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Abstract

Based on recent evidence of fractional cointegration in commodity spot and futures mar-
kets, we investigate whether a fractionally cointegrated model can provide statistically and/or
economically significant forecasts of commodity returns. Specifically, we propose to model and
forecast commodity spot and futures prices using a fractionally cointegrated vector autoregres-
sive (FCVAR) model that generalizes the more well-known (non-fractional) CVAR model to
allow fractional integration. We derive the best linear predictor for the FCVAR model and
perform an out-of-sample forecast comparison with the non-fractional model. In our empirical
analysis to daily data on 17 commodity markets, the fractional model is found to be superior in
terms of in-sample fit and also out-of-sample forecasting based on statistical metrics of forecast
comparison. We analyze the economic significance of the forecasts through a dynamic trading
strategy based on a portfolio with weights derived from a mean-variance utility function. Al-
though there is much heterogeneity across commodity markets, this analysis leads to statistically
significant and economically meaningful profits in most markets, and shows that profits from
both the fractional and non-fractional models are higher on average and statistically more signif-
icant than profits derived from a simple moving-average strategy. The analysis also shows that,
in spite of the statistical advantage of the fractional model, the fractional and non-fractional
models generate very similar profits with only a slight advantage to the fractional model on
average.

Keywords: commodity markets, economic significance, forecasting, fractional cointegration,
futures markets, price discovery, trading rule, vector error correction model.

JEL Classification: C32, G11.

1 Introduction

The forecastability of commodity market returns is a very active area of research in financial
economics. In particular, recent research has shown that commodity spot and futures prices are
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fractionally cointegrated; see, inter alia, Baillie and Bollerslev (1994), Lien and Tse (1999), Maynard
and Phillips (2001), Coakley, Dollery, and Kellard (2011), and Dolatabadi, Nielsen, and Xu (2016).
The implication is that a fractionally cointegrated model may provide a better statistical fit when
modeling and forecasting commodity prices and returns. Relatedly, the understanding of how
commodity market return forecasts can be used to devise trading strategies appears as of yet to be
rather limited.

In this paper, we make two contributions to this literature. Our first contribution is method-
ological. We propose to model and forecast commodity spot and futures prices using the recently
developed fractionally cointegrated vector autoregressive (FCVAR) model of Johansen (2008) and
Johansen and Nielsen (2012). Specifically, we derive the best linear predictor for the FCVAR model
and show that it takes a relatively simple form due to the autoregressive structure of the model.
We thus demonstrate how to forecast commodity spot and futures prices and returns based on the
FCVAR model, and we evaluate these using statistical measures of forecast performance. Our sec-
ond contribution is to investigate the economic significance of the FCVAR model forecasts through
a dynamic trading strategy based on a portfolio of two assets with portfolio weights derived from
a mean-variance utility function and from return forecasts. Throughout, we compare with fore-
casts from the more standard (non-fractional) cointegrated vector autoregressive (CVAR) model of
Johansen (1995).

We apply the FCVAR model to spot and futures prices of 17 commodities and demonstrate
that it provides superior statistical in-sample fit compared with the more standard CVAR model.
We also estimate price discovery from both models, see Hasbrouck (1995), Gonzalo and Granger
(1995), Figuerola-Feretti and Gonzalo (2010), and Dolatabadi, Nielsen, and Xu (2015). This tells
us whether price discovery is dominated by the commodity spot or futures market, which may be
important from a forecasting point of view since historical information from the dominant market
could be useful in forecasting prices and returns in the non-dominant market. In any case, both the
FCVAR and CVAR models are joint models of the two prices series, and as such they automatically
take into account the price discovery information in modeling and forecasting. With both the CVAR
and FCVAR models we find that there is significant price discovery in both the spot and futures
markets for many commodities, although the general tendency is that the futures market has a
larger share of the price discovery process, as much theory predicts (e.g., Hasbrouck, 1995).

In our empirical analysis we consider both short horizon (h = 1) and longer horizon (h = 5
and h = 21) forecasting. Using a variety of out-of-sample statistical forecasting evaluation metrics,
we find that the FCVAR model tends to outperform the CVAR model. Specifically, in terms
of statistical tests of forecast superiority at the short horizon, these favor the FCVAR model in
almost all cases and are statistically significant at standard levels in most but not all cases. At
longer horizons, most statistical tests continue to favor the FCVAR model, although fewer are now
statistically significant. Among those that are statistically significant for longer horizon forecasting
(h = 5 or h = 21), 22 out of 23 favor the FCVAR model. Thus, the FCVAR model has superior
statistical in-sample fit as well as out-of-sample forecasting performance, when considering purely
statistical measures of forecast comparison.

As an additional metric of forecast performance and comparison, we also examine the economic—
as opposed to purely statistical—significance of return forecasts. We do this by investigating
whether the return forecasts can generate significant excess returns when implemented in a dynamic
portfolio trading strategy. For our main empirical analysis we find that using return forecasts from
both FCVAR and CVAR models in simple mean-variance trading strategies leads to statistically
significant and economically meaningful profits in most commodity markets, , although there is
much heterogeneity in profits across different markets. Furthermore, in spite of the advantage of
the FCVAR model in terms of statistical measures, we find that profits are very similar on average
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whether based on forecasts from the FCVAR model or the CVAR model, although with a slight
advantage on average to the FCVAR model profits.

Our finding that profits from commodity markets are statistically significant and economically
meaningful is consistent with a broad range of studies which show, using different approaches, that
commodity markets are profitable. For example, Miffre and Rallis (2007), Szakmary, Shen and
Sharma (2010), and Narayan, Ahmed, and Narayan (2014) show profitability using technical trading
and momentum trading strategies. However, given the profitability of these approaches, limited
focus has been on using a model-based forecasting approach to estimate profits. An exception is
Narayan, Narayan, and Sharma (2013), and, as in their study, we also include a brief comparison
of the returns from our forecasting based approach with those from a simple technical trading rule
given by a moving-average crossover strategy. Our results show that the forecasting based approach
delivers higher and more statistically significant excess returns on average, as well as higher Sharpe
ratios.

In spite of the limited attention to model-based forecasting approaches, there is a clear accep-
tance of the fact that a forecasting based trading model that draws its profitability analysis from
a utility function, such as a mean-variance utility function, has theoretical appeal, see e.g. Mar-
quering and Verbeek (2004) and Campbell and Thompson (2008). On the basis of this evidence,
commodity markets are treated as an investment class. As the focus on theoretically motivated
profitability analysis gains momentum, following, for example, the works mentioned above, the
emphasis on and hence demand for appropriate forecasting models will increase.

We note from the outset that, although trading strategies based on commodity spot prices are
not really feasible, because it would be too expensive to take possession of the commodity, we
nonetheless consider simultaneous modeling of commodity spot and futures prices. In terms of
applying these as forecasting models for futures returns, it has no relevance whether spot prices
can be traded on or not, and hence this point is irrelevant for all our results regarding futures
markets, futures price and return forecasting, and trading strategies involving commodity futures.
For trading strategies involving commodity spot markets, these can still be considered a useful
metric for comparison of forecast performance in terms of economic significance, even if the trading
strategies are infeasible; a related point was also made in, e.g., Graham-Higgs, Rambaldi, and
Davidson (1999), Wang (2000), and Narayan, Narayan, and Sharma (2013). Thus, even if portfolios
involving commodity spot positions are infeasible, we consider such “artificial portfolios” as a means
of forecast evaluation and comparison.

Finally, to demonstrate the robustness of our empirical results, our analysis is conducted with
several different variations. First, in the forecasting models, we forecast returns over both short and
long horizons. Second, we use more than one out-of-sample statistical forecast evaluation technique.
Third, when estimating profits using the mean-variance investor utility function, where the choice
of the investor’s risk-aversion coefficient influences portfolio weights, we consider low, medium, and
high risk-aversion investors. Fourth, we also calculate Sharpe ratios and compare with a simple
moving-average crossover trading rule. As a final robustness analysis, when estimating profits we
consider several alternative restrictions on short-selling and leverage/borrowing. In general, all
these results confirm (i) that portfolio returns are statistically different from zero and economically
meaningful in many commodity markets, and (ii) that portfolio returns derived from CVAR and
FCVAR model forecasts are similar, although the latter are slightly higher on average.

The remainder of the paper is organized as follows. The econometric model is explained in the
next section, where, in particular, the best linear predictor is derived and forecasting is discussed
in Section 2.3. The following section discusses the economic equilibrium model and shows how
fractional cointegration can arise from an economic model which thus provides a link between
economic theory and econometric modeling. In Section 4 we discuss the commodity data and
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conduct some preliminary data analysis. Section 5 contains the empirical results, and is divided
into subsections on estimation, statistical forecast comparison, economic significance of forecasts,
and robustness of economic significance. Finally, in Section 6 we provide some concluding remarks.

2 Econometric methodology: fractionally cointegrated VAR model

Our empirical analysis applies the FCVAR model, see Johansen (2008) and Johansen and Nielsen
(2012), as well as its non-fractional counterpart. The FCVAR model is a generalization of Jo-
hansen’s (1995) CVAR model to allow for fractionally integrated (or just fractional) time series.

2.1 Fractional integration and cointegration

Fractional time series models are based on the fractional difference operator

∆dXt =
∞∑
n=0

πn(−d)Xt−n, (1)

where the fractional coefficients πn(u) are defined in terms of the binomial expansion (1− z)−u =∑∞
n=0 πn(u)zn, i.e.,

πn(u) =
u(u+ 1) · · · (u+ n− 1)

n!
.

For details and for many intermediate results regarding this expansion and the fractional coeffi-
cients, see, for example, Johansen and Nielsen (2015, Appendix A). Efficient calculation of fractional
differences, which we apply in our estimation, is discussed in Jensen and Nielsen (2014).

With the definition of the fractional difference operator in (1), a time series Xt is said to be
fractional of order d, denoted Xt ∈ I(d), if ∆dXt is fractional of order zero, i.e., if ∆dXt ∈ I(0).
The latter property can be defined in the frequency domain as having spectral density that is finite
and non-zero near the origin or in terms of the linear representation coefficients if the sum of these
is non-zero and finite, see, for example, Johansen and Nielsen (2012, p. 2672). An example of a
process that is fractional of order zero is the stationary and invertible ARMA model. Finally, then,
a p-dimensional time series Xt ∈ I(d) for which one or more linear combinations are fractional of
a lower order, i.e., for which there exists a p× r matrix β such that β′Xt ∈ I(d− b) with b > 0, is
said to be (fractionally) cointegrated.

2.2 The FCVAR model and interpretation

For a time series Yt of dimension p, the well-known CVAR model is given in error correction form
as

∆Yt = αβ′Yt−1 +
k∑

i=1

Γi∆Yt−i + εt = αβ′LYt +
k∑

i=1

ΓiL
i∆Yt + εt,

where, as usual, εt is p-dimensional independent and identically distributed with mean zero and
covariance matrix Ω. The simplest way to derive the FCVAR model from the CVAR is to replace
the difference and lag operators, ∆ and L = 1−∆, in (2) by their fractional counterparts, ∆b and
Lb = 1−∆b, respectively, and apply the resulting model to Yt = ∆d−bXt. We then obtain

∆dXt = αβ′∆d−bLbXt +
k∑

i=1

Γi∆
dLi

bXt + εt,
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where ∆d is the fractional difference operator and Lb = 1−∆b is the fractional lag operator.1 When
the so-called “restricted constant term”, denoted ρ, is included, the CVAR and FCVAR models are
given by

∆Yt = α(β′Yt−1 + ρ′) +

k∑
i=1

Γi∆Yt−i + εt (2)

and

∆dXt = α∆d−bLb(β
′Xt + ρ′) +

k∑
i=1

Γi∆
dLi

bXt + εt, (3)

respectively, see Johansen and Nielsen (2012) or Dolatabadi, Nielsen, and Xu (2016).
Model (3) nests Johansen’s (1995) CVAR model in (2) as the special case d = b = 1. Some

of the parameters are well-known from the CVAR model and these have the usual interpretations
also in the FCVAR model. The most important of these are the long-run parameters α and β,
which are p × r matrices with 0 ≤ r ≤ p. The rank r is termed the cointegration, or cofractional,
rank. The columns of β constitute the r cointegration (cofractional) vectors such that β′Xt are the
cointegrating combinations of the variables in the system, i.e. the long-run equilibrium relations.
The parameters in α are the adjustment or loading coefficients which represent the speed of adjust-
ment towards equilibrium for each of the variables. The restricted constant ρ is interpreted as the
mean level of the long-run equilibria when these are stationary, i.e. Eβ′Xt + ρ′ = 0. Finally, the
short-run dynamics of the variables is governed by the parameters (Γ1, . . . ,Γk) in the autoregressive
augmentation.

The FCVAR model has two additional parameters compared with the CVAR model, namely
the fractional parameters d and b. Here, d denotes the fractional integration order of the observable
time series. As would presumably be the case for most—if not all—financial asset prices, we assume
in our study that these are integrated of order d = 1. That is, we consider d = 1 to be fixed and
known, and therefore not estimated. On the other hand, the parameter b is estimated jointly with
the remaining parameters, and determines the degree of fractional cointegration, i.e. the reduction
in fractional integration order of β′Xt compared to Xt itself.

The FCVAR model (3) thus has the same main structure as the standard CVAR model (2), in
that it allows for modeling of both cointegration and adjustment towards equilibrium, but is more
general since it accommodates fractional integration and fractional cointegration.

We note that the fractional difference as defined in (1) is an infinite series, but any observed
sample will include only a finite number of observations. This makes calculation of the fractional
differences as defined in (1) impossible. In practice, therefore, the summation in (1) would need
to be truncated at n = t − 1. This truncation is analyzed by Johansen and Nielsen (2012, 2015),
who argue that the effects of the truncation can be alleviated by conditioning the (maximum
likelihood) statistical analysis on a number of initial values, denoted N . Conditional inference is
quite standard in autoregressive models; for example, conditional maximum likelihood estimation
of an AR(k) model leads to least squares estimation, which is commonly applied. Furthermore,
making the estimation conditional on a number of initial values also alleviates the effect of a non-
zero starting point for the first observation on the process, i.e., for X1. In our empirical work we
follow this suggestion (setting N = 10) and apply the version of the FCVAR model given in (3)
and the CVAR model in (2).

1Both the fractional difference and fractional lag operators are defined in terms of their binomial expansion in
the lag operator, L, as in (1). Note that the expansion of Lb has no term in L0 and thus only lagged disequilibrium
errors appear on the right-hand side of the error correction model.
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The asymptotic analysis of the FCVAR model is provided in Johansen and Nielsen (2010, 2012),
where it is shown that the maximum likelihood estimator of (b, α,Γ1, . . . ,Γk) is asymptotically
normal, while the maximum likelihood estimator of (β, ρ) is asymptotically mixed normal when
b > 1/2 and asymptotically normal when b < 1/2. The important implication is that standard
asymptotic inference can be applied to all these parameters.

Likelihood ratio (trace-type) tests for cointegration rank can be calculated as well, and hy-
potheses on the cointegration rank can be tested in the same way as in the CVAR model. In the
FCVAR model, the asymptotic distribution of the tests for cointegration rank depends on the un-
known (true value of the) scalar parameter b, which complicates empirical analysis compared to the
CVAR model. However, the distribution can be simulated on a case-by-case basis. The calculation
of maximum likelihood estimators and test statistics is discussed in detail in Johansen and Nielsen
(2012) and Nielsen and Popiel (2014), with the latter providing Matlab computer programs that
we apply in our empirical analysis.

2.3 Forecasting from the FCVAR model

We now discuss how to forecast log-prices, that is Xt, as well as returns, rt = ∆Xt, from the
FCVAR model. Because the model is autoregressive, the best linear predictor takes a simple form
and is relatively straightforward to calculate. We note that ∆Xt+1 = Xt+1 − Xt for t ≥ 1 and
rearrange (3) with d = 1 as

Xt+1 = Xt + α∆1−bLb(β
′Xt+1 + ρ′) +

k∑
i=1

Γi∆L
i
bXt+1 + εt+1. (4)

Since Lb = 1−∆b is a lag operator, so that Li
bXt+1, i ≥ 1, is known at time t, this equation can be

used to calculate forecasts from the model.
We let conditional expectation given the information set at time t be denoted Et(·), and the

best linear predictor of any variable Zt+1 given information available at time t be denoted Ẑt+1|t =
Et(Zt+1). Clearly, we then have that the forecast of the innovation for period t + 1 at time t is
ε̂t+1|t = Et(εt+1) = 0, and X̂t+1|t is then easily found from (4). Inserting also coefficient estimates

based on data available up to time t, denoted2 (b̂, α̂, β̂, ρ̂, Γ̂1, . . . , Γ̂k), we have that

X̂t+1|t = Xt + α̂∆1−b̂Lb̂(β̂
′Xt+1 + ρ̂′) +

k∑
i=1

Γ̂i∆L
i
b̂
Xt+1. (5)

This defines the forecast of log-prices for period t+ 1 given information at time t. From (5) we can
derive the forecast of returns as

r̂t+1|t = X̂t+1|t −Xt. (6)

We note that, after constructing a series of one-step ahead log-price forecasts, X̂t+1|t for a range of

t, the return forecast (6) is different from ∆X̂t+1|t, which may seem the obvious forecast of returns
based on forecasts of log-prices, given the definition of returns as the first difference of log-prices.
However, since Xt is known at time t, clearly (6) is the appropriate forecast of returns.

Multi-period ahead forecasts can be generated recursively. That is, to calculate the h-step ahead
forecast, we first generalize (5) as

X̂t+j|t = X̂t+j−1|t + α̂∆1−b̂Lb̂(β̂
′X̂t+j|t + ρ̂′) +

k∑
i=1

Γ̂i∆L
i
b̂
X̂t+j|t, (7)

2To emphasize that these estimates are based on data available at time t, they could be denoted by a subscript t.
However, to avoid cluttering the notation we omit this subscript and let it be understood in the sequel.
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where X̂s|t = Xs for s ≤ t. Then forecasts are calculated recursively from (7) for j = 1, 2, . . . , h to

generate h-step ahead forecasts of log-prices, X̂t+h|t. Given these, h-step ahead forecasts of returns
are calculated as in (6) using the recursively generated log-price forecasts on the right-hand side.
We will apply the return forecast (6) in our empirical analysis below for several forecast horizons,
h, and we will compare with the similarly obtained return forecast based on the CVAR model (2).

3 Economic equilibrium model

The economic model for the dynamics of spot and futures prices that will provide the theoretical
foundation for our empirical analysis is a variation of the equilibrium model for spot and futures
prices developed by Figuerola-Feretti and Gonzalo (2010, henceforth FG), which in turn builds on
Garbade and Silber (1983). The particular variation that we consider, where fractional cointegration
between spot and futures log-prices can be derived from an economic model, was developed by
Dolatabadi, Nielsen, and Xu (2015, 2016). We first briefly review the FG model by presenting
the two cases of their model separately: (i) infinite elasticity of supply of arbitrage services and
(ii) finite elasticity of supply of arbitrage services. In the third subsection we then discuss the
Dolatabadi, Nielsen, and Xu (2015, 2016) variation that will establish a natural connection to the
FCVAR model described in Section 2 above.

3.1 FG equilibrium model with infinite elasticity of supply of arbitrage services

We begin with the following set of standard market conditions, which are collectively referred to
as Assumption A.

A.1 No taxes or transaction costs.

A.2 No limitations on borrowing.

A.3 No costs other than financing a futures position (short or long) and storage costs.

A.4 No limitations on short sale in the spot market.

We denote the log-spot price of a commodity in period t by st and the contemporaneous log-
futures price for a one-period-ahead futures contract by ft, while rft and ct denote the continuously
compounded interest rate and storage cost, respectively, for period t. The time series behavior
of these variables is described in the following conditions, which are collectively referred to as
Assumption B.

B.1 rft = r̄f + urt, where r̄f denotes the mean of rft and urt denotes an I(0) process with mean
zero and finite positive variance.

B.2 ct = c̄+ uct, where c̄ denotes the mean of ct and uct denotes an I(0) process with mean zero
and finite positive variance.

B.3 ∆st is an I(0) process with mean zero and finite positive variance.

Under Assumption A, no-arbitrage equilibrium conditions imply

ft = st + rft + ct, (8)

so that, imposing also Assumption B,

ft − st = r̄f + c̄+ urt + uct,

which implies that st and ft are both I(1) and cointegrate to I(0) with cointegration vector (1,−1).
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3.2 FG equilibrium model with finite elasticity of supply of arbitrage services

Finite elasticity of the supply of arbitrage services reflects the existence of factors such as basis risk,
convenience yields, constraints on storage space and other factors that make arbitrage transactions
risky. FG focus on convenience yield, in particular, which is the benefit associated with storing
the commodity instead of holding the futures contract (Kaldor, 1939). A general defintion of
convenience yield due to Brennan and Schwartz (1985) is “the flow of services that accrues to
an owner of the physical commodity but not to an owner of a contract for future delivery of the
commodity”. Accordingly, FG then give backwardation an economic interpretation as “the present
value of the marginal convenience yield of the commodity inventory”. When this is negative, the
market is said to be in contango.

With the convenience yield denoted by yt, the no-arbitrage condition (8) is then modified to

ft + yt = st + rft + ct. (9)

It is commonplace to characterize convenience yield as a (linear or nonlinear) function of st and ft.
In particular, FG approximate yt by a linear combination of st and ft, i.e. yt = γ1st − γ2ft with
γi ∈ (0, 1) for i = 1, 2. Imposing Assumption B then implies the equilibrium condition

st + β2ft + ρ = urt + uct, (10)

where β2 and ρ are simple functions of the model parameters. In particular, β2 can take three
different values (with the interpretations assuming a small enough value of ρ):

(i) −β2 > 1: long-run backwardation (st > ft).

(ii) −β2 < 1: long-run contango (st < ft).

(iii) −β2 = 1: neither backwardation nor contango in the long run.

Note that the equilibrium condition (10) is often stated with only st on the left-hand side, which is
the reason why we interpret the cointegration coefficient in terms of −β2. However, the econometric
model specifies the equilibrium in terms of β′Xt + ρ and to unify our notation, we have specified
the equilibrium (10) in the same way.

Thus, the equilibrium model of FG admits the (empirically warranted) theoretical possibility of
having a cointegration coefficient −β2 different from unity. We next describe Dolatabadi, Nielsen,
and Xu’s (2015, 2016) variation of the economic model that will link it to the econometric FCVAR
model.

3.3 Fractionally cointegrated equilibrium model

The above analysis makes it clear that the I(0) term, urt + uct, in the equilibrium (cointegrating)
relationship (10) stems from Assumptions B.1 and B.2, where interest rates and storage costs are
assumed to be I(0). While storage costs are basically unobserved, interest rates are observed and
are typically not found to be I(0).

To obtain a model with fractional cointegration, we therefore replace Assumption B by the
following conditions, which are collectively referred to as Assumption C.

C.1 rft = r̄f + vrt, where r̄f denotes the mean of rft and vrt denotes an I(1 − b) process with
b > 1/2, mean zero, and finite positive variance.

C.2 ct = c̄+ vct, where c̄ denotes the mean of ct and vct denotes an I(1− b) process with b > 1/2,
mean zero, and finite positive variance.

C.3 ∆st is an I(0) process with mean zero and finite positive variance.
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Here, Assumptions C.1 and C.2 generalize B.1 and B.2 to fractionally integrated interest rates
and storage costs.

To simplify notation we assume that interest rates and storage costs have the same order of
fractional integration, i.e. that both vrt and vct are I(1 − b). Also, the assumption that b > 1/2
ensures that the processes vrt and vct are stationary, since then 1 − b < 1/2. Neither of these
assumptions are critical, nor even necessary for the economic equilibrium model, but they facilitate
interpretation of the parameters in the FCVAR model. For example, with two different fractional
integration orders of vrt and vct, the sum vrt + vct would be fractional of the highest of the two
orders. Furthermore, if b < 1/2, then vrt would not be stationary and in that case we would define
r̄f simply as a constant, rather than interpret it as the mean of rft, and vrt would denote an I(1−b)
process initialized at zero. Similarly for vct.

We now impose Assumption C on (9) instead of Assumption B, which results in the equilibrium
condition

st + β2ft + ρ = vrt + vct. (11)

Hence, replacing Assumption B in the FG model with Assumption C implies the same cointe-
gration vector, but the equilibrium condition differs from that in the FG model in that the long-run
equilibrium errors are fractionally integrated of order 1− b rather than I(0). More generally, it fol-
lows that st and ft are fractionally cointegrated such that the FCVAR model of Section 2 is directly
applicable to this economic model.

3.4 Price discovery

We now briefly review how to analyze price discovery within the FCVAR model based on the
discussion in Dolatabadi, Nielsen, and Xu (2015). The analysis applies the permanent-transitory
(PT) decomposition of Gonzalo and Granger (1985) to the FCVAR model. As described in detail
in FG, there is “a perfect link between an extended Garbade and Silber (1983) theoretical model
and the PT decomposition”.

In the notation of the previous subsections, we let Xt = (st, ft)
′, where st and ft denote the

log-spot and log-futures prices at time t, respectively. According to the PT decomposition, Xt may
be decomposed into a transitory (stationary) part, β′Xt, and a permanent part, Wt = α′⊥Xt, using
the identity

Xt = (β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′)Xt

= A1Wt +A2β
′Xt,

where α⊥ is such that α′⊥α = α′α⊥ = 0.
Here, Wt is the common permanent component of Xt. In the case of spot and futures log-prices,

Wt is interpreted as the long-run dominant (fundamental or efficient) market price, in the sense that
information that does not affect Wt will not have a permanent effect on Xt. Thus, the proportions
of price discovery attributable to each market may be inferred from the elements of the parameter
α⊥, after being normalized so that the elements sum to unity. For further details, we refer the
reader to Gonzalo and Granger (1995), FG, and Dolatabadi, Nielsen, and Xu (2015).

An alternative, yet strongly related, interpretation of the coefficient α is that of an adjustment
coefficient that measures how the disequilibrium errors in previous periods feed into today’s changes
in Xt. Under this interpretation, the natural question to ask about the adjustment coefficients is
whether some coefficients in α are zeros, in which case the variable in question is weakly (or long-
run) exogenous for the parameters α and β. For example, if α2 = 0, futures prices do not react to
the disequilibrium error, i.e. the transitory component, implying that futures prices are the main
contributors to price discovery.
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Table 1: Data description for commodity spot and futures prices

Commodity CRB Spot Futures Start Volume Open int. Vol. 2012 O.I. 2012

Canola WC Vancouver WCE 3/30/83 6255 53,266 18,649 209,368
Cocoa CC New York ICE 3/30/83 5441 53,443 23,763 177,720
Coffee KC New York ICE 3/30/83 8337 47,609 24,387 139,664
Copper HG New York NYMEX 3/30/83 12,627 68,929 68,716 147,796
Corn C- Chicago CBOT 3/30/83 61,239 320,828 322,417 1,227,418
Crude oil CL DJES NYMEX 3/30/83 202,147 573,095 582,596 1,477,764
Gasoline RB DOE NYMEX 12/3/84 43,308 116,930 148,492 313,488
Gold GC Composite NYMEX 3/30/83 52,332 198,512 179,622 421,913
Heating oil HO DJES NYMEX 3/30/83 38,857 129,577 141,131 303,555
Palladium PA New York NYMEX 3/30/83 899 7531 4353 21,528
Platinum PL Engelhard NYMEX 7/29/85 2697 14,869 9040 46,519
Silver SI Composite NYMEX 3/30/83 20,017 101,307 53,797 115,476
Soybean S- Central IL CBOT 3/30/83 50,882 165,613 211,884 692,521
Soy meal SM Decatur, IL CBOT 3/30/83 18,142 75,344 75,682 236,697
Soy oil BO Decatur, IL CBOT 3/30/83 20,198 91,680 108,576 344,871
Sugar SB New York ICE 3/30/83 23,694 166,924 109,728 699,786
Wheat W- St. Louis CBOT 3/30/83 21,605 102,263 117,191 445,275

Notes: This table provides information on the data sources and commodity markets for the spot and futures prices.

The first four columns show the CRB identifier symbol, spot data source, futures data source, and sample start date

for each commodity. The end date is 10/12/12 for all data series. The next two columns show the daily volume

(number of contracts) and open interest averaged over the entire sample period, while the last two columns show the

daily volume and open interest averaged over the 2012 part of the sample.

4 Data description and preliminary analysis

In our empirical analysis we have data on 17 commodity spot and futures markets. These are
canola, cocoa, coffee, copper, corn, crude oil, gasoline, gold, heating oil, palladium, platinum,
silver, soybean, soybean meal, soybean oil, sugar, and wheat. The spot and futures price series are
both closing prices and are obtained from the Commodity Research Bureau (CRB) database. The
same data set (except gasoline and heating oil) was used by Narayan, Ahmed and Narayan (2014)
to analyze momentum-based trading strategies in commodity futures markets.

Some facts about the data sources and commodity markets are collected in Table 1. First of
all, the second column of Table 1 lists the CRB commodity identifier symbol. Secondly, we note
that the spot and futures price series come from different sources/exchanges. These are listed in
the third and fourth columns of the table for the spot prices and futures prices, respectively. The
next column shows the start date for our sample period, which varies by commodity although
for most commodities it is March 30, 1983. For all commodities, the end date is October 12,
2012. This gives a total of 7708 observations, except for gasoline (7270 observations) and platinum
(7100 observations). Our choice of commodities is determined by the availability of time-series
data for both spot and futures prices in the CRB database. There are several commodities for
which either spot or futures prices are unavailable or only available for a short time period (natural
gas, for example, only has futures price data starting in 1990 and spot prices in 1993). For other
commodities (cotton and orange juice, for example) there are many months or even years of missing
data.

Some further characteristics of the commodity futures markets by way of volume and open
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Figure 1: Daily commodity log-prices
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Notes: Each plot shows daily commodity log-prices. The blue lines are spot prices and the red lines are futures prices.
The sample start dates vary by commodity, see Table 1, and the end date is 10/12/12 for all commodities.
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Figure 2: Daily commodity spot returns
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Notes: Each plot shows daily commodity spot returns in percentage. The sample start dates vary by commodity, see
Table 1, and the end date is 10/12/12 for all commodities.
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Figure 3: Daily commodity futures returns
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Notes: Each plot shows daily commodity futures returns in percentage. The sample start dates vary by commodity,
see Table 1, and the end date is 10/12/12 for all commodities.
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interest are presented in the next two columns of Table 1. These statistics are daily time-series
averages for each commodity, where average volume reflects the number of futures contracts traded
each day and average open interest reflects the total number of outstanding futures contracts held
by market participants each day. In other words, open interest can be used to gauge the liquidity
situation of the futures market. The higher the number of open interest contracts the larger the
market activity and hence liquidity. The volume of contracts is largest for crude oil at an average
of over 200,000 contracts per day over the full sample period and over 580,000 contracts per day
in 2012. Based on trading volume, crude oil makes up over one-third of all commodity contracts
traded in the market. Corn, gold, and soybean contracts each make up 8–10% of the market,
while heating oil and gasoline make up another approximately 7% of the market each. The rest of
the commodities each contribute less than 5% to total volume of trade in the commodity futures
markets. Similarly, open interest data suggest that roughly a quarter of all outstanding contracts
belong to the crude oil market, followed by corn (14%), soybean (9%), and gold (8%).

The commodity spot and futures log-price series and corresponding spot and futures returns
are plotted in Figures 1–3. Returns are computed as the first difference of the log-price series,
and the displayed returns series in Figures 2 and 3 are multiplied by 100 to yield a (continuously
compounded) percentage return. Three tendencies emerge from the figures. First, the log-price
series do not appear to have obvious time trends in Figure 1. This finding was supported by
statistical tests in the estimation of our models below, where any trend included was statistically
insignificant and therefore removed (not reported). Second, the spot and futures log-price series
appear to move together in the long-run, supporting the notion that they are cointegrated. Third,
there is clearly heterogeneity among the commodities. For example, the variance of returns in
Figures 2 and 3 varies substantially across commodities.

In Table 2 we present some descriptive statistics for each of the commodity spot and futures
returns series. Again, returns are multiplied by 100 to yield a continuously compounded percentage
return. The statistics in Table 2 confirm the tendencies observed in the figures. The sample mean
returns for the spot market vary from 0.004% to 0.031% per day and in the futures market from
0.003% to 0.030% per day. A similar disparity in sample standard deviation, skewness, and kurtosis
is found. The implication here is that these specific commodities can potentially offer investors quite
different risk-return trade-offs when considered from an investment portfolio point of view. The
last column in the table reports the first-order autocorrelation coefficient for each series. These are
all quite small, ranging from −0.085 to 0.095, but several are in fact statistically significant due to
the large sample size. Nonetheless, the small autocorrelation coefficients suggest that all returns
are clearly stationary I(0) processes, thus confirming our modeling choice of fixing d = 1 in the
FCVAR analysis, but also suggest that past returns alone will likely not be very good predictors of
returns in the future.

5 Empirical results and economic significance

This section has three parts. In the first part, we present estimation results for the FCVAR and
CVAR models based on the first 75% of the sample. We use a relatively large fraction of the total
sample for estimation because the fractional models tend to require large sample sizes for reliable
estimation. In the second part, we present and discuss results for out-of-sample forecasting for the
remaining part of the sample, based on statistical measures of forecast accuracy and comparison.
The third part of the results is about the economic significance of return forecasts. In other words,
this is where we evaluate the forecasting models by asking: how beneficial are these forecasting
models to investors?
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Table 2: Selected descriptive statistics of daily commodity spot and futures returns

Spot market returns Futures market returns

Commodity Mean S.d. Skew. Kurt. AC Mean S.d. Skew. Kurt. AC

Canola 0.009 1.437 −0.282 13.968 0.002 0.009 1.295 −1.169 21.957 0.095
Cocoa 0.005 1.784 −0.018 6.625 −0.085 0.004 1.929 −0.007 5.962 0.004
Coffee 0.004 1.931 −0.042 17.243 0.003 0.003 2.279 0.012 11.817 0.000
Copper 0.020 1.656 −0.294 8.725 −0.039 0.021 1.722 −0.426 8.035 −0.032
Corn 0.011 1.664 −0.139 6.546 0.034 0.012 1.659 −1.003 21.212 0.053
Crude oil 0.006 1.052 −0.792 19.979 −0.044 0.006 0.939 −0.877 20.787 −0.010
Gasoline 0.020 2.647 −0.350 10.526 0.014 0.018 2.255 −0.457 11.274 0.015
Gold 0.019 0.995 −0.131 10.097 −0.029 0.019 1.003 −0.103 10.153 −0.006
Heating oil 0.008 1.047 −0.812 22.937 0.043 0.008 0.997 −1.364 21.283 −0.006
Palladium 0.022 1.958 −0.106 12.200 0.019 0.024 1.961 −0.234 8.802 0.082
Platinum 0.025 1.502 −0.331 26.744 −0.035 0.025 1.405 −0.584 9.091 0.040
Silver 0.015 1.794 −1.063 15.324 −0.016 0.015 1.802 −0.697 10.896 −0.009
Soybean 0.012 1.503 −0.568 7.950 −0.009 0.011 1.539 −0.934 20.509 0.018
Soy meal 0.012 1.699 −0.200 6.556 0.030 0.012 1.678 −0.904 12.272 0.056
Soy oil 0.013 1.570 0.020 5.137 0.020 0.013 1.509 −0.047 5.661 0.058
Sugar 0.015 2.231 −0.133 9.567 −0.039 0.014 2.514 0.218 15.249 −0.044
Wheat 0.011 2.049 −0.273 9.052 −0.019 0.011 1.857 −1.217 29.765 −0.021

Notes: This table reports selected descriptive statistics for the 17 commodity spot and futures return series. Specifi-

cally, the table reports the sample mean, standard deviation, skewness, kurtosis, and the first-order sample autocor-

relation of returns (all given in terms of percentage returns).

5.1 Estimation results

Before we can estimate the FCVAR model and apply it in forecasting, we have to make some model
selection choices. First, as discussed in Section 2 above, we apply estimation conditional on N = 10
initial values for all our FCVAR results, corresponding to conditioning on the first two weeks of
observations. Experimentation with different values of N showed little effect. For the CVAR model
we applied estimation conditional on k+1 initial values, such that maximum likelihood estimation is
reduced rank regression (Johansen, 1995). Second, we have to specify the lag length, k, in the vector
error correction models (2) and (3). For the CVAR model we select the lag length to minimize the
Bayesian Information Criterion (BIC) based on the model that has full rank r = p, where p is the
dimension of the system.3 For the FCVAR model, we apply several different statistics to select the
lag length, namely the BIC, the LR test statistic for significance of Γk, and univariate Ljung-Box
Q tests (with m = 10 lags) for each of the two residual series, in each case based on the model
that has full rank r = p. In addition, we examined the unrestricted estimates of b which, when the
lag length is misspecified, will sometimes be very far from what should be expected. Specifically,
due to a non-identification issue in the FCVAR model with misspecified lag length, it is sometimes
found that, e.g., b̂ = 0.05 or similar, see Johansen and Nielsen (2010, Section 2.3) for a theoretical
discussion of this phenomenon. For each commodity, we use the BIC as an initial rough guide to
choose the lag length, and starting from there we find the nearest lag length which satisfies the
criteria (i) Γk is significant based on the LR test, (ii) the unrestricted estimate of b is reasonable

3When calculating the BIC for different values of k, we use N = 10 initial values for all k to have the same effective
sample size—and hence facilitate comparison—across different values of k.
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(very widely interpreted), and (iii) the Ljung-Box Q tests for serial correlation in the two residual
series do not show signs of misspecification. Third, after choosing the number of lags, we select
the cointegrating rank, r, by sequentially testing (using the LR trace statistic) the hypotheses
r = 0, 1, 2 until rejection, choosing the last non-rejected hypothesis to be the cointegration rank.
The critical values for the rank tests are simulated case-by-case for the FCVAR model, and for the
CVAR model we used Johansen (1995, Table 15.2).

Table 3 reports results4 from estimation of CVAR and FCVAR models for commodity spot
and futures log-prices, i.e. with Xt = (st, ft)

′ in the notation of Section 2. For the estimation
we use only the first 75% of the sample, and reserve the remainder for out-of-sample forecasting.
This leaves T = 5781 observations in the estimation sample, except for gasoline (T = 5452) and
platinum (T = 5325).

First of all, the second column of Table 3 shows the chosen lag-order (k) for each commodity. It
is clear that fewer lags are usually needed in the lag-augmentation for the FCVAR model compared
with the CVAR model (only crude oil has more lags in the FCVAR model specification). This
is expected since the FCVAR model includes the additional parameter b to accommodate serial
dependence. Although the FCVAR model in this way includes one additional parameter (b), each
additional lag included in the CVAR model requires four additional parameters (Γi) to be estimated,
and hence the CVAR model in most cases includes a larger number of parameters than the FCVAR
model.

The third column of Table 3 shows the estimated fractional parameter, b̂. The point estimates
b̂ range from 0.194 to 0.955, showing a wide variety of fractional cointegration properties across
the different commodities. Relating the estimates of b to the theoretical model in Section 3.3,
we note that the heterogeneity in these estimates derives from heterogeneity in the storage cost
equation in Assumption C.2, since the interest rate in Assumption C.1 presumably will be the same
for different commodities. As discussed in Section 2 above, the CVAR model is nested within the
FCVAR model by imposing the hypothesis b = 1. Thus, we may test the CVAR model against the
more general FCVAR model by testing the restriction b = 1. In Table 3, we use one, two, and three
asterisks on the estimates b̂ to denote when the fractional parameter is significantly different from
unity at the 10%, 5%, and 1% level, respectively. From these tests we note that the CVAR model is
rejected against the FCVAR model for 15 of 17 commodities at the 1% level, and for one additional
commodity at the 10% level. Only palladium appears to be well-described by a CVAR model in
terms of in-sample fit when judged by this statistical test. Thus, the FCVAR model provides a
better statistical in-sample fit in most cases.5

The next six columns of Table 3 report estimates of the cointegration coefficient, −β̂2, the
restricted constant term, −ρ̂, the adjustment coefficients, α̂1 and α̂2, and the price discovery co-
efficients, α̂⊥,1 and α̂⊥,2. The estimates −β̂2 of the cointegration coefficients are close to unity, as
expected from an efficient markets hypothesis point of view, although they may deviate from unity
still. The latter reflects a market in long-run backwardation (when −β2 > 1) or contango (when
−β2 < 1), see Section 3 above. Generally, the estimates −β̂2 suggest that backwardation is more
common across markets. This is especially the case for estimates from the FCVAR model, which
indicate backwardation in 14 of 17 commodity markets, with the remaining three having estimates
−β̂2 very close to unity. As discussed in the economic equilbrium model in Section 3, the extent
of backwardation or contango is related to the convenience yield, which is expected to differ across
different commodities.

4Full estimation results are available from the authors upon request.
5We note that the log-likelihood—and hence the BIC—for the CVAR and FCVAR models are based on different

effective sample sizes, even for the same commodity, because the number of initial values are different. Therefore,
these measures cannot be used directly as a means of statistical comparison of the CVAR and FCVAR in-sample fit.
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Table 3: Estimation results for CVAR and FCVAR models of commodity prices

Commodity k b̂ −β̂2 −ρ̂ α̂1 α̂2 α̂⊥,1 α̂⊥,2

Panel A: CVAR model

Canola 3 1 1.036 −0.199 −0.019 0.000 −0.002 1.002∗∗∗

Cocoa 3 1 0.916 0.777 0.000 0.012 0.982∗∗ 0.018
Coffee 2 1 0.956 0.303 −0.018 0.004 0.171 0.829∗∗∗

Copper 5 1 0.993 0.060 −0.025 0.004 0.143 0.857∗∗∗

Corn 1 1 1.057 −0.298 −0.034 0.015 0.305∗∗∗ 0.695∗∗∗

Crude oil 1 1 1.006 −0.007 −0.247 0.035 0.124∗∗ 0.876∗∗∗

Gasoline 1 1 0.993 −0.015 −0.046 −0.011 −0.329∗∗ 1.329∗∗∗

Gold 2 1 1.000 −0.003 −0.506 0.148 0.226∗∗∗ 0.774∗∗∗

Heating oil 6 1 1.005 0.004 −0.075 −0.022 −0.414∗∗ 1.414∗∗∗

Palladium 2 1 1.002 −0.002 −0.057 0.037 0.392∗∗∗ 0.608∗∗∗

Platinum 7 1 0.999 0.006 −0.076 0.107 0.586∗∗∗ 0.414∗∗∗

Silver 3 1 0.993 0.042 −0.352 0.106 0.232∗∗∗ 0.768∗∗∗

Soybean 1 1 1.029 −0.201 −0.036 0.061 0.628∗∗∗ 0.372∗∗∗

Soy meal 3 1 1.042 −0.211 −0.019 0.007 0.255 0.745∗∗∗

Soy oil 4 1 1.179 −0.552 0.001 0.012 1.062∗∗ −0.062
Sugar 3 1 1.119 −0.219 −0.002 0.011 0.862∗∗∗ 0.138
Wheat 1 1 1.110 −0.652 −0.012 0.010 0.471∗∗∗ 0.529∗∗∗

Panel B: FCVAR model

Canola 2 0.776∗∗∗ 1.031 −0.177 −0.063 −0.004 −0.066 1.066∗∗∗

Cocoa 2 0.752∗∗∗ 0.966 0.407 0.014 0.043 1.502∗∗ −0.502
Coffee 1 0.528∗∗∗ 1.034 −0.131 −0.116 0.091 0.441∗∗ 0.559∗∗∗

Copper 0 0.341∗∗∗ 1.053 −0.194 −0.920 0.056 0.057 0.943∗∗∗

Corn 1 0.923∗ 1.057 −0.297 −0.044 0.021 0.325∗∗∗ 0.675∗∗∗

Crude oil 3 0.194∗∗∗ 1.007 −0.008 −44.874 2.691 0.057 0.943∗∗∗

Gasoline 1 0.735∗∗∗ 1.027 0.005 −0.125 −0.027 −0.270∗ 1.270∗∗∗

Gold 1 0.795∗∗∗ 1.002 −0.015 −0.878 0.181 0.171∗∗∗ 0.829∗∗∗

Heating oil 4 0.694∗∗∗ 1.014 0.006 −0.206 −0.055 −0.364 1.364∗∗∗

Palladium 2 0.955 1.002 0.000 −0.066 0.043 0.392∗∗∗ 0.608∗∗∗

Platinum 1 0.664∗∗∗ 0.996 0.022 −0.507 0.213 0.296∗∗∗ 0.704∗∗∗

Silver 1 0.672∗∗∗ 0.998 0.011 −1.174 −0.027 −0.023 1.023∗∗∗

Soybean 1 0.872∗∗∗ 1.028 −0.198 −0.050 0.098 0.661∗∗∗ 0.339∗∗∗

Soy meal 1 0.518∗∗∗ 1.138 −0.700 −0.115 0.103 0.472∗∗ 0.528∗∗∗

Soy oil 2 0.488∗∗∗ 1.294 −0.891 −0.041 0.046 0.529 0.471
Sugar 3 0.606∗∗∗ 1.090 −0.188 −0.003 0.086 0.969∗∗ 0.031
Wheat 0 0.717∗∗∗ 1.140 −0.820 −0.027 0.048 0.640∗∗∗ 0.360∗∗∗

Notes: This table reports estimation results for CVAR (Panel A) and FCVAR (Panel B) models applied to the

first 75% of the sample of commodity spot and futures log-prices. The columns include lag-order, k, estimates of

the fractional parameter, b̂, the cointegration coefficient, −β̂2, the restricted constant term, −ρ̂, the adjustment

coefficients, α̂1 and α̂2, and the price discovery coefficients, α̂⊥,1 and α̂⊥,2. The latter are normalized to add to unity.

For the fractional parameter we let one, two, and three asterisks denote significant difference from unity at the 10%,

5%, and 1% level, respectively, and for the price discovery coefficients, asterisks denote significant difference from

zero.
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As discussed briefly in Sections 2.2 and 3.4, the adjustment coefficients α1 and α2 determine the
speed of adjustment towards equilibrium for the two variables when the system is in disequilibrium.
In our model, α1 < 0 and α2 > 0 imply adjustment towards equilibrium, with the other sign
indicating adjustment away from equilibrium. For example, we note that the estimates for gasoline
suggest that the futures prices do not adjust towards equilibrium (and in fact adjust away from
equilibrium, although this is only mildly significant, see below), whereas spot prices do adjust
towards equilibrium. This behavior is found only for a few commodities. Note also that the
system can still exhibit overall adjustment towards the equilibrium, even if one price series does
not adjust towards equilibrium. This happens, of course, if the price series that does adjust towards
equilibrium does so at a faster rate than the other price series moves away from equilibrium. For
most commodities, however, both prices adjust towards equilibrium but at different speeds.

The final two columns for each model show the price discovery coefficients, α̂⊥,1 and α̂⊥,2,
normalized to add to unity. The first is the proportion of price discovery in the spot market,
and the second is the proportion of price discovery in the futures market. For the price discovery
coefficients we test the hypotheses that they are zero and let one, two, and three asterisks denote
significance at the 10%, 5%, and 1% level, respectively.6 Thus, to test whether, for example, the
futures market is dominant in the sense that price discovery takes place exclusively in the futures
market, one would test the equivalent hypothesis that there is no price discovery in the spot market,
which is formulated as α⊥,1 = 0. We note that, corresponding to those α coefficients that do not
indicate adjustment towards equilibrium, there are a few negative α̂⊥,i coefficients. However, only
two are significantly negative in the CVAR results and only one is significantly negative (and only
at the 10% level) in the FCVAR results.

It is seen that, according to point estimates of the price discovery coefficients from both the
CVAR and FCVAR models, the futures market dominates price discovery for most commodities,
as expected from theory (e.g., Hasbrouck, 1995), with average futures market price discovery coef-
ficients of 0.665 and 0.659 from the CVAR and FCVAR models, respectively. However, in general
there is significant price discovery taking place in both the spot and futures markets for many
commodities.

In particular, according to the CVAR model, the spot market is dominant in the price discovery
process for three commodities (cocoa, soy oil, and sugar), while the futures market is dominant for
six commodities (canola, coffee, copper, gasoline, heating oil, and soy meal). We include gasoline
and heating oil in this list because their price discovery coefficients for the spot market are negative,
even though they are significant at the 5% level.

From the FCVAR model, the conclusions are similar. Specifically, the spot market is dominant
in the price discovery process for two commodities (cocoa and sugar). One possible reason for
the empirically observed spot market dominance could be the fall in futures trading during and
after the recent crisis, where futures trading volume shrank substantially. On the other hand, the
futures market is dominant for six commodities (canola, copper, crude oil, gasoline, heating oil,
and silver), where again gasoline has a significantly negative price discovery coefficient for the spot
market suggesting that the futures market is dominant for gasoline.

Overall, the CVAR and FCVAR models thus agree that there is strong statistical evidence that
the spot market is dominant in the price discovery process for cocoa and sugar, while the futures
market is dominant for canola, copper, gasoline, and heating oil. For the remaining commodities,
there is evidence of price discovery taking place in both the spot and futures markets, although

6The hypotheses on α⊥ are in fact tested by testing the mirror hypotheses on α. For example, as is obvious from
the definition of α⊥, the hypothesis α⊥,1 = 0 is equivalent to the mirror hypothesis α2 = 0, and the latter hypothesis
is straightforward to test within the CVAR and FCVAR models, see also the discussion in Dolatabadi, Nielsen, and
Xu (2015).
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with some differences across the CVAR and FCVAR models.
Our findings on price discovery connect with the literature on price discovery in commodity

markets; see, e.g., Figuerola-Ferretti and Gonzalo (2010), Dolatabadi, Nielsen, and Xu (2015), and
the papers cited therein. In this literature there are several studies which show that price discovery
is dominated by the futures market. Our study confirms this broad view, but at the same time
points to a few commodities where price discovery is not dominated by the futures market. Thus,
while our results are consistent in spirit with the literature, suggesting that for most commodities
futures market dictates price discovery, this evidence is not completely general—a finding consistent
with Dolatabadi, Nielsen, and Xu (2015).

These price discovery results are not trivial outcomes because the dominance of one market over
another indicates the market which has the highest information content. This has implications
for investors because the market which has most information can then be used to forecast the
market which has less information. In univariate regression-style forecasting models, one would
then consider using past information from the dominant market to forecast prices or returns in the
non-dominant market. However, our FCVAR (and CVAR) models are joint models for spot and
futures price series, and will therefore forecast both series simultaneously and hence automatically
take the price discovery information in both markets into account.

5.2 Statistical out-of-sample forecast comparison

In this subsection we move on to out-of-sample forecasting. Specifically, starting from the estimation
results in the previous subsection, we recursively generate one-step ahead (daily) return forecasts,
re-estimating the model each period. We generate a total of 1927 out-of-sample return forecasts
in this manner (only 1818 for gasoline and 1775 for platinum), to match the remaining 25% of our
observations. This allows us to compare our forecasts with the actually observed out-of-sample
returns series.

In Figure 4 we show forecasts as well as subsequently realized values for daily forecasting
(h = 1) of crude oil (a) log-spot prices, (b) log-futures prices, (c) spot returns, and (d) futures
returns. We choose crude oil for the illustration because it is the most heavily traded commodity
in our dataset, see Table 1. Each subplot shows the last 20 observations in the estimation sample
(i.e. Xt or rt = ∆Xt for t = 5762, . . . , 5781) together with the first 50 out-of-sample one-step
ahead forecasts (X̂t+1|t or r̂t+1|t for t = 5781, . . . , 5830) and the corresponding realized values
(Xt+1 or rt+1 for t = 5781, . . . , 5830). In each subplot there are three lines: The blue line denotes
the data observations, the red line shows the recursive FCVAR forecasts, and the green line the
recursive CVAR forecasts. It is noted that the log-price forecasts track the subsequently realized
observations quite well, whereas the returns are clearly predicted much less accurately. This is,
of course, expected from no-arbitrage theory of efficient markets. However, we do note a slightly
better forecasting performance of spot returns compared with futures returns, at least for this
particular part of the sample, which is also in accordance with our finding of price discovery in the
futures market for crude oil, see Table 3.

The difference between FCVAR model forecasts and CVAR model forecasts shows most clearly
in the forecasts of the equilibrium error series, β′Xt, which is depicted in Figure 5. Here we show
the last (daily) observation on the model equilibrium error (i.e. β̂′Xt for t = 5781), together with
the recursive h-period ahead forecasts of these, β̂′X̂t+h|t for t = 5781 and h = 1, . . . , 100, generated
from (a) the CVAR model and (b) the FCVAR model. In each panel, the horizontal line indicates
the mean of the equilibrium relation given by −ρ̂. Again, the forecasts are depicted for crude oil
as an illustration.

It is clear from Figure 5 that the CVAR model equilibrium error forecasts return to their
mean value much more quickly than the FCVAR model equilibrium error forecasts. This reflects
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Figure 4: Daily crude oil forecasts

(a) Log-spot price forecasts
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(c) Spot return forecasts
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(d) Futures return forecasts
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Notes: The four plots show forecasts as well as subsequently realized values for (a) log-spot prices, (b) log-futures
prices, (c) spot returns, and (d) futures returns. Each plot shows the last 20 observations in the estimation sample
together with the first 50 out-of-sample one-step ahead forecasts and the subsequently realized values. In each subplot
there are three lines: The blue denotes the data observations, the red line are the recursive FCVAR forecasts, and
the green line the recursive CVAR forecasts.

the I(0) nature of β′Xt in the CVAR model and the fractional integration nature of β′Xt in the
FCVAR model, where β′Xt is estimated to be I(0.806), see Table 3, which is nonstationary but
mean-reverting. It would be natural to expect that this feature of the multi-step ahead forecasts
generated by the FCVAR model may impact the forecasting performance of the FCVAR model
relative to the CVAR model at longer horizons, which we will investigate below.

In Table 4 we report some out-of-sample forecast comparison statistics for the one-step ahead
(daily, h = 1) forecasts calculated from either the FCVAR model or the CVAR model. In particular,
we first report the Clark and West (2007, Section 2) test statistic for equal predictive ability, which
is a modification of the Diebold and Mariano (1995) test statistic to account for the fact that
the CVAR model is nested within the FCVAR model class7 (see also Giacomini and White, 2006,
for the point about nested model classes). The CW statistic is asymptotically standard normally
distributed and favors the FCVAR model forecasts when it is positive. The null hypothesis of
the nested CW test is that the CVAR model forecasts are at least as good as the FCVAR model
forecasts, and the alternative hypothesis is that the FCVAR forecasts are superior. Note, therefore,
that this is a one-sided test, and we report one-sided significance using asterisks in the table. The
next statistic is the relative root mean squared error (RMSE) of the two forecasts (from the FCVAR
and CVAR models, respectively), and this is calculated such that negative values favor the FCVAR
model forecasts. Finally, we report the out-of-sample R2 for both sets of forecasts.

7We are grateful to Peter Extercate for bringing this point to our attention.
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Figure 5: Daily crude oil equilibrium error forecasts

(a) CVAR equilibrium error forecasts
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(b) FCVAR equilibrium error forecasts
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Notes: The two plots show the last observation of the model equilibrium error, i.e. β̂′Xt, together with the recursive

h-period ahead forecasts, β̂′X̂t+h|t for h = 1, . . . , 100, generated from (a) the CVAR model and (b) the FCVAR
model. In each panel, the mean is indicated by a horizontal line given by −ρ̂′.

The results in Table 4 clearly favor the FCVAR model forecasts. Specifically, the CW statistic
favors the FCVAR model forecasts in 15/17 spot markets and 16/17 futures markets, and is signifi-
cant at the 10% level or better in 13 and 11 of those cases, respectively. None of the three negative
CW statistics are significant even at the 10% level. The relative RMSE prefers the FCVAR model
forecasts for 14/17 commodities in both the spot futures markets.

Where the CW statistic and relative RMSE are both statistical measures of forecast comparison,
the final columns in Table 4 report the out-of-sample R2 for both sets of return forecasts. It is seen
from these columns that the forecastability of returns vary greatly across commodities, and also
between spot and futures markets for the same commodity. Comparing the FCVAR and CVAR
forecasts, the out-of-sample R2 values support the conclusions from the previous columns with
R2 being higher on average for the FCVAR model. Also, in most cases the out-of-sample R2 is
higher for the spot market than for the futures market, confirming earlier results on the relative
forecastability of returns from the two markets.

Before moving on to analyzing economic significance, we investigate the robustness of the Table
4 results by considering forecasting at longer horizons. Specifically, we consider forecasting at the
weekly and monthly horizons based on daily data, i.e., horizons of h = 5 and h = 21 periods ahead.
The motivation is that these horizons could correspond to an investor that rebalances the portfolio
weekly or monthly and hence needs only forecasts at those horizons. With the same motivation,
therefore, we consider only non-overlapping forecasts. That is, the forecast is calculated every h
periods (days) for h steps ahead. This yields a total of 385 one-week ahead (h = 5) forecasts and 91
one-month ahead (h = 21) forecasts of h-day returns, except for gasoline (363 and 86, respectively)
and platinum (355 and 84, respectively).

The out-of-sample forecasting results for these longer horizons are presented in Tables 5 (weekly,
h = 5) and 6 (monthly, h = 21), which are both laid out exactly like Table 4. The results for out-
of-sample forecast comparisons using statistical measures are generally similar for these horizons
as for the daily horizon presented in Table 4, although not quite as favorable towards the FCVAR
as in Table 4 and with fewer statistically significant CW statistics. For the weekly horizon, the
FCVAR model is preferred to the CVAR model by the CW statistic for 12/17 (spot markets) and
13/17 (futures markets) commodities, although only six of these are significant at the 10% level for
the spot markets and seven for the futures markets. For the monthly horizon, the FCVAR model is
preferred by the CW statistic for 11/17 (spot markets) and 10/17 (futures markets) commodities,
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Table 4: Statistical out-of-sample forecast comparison at daily (h = 1) horizon

CW statistic Relative RMSE R2
OOS CVAR R2

OOS FCVAR

Commodity Spot Futures Spot Futures Spot Futures Spot Futures

Canola 2.3240∗∗ 2.0699∗∗ −0.1932 −0.1516 0.4010 −0.0008 0.4033 0.0023
Cocao 4.9334∗∗∗ 2.4235∗∗∗ −0.6563 −0.1389 0.0037 −0.0030 0.0167 −0.0002
Coffee 10.1160∗∗∗ 0.4626 −2.3397 0.0455 0.4386 0.0003 0.4646 −0.0006
Copper 2.4182∗∗∗ 1.1569 −0.2294 −0.0591 −0.0013 −0.0014 0.0033 −0.0003
Corn 0.7305 0.8105 −0.0182 −0.0181 0.0009 0.0030 0.0013 0.0033
Crude oil 2.0993∗∗ 2.1385∗∗ −0.3290 −0.2452 −0.0461 0.0026 −0.0393 0.0075
Gasoline 2.1831∗∗ −0.3623 −0.1532 0.0202 0.0177 0.0021 0.0207 0.0017
Gold 1.3540∗ 0.5399 −0.0672 −0.0079 −0.0399 0.0426 −0.0385 0.0428
Heating oil 2.2040∗∗ 1.5268∗ −0.1608 −0.1013 −0.0129 −0.0059 −0.0096 −0.0039
Palladium 3.4676∗∗∗ 2.0645∗∗ −0.0962 −0.0239 0.1165 0.0091 0.1182 0.0096
Platinum 4.2108∗∗∗ 2.4841∗∗∗ −0.8827 −0.3388 0.1241 −0.0032 0.1395 0.0036
Silver 1.6530∗∗ 2.0524∗∗ −0.1440 −0.1923 −0.0740 0.0204 −0.0709 0.0241
Soybean −0.2842 1.7922∗∗ 0.0553 −0.3238 0.0103 −0.0080 0.0092 −0.0015
Soy meal 0.6216 0.5917 0.0220 0.0229 0.0055 0.0055 0.0051 0.0051
Soy oil 1.3304∗ 1.4648∗ −0.0726 −0.0888 0.0048 −0.0064 0.0062 −0.0046
Sugar −0.8063 1.6087∗ 0.2434 −0.0854 0.0511 −0.0015 0.0465 0.0003
Wheat 1.5979∗ 1.4354∗ −0.1292 −0.0668 −0.0030 −0.0035 −0.0005 −0.0021

Notes: This table reports out-of-sample forecast comparison statistics for one-step ahead (h = 1) return forecasts.

The statistics reported are the Clark and West (2007) test statistic, the relative RMSE, and the out-of-sample R2.

The CW statistic is asymptotically standard normally distributed and positive values favors the FCVAR model.

Statistical significance (one-sided) of the CW statistic at the 10%, 5%, and 1% level is denoted by one, two, and three

asterisks, respectively. The relative RMSE is calculated such that it favors FCVAR model when it is negative.

with four of these being significant in the spot markets and five in the futures markets. Of course,
part of the explanation here is that the number of non-overlapping monthly forecasts is smaller
than the number of daily forecasts, and therefore it is more difficult to distinguish between the
monthly forecasts from the two different models in a statistically significant manner. Among those
CW statistics that are statistically significant for longer horizon forecasting (h = 5 or h = 21) in
Tables 5 and 6, 22 out of 23 favor the FCVAR model forecasts over the CVAR forecasts.

For the out-of-sample R2, the general tendency is, not surprisingly, that it is smaller for the
longer horizon forecasts. However, both the out-of-sample R2 and the relative RMSE in Tables 5
and 6 generally still favor the FCVAR model forecasts over the CVAR forecasts.

Generally, comparing the results across Tables 4–6, our findings clearly show that it is more
difficult to predict returns at longer horizons in both the spot and futures commodity markets, at
least for the horizons considered here. We would expect this to have implications for the profitability
and economic significance of longer horizon forecasts, and we return to this point below.

5.3 Mean-variance utility function based profits

Another possible metric of comparison and evaluation of forecasting performance is economic—
rather than purely statistical—significance. That is, whether the forecasts can generate significant
returns when incorporated into a dynamic trading strategy. In calculating these metrics, we also
investigate whether the improved statistical in-sample fit and forecast performance of the FCVAR
model relative to the CVAR model translate into economically significant profits, and whether
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Table 5: Statistical out-of-sample forecast comparison at weekly (h = 5) horizon

CW statistic Relative RMSE R2
OOS CVAR R2

OOS FCVAR

Commodity Spot Futures Spot Futures Spot Futures Spot Futures

Canola 0.7481 1.9031∗∗ −0.0849 −0.2551 0.1040 −0.0026 0.1055 0.0025
Cocao 3.1027∗∗∗ 0.9849 −0.9886 −0.1030 0.0653 0.0030 0.0836 0.0050
Coffee 4.0184∗∗∗ 0.1238 −2.4138 0.2639 0.0167 0.0081 0.0636 0.0029
Copper 1.7589∗∗ 0.5624 −0.3404 −0.0578 0.0083 −0.0027 0.0150 −0.0015
Corn 0.9508 1.4693∗ −0.1422 −0.1047 −0.0079 −0.0025 −0.0050 −0.0004
Crude oil 1.8899∗∗ 2.1041∗∗ −0.8968 −1.0455 −0.0138 −0.0026 0.0042 0.0181
Gasoline 0.1395 0.2749 0.3515 0.0041 0.0424 0.0144 0.0356 0.0144
Gold −0.6288 −2.7025 0.0859 0.2793 −0.0121 0.0119 −0.0139 0.0063
Heating oil 0.6003 −0.9668 −0.0343 0.2178 −0.0069 0.0033 −0.0062 −0.0010
Palladium 0.1160 2.4649∗∗∗ −0.0003 −0.0816 0.0360 0.0014 0.0360 0.0030
Platinum 7.3564∗∗∗ 7.3241∗∗∗ −5.3669 −3.4374 −0.0871 −0.0586 0.0265 0.0129
Silver −0.4919 −0.6082 0.3041 0.4550 −0.0208 0.0151 −0.0271 0.0061
Soybean −0.4930 1.7129∗∗ 0.2480 −0.5934 0.0112 −0.0205 0.0062 −0.0084
Soy meal −0.4758 −0.0447 0.3978 0.1358 0.0144 −0.0035 0.0065 −0.0063
Soy oil 0.8123 0.4126 −0.1027 −0.0009 0.0051 −0.0061 0.0071 −0.0061
Sugar −0.7432 1.6662∗∗ 0.5411 −0.3672 −0.0003 0.0303 −0.0112 0.0374
Wheat 1.4391∗ 0.2732 −0.5161 0.1065 −0.0113 −0.0054 −0.0008 −0.0075

Notes: This table reports out-of-sample forecast comparison statistics for one-week ahead (h = 5) non-overlapping

return forecasts. The statistics reported are the Clark and West (2007) test statistic, the relative RMSE, and the

out-of-sample R2. The CW statistic is asymptotically standard normally distributed and positive values favors the

FCVAR model. Statistical significance (one-sided) of the CW statistic at the 10%, 5%, and 1% level is denoted by

one, two, and three asterisks, respectively. The relative RMSE is calculated such that it favors FCVAR model when

it is negative.

the relatively strong forecastability in some markets compared with others translate into different
economic significance across markets.

The economic significance question is important because the statistical superiority of a model
over its competitors is just a first step in informing investors. An equally important question
is: how can investors benefit from a statistically superior model? This question is directly based
on the ability to forecast returns, that is, whether an investor can use forecasts from the model
to devise successful trading strategies and make superior profits compared with forecasts from
alternative models. In other words, these trading strategies should deliver statistically significant
and meaningful profits.

In the stock return forecasting literature, a mean-variance utility function is typically utilized
to derive a dynamic trading strategy for investors. We assume that the investor rebalances the
portfolio every h days, where we analyze in particular h = 1, h = 5, and h = 21, corresponding
to daily, weekly, and monthly rebalancing, respectively. The investor can invest in two assets: the
risk-free asset with (continuously compounded) return from period t to period t+h given by rf,t+h

and the risky asset with (continuously compounded) return given by rt+h = st+h − st in the case
where the risky asset is a spot position or rt+h = ft+h − ft in the case where the risky asset is a
futures position. The investor then forms a portfolio with weight wt+h on the risky asset and this
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Table 6: Statistical out-of-sample forecast comparison at monthly (h = 21) horizon

CW statistic Relative RMSE R2
OOS CVAR R2

OOS FCVAR

Commodity Spot Futures Spot Futures Spot Futures Spot Futures

Canola 0.1086 1.3962∗ 0.3256 −0.4392 −0.0218 −0.0073 −0.0285 0.0015
Cocao 0.5633 0.1983 −0.2073 0.1141 −0.0136 −0.0037 −0.0094 −0.0060
Coffee 2.3997∗∗∗ −0.7523 −4.3002 1.2826 −0.1338 0.0258 −0.0384 0.0007
Copper −0.5860 0.1951 0.3697 −0.0186 0.0148 −0.0021 0.0075 −0.0017
Corn 0.6826 1.5109∗ −0.3148 −0.2279 0.0017 −0.0132 0.0080 −0.0086
Crude oil −1.8314∗∗ −0.5001 2.3319 0.5496 −0.0227 0.0013 −0.0709 −0.0096
Gasoline 0.8510 0.3442 −0.3066 −0.0589 0.0759 0.0419 0.0816 0.0430
Gold −0.0048 −1.5281 0.0059 0.1915 0.0001 −0.0178 0.0000 −0.0217
Heating oil 0.9596 −0.9572 −0.5101 0.6360 −0.0629 −0.0249 −0.0521 −0.0380
Palladium −0.5635 1.3000∗ 0.0672 −0.1058 −0.0156 −0.0014 −0.0170 0.0007
Platinum 1.6461∗∗ 1.9065∗∗ −0.6423 −0.9022 0.0029 −0.0206 0.0156 −0.0023
Silver −0.4319 −0.3645 0.1744 0.2706 0.0078 0.0090 0.0044 0.0036
Soybean −0.1114 2.5335∗∗∗ 0.3023 −1.2456 0.0176 −0.0557 0.0117 −0.0296
Soy meal 0.3061 −0.2431 0.2976 0.3945 0.0043 0.0136 −0.0017 0.0058
Soy oil 0.8103 1.4102∗ −0.4503 −0.7284 0.0066 −0.0380 0.0155 −0.0229
Sugar 0.3643 −0.8353 −0.0360 1.5687 0.0128 0.0594 0.0136 0.0297
Wheat 1.5656∗ 0.4133 −1.8860 −0.0312 −0.0377 −0.0155 0.0011 −0.0148

Notes: This table reports out-of-sample forecast comparison statistics for one-month ahead (h = 21) non-overlapping

return forecasts. The statistics reported are the Clark and West (2007) test statistic, the relative RMSE, and the

out-of-sample R2. The CW statistic is asymptotically standard normally distributed and positive values favors the

FCVAR model. Statistical significance (one-sided) of the CW statistic at the 10%, 5%, and 1% level is denoted by

one, two, and three asterisks, respectively. The relative RMSE is calculated such that it favors FCVAR model when

it is negative.

portfolio yields a return of

rp,t+h = wt+hrt+h + (1− wt+h)rf,t+h − θ|wt+h − wt|
= wt+h(rt+h − rf,t+h) + rf,t+h − θ|wt+h − wt|, (12)

where θ denotes a transactions cost, which is applied to the value of the fraction of the portfolio
that is being traded, hence the multiplication by |wt+h − wt|. The size of transactions costs in
commodity markets is subject to some discussion in the literature. We follow Locke and Venkatesh
(1997), who write (p. 239) that “Overall, transaction costs appear to be relatively low for futures
trading, as these numbers translate to between 0.0004% and 0.033% of notional value, much less
than the 1% or so often cited for equities.” Specifically, we take the average of their suggested range
and use θ = 0.000167 in (12), i.e., we use 0.0167% of nominal value as the transactions cost for
trading in both futures and spot markets. We note from the outset that, as also discussed in the
introduction, trading in the futures market is much more practical than trading in the spot market.
Indeed, the latter may not even be feasible for some commodities. Thus, for futures market trading
in particular, these transactions costs appear reasonable.

Following Marquering and Verbeek (2004) and Campbell and Thompson (2008), among others,
the weight on the risky asset is determined by maximizing the investor’s mean-variance utility
function,

U(rp,t+h) = Et(rp,t+h)− 1

2
γV art(rp,t+h), (13)
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where Et(·) and V art(·) denote conditional mean and variance given information at time t and γ is
the investor’s coefficient of relative risk aversion. Maximizing U(rp,t+h) with respect to wt+h yields
the optimal weight

w∗t+h =
Et(rt+h)− rf,t+h

γV art(rt+h)
, (14)

noting that the risk-free rate carries no risk and hence does not contribute to the variance of the
portfolio. Following the literature, we further constrain the optimal weight and impose w∗t+h ≥
−0.5 (at most 50% short-selling) and w∗t+h ≤ 1.5 (at most 50% borrowing/leverage). In the next
subsection we consider robustness to alternative restrictions on short-selling and leverage.

To summarize the calculation of profitability of the return forecasts, that is their economic
significance, three steps are performed: (i) forecast returns, (ii) compute portfolio weights, and (iii)
calculate portfolio returns. The first step involves calculating (6) to forecast commodity (spot or
futures) returns at each time period, as explained in Section 2.3.

In the second step we calculate portfolio weights from (14) given the return forecasts Et(rt+h) =
r̂t+h|t. For the risk-free return rf,t+h we use the return on the US three-month Treasury bill, which
is assumed known at time t (since it is risk-free). The risk-aversion coefficient is set at γ = 6,
corresponding to an investor that takes a medium level of risk, and for robustness we also consider
in the next subsection a higher risk-aversion investor (γ = 12) and a lower risk-aversion investor
(γ = 3). Finally, following standard practice, we estimate the time-varying variance of the risky
asset by a GARCH(1,1) model using all observations available at time t.

Third, given the portfolio weights, portfolio returns are computed from (12) for each period.
These are then aggregated across time and reported as an annualized average portfolio excess return
to facilitate comparison across different values of the rebalancing horizon, h. Because futures market
trading is more practical than spot market trading, we begin with the commodity futures markets.

In Table 7 we report the annualized average excess portfolio return (multiplied by 100 to yield
a continuously compounded percentage return) for commodity futures markets. The returns are
reported as excess returns above and beyond the risk-free rate (the average return on which was
1.753% per annum over the out-of-sample forecasting period). The results are presented for a
medium risk-aversion investor, that is, with risk-aversion coefficient γ = 6 in (13) and (14), and
with weights restricted to the interval [−0.5, 1.5], corresponding to at most 50% short-selling and
borrowing/leverage. We report results for daily (h = 1), weekly (h = 5), and monthly (h = 21)
rebalancing and for forecasts based on both the CVAR and FCVAR models. Standard errors are
reported in parentheses. For each commodity and each rebalancing horizon, we conduct a statistical
test of the null hypothesis that excess portfolio return is zero against the two-sided alternative that
excess portfolio return is different from zero, and we interpret this as a (statistical) test of economic
significance of the return forecasts.

The results in Table 7 show several clear tendencies. First of all, excess portfolio returns average
about 9.0% and 10.8% per annum with daily rebalancing, based on CVAR and FCVAR forecasts,
respectively, 0.2% and 0.9% with weekly rebalancing, and 1.9% and 2.5% with monthly rebalancing.
Compared with the average annual return of just under 1.8% on the risk-free asset and the very
small average returns on the commodities themselves, which in many cases is only very slightly
higher than that of the risk-free asset, as reported in Table 2, we find that the excess returns in
Table 7 with daily rebalancing are impressively large for most commodities. Secondly, with daily
rebalancing, the excess returns are significantly positive in 14 of 34 cases, whereas only one of the
negative returns is significant (and only at the 10% level). For longer horizons, there are fewer
significant returns because the returns are smaller and their standard errors higher. Thirdly, as
shown in the last row of the table, by far the highest returns on average are found with daily
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Table 7: Annualized excess portfolio returns for commodity futures markets

Daily Weekly Monthly

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR

Canola 14.042∗∗∗ 16.732∗∗∗ 2.778 0.426 −3.707 −4.566
(5.430) (5.202) (4.799) (3.760) (6.370) (3.713)

Cocoa −6.157∗ −0.547 0.666 −3.621 6.824 0.568
(3.659) (3.747) (4.320) (6.469) (8.222) (9.337)

Coffee 2.565 3.910 −6.106 −0.328 −10.748 2.572
(4.240) (4.655) (5.908) (7.818) (9.563) (9.584)

Copper −3.810 −0.574 −4.338 −1.852 7.636 2.386
(3.858) (0.952) (3.222) (2.077) (5.827) (3.848)

Corn 14.163∗∗ 15.545∗∗ −12.351∗ −9.570 −3.461 −3.397
(6.066) (6.330) (7.053) (7.548) (14.955) (15.914)

Crude oil −1.040 4.362 0.612∗∗∗ −0.101 0.684∗∗∗ 0.496∗∗∗

(1.778) (3.592) (0.054) (0.068) (0.101) (0.093)
Gasoline 6.705 7.133 8.915 9.493 29.981∗ 25.199

(4.833) (4.688) (6.844) (6.679) (17.561) (16.170)
Gold 36.877∗∗∗ 36.726∗∗∗ 0.816 0.600 8.067 7.425

(4.765) (4.680) (5.546) (5.131) (6.811) (7.173)
Heating oil −1.289 0.696 −0.653∗∗∗ −0.354∗∗∗ 0.108 0.323∗∗∗

(4.047) (3.566) (0.097) (0.088) (0.117) (0.105)
Palladium 26.677∗∗∗ 27.852∗∗∗ −1.351 −1.879 7.067 6.935

(6.483) (6.594) (5.878) (5.572) (7.730) (6.992)
Platinum 1.322 6.199∗∗ −3.099 −1.673 9.072 15.287∗∗

(3.629) (2.784) (4.062) (3.651) (6.819) (6.269)
Silver 38.723∗∗∗ 32.990∗∗∗ 1.455 −3.333 4.737 8.816∗∗

(6.306) (4.788) (10.523) (3.987) (11.122) (4.234)
Soybean −3.796 −1.052 −2.159 2.166 −11.097 −8.732

(4.362) (5.055) (6.880) (7.496) (10.621) (10.996)
Soy meal 13.839∗∗ 13.379∗∗ −2.907 6.155 −11.337∗∗ −10.342

(6.513) (6.078) (5.796) (6.615) (5.325) (8.705)
Soy oil 2.272 4.173 8.841 0.582 −12.082 −4.102

(6.447) (6.052) (5.375) (5.185) (8.978) (5.258)
Sugar 8.066 14.399∗ 22.104∗∗∗ 25.621∗∗ −10.072 −6.563

(7.912) (8.467) (8.359) (10.245) (15.294) (16.114)
Wheat 3.496 1.162 −10.276 −7.763 21.121 9.477

(5.229) (5.398) (7.501) (9.294) (12.938) (13.676)

Average 8.980 10.770 0.174 0.857 1.929 2.458

Notes: This table reports annualized average excess portfolio percentage returns for commodity futures markets for

a medium risk-aversion investor (γ = 6) with weights restricted to the interval [−0.5, 1.5]. The results are reported

for daily (h = 1), weekly (h = 5), and monthly (h = 21) rebalancing and for forecasts based on both the CVAR and

FCVAR models. Standard errors are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level

is denoted by one, two, and three asterisks, respectively. The final row is the average return across all commodities.

26



rebalancing. Thus, it would appear that more opportunities to rebalance clearly outweighs the
additional transactions costs imposed.

Comparing portfolio returns using weights calculated from CVAR and FCVAR based forecasts
show that each model produces similar returns on average, although there are sometimes substantial
differences for individual commodities. In fact, the FCVAR forecasts generate higher returns for 13
out of 17 commodities with daily rebalancing. With weekly and monthly rebalancing, the FCVAR
forecasts generate higher returns in 10/17 commodities and 9/17 commodities, respectively. Quite
surprisingly, given our expectations of the FCVAR model as a superior long-horizon forecasting
model, the CVAR and FCVAR models basically perform equally well with longer horizon rebalanc-
ing. Of course, as noted in Tables 4–6, the accuracy of the forecasts is worse at longer horizons,
and this is clearly part of the reason why profits are lower with longer horizon rebalancing. Thus,
overall, the two models perform quite similarly in terms of futures market profits for a medium
risk-aversion investor.

The results for the spot markets are presented in Table 8, which is laid out as in Table 7. These
results show even larger excess returns with daily rebalancing than for the futures markets, which
reflects the earlier finding from Figure 4 and Tables 4–6 that futures returns are more difficult
to forecast than spot returns. It is also not too surprising given the finding from Table 3 that
price discovery is primarily in the futures market for most commodities, suggesting that portfolio
returns from the trading strategy may be higher in the spot markets than in the futures markets.
In particular, we notice from Table 2 that there is no substantial difference between average returns
in the spot and futures markets, so the different profits in the two markets cannot be attributed
simply to differences in the unconditional average return in the two markets. There are four obvious
exceptions, namely crude oil, gold, heating oil, and silver, where excess portfolio returns in the spot
markets are lower than in the futures markets. This is not too surprising since the statistical
forecast evaluation also showed that for these commodities, futures returns are more predictable
than spot returns, as seen from the out-of-sample R2 statistics in Table 4.

Since the spot market positions are not as easily tradable as the futures market positions, and
since the transactions costs more closely match those found in futures markets, we will not focus
too much on the spot market profits results, although these are still useful as a metric of forecast
comparison between the CVAR and FCVAR models. Generally, the results in Table 8 are similar
to those found in Table 7. Excess returns are highest with daily rebalancing, and this is also where
the most significant returns are found. For a few commodities, these are in the hundreds of percent
per annum. Also, the comparison between CVAR and FCVAR forecasts based on average returns
shown the last row of the table again shows that the two models produce very similar returns on
average, with a slight advantage to the FCVAR model in the daily and monthly rebalancing cases
and a slight advantage to the CVAR model with weekly rebalancing.

As an additional performance metric, and an additional metric of comparison between the
CVAR and FCVAR models, we report in Table 9 the estimated Sharpe ratios of excess portfolio
returns for the commodity spot and futures markets with daily rebalancing, i.e., corresponding to
the excess returns shown in the first two columns of Tables 7 and 8. Of course, the Sharpe ratio is
defined simply as the average excess return for a commodity divided by the standard deviation of
its excess return, and the reported Sharpe ratios are annualized. Thus, the Sharpe ratio allows us to
investigate whether our positive excess returns arise because we are picking up some risk premium
(i.e., allowing for higher risk), since the Sharpe ratio shows the performance of a portfolio adjusted
for its risk. Jobson and Korkie (1981, p. 893) show using the Delta method that the asymptotic
standard deviation of the Sharpe ratio, say Ŝ, can be estimated by s.e.(Ŝ) = (1 + Ŝ2/2)1/2/T 1/2,
which we report in parentheses. As usual, statistical significance is denoted by asterisks. Since
the Sharpe ratios are fairly trivially calculated from the excess returns already presented, and
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Table 8: Annualized excess portfolio returns for commodity spot markets

Daily Weekly Monthly

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR

Canola 213.317∗∗∗ 209.812∗∗∗ −11.277 −15.609 −31.636 −21.274
(9.436) (9.237) (17.420) (16.861) (24.099) (21.505)

Cocoa 38.237∗∗∗ 44.565∗∗∗ 6.299 3.763 −7.236 3.089
(8.354) (8.347) (13.653) (13.765) (14.43) (10.201)

Coffee 189.528∗∗∗ 203.214∗∗∗ −20.420∗∗ −26.835∗∗ −5.803 −7.660
(7.534) (7.551) (9.647) (10.751) (9.791) (9.290)

Copper 2.171 9.339∗ 6.801 8.163 −7.620∗∗ −11.765∗

(5.528) (5.375) (5.012) (8.418) (3.841) (6.090)
Corn 20.802∗∗ 18.228∗∗ 13.662 1.606 9.211 4.107

(8.550) (7.640) (16.969) (14.547) (32.283) (23.750)
Crude oil −2.398 0.152 −1.206∗∗∗ −0.816∗∗∗ −0.118 0.004

(6.141) (6.004) (0.130) (0.124) (0.168) (0.142)
Gasoline 35.462∗∗∗ 37.033∗∗∗ 26.439∗ 31.775∗ 71.912∗∗∗ 51.143∗∗

(9.450) (10.290) (15.947) (18.325) (27.360) (25.841)
Gold 1.481 3.081 −4.146 −3.547 31.451∗∗ 29.186∗

(6.876) (7.072) (8.562) (9.151) (15.472) (15.603)
Heating oil −3.760 −0.739 −0.913∗∗∗ −0.554∗∗∗ −0.452∗∗ −0.128

(4.540) (4.328) (0.117) (0.098) (0.206) (0.157)
Palladium 119.516∗∗∗ 119.772∗∗∗ −2.883 −0.186 5.831 5.460

(11.495) (11.397) (11.939) (11.542) (8.862) (7.974)
Platinum 29.971∗∗∗ 31.787∗∗∗ −7.316 −2.421 −6.068 3.809

(4.358) (4.209) (6.641) (6.694) (11.043) (9.081)
Silver −1.480 −9.107 −10.603 −15.683 37.507 26.621∗

(10.523) (11.099) (9.604) (10.832) (27.947) (15.009)
Soybean 20.292∗∗∗ 14.973∗∗∗ 11.153 6.761 2.326 −1.766

(6.158) (4.879) (10.179) (7.167) (10.262) (4.424)
Soy meal 16.737∗∗ 14.153∗ 16.537∗ 4.633 −8.751 −3.818

(8.015) (8.222) (10.005) (8.946) (23.589) (15.889)
Soy oil 17.370∗∗ 14.659∗∗ 11.073 3.613 −23.826 −13.026

(7.245) (6.356) (7.919) (5.923) (15.467) (10.303)
Sugar 94.437∗∗∗ 90.336∗∗∗ −13.574 −17.619 0.312 −7.855

(9.944) (10.335) (8.579) (11.959) (6.516) (12.984)
Wheat 2.486 2.259 28.017∗ 6.269 −49.919 −10.141

(6.197) (3.203) (16.775) (8.844) (38.537) (12.648)

Average 46.716 47.266 2.802 −0.982 1.007 2.705

Notes: This table reports annualized average excess portfolio percentage returns for commodity spot markets for a

medium risk-aversion investor (γ = 6) with weights restricted to the interval [−0.5, 1.5]. The results are reported for

daily (h = 1), weekly (h = 5), and monthly (h = 21) rebalancing and for forecasts based on both the CVAR and

FCVAR models. Standard errors are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level

is denoted by one, two, and three asterisks, respectively. The final row is the average return across all commodities.
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Table 9: Sharpe ratios of excess portfolio returns for commodity markets (daily rebalancing)

Futures markets Spot markets

Commodity CVAR FCVAR CVAR FCVAR

Canola 0.950∗∗∗ 1.182∗∗∗ 8.304∗∗∗ 8.344∗∗∗

(0.368) (0.368) (0.391) (0.391)
Cocoa −0.618∗ −0.054 1.681∗∗∗ 1.961∗∗∗

(0.367) (0.367) (0.368) (0.369)
Coffee 0.222 0.309 9.241∗∗∗ 9.886∗∗∗

(0.367) (0.367) (0.396) (0.400)
Copper −0.363 −0.221 0.144 0.638∗

(0.367) (0.367) (0.367) (0.367)
Corn 0.858∗∗ 0.902∗∗ 0.894∗∗ 0.876∗∗

(0.368) (0.368) (0.368) (0.368)
Crude oil −0.215 0.446 −0.143 0.009

(0.367) (0.367) (0.367) (0.367)
Gasoline 0.525 0.575 1.419∗∗∗ 1.361∗∗∗

(0.378) (0.378) (0.379) (0.379)
Gold 2.843∗∗∗ 2.882∗∗∗ 0.079 0.160

(0.370) (0.370) (0.367) (0.367)
Heating oil −0.117 0.072 −0.304 −0.063

(0.367) (0.367) (0.367) (0.367)
Palladium 1.512∗∗∗ 1.551∗∗∗ 3.819∗∗∗ 3.860∗∗∗

(0.368) (0.368) (0.372) (0.373)
Platinum 0.139 0.852∗∗ 2.632∗∗∗ 2.891∗∗∗

(0.383) (0.383) (0.385) (0.386)
Silver 2.256∗∗∗ 2.531∗∗∗ −0.052 −0.301

(0.369) (0.370) (0.367) (0.367)
Soybean −0.320 −0.076 1.210∗∗∗ 1.127∗∗∗

(0.367) (0.367) (0.368) (0.368)
Soy meal 0.780∗∗ 0.809∗∗ 0.767∗∗ 0.632∗

(0.368) (0.368) (0.368) (0.367)
Soy oil 0.129 0.253 0.881∗∗ 0.847∗∗

(0.367) (0.367) (0.368) (0.368)
Sugar 0.374 0.625∗ 3.488∗∗∗ 3.211∗∗∗

(0.367) (0.367) (0.372) (0.371)
Wheat 0.246 0.079 0.147 0.259

(0.367) (0.367) (0.367) (0.367)

Average 0.541 0.748 2.012 2.100

Notes: This table reports estimated annualized Sharpe ratios of excess portfolio returns for commodity markets with

daily (h = 1) rebalancing corresponding to the portfolio returns in Tables 7 and 8. Standard errors are reported

in parentheses. Statistical significance at the 10%, 5%, and 1% level is denoted by one, two, and three asterisks,

respectively. The final row is the average Sharpe ratio across all commodities.
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to conserve space, we only report Sharpe ratios for our benchmark case. Of course, the usual
disadvantage of the Sharpe ratio remains that it relies on the notions that risk equals variance and
that all variance is bad, such that the Sharpe ratio penalizes strategies with upside potential the
same as strategies with similar magnitude downside risk. Thus, any conclusions drawn from the
Sharpe ratios should be considered in this light.

The Sharpe ratios reported in Table 9 reflect the heterogeneity of excess returns across com-
modities in Tables 7 and 8. In particular, the Sharpe ratios for the futures markets vary from
−0.618 to 2.882 and for the spot markets from −0.304 to 9.886. Only one of the negative Sharpe
ratios is significant (and only at the 10% level, corresponding to the significantly negative return
for cocoa in Table 7), whereas many of the positive Sharpe ratios are very significant. In particular,
15 of the 34 Sharpe ratios are significant for the futures markets and 23 of the 34 Sharpe ratios are
significant for the spot markets.

In terms of the Sharpe ratios, it would appear that portfolios based on FCVAR model forecasts
has an advantage over those based on CVAR model forecasts, especially for the futures markets.
Throughout Table 9, the Sharpe ratio for the FCVAR based portfolio is higher than that for the
CVAR based portfolio in 16 of 17 futures markets and 10 of 17 spot markets. This finding is
confirmed by the average Sharpe ratios reported in the final row of Table 9.

Generally, we observe that both portfolio excess profits and their Sharpe ratios are quite het-
erogeneous across commodities, whether based on spot or futures markets. This is not surprising.
In fact, reading the literature on commodity futures markets, all studies that we are aware of (see
examples in the introduction) find heterogeneous profits across different commodities. While the
goal of our paper is not to explain heterogeneity in profits, our analysis does offer some insights
into why profits are heterogeneous. In Table 1 we present evidence showing that trading volume
and liquidity of commodity futures are very heterogeneous. Trading volume and liquidity are fun-
damental to the nature and magnitude of profits. Furthermore, in Table 2 we present evidence
that shows how commodities differ on commonly observed statistical features, such as mean, stan-
dard deviation, and higher moments of returns. Taken together, these differences in commodity
fundamentals and statistical features suggest potentially quite different risk-return relationships,
and it would appear that, when analyzed using portfolios generated from a mean-variance utility
function, this translates into heterogeneous portfolio profits across commodities.

5.4 Robustness of economic significance

In this section, we investigate the robustness of our findings in three directions: (i) to the choice
of risk-aversion coefficient, γ, and (ii) in comparison to a simple moving-average crossover trading
rule, and (iii) to the restrictions on the portfolio weights. So far we have considered an investor
who takes a medium level of risk, and specifically has risk-aversion parameter γ = 6, and trading
regulations allowing short-selling and borrowing/leverage up to 50%. The choice of γ has obvious
implications for portfolio returns via the calculation of weights in (14), from which it is noticed
that a lower risk-aversion investor (γ = 3) will place a higher weight on the risky asset and vice
versa for a higher risk-aversion investor (γ = 12), although of course the investor remains risk
averse for any γ > 0. A natural question is whether portfolio returns constructed as above are
still statistically and economically significant when the investor is more or less risk averse. Another
related question is how the portfolio returns compare with returns obtained from a simple technical
trading rule such as a moving-average crossover strategy. Although such a trading rule assumes
risk neutrality of the investor, it is still of interest to compare overall profits from our forecasting
based strategy with a simple moving-average strategy as a type of benchmark. Similarly to the first
point, close investigation of the results in the previous subsection reveals that optimal weights are
quite often restricted by the 50% bound on short-selling and borrowing/leverage, and it would be
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interesting to examine how sensitive the above results are to alternative restrictions on the optimal
weights reflecting either more restrictive assumptions (no short-selling and borrowing/leverage) or
less restrictive assumptions (up to 100% short-selling and borrowing/leverage).

In our first set of robustness results, presented in Table 10, we report annualized excess portfolio
returns for commodity spot and futures markets with daily rebalancing (h = 1) for both a lower
risk-aversion investor (γ = 3) and a higher risk-aversion investor (γ = 12) with weights restricted
to the interval [−0.5, 1.5]. Overall, the results presented here support our earlier findings.

First of all, excess portfolio returns are large and positive in almost all cases, and many returns
are statistically significant. Secondly, and not surprisingly, average portfolio returns are higher
for the lower risk-aversion investor than for the higher risk-aversion investor, with the results for
the medium risk-aversion investor in Tables 7 and 8 falling in between. This suggests that the
restrictions imposed on the optimal weights may often be binding, which will be confirmed below.
Thirdly, returns from the spot markets are once more found to be higher in general than returns
from the futures markets, with the exception of crude oil, gold, heating oil, and silver as above. In
fact, the lower risk-aversion investor is able to obtain about a 50% excess return per annum in the
gold and silver futures markets.

Comparing excess returns based on CVAR and FCVAR forecasts in Table 10 using the average
across all 17 commodities shows that the FCVAR model produces slightly higher excess returns
on average for both the lower risk-aversion and the higher risk-aversion investor and for both the
spot and futures markets. More specifically, focusing on the futures markets, where trading is more
practical, the FCVAR model outperforms the CVAR model for 14 of 17 commodities when γ = 3
and for 13 of 17 commodities when γ = 12. Thus, for the majority of commodity futures markets,
the FCVAR model forecasts produces higher portfolio returns.

Next we investigate how the portfolio excess returns compare with returns obtained from a
simple technical trading rule given by a moving-average (MA) crossover strategy. As above, we let
the risky asset return from period t to period t+ 1 be denoted by rt+1, and define the two moving
averages, ySt = S−1

∑S
s=1 rt−s and yLt = L−1

∑L
l=1 rt−l. Then the weight wt+1 on the risky asset

between period t and period t + 1 is maximized (within the weight restrictions) if ySt+1 ≥ yLt+1,
which is interpreted as a buy signal. Similarly, the weight is minimized (again, within the weight
restrictions) if ySt+1 < yLt+1, which is interpreted as a sell signal. With these definitions, the excess
return of the MA crossover trading rule is then given as usual by (12). Note that the moving averages
ySt+1 and yLt+1, and hence the weight wt+1, are defined in terms of lagged values of returns, such
that wt+1 is known and can feasibly be implemented at period t such as to define a portfolio return
from period t to period t+ 1. We remark at this point that the MA crossover trading rule assumes
risk neutrality of the investor, and therefore comparing it with our mean-variance trading strategy,
which assumes risk-aversion, is not quite an apples-to-apples comparison. However, following the
literature, e.g. Narayan, Narayan, and Sharma (2013), it is still of interest to compare overall profits
from our forecasting based mean-variance strategy with a simple technical trading rule such as the
MA crossover strategy as a type of benchmark.

In Table 11 we report average excess returns and Sharpe ratios for commodity spot and futures
markets using the MA crossover trading rule with S = 5 and L = 50.8 The results are presented for
the benchmark case with daily rebalancing. It is clear from the table that the MA strategy excess
returns are smaller on average than our forecasting based returns given in the previous tables, they
are less statistically signficant, and their Sharpe ratios are substantially smaller. Moreover, be-
cause the MA strategy assumes a risk-neutral investor, whereas our mean-variance trading strategy
assumes a risk-averse investor, the most relevant comparison should be with our trading strategy

8We tried also other values of S and L with qualitatively similar results.
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Table 10: Annualized daily excess portfolio returns for alternative risk coefficients

Lower risk-aversion (γ = 3) Higher risk-aversion (γ = 12)

Spot markets Futures markets Spot markets Futures markets

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR CVAR FCVAR

Canola 217.200∗∗∗ 213.876∗∗∗ 16.683∗∗ 21.239∗∗∗ 199.847∗∗∗ 196.809∗∗∗ 8.978∗∗ 10.069∗∗∗

(9.538) (9.513) (6.951) (6.802) (8.770) (8.602) (3.504) (3.347)
Cocoa 2.459 12.209 −6.183 −1.118 2.928 7.346∗∗ −1.990 −0.386

(8.455) (7.708) (6.477) (1.740) (3.462) (3.397) (2.049) (0.527)
Coffee 43.667∗∗∗ 49.239∗∗∗ −10.053∗ −2.935 35.504∗∗∗ 40.463∗∗∗ −2.681 0.056

(9.917) (9.969) (5.905) (5.805) (6.690) (6.734) (2.016) (2.159)
Copper 194.244∗∗∗ 209.350∗∗∗ 1.377 3.402 175.775∗∗∗ 187.932∗∗∗ 1.346 2.229

(7.708) (7.759) (6.761) (6.409) (7.184) (7.219) (2.159) (2.703)
Corn 27.831∗∗ 23.984∗∗ 21.781∗∗ 23.310∗∗ 11.881∗∗ 9.703∗∗ 8.543∗∗ 9.240∗∗

(12.035) (11.027) (8.812) (9.233) (4.922) (4.420) (3.983) (4.091)
Crude oil −3.731 0.060 −1.814 7.555 −0.695 0.244 −0.236 2.290

(6.657) (6.424) (2.486) (4.962) (5.223) (5.267) (1.312) (2.149)
Gasoline 38.279∗∗∗ 42.372∗∗∗ 12.029 13.034∗ 26.995∗∗∗ 31.328∗∗∗ 4.252 4.248

(12.484) (13.542) (7.409) (7.465) (6.466) (7.075) (2.912) (2.759)
Gold 1.863 2.451 49.086∗∗∗ 48.040∗∗∗ 0.355 2.451 25.540∗∗∗ 25.890∗∗∗

(7.815) (7.988) (5.970) (5.825) (5.657) (5.787) (3.599) (3.567)
Heating oil −4.639 −1.006 −0.843 −0.008 −2.347 −0.231 −1.122 0.220

(5.436) (5.283) (5.039) (4.698) (3.338) (2.948) (2.771) (2.218)
Palladium 123.770∗∗∗ 124.800∗∗∗ 38.578∗∗∗ 40.022∗∗∗ 102.359∗∗∗ 102.123∗∗∗ 16.267∗∗∗ 16.942∗∗∗

(12.786) (12.687) (9.055) (9.218) (9.416) (9.336) (4.173) (4.200)
Platinum 30.840∗∗∗ 32.429∗∗∗ 0.200 6.633∗ 28.774∗∗∗ 30.297∗∗∗ 1.638 4.954∗∗

(4.486) (4.357) (4.178) (3.476) (4.064) (3.902) (2.714) (1.961)
Silver −1.256 −11.248 59.202∗∗∗ 48.506∗∗∗ −2.913 −8.000 22.530∗∗∗ 21.024∗∗∗

(12.331) (13.206) (9.245) (6.595) (8.215) (8.447) (3.589) (3.136)
Soybean 22.161∗∗∗ 14.621∗∗ −4.968 0.507 15.260∗∗∗ 11.833∗∗∗ −3.720 −0.098

(8.370) (6.795) (6.079) (6.781) (3.973) (3.315) (3.019) (3.413)
Soy meal 22.883∗∗ 20.831∗∗ 15.138∗ 17.995∗∗ 13.319∗∗ 10.967∗∗ 10.698∗∗ 9.791∗∗

(10.720) (10.877) (8.785) (8.039) (5.234) (5.300) (4.478) (4.148)
Soy oil 21.473∗∗ 18.789∗∗ 5.366 6.511 13.557∗∗∗ 12.271∗∗∗ −0.010 0.972

(9.937) (8.727) (8.412) (7.980) (4.740) (4.239) (3.940) (3.688)
Sugar 102.521∗∗∗ 96.460∗∗∗ 10.986 18.920 77.431∗∗∗ 74.422∗∗∗ 4.783 7.054

(11.420) (11.851) (11.209) (11.723) (8.010) (8.285) (4.859) (5.083)
Wheat 5.086 3.973 8.418 3.620 1.408 1.151 1.440 0.302

(11.317) (5.922) (7.477) (7.890) (3.140) (1.615) (3.338) (3.277)

Average 49.685 50.188 12.646 15.014 41.143 41.830 5.662 6.753

Notes: This table reports annualized average excess portfolio percentage returns for commodity spot and futures

markets for daily (h = 1) rebalancing with weights restricted to the interval [−0.5, 1.5]. The results are reported for

a lower risk-aversion investor (γ = 3) and a higher risk-aversion investor (γ = 12) and for forecasts based on both

the CVAR and FCVAR models. Standard errors are reported in parentheses. Statistical significance at the 10%, 5%,

and 1% level is denoted by one, two, and three asterisks, respectively. The final row is the average return across all

commodities.
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Table 11: Annualized excess returns and Sharpe ratios for MA strategy (daily rebalancing)

Excess returns Sharpe ratios

Commodity Spot markets Futures markets Spot markets Futures markets

Canola −17.621∗ 7.942 −0.614∗ 0.331
(10.539) (8.821) (0.367) (0.367)

Cocoa −4.462 17.549 −0.140 0.498
(11.720) (12.939) (0.367) (0.367)

Coffee 17.611∗ −3.958 0.684∗ −0.116
(9.463) (12.555) (0.367) (0.367)

Copper −3.013 −4.100 −0.080 −0.108
(13.833) (13.907) (0.367) (0.367)

Corn −6.812 4.991 −0.183 0.134
(13.685) (13.726) (0.367) (0.367)

Crude oil −2.993 −9.568 −0.153 −0.545
(7.202) (6.447) (0.367) (0.367)

Gasoline −13.144 0.771 −0.272 0.018
(18.259) (15.980) (0.378) (0.378)

Gold 24.533∗∗∗ 19.087∗∗ 1.035 0.824∗∗

(8.708) (8.505) (0.368) (0.368)
Heating oil −7.139 −3.749 −0.413 −0.234

(6.343) (5.875) (0.367) (0.367)
Palladium 17.292 17.795 0.452 0.469

(14.066) (13.938) (0.367) (0.367)
Platinum 16.622 23.731∗∗ 0.569 0.837∗∗

(11.174) (10.845) (0.383) (0.383)
Silver 19.342 23.538 0.475 0.586

(14.964) (14.757) (0.367) (0.367)
Soybean 4.531 −1.951 0.146 −0.056

(11.399) (12.836) (0.367) (0.367)
Soy meal 20.712 9.441 0.585 0.263

(13.003) (13.161) (0.367) (0.367)
Soy oil 16.633 19.303∗ 0.554 0.680∗

(11.035) (10.425) (0.367) (0.367)
Sugar 12.030 13.461 0.306 0.308

(14.436) (16.079) (0.367) (0.367)
Wheat −21.176 7.669 −0.413 0.181

(18.821) (15.571) (0.367) (0.367)

Average 4.291 8.350 0.149 0.239

Notes: This table reports annualized average excess percentage returns and estimated Sharpe ratios for commodity

spot and futures markets using an MA crossover trading rule with S = 5 and L = 50. The results are reported

for daily (h = 1) rebalancing and with weights restricted to the interval [−0.5, 1.5]. Standard errors are reported

in parentheses. Statistical significance at the 10%, 5%, and 1% level is denoted by one, two, and three asterisks,

respectively. The final row is the average (excess return and Sharpe ratio) across all commodities.
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with the least risk-averse investor, i.e. γ = 3, given in Table 10. Compared with those results, the
MA strategy appears much less profitable.

In our final set of robustness results, presented in Table 12, we report annualized excess portfolio
returns for commodity spot and futures markets with daily rebalancing (h = 1) for a medium risk-
aversion investor (γ = 6) with weights restricted either to the interval [0, 1], where no short-selling
or borrowing/leverage is allowed or to the interval [−1, 2], where up to 100% short-selling and
borrowing/leverage is allowed. These results again support our earlier findings, and also illustrate
the importance of the restrictions placed on the optimal portfolio weights.

When the optimal portfolio weights are restricted to [0, 1], returns are somewhat smaller than in
the benchmark case in Tables 7 and 8 (where the interval is given by [−0.5, 1.5]). On the other hand,
when the optimal weights are restricted to [−1, 2], which is less restrictive than the benchmark case
in Tables 7 and 8, portfolio returns are much higher on average than in Tables 7 and 8. This
shows the importance of the restrictions on the optimal weights. As with the earlier results, a few
excess returns are negative but these are not statistically significant. The empirical result from
Table 12 that eliminating (allowing more) short-selling and borrowing reduces (increases) profits
is due to the fact that negative price movements (i.e., negative returns) are often predicted quite
accurately by the models thus generating a short position that is as big as allowed within the weight
restrictions. Some of these negative returns are very large, and hence the profits made from the
associated short positions can be very large as well.

Comparing the performance of the CVAR and FCVAR models in Table 12 shows a very similar
picture to that in Table 10. Using the average across all 17 commodities, the FCVAR model
produces slightly higher excess returns on average in both the spot and futures markets and for both
the more and the less restrictive weights. Again focusing on the futures markets, where trading is
more practical, the FCVAR model outperforms the CVAR model for 14 of 17 commodities whether
weights are restricted to [0, 1] or are restricted to [−1, 2]. Thus, for the majority of commodities,
the FCVAR model forecasts once more produce higher portfolio returns in the futures markets.

The overall implication is that our evidence that the FCVAR is a statistically superior model
mostly extends to its economic importance, even though the differences in excess returns between
the CVAR and FCVAR models are mostly quite small on average. Therefore, certainly statisti-
cally and to some extent also economically, the FCVAR model offers investors a better guide to
undertaking investment portfolio decisions.

6 Concluding remarks

This paper has analyzed the link between statistical models of forecasting for commodity prices
and returns and their implications for investors. Identifying suitable forecasting models for asset
returns is at the forefront of research in asset pricing. This is so because the accuracy of forecasts
have direct implications for investors’ decision making, particularly with regard to portfolio choice.
In this paper we take a step in this direction by proposing an FCVAR model for forecasting
commodity spot and futures returns, based on recent empirical evidence of fractional cointegration
in commodity spot and futures markets. We derive the best linear predictor for the FCVAR model
and perform an out-of-sample forecast comparison with forecasts from the more standard CVAR
model. In our empirical analysis to 17 commodity spot and futures markets, the fractional model
is found to be statistically superior in terms of both in-sample fit and out-of-sample forecasting.

In terms of economic significance of the forecasts, we analyze this through a dynamic trading
strategy based on a portfolio with weights derived from a mean-variance utility function. This
analysis leads to statistically significant and economically meaningful profits in most commodity
markets, and shows that excess returns from both the FCVAR and CVAR models are substantially
higher on average, and statistically more significant, than excess returns from a simple moving-
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Table 12: Annualized daily excess portfolio returns for alternative weight restrictions

Weights in [0, 1] Weights in [−1, 2]

Spot markets Futures markets Spot markets Futures markets

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR CVAR FCVAR

Canola 110.428∗∗∗ 108.366∗∗∗ 9.976∗∗∗ 11.073∗∗∗ 311.796∗∗∗ 306.644∗∗∗ 17.238∗∗ 19.856∗∗∗

(6.308) (6.234) (3.862) (3.707) (12.859) (12.599) (6.782) (6.511)
Cocoa 4.166 6.325 −1.729 0.112 3.391 12.348∗∗ −3.980 −0.771

(4.293) (4.205) (2.855) (0.195) (6.494) (6.300) (4.099) (1.053)
Coffee 22.362∗∗∗ 25.209∗∗∗ −3.856 −1.600 54.396∗∗∗ 64.245∗∗∗ −5.451 0.063

(5.799) (5.816) (2.789) (2.561) (10.933) (10.993) (4.010) (4.309)
Copper 96.182∗∗∗ 103.297∗∗∗ 2.101 2.930 279.279∗∗∗ 298.721∗∗∗ 2.709 4.105

(5.051) (5.138) (3.482) (3.188) (10.469) (10.420) (4.317) (5.209)
Corn 15.988∗∗ 15.208∗∗ 11.340∗∗∗ 12.519∗∗∗ 22.870∗∗ 19.265∗∗ 16.966∗∗ 18.197∗∗

(6.837) (6.156) (4.349) (4.602) (9.464) (8.515) (7.888) (8.089)
Crude oil −0.260 1.373 −0.672 3.303 −2.792 −0.829 −0.472 4.669

(4.137) (3.913) (0.870) (2.774) (8.062) (8.119) (2.624) (4.259)
Gasoline 18.063∗∗∗ 17.586∗∗ 4.452 5.293 49.838∗∗∗ 53.914∗∗∗ 8.688 8.713

(6.457) (7.415) (3.246) (3.436) (12.301) (12.920) (5.755) (5.450)
Gold 5.062 5.641 24.049∗∗∗ 22.846∗∗∗ −1.791 1.313 46.537∗∗∗ 46.650∗∗∗

(4.708) (4.844) (3.292) (3.160) (9.186) (9.365) (6.214) (6.119)
Heating oil −1.599 0.459 0.221 1.235 −5.482 −1.498 −1.505 0.760

(3.159) (3.014) (2.911) (2.577) (5.768) (5.482) (5.110) (4.339)
Palladium 65.158∗∗∗ 65.956∗∗∗ 17.816∗∗∗ 18.741∗∗∗ 166.335∗∗∗ 165.970∗∗∗ 32.535∗∗∗ 33.902∗∗∗

(7.832) (7.749) (4.435) (4.564) (15.381) (15.290) (8.345) (8.400)
Platinum 15.974∗∗∗ 16.750∗∗∗ 0.790 3.334∗ 43.791∗∗∗ 46.825∗∗∗ 2.345 8.647∗∗

(2.781) (2.685) (2.482) (1.883) (6.111) (5.945) (4.720) (3.662)
Silver 4.048 −1.404 25.397∗∗∗ 19.547∗∗∗ −5.612 −16.779 44.150∗∗∗ 41.638∗∗∗

(7.060) (7.718) (4.820) (3.151) (14.193) (14.393) (7.072) (6.221)
Soybean 12.789∗∗∗ 8.566∗∗ 0.666 1.926 26.803∗∗∗ 20.756∗∗∗ −7.042 −0.517

(4.824) (3.733) (2.659) (3.064) (7.123) (5.811) (5.994) (6.696)
Soy meal 10.317∗ 11.377∗ 5.935 9.500∗∗ 23.614∗∗ 19.179∗ 20.559∗∗ 18.485∗∗

(6.027) (6.196) (4.629) (4.031) (9.788) (9.977) (8.487) (7.993)
Soy oil 10.708∗ 8.789∗ 2.571 3.434 23.080∗∗∗ 19.463∗∗∗ 1.174 2.364

(5.731) (4.854) (4.773) (4.473) (8.447) (7.536) (7.700) (7.282)
Sugar 51.447∗∗∗ 48.738∗∗∗ 5.817 10.866∗ 131.696∗∗∗ 125.969∗∗∗ 9.908 14.788

(6.818) (7.052) (5.872) (6.355) (13.138) (13.582) (9.564) (9.977)
Wheat 3.279 1.912 5.330 3.501 2.827 2.303 3.085 0.577

(5.604) (3.020) (3.405) (3.709) (6.279) (3.230) (6.626) (6.547)

Average 26.124 26.126 6.482 7.562 66.120 66.930 11.026 13.066

Notes: This table reports annualized average excess portfolio percentage returns for commodity spot and futures

markets for a medium risk-aversion investor (γ = 6) with daily (h = 1) rebalancing. The results are reported for

weights restricted to the intervals [0, 1] and [−1, 2] and for forecasts based on both the CVAR and FCVAR models.

Standard errors are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is denoted by one,

two, and three asterisks, respectively. The final row is the average return across all commodities.
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average crossover strategy. The results also show that, in spite of the statistical advantage of the
FCVAR model, excess returns from the FCVAR and CVAR models are very similar although with
a slight advantage to the fractional model on average in terms of both portfolio excess returns and
their Sharpe ratios. Our results are robust on several fronts. First, our out-of-sample forecasting
evaluation exercise applies a number of statistical metrics. Second, we analyze several forecasting
horizons. Third, we show that our results on profitability are robust to an investor’s level of risk
aversion as measured by the coefficient of relative risk aversion that enters in the utility function
and hence in the calculation of portfolio weights. Fourth, our results are superior to results obtained
using a simple technical moving-average crossover trading rule. Finally, our results are robust to
alternative restrictions on the optimal weights, reflecting alternative restrictions on short-selling
and on borrowing/leverage.
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