̂, ξ2) ,p−1, 1) is

MR (p̂, ξ2,p−1, 1) = p̂

[
1 +

(
∂lns (p̂, ξ2,p−1, 1)

∂lnp

)−1
]
.

SinceMC is an increasing and continuous function of υ and limυ↓0MC (ŝ (Q1 + ∆Q) , υ) = 0 and limυ↑∞MC (ŝ (Q1 + ∆Q) , υ) =
∞, from Intermediate Value Theorem, there exists υ12 that satisfies

MR (p̂, ξ2,p−1, 1) = MC (ŝ (Q1 + ∆Q) , υ12) ,

Similarly, we can show that there exists υj2, j 6= 1 such that

MR (p̂,p−1, ξ2, j) =
∂C (Q1s (p̂,p−1, ξ2, j) , υj2)

∂q
.

Because ŝ = s (Q1 + ∆Q, ξ2, υ12,p−1, 1) = s (Q1 + ∆Q, ξ1, υ11,p−1, 1) and p̂ = p (Q1 + ∆Q, ξ2, υ12,p−1, 1) >
p (Q1 + ∆Q, ξ1, υ11,p−1, 1), from Assumption 13 we know that the marginal revenue is higher for firm 1 in
market 2:

MR (p (Q1 + ∆Q, ξ2, υ12,p−1, 1) , ξ2,p−1, 1) > MR (p (Q1 + ∆Q, ξ1, υ11,p−1, 1) , ξ1,p−1, 1)

Furthermore,

s ((Q1 + ∆Q, ξ2, υ12,p−1, 1) , ξ2,p−1, 1) (Q1 + ∆Q) = s (Q1 + ∆Q, ξ1, υ11,p−1, 1) (Q1 + ∆Q) ≡ q11 + ∆q1.

where q11 ≡ s11Q1. Therefore,

∂C(q11+∆q1,υ12)
∂q

= MR (p (Q1 + ∆Q, ξ2, υ12,p−1, 1) , ξ2,p−1, 1)

> MR (p (Q1 + ∆Q, ξ1, υ11,p−1, 1) , ξ1,p−1, 1) = ∂C(q11+∆q1,υ11)
∂q

,
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which implies that υ12 > υ11. Therefore,

MC (q11, υ12) > MC (q11, υ11) > M̂C1

and thus, for sufficiently small ∆q1 > 0,

C (q11 + ∆q1, υ12)− C (q11, υ11)

∆q1
>
C (q11 + ∆q1, υ12)− C (q11, υ12)

∆q1
> M̂C1

and (C (q11 + ∆q1, υ12)− C (q11, υ11)) /∆q1−M̂C1 won’t converge to zero as ∆q1 goes to zero. Therefore, equation
(35) does not hold. The proof for the case with the estimated marginal cost is greater than the true marginal

cost (e.g., M̂C1 > MC1) follows similarly.

D Semi-Parametric Cost Function Estimation.

Once we have estimated the market share parameters, we can use the recovered marginal revenue and the pseudo-
cost function to nonparametrically reconstruct the cost function. We do so in 3 steps, where we extensively use
the supply-side F.O.C.’s and estimated marginal revenue.

Step 1

Suppose that we already estimated the pseudo-cost function P̂C (q,w,MR, γ̂M ) . Then, we can derive the non-
parametric pseudo-marginal cost function as follows:

M̂C (q,w, C) =
∑
jm

MR
(
Xm,pm, sm, j, θ̂M

)
Wh

(
q − qjm,w −wjm, C − P̂C

(
qjm,wjm,MRjm

(
θ̂M
)
, γ̂M

))
where the weight function is

Wh

(
q − qjm,w −wjm, C − P̂Cjm

)
=

Khq (q − qjm)KhW (w −wjm)KhMR

(
C − P̂Cjm

)
∑
klKhq (q − qkl)KhW (w −wkl)KhMR

(
C − P̂Ckl

) .
MR

(
Xm,pm, sm, j, θ̂M

)
can be both parametric or nonparametric.

Step 2

Start with an input price, output and (true) cost triple w, q̄, and C̄. Then, there exists a cost shock ῡ that

corresponds to M̄R = M̂C
(
q̄,w, C̄

)
= MC (q̄,w ¯, υ). Notice that we cannot derive the value of ῡ because we

have not constructed the cost function yet. For small ∆q, the cost estimate for output q̄+ ∆q, input price w and
the same cost shock ῡ is

Ĉ (q̄ + ∆q,w, ῡ) = C̄ + M̄R∆q.

Then, from the consistency of the marginal revenue estimator (which we will prove later) and the Taylor series
expansion,

Ĉ (q̄ + ∆q,w, ῡ) = C (q̄ + ∆q,w, ῡ) + M̄R∆q +O
(
(∆q)2)+ op (1) ∆q.

At iteration k¿1, given Ĉk−1 = Ĉ (q̄ + (k − 1) ∆q,w, ῡ)

Ĉ (q̄ + k∆q,w, ῡ) = Ĉk−1 + M̂C
(
q̄ + (k − 1) ∆q,w, Ĉk−1

)
∆q.

Thus, from Taylor expansion, we know that for any k > 0,

Ĉ (q̄ + k∆q,w, ῡ) = C (q̄ + k∆q,w, ῡ) +O
(
k (∆q)2)+ kop (1) ∆q

Thus, we can derive the approximate cost function for given input price w̄ and quantity q

Step 3

Next we derive the nonparametric estimate of the input demand. Denote l (q,w, C) to be the vector of input
demand given output q, input price w and cost C. Then, its nonparametric estimate is:

l̂ (q,w, C) =
∑
jm

ljmWh

(
q − qjm,w −wjm, C − P̂C

(
qjm,wjm,MRjm

(
θ̂M
)
, γ̂M

))
.
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where ljm is the vector of inputs of firm j in market m. Notice that from Shepard’s Lemma,

l =
∂C (q,w, υ)

∂w

Start, as before, with q̄, w, and C̄. Next, we derive the cost for the output q̄, w + ∆w for small ∆w that has the
same cost shock ῡ. It is approximately:

Ĉ1 = Ĉ (q̄,w + ∆w, ῡ) = C̄ + l̂
(
q̄,w, C̄

)
∆w +O

((
‖∆w‖2

))
+ op (1) ‖∆w‖ .

At iteration k¿1, given Ĉk−1 = Ĉ (q̄,w + (k − 1) ∆w, ῡ)

Ĉ (q̄,w + k∆w, ῡ) = Ĉk−1 + l̂
(
q̄,w + (k − 1) ∆w, Ĉk−1

)
∆w

By iterating this, we can derive the approximated cost function, which satisfies

Ĉ (q̄,w + k∆w, ῡ) = C (q̄,w + k∆w, ῡ) +O
((
k ‖∆w‖2

))
+ kop (1) ‖∆w‖

for any k > 0.

E Large Sample Properties of the NLLS-GMM Estimator.

In this section we show that the estimator is consistent and asymptotically normal. Notice that in our sample, we
have oligopolistic firms in the same market. Because of strategic interaction, equilibrium prices and outputs of
the firms in the same market are likely to be correlated. To avoid the difficulty arising from such within-market
correlation, our consistency proof will primarily exploit the large number of isolated markets, with the assumption
that wages, unobserved product quality and cost shocks are independent across markets51. Without loss of
generality, we assume that in each market, the number of firms is J . Notice that in our objective function, we have
two separate components: one that involves the difference between the cost in the data and the nonparametrically
approximated pseudo-cost function, which identifies α for the Berry logit model and (µα, σα) and σβ for the BLP
random coefficient logit model. The second component is the objective function that is based on the orthogonality
condition ξm⊥Xm, which identifies β for the logit model and µβ for the BLP. We denote θ = (θβ ,θc), where θc
is the vector of the parameters identified from the difference between the cost data and the pseudo-cost function.
That is, θc = α for the Berry logit model and θc = (µα, σα, σβ) for the BLP model. We denote θβ to be the
vector of parameters that are identified by the orthogonality condition ξm⊥Xm, which isβ for the Berry logit
model and µβ for the BLP model.

In our proof, for the pseudo-cost function part, we follow Bierens (2014) closely. Most of the assumptions
below are slight modifications of the ones by Bierens 2014, where we changed the signs to use them for minimization
of the joint objective function rather than maximization of the likelihood function.

Let ym =
(
qm, vec (Wm)′ ,Cd

m, vec (Xm)′ , vec (pm)′ , vec (sm)′
)′

, where Cd
m =

(
Cd1m, C

d
2m, ..., C

d
Jm

)′
, Wm =

(w1m,w2m, ...,wjm)′and define

f (ym,χ) =

J∑
j=1

[
Cdjm −

∑
l

γlψl (qjm,wjm,MR (Xm,pm, sm, j,θc))

]2

, (38)

and Q (χ) = E [f (ym,χ)], where χ = (θ′c,γ
′)
′

= {χn}∞n=1, with

χn =

{
θcn for n = 1, ..., p,
γn−p for n ≥ p+ 1.

where p is the number of parameters in θc. Parameter space is Ξ ≡ Θc × Γ (T ), where θc ∈ Θc is compact and

Γ (T ) =
{
γ = {γn}∞n=1 : ‖γ‖ ≤ T

}
,

and is endowed with the metric d (χ1,χ2) ≡ ‖χ1 − χ2‖, where ‖χ‖ =
√∑∞

k=1 χ
2
k.

51The assumption of independence of variables across markets are employed for simplicity. We leave the
asymptotic analysis with some across market dependence for future research. For Strong Law of Large Numbers
under weaker assumptions, see Andrews (1988) and the related literature. As we have discussed earlier, those
assumptions are not required for identification.
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Let χ0 be the vector of true parameters. Define also

Ξk =

{
Θ for k ≤ p,

Θ× Γk−p (T ) for k ≥ p+ 1,

where k ∈ N, Γk (T ) = {πkγ : ‖πkγ‖ ≤ T}, and πk is the operator that applies to an infinite sequence γ = {γn}∞n=1,
replacing all the γn’s for n > k with zeros.

The following assumptions are made:

Assumption E.1
(a) y1, y2, ..., yM are i.i.d. with support contained in a bounded open set V of a Euclidean space.
(b) For each χ ∈ Ξ, f (ym,χ) is a Borel measurable real function of ym.
(c) f (ym,χ) is a.s. continuous in χ ∈ Ξ.

(d) There exists a non-negative borel measurable real function f (y) such that E
[
f (ym)

]
> −∞ and f (ym,χ) >

f (y) for all χ ∈ Ξ.
(e) There exists an element χ0 ∈ Ξ such that Q (χ) > Q (χ0) for all χ ∈ Ξ\ {χ0}, and Q (χ0) <∞.

(f) There exists an increasing sequence of compact subspaces Ξk in Ξ such that χ0 ∈
⋃∞
k=1 Ξk = Ξ ⊂ Ξ.

Furthermore, each sieve space Ξk is isomorph to a compact subset of a Euclidean space.
(g) Each sieve space Ξk contains an element χk such that, limk→∞E [f (ym,χk)] = E [f (ym,χ0)].
(h) The set Ξ∞ = {χ ∈ Ξ : E [f (ym,χ)] =∞} does not contain an open ball.

(i) There exists a compact set Ξc containing χ0 such that Q (χ0) < E
[
infχ∈Ξ\Ξcf (ym,χ)

]
<∞.

Assumptions (a)-(f) are well established in the literature (see e.g. Bierens 2014). For example, (d) is satisfied
because of the definition of f () ≥ 0 from equation 38. (e) follows from the identification of χ0 in Proposition 2.

(f) is required in order to make estimation feasible. In particular, since minimising Q̂M = M−1∑M
m=1 f(ym,χ)

over Ξ is not possible given that Ξ is not even compact, (f) ensures that the minimization problem can be solved
in terms of ΞkM , i.e.

χ̂M = arg min
χ∈ΞkM

Q̂M (χ) ,

where kM is an arbitrary sequence of M that satisfies kM < M , limM→∞ kM =∞. We will assume

E [f (ym,χ0)] < lim
τ→∞

E
[
infχ∈Ξ\Ξτ f (ym,χ)

]
,

where Ξτ = X∞n=1 [−χnτ,−χnτ ], and {χn}
∞
n=1 satisfies

∞∑
n=1

χn < ∞; supn≥1 |χ0,n| /χn ≤ 1. Then, there exists

τ < ∞ such that, if we set Ξτ = Ξc, (i) holds. Then, from Kolmogorov’s Strong Law of Large Numbers, for a
given χ ∈ Ξτ

1

M

M∑
m=1

infχ∗∈Ξ,‖χ−χ∗‖<εf (ym,χ∗) a.s.−→E
[
infχ∗∈Ξ,‖χ−χ∗‖<εf (ym,χ∗)

]
as M →∞.

Furthermore, Now, for an arbitrarily small η > 0, let Ξη = {χ : ‖χ− χ0‖ ≥ η} ∩ Ξc. Then,

limε↓0infχ∗∈Ξη,‖χ−χ∗‖<εf (ym,χ∗) ≥ f (ym,χ)

And from Monotone Convergence Theorem,

limε↓0E
[
infχ∗∈Ξη,‖χ−χ∗‖<εf (ym,χ∗)

]
≥ E [f (ym,χ)]

Let {Bε (χ)}χ∈Ξη
be the open cover of the compact set Ξη, i.e. Bε (χ) = {χ̃ : ‖χ̃− χ‖ < ε} Then, it has a

finite subcover of {Bε (χk)}Kεk=1satisfying

mink=1,...,Kε

1

M

M∑
m=1

infχ∗∈Bε(χk)∩Ξηf (ym,χ∗) a.s.−→mink=1,...,KεE
[
infχ∗∈Bε(χk)∩Ξηf (ym,χ∗)

]
.

as M →∞. Therefore, from Assumption E.1, (e)

infχ∈ΞηplimM→∞
1

M

M∑
m=1

f (ym,χ) ≥ limε↓0
[
mink=1,...,KεE

[
infχ∗∈Bε(χk)∩Ξηf (ym,χ∗)

]]
= infχ∈ΞηE [f (ym,χ)] > E [f (ym,χ0)] . (39)
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Furthermore, from SLLN, we obtain

infχ∈Ξ\Ξτ
1

M

M∑
m=1

f (ym,χ) ≥ 1

M

M∑
m=1

infχ∈Ξ\Ξτ f (ym,χ) a.s.−→E
[
infχ∈Ξ\Ξτ f (ym,χ)

]
> E [f (ym,χ0)] . (40)

From 39 and 40, we derive

infχ∈Ξ,‖χ−χ0‖≥ηplimM→∞
1

M

M∑
m=1

f (ym,χ) > E [f (ym,χ0)]

Next, we consider the moment-based objective function. Denote vm = (ym, vec (Zm)) where Zjm is the vector
of instruments for firm j. Furthermore, let g (vm, j,θ) = ξj (pm,Xm, sm,θ) Zjm, gM (j,θ) = 1

M

∑M
m=1 ξj (pm,Xm, sm,θ) Zjm,

i.e.,

g (vm,θ) =

 g (vm, 1,θ)
...

g (vm, J,θ)

 ,gM (θ) =

 gM (vm, 1,θ)
...

gM (vm, J,θ)


, and GjM (θ) = ∂gjM (θ) /∂θ. Then, we assume the following.

Assumption E.2
a) We assume that v1, ...,vM are i.i.d. distributed, and therefore, for any parameter θ ∈ Θ, g (vm,θ), m = 1, ...,M
are also i.i.d. distributed.
b) W is symmetric and positive definite, and WE [g (vm,θ)] = 0 only if θβ = θβ0.
c) g (vm,θ) is a continuously differentiable function of θ.
d) E [supθ∈Θ,j ‖g (vm, j,θ)‖] <∞.
e) E

[
g (vm,θ0) g (vm,θ0)′

]
is positive definite.

f) sup‖θ−θ0‖≤δM ‖∂gM (θ) /∂θ‖ = Op (1) for δM → 0 as M →∞.
Assumption (c) and (f) implies stochastic equicontinuity, which implies Assumption (v) of Theorem 7.2,

Newey and McFadden (1994). This result is used late for asymptotic normality proof.
Following the proof by Newey and McFadden (1994), Theorem 2.6, we can show that

supθ∈Θ

∥∥gM (θ)′WgM (θ)− E [g (vm,θ)]′WE [g (vm,θ)]
∥∥ P−→0.

For any θ 6= θ0, suppose first that θc 6= θc0, i.e. ‖θc − θc0‖ ≥ η for some η > 0. Then,

plimM→∞gM (θ)′WgM (θ) ≥ 0 = E [g (vm,θ0)]′WE [g (vm,θ0)] = plimM→∞gM (θ0)′WgM (θ0) .

Furthermore, since ‖χ− χ0‖ ≥ ‖θc − θc0‖ ≥ η

plimM→∞infχ∈Ξ,‖χ−χ0‖≥η
1

M

M∑
m=1

f (ym,χ) > E [f (ym,χ0)]

and similarly, for θβ such that ‖θβ − θβ0‖ ≥ η,

plimM→∞gM (θ)′WgM (θ) > 0 = E [g (vm,θ0)]′WE [g (vm,θ0)]

and

plimM→∞infχ∈Ξ,‖χ−χ0‖≥η
1

M

M∑
m=1

f (ym,χ) ≥ E [f (ym,χ0)] .

Therefore, limM→∞P ((‖µβM − µβ0‖ ≥ η) ∪ (‖θcM − θc0‖ ≥ η)) = 0, and we have shown that plim [θM ,γM ] =

[θ0,γ0]. If we were to use the two-step GMM, then the weighting matrix is W = E
[
g (vm,θ0) g (vm,θ0)′

]−1

and its sample analog, WM =
[
gM (θM ) gM (θM )′

]−1
. Then, if θM is the estimator with the initial positive

definite weight matrix W0, then, we have shown that plimM→∞θ0M = θ0. Hence, from continuity of g (vm,θ)
with respect to θ. and intertibility of E

[
g (vm,θ) g (vm,θ)′

]
,

plimM→∞WM = W.

Then, since the assumptions of theorem 2.6, Newey and McFadden (1994) are satisfied, θM P−→θas M →∞.
Next, we prove asymptotic normality. To do so, let

Γr (T ) =

{
γ = {γn}∞n=1 :

∞∑
n=1

nr |γn| ≤ T

}
,
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for some T large enough such that γ0 ∈ Γr (T ) and associated metric ‖γ1 − γ2‖r =
∞∑
n=1

nr |γ1,n − γ2,n|, γi =

{γi,n}∞n=1. Furthermore, the sieve space is replaced by

Ξr =
{
χ = {χn}∞n=1 : ‖χ‖r < T , T > ‖χ0‖r

}
;

Ξr,k =
{
πkχ : ‖πkχ‖r < T

}
.

The following assumptions are employeed:

Assumption E.3
(a) Parameter space Ξ is defined with a norm ‖χ‖r =

∑∞
n=1 n

r |χm| and the associated metric d (χ1,χ2) =
‖χ1 − χ2‖r.
(b) True parameter χ0 = {χ0,n}∞n=1 satisfies ‖χ0‖r <∞.
(c) There exists k ∈ N such that for k large enough χ0,k = πkχ0 ∈ ΞIntk , where ΞIntk is the interior of the sieve
space Ξk.
(d) f (ym,χ) is a.s. twice continuously differentiable in an open neighborhood of χ0.
(e) For any subsequence k = kM of the sample size M satisfying kM →∞ as M →∞, plimM→∞||χ̂kM−χ0||r = 0.

(b) imposes a boundedness condition on the true parameter values. (c) employs stronger requirements on the
parameters than Assumption E.1. That is, the true parameters need to be in the interior of the parameter space.
The differentiability of the objective function in (d) is necessary for the derivation of the asymptotic distribution
of the estimator. (e) is straightforward to show given (a)-(d) and Assumption E.1. Furthermore, we also assume:

Assumption E.4
(a) There exists a nonnegative integer r0 < r such that the following local Lipschitz conditions hold for all positive
integer j ∈ N we have

E
∥∥∇jf (y,χ0)−∇jf

(
y,χ0,k

)∥∥ ≤ Cj ∥∥χ0 − χ0,k

∥∥
r0

where ∇jf (ym,χ0) = ∂f (ym,χ0) /∂χ0,j ,
∑∞
j=1 2−jCj <∞ and the sieve order k = kM is chosen such that

lim
M→∞

√
M

∞∑
n=kM+1

nr0
∣∣χ0,n

∣∣ = 0.

(b) For all j ∈ N, E [∇jf (y,χ0)] = 0.
(c)
∑∞
j=1 j2

−jE
[
(∇jf (y,χ0))2] <∞.

For some τ ≥ 0,
(d)

∑∞
j=1

∑∞
n=1 (jn)−2−τ E [|∇j,nf (y,χ0)|] <∞, where ∇j,kf (ym,χ0) = ∂2f (ym,χ0) /

(
∂χ0,j∂χ0,k

)
.

(e) limε↓0
∑∞
j=1

∑∞
n=1 (jn)−2−τ E

[
sup‖χ−χ0‖

r
≤ε |∇j,nf (y,χ)−∇j,nf (y,χ0)|

]
= 0.

(f) For at least one pair of positive integers j, n, E [∇j,p+nf (y,χ0)] 6= 0.
(g) rank (Bk,k) = k for each k ≥ p, where

Bk,l =

 E [∇1,1f (y,χ0)] . . . E [∇1,nf (y,χ0)]
...

. . .
...

E [∇j,1f (y,χ0)] . . . E [∇j,nf (y,χ0)]

 .

(b) postulates that the F.O.C. holds for the true parameter value, which we know is satisfied. (c) imposes
boundedness for the first-order derivatives. (d),(e) are necessary in order to extract the parameters of interest via
projection residuals. (f), (g) impose necessary regularity conditions on the second-order derivatives, in fact (f) is
already implied by identification of χ0.

Let

Ŵn (u) =

Kn∑
k=1

[
1√
M

M∑
j=1

∇kfj (χ̂n)

]
ηk (u)

V̂n (u) =

Kn∑
k=1

[
1√
M

M∑
j=1

(
∇kfj

(
χ0)−∇kfj (χ0

n

))]
ηk (u)

Ẑn (u) =

Kn∑
k=1

[
1√
M

M∑
j=1

∇kfj (χ̂n)

]
ηk (u)
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b̂l,n (u) = −
Kn∑
k=1

[
1√
M

M∑
j=1

∇k,lfj
(
χ0
n + λk

(
χ̂n − χ

0
n

))]
ηk (u)

where ηk (u) = 2−k
√

2cos (kπu). Recall that in this case, n denotes the number of parameters, including sieve
polynomials. Now, as in Bierens 2014, let

ân (u) = (â1,n (u) , â2,n (u) , . . . , âp,n (u))

be the residual of the following projection

b̂l,n (u) = A
[
b̂p+1,n (u) , ..., b̂n,n (u)

]
+ âl,n (u)

Then, given the Assumptions E.1-E.4 we have

ˆ 1

0

ân (u) ân (u)′ du
√
M
(
θ̂cM − θc0

)
=

ˆ 1

0

ân (u)
(
Ẑn (u)− Ŵn (u)− V̂n (u)

)
du

where ân (u) ân (u)′ is a p by p matrix, and θ̂cM − θc0 a p by 1 vector. Now, from the arguments similar to the
Theorem 7.2 of Newey and McFadden (1994),

GM (θM )′WMgM (θM )

= GM (θM )′WMgM (θ0) + GM (θM )′WMGM

(
θ̂
)

(θM − θ0) .

where GM (θM ) = ∂gM (θM ) /∂θ, and θ̂is the intermediate value between θ0 and θM . Hence, together, A
[
GM (θM )′WMGM

(
θ̂
)]

1,1
A
[
GM (θM )′WMGM

(
θ̂
)]

1,2:p

A
[
GM (θM )′WMGM

(
θ̂
)]

2:p,1
A
[
GM (θM )′WMGM

(
θ̂
)]

2:p,2:p
+
´ 1

0
ânM (u) ânM (u)′ du

√M [
θ̂βM − θβ
θ̂cM − θc

]

=
√
M

[
−A

[
GM (θM )′WMgM (θ0)

]
1

−A
[
GM (θM )′WMgM (θ0)

]
2:p

+
´ 1

0
ânM (u)

(
ẐnM (u)− ŴnM (u)− V̂nM (u)

)
du

]

Now, we impose an addititional assumption that
Assumption E.5

F =

[
A [G′WG]1,1 A [G′WG]1,2:p

A [G′WG]2:p,1 A [G′WG]2:p,2:p +
´ 1

0
a (u) a (u)′ du

]
is a full rank matrix, thus, invertible.

Then, √
M
(
θ̂M − θ0

)
d→ Np

(
0,F−1ΥF′−1) ,

where

Υ =

[
A2 [G′WΣgWG]1,1 A2[G′WΣgWG]1,2:p

A2[G′WΣgWG]2:p,1 A2 [G′WΣgWG]2:p,2:p +
´ 1

0

´ 1

0
a (u1) Γ (u1, u2) a (u2) du1du2

]

and Γ (u1, u2) = E [Z (u1)Z (u2)].
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