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1. INTRODUCTION

Affirmative Action (AA) is the practice of granting preferential treatment to under-
represented demographic groups when allocating contractual, employment, or educa-
tional opportunities. In the US it was first mandated by the Kennedy Administration
in the 1960s, and has since been widely implemented in public procurement, education,
and hiring. Today, AA is a pervasive fixture of North American university admissions,
though it has generated much controversy.1 AA is also widely implemented outside
North America, from Malaysia to Northern Ireland, and in India where Reservation Law,
a set of racial and ethnic quotas, is imposed by constitutional edict.

In the US university context, the rationale for AA does not stem from concerns over
proactive discrimination. Rather, the rationale is that the university market is effectively
a competition where black and Hispanic children are at a fundamental disadvantage to
White and Asian children due to residual effects of past institutionalized discrimination.
That is, on average they attend lower quality schools, are less affluent, have less educated
parents, and have less access to other developmental inputs such as health care and
tutoring.2 In turn, AA is an attempt at compensating for the competitive disadvantage by
giving special consideration for race. There is a substantial empirical literature studying
the effects of AA, focusing mainly on its direct impact at the point when university
admission outcomes are determined.3

However, the literature has largely ignored the implications of AA for student behavior
prior to admissions, as they study, participate in extra curricular activities, and otherwise
invest in human capital before applying to university. For example, consider a set of
students vying for admission to universities which vary by quality. Each student has 24

1The US Supreme Court has deliberated on the legality of racial considerations in university admissions
at least five times, including the cases of Schuette v. Coalition to Defend Affirmative Action (2014), Fisher v.
Texas (2013), Grutter v. Bollinger (2003), Gratz v. Bollinger (2003), and Regents of the University of California v.
Bakke (1978). At the time of this writing, Fisher v. Texas (2013) was under deliberation in a second-round
hearing before the Court, after having been remanded back to the US 5th Circuit Court.

2Lyndon B. Johnson, Kennedy’s successor, was the first American president to implement AA. In his
1965 commencement address at Howard University, Johnson articulated this idea as a motivation for AA:
“You do not take a person who, for years, has been hobbled by chains and liberate him, bring him up to the starting
line of a race and then say, ‘you are free to compete with all the others,’ and still justly believe that you have been
completely fair. Thus it is not enough just to open the gates of opportunity. All our citizens must have the ability to
walk through those gates... To this end equal opportunity is essential, but not enough, not enough. Men and women
of all races are born with the same range of abilities. But ability is not just the product of birth. Ability is stretched
or stunted by the family that you live with, and the neighborhood you live in–by the school you go to and the poverty
or the richness of your surroundings. It is the product of a hundred unseen forces playing upon the little infant, the
child, and finally the man.”

3 William G. Bowen and Derek Bok [1998], Peter Arcidiacono [2005] and Jessica S. Howell [2010], have
attempted estimation of counterfactual racial admissions profiles in a color-blind world. Linda Datcher
Loury and David Garman [1995], Richard H. Sander [2004], Mark C. Long [2008], Jesse Rothstein and
Albert H. Yoon [2008], and David L. Chambers, Timothy T. Clydesdale, William C. Kidder and Richard O.
Lempert [2005], have estimated the impact of AA on graduation rates among UR minority groups.
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hours in a day and would prefer to consume time as leisure, but time is a required input
for human capital production. Since university seats are allocated according to measured
human capital (HC) output (e.g., through an exam score), each student will choose to
invest some fraction of her leisure time based on her own ability, the distribution of
her competitors, and her prospects for winning a favorable outcome. Since AA alters
academic cutoffs required for admittance depending on one’s demographic status, it in
turn shapes a student’s labor-leisure decision. Thus, some important questions arise: is
there a trade-off between fostering diversity on university campuses and human capital
investment during middle and high school? Does AA increase or decrease incentives for
its targeted beneficiaries (under-represented minorities)? How does it impact incentives
for other students? Finally, how does AA affect the racial achievement gap?

We begin the paper by presenting a model of human capital investment which is tai-
lored toward capturing important aspects of competitive university admissions. The
model allows for predictions about the direction in which AA should impact effort and
performance distributions within each demographic group. There are two demographic
groups of students, whose learning costs differ, in a competitive investment game run-
ning up to a matching market. A fixed distribution of university seats is awarded in
rank-order fashion by a centralized admissions board. The model predicts that HC pro-
duction effort will depend on a student’s relative ability. Moreover, if the admissions
board bases placement partially on demographic status, then, conditional on a fixed
ability level, investment will also differ across groups. Specifically, AA tends to decrease
HC accumulation by the highest ability minority students, while increasing investment
in HC by intermediate and low ability individuals. Students in the non-minority group
respond in a largely opposite way, with the highest ability students in this group in-
creasing their effort and the lowest ability students decreasing it.

Overall, we find that AA has the potential to largely increase minority investment ac-
tivity by mitigating so-called “discouragement effects” which arise from cost asymmetry
across demographic groups. Discouragement is a well-known phenomenon in the liter-
ature on rank-order competition. The idea is fairly simple: holding fixed gross payoffs
and one’s own productivity type, if a dominating shift in the distribution of one’s com-
petitors occurs so that one’s own type falls further behind, eventually effort/output will
fall. This logic is independent of one’s fixed productivity type, being an artifact of the
competition one faces instead. Thus, if AA works to dampen discouragement effects for
minorities by shifting their effective competition group, it may actually increase their
willingness to re-allocate leisure time toward building HC instead. Moreover, this in-
crease in effort happens on the region of the minority distribution where students are
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most concentrated, meaning it generally leads to an increase in average investment ac-
tivity. The sign of the average effect within the non-minority group is less clear-cut.

After presenting the theoretical framework, we develop a field experiment to investi-
gate how AA shapes the labor-leisure trade-off in mathematics learning, as well as mea-
sured proficiency following a period of competitive HC investment. Our experimental
design, modeled after the theoretical framework, structures a set of short-run incentives
so as to mimic important aspects of university admissions. In our setup, cash prizes
stand in for university placement outcomes to motivate test subjects to spend leisure
time learning math.4 Students are individually randomized into two treatments for our
math competition, a “color-blind” control treatment, and an AA treatment. Our experi-
ment involves paying middle-school-aged students based on their relative performance
on the American Mathematics Competition 8 (AMC8), a national mathematics exam, in
similar fashion as outcomes are determined on the university matching market using
college entrance exams and high school grades. In order to create a clean test of theory
on investment and discouragement effects, we use grade cohort as our demographic de-
limiter. This distinction mirrors some important racial disparities—our disadvantaged

students (e.g., 7th graders) have received, on average, fewer inputs into their math ed-

ucation relative to their counterparts (e.g., 8th graders) with substantial overlap in the
ability distribution notwithstanding—while filtering out other factors such as cultural
differences or stereotype threat that could confound the effects we seek to investigate.

In the color blind treatment, students compete against others in both grade levels
for prizes, with AMC8 score rankings determining each student’s pay-off. In the AA
(or “representative quota”) treatment, we proportionally split the overall distribution
of prizes and earmark subsets for each group, after which students compete only with
other students from their same grade. In other words, a representative quota reserved a
more favorable set of prizes for students in the lower grade, relative to what they would
receive when competing with higher grade students. And, of course, the opposite is true
for the set of prizes allocated to the higher grade students.

Because we are interested in how AA changes incentives to invest real effort into devel-
oping HC, a typical classroom experiment in which students are assigned to a treatment
immediately before completing some task is not ideal. Instead, we worked with teachers
to incorporate the experiment into the students’ schooling over a course of two weeks.

4Our experiment covers short-run incentives spanning a matter of weeks. The longer pre-university
investment period, which spans years, is of ultimate interest to policy makers, but is difficult to study in
an environment where the researcher can experimentally create exogenous identifying variation. Thus, the
current study focuses on how AA shapes competitive market forces which drive individual labor-leisure
decisions and short-run human capital accumulation. What the magnitude of these forces might be when
students are discounting over longer periods of time, with payoffs in mind that are much larger than those
we can create, is beyond the scope of current research.
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We assessed two in-class AMC8 exams separated by 2 weeks—a pre-exam to measure
baseline proficiency and a post-exam to allocate prizes and measure progress—and we
provided the students with a 10-day interim period in which they could study math
problems ahead of the final AMC8 exam. During this period we provided the students
access to a website with practice materials, and tracked their use of this site. By showing
that students in the color blind and AA treatments access the site at different rates, we
are the first experimental study to identify an effect of AA on real learning effort. We
did this in a natural classroom and home learning environment, where the free-time/
study-time trade-offs were familiar to test subjects, and mimic scenarios they face when
preparing for the competitive university admissions process during high school.

We find strong evidence that AA favorably alters labor-leisure trade-offs and measured
proficiency by our disadvantaged group. Although the highest ability disadvantaged
students did decrease performance as predicted by theory, this drop was modest, with
the majority of disadvantaged students increasing learning time and test performance
under AA. On average, the AA policy increased test scores among the disadvantaged
group by 1/5 of a standard deviation over the course of the experiment. While some
portion of this increase may be due to greater focus or mental effort on the day of
the exam, we also show that disadvantaged students in the AA treatment are more than
twice as likely to use the practice website to prepare for the exam, spend almost triple the
amount of total time, and attempt more practice questions relative to their counterparts
in the control group. In this way, we are the first experimental paper to show that AA
policy can increase real effort exerted by its beneficiaries to acquire HC. One might worry
that these gains within the demographic group targeted by the policy come at the cost of
commensurate weakening in incentives for other students, but the data do not support
this concern. We find no evidence that these gains come at the expense of lower average
investment or test scores for higher grade students.

Finally, the theory makes fine predictions at the individual level on how the signs and
magnitudes of the incentive effects will vary, depending on one’s underlying ability and
demographic group. We also perform a test for these finer predictions, based on flexible,
semi-nonparametric quantile functions estimated via the method of sieves. We find that
the interquartile range (in ability space) within the disadvantaged group displays large
and statistically significant improvement in achievement under AA, whereas there is a
small but positive mass of the highest ability types within the same group who reduce
their achievement in a statistically detectable way. We also find modest evidence for
effects in the opposite direction within the advantaged group—a positive mass of high-
ability types increase their achievement under AA while a positive mass of low-ability
types reduce it—though the magnitudes of these effects are comparatively much smaller.
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It is remarkable the degree to which these observed behavioral responses to our exoge-
nous policy variation conform to the theory, both in their signs and relative magnitudes
across the two groups. Disadvantaged students react strongly to AA and in a largely
positive way because, on average, they begin with relatively high costs of competition
and the policy therefore produces a substantial improvement in their standing within
the rank-order investment competition. On the other hand, students from the advan-
taged group respond weakly because, despite seeing their gross payoffs decline due to
AA, on average their learning costs were relatively low enough to maintain roughly the
same performance under more anemic incentives. These two facts further suggest that
AA will predominantly have the effect of narrowing demographic achievement gaps by
incentivizing disadvantaged groups of students to “catch up,” academically, to other
groups with lower overall costs. A further analysis of achievement gap changes in our
data lends further support to this conclusion.

We conclude our analysis with an exploration of how our limited experimental de-
sign might relate to broader human capital investment over longer periods, and in more
diverse settings. First, we find that using a one-year difference in mathematics instruc-

tion (e.g., 7th graders vs. 8th graders) understates the average disadvantage that under-
represented minority groups may face in practice. Specifically, we show that the test

score gap between American Black and Hispanic children in 8th grade, relative to White

and Asian 8th graders, is substantially larger than the gap between our 7th and 8th grade
competitors in Utah. Second, we explore some back-of-the-envelope calibrations in or-
der to compare our relatively small test subject payments to incentives associated with
university admissions. Our experimental design seeks to engineer a short-term micro-
cosm of the competitive human capital investment process running up to college. If we
measure our experimental incentives as an effective hourly wage rate, and then divide
estimates of the net present value of a college education by hours worked during 4 years
of high school, we find that the short-term incentives within our study were smaller, but
of a similar order of magnitude as plausible, long-run time-investment incentives.

The remainder of this paper has the following structure. Section 2 gives an overview
of the previous literature and explains how our contribution relates to what has been
done before. Section 3 presents a theoretical model of HC investment and university
admissions to motivate our experimental design. We also explore model predictions
to be tested in our study. Section 4 describes the structure of our field experiment
in more detail. Section 5 presents and discusses our experimental results. Section 6
concludes with a discussion of our findings, the inherent limitations within our research
design, and directions for future research. An appendix contains mathematical proofs
and relevant extensions of the theoretical model. An accompanying online appendix
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also presents additional technical details of our empirical analysis, as well as additional
tables and graphs.

2. RELATED LITERATURE

The model which guides our experimental study is based on the general theoretical
framework in Aaron Bodoh-Creed and Brent R. Hickman [2016]. Both papers depict
a model of the university admissions market as an all-pay auction, in which students’
bids are investments in HC, and prizes are seats at different universities. We present
a simple model focusing on aspects of the market that are most readily testable using
experimental methods. Bodoh-Creed and Hickman [2016], on the other hand, provide
a general theoretical model and analysis, establishing conditions under which a rich
college assignment model with AA can be represented in a tractable form. They begin
by fleshing out a finite model, exploring how, when the number of agents and seats
is large, the analytically unruly equilibrium is well approximated by a simpler setting
where agents and university seats belong to a continuum set. For our purposes in this
paper, it is sufficient to focus only on the continuum setting; interested readers are
directed Bodoh-Creed and Hickman [2016] for the technical foundations behind this
modeling choice.

They derive general results concerning the properties and design of market mecha-
nisms for college placement. In this paper, our focus is more narrow in one way and
more broad in another. First, we restrict attention to experimental comparisons between
two very simple, canonical mechanisms: a pure rank-order (color-blind) rule, and a
demographically representative quota. This allows us to assess the real-world applica-
bility of the theoretical predictions on academic outcomes, and measure their associated
magnitudes. Second, we use our novel experimental design with on-line monitoring of
study effort to explore background phenomena—e.g., labor-leisure trade-offs—on which
the theory is silent. This allows us to confirm whether observed movements in outcomes
induced by our treatment are associated with actual learning activities (i.e., HC invest-
ment as the general framework assumes), or something less socially valuable such as
exam-day effort or purely wasteful signaling. In that sense, this paper and Bodoh-Creed
and Hickman [2016] may be seen as complementary to one another.

Our theoretical framework is also related to Stephen Coate and Glenn Loury [1993],
which shows how an AA policy can make high value jobs more-easily attainable and
can therefore reduce the incentives for minorities to undertake costly investment that
make them more qualified for such jobs. The key difference between our model—with
many-to-many matching—and theirs—with one-to-one matching—is that there is no
scarcity of high value positions in Coate and Loury’s framework. In our framework,
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students compete with one another for a fixed set of heterogeneous university seats.
We show that, although AA will decrease incentives for the highest ability minorities to
invest, the opposite effect will predominate for most of them. Although our results are
consistent with Coate and Loury [1993] for the highest ability minorities, our predictions
are quite different for the overall minority population. We also test our predictions with
the experiment, and find evidence largely consistent with our theoretical model.

Previous experimental work has also tested the link between AA and effort. Examples
in the laboratory include Andrew Schotter and Keith Weigelt [1992], where asymme-
try was exogenously imposed by researchers assigning cost functions to subjects, and
Anat Bracha, Alma Cohen and Lynn Conell-Price [2015] which focused on gender-based
asymmetry in quantitative problem solving. Caterina Calsamiglia, Jorg Franke and Pe-
dro Rey-Biel [2013] conducted a related field experiment in which 10-13 year old children
compete in Sudoku puzzles in a pair-wise (one-to-one) tournament, with asymmetry
stemming from previous exposure to Sudoku. Each of these studies found that AA can
increase average performance by disadvantaged players.

Our analysis offers a number of advantages over previous experimental studies. First,
we include an investment period between assignment to a treatment group and our final
exam. During this period we monitor student time usage at home in a non-invasive
way. Ours is the first paper to do so, and it provides us with a window into individ-
uals’ labor-leisure trade-offs in actual learning, rather than focusing solely on in-class
effort during a task. Our experimental design allows us to assess the impact of AA on
both interim investment and final outcomes. Math learning in preparation for the AMC8
exam is close to learning that enables higher performance on college entrance exams,
and therefore provides a relevant measure of HC investment. Second, our experimental
competition more closely mirrors important aspects of actual college admissions mar-
kets. It is a many-to-many competitive matching contest (with participants numbering
in the hundreds) having wide heterogeneity among both competitors and prize values.
This heterogeneity is communicated to our test subjects in simple terms, similar to how
US university applicants can compare their own standardized test score to mean scores
of students who typically enroll in their most preferred universities. By working with
test subjects’ regular teachers, using materials that were already being used as teaching
tools in their schools, and allowing for study choices at home, we are the first experiment
to create a natural setting in which test subjects are making decisions similar to those
which will lead to their ultimate college placement outcomes. Third, we intentionally
chose an experimental design to eliminate concerns about stereotype threat—our test
subjects were fairly homogeneous culturally and socioeconomically—so as to be able to
measure magnitudes of incentive effects in a clean environment. Fourth, our format also
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allows for overlap in ability distributions across demographic groups, rather than as-
suming no overlap as previous experimental work has done. This allows us to compare
the performance distributions of students from asymmetric demographic groups to see
whether different qualitative effects at different quantiles appear, as predicted by theory.

There is also a substantial empirical literature studying AA and its impact on college
admissions. Bowen and Bok [1998] used student-level applications data to estimate the
preference given to minority students by admissions officers at elite schools. Arcidia-
cono [2005] and Howell [2010] estimated structural models which adjust counterfactuals
for changes in minority application behavior induced by policy shifts. A related vein of
the literature focuses on mismatching, or the idea that AA may cause damage to black
students by assigning them to academically demanding environments for which they are
unprepared. Loury and Garman [1995] and Sander [2004] present evidence supporting
mismatching. Other empirical work, such as Long [2008], Rothstein and Yoon [2008],
and Chambers et al. [2005], suggest that some mismatching may occur, but its magni-
tude is relatively small and is outweighed by the benefits of placing blacks into higher
quality institutions. Throughout this literature SAT—“Scholastic Aptitude Test”—scores
are used as a proxy for student ability, and assumed to be fixed. However, students’
incentives to invest in HC during middle and high school depend on admission poli-
cies they expect to face when applying to college. Test scores are therefore a function
of student ability and market incentives induced by AA. Assuming SAT scores are in-
dependent of the prevailing admissions policy may bias counterfactual estimates. Our
objective is to test this theory in a field experimental study of how students adjust their
effort (influencing their test scores) in response to changes in AA policy.

This paper contributes to a small but growing literature recognizing that admissions
policies shape incentives for pre-college HC accumulation. Bruno Ferman and Juliano
Assuncao [2011] found evidence that test scores among black Brazilian high-school
students decreased in response to an admissions quota at elite universities in Rio de

Janeiro.5 Hickman [2015] estimated a structural empirical model of the U.S. college
admissions market based on the theoretical foundation of Bodoh-Creed and Hickman
[2016]. His counterfactual analysis of admissions, investment, and welfare under alter-
native AA policies found evidence that AA increases the stock of minority HC overall,

5 While seemingly contradictory to our findings, our model predicts that a quota which affects all
points in the quality spectrum of universities will lead to a widening of the demographic achievement
gap among the most talented students. Ferman and Assuncao [2011] estimated a negative overall effect
of a policy change which applied only to top universities in Rio De Janeiro. Thus, the policy they study
would have predominantly impacted high-ability black students who were at less of a disadvantage to
begin with. Likewise, Brent R. Hickman [2015] estimated that AA negatively affects investment among a
small mass of the highest ability minorities in the US, even though on average the effect is positive.
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and provided further comparisons between color-blind admissions, representative quo-
tas, and American-style preference-based AA (score bonuses).

Finally, our study is also related to others concerning performance pay in primary and
secondary schools. Recent studies including Eric Bettinger [2012], Edwin Leuven, Hessel
Oosterbeek and Bas van der Klaauw [2010] and Roland Fryer [2011] found mixed results
about whether paying students can improve their effort and outcomes. Our experimen-
tal incentives are different from these in that we paid participants based on their relative
performance rather than offering a fixed wage contract. Michael Kremer, Edward Miguel
and Rebecca Thornton [2009] also studied a program awarding merit scholarships based
on relative performance, and found evidence that students respond to changing finan-
cial incentives in a competitive environment. Our experimental design has two main
differences from these studies: first, we were able to monitor outcomes and interim time
inputs; and second, our focus is not on the effectiveness of pay-for-performance per se,
but rather on differences between common relative performance incentive schemes. Fi-
nally, in a competitive setting some of a subject’s behavior may be driven by an intrinsic
desire to win, as in Christopher Cotton, Frank McIntyre and Joseph Price [2013] who pre-
sented evidence that simply framing a task as a contest can lead to better performance
by some participants. In our study, we frame a common task as two different contests,
which allows us to pick up on differences across alternative allocation mechanisms.

3. Theory

3.1. MODEL. Here we present a model of AA in competitive HC investment which will
form the basis of our experimental design. It is a special case of Bodoh-Creed and Hick-
man [2016] who developed the technical foundations of the framework presented here.
We model university admissions as a Bayesian game with a continuum of heterogeneous
students of mass 1. Each student exerts effort developing human capital (HC). A stu-
dent’s relative HC output affects the quality of university she attends. The competition
between students for higher-valued outcomes is a many-player all-pay contest for a con-
tinuum of heterogeneous university seats of mass 1. Students differ in their cost of HC
accumulation, and university seats differ by quality.

Each student simultaneously chooses a level of HC accumulation, hi ≥ h, where the
quantity h represents a minimum pre-requisite for market participation, as when univer-
sity applicants must first earn a high school diploma in order to be considered. Acquir-
ing HC requires time—which could otherwise be consumed as leisure—and effort, and
is therefore thought to be costly. Students differ by their background, abilities, access to
help, and other resources that affect the rate at which time is converted into new HC. At
the individual level, these factors are summarized by a parameter θi, which determines
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the marginal costs of student i’s HC accumulation. Investment entails a utility cost
c(hi; θi), which is strictly increasing and convex in the amount of output, or c′(hi; θi) > 0

and c′′(hi; θi) > 0 for all hi ≥ h. We also assume ∂c
∂θ > 0 and ∂2c

∂h∂θ > 0 so that smaller
θ implies a more productive student having lower costs for a given level h, and also a
lower marginal cost of increasing output from h to h + ∆. θi is privately known to each
student, who views costs of her competitors as realizations of a random variable Θ.

There is a continuum of university seats of mass 1. We denote an individual seat by
quality level s, and model the relative masses of different seats as following distribution
FS. Throughout the paper, we shall simplify discussion by assuming FS = Uni f orm[s, s]
and [s, s] = [0, 1] so that seat quality index and quantile rank are the same, with higher s
indicating a more valuable seat. A student placing at seat si experiences benefit u(si) =

si. Net utility of student i is

U(si, hi; θi) = si − c(hi; θi).6 (1)

For simplicity here, a student’s gross match utility u(·) depends only indirectly on her
HC, through determining the quality of university to which she is admitted. In the
appendix, we explore an extension where HC directly enters match utility and students
with higher HC benefit more from admittance to high quality universities. We show
that the extended model still admits the qualitative patterns predicted by the version
described here, which is simpler and isolates phenomena that we can directly test with

our experimental design.7

3.1.1. Incorporating Demographics. Each student observably belongs to one of two mu-
tually exclusive demographic subgroups, A and D, with δ ∈ (0, 1) being the mass of
the latter. Since costs are privately known to each individual, students view their com-
petitors’ types in group j = A,D as realizations of a random variable Θj with distri-

bution Fj(θ) and density f j(θ) which is strictly positive on a common support [θ, θ].

As convenient shorthand, we define the overall distribution and density as F(θ) ≡
δFD(θ) + (1− δ)FA(θ) and f (θ) ≡ δ fD(θ) + (1− δ) fA(θ).

6We restrict attention to the case where cost type θ chooses to acquire h units of human capital. In other
words, we assume U(s, h; θ) = U(∅, 0; θ), which guarantees that all students in our game weakly prefer to
acquire the minimum HC and attend university. Those with hi ≥ h are allocated a seat based upon their
relative HC. This means that the model is one of decisions on the intensive margin, being conditional on
market participation. The question of how AA may affect university attendance decisions on the extensive
margin is left for future research.

7Since it is difficult to directly experimentally test how h factors into gross utility, we instead focus
on a simpler model in this section of the paper. We study HC accumulation in our experiment through
direct observations of time investment into the learning process. For illustrative purposes though, in
the appendix we present some examples where gross utility is Cobb-Douglas in s and h, U(si, hi; θi) =

sα
i hβ

i − θihi. Similar qualitative patterns emerge in response to AA, relative to color-blind admissions, as
when u = si.
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We assume group A is “advantaged” and group D is “disadvantaged” in that students
from D tend to find HC production more costly, on average. Formally, we assume the
distributions of ΘA and ΘD are ordered by likelihood ratio (LR) dominance, where

∂ ( fD(θ)/ fA(θ))
∂θ

> 0 for all θ ∈ [θ, θ].

Intuitively, LR dominance is a strong form of first-order stochastic dominance which
implies, among other things, that cost quantiles within A are all lower than the corre-
sponding quantiles within D. Although some “disadvantaged” students have low costs
of acquiring HC, and some “advantaged” students have high costs, the average and me-
dian students in D have higher costs of producing new HC than their counterparts in
A, etc. This is how we operationalize the idea that, on average, disadvantaged students
must invest more time and effort to overcome obstacles which are (imperfectly) corre-
lated with their demographic status. In the context of race, for example, it is well-known
that Black and Hispanic children in the United States tend to be less affluent and have
less access to crucial childhood inputs like healthcare and high-quality public education;
however, some still grow up in affluent environments which are more advantageous to
childhood learning. Note also that LR dominance implies there exists a unique point,

θ̃ ∈
(
θ, θ
)
, at which the densities fA and fD cross. This fact will become useful later

when we explore comparative statics under different allocation mechanisms.

3.1.2. Seat Allocation Rules. We consider two distinct university seat allocation rules.
Let H ∼ G(H) denote the human capital output of a randomly selected student, and
let Hj ∼ Gj(Hj) be similarly defined for a student from group j = A,D. The first seat
allocation rule is a color-blind (CB) policy, which ignores demographics when allocating
university seats. This rule assigns students to seats in pure rank-order fashion. The
mechanism determines the quantile rank of hi within the overall HC distribution and
then matches student i to a seat at the corresponding quantile rank. For example, the

75th percentile student matches with the 75th percentile university, etc. Formally, under
the color-blind rule, student i from group j receives seat assignment

Scb
j (hi) = Scb(hi) ≡ G(hi), j = A,D. (2)

A student’s allocation under the CB rule depends on her performance relative to all other
students; thus, investment behavior will not vary by demographic status.

The second seat allocation rule is a representative quota (RQ) AA policy, which re-
serves a similar distribution of university seats for each group, A and D, and then
allocates the seats within each group by rank ordering. By “similar distribution” we
mean that fraction δ of all seats at each point in the quality spectrum are earmarked ex
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ante for group D, thus splitting the set of university seats into two subsets having mass

δ and (1− δ), but with both subsets still following the original quality distribution FS.8

Formally, under the RQ rule, student i receives seat

Srq
j (hi) ≡ Gj(hi), j = A,D. (3)

A student’s seat assignment under the RQ policy depends only on her performance
relative to other members of her own demographic group. It splits the university ad-
missions market into two separate contests, with identical distributions of prizes, but
different distributions of player ability. From a student’s perspective, the distinguishing
characteristic of the RQ mechanism is that it alters the distribution of one’s competitors,
while leaving all other aspects of the contest the same as under a CB rule.

3.1.3. Solution Concept: The strategic environment presented above will form the ba-
sis for our experimental design in the next section. Bodoh-Creed and Hickman [2016]
develop a general model of competitive HC investment which nests the framework pre-
sented here as a special case. They begin with a finite set of players and university seats,
and demonstrate existence of a unique symmetric Bayes-Nash equilibrium. They then
establish general conditions under which equilibria of the unweildy finite model can be
well approximated by the solution to a decision problem where the finite sets on both

sides of the matching market are replaced with continua.9 This solution they refer to
as an approximate equilibrium, and it lends analytic tractability to an otherwise compli-
cated model. For the understanding we wish to develop in this paper, it suffices to limit
discussion to the continuum representation of the model.

Our main goal in this section is to illustrate qualitative model predictions which are
testable through experimental methods. The primary contribution of this paper derives
from empirical comparisons of the distributions of effort and outcomes generated under
the alternative policies CB and RQ. Thus, under each of these mechanisms we now char-
acterize the approximate Bayes-Nash equilibrium of the game played between students
who each choose how much HC to acquire prior to execution of the school assignment
mechanism. To avoid tedious repetition, we abstract from the intricacies of the finite

8A subtle but crucial detail to note here is that our RQ policy calibrates δ to the fraction of group D
market participants, which may not be the same as the mass of that group within the population at large.
For example, South Africa mandates employment quotas for skilled professions, where quotas are pegged
to the fraction of blacks in the overall population. One problem in the implementation of this law has
been that not enough blacks exist within the skilled labor market (e.g., individuals with pre-requisite post-
secondary degrees) to fill mandated quotas. Such a rule would be a more extreme version of the AA
policy studied in this paper, and may therefore entail different consequences.

9Alternatively, one may also interpret the continuum simplification as the basis of a behavioral strategy
employed by a cognitively constrained agent. Rather than tracking probabilities over all the order statistics
of large, complicated sets of competitors and seats, the agent may drastically reduce computational burden
at little cost by pretending as if she was operating within a continuous world instead of a discrete one.
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game and simply refer to our derivation of the approximate equilibrium as “the equilib-
rium.” The interested reader is directed to Bodoh-Creed and Hickman [2016] for a full
exposition of the technical foundations underlying the continuum model approximation.

3.2. ANALYSIS. Let h∗(θ) denote the common equilibrium investment function under
the benchmark CB mechanism, and let h∗A(θ) and h∗D(θ) denote the group-specific in-
vestment functions under the alternative RQ mechanism. Moreover, let θ∗, θ∗A, and θ∗D

denote the relevant inverses, so that θ∗ ≡ h∗−1 and θ∗j ≡ h∗j
−1, j = A,D.

3.2.1. CB Allocations. Student i chooses HC to maximize her net payoff, given that other
students play according to h∗. Equilibrium HC investment is strictly decreasing in θ, so

equation (2) can be re-written as Scb(h) = 1− F [θ∗(h)], and student i’s objective as

max
hi≥h
{(1− F [θ∗(hi)])− c(hi; θi)} . (4)

Taking a first-order condition (FOC), we get − f (θi)θ
∗′(hi) = c′(hi; θi). In equilibrium,

θ∗(hi) = θi for all i, and since h∗ is the inverse of θ∗, it follows that h∗′(θi) = 1/θ∗′(hi).
Therefore, through a change of variables we can rearrange the FOC to get

h∗′(θi) =
− f (θi)

c′ [h∗(θi); θi]
, with boundary condition h∗(θ) = h. (5)

Given the assumptions on f and c, it is easy to see that h∗ is strictly decreasing in θ.
Equation (5) allows us to compare investment under two alternative cost distributions.

Theorem 1. Consider two color blind contests, 1 and 2, which differ only by their cost distribu-
tions, and assume competition is more fierce under contest 2 in the sense that F1 LR dominates

F2. Let θ̃ ∈ (θ, θ) denote the unique crossing point of the density functions where f1(θ̃) = f2(θ̃).
There exists a unique interior crossing point θ̈ ∈ (θ, θ̃), such that h∗1(θ) < h∗2(θ) for all θ < θ̈

and h∗1(θ) > h∗2(θ) for all θ > θ̈.

A formal proof is left to the Appendix. The theorem provides useful insight into how
competition shapes incentives. It says that, holding fixed the set of all universtiy seats,
an increase in the degree of competition will cause the most able students to invest
more aggressively, increasing their HC output, and less talented students to withdraw
somewhat, decreasing their HC output. This second shift is a common feature of contests
known as the discouragement effect. The intuitive idea is that since investment costs must
be sunk before assignments are made to a set of fixed outcomes, then, holding one’s own
cost type θ fixed, if the distribution of competitors shifts so that one’s quantile rank falls
low enough, investment incentives fall. As we will see below, there is much insight to be
had from Theorem 1 when comparing alternative allocation mechanisms.
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3.2.2. RQ Allocations. Similarly as before, under a RQ equation (3) can be re-written as

Srq
j (h) = 1− Fj

[
θ∗j (h)

]
, j = A,D, and the objective for student i from group j is now

max
hi≥h

{(
1− Fj

[
θ∗j (hi)

])
− c(hi; θi)

}
. (6)

Note the main difference here is that the group-specific distribution enters decision mak-
ing rather than the unconditional one. That leads to the following FOC

h∗j
′(θi) =

− f j(θi)

c′
[

h∗j (θi); θi

] , with boundary condition h∗j (θ) = h, j = D,A. (7)

Recall our assumption that the random variable ΘD LR dominates ΘA, or in other
words, the ratio fD(θ)/ fA(θ) is strictly increasing in θ. This implies that Θ LR dominates
ΘA, and that ΘD LR dominates Θ as well. To see why, note that

f (θ)
fA(θ)

=
δ fD(θ) + (1− δ) fA(θ)

fA(θ)
= δ

fD(θ)
fA(θ)

+ (1− δ),

from which it follows that f (θ)/ fA(θ) is strictly increasing in θ. Likewise,(
fD(θ)
f (θ)

)−1

=
δ fD(θ) + (1− δ) fA(θ)

fD(θ)
= δ + (1− δ)

fA(θ)
fD(θ)

,

so fD(θ)/ f (θ) is strictly increasing in θ as well. Therefore, switching between allocation
mechanism CB—where the competition group is all students—and mechanism RQ—
where competition occurs only within one’s own group—entails an effective LR dom-
inance shift in the distribution of competitors while holding the distribution of seats
fixed. Thus, Theorem 1 directly leads to the following corollary on HC accumulation
under an RQ rule, relative to CB.

Corollary 2. Assume FD LR dominates FA and let θ̃ ∈ (θ, θ) denote the unique crossing point of
the cost densities where f (θ̃) = fA(θ̃) = fD(θ̃). Then there exist crossing points θ̈A, θ̈D ∈ (θ, θ̃),
such that

(i) h∗D(θ) < h∗(θ) for all θ < θ̈D and h∗D(θ) > h∗(θ) for all θ > θ̈D, and

(ii) h∗A(θ) > h∗(θ) for all θ < θ̈A and h∗A(θ) < h∗(θ) for all θ > θ̈A.

In words, the best and brightest students within group D decrease HC investment,
as competition for the top university seats becomes less intense. At the same time,
higher-cost individuals exert greater effort and increase HC accumulation, as RQ mit-
igates discouragement effects by placing them in a competition group where they are
less far behind the curve. For the same reasoning, the opposite effects apply to group
A. The best and brightest increase HC investment under the RQ, as competition for the
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top university seats becomes more intense, and others become discouraged as they find
themselves further behind the curve in their new competition group.

Since theory predicts behavioral responses in opposite directions for students of dif-
ferent abilities within each group, the result above begs the question of which effect will
dominate. Once again, Theorem 1 can shed some light on the answer. Using the density

crossing point θ̃, we can partition the cost support into two subsets,

TA ≡ (θ, θ̃) and TD ≡ (θ̃, θ),

which we refer to as the typical cost sets for each group. Intuitively, Tj is the region of
the support where group j’s density is strictly higher, and therefore it is overrepresented
relative to its share in the overall population. LR dominance implies some interesting
properties for these sets. Since both densities integrate to 1, it follows that∫

TA
[ fA(θ)− fD(θ)] =

∫
TD

[ fD(θ)− fA(θ)] .

In words, the degree of over-representation of group D in the high-cost set TD is the
same as the degree of over-representation of group A within the low-cost set TA.

Corollary 3. Assume the same conditions as in Corollary 2. Then under the RQ policy (rel-
ative to the CB policy), typical disadvantaged students—that is, group D students with costs
θ ∈

{
(θ̈D, θ̃] ∪ TD

}
—exert higher effort and accumulate more HC. Moreover, if we define

∆ : (θ̈D, θ̃] ∪ TD → R as the difference on this set between group D investment under RQ
versus CB, or

∆(θ) ≡ (h∗D(θ)− h∗(θ)) ,

then ∆(θ) is strictly positive and attains a maximum on the interval (θ̈D, θ̃]. Moreover, if in-
vestment costs are strictly convex in h, then ∆(θ) attains its maximum on the open interval
(θ̈D, θ̃).

Proof: The reasoning behind this result is simple. Corollary 2 directly implies the first
part and that ∆(·) tends toward zero at its endpoints but is strictly positive everywhere
else. Moreover, equation (A.2) in the proof of Theorem 1 (see appendix) establishes that
∆′(θ) < 0 for all θ ∈ TD, meaning the difference between the two investment functions

becomes steadily wider as one moves toward the density crossing θ̃ from the left. If costs

are strictly convex, then (A.2) shows that ∆′(θ) < 0 for all θ ∈ TD ∪ θ̃, so the maximum

cannot occur at θ̃. �
Corollary 3 implies that, relative to their disadvantage in the overall population, a

disproportionate share of group D students increase HC investment. To gain an ap-
preciation for the strength of this result, the corollary also shows that, not only do we
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Figure 1. NUMERICAL EXAMPLE:
Truncated Normal Cost Densities
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see a positive effect for all group D cost types in their typical set, but the improved in-
centives extend well beyond TD as well. In fact, the largest improvement of investment
incentives by type (i.e., where ∆(·) attains its maximum) actually occurs on the interval

(θ̈D, θ̃]. Thus, the result implies an increase of investment activity for a large fraction of
the disadvantaged group. It is worth noting that analogous results to the three above can
be proven in an extension of the model where h directly enters a student’s gross match
utility; these are Theorem 4 and Corollaries 5 and 6 in the Appendix.

On the other hand, the situation is less clear for the advantaged group. Although an

analogous statement can be made—that all group A cost types θ ∈
{
(θ̈A, θ̃] ∪ TD

}
will

reduce HC output under RQ—the statement is less informative, because investment also
increases on part of the typical set TA as well. To further illustrate the intuition of model
predictions, we present three numerical examples, one below and two additional ones
in the Appendix.

3.3. NUMERICAL EXAMPLE. Here, we explicitly solve the model using functional
forms to illustrate the qualitative patterns predicted by theory. In the example, δ = 0.5
and both ΘD and ΘA follow normal distributions truncated to a common support

[θ, θ] = [1, 2] with variance parameter σA = σD = 0.5. The mean parameters differ,
with µD = 1.75 and µA = 1.25, which ensures that the distributions are ordered by LR
dominance (see Figure 1). We specify costs as a linear function c(h; θ) = θh, so that
the maximum distance between investment under RQ and CB occurs at the boundary

between TA and TD. Finally, we set h = 0.5; this makes type θ indifferent to market
participation when the outside option is normalized to a value of zero.

Figures 2 and 3 depict a comparison of the RQ investment functions for each group
(solid and dashed lines), as well as the common investment function for both groups
under a CB allocation rule (dotted line). For each group there is crossing point of the
investment functions, with the upper bounds of the HC distributions being different by



AFFIRMATIVE ACTION AND HUMAN CAPITAL INVESTMENT 17

Figure 2. NUMERICAL EXAMPLE:
Investment, CB vs AA
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Figure 3. NUMERICAL EXAMPLE:
HC Distributions, CB vs AA
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seat allocation rule. For the disadvantaged group, a positive mass of the top students
reduce investment, while middle- and high-cost students increase it. Intuitively, the
policy aids the top students from D, but since they were already placing close to the
upper bound their outcomes cannot be commensurately improved and they rationally
reduce effort. For other students in D, the policy alleviates discouragement effects by
placing them in a competition group where their own type is not as far behind, mak-
ing them more competitive for higher quality outcomes. In turn, they respond with an
increased willingness to engage in costly investment. Similar logic holds for group A,
but in reverse. A key aspect of our experiment will be to engineer this sort of coun-
terfactual scenario, where similar ability students find themselves facing different levels
of competition for the same set of outcomes. Within this experimental counterfactual
we test whether AA leads to changes in performance distributions. We also investigate
intermediate inputs behind investment costs depicted in the model: time and effort.
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4. EXPERIMENTAL DESIGN

We built our incentives and learning exercise around the American Mathematics Com-
petition 8 (AMC8) exam, sponsored by the Mathematical Association of America, for

students in 8th grade and below. It consists of 25 multiple choice questions (five choices
each) in 40 minutes, and the questions become progressively more difficult from start to
finish. The AMC8 is an early precursor to math competitions such as the International
Mathematical Olympiad and the Putnam. The AMC8 website explains, “[it] provides
an opportunity to apply concepts [to] high level to problems which... are designed to
challenge and offer problem solving experiences beyond those provided in... junior high
school.”

4.1. SAMPLE POPULATION. Our total sample includes 992 middle school and junior
high students from 10 schools in Utah County, Utah, including both charter schools
and regular public schools. Within these schools, participation in our study was at the
classroom level. Academically and socioeconomically, our sample population was fairly

average within the US.10 Most of our partner schools had previously participated in the
AMC8 before partnering with us for this study.

Our partner schools exhibited a high degree of racial and cultural homogeneity. Less
than 1% of students were black and only 7.5% were Hispanic, compared to nationwide
averages of 15.25% and 22.2% for blacks and Hispanics, respectively. All schools in
this study serve suburban populations. However, given that the goal of this paper is
to cleanly test theory of incentives, the demographic homogeneity in our sample may
be an advantage. We chose grade level as our demographic delimiter for groups A
and D, which ensures that they only differ in observable ways (i.e., age and grade)
but are otherwise similar. Focusing on a relatively homogeneous subject pool allows
us to largely rule out other cultural/behavioral phenomena (such as stereotype threat)
which might confound the pure incentive effects arising from our exogenous policy
variation. At the same time, however, we must recognize that AA policies typically apply
in real world settings with a number of confounding factors which we minimize in our

10Our test subjects are drawn from a population which is somewhat more affluent than the rest of
the country, but academically comparable. Based on figures from the National Center for Education Sta-
tistics, we estimate a median household income of $59,800 for the sample population, compared to a na-
tionwide median of $53,046 (information downloaded from http://nces.ed.gov/surveys/sdds/framework
/tables.aspx). In 2012, approximately 33% of test subjects were eligible for free or reduced-price lunch,
compared to a national average of 48%. That year our partner schools housing 5th and 6th grade subjects
(20% of our sample pool) performed significantly better than other Utah schools in terms of meeting state
math standards (approximately 91% vs 76%), while schools housing our 7th and 8th graders (80% of our
sample pool) performed slightly worse than other Utah schools (81% vs 83% meeting state standards).
Utah is a state which typically ranks at or near the median for nationally measured academic outcomes
such as NAEP scores and enrollment rates in Advanced Placement programs.

http://nces.ed.gov/surveys/sdds/framework/tables.aspx
http://nces.ed.gov/surveys/sdds/framework/tables.aspx
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experiment. We discuss this point further in Section 6 where we compare achievement
gaps within our sample pool to race gaps within the US population.

4.2. TREATMENT GROUPS AND INCENTIVES. Participants in our study first took
a practice AMC8 test from a previous year. We used this as a baseline measure of
each student’s ability. Individuals were randomized into either a control group—with a
“color-blind” competition—or an AA treatment—with a representative quota competi-
tion. Following the notational convention from the previous section, we will henceforth
refer to these treatments as CB and RQ, respectively. For treatment CB, we ran compe-

titions involving students in two adjacent grades; that is, 7th and 8th graders competing

together, and 5th and 6th graders competing together. For each of the two age cohort

pairings, students in the lower grades (5th or 7th) are henceforth referred to as the “dis-

advantaged” demographic D, and students in the higher grades (6th or 8th) are referred
to as the “advantaged” demographic group A, since the latter are one year older and

have received one more year of mathematics education on average.11 For treatment Q,
students competed only within their own grade level, but for a proportionally equivalent

set of prizes (relative to CB), as described below. We ran separate competitions for 5th,

6th, 7th, and 8th graders.
The top 30 percent of students within each competition group received cash prizes,

which were uniformly distributed between $4 and $34 in $2 increments. Prizes were
awarded assortatively within competition groups, according to final exam scores. For

example, 7th grade students in treatment CB needed to score within the top 30 percent

of all 7th and 8th grade students in their treatment to receive a prize. In treatment Q,
students competed against others in their own grade only, but for a representative set
of prizes. More specifically, we began with the same aggregate prize distribution as for
treatment CB, and then earmarked prizes at each different level in proportion to the
mass of lower-grade students in each age cohort pairing (note that the mass of groups A
and D were also identical across treatments CB and Q). This ensured that the moments
of the prize distribution (including the 70% mass of zeros) were the same across all
competition groups, with each one vying for the same number and variety of prizes on

a per capita basis. For example, 7th grade students in treatment Q only had to score

within the top 30 percent of 7th graders in their treatment to receive a prize. Moreover,

their distribution of prizes, conditional on winning something, was the same as for 8th

11As we discuss in Section 6, the difference in average preparation between our disadvantaged and
advantaged groups likely understates difference between black and white students at the same age in the
US. Using national figures from the NAEP exam, we estimate that the 7th–8th grade gap in our sample
pool is roughly 60% of the gap between black and white 8th graders in terms of math proficiency.
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graders in treatment Q, and also the same as for all 7th/8th grade students in treatment
CB. Thus, for an advantaged or disadvantaged student of a given ability level, the only
difference across the two treatments is the distribution of one’s competitors.

Each student received an information sheet describing their assigned group, how
many students from which grade(s) they would be competing against, and the score
distribution within their group based on the practice test. Students received their own
practice score back at the same time so they could see where they fit within their com-
petition group. The sheet also contained a table describing the prize structure. We
printed information relative to each competition group on a different color of paper so
that students could visually see in their classroom that roughly half of the students were
assigned to each treatment. Altogether, there were six different groups: four groups for
the quota treatment (one for each grade) and two groups for the neutral treatment (one

for 5th/6th grade and one for 7th/8th grade). In a web appendix, we provide an example

of the information sheet given to each group.12

4.3. MATH LEARNING WEBSITE. At the bottom of the information sheet was the
url of a website we set up with practice problems drawn from five past AMC8 exams.
At 25 questions each, this made for 125 total practice problems covering six different
math subjects: Arithmetic, Algebra, Combinatorics, Geometry, Logic, and Probability.
Problems were divided into a set of 31 total quizzes. Each year, the 25 AMC8 exam
questions are numbered in increasing order of difficulty. For each of the previous five
year’s exams, the website included one quiz covering problems 1-10, a second quiz
covering problems 11-20, and a third covering problems 21-25. Test subjects were notified
that each grouping of 3 same-year quizzes were ordered by their difficulty level. We also
arranged this same battery of math problems into an additional set of 16 quizzes, each
containing 5 subject-specific math problems. These subject quizzes were also ordered by
their difficulty level.

Students could attempt each quiz as many times as they liked, or move on to ad-
ditional materials they had not yet tried. After completing each quiz, our software
displayed an instructional page which reported to each student her score, the correct
answers for each problem, and step-by-step solutions published by the developers of
the AMC8. Students were provided with a web page that contained links for all of the
quizzes we offered, but in order to access the quizzes, they had to input their name,
grade, and school on the first page of the web form. This allowed us to track online
activities for each quiz session, including which students visited the website, how many

12Copies of the information sheets given to test subjects are available for download at
http://home.uchicago.edu/h̃ickmanbr/uploads/CHP2014_WEB_APPENDIX.zip

http://home.uchicago.edu/~hickmanbr/uploads/CHP2014_WEB_APPENDIX.zip
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different subjects they tried, how much time they spent, how many questions they at-
tempted, what they answered on each attempt at each question, and how much time
they spent viewing the instructional page.

Within each quiz, questions were separated on different web pages in blocks of 3, 4,
or 5 questions per page, and the instructional page at the end displayed feedback for

all questions on a single page.13 Time on our website was measured at the page level,
meaning that we got a time measure for blocks of either 3, 4, or 5 questions. In order
to convert this information into a time spent per question measure, we divided each
block-level time observation by the number of questions within that block. Instructional
page times for 10-question quizzes were split into two observations a piece by dividing
by two in order to make them comparable to 5-question instructional page view times.

4.3.1. Time Measurement. One difficulty arose in that there were clear instances where
students left the website in the middle of a quiz for several hours or more. To adjust
for this problem we chose truncation points on the domains of time per question and
instructional page view time, and we replaced each observation above that point with

the appropriate student-specific censored mean.14 In selecting our truncation point we
looked for occurrences of “holes” in the support of the distribution of times per ques-

tion.15 For our time per question data, this leads to a truncation point of 26.14 min/

question (the 99.35th percentile), and for instructional page views, 108.39 min/page view

(i.e., 21.68 min/solution, or the 98th percentile). In the Appendix we display a histogram
of (uncensored) time per question and instructional page view times.

At the end of the day, the time monitoring capability on our website is not perfect, and
it is impossible to directly observe work stoppages in the middle of a quiz question. In
particular, it may still be the case that smaller work stoppages occur below the truncation
points. Therefore, in terms of time per question we are effectively interpreting work
stoppages of less than 27 minutes as time which comes at a positive cost to the child.
We argue that 27 minutes is a reasonable truncation point for several reasons. First,

13Each 10-question quiz was broken into three pages with 3 questions on page one, 3 questions on page
two and 4 questions on page three. Each 5-question quiz displayed all 5 problems on a single page.

14To illustrate this rule, suppose that Tommy attempted three 5-question quizzes for a total of 15
questions. Suppose further that we observed times of 5 minutes each for seven questions, 15 minutes each
for another seven questions, and 2000 minutes for the last one. Then if the truncation point were, say
30 minutes, the last observation of 2000 is replaced by Tommy’s idiosyncratic censored mean time of 10
minutes (for all other questions he attempted). As a robustness check, we also ran our analysis by simply
dropping truncated observations instead, and results are very similar to those we present below.

15More specifically, a hole in the distribution support was defined as the minimum point at which a
full-support condition fails, which we estimated as a point where a kernel-smoothed density estimate
hit zero. The idea behind this rule is that if the type distribution has full support, then the distribution
of times per question should have full support as well since the choice of how much time to spend is
continuous. For a more complete description of our truncation point selection rule, see the Appendix.
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work stoppages for our uncensored time observations (most of which were less than 10
minutes) would serve as a poor substitute for longer, unbroken leisure spells. Second,
since this potential problem is the same across both treatment groups, there is no reason
to believe that our results are being aided by it.

Third, the AMC8 contains fairly challenging material that may require significant time
inputs for some students. Table 2 in the next section displays the mean and variance of
time spent per question attempt, using the censored sample of times. The most difficult
subject appears to be combinatorics, with a mean time of 2.839 minutes and a standard
deviation of 3.532. Given that the censored distribution of time per question is right

skewed, and 10 minutes (the 98th percentile of the un-censored sample) is roughly two
standard deviations above the mean for combinatorics, it is plausible that roughly 1.5%
of our sample could exist on the interval between 10 minutes and 26 minutes.

As for instructional page view times, it is informative to consider a particular student

whom we will rename “Kate” to protect her identity. Kate, a 7th grader in the quota
treatment, spent more time than anyone else on the website (after time adjustments),
averaging roughly 53 minutes per day during the study period. At 55 question attempts,

Kate was also above the 94th percentile on that dimension as well. She attempted 11
quizzes of 5 questions each, averaging 2.24 minutes per question attempt and 7.49 min-
utes per question on the instructional page with solutions. She spent an hour or more on
5 of her quiz attempts, each time spending the majority of her time on the instructional
page. For each of Kate’s 11 quiz attempts we see that she clicked through to the quiz
termination screen herself. Kate is an example of a student who displayed consistent
patterns of substantial time inputs into many of the quizzes she took—particularly on
the instructional page—while never having left a quiz session open overnight.

4.4. TESTING. Students took the actual AMC8 test in their regular classrooms, under
all of the normal conditions in which students around the country take the AMC8. Most
of the students in our study attended schools where participation in the AMC8 was al-
ready being offered to students by their teachers, but on a voluntary basis. The schools
that cooperated in this study administered the test to all students within each partic-
ipating classroom on an opt-out basis, so that all students participated in the study,
except those whose parents proactively signed and returned an opt-out form. The study
involved two in-class exam sessions: the practice test was the AMC8 exam for the pre-
vious year, and the final exam was the AMC8 for the current year. The cash prizes were
delivered to each school shortly after the final exam, and handed out to each student
in an envelope. The outcome measures that we use in the next section include both the
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effort-based measures with website data, as well as a performance-based measure using
students’ scores on the AMC8.

5. EXPERIMENTAL RESULTS

The theoretical model predicts that some students in each demographic group will
increase their effort and HC accumulation under AA, while others in the same group
will decrease their efforts. Our empirical investigation takes the next step by testing
for the average effects of AA on effort and performance by demographic group and
estimating magnitudes. We also use a non-parametric analysis to consider the effects of
AA on the performance distributions and achievement gaps.

5.1. DESCRIPTIVE STATISTICS.

5.1.1. Pre- and Post-Exams. Table 1 contains descriptive statistics on AMC8 exam scores.

Roughly three quarters of our sample were 7th/8th graders. The difference between these

and our 5th/6th grade test subjects is that the latter all came from accelerated classes,
whereas the former are representative of the overall student body within their schools.

This difference is born out in the data: while 8th grade students did best on the pre-test

with an average score of 9.04, 6th graders as a group came in second at 8.12 on average.

7th and 5th grade average pre-test scores are close, at 7.58 and 7.19, respectively.16

We have also broken down test scores by two groups that we refer to as investors—
students who logged on to our website at least once during the study period—and non-
investors—those who did not. Students who did better on the pre-test were more likely
to be investors (i.e., they were more likely to use the math practice website), although
some students who did not do as well also chose to be investors, and many students
who did quite well on the pre-test chose to be non-investors. For the group of investors,
we also present summary statistics concerning their activities on the website. Investors’
times ranged between a few minutes and 8.92 hours, or an average of about 53 minutes
per day over the study period. Number of questions attempted ranged between 1 and
120, with mean and standard deviation of roughly 19 and 23, respectively. Subjects
represents the number of different subject categories a student attempted, using the
subject-specific quizzes, being about two on average.

16The national AMC8 population in 2013 (see https://amc-reg.maa.org/reports/generalreports.aspx)
had mean and median of 10.69 and 10 out of 25, with standard deviation of 4.44. These figures illustrate the
difficulty of the exam. The AMC8 is predominantly administered through opt-in participation, whereas
our experiment was on an opt-out basis. This accounts for the lower mean among our sample pool.

https://amc-reg.maa.org/reports/generalreports.aspx


24 AFFIRMATIVE ACTION AND HUMAN CAPITAL INVESTMENT

Table 1. STUDENT DESCRIPTIVE STATISTICS

Mean Median Std. Dev. N

Pre-Exam Scores

All 8.45 8 2.90 992

5th Grade 7.19 7 2.39 48

6th Grade 8.12 8 2.47 155

7th Grade 7.58 7 2.84 275

8th Grade 9.04 9 2.82 396

Investors 9.46 10 3.19 118

Non-Investors 8.32 8 2.83 874

Final Exam Scores

All 8.64 8 2.88 895

5th Grade 7.40 7 2.22 42

6th Grade 9.17 9 2.82 133

7th Grade 8.12 8 2.90 233

8th Grade 8.75 9 2.80 374

Investors 9.20 9 3.06 113

Non-Investors 8.56 8 2.84 782

Human Capital Investment (Investors Only)

Total Time 43.65 26.85 64.65 118

Problem Solving Time 32.99 19.31 41.43 118

Instructional Time 10.66 3.37 38.85 118

Questions 18.89 10.00 22.53 118

Subjects 1.94 1.00 1.43 118

Notes: All time figures are post-censoring as described in Section 4.3 and quoted in minute units. Investors
are defined as students who logged on to the math learning website at least once during the investment
period. Non-Investors are those who did not.
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Table 2. Time Per Question Attempt by Subject

Censored Mean Std. Dev.
Subject Minutes Per Question (minutes) Mean + 2×Std. Dev.

Algebra 2.422 2.563 7.548

Arithmetic 1.398 1.238 3.874

Combinatorics 2.839 3.532 9.903

Geometry 2.183 2.577 7.337

Logic 1.807 1.742 5.291

Probability 1.996 1.137 4.27

Table 3. EFFORT AND PERFORMANCE BY TREATMENT

Investment Performance

Used # Subjects Total # Questions Final Exam
Website Attempted Time Attempted Score

Quota 0.154 0.284 6.634 2.729 8.680
Std. Err. (0.015) (0.037) (1.216) (0.456) (0.139)

Neutral 0.088 0.189 3.932 1.817 8.604
Std. Err. (0.014) (0.035) (1.149) (0.431) (0.133)

N 992 992 992 992 895

Notes: Each cell provides the mean of the measure listed in each column. Standard errors are provided in
brackets. Estimates under each of the four effort variables are intended to capture the effect of a treatment
on human capital investment for the total study population, and are therefore averaged over both investors
and non-investors.

5.1.2. Subject-Specific Practice Question times. Table 2 displays the mean and variance
of time spent per question attempt on our website, using the censored sample of non-
truncated times (once again, for investors only). Some math subjects appeared more
challenging in terms of the time students took to solve problems. The most difficult
subject was combinatorics, with a mean time per question attempt of 2.839 minutes and
a standard deviation of 3.532. The least difficult subject appeared to be arithmetic, with
mean and standard deviation of 1.398 and 1.238, respectively.

5.2. EMPIRICAL ANALYSIS.

5.2.1. Testing Overall Differences by Treatment. Tables 3 and 4 investigate the effect of a
quota on the overall population, including both advantaged and disadvantaged groups.
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The first column of Table 3 displays the mean of a binary variable, being the fraction of
investors from each treatment group (i.e., subjects who logged on to our website at least
once to practice math). As for the other investment variables, the reader should keep in
mind that Tables 3 – 5 aim to measure a treatment effect of a policy on an entire group,
including both the intensive and extensive margins of investment. This is why the effort
numbers in Table 3 and afterward appear small: they are averaged over both investors
and non-investors. The results indicate that subjects in the quota treatment, including
students from all age groups, were 75% more likely to have visited the website than
students in the color-blind treatment. They also tried out more subjects, spent more time
on the website and answered more questions. Table 3 indicates that students in both
treatments scored roughly the same on the final exam. This is allowed for by the theory,
where predictions for the overall population are qualitatively ambiguous, but later on
we will see a different story when we separate these measures by demographic group.

Table 4 provides statistical tests for the raw differences displayed in table 3. In the
first row we run a simple regression using a dummy for the quota treatment, meaning
it represents the experimental difference between an RQ rule and CB allocations at the
population level (i.e., including both demographic groups). Each cell in the table rep-
resents a separate regression with the outcome variable labeled in the column header.
We report the point estimate and p-value for a test of the hypothesis that there is no
difference by treatment group. From the table we see strong evidence that AA increases
the fraction of students willing to invest at least some time. We also see evidence that
it induces them to experiment with more subjects, as well as increase the total time in-
vested and number of questions attempted. Although these last two differences are only
marginally significant, the estimated magnitudes are large, with quota students logging
an estimated 57% and 70% more inputs of time and question attempts, respectively. Ad-
ditional controls (pre-test score and/or school fixed effects) are added in the bottom two
rows as a check on the effectiveness of our randomization. It seems to have worked well,
as adding these additional 11 variables caused no significant shifts in point estimates.

5.2.2. Testing Differences by Treatment Within Demographic Groups. Recall that the the-
ory allows for AA to have differential effects by ability (i.e., cost of competition) and
demographic group. In Table 5, we add a demographic dummy to investigate this claim.
The first five columns each present estimates for a regression equation of the form

Outcome = β0 + β1Quota + β2Advantaged ∗Quota + β3Advantaged + β4Pre-Test + ε,

where Quota is a dummy for treatment status, Advantaged is a demographic dummy,
Pre-Test is a student’s pre-test score in standard deviation units, and the specific Outcome
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Table 4. TESTING DIFFERENCES BY TREATMENT

Investment Performance

Used # Subjects Total # Questions Final Exam
Website Attempted Time Attempted Score

Quota− Neutral 0.066*** 0.095* 2.701 0.912 0.076

P-Value: [0.001] [0.061] [0.107] [0.146] [0.693]

(Controls: none)

Quota− Neutral 0.065*** 0.093* 2.650 0.884 0.097

P-Value: [0.002] [0.067] [0.113] [0.158] [0.576]

(Controls: pre-test scores)

Quota− Neutral 0.058*** 0.078 2.404 0.773 0.164

P-Value: [0.005] [0.130] [0.158] [0.224] [0.346]

(Controls: pre-test scores, school FEs)

N 992 992 992 992 895

Notes: Each cell represents a separate regression. The number reported is the coefficient for the quota
treatment. Row 1 includes no controls and provides a statistical test of the differences in Table 1. Row 2
includes control for practice test score. Row 3 includes school fixed effects. P-values for a two-sided test
of the null hypothesis of zero difference are italicized and in brackets. Estimates under each of the four
effort variables are intended to capture the effect of a treatment on human capital investment for the total
study population, and are therefore averaged over both investors and non-investors.

variable is labeled in the column header.17 With the inclusion of the interaction term
Advantaged ∗ Quota, the coefficient β1 represents the average effect of AA specifically
on the disadvantaged group. The effect of the policy on the advantaged group is rep-
resented by the sum β1 + β2. The last column in the table moves pre-test score to the
left-hand side, to estimate an alternative measure of the treatment on math improvement:

FinalExamScore− Pre-TestScore = β0 + β1Quota + β2Advantaged ∗Quota + β3Advantaged + ε.

For completeness, all regressions include controls for school-level fixed effects, and for
the primary effects of interest we report p-values in brackets.

17One potential concern with including pre-test score is that it provides a noisy measure of initial
human capital, and may therefore introduce an attenuation bias. As a robustness check we re-estimated
the regressions in Table 5, omitting Pre-Test, and nearly all coefficient estimates and standard errors—
except for the ones connected to β3, the multiplier on higher-grade cohort status—remained virtually
unchanged. See Table 8 in the online appendix for coefficient estimates with Pre-Test omitted as a control.
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Table 5. TESTING DIFFERENCES BY DEMOGRAPHICS AND TREATMENT

Investment Performance

Used # Subjects Total # Questions Final Exam
Website Attempted Time Attempted Exam Score Score Change

Constant (β̂0) 0.073*** 0.144** 3.033 1.316* 8.147*** 0.096
Std. Err. (0.024) (0.059) (1.982) (0.741) (0.209) (0.240)

Quota (β̂1) 0.087*** 0.146* 5.517** 1.312 0.624** 0.591*
Std. Err. (0.033) (0.083) (2.757) (1.030) (0.287) (0.330)
P-Value: [0.009] [0.077] [0.046] [0.203] [0.030] [0.074]

Advantaged ∗Quota (β̂2) -0.047 -0.111 -5.034 -0.866 -0.712** -0.546
Std. Err. (0.042) (0.105) (3.506) (1.310) (0.360) (0.415)

Advantaged (β̂3) 0.028 0.083 1.613 0.877 0.488* -0.324
Std. Err. (0.030) (0.076) (2.545) (0.951) (0.264) (0.300)

Pre-Test (standardized) (β̂4) 0.029*** 0.045* 1.009 0.572* 1.280*** N/A
Std. Err. (0.011) (0.027) (0.893) (0.334) (0.092) N/A

School Fixed Effects yes yes yes yes yes yes

N 992 992 992 992 895 895

Additional Test: Effect of Quota on Advantaged Group

β̂1 + β̂2 0.040 0.035 0.483 0.446 -0.089 0.045**
P-Value: [0.123] [0.586] [0.823] [0.581] [0.684] [0.030]

Notes: Each column is a separate regression. Advantaged is an indicator variable for whether the student
is a 6th or 8th grader (the older group in each school type). We also include each student’s standardized
pre-test score, where standardization is based on the mean and variance within each school type (i.e.,
5th/6th or 7th/8th), in order to control for differences in starting human capital. Standard errors are in
parentheses; p-values for a two-sided test of the null hypothesis of zero effect are italicized and in
brackets. Estimates under each of the four effort variables are intended to capture the effect of a
treatment on human capital investment for the total study population, and are therefore averaged over
both investors and non-investors.

For disadvantaged group students we find evidence of large and positive effects across
all four investment measures. First, we see a highly significant 8.7 percentage point in-
crease in disadvantaged students’ willingness to spend at least some time on the website,
under AA. To put this in perspective, we can compute a within-demographic percent
change for the disadvantaged group by 100× (β1/β0)%, which amounts to an increase
of 119% on the extensive margin, relative to their disadvantaged counterparts under the
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color-blind treatment. We also see a significant and even larger increase in terms of time
investment: disadvantaged students under treatment RQ increased investment by 181%.
The other two measures capture specific tasks done during time spent on the website:
number of subjects attempted and number of questions attempted. Although the latter
is only marginally significant, both render large point estimates for increases of 101%
and 100%, respectively.

Another striking feature of the table are the performance measures. We find a large
and significant difference in final exam scores and exam score changes for disadvantaged
students under AA: both measures estimate that they lifted their scores by roughly a
fifth of a standard deviation, relative to their disadvantaged counterparts in the control
group. Although some portion of this effect may also be due to increased effort and con-
centration on the day of the final exam, we interpret this result and the other columns
in Table 5 as evidence that treatment RQ altered labor-leisure trade-offs to induce ad-
ditional study effort at home for D students, which in turn lead to more learning and
increased math proficiency.

One concern is that this strengthening of incentives for disadvantaged students may
come at the cost of weakening incentives for advantaged students. However, Table 5
also shows that this concern is not supported by the evidence. For 4 out of 5 outcome
measures, point estimates for the effect of RQ on group A, given by β1 + β2, was actually
positive, but insignificant. In column 5, the sum of the two coefficients is slightly negative
(representing about 3% of a standard deviation) but with a large p-value. The two
outcome measures under which β1 + β2 is most significant are the binary measure of
investment (column 1), with a p-value of 0.123, and the change in exam score (column
6), with a p-value of 0.03. This implies an estimated percent change of 100× (β1 + β2)/
(β0 + β3) = +39.6% on the extensive margin for advantaged students studying under a
quota, with an estimated gain of about 1.5% of a standard deviation in their test scores.
Thus, we do not find evidence that there is a trade-off between average human capital
investment across demographic groups; if anything the data seem to slightly favor a
small increase of investment for the advantaged demographic as well. Figures 13 – 16
in the Appendix contain graphical depictions of the distributional shifts of inputs and
outputs by demographic and treatment group.

5.2.3. Selective Attrition. One potential source of bias in our results concerning the per-
formance measure (final exam score) is that 97 of the students who took the practice test
and were randomly assigned to a competition group (9.8%) did not show up on the day
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of the final test.18 We find that among the disadvantaged students, those assigned to the
quota group were less likely to miss the final exam (10.6% vs. 16.7%). We also find that
among the students who did not show up for the final test, the disadvantaged students
assigned to the quota group had higher practice scores than the disadvantaged students
not assigned to the quota group (7.16 vs 6.35). However, the practice scores among the
students who did show up for the final test were nearly the same across these two groups
(7.91 vs 7.79). These comparisons all point in a direction opposite of our main results
and suggest that the effect of the quota on final performance for disadvantaged students
may have been greater in the absence of this selective attrition.

5.2.4. Differing Policy Responses by Ability Level. The theoretical model predicts that if
the underlying cost types for the disadvantaged group stochastically dominate those in
the advantaged group, then qualitative patterns like those displayed in Figure 3 should
appear. Namely, for group D the test score distributions under a quota and color-blind
mechanism should have a unique interior crossing point, with the quota CDF strictly
above the color-blind CDF to the right of the crossing point, and strictly below to the
left. In other words, there should be a positive mass of the best students in group D who
decrease output, while students of medium and low ability from that group increase
output. Moreover, the upper bound on the output distribution may also be higher for D
under a quota. The theory makes opposite predictions for group A.19

While it is impossible to directly observe the distributions of cost types, we can take
queues from the distribution of pre-test scores by demographic group, since they re-
flect initial math proficiency, as well as how much progress each student will need to
increase her payout. We can then examine the distributions of final exam scores within
demographic groups under different treatments to see whether our experimental data
seem to be consistent with the theory of incentive effects under AA. Figures 4 – 6 depict
these comparisons in three plots of empirical cumulative distribution functions (CDFs)
for pre-test and final exam scores for grades 7 and 8. For the sake of comparability, we
have limited our sample in these figures to include only students for whom we have

both test scores. Therefore, Figure 4 plots empirical pre-test CDFs only for 7th and 8th

graders who took the final exam.

18This problem does not arise with the four investment measures, which did not require observing a
final score for us to estimate them. In Table 5 the sample size for the first four columns represent the full
sample of test subjects.

19Although the figures we present in this paper explore distributions of both inputs and outputs, it is
important to remember that the predictions of the theory only directly apply to exam score, as this is the
variable on which prize allocations are based. The mapping from inputs to outputs may vary by student
if each one differs by raw math talent and leisure preference.
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Figure 4. PRE-TEST SCORES: 7th GRADE VS 8th GRADE
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Figure 5. SEVENTH GRADE FINAL EXAM SCORES
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Figure 6. EIGHTH GRADE FINAL EXAM SCORES
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Notes: For the sake of comparability, Figures 4 – 6 above use only data for 7th and 8th graders who took
both the pre-test and final exam. See figures 15 – 16 in the appendix for a discussion on the role of

selective attrition.

Figure 4 strongly supports stochastic dominance of initial math proficiency levels
across demographic groups. A two-sample Kolmogorov-Smirnov (KS) test rejects the

null hypothesis that the 7th and 8th grade distributions are the same, against a one-sided

alternative that the latter stochastically dominates with a p-value of 1.03× 10−5. This
means group D students, on average, had to achieve more progress in order to be com-
petitive for a prize. This is not the same as observing costs, but the two are certainly
related and the hypothesis of stochastic dominance in cost types appears plausible.
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We find evidence in Figure 5 that by the end of the study period the score distribution

within the 7th grade subsample had diverged by treatment status. As a first attempt
at investigating the difference, we perform two-sided KS test for group D final exams
across treatments, which results in a p-value of 0.1047, providing marginally significant

evidence that the two distributions were not the same.20 There appears to be a hint

of divergence by treatment group among 8th graders in Figure 6 as well, though the
effect is weak and we lack sufficient power for a KS test to distinguish between the two
distributions (the p-value for a two-sided test is 0.889).

For our application, the KS test has important limitations. Aside from being a rela-
tively low-power test, it also does not provide a readily interpretable measure for the
significance and magnitude of effects at a given point in the distribution. In order to
evaluate theoretical predictions concerning how AA shapes incentives differently for
students who vary by ability levels, we wish to make within-group, cross-treatment
comparisons which allow for the magnitude, and even the sign, of the effect to vary
across different quantiles. One challenge in making such comparisons is that the set of
quantile ranks q ∈ [0, 1] attained by the empirical CDFs for two different samples will
rarely overlap. To overcome this problem, we construct smoothed quantile functions

based on a flexible B-spline CDF estimator.21 Our smoothed quantile function estima-
tor allows for comparisons at arbitrary quantile ranks q, with differences that are easily
interpretable, being in the original test score units.

Specifically, within each treatment t ∈ {RQ, CB} and group j ∈ {A,D} we partition

the support of final exam scores [0, h
t
j] into K uniform subintervals and we specify the

breakpoints between these intervals as a vector of K + 1 knots (including endpoints).

These knots define a set of K + 3 B-spline basis functions, denoted Bt
j,k : [0, h

t
j]→ R, k =

20Figures 15 and Figure 16 in the Appendix contain additional plots comparing pre-test scores by
treatment within demographic groups. The differences in the pre-test distributions are due to selective
attrition after we omitted students for whom we have no final exam. The figures suggest that in general
selective attrition is working against our results presented here. For group D the pre-test color-blind
distribution is below the pre-test quota distribution for values at or below the median, and the upper
bound of the pre-test distribution for 7th grade quota students is highest. Both characteristics of these
distributions are substantially reversed by the final exam. Figure 16 suggests that selective attrition within
the 8th grade is also working slightly against finding a significant difference in the direction predicted by
theory.

21B-splines constitute a parametric family of functions which combines flexibility, stability, and compu-
tational convenience. They behave similarly as piece-wise, local polynomials, but afford greater numerical
convenience, being made up of globally defined basis functions, like orthogonal polynomials. Moreover,
incorporating shape restrictions (e.g., monotonicity and terminal conditions for a CDF function), is quite
simple within the B-spline family. A standard text on B-splines is Carl de Boor [2001]. For a brief primer
on B-splines and their advantages for empirical economics, see Brent R. Hickman, Timothy P. Hubbard
and Harry J. Paarsch [2016, Appendix].
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1, . . . , K + 3, with which we parameterize the CDF of final exam scores as

Ĝt
j(h; αt

j) =
K+3

∑
k=1

αt
j,kB

t
j,k(h).

Finally, we estimate the parameter vector αt
j to achieve a constrained, least-squares, best

fit to the empirical CDF, where constraints ensure that Ĝt
j is monotone and attains a

value of 0 at the lower bound, and 1 at h
t
j, or the maximum observed score for group

j in treatment t. Our method belongs to the class of sieve estimators since, if we allow
the number of knots (K + 1) to grow with the sample size, a B-spline can accommodate
arbitrary shapes for any well-behaved CDF. We chose a partition of K = 10 uniform
subintervals for each support, which results in a flexible CDF estimator with 11 free
parameters once the terminal conditions are enforced. Figures 5 and 6 display a compar-
ison of the Kaplan-Meier empirical CDFs (thick lines) and the smoothed, B-spline CDFs
(thin lines) for each treatment and age group.

With these smoothed CDF estimates in hand, we can construct quantile functions,

which we denote by ĥt
j(q) = (Ĝt

j)
−1(q), q ∈ (0, 1). Following the notation of Corollary 2

in Section 3, from this we can compute the quantile difference function,

∆̂j(q) ≡ ĥRQ
j (q)− ĥCB

j (q), q ∈ [0, 1], j = A,D.

This is the primary object of interest, as it allows us to make behavioral comparisons
across policies at specific quantiles. Moreover, in order to investigate the role of sampling
variability we execute a bootstrap routine, wherein for each age group j = A,D, we re-
sampled from the quota and color-blind samples (with replacement) and re-estimated

∆̂j(·) 50,000 times. The left panels of Figures 7 and 8 display point estimates and 95%

confidence bounds from this exercise; for each, quantile ranks q ∈ [0, 1] are on the
horizontal axis, and differences displayed in final exam score units are on the vertical
axis. Point estimates for the functions ∆A(·) and ∆D(·) conform well to the patterns
predicted in the theory: both have a unique interior point where they cross the zero
line. For group D, achievement under a quota within the interquartile range improves
substantially, by a margin of 17%–43% of a standard deviation. There is a difference in
the opposite direction for A, but it is much smaller, with a point estimate from 6%–12%
of a standard deviation within the interquartile range.

The right panels in the two figures illustrate the strength of the statistical evidence
for the quantile-specific differences by evaluating the null hypothesis H0 : ∆D(q) = 0 at
each point, against the two alternative hypotheses where the sign is negative, denoted by
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Figure 7. SEVENTH GRADE FINAL EXAM SCORES
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Figure 8. EIGHTH GRADE FINAL EXAM SCORES
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H−a , or positive, denoted by H+
a . At each point q ∈ [0, 1] we computed point-wise one-

sided P-values as the fraction of bootstrapped samples resulting in a positive difference
(solid lines), or a negative difference (dashed lines) at q. Each panel also displays thin
horizontal lines for the 10%, 5%, and 1% thresholds for comparison. The figures show
strong evidence for a positive interquartile range difference in group D, and they also
show some evidence of the opposite effect near the upper bound of the support. The
evidence for policy-induced shifts in groupA is much weaker, but there is some evidence
of statistically significant changes near the extremes of the sample, and once again, in
directions consistent with those predicted by theory.

5.2.5. Narrowing Achievement Gaps. We now conclude analysis of our experimental
data with a look at the tendency for AA to narrow achievement gaps across demographic
groups. Table 6 displays summary statistics on standardized test scores for the pre-test
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Table 6. NARROWING GAPS

Mean Median Std. Dev. N

Achievement Gaps for All Treatments

Standardized Pre-Score (GRADE 7) -0.295 -0.267 0.996 264

Standardized Pre-Score (GRADE 8) 0.181 0.071 0.960 431

Standardized Final Score (GRADE 7) -0.138 -0.205 1.005 264

Standardized Final Score (GRADE 8) 0.085 0.142 0.987 431

Achievement Gaps for Quota Treatment

Standardized Pre-Score (GRADE 7) -0.211 -0.199 1.061 135

Standardized Pre-Score (GRADE 8) 0.231 0.135 0.920 220

Standardized Final Score (GRADE 7) -0.030 0.142 0.961 135

Standardized Final Score (GRADE 8) 0.055 0.142 1.050 220

Achievement Gaps for Color-Blind Treatment

Standardized Pre-Score (GRADE 7) -0.243 -0.199 0.904 129

Standardized Pre-Score (GRADE 8) 0.259 0.135 0.982 211

Standardized Final Score (GRADE 7) -0.251 -0.552 1.041 129

Standardized Final Score (GRADE 8) 0.115 0.142 0.921 211

Notes: There are three separate panels in the table, each containing standardized scores on the pre-test
and post-test. Standardization was performed within each panel-test grouping, excluding scores for
students who missed the final exam. For example, pre-test scores for the quota treatment were
standardized using the mean and standard deviation of pre-test scores for all 7th and 8th graders in the
quota treatment who took both the pre-test and post-test.

and final exam, for grades 7 and 8. In the top panel of the table scores were standardized
within each exam by subtracting the mean and dividing by the standard deviation for all
grade 7 and 8 students.22 Therefore, the means indicate distance between the population
average and grade cohort average, in standard deviation units. Without accounting for

treatment status we see that 7th grade students were roughly half of a standard deviation

behind their 8th grade counterparts on average—or −0.295− 0.181 = −0.476 standard

22Once again, in order to make the pre-test and final exam figures comparable, we excluded from the
analysis any students whose final scores were missing due to attrition.
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deviations to be exact—but by the final exam, the gap between 7th and 8th graders had
narrowed by about half—to −0.138− 0.085 = −0.223 standard deviations.

In the lower two panels of Table 6 we break out this effect by treatment group, display-
ing the same numbers within treatments, but where score standardization now happens
within each exam-treatment cell. Part of the test score convergence had to do with dif-
ferences in the conditions of the pre-test and final exams (likely due to incentives or
slightly different content): within the color-blind treatment, about a quarter of the gap
disappeared but remained relatively high at 0.367 standard deviations on the final exam.
However, the achievement gap under AA closed substantially more, by about 80%, be-
ginning at 0.442 standard deviations, and ending at only 0.085 standard deviations on
the final exam.

The medians tell a slightly stronger story, with the median gap beginning about the
same within both treatments, closing virtually to zero under AA, and closing only
slightly otherwise. Finally, observing that the within-treatment-demographic standard
deviations are all close to one suggests that the narrowing of gaps within the two treat-
ments was due predominantly to mean/median shifts in test scores. We interpret these
findings as evidence that AA can actually help to narrow achievement gaps by catching
up its target demographic to the rest of the population.

6. DISCUSSION AND CONCLUSION

6.1. EXTERNAL VALIDITY AND DIRECTIONS FOR FUTURE RESEARCH. While
interpreting the results from this study, it is important to keep in mind what it can and
cannot say. The ultimate question of interest is the effect that real world AA has on the
human capital incentives of American under-represented minorities. There are several
reasons why this study cannot fully address this policy question. First, in executing
field experiments with actual schools, a significant hurdle involves forming partnerships
with school administrators whose primary job it is to educate, rather than to produce
research. Our school partners in this experiment serve a fairly homogeneous population.
On one hand, this produces a clean exploration of theoretical predictions, using grade
level as a proxy for race, so that learning costs and market institutions systematically
differ, but all else is held fixed. On the other hand, this proxy is obviously imperfect. As
Figure 9 illustrates, it likely understates the competitive difference in math proficiency
between blacks and whites vying for actual college seats. The graph compares the dif-

ference between black and white 8th grade NAEP quantiles—expressed in standardized

NAEP score units (dashed line)—to the difference in 7th and 8th grade quantiles from
our sample—expressed in standardized AMC8 score units (solid line). At most NAEP
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Figure 9. GRADE-LEVEL DIFFERENCES VS BLACK/WHITE DIFFERENCES
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(A) This figure first standardizes AMC8 and NAEP exam scores by subtracting the mean
and dividing by the standard deviation for the relevant sample population. Then, the dis-
tribution of standardized test scores for each sub-sample–i.e., AMC8 7th grade, AMC8 8th

grade, NAEP 8th grade whites, and NAEP 8th grade blacks–is approximated by a normal
distribution, which appears to fit the data quite well. The resulting quantile functions are
subtracted from each other in order to illustrate relative disparities between groups.

quantiles, black 8th graders trail their white counterparts by about 0.85 standard de-
viations, whereas the gap among our test subjects is closer to 0.5 standard deviations.
Another way to interpret the figure is that wherever the dashed line lay above the solid
line indicates that the corresponding quantiles of American Blacks are more than one full
grade level behind their white, 8th Grade counterparts.

This picture suggests real world discouragement effects minorities face in the com-
petitive college market may be even larger than those found in our experimental study,
opening the possibility that AA may have a larger impact. On the other hand, our homo-
geneous subject pool does not account for important differences in home environments,
school quality, or cultural factors which may push the results in other, less predictable
directions. Certainly though, in order to understand how and why a policy works, it is
important to cleanly understand the incentive dimension in addition to other sociocul-
tural factors. The results here demonstrate that AA can be used as an effective tool to
improve performance incentives and promote investment activity among systematically
disadvantaged populations.

The second major limitation in the current analysis is that, although it creates a set
of incentives which mirror human capital competition in key ways, due to feasibility
constraints said incentives are only engineered on a small scale and measured over a
short-run horizon. We tracked our students over a period of 10-days during which they
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were given the opportunity to invest leisure time into their math proficiency. For stu-
dents in our sample who logged positive amounts of study time, their average expected
wage was $10.73/hour, measured as total combined earnings divided by total observed
time spent studying on the website, across all students. Junior high and high school stu-
dents preparing for college optimize labor-leisure division over a much longer horizon
(4-5 years until college applications are due), with much larger payoffs that come far in
the future.23 The question of quantifying incentives running up to the US college mar-
ket is complex and involves many factors, including time preferences, cost of a college
education, and many other things that vary widely across individuals. However, we pro-
vide some rough calculations here to get a basic sense of how the expected hourly wage
within our experiment might compare to the effective hourly wage for a high school stu-
dent studying for college. To do so we calibrate payoffs using market aggregate figures
taken from various sources.

Bodoh-Creed and Hickman [2016] use data from the Current Population Survey (CPS)
from 2003 to calibrate the average net present value (NPV) of lifetime, post-college-age,
personal income for workforce participants with different levels of education. They sep-
arate income by age for individuals 23–65 and take averages within each age-education
group, to get Ia,e, a ∈ {23, . . . , 65}, e ∈ {cg, sc, hsg}, where cg denotes a college graduate
(with no additional, advanced degrees), sc denotes a high-school graduate who enrolled
in college but did not graduate, and hsg denotes a high-school graduate with no col-
lege experience. They then assume various values of the annual time discount factor,

δ, and compute NPV18
e = ∑65

a=23 δ(a−23+5) Ia,e, where discounting begins 5 years into the
future so as to capture the perspective of a recent high-school graduate, at 18 years of

age, who is considering going to college for four years.24 We use their numbers as a
rough estimate of the average gross payoff to the three education options. As for costs,
the College Board estimated that the average cost of attendance during the 2002-2003
academic year was $28, 090 at four-year, private, non-profit universities and $12, 376 at
four-year publics, which we denote by AnnualCOA. We shall assume that these same

23A large literature has focused on the wage return to higher college quality, including Stacy Berg Dale
and Alan B. Krueger [2002], Dan A. Black and Jeffrey A. Smith [2006], and Long [2008]. Although there
is some disagreement as to the magnitude for all students, there is broad consensus that the return to
attending higher quality colleges is economically significant for poor students.

24Bodoh-Creed and Hickman [2016] omit the comparison during college years as it is unclear what
the appropriate comparison would be. College attendees forgo 4 years of labor force income, but most
also remain their parents’ dependents until graduation, meaning their consumption during college to
some degree is still a function of their parents’ income. It is also unclear the extent to which recent high
school graduates who do not attend college still derive consumption from their parents’ income stream.
Therefore Bodoh-Creed and Hickman [2016] assume that by age 23 individuals of all education levels
become independent adults.
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costs prevailed over all four previous years of study.25 The National Center for Educa-
tion Statistics reports the 6-year college graduation rate, which we denote by GradRate,
for the entering class of 1996 (i.e., all those who had graduated by AY2002-2003) as 0.631

for private universities, and 0.517 for publics.26 We shall assume that college dropouts
incur 2 years of college attendance cost before dropping out.

In order to estimate how many hours, on average, high school students devote to
academics, we turn to the Schools and Staffing Survey (SASS), published by the National
Center for Education Statistics. SASS reports that in 2003 the average number of hours
in the school day for American K-12 schools was 6.6, and that the average number of
school days in their academic year was 178.7. If we assume that each school day is
coupled with 3.5 hours of homework for high schoolers, then this gives us a measure

of HSHoursWorked = 4× 178.7× (6.6 + 3.5) = 7, 219.48.27 If we double the number
of daily homework hours to 7 then this number rises by a third. Finally, we put these
various measures together for a rough measure of how 18-year-old college enrollees are
compensated for the time they invested into learning during 4 years of high school:

HSHourlyWage=
[

GradRate×(NPV18
cg −∑4

t=1 δt AnnualCOA)

+(1−GradRate)×(NPV18
sc −∑2

t=1 δt AnnualCOA)−NPV18
hs

]/
HSHoursWorked

(8)

Intuitively, the numerator is a measure of the lump-sum transfer an average college-
bound high school graduate would need in order to forgo college, and the denominator
normalizes this transfer by the number of total hours spent preparing for college. Since
this number will vary by assumptions of discount factor, college option (i.e., public vs.
private), and daily homework time inputs, Table 7 presents various hourly wage calcula-
tions covering several different scenarios. A commonly assumed annual discount factor
in the macroeconomics literature is δ = 0.96, and a student with these time preferences
who studies 3.5 hours per school day will garner an effective return of $33.72 per hour if
she attends a private university, and $34.90 per hour if she attends a public. Depending
on the various assumptions, this number could range from $10 and $55 per hour.

25This is a conservative assumption, given that education costs were steadily on the rise during this
period. The cost of attendance number includes tuition, fees, room and board, books/supplies, trans-
portation, and other living expenses. Figures taken from Table 1 of report Trends in College Pricing, down-
loaded at http://www.collegeboard.com/prod_downloads/press/cost03/cb_trends_pricing_2003.pdf on
April 29, 2016.

26Numbers taken from The Digest of Education Statistics, downloaded from
https://nces.ed.gov/programs/digest/d13/tables/dt13_326.10.asp on April 29, 2016.

27Figures downloaded from SASS reports at https://nces.ed.gov/surveys/sass/tables/sass0708_045_s1n.asp
and https://nces.ed.gov/surveys/sass/tables/sass0708_046_d1n.asp on April 29, 2016.

http://www.collegeboard.com/prod_downloads/press/cost03/cb_trends_pricing_2003.pdf
https://nces.ed.gov/programs/digest/d13/tables/dt13_326.10.asp
https://nces.ed.gov/surveys/sass/tables/sass0708_045_s1n.asp
https://nces.ed.gov/surveys/sass/tables/sass0708_046_d1n.asp
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Table 7. Projections of Effective Hourly Wage for College-Bound High Schoolers

PUBLIC COLLEGE PRIVATE COLLEGE
HS Homework Hours HS Homework Hours

3.5/school day 7/school day 3.5/school day 7/school day

A
N

N
U

A
L

D
IS

C
O

U
N

T

FA
C

T
O

R

β = 0.92 $16.99 $12.62 $13.77 $10.23

β = 0.96 $34.90 $25.92 $33.72 $25.04

β = 0.98 $54.10 $40.18 $55.10 $40.92

At the end of the day, the rough calculations in Table 7 cannot speak directly to the
question of how much AA changes expected economic outcomes from competitive hu-
man capital investment, and how these changes interact with individual ability and
forward-looking behavior. How these various forces balance out in the long run is a
challenging question that deserves additional attention from researchers. Answering this
question directly using experimental methods would would require an ability to track
time use decisions and exogenously shifting market incentives over a period of years
or even decades. However, the numbers above suggest that our experimental incentives
may not be entirely un-representative of the magnitudes of incentives that high-school
students face on a regular basis when making decisions about leisure-study tradeoffs.
Moreover, our experimental results at least inform us that students who are about to
enter high school are capable of the kind of complex optimization that would imply AA
having a nontrivial, positive impact on minority human capital, and narrowing achieve-
ment gaps. In that sense, we believe that our short-run evidence, while suggestive in
nature, provides an important step toward a more complete picture of the role of AA in
American higher education.

6.2. CONCLUSION. We designed a field experiment in which middle school and ju-
nior high students compete for heterogeneous cash prizes and are paid by their relative
performance on a nationwide math exam. Our experimental design is intended to give
insight into students’ pre-college human capital investment followed by the college ad-
missions market; namely, voluntary labor-leisure decisions, mathematics learning, and
affirmative action. Within this context, the rank-order prize allocation rule approximated
either a color-blind system, or a representative quota AA policy. We tracked student
study effort during a 10-day investment period prior to the final exam. Although our
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experiment involves relatively low-value prizes and a relatively low-stakes exam, we still
find sizable and significant effects of AA on motivation and learning.

Our results are clearly suggestive that students adjust their labor supply in response
to AA considerations. Although some of this effect may come through changes in effort
or focus on the day of the exam, we also find evidence that the disadvantaged students
are more likely to study for the exam under AA. To the extent that our experiment is
informative about American university admissions, the findings suggest two things: (i)
that AA may improve a minority student’s real effort to build human capital in prepa-
ration for college, and (ii) that it can actually narrow achievement gaps while promoting
diversity in higher education.
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7. APPENDIX

7.1. THEORETICAL PROOFS APPENDIX.

7.1.1. Proof of Theorem 1. The result of the theorem follows from Bodoh-Creed and
Hickman [2016, Theorems 3 and 4], which establish a claim that is both broader (it
allows for shifts in FS as well) and holds under a more general set of conditions. Because
of this their proof is quite complicated, so for completeness we provide a proof for the
simplified version of the model from Section 3. For the reader’s convenience Theorem 1
is restated below:
Theorem 1: Consider two color blind contests, 1 and 2, which differ only by their cost distribu-
tions, and assume competition is more fierce under contest 2 in the sense that F1 LR dominates

F2. Let θ̃ ∈ (θ, θ) denote the unique crossing point of the density functions where f1(θ̃) = f2(θ̃).
There exists a unique interior crossing point θ̈ ∈ (θ, θ̃), such that h∗1(θ) < h∗2(θ) for all θ < θ̈

and h∗1(θ) > h∗2(θ) for all θ > θ̈.

Proof: As mentioned above, the LR dominance property implies first-order stochastic
dominance. Therefore, not only do the densities have a unique crossing point, but it

must also be true that f1(θ) > f2(θ) for θ > θ̃, and f1(θ) < f2(θ) for θ < θ̃. Since the

same boundary condition applies to both contests, h∗1(θ) = h∗2(θ) = h, then equation (5)
implies the initial trajectories at the boundary point are ordered in the following way:

h∗′1 (θ) =
− f1(θ)

c′(h; θ)
<
− f2(θ)

c′(h; θ)
= h∗′2 (θ). (A.1)

This in turn means that h∗1(θ) > h∗2(θ) within a neighborhood of θ since the investment
functions are continuous and everywhere differentiable. Note that because slopes are
negative h∗′1 (θ) < h∗′2 (θ) means h∗1 , rises in the leftward direction and is more steep at θ.

Now suppose there exists at least one point where h∗1 and h∗2 cross, and let θ̈ ∈ (θ, θ)

denote the maximum of all such possible points, with ḧ ≡ h∗1(θ̈) = h∗2(θ̈), if any exist.

Since h∗1 crosses h∗2 from above at θ̈, it must be that h∗′1 (θ̈) ≥ h∗′2 (θ̈) (i.e., h∗1 is less steep

at the crossing point). However, since f1(θ) > f2(θ) on (θ̃, θ] by LR dominance, and
since h < h′ implies c′(h′; θ) ≥ c′(h; θ) by convexity, the following must be true for any

θ ∈ (θ̃, θ):

h∗′1 (θ) =
− f1(θ)

c′
[
h∗1(θ); θ

] < − f2(θ)

c′
[
h∗2(θ); θ

] = h∗′2 (θ) ⇒ h∗1(θ) > h∗2(θ). (A.2)

Therefore, θ̈ < θ̃, if such a point exists. Similarly, since f1(θ) < f2(θ) on [θ, θ̃), then any

crossing point would have to obey h∗′1 (θ̈) = − f1(θ̈)/c′(ḧ; θ̈) > − f2(θ̈)/c′(ḧ; θ̈) = h∗′2 (θ̈).
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This means that h∗1 can only cross h∗2 from above (i.e., at points where it is less steep) and
so there can be at most one such crossing.

Finally, to see why a crossing point must exist, suppose for a contradiction that for all

θ ∈ (θ, θ) we have h∗1(θ) > h∗2(θ). In that case, it follows that

h∗1 (θ) =
∫ θ

θ

1
c′
[
h∗1(u); u

] f1(u)du + h

<
∫ θ

θ

1
c′
[
h∗1(u); u

] f2(u)du + h

≤
∫ θ

θ

1
c′
[
h∗2(u); u

] f2(u)du + h = h∗2 (θ) , →← .

The strict inequality follows because the first and second line depict expectations over
the decreasing function 1/c′ [h∗1(u); u] and f2 places more weight on strictly higher values
of u (or lower values of the function). The weak inequality follows from the supposition
and from c being convex and having a positive cross-partial derivative. Thus we have a

contradiction, so a unique crossing θ̈ exists on the open interval (θ, θ̃) and the theorem
is proved. �

7.2. THEORY EXTENSION: INTRINSICALLY VALUED HC. In the body of the paper,
we assume that students only indirectly benefit from their HC accumulation. Here, we
consider an extension to the model where h is intrinsically valued to the student, and not
just a means of securing a high-quality seat assignment. Naturally, with a more flexible
model comparative statics become more difficult to prove. Therefore, we explore some

simple examples based on a Cobb-Douglas utility form u(s, h) = sαhβ, in order to argue
that the qualitative model predictions explored in Section 3 are non-pathological.

7.2.1. Example 1: Linear Utility. If α = β = 1 and costs are linear so that u(s, h) = sh,

c(h; θ) = θ(h− h), and [θ, θ] ⊂ (1, ∞), then proving statements analogous to Theorem 1,

Corollary 2, and Corollary 3 is relatively straightforward.28 In this scenario, under CB
student i’s objective is now

max
hi≥h
{hi (1− F [θ∗(hi)])− θi(hi − h)} . (A.3)

Taking an FOC, we get −hi f
[
θ∗i (hi)

]
θ∗′(hi)+ (1− F [θ∗(hi)]) = θi. In this world, student

i can be thought to choose HC production in two parts. First, she raises investment to
the level where she optimally benefits from complementarity of her own input hi and

28The assumption of [θ, θ] ⊂ (1, ∞) is required because the gross utility and cost function are both
linear in h. Since the direct marginal benefit of more human capital is u2(s, h) = s and the direct marginal
cost is θ, we must have θ > s, in order to rationalize all students choosing finite HC production.
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the university’s input s; this calculation involves the direct marginal benefit of a unit of
HC, or (1− F [θ∗(hi)]), and Bodoh-Creed and Hickman [2016] refer to it as the productive
channel of incentives. Above that base level of investment, competitive incentives play
an additional role: in a monotone equilibrium i invests further so as to make her higher-
cost competitors prefer not to try and jump her. This calculation involves the indirect
placement benefit of more HC, or −hi f

[
θ∗i (hi)

]
θ∗′(hi), and it produces a tendency for

over-investment which is referred to as the competitive channel of incentives.
If we now define η(θ) ≡ log (h∗(θ)) then through a similar change of variables as

before we can rearrange the FOC to get a differential equation

η′(θi) = −
f (θi)

θi + F(θi)− 1
, with boundary condition η(θ) = log(h). (A.4)

Once again, η is strictly decreasing in θ and we can now prove the analog of Theorem 1
above:

Theorem 4. Assume HC production costs and gross utility are linear in h, so that c(h; θ) =

θ(h− h), and u(s, h) = sh. Moreover, consider two cost distributions, F1(θ) and F2(θ), where

competition is more intense under F2 in the sense that F1 LR dominates F2 (i.e., the ratio f1(θ)
f2(θ)

is

strictly increasing). Then, letting θ̃ denote the unique crossing point of f1 and f2, there exists a

unique interior crossing point θ̈ ∈ (θ, θ̃) such that h∗1(θ) < h∗2(θ) for θ < θ̈ and h∗1(θ) > h∗2(θ)

for θ > θ̈.

Proof: Recall that strict LR dominance implies f1(θ) ≥ f2(θ) and F1(θ) < F2(θ), for

θ ∈ [θ̃, θ). This with η1(θ) = η2(θ) and equation (A.4) together mean that η′1(θ) < η′2(θ)

and η1(θ) > η2(θ), for each θ ∈ [θ̃, θ). Thus, if η1 and η2 cross, the crossing must be on

the interval [θ, θ̃).

Now, equation (A.4) can be expressed in integral form by ηj(θ) =
∫ θ

θ

f j(x)
x+Fj(x)−1 dx +

log(h), j = 1, 2. Moreover, if we impose a change of variables y = Fj(θ) within the
integral, we get

η1(θ) =
∫ 1

0

1
F−1

1 (y) + y− 1
dy + log(h) <

∫ 1

0

1
F−1

2 (y) + y− 1
dy + log(h) = η2(θ),

where the inequality follows from LR dominance. Therefore, by continuity at least one

crossing point exists on the open interval (θ, θ̃). Let θ̈ denote the maximum point at

which η1(θ̈) = η2(θ̈), and note that since the two functions are negatively sloped and η1

crosses η2 from above (moving in the leftward direction) at θ̈, the following must be true
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when θ = θ̈:

η′1(θ) =−
f1(θ)

θ + F1(θ)− 1
> − f2(θ)

θ + F2(θ)− 1
= η′2(θ)

⇔ f1(θ) [θ + F2(θ)− 1] < f2(θ) [θ + F1(θ)− 1]
(A.5)

Now consider approaching θ from above, beginning at θ̈ and once again moving left-

ward. Since θ̈ is to the left of the density crossing θ̃, then by the LR dominance property,

we know that if we begin at θ̈ and approach θ from above, then f2(θ) becomes steadily
larger relative to f1(θ) as we move leftward. This also implies that [θ + F1(θ)− 1] be-
comes steadily larger relative to [θ + F2(θ)− 1] in the leftward direction (beginning from

θ̈) as well.29 Therefore, the ordering between the right-hand and left-hand sides of in-

equality A.5 only becomes more pronounced as we move leftward from θ̈. From this

fact it follows that η′1(θ) > η′2(θ) for each θ ∈ [θ, θ̈], and the crossing point θ̈ is therefore
unique. �

We can build on the above result to prove comparative statics for different seat alloca-
tion rules just as we did before. Corollary 5 and Corollary 6 below build on Theorem 4
in precisely the same way that Corrolary 2 and Corollary 3 build on Theorem 1 above. In
particular, Corollary 6 follows naturally from the proof of Theorem 4: we now know that

η′D(θ) < η′(θ) < η′A(θ) for each θ ∈ [θ̃, θ], and since the log transformation preserves
ordering, it follows that h∗′D(θ) < h∗′(θ) < h∗′A(θ) on that same interval as well. This also
produces a slight strengthening of the result since the derivatives are strictly ordered at

the density crossing θ̃. Together, the final two results demonstrate that the model still
predicts a large fraction of the disadvantaged group increasing investment under RQ:

Corollary 5. Let HC production costs and gross utility be linear in h, so that c(h; θ) = θ(h− h),

and u(s, h) = sh. Moreover, assume FD LR dominates FA and let θ̃ ∈ (θ, θ) denote the unique
crossing of the cost densities where f (θ̃) = fA(θ̃) = fD(θ̃). Then there exist crossing points
θ̈A, θ̈D ∈ (θ, θ̃), such that

(i) h∗D(θ) < h∗(θ) for all θ < θ̈D and h∗D(θ) > h∗(θ) for all θ > θ̈D, and

(ii) h∗A(θ) > h∗(θ) for all θ < θ̈A and h∗A(θ) < h∗(θ) for all θ > θ̈A.

Corollary 6. Assume the same conditions as in Corollary 5. Then under the RQ policy (rel-
ative to the CB policy), typical disadvantaged students—that is, group D students with costs
θ ∈

{
(θ̈D, θ̃] ∪ TD

}
—exert higher effort and accumulate more HC. Moreover, if we define

∆ : (θ̈D, θ̃] ∪ TD → R as the difference on this set between group D investment under RQ

29To see why, recall that F1(θ) = F2(θ) = 0 and f1(θ) < f2(θ) for each θ < θ̃. Thus, F2 becomes steadily
larger relative to F1 when moving in the rightward direction from θ to θ̈, which is the same as saying that
F1 becomes steadily larger relative to F2 when moving in the leftward direction from θ̈.
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Figure 10. NUMERICAL EXAMPLES:
Cost Densities

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

2

2.5

θ

P
D

F
s

 

 

f
D

(θ)

f(θ)
f
A

(θ)

Figure 11. NUMERICAL EXAMPLES:
Investment, CB vs AA
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versus CB, or ∆(θ) ≡
(
h∗D(θ)− h∗(θ)

)
, then ∆(θ) is strictly positive and attains a maximum

on the interval (θ̈D, θ̃).

7.2.2. Example 2: Curved Utility. Proving qualitative predictions for the entire Cobb-
Douglas utility family is more difficult, so in this section we present some simple nu-
merical examples to further illustrate the model. ΘD and ΘA once again follow normal

distributions truncated to a common support [θ, θ] = [1, 2]. They both have the same
variance parameter, σA = σD = 0.25, but different mean parameters, µA = 1.1 and
µD = 1.5, which ensures LR dominance (see Figure 10). The group D mass is δ = 0.5.

We numerically solve for equilibria in two examples. In the first (Example 2), HC
factors relatively heavily into match utility, with α = 0.15 and β = 0.75. In the sec-
ond (Example 3), students care less about their own HC and more about the quality
of the institution they attend, with α = 0.75 and β = 0.15. Equilibrium outcomes are
summarized in figure 11.
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The patterns arising from these examples are similar to predictions under the linear
model. There continues to exist a single crossing point between the investment functions
of the two groups under AA vs. CB. Under AA, the highest ability disadvantaged
students and the lower ability advantaged students decrease HC investment, while the
lower ability disadvantaged students and the higher ability advantaged students increase
HC investment. In both examples average investment in group D rises; for group A it
rises in Example 2 and falls in example 3.



AFFIRMATIVE ACTION AND HUMAN CAPITAL INVESTMENT 1

8. ONLINE APPENDIX TO ACCOMPANY
Affirmative Action and Human Capital Investment: Theory and Evidence from a Randomized

Field Experiment,
by CHRISTOPHER COTTON, BRENT R. HICKMAN, and JOSEPH P. PRICE

8.1. TIME TRUNCATION RULE. Time on our website was measured at the page level
for each attempt of a quiz by each student. Pages contain blocks of either 3, 4, or 5
questions, so we divided each block-level time observation by the number of questions
in order to get a measure of time spent per question. One difficulty arose in that there
were a small number of clear instances where students left the website in the middle of a
quiz for several hours or more. For example, the largest recorded time spent on a single
question was 2,801 minutes, or roughly 47 hours. In order to correct this problem, a small
number of implausibly large time observations needed to be corrected. After selecting a
truncation point on the time-per-question domain, we replaced each observation above
that point with the student-specific censored mean of time per question. For example,
suppose that Tommy attempted 11 questions with observed times of 5 minutes for the
first five, 15 minutes for the next five, and 300 minutes for the last, and suppose that
the truncation point were 30 minutes per question. Then the eleventh observation of 300
minutes is replaced by Tommy’s idiosyncratic censored mean of 10 minutes.

In order to select an appropriate truncation point we looked for occurrences of “holes”
in the support of the distribution of times per question, or in other words, points at
which a full support condition fails. We began with a natural assumption on the student
type distribution that there are no interval subsets of the support where the type density
assigns zero mass to the entire interval. If this condition holds, then since time spent on a
question is a continuous choice related to one’s type, that distribution should also have
full support too. That is, unless some observations reflect a different data generating
process, say time elapsed outside of learning activity due to work stoppages. Thus, a
straightforward way to search for spurious time observations is to sort the data and
look for points at which a kernel smoothed density estimate (KDE) equals zero for some
interval of positive length. This idea gives rise to the following data-driven algorithm
for selecting a truncation point:

(1) Sort all time observations from least to greatest, so that the jth and (j + 1)st obser-
vations are ordered by tj ≤ tj+1 for all j = 1, . . . , J.
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(2) Using the sample {tj}J
j=1, compute an appropriately chosen bandwidth b1 for a

KDE based on a kernel function with support on [−1, 1].30 Then find the smallest
j∗1 < J such that tj∗1+1 − tj∗1 > 2b1. If no such j∗1 exists, then stop; no truncation is

needed.
(3) Define initial truncation point τ1 ≡ tj∗1 + b1, and compute bandwidth b2 for the

KDE based on the censored sample {tj}
j∗1
j=1.

(4) In each subsequent iteration k = 2, 3, . . ., if there exists j∗k defined by

j∗k ≡ min{j : tj+1 − tj > 2bk; j < j∗k−1},

then update the truncation point by τk ≡ tj∗k
+ bk, and re-compute bandwidth bk+1

for the KDE based on the censored sample {tj}
j∗k
j=1.

(5) Stop once k is found such that j∗k+1 does not exist (meaning that for the censored

sample {tj}
j∗k
j=1 a KDE is strictly positive everywhere).

We chose a KDE based on the Epanechnikov kernel, which is known to be marginally
more efficient than other kernel functions. This choice, in combination with Silverman’s
automatic bandwidth selection rule, implies a bandwidth formula of b1 = 2.345σ̂1 J−1/5

in the first iteration, and bk = 2.345σ̂k j∗−1/5
k−1 in the kth iteration (k ≥ 2), where σ̂k is

the sample standard deviation within the kth iteration. Notice that the algorithm does
not actually require computation of a KDE at each iteration, only a bandwidth, though
choice of the specific kernel is needed to pin down the leading constant on the bandwidth
selection rule.

Executing this process on our data leads to a final truncation point of τ2 = 27.81

minutes per question (the 99.35th percentile of the un-censored sample), after 2 iterations.
Figure 12 displays a histogram of time spent per question, including observations above
and below the truncation point. Time units are depicted in logs rather than levels for
ease of visualization since the largest and smallest observations differ by several orders
of magnitude.

8.2. ADDITIONAL FIGURES. Here we present some additional figures depicting the
empirical distributions of investment activities by group and treatement status. In in-
terpreting these figures, one caveat should be kept in mind. Corollary 2 only directly
applies to the plots in Figures 5 – 6, since these depict CDFs of exam scores, the variable
being directly incentivized within the experimental study. Thus, theory predicts that

30Actually, the only crucial condition here is that the kernel function have bounded support. For
example, in this context a Gaussian kernel would not do, as it places positive mass on the entire real line
for any dataset. This would be equivalent to assuming full support ex ante.
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Figure 12. TIME TRUNCATION RULE
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(A) This panel displays a histogram of observed time spent on each question. Each datum
in the histogram is a student-question-attempt observation.
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(B) This panel displays a histogram of time per instructional page view. Each datum in
the histogram is a student-quiz-attempt observation.

those plots should qualitatively resemble the patterns in Figure 3. It has nothing directly
to say about other intermediate variables such as time spent on the website, or number
of questions attempted, as these may combine in different ways for different agents to
produce exam scores. However, for illustrative purposes, we present additional CDF
plots in Figures 13 – 14 here.

8.3. ROBUSTNESS CHECKS.
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Figure 13. TIME SPENT:
CB vs. RQ
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8.3.1. Testing Average Differences. Table 5 above tested for average treatment differences

8.3.2. Selective Attrition. Figures 15 – 18 illustrate a robustness check on our quantile
function estimator, when we attempt to adjust for selective attrition. The upper panels in
Figures 15 and 16 plot the empirical CDFs of pre-test scores, restricted to the subsample
of students who took the final exam as well. The bottom panels re-produce the CDFs of
final exam scores for comparison. From these figures it appears that selective attrition
may be working slightly against finding our results in general. Figures 17 and 18 are
an attempt at adjusting our quantile function estimator for the possible influence of
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Figure 14. QUESTION ATTEMPTS:
CB vs. RQ
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selective attrition. To do so, we once again, restrict ourselves only to the sample of test
subjects who took the final exam, and we convert all pre-test and final exam scores into
standardized units by dividing by the within-exam standard deviation. Then, for point
estimates and all bootstrapped estimates, we compute the quantile difference function

using both the pre-test sample, ∆̂pre
j (q), j = A,D, and final exam sample, ∆̂ f inal

j (q), j =

A,D. Then, we compute an adjusted quantile difference function estimate by taking the
difference

∆̂ f inal
j (q)− ∆̂pre

j (q), (B.1)
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Table 8. (RE-)TESTING DIFFS BY DEMOGRAPHICS AND TREATMENT

Investment Performance

Used # Subjects Total # Questions Final Exam
Website Attempted Time Attempted Exam Score Score Change

Constant (β̂0) 0.065*** 0.131** 2.749 1.154 7.848*** 0.096
Std. Err. (0.024) (0.059) (1.966) (0.736) (0.229) (0.239)

Quota (β̂1) 0.089*** 0.149* 5.584** 1.350 0.654** 0.591*
Std. Err. (0.033) (0.083) (2.756) (1.031) (0.316) (0.330)
P-Value: [0.008] [0.072] [0.043] [0.191] [0.039] [0.074]

Advantaged ∗Quota (β̂2) -0.050 -0.116 -5.153 -0.933 -0.874** -0.546
Std. Err. (0.042) (0.105) (3.505) (1.311) (0.397) (0.415)

Advantaged (β̂3) 0.042 0.104 2.096 1.151 1.145*** -0.324
Std. Err. (0.030) (0.075) (2.509) (0.939) (0.288) 0.300

School Fixed Effects yes yes yes yes yes yes

N 992 992 992 992 895 895

Additional Test: Effect of Quota on Advantaged Group

β̂1 + β̂2 0.038 0.033 0.431 0.417 -0.221 0.045
P-Value: [0.139] [0.611] [0.842] [0.607] [0.359] [0.857]

Notes: Each column is a separate regression. Advantaged is an indicator variable for whether the student
is a 6th or 8th grader (the older group in each school type). Standard errors are in parentheses. Estimates
under each of the four effort variables are intended to capture the effect of a treatment on human capital
investment for the total study population, and are therefore averaged over both investors and
non-investors.

in order to remove any possible pre-existing difference there may have been within the
sample of non-attriters. The results produce plots that look very similar to those in the
body of the paper, from which we conclude that selective attrition does not appear to be
driving our results.
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Figure 15. 7th GRADE BY TREATMENT:
Pre-Test vs. Final Exam
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Figure 16. 8th GRADE BY TREATMENT:
Pre-Test vs. Final Exam
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Figure 17. 7th GRADE QUANTILE FUNCTION DIFFERENCE, AD-
JUSTED FOR ATTRITION
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Figure 18. 8th GRADE QUANTILE FUNCTION DIFFERENCE, AD-
JUSTED FOR ATTRITION
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∆A(q) (point estimate)
5% CONFIDENCE BOUNDS
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H+
a : ∆A(q) > 0

H−

a : ∆A(q) < 0
10% LINE
5% LINE
1% LINE


