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Abstract

This paper develops a statistical model for measuring spatial interactions when
estimating macroeconomic regimes and regime shifts. The model is applied to study
the contagion and propagation of recessions in small regional economies in the United
States from 1990 to 2015. The empirical analysis identifies two geographical concentra-
tions (or clusters) where small regional economies were affected by recessions in similar
ways. These clusters are interpreted as groups of regions that are potentially at-risk
to collective economic distress, which is useful for national and regional policy makers.
The first identified cluster is characterized by regional economies with important roles
in the financial sector, while the second cluster is characterized by the oil and gas
extraction sector. The empirical findings uncover an important propagation dynamic
that would be overlooked if one were to apply the model without the spatial extension
developed in this paper. Specifically, the evidence shows significant spatial spillovers
between small regional economies, meaning that shocks to regions are expected to be
higher, when shocks to neighboring regions are high on average. The magnitude of this
effect is amplified for the period spanning and following the Great Recession.
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1 Introduction

This paper delivers two contributions. The first contribution is to econometric methods.

A new statistical model is developed that is capable of estimating spatial interactions in a

class of regime-switching models. The second contribution is to empirical macroeconomics.

The developed model is used to study the contagion and propagation of recessions in small

regional economies in the United States, namely the 177 contiguous economic areas clas-

sified by the Bureau of Economic Analysis (BEA)1. Investigating small geographical units

is motivated by the view that larger regions such as states, may not provide sufficient geo-

graphical detail to identify regional contractions in the economy2. The proposed model has

a broad range of potential applications, including, but not limited to, studying bankrupt-

cies, credit, trade, housing, financial markets, urbanization and political topics like electoral

support.

To the best knowledge of the author, this is the first paper to analyze regional business

cycles in small regional economies in the United States using a multivariate regime-switching

model, and the first to allow for explicit modeling of spatial interactions when dealing with

common Markov-switching components.

The empirical results characterize several geographical concentrations of regions that

have been impacted by recessions in similar ways, in addition to economic downturns that

were spread nationwide. The composition of these concentrations is studied to understand

the influence of region-specific characteristics and observed employment growth patterns
1BEA economic areas are generally smaller in size than individual States and they can cross state bor-

ders. They are defined by mutually exclusive groups of counties that constitute relevant regional markets
surrounding metropolitan or micropolitan statistical areas in the United States. United States metropolitan
and micropolitan statistical areas are defined by the United States Office of Management and Budget (OMB).
A metropolitan statistical area is defined as one or more adjacent counties or county equivalents that have
at least one urban core area of at least 50,000 population, plus adjacent territory that has a high degree of
social and economic integration with the core as measured by commuting ties. A micropolitan statistical
area is an urban area in the United States centered on an urban cluster (urban area) with a population at
least 10,000 but less than 50,000.

2This is empirically supported by simply comparing observed employment growth patterns between states
and smaller regions.
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that determine their geography. Furthermore, the findings strongly support the need to

explicitly account for spatial correlation between geographical units and the evidence shows

significant degrees of spatial spillovers between regions in the United States for the period

1990–2015.

The evidence presented in this paper provides a unified analysis of two types of eco-

nomic phenomena that have received substantial attention in the empirical macroeconomics

literature on regional business cycles. The first phenomenon is that all regions in the ag-

gregate economy are connected, which motivates the belief that there exist spatial spillovers

(or interactions) between regions in the economy - see Artis et al. (2011), Fogli et al. (2015)

and Beraja et al. (2016). Notably, the work of Beraja et al. (2016) provides evidence that

particular regional patterns (e.g. regional business cycle fluctuations) contain important un-

derlying connections with the aggregate business cycle. The second phenomenon has to do

with the synchronicities (i.e. co-movements) in regional business cycle behavior, which can

be captured through large geographical concentrations (or clusters) of regions that exhibit

co-movements over the business cycle - see Crone (2005), Partridge and Rickman (2005),

van Dijk et al. (2007) and Hamilton and Owyang (2012).

The methodological contribution of this paper is to explicitly model spatial interactions

between regional shocks within a specific category of statistical models, namely regime-

switching (or Markov-switching) models. The proposed model is an extension of the recently

developed regime-switching model of Hamilton and Owyang (2012). The extended version

of this model retains the many attractive properties of the original model. Specifically, the

model is capable of endogenously identifying groupings (or clusters) of regions that exhibit

similar business cycle characteristics. Regime-switching models were first shown to be a

flexible methodology for empirical business cycle analysis in the work of Hamilton (1994,

1989). Henceforth, the proposed model will be referred to as the spatial model and the

original model will be referred to as the restricted model, given that the original model will
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be nested in the spatial specification.

Typically multivariate models focus on either large regional divisions such as the eight

BEA regions – Kouparitsas (1999) and Crone (2005) – or the 50 US states and 48 lower US

states; Forni and Reichlin (2001), Del Negro (2002), Partridge and Rickman (2005), Artis

et al. (2011) and Hamilton and Owyang (2012). When it comes to regime-switching models

of the type considered in Hamilton (1989, 1994), regional business cycle analysis has been

constrained to univariate models, which have been used to analyze both state-level and large

metropolitan statistical areas in the United States; see Owyang et al. (2005) and Owyang

et al. (2008), respectively. The regime-switching model of Hamilton and Owyang (2012) has

resolved the curse of dimensionality that arises when extending these types of models to

panel data. The empirical application considered by Hamilton and Owyang has shown that

common Markov-switching components provide valuable insights into regional co-movements

in the lower 48 states using state-level employment data for the period 1956–2007. Analyzing

small regional economies provides more geographical detail for capturing both the cyclical

and the spatial interdependencies between regions.

Popular alternatives to regime-switching models for this type of analysis are factor mod-

els and to a lesser extent structural vector autoregressive models. Where regime-switching

models capture the mechanism of dynamic change governing the transitions between busi-

ness cycle phases, factor models measure co-movement of many time series (regions) and are

designed to help identify business cycle turning points. Prominent examples of factor models

used for regional analysis are Forni and Reichlin (2001) and Del Negro (2002). Forni and

Reichlin (2001) look at the lower 48 states and counties, but assume that the local shock in

a region cannot affect other regions. In contrast, the model proposed in this paper explicitly

allows for this type of connection between regions. Del Negro (2002) also look at states, and

uses geographic proximity to impose model restrictions. Del Negro argues that this acts as

a proxy for regional productive structure and income levels in geographical units. This view
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motivates the spatial weighting structure considered in this paper’s empirical investigation.

An example of a structural vector autoregressive approach is the work of Thorsrud (2013),

which simultaneously analyzes global and regional business cycles.

Another advantage of the methodology applied in this paper is the way in which the

model can endogenously group (or define) regions. Specifically, the mechanism that groups

regions in the model does not restrict groups to be mutually exclusive. This is convenient

for characterizing regional economic downturns at different points in time. One can easily

imagine a scenario where a small regional economy may be part of a regional economic

downturn concentrated in one part of a country in a particular decade, and also part of

another regional contraction with a completely different geography in another decade. The

model’s mechanism that learns about regional synchronicities through time allows for such

occurrences. This mechanism allows for a multi-sector analysis of the economy by relying

on region-specific characteristics, for example, industrial composition, to supplement the

characterization of similarities and differences between regions.

Typically, empirical regional business cycle studies use exogenously defined regions,

e.g. Kouparitsas (1999) and Del Negro (2002), where either state borders or the eight BEA

regional divisions are used to define geographical units. Other studies have focused on

endogenously defining regions, e.g. Crone (2005), Partridge and Rickman (2005) and van

Dijk et al. (2007). Crone (2005) uses pattern recognition methodology of k-means cluster

analysis to the cyclical components of Stock-Watson-type coincident indices, estimated at

the state level, to group the 48 contiguous states into eight regions with similar cycles and

compare to the eight BEA regions. van Dijk et al. (2007) use a latent-class clustering

to identify co-movements between regions in the Netherlands. They use likelihood-based

information criteria to identify a total of two clusters in the Netherlands. Partridge and

Rickman (2005) present an alternative way of endogenously defining regions by analyzing co-

movements between US states with static bivariate correlations, but not their exact numerical
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correlation values.

More recently, spatial interaction models have received attention for business cycle

analysis. Artis et al. (2011) use a spatial ARMA model to examine business cycle conver-

gence for 41 Euro area regions and 48 US states. They find that including spatial effects

like spatial lag and spatial error components improves the fit of their model. Fogli et al.

(2015) use a spatial autoregressive lag model to analyze county level unemployment and

housing price data in the United States. They find that unemployment rates are spatially

dispersed and spatially correlated (estimated correlation between 0.63–0.83 over the Great

Recession). They refer to increasing spatial correlation as a clustering dynamic and focus

on different channels through which these characteristics change during recessions. Their ar-

gument is centered on local geographic factors being very important for aggregate business

cycle dynamics. These results will serve as benchmark comparisons for the estimated spatial

correlations in the empirical analysis of this paper.

The remainder of the paper is structured as follows. Section 2 describes the model and

its structure for characterizing regional business cycles, regional clusters and spatial depen-

dence. Section 3 describes the statistical inference and estimation of the model, including the

model selection procedure used for identifying the number of regional clusters. All aspects of

the original model that are affected by the spatial dependence specification are discussed in

this section. Section 4 discusses the data and spatial weighting structure considered in the

empirical investigation, including alternative measures. The empirical results are presented

and analyzed in Section 5 including a discussion of some policy implications using the re-

sults. Section 6 concludes. There are two appendices at the end of the paper. Appendix A

contains supplementary figures and tables. Appendix B contains supplementary details on

the statistical inference, estimation algorithms and derivations.
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2 Model

This section discusses the model in three parts. Section 2.1 motivates the use of Markov-

switching models to characterize regional business cycles and explains the model specification

of Hamilton and Owyang (2012). Section 2.2 describes the endogenous clustering mechanism.

Section 2.3 motivates and describes the extended model specification which introduces a

spatial dependence component into the existing model.

2.1 Characterizing regional business cycles

Suppose a researcher is interested in estimating a simple statistical model to understand

the cyclical behavior of a particular region’s economy. If the defining characteristic of a

business cycle is taken as the transition between distinct discrete phases of contraction and

expansion, then an appropriate starting point is the widely known and studied model of

Hamilton (1989, 1994), which is an autoregressive Markov-switching model that Hamilton

first used to characterize national recessions in the United States. The simplest version of

Hamilton’s model for business cycles is a model with only a Markov-switching mean,

yt = µ0 + µ1st + εt, εt ∼ N(0, σ2),

st =

1, if recession,
0, if expansion.

(1)

Model (1) postulates that only the recession state variable, st, explains yt, the variable that

fluctuates over the business cycle. This model is useful when analyzing national recessions

or regional recessions separately, and facilitates a regional analysis of one region at a time.

As shown in Owyang et al. (2005) and Owyang et al. (2008), this albeit basic model offers

a flexible framework for understanding the timing of transitions between phases of regional

contraction and expansion in comparison with the aggregate economy.

A more compelling approach to understanding regional business cycles is a statistical
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model that allows for both national and regional analysis, while accounting for multiple

regions. Furthermore, a desired property for the model is that the framework has the ability

to capture similarities between regions explicitly. A model for this purpose has recently been

introduced by Hamilton and Owyang (2012), who develop a framework for inferring common

Markov-switching components in a panel data model. The model they are initially interested

in is

yt = µ0 + µ1 � st + εt, εt ∼ N(0,Ω), (2)

where yt = (y1t, . . . , yNt)′ is a vector of employment growth rates for N regions at date

t, st = (s1t, . . . , sNt)′ is a vector of recession (contraction phase) indicators (snt = 1 when

region n is in recession and snt = 0 when region n is in expansion), and � is the Hadamard

(element-by-element) product. The nth element of the N × 1 vector µ0 + µ1 is the average

employment growth in region n during recession and the nth element of the N × 1 vector µ0

is the average employment growth in region n during expansion. The choice of the variable

that fluctuates over the business cycle is discussed in detail in Section 4.

2.2 Endogenous clustering

For the empirical application in Hamilton and Owyang (2012) which looks at the lower 48

US states, the model defined in (2) is intractable, since it requires η = 248 regimes to be

inferred from the T × N data set3, so the standard approach of Hamilton (1994) is not

feasible. To mitigate the curse of dimensionality, the model that Hamilton and Owyang

develop is an augmented version of the model in (2), which follows Frühwirth-Schnatter and

Kaufmann (2008) and assumes that a small number of clusters, K << η, capture business

cycle dynamics. This approach greatly reduces the state space dimension (the number of

regime-states to consider), and the mechanism of dynamic change governing the transitions

between regimes is now a K ×K dimensional transition probability matrix, P. The model
3The binary recession indicator snt for region n ∈ {1, 2, . . . , N} implies η = 2N distinct regimes.
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is written as

yt
∣∣∣
{zt=k}

= µ0 + µ1 � hk + εt, εt ∼ N(0,Ω), (3)

where zt is an aggregate indicator, zt ∈ {1, 2, . . . , K}, indicating which cluster of regions is in

recession at date t. Each cluster k, has an associated N × 1 state vector hk = (h1k . . . hNk)′,

where the nth element is unity when region n is associated with the cluster k, and is zero

otherwise. Conditional on h1,h2, . . . ,hK , the standard Markov-switching framework ap-

plies.

Following Hamilton and Owyang (2012)’s inference procedure for the configurations

of the cluster affiliation vectors h1,h2, . . . ,hK , two clusters are imposed a priori to capture

nationwide recessions and expansions. The nationwide expansion cluster is hK (a column

of zeros) where every region is in expansion when the aggregate indicator zt = K, and the

nationwide recession cluster is hK−1 (a column of ones), where every region is in recession

when the aggregate indicator is zt = K−1. This formulation allows the model to account for

instances where only a subset of the all regions experience economic downturns separately

from the rest of the nation, determined by clusters h1,h2, . . . ,hK−2 and economic downturns

that spread nationwide, determined by clusters hK−1,hK .

Whether region n belongs to cluster k when zt = k is determined by observed employ-

ment growth patterns and a group of regional-level covariates xn, which serve to identify

similarities between regions. The model first identifies the probability that region n belongs

to cluster k based only on the fixed regional covariates, computed from

Pr(hnk = 1|βk) = exp(x′nkβk)
1 + exp(x′nkβk)

. (4)

The model then updates this probability with observed regional employment growth patterns.

If the probability in (4) is low (high) for region n, but the updated probability is high (low),

then the observed employment growth patterns (regional characteristics) strongly designate
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this region to cluster k. The covariates used in the empirical investigation are discussed

in Section 4. As in Hamilton and Owyang (2012), it is assumed that the same covariates

influence each cluster, and that any given region is not restricted to belong to only one

cluster grouping. Supplementary details on the logistic clustering methodology are given in

Section B.1 and Appendix B.1.

2.3 Characterizing spatial dependence

When dealing with geographical units, such as regional divisions of a country, cross section

observations are unlikely to be independent of one another. This requires specific attention

and is often overlooked in applied work since accounting for this type of dependency is not

always straightforward. Up to this point, the described model has no explicit specification for

allowing this type of behavior in the data. The only channels through which co-movements

are captured by the model are through the observed employment growth rates and the in-

formation contained in the fixed regional-level covariates used in the clustering mechanism.

Furthermore, to be operational, the parametric model specified in Hamilton and Owyang

(2012) imposes a distributional assumption on the error vector where the variance-covariance

matrix is diagonal, which under the normality assumption implies cross-sectional indepen-

dence. Hamilton and Owyang (2012, p. 936) admit that unfortunately this is necessary

because relaxing this assumption would greatly increase the number of parameters for which

they need to draw inference and would invalidate their estimation algorithms.

The argument in this paper is that extending the original framework, to model spa-

tial dependence explicitly, offers a more direct treatment of spatial interactions along the

cross-section dimension. The proposed approach delivers a richer spatial analysis that is

appropriate for analyzing regional business cycles in the economy. This is due to the extra

information it is able to capture, namely, co-variation within geographical space. Extending

the model in this form provides a parsimonious solution for alleviating the severity of the
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required distributional assumption (diagonality of Ω) in the original model.

The empirical application in Section 5 will show that significant positive spatial corre-

lation is prevalent, according to (i) testing for spatial correlation in the considered panel data

set of regional employment growth rates, and (ii) the estimates obtained from the spatial

dependence component in the developed model. The latter will be shown to be strongly

robust to various specifications of the model.

To introduce an explicit characterization of spatial interactions, it is important to

clearly define what is postulated on the nature of the spatial relationship and what are the

desirable testable results. The proposed approach postulates that every region in the econ-

omy has ties to one or more other regions, stemming from specific factors or characteristics

that define the connections. Given the structure of these connections, a region may be in-

fluenced by shocks that are contemporaneously related to the average magnitude of shocks

to other regions in the economy. This formulation in the context of a regional business cycle

analysis is conveniently nested in a more general class of spatial models common to the spa-

tial econometrics literature. These types of models provide a flexible framework for assessing

spatial relationships for specific spatial weighting structures. This paper argues that out of

many potential candidate specifications, which will be subsequently discussed, the one with

the most attractive properties for the regime-switching model being analyzed is the spatial

autoregressive error (SAE) component. The SAE component is adapted into the model to fa-

cilitate the analysis of various spatial dependence structures beyond the regional similarities

captured by the information entering the clustering mechanism. This specification allows

the degree of spatial correlation along the cross-sectional dimension to be quantified and

tested.

Specifically, the SAE component dictates that the unobserved errors (or shocks) in

a region can be spatially correlated with the shocks of other regions. The proposed SAE

version of the original regime-switching model is

10



yt
∣∣∣
{zt=k}

= µ0 + µ1 � hk + εt
εt = ρWεt + ut, ut ∼ N(0,Ω).

(5)

If ρ = 0, then there is no spatial dependence, and the model is that of Hamilton and Owyang

(2012). A positive value (negative value) of ρ indicates that shocks are expected to be higher

(lower), if on average, shocks to neighboring regions are high. W is a row-standardized matrix

of spatial weights, and each row of W, wi, dictates the spatial dependency of region i to all

other regions. The spatial weights used in the empirical investigation are discussed in detail

in Section 4.3.

An alternative SAE specification would be to generalize the spatial parameter to vary

across the N regions, which would result in the following model

yt
∣∣∣
{zt=k}

= µ0 + µ1 � hk + εt,

εt = ΨWεt + ut, ut ∼ N(0,Ω),

Ψ =


ρ1 0 . . . 0
0 ρ2 . . . 0
... ... . . . ...
0 0 . . . ρN

 .
(6)

The model in (6) quantifies region-specific degrees of spatial spillovers. This model is not

chosen for the analysis because the desired objective is to quantify the overall degree of

spatial spillovers in the macroeconomy. Furthermore, using any of the discussed models

(including the restricted original model) to analyze 177 BEA economic areas, as opposed to

the lower 48 states, substantially increases the computational burden of estimating the model.

Therefore, despite there being no conceptual problem with implementing the model in (6),

the more parsimonious SAE specification in (5) with a single common spatial parameter is

more desirable for addressing the questions posed on the nature of spatial interactions.

A well known alternative to the SAE formulation is the spatial autoregressive lag (SAL)

component, which in the context of this study specifies that the employment growth in a
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region can be spatially dependent on the employment growth in other regions. The proposed

SAL version of the model would be

yt
∣∣∣
{zt=k}

= ρWyt + µ0 + µ1 � hk + εt, εt ∼ N(0,Ω). (7)

This paper advocates the SAE formulation over the SAL formulation due to the specific

role played by the clustering mechanism in the model. The concern is that introducing the

SAL component into the model would capture co-movements in the data that are net of

the co-movements identified through the fixed groupings of regions into clusters. Therefore

it would become difficult to interpret the magnitude and sign of the final estimates of the

spatial parameter ρ. On the other hand, the SAE specification allows for spatial interactions

between regional unobserved shocks captured by the error term, which is a less restrictive

specification that provides a very interesting interpretation of the spatial parameter ρ as

capturing the spatial regional interactions in the macroeconomy.

The proposed model (5) nests the non-spatial (restricted) model (3) as a special case

ρ = 0. Therefore, the posterior density of the spatial parameter ρ provides a natural frame-

work to test the hypothesis that the spatial parameter is significantly different from zero

for a given spatial weighting structure embodied by W. In the frequentist framework one

would find it appropriate to motivate the need for a spatial dependence component by

estimating the non-spatial model and testing for no cross-sectional dependence in the resid-

uals using a test of the type considered in Pesaran (2004, 2015). The latent structure of

the model would require generalized residuals to be computed following Gourieroux et al.

(1987). Forming residuals relies on computing fitted values based on point estimates of the

parameters. Bayesian posterior inference provides the entire surface of parameter densities,

which provides all the relevant information for obtaining quantities of interest and making

probability statements on the parameters. However, residual computation is not standard

or straightforward. There are two approaches one could take, and it is not clear which is
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more appropriate. The first is to form residuals for every sampled draw of the Markov chain

Monte Carlo (MCMC) sequence retained for posterior inference. This would result in a

chain of residual vectors corresponding to the posterior draws retained for inference. How

to summarize this chain into one residual quantity to build the test statistic is not clear.

Alternatively, one can proceed by using posterior means or medians as point estimates to

compute residuals, which results in residuals that have a completely different interpretation

from the first approach. To obtain a more clearly defined assessment of spatial dependence in

the Bayesian framework, quantities of interest for testing hypotheses on the spatial parame-

ter will be taken from the posterior. Posterior-based hypothesis testing will be discussed in

Section 5.

In all three of the discussed spatial specifications, the dependence structure is based

on a fixed metric embodied by the the spatial weighting matrix W. This matrix may be

specified by the analyst using physical (e.g. distance), economic (e.g. trade) or technological

measures, or it can be estimated using data. This paper considers fixed specifications for W

and favors weighting structures that give a relatively more sparse matrix, in order to reduce

computational cost. A variety of connections between regions can be examined thoroughly

through an explicitly defined spatial dependence structure in the model. Using an SAE

specification for this purpose is a natural extension to the original model and is common to

other models in the spatial econometrics and statistics literatures.

The SAE component has the advantage of being a substantially more parsimonious

approach than relaxing the diagonal assumption for the variance-covariance matrix of the

model’s error vector. To illustrate this point it is sufficient to compare the two possible

parameterizations. The data set analyzed in this paper has a time-series dimension of T =

102 and a cross-section dimension of N = 177. For the non-spatial model, excluding the

auxiliary variables, this results in 1321 parameters. The SAE specification adds only a single

parameter to be estimated, albeit one that plays a very important role through the fixed
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spatial weighting metric embodied by the matrix W. Conversely, relaxing the off-diagonal

restrictions on the variance-covariance matrix Ω would require inferences to be made on

N(N − 1)/2 additional parameters.

3 Statistical inference and estimation

The inference for the spatial dependence component of the model is integrated into the

Bayesian posterior inference procedure developed in Hamilton and Owyang (2012). The

notation and definitions are kept as close as possible to the original framework. This section

describes the all aspects of the model that are affected by the introduction of the spatial

dependence component.

Section 3.1 discusses the joint distribution of all random variables in the model. The

likelihood function is discussed in Section 3.2. Section 3.3 formally states all prior distribu-

tions. The conditional distributions for the population parameters affected by the spatial

parameter ρ are derived in Section 3.4. Section 3.5 describes the procedure used for model

selection. Section 3.6 outlines the estimation algorithm for the model. Supplementary details

regarding the inference and estimation procedures are discussed in Appendix B.

3.1 Joint distribution

The joint distribution for the data (Y), population parameters (ρ,µ,Ω, β), variables for the

dynamic change mechanism (regime transition probabilities, P) and latent variables (z, h)is

given by (8), where, to be consistent with the compact notation in Hamilton and Owyang

(2012), the cluster affiliation variables are grouped in H = {h, ξ, λ}. The spatial weighting

matrix W is suppressed as an argument in the notation because it is fixed.
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p(Y, ρ,µ,Ω,P, z, h, β) = p(Y|ρ,µ,Ω, z, h)p(z|P)p(ρ)p(µ,Ω)p(P)p(h|β)p(β) (8)

The compact expression for the arguments of the joint distribution in (8) makes use of a

logical grouping of the parameters. The exact composition and dimension of these arguments

are now explained in the order that they appear in (8). Y is the T × N dimensional

matrix of the regional employment growth rates. ρ is a scalar parameter measuring the

degree of spatial dependence. µ is a N × 2 dimensional matrix of the average employment

growth rates in each regime, where each row, µn, is defined as µn = [µn0 µn1]. The N ×

N dimensional error variance-covariance matrix, Ω, is diagonal with N distinct elements:

diag(Ω) = (σ2
1 σ2

2 . . . σ2
N). The aggregate regime indicator, z, is a T × 1 vector, where

each element is zt ∈ {1, 2, . . . , K}, indicating which cluster of regions is in recession at date

t. P is the matrix of transition probabilities that governs the mechanism of dynamic change

between regimes in the model. h is a set of vectors, h = {h1,h2, . . . ,hK−2}, where each

vector hk = (h1k h2k . . . hNk)′ determines which regions belong to cluster k. β is the set of

all logistic coefficient vectors: β = {β1,β2, . . . ,βK−2}, where βk = (1 βk1 . . . βkPk
)′ and Pk

is the number of covariates explaining the cluster affiliations.

3.2 Likelihood function

This section defines the functional form of the likelihood for the model (5). Prior to deriving

the likelihood function, it is convenient to note that the model (5) can be written equivalently

for the nth observation at time t as

ytn =ρ
N∑
j=1

Wnjytj + µn0 + µn1hn,zt − ρ
N∑
j=1

Wnj(µj0 + µj1hj,zt) + utn. (9)

The likelihood function L(ρ,µ,Ω, z, h; Y) is derived as
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L(ρ,µ,Ω, z, h; Y) ∝ |IN − ρW|T
( N∏
n=1

σ−Tn

)
× exp

− 1
2

N∑
n=1

[
σ−2
n

T∑
t=1

{
ytn − ρ

N∑
j=1

Wnjytj

− µn0 − µn1hn,zt + ρ
N∑
j=1

Wnj(µj0 + µj1hj,zt)
}2
].

The term |IN − ρW| takes into account the endogeneity of ∑N
j=1 Wnjytj (see Anselin

(1988) pp. 61–62). To see how the term appears in the likelihood, it is convenient to re-write

the model as

yt = µ0 + µ1 � hk + (IN − ρW)−1ut. (10)

Since the error covariance matrix is diagonal for ut, there exists a vector of homoskedas-

tic random errors υt

υt = Ω−
1
2ut. (11)

Substituting (11) into equation (10) gives

Ω−
1
2

(
(IN − ρW)(yt − µ0 − µ1 � hk)

)
= υt. (12)

The error terms υt have a known distribution but are unobserved. Therefore it is necessary

to introduce a Jacobian term to derive the joint distribution for yt from the joint distribution

of these error terms through the relationships in (12). The Jacobian for the transformation

of the random variables vector υt into the random variables vector yt is

J = det
∂υt
∂yt

 = |Ω−1
2 ||IN − ρW|. (13)

This section defined the functional form of the likelihood with the spatial parameter ρ. An

important implication of the Jacobian term defined in (13) is that its presence will require

an augmentation to the MCMC estimation procedure (sampling algorithm), which will be

discussed in Section 3.6.
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3.3 Prior distributions

This section provides a formal statement of the model parameters. The beliefs and infor-

mation pertaining to the uncertainty around all parameters is captured by their respective

prior distributions (adopted prior to observing the data). Table 1 presents all priors and

hyperparameters for all variables in the model. With the exception of the parameters related

to the spatial dependence component in the model, all assumptions follow from Hamilton

and Owyang (2012).

The priors for the population parameters µ and Ω are standard for Markov-switching

models (see Kim and Nelson, 1999). The parameters µn, which characterize the growth

rates for region n during regimes of recession and expansion are assigned a Normal prior

distribution (Equation 14). The Inverse Gamma distribution is specified for σ2
n, the nth

diagonal element of the diagonal variance-covariance matrix Ω, which implies a Gamma

prior for the precision, σ−2
n (Equation 15).

π(µn|σn) ∝
∣∣∣σ2
nM

∣∣∣−0.5
exp

− 1
2(µn −m)′[σ2

nM]−1(µn −m)
 (14)

π(σ−2
n ) ∝ σ−ν+2

n exp
(
− 1

2δσ
−2
n

)
(15)

The βk coefficients for the logistic clustering procedure adopt a Normal prior distribution,

π(βk) ∼ N(bk,Bk). Each column of the transition probability matrix, P, adopts a diffuse

Dirichlet prior, π(Pp) ∼ D(0). The priors used for the latent variables z, h, ξ, λ are given in

the cluster affiliation category in Table 1, they follow all assumptions made in the operational

clustering procedure for the original model (see Hamilton and Owyang (2012) for prior

elicitation details for these parameters).

Further consideration regarding prior choice for the population parameters, transition

probabilities and latent variables is not considered. The reason for this is that the devel-
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oped spatial model nests the original model, and perturbing the distributional assumptions

would make the comparison of results between the two models less clearly attributed to the

introduction of the spatial dependence component. Therefore, the operational framework of

Hamilton and Owyang (2012) is taken as given.

The discussion is hereby focused on prior elicitation for the spatial population param-

eter ρ. The approach taken follows the spatial econometrics literature (see LeSage and Pace

(2009) for a comprehensive treatment). The first step is to determine how the spatial pa-

rameter in the model (5) enters the joint prior distribution π(ρ,µ,Ω). Following the spatial

econometrics literature – LeSage and Pace (2009, p.129) – the priors for µn and σ−2
n are as-

sumed to be independent of the spatial parameter ρ, which is constant across all N regions.

The joint prior is given as

π(ρ,µ,Ω) = π(ρ)
N∏
n=1

π(µn|σn)π(σ−2
n ). (16)

The spatial parameter is interpreted as the spatial correlation coefficient. Therefore,

an appropriate prior distribution choice for the parameter is any valid density with support

on the (−1, 1) interval. This reflects the notion that values of ρ less than −1 are indicative

of either model or spatial weighting misspecification (see discussion in LeSage and Pace

(2009)). A popular choice is the uniform prior distribution such as π(ρ) ∼ U(γ−1
min, γ

−1
max) or

π(ρ) ∼ U(−1, 1), where γmin and γmax represent the minimum and maximum eigenvalues

of the spatial weight matrix W. Other than restricting ρ to lie in a bounded interval,

these distributions are uninformative with respect to ρ and assign an equal probability to

any realization of ρ on that interval. These two choices are appropriate to use when the

magnitude and significance of ρ is of particular interest. In the context of this paper’s

empirical investigation, the estimation results for ρ are of particular importance. If ρ̂ 6= 0

(estimated by the posterior mean) and ρ has a high sign certainty probability4 then there are
4The probability mass on the same side of zero as the posterior mean.
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Table 1: Formal statement of the model parameters.

Parameter Prior distributions Hyperparameters
Average employment
growth in region n π

(
µn0
µn1

)
∼ N(m, σ2M) m=

(
1
−2

)
, M=I2

Variance of errors π(1/σ2
n) ∼ Γ(ν/2, δ/2) ν = 0, δ = 0

Spatial dependence π(ρ) ∼ U(−1, 1)

Spatial weight matrix W =


w11 . . . w1N
... . . . ...

wN1 . . . wNN

 wij are row standardized
spatial weights s.t.∑N

i=1 wni = 1, ∀n

Cluster affiliation π(hnk) =


1

1+exp(x′
nk
βk) , if hnk = 0

exp(x′
nkβk)

1+exp(x′
nk
βk) , if hnk = 1

hnk =

1, if ξnk > 0
0, otherwise

π(ξnk|βk, λnk) ∼ N(x′nkβk, λnk)
π(βk) ∼ N(bk,Bk) b = 0p, B = 0.5Ip

π(λnk) ∼ GIG
(

1
2 , 1, r

2
nk

)
rnk = ξnk − x′nkβk

GIG ≡ Generalized Inverse Gaussian

Transition probabilities π(Pp) ∼ D(α) (Dirichlet) α = 0

significant spatial interactions between regions. Otherwise, the model is that of Hamilton

and Owyang (2012) with the restriction ρ = 0.

3.4 Conditional distributions

The conditional distribution of any given subset of parameters θ ∈ {ρ,µ,Ω,P, z, h, β} is

given by

p(θ|Y, ρ,P, z, h, β) = p(Y, ρ,µ,Ω,P, z, h, β)∫
p(Y, ρ,µ,Ω,P, z, h, β)dθ (17)
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Conditioning on the data and all other parameters makes all factors that are not functions of

the individual parameter go into the proportionality constant (normalization constant).

Conditional distribution of population parameters µ, Ω

The conditional posterior distributions of each individual parameter µn and σ−2
n are derived

from

p(θn|Y,P, z, h, β) ∝ π(θn)σ−Tn exp
− 1

2σ
−2
n

T∑
t=1

(
ytn − ρ

N∑
j=1

Wnjytj − µn0 − µn1hn,zt

)2
.

Conditioning on the data and all other parameters makes all factors that are not functions of

the individual parameter go into the proportionality constant (normalization constant).

Both conditional posterior distributions for µn and σ−2
n are affected by ρ, which enters

through the likelihood function. Compared to the original model with no spatial lag, these

distributions remain in standard known form, which merits the use of the Gibbs sampling

procedure for their estimation.

The conditional posterior distribution of µn is (see Appendix B.3 for proof)

p(µn|Y, ρ, σ−2
n ,P, z, h, β) ∝ exp

− 1
2(µn −m∗)′Σn

−1(µn −m∗)
,

µn|Y, ρ, σ−2
n ,P, z, h, β ∼ N

(
m∗,Σn

)
,

where

Σn = A−1,

m∗ = A−1b,

A = σ−2
n (1 + ρWnn)2

T∑
t=1

w(zt, h)w(zt, h)′ + [σ2
nM]−1,

20



b = σ−2
n

T∑
t=1

(
w(zt, h)(1 + ρWnn)

)(
ytn − ρ

N∑
j=1

Wnjytj

)
+ [σ2

nM]−1m.

The conditional posterior distribution of σ−2
n (see Appendix B.4 for proof) is (as in Kim and

Nelson (1999))

σ−2
n |Y, ρ,µn,P, z, h, β ∼ Γ

ν + T

2 ,
δ + δ̂

2

, (18)

for δ̂ = ∑T
t=1

(
ytn − µn0 − µn1hn,zt − ρ

∑N
j=1 Wnj(ytj − µj0 − µj1hj,zt)

)2
.

Conditional distribution of population parameter ρ

Any uniform prior distribution for ρ, that is a valid density, e.g. π(ρ) ∼ U[γmin, γmax],

π(ρ) ∼ U[−1, 1], results in the following conditional posterior distribution of the spatial

parameter ρ is (see Appendix B.5 for complete proof)

p(ρ|Y,µ,Ω,P, z, h, β) ∝ |IN − ρW|T exp
− 1

2ρ
(
ρB1 − 2B2

), (19)

where

B1 =
N∑
n=1

σ−2
n

T∑
t=1

( N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2
,

B2 =
N∑
n=1

σ−2
n

T∑
t=1

(
(ytn − µn0 − µn1hn,zt)

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
).

The distribution in (19) has no known standard form. This has implications for the

sampling procedure required to estimate the model, which is discussed in Section 3.6 that

describes the MCMC sampling algorithm for ρ and for the full model.
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3.5 Cluster selection

Following Hamilton and Owyang (2012) the number of clusters is determined by computing

a quasi-out-of-sample score. This procedure can also be used to select which weighting

structure to impose on the matrix W. The score is built through an R−fold cross validation

procedure that segments the full data set into R−equal blocks (R = 10 in the empirical

investigation), denoted as r = 1, . . . , R. Each of the r blocks is retained as a validation set,

and the R − 1 blocks serve as a training set. The model estimates for the training set are

tested on the omitted validation set. All R blocks serve exactly one time as the validation

set. Cross-validation deems the model with the lowest aggregate score as superior to the

other model specifications. The treatment for this procedure in a similar class of models can

be found in Geweke and Keane (2007).

The aggregate quasi-out-of-sample score is defined as

Score = 1
M

M∑
m=1

R∑
r=1

tr+1−1∑
t=tr

(
log|Ω[r,m]|+ (yt − y

f
t )′(Ω[r,m])−1(yt − y

f
t )
)
, (20)

where M is the number of sampling iterations, R is the number of equal blocks, Ω[r,m] is the

iteration m diagonal variance-covariance matrix draw for block r, tr is the first observation

of the omitted block, tr+1−1 is the last observation of the omitted block, yt = (y1t, . . . , yNt)′

is the vector of employment growth rates for N regions at date t, yft is the forecast of yt

conditional on the aggregate indicator z[r,m]
t , and (yt−y

f
t ) is the forecast error vector.

The score will serve as an objective criterion for selecting the number of clusters.This

is supported by two arguments. The first is for the empirical investigation to be consistent

with the original application of the restricted non-spatial model, which allows the results to

be compared to the state-level analysis. The second is that due to the complicated latent-

structure of the model, approximating the marginal likelihood function is a difficult task.

Therefore, implementing a cross-validation procedure is more straightforward than relying
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on approximate Bayes Factors (BF) for selection, which explains why the measure was not

employed by Hamilton and Owyang (2012). For completeness, a suggested approach for

obtaining BF values for the spatial model is now discussed.

Model comparison for econometric models that use Bayesian posterior inference typi-

cally rely on the Bayes Factors (BF) to discriminate between models. The BF judges which

of two given models is better supported by the data through their respective marginal like-

lihood functions. The BF that compares model i to model j is defined as

BFij = mi(Y)
mj(Y)

=
∫
Li(Φ; Y)πi(Φ)dΦ∫
Lj(Φ; Y)πj(Φ)dΦ ,

(21)

where Φ = {ρ,µ,Ω, z,H, β}. BF has the advantage of penalizing more heavily parameterized

models, which is not relevant for comparing weighting matrix structures, but relevant for

specifying the number of clusters. An exact or approximate evaluation of marginal likelihoods

is needed to compute the Bayesian factor integrals in (21). This can be accomplished by

employing the approach in Chib (1995) for computing the marginal likelihood given the

parameter draws from the posterior distribution, which facilitates the computation of Bayes

factors as a by-product of the simulation. The central equation for evaluating the marginal

density is given by re-arranging Bayes’ Rule to isolate the unconditional density of Y (the

normalization constant of the posterior density) denoted as m(Y) and given by

m(Y) = L(ρ,µ,Ω, z,H, β; Y)π(ρ,µ,Ω, z,H, β)
p(ρ,µ,Ω, z,H, β|Y) (22)

which Chib refers to as the basic marginal likelihood identity (BMI). The proposed esti-

mate for the marginal likelihood is obtained through the estimated log-likelihood function

as follows
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ln m̂(Y) =ln L(ρ∗,µ∗,Ω∗, z∗, H∗, β∗; Y) + ln π(ρ∗,µ∗,Ω∗, z∗,P∗, H∗, β∗)
− ln p(ρ∗,µ∗,Ω∗, z∗,P∗, H∗, β∗|Y),

(23)

which requires the evaluation of the log-likelihood function, prior and the joint posterior dis-

tribution (third term in (23)) for a given set {ρ∗,µ∗,Ω∗, z∗,P∗, H∗, β∗}. The computational

challenge is due to the fact that the joint posterior functional form now includes all nor-

malization constants for the individual posterior conditional distributions of the variables.

For the Metropolis-within-Gibbs sampler these constants can be suppressed when they are

fixed conditional on the variable for which the conditional posterior densities is obtained.

Obtaining estimates of (23) would base model selection on the estimated BF given by

B̂ij = exp
ln m̂i(Y)− ln m̂j(Y)

 (24)

Recognizing the two existing competing options for model selection, the cross-validation

scores will be used for choosing the number of idiosyncratic clusters in the model to be

consistent with the empirical investigation in Hamilton and Owyang (2012). Furthermore,

analyzing 177 regional divisions of the United States, excluding the auxiliary variables, im-

plies a total of 1322 parameters in the model, a much greater parameter space than if one was

analyzing the 48 lower US states. The cross-validation program of Hamilton and Owyang

for this model provides a convenient implementation of this model selection procedure for

investigating smaller regions.

3.6 MCMC estimation

The estimation procedure will employ the Metropolis-within-Gibbs (M-G) algorithm to sam-

ple from the conditional distributions of the parameters. The M-G algorithm takes its name

from the fact that it uses the Gibbs algorithm to sample from conditional distributions where
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Table 2: M-H algorithm with random walk tuning

Step 1: Initialize the draw, setting ρ(1) and c(1) to an arbitrary number.
Step 2: For j = 1, . . . , N burn−in, N burn−in + 1, . . . , N burn−in +Nkeep

(a) A candidate value ρ∗ is drawn from the candidate distribution:

ρ∗ = ρ(j) + c(j) · N(0, 1) (25)

(b) The value is accepted as ρ(j+1) = ρ∗ with probability:

φ(ρ(j), ρ∗) = min
1, p(ρ

∗|Y,µ,Ω,P, z, h, β)
p(ρ(j)|Y,µ,Ω,P, z, h, β)

 (26)

(c) Adjust the tuning parameter by monitoring the acceptance rate

c(j+1) =

1.1c(j), if φ(ρ(j), ρ∗) > 0.60
c(j)

1.1 , if φ(ρ(j), ρ∗) ≤ 0.40
(27)

the distributional form is known, and the Metropolis-Hastings (M-H) algorithm to sample

from conditional distributions where the distributional form is unknown. The estimation in

Hamilton and Owyang (2012) did not require the M-H algorithm because all distributions

were of known standard form. With the introduction of a spatial dependence component,

inference on the spatial parameter ρ requires sampling from a distribution of unknown form

(see discussion in Section 3.2). The sampling algorithm for ρ is discussed first, followed by

the complete sampling algorithm for the full model.

The M-H algorithm will be implemented with a tuned random-walk procedure (see

LeSage and Pace (2009) and Holloway et al. (2002)). The candidate distribution will be

the normal distribution and the tuning parameter is denoted as c. The sampler proceeds

according to the algorithm in Table 2. Tuning the draws from the candidate normal

distribution is governed by the tuning parameter c, which ensures that the M-H algorithm

moves over the entire conditional distribution. The restriction that −1 < ρ∗ < 1 is imposed

for the M-H algorithm. This ensures that candidate values lie inside the desired interval
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when drawn from the candidate distribution.

The algorithm in Table 2 is nested into the Gibbs sampling algorithm for the full model,

which collectively is referred to as the Metropolis-within-Gibbs (M-G) algorithm. A concise

summary of the algorithm is given in Table 3, which suppresses all conditioning variables,

hyperparameters and functional forms. This is followed by a complete and detailed outline of

the full sampling procedure. After initializing parameters (Step 0), the samplers iteratively

draw following Steps 1 through 6 for j = 1, . . . , N burn−in, N burn−in + 1, . . . , N burn−in +Nkeep,

where N burn−in is the specified number of burn-in iterations that are discarded and Nkeep is

the number of iterations retained for inference as posterior draws.

Table 3: Short summary of Metropolis-within-Gibbs (M-G) algorithm

Step 0: Initialize all parameters
Step 1: Draw cluster

(a) β(j+1)
k ,k = 1, . . . , K − 2

(b) h(j+1)
nk , k = 1, . . . , K − 2 and n = 1, . . . , N

(c) ξ(j+1)
nk , k = 1, . . . , K − 2 and n = 1, . . . , N

(d) λ(j+1)
nk , k = 1, . . . , K − 2 and n = 1, . . . , N

Step 2: Draw µ(j+1)
n , n = 1, . . . , N

Step 3: Draw σ−2(j+1)
n , n = 1, . . . , N

Step 4: Draw ρ(j+1) using the M-H algorithm defined in Table 2.
Step 5: Draw aggregate regime indicator, z(j+1)

t , t = 1, 2, . . . , T
Step 6: Draw the transition probabilities, P(j+1)

Notes: All conditioning variables are suppressed in this outline of the algorithm.

The complete M-G algorithm for estimating the model is given in B.2.

4 Data and spatial weighting

This section describes the choice of aggregation level, the data sets, and the spatial weighting

structure. Section 4.1 describes BEA economic areas, explains their relevance to classifying
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small regional economies in the US, and describes the employment data used to construct the

variable that fluctuates over the business cycle. Section 4.2 describes the regional covariates

to be used in the clustering mechanism. Lastly, Section 4.3 defines the main specification

of the spatial weighting structure and existing alternatives, some of which will serve as

robustness checks for the estimation results.

4.1 County-level employment – BEA Economic Areas

The goal of this paper is to conduct an empirical investigation of regional business cycles

in small regional economies using a multivariate Markov-switching model. Because the

model draws inferences on larger regional groupings of geographical units, it is appropriate

to consider smaller regions as the unit of analysis than the lower 48 states. This is also

motivated by the fact that smaller areas provide more geographic detail. Geographical detail

is important for analyzing business cycle characteristics as it provides a more in-depth view

of regional economies. For example, it allows the model to potentially identify economic

downturns that affect regions covering only a certain part of a state and that cross state

borders.

Looking at the state level can be misleading for identifying regional contractions. This

is evident if one compares the proportion of states and small regions (as given by the 177

BEA economic areas) that experience negative employment growth rates; see Figure 1. The

first observation is that the figure clearly shows periods when none of the 48 lower states

exhibit contraction in observed employment, while over the same periods as much as 21% of

smaller regions exhibit contractions in observed employment. The second observation is that,

overall, in-between periods of nationwide negative employment growth, a higher proportion

of the country is experiencing negative employment growth when looking at smaller regions

than at the state level.
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Figure 1: Proportion of regions with negative employment growth
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The choice of disaggregation level is motivated by two criteria. The first is that the

computational cost of the model is manageable, and the second is that, ideally, the geo-

graphical units share physical borders, which preserves the contiguity property exhibited by

the lower 48 US states. Both criteria would be invalidated if one were to consider core-based

statistical areas (metropolitan and micropolitan statistical areas; see footnote 1 for details).

A regional classification that is less commonly analyzed but is appropriate for both the com-

putational cost of the model and the empirical context is the economic area classification by

the Bureau of Economic Analysis (BEA). This classification was defined in 1995 and subse-

quently updated in 2004. The 2004 classification defined 177 contiguous groups of counties

that represent relevant regional markets surrounding metropolitan and micropolitan statisti-

cal areas in the United States. See Figure 2 for a map of BEA Economic Areas in relation to

county borders and state borders, and for a map of surrounding statistical areas see Figure

11 in Appendix A.
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Figure 2: BEA Economic Areas

(a) Counties

(b) Overlay with state borders

The 2004 BEA economic area classification is based on the counties and county-

equivalents enumerated in the 2000 census, which remained unchanged from the 1990 census.

This enumeration does not include Broomfield County in Colorado which was established in
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November, 2001 from parts of four Colorado counties in the vicinity of Denver. Statistical

agencies do not typically publish data using this classification. All of the data sets used

in the analysis will be constructed for this classification based on county-level data. All

county-level data for the contiguous US counties are based on the 3106 contiguous counties

and county-equivalents enumerated in the 1990 and 2000 census. That is the 3001 contigu-

ous counties, 64 Louisiana Parishes, 41 independent cities in Virgina and the District of

Columbia, for a total of 3106. The 5 counties of Hawaii and the 19 organized boroughs and

11 census areas of Alaska are excluded.

The business cycle characteristics in the model will be inferred from county-level em-

ployment data, which are aggregated to the 177 contiguous BEA economic areas. The data

were obtained as total private payroll employment for the period 1990–2015 from the Quar-

terly Census of Employment and Wages (QCEW) at the Bureau of Labour Statistics (BLS).

The aggregate series are seasonally adjusted by the X13 seasonal adjustment programs of

the US Census Bureau. The data enter the model as annualized quarter-over-quarter growth

rates.

The empirical investigation of Hamilton and Owyang (2012) used state-level employ-

ment (1956–2007) as the variable that fluctuates over the business cycle, while the data for

the covariates for the most part only spanned the period 1990–20065. Due to the importance

these covariates exert on assessing the probability that a given region n belongs to a given

cluster k, an unbalanced coverage of the data has drawbacks. This paper takes on a different

approach by ensuring that the period spanned by all data used in the empirical application

coincides with the main period of analysis as closely as possible.
5The empirical investigation in Hamilton and Owyang (2012) used manufacturing employment shares

(1990-2006), oil production (1984), financial services shares (1990-2006), and small-firm employment shares
(unspecified)
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4.2 Regional covariates

Cluster affiliation is driven by regional-level covariates. These covariates serve to capture

the influences that specific industry sectors have on designating regions to be affiliated with

a cluster. This operates through the clustering mechanism and influences the probability

that a given region n belongs to a given cluster k.

A total of six covariates are considered in the empirical investigation (see Table 4 for de-

tails). Five of the covariates are average industrial employment composition variables. This

is partially motivated by the availability of comprehensive time series data for these variables

over the examined period. More importantly, the direct representation of industry-specific

characteristics using employment shares ought to provide an intuitive geographical/spatial

comparison of each regional cluster grouping to the higher and lower concentrations of spe-

cific industries employment composition. To keep the model computationally feasible, only

the discussed six variables are used, which are postulated to be informative for identifying

similar co-movements relevant to business cycles. Four of the covariates are direct analogs

to those considered originally in Hamilton and Owyang (2012). The other two are motivated

as important goods-producing economic sectors relevant for the considered time period,

1990–2015, and meaningful when the model is estimated at a more disaggregated level. All

covariates enter the model as averages over the full period, meaning they serve to capture the

relative regional concentration of the labor force in these industries, not their fluctuations

over the period.

Manufacturing employment shares represent the largest sector of the goods-producing

sector of the economy. The second largest sub-sector of the goods-producing sector is the

construction sector, which for small regional divisions exhibits a lot of spatial variability,

see Figure 3. Natural resource extraction is given by oil and gas extraction employment

shares and mining and quarrying employment shares. To capture the regional concentrations

of employment in small firms, average employment shares of firms with fewer than 100
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Table 4: Data summary - Employment shares

Industry County-level data Aggregated variable description

Name NAICS Source Period # Regions Enters the model as

Oil & gas extraction 211 QCEW 1990-2014 177 ↑
Mining & quarrying 212 QCEW 1990-2014 177 average (%) share

Construction 23 QCEW 1990-2014 177 of total employment
Manufacturing 33-33 QCEW 1990-2014 177 ↓

Financial & insurance 52 QCEW 1990-2014 177

Small firms
(less than 100 employees) All SUSB 2010 177

(%) share
of total employment

Notes: All variables are constructed for the 177 BEA Economic Areas, and are aggregated from county-
level data obtained from the Quarterly Census of Employment and Wages (QCEW) of the Bureau of Labor
Statistics with the exception of small firm shares, which are aggregated from county-level data of the Statistics
of U.S. Businesses of the United States Census Bureau.

employees are considered.

For the service-producing sector, financial activities employment shares for the finance

and insurance sub-sector (NAICS 52) represent the financial sector. Consideration was

given to accounting for the information and cultural industries employment shares to serve

as a broad measure of regional employment concentration due to high-tech industries (e.g.

computer software and Internet sub-sectors). This sector is not included because the relative

regional concentrations of employment shares for this sector are very similar to the financial

sector. A subset of industries related to high-tech stocks such as computer and electronic

products, aerospace, pharmaceutical and medicine are covered by the manufacturing industry

classification.

4.3 Spatial weighting matrices

This section defines the weighting structure considered in the empirical investigation and

the existing alternatives.

Estimating the model using a data set with a cross-section dimension of N = 177 (as
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Figure 3: Regional covariates - employment shares (%)

(a) Manufacturing sector (b) Construction sector

(c) Small firm (less than 100 employees) (d) Mining & quarrying

(e) Oil & gas extraction (f) Finance and Insurance sector

compared to N = 48 when looking at the state level) substantially increases computational

cost. The advantage of introducing spatial interactions via a spatial error lag component is

that inference is required only for a single additional parameter, ρ, compared to the original

model. However, the computational intensity of the MCMC estimation algorithm depends

on the sparsity of the spatial weighting matrix W.

This paper advocates the use of a spatial weighting structure based on shared physical

borders between economic areas. This contiguity weighting is defined in 28 and is illustrated
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with an example in Figure 4.

Contiguity-based weighting matrix

W =


w11 . . . w1N

... . . . ...

wN1 . . . wNN

 , wij = γij∑N
n=1 γin

γij =


1, if region j shares a common border with region i

0, otherwise
(28)

This weighting structure is motivated by two observations. The first is that BEA economic

areas define relevant regional markets surrounding metropolitan and micropolitan areas,

hence this regional classification accounts for socioeconomic similarities between counties

surrounding statistical areas. Therefore, the spatial dependence structure embodied in W

doesn’t necessarily need to use economic distance attributes of these regions to establish

connections, as one would expect when analyzing larger regional groupings (e.g. states

or the eight BEA regions). The second observation is that a weighting matrix defined

through shared physical borders between regions is one of the most sparse specifications of

W in comparison to well-known existing alternatives. This can be seen in Table 5, which

shows how many non-zero weights various W specifications have for the 177 BEA economic

areas. A contiguity-based weighting provides a lighter computational load on the model

while leveraging the inherent spatial similarities accounted for by the BEA economic area

classification.

Table 5: Spatial weights summary

Wcontig W400km W600km W800km Winv-dist

# of weights 912 1882 3926 6552 31152
Notes: Wcontig is the contiguity weighting, W400km, W400km and W800km are 400, 600 and 800 kilometer
distance band weightings, and Winv-dist is the symmetric inverse distance weighting. parentheses.
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Figure 4: Contiguity weighting example

(a) California and surrouding
economic areas

(b) Network: Blue (light) - all or majority of area contained in the state, Red (dark) - all or
majority of area outside of the state 7

BEA 145

BEA 97

BEA 61

BEA 146 BEA 140 BEA 135 BEA 17

BEA 53

BEA 136

BEA 92BEA 128BEA 169

Geography-based restrictions have been supported in empirical factor model and spa-

tial econometric studies of regional business cycles. An example is the work of Del Negro

(2002), where model restrictions are based on geographic proximity, which serves as a proxy
1Edges connecting bordering economic areas outside of the California state border are suppressed to

illustrate the spatial weighting for the specific state.
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for regional productive structure and income levels. This is motivated by the belief that ge-

ography plays an important role in characterizing the productive structure of a region. Fogli

et al. (2015) also argue that local geographical factors play an important role for aggregate

business cycle dynamics.

A contiguity-based weighting structure is a common choice for W in the spatial econo-

metrics literature, and its use is substantiated by the regional similarities accounted for

through the BEA economic area classification. The following are well-known alternative

weighting structures that can be used for specifying W:

1. Distance-based (K-nearest neighbors)

γij =


1, if region j is one of the K-nearest neighbours of region i

0, otherwise
2. Economic or technological-distance matrices (trade flows)

γij =


1, if region j is the largest trading partner of region i

0, otherwise
or

wij = proportion of region i’s trade with region j.

3. Distance band (symmetric):

γij =


1, if regions i, j are at a critical distance cut-off point

0, otherwise
4. Inverse distance weights (symmetric):

wij = 1/d2
ij

5. Kernel matrices (fixed and adaptive)

6. Distance by relative frontier longitude (non-symmetric):

wij = (dij)−a(dij)b

7. Accessibility matrices: networks

Where γij are elements of a matrix that is then row-standardized, and wij are the exact
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weights used for the weighting matrix.

5 Empirical results and discussion

This section presents and discusses the results of the empirical investigation. Section 5.1

outlines the selection of idiosyncratic clusters using a cross-validation procedure. Section

5.2 analyzes the regional composition of each idiosyncratic cluster grouping. Section 5.3

analyzes how each phase of the regional (non-nationwide) and nationwide business cycles

propagate in the economy. Section 5.4 discusses the assessment of spatial regional interac-

tions, including a robustness analysis. Section 5.5 discusses some policy implications based

on the findings.

5.1 Selection of idiosyncratic clusters

The cross-validation procedure guides the choice of how many idiosyncratic clusters κ = K−2

are specified in the model. All estimation results are based on MCMC runs of 250,000 burn-in

iterations followed by 25,000 subsequent iterations retained for posterior inference. The long

burn-in period is the same length as in Hamilton and Owyang (2012) and ensures reliable

posterior inference. Convergence is discussed in detail in Appendix A.3. Cross-validation

is conducted for R = 5 folds (refer to Section 3.5 for details on cross-validation) for equal

MCMC sequence lengths and considers up to six (κ = 6) clusters.

Cross-validation results are reported in Table 6. The procedure selects two idiosyn-

cratic clusters (κ = 2) for both the spatial and restricted non-spatial models, based on their

lowest total scores. The total entropy scores for the spatial model are lower than the corre-

sponding scores for the restricted model, indicating that cross-validation favors the spatial

specification. All subsequent analysis and results will be for the spatial model specification
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Table 6: Cluster selection - cross-validation entropy scores

Spatial Model
Restricted Model

(ρ = 0)
Clusters

(κ) Block 1 Block 2 Block 3 Block 4 Block 5 Total Total

1 6856.0 8455.4 3679.6 4321.5 3279.0 26591.5 (4) 34780.0 (2)
2 6847.5 8434.6 3679.1 4161.7 3344.5 26467.4 (1) 34230.6 (1)
3 6845.4 8460.7 3693.0 4132.1 3406.2 26537.4 (2) 36548.0 (4)
4 6864.0 8462.6 3703.1 4221.6 3392.7 26644.0 (5) 35222.6 (3)
5 6847.4 8469.9 3707.3 4156.7 3527.7 26709.0 (6) 38621.2 (6)
6 6851.3 8457.4 3693.1 3920.0 3660.7 26582.5 (3) 37052.5 (5)

Notes: The aggregate scores for each number of clusters and weighting matrix. Numbers in parentheses
rank the model specification from the highest ranking (1) to the lowest ranking (6). Results based on
R = 5 cross-validation, up to 6 clusters considered with every MCMC run comprised of N burn−in = 250000
burn-in iterations and Nkeep = 25000 samples retained for inference.

with two idiosyncratic clusters (κ = 2, four regimes in total). A formal assessment of MCMC

output convergence for this specification is given in Appendix A.3. The results show that

all 1322 parameters converge, indicating that the target posterior distributions based on

the retained MCMC draws are reliable for inference and there is very little potential scale

reduction from continuing the MCMC algorithm.

5.2 Regional spatial clusters

The mechanism of endogenous clustering is best illustrated in the following two steps. The

first step draws inference based only on the exogenous industrial composition variables that

capture fixed regional characteristics. This provides a geographical illustration (see Figure

5) for all regions according to their respective probabilities of belonging to each idiosyncratic

cluster. The second step updates these probabilities with the observed regional employment

growth rates. For every region and cluster, these probabilities are based on the posterior

draws of the cluster affiliation indicator hnk. Figure 6 shows the spatial illustration for the

posterior probabilities of regions belonging to each cluster based on all of the data entering

through the clustering mechanism and the likelihood function. Together these figures convey
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Figure 6: Spatial Model
Posterior cluster affiliation probabilities updated with observed regional employment

growth [posterior means of hnk]

(a) Cluster 1 (b) Cluster 2

the hierarchal structure of the model to show how the informational content of the regional

data shapes the cluster groupings.

Figure 5: Spatial Model
Posterior cluster affiliation probabilities based on exogenous industrial composition

variables alone [posterior means of exp(x′
nkβk)

1+exp(x′
nk
βk) ]

(a) Cluster 1 (b) Cluster 2

Comparing Figures 5(a) and 6(a) shows that for cluster one the geographical concentra-

tions of regions changes noticeably after the probabilities are updated with observed regional

employment growth. The same is true for the second cluster.

The probability thresholds for designating a BEA economic area to a cluster are based

on the updated probabilities in Figure 6. Regions with a higher than 0.5 probability of

being affiliated with a cluster are deemed to be strongly affiliated to that grouping, while
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Figure 7: Geographical concentrations in Cluster 1

regions with probabilities between 0.25 and 0.50 are deemed to be weakly affiliated. The

geographical concentrations based on the strong affiliation threshold are shown in Figures 7

and 8.

Having spatially identified the regional composition of each cluster, the analysis turns

to the parameters in the clustering mechanism that influence the probability that a region

belongs to a given cluster. These parameters are logistic coefficients. Their estimates provide

information regarding which regional characteristics play an important role in designating

any given economic area to specific cluster groupings.

The logistic coefficients for each cluster do not have a direct magnitude interpretation

by themselves. Therefore, the analysis is supplemented with discrete derivatives of the cluster

affiliation probabilities using the estimated logistic coefficients. These derivatives are differ-

ence quotients specifically defined to answer which regional characteristics are designating
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Figure 8: Geographical concentrations in Cluster 2

small regional divisions into which clusters.

Let a discrete derivative for the industrial characteristic i in cluster k be denoted as

δki. This value will be implied by the estimated logistic coefficients, and its purpose is to

quantify the magnitude by which the cluster affiliation probability differs between any regions

in the economy. Specifically, δki is calculated for two hypothetical regions that differ only

with regards to a single characteristic, with region q having that characteristic one standard

deviation below the national average and region s having that characteristic one standard

deviation above the national average. The other characteristics of each region are equal to

the national average.

Let the average value of characteristic i for all 177 regions including region j, be denoted

by x̄i, and the standard deviation denoted as sxi
. Then the vector of industrial characteristics
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(including a constant term) for region q is given by

x′q =
[
1 x̄1 x̄2 . . . x̄i − sxi

. . . x̄Pk−1 x̄Pk

]
,

and the vector of industrial characteristics for region s is given by

x′s =
[
1 x̄1 x̄2 . . . x̄i + sxi

. . . x̄Pk−1 x̄Pk

]
.

Given the posterior means of the logistic coefficients for cluster k,

β̂k =
[
1 β̂k1 β̂k2 . . . β̂ki . . . β̂kPk−1 β̂kPk

]′
,

δki is calculated as the change in the cluster affiliation probability between regions s and q,

which for each region n is given by Pr(hnk = 1|β̂k,xn) computed from

Pr(hnk = i|β̂k,xn) =


1

1+exp(x′
nβ̂k) if i = 0

exp(x′
nβ̂k)

1+exp(x′
nβ̂k) if i = 1

where the same industrial characteristics are specified for each cluster k. Therefore, for any

given cluster and any given characteristic i the quantity of interest is the following difference

quotient

δki = Pr(hsk = 1|β̂k,xs)− Pr(hqk = 1|β̂k,xq)

= exp(x′sβ̂k)
1 + exp(x′sβ̂k)

−
exp(x′qβ̂k)

1 + exp(x′qβ̂k)
(29)

A positive (negative) value of δki implies that regions with higher concentrations of employ-

ment in sector i and close to average employment shares in other sectors are likely (not

likely) to be affiliated with cluster k.
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Table 7: Estimated logistic coefficients (posterior means β̂ki) and discrete derivatives δki

Cluster 1 Cluster 2
β̂1i δ1i β̂2i δ2i

Constant 0.055 0.019
(53) (51)

Manufacturing −0.208∗ −0.501∗ −0.115∗ −0.087∗
(81) (79)

Finance & insurance 0.443∗ 0.219∗ 0.104 0.015
(83) (58)

Mining & quarrying −0.097 −0.021 −0.067 −0.004
(55) (53)

Oil & gas extraction 0.138 0.019 0.220 0.008
(58) (62)

Small firms 0.031 0.089 −0.011 −0.009
(57) (43)

Construction −0.215∗ −0.124∗ −0.162 −0.027
(70) (62)

Notes: The percentage of posterior draws on the same side of zero as the posterior mean (sign certainty
probability) are given in parentheses. ∗ – indicates that at least 68 percent of the posterior draws were on
the same side of zero as the reported posterior mean. Posterior means computed for MCMC sequence
based on N burn−in = 250000 burn-in iterations and Nkeep = 25000 samples retained for inference.

Table 7 presents the estimated logistic coefficients and the implied discrete derivatives.

The financial sector has the highest positive estimated logistic coefficient (0.443) for cluster

1 and the oil and gas extraction sector has the highest positive estimated logistic coefficient

(0.220) for cluster 2, albeit with a lower sign certainty probability of 0.62. The evidence

in Table 7 suggests that the manufacturing, financial and construction sectors are signifi-

cant industrial characteristics for cluster 1. Based on the current definition of the discrete

derivatives, the δki magnitudes are the most pronounced for this grouping. The probability

of belonging to cluster 1 is substantially higher for a region that has a higher concentration

of labor in the financial sector (δ12 = 0.219). While the probability of belonging to cluster

1 is substantially lower for regions with higher concentrations of labor in manufacturing

(δ11 = −0.501) and construction (δ16 = −0.124). The magnitudes for cluster 2 are not as

pronounced, because the current definition of these quotients is not adequately characteriz-
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ing the distinctions between regions in the data. This cluster is highly resemblant of the oil

and gas producing regions, which is evident when the labor concentrations in the oil and gas

sector in Figure 3 are compared to the geographical concentrations in cluster 2 in Figure 8.

The evidence in Table 7 confirm the importance of the oil & gas extraction covariate, as it

has the highest sign certainty probability (0.62) among all positive logistic coefficients and

the highest positive estimated logistic coefficient (β̂24 = 0.220).

5.3 Timing of business cycle phases

The analysis now turns to the timing of specific business cycle phases for the nationwide

grouping and the idiosyncratic (non-nationwide) clusters. Figure 9 presents the time series

of the aggregate regime indicator zt, given by the posterior mean probabilities that regimes

associated with contraction phases, zt = 1, 2, 3, are active at time t. zt = 3 is the a priori

nationwide grouping designating that every single 177 economic area unit is in a state of

contraction at time t. It is important to note that this is a much stronger definition of

a negative national growth phase compared to a negative growth phase at higher levels

of aggregation (e.g. state-level or national). Therefore, whenever the probability of this

regime being active is high, the nationwide economic downturn is deemed to have propagated

throughout most relevant markets surrounding metropolitan areas in the United States. The

reported posterior probabilities of this grouping being active during the the early 2000’s

recession and the Great Recession following the financial crisis of 2008 are very intuitive.

Based on employment data for 177 small regional divisions, the top panel of Figure 9 shows

that the early 2000’s recession was quite severe and persistent, lasting considerably longer

than what is given by the NBER recession dates. This result is consistent with what was

observed using state-level employment in Hamilton and Owyang (2012). The results for

the period spanning the Great Recession show a distinct propagation dynamic. This is

characterized by the fact that the probability that all regions are in an active contraction
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phase at time t increases towards one monotonically from the second quarter of 2007. This

observation illustrates that in the earlier stages of the crisis, around 2007-2008, the observed

employment growth patterns where not sufficient to designate a nationwide contraction in

all 177 areas, but as the crisis progressed it’s propagation to other regions in the country

drove employment growth substantially downward across the country to designate a very

high probability of the recession affecting all areas by the end of 2008.

The contraction phase timings for the idiosyncratic clusters, based on posterior prob-

abilities, are not as distinct. They provide information regarding which periods were the

most likely to see either cluster active. The second panel of Figure 9 shows the first cluster

having the highest probability of being active following the early 1990’s recession. This is

the cluster for which regions with high concentrations in the finance and insurance sector

were most likely to be designated, given by a positive influence on a the cluster affiliation

probability. The last panel of Figure 9 shows the regime indicator for the second cluster.

The probabilities of being active for the period 1990-2015 are lower for this cluster, which

has the highest probability of entering a phase of contraction in-between the early 1990’s

and early 2000’s national recessions, and in the second and third quarters of 2015. The

evolution of the regime indicator for this cluster provides only weak evidence of regions with

a high probability of belonging to this cluster as being at-risk to negative co-movements in

employment growth patterns.

The second instrument for understanding the business cycle phases are the estimates

associated with the mechanism of dynamic change in the model. The estimated transition

matrix is given in Table 8. The top-left two-by-two block shows the transition probabilities

between nationwide states of contraction and expansion. These results are consistent with the

results in Hamilton (1989, 1994) and Hamilton and Owyang (2012), all of which accurately

characterize the observed fact that expansionary phases (p11 = 0.86) in the economy are

more persistent than phases of contraction (p22 = 0.72), with contractionary (expansionary)
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Figure 9: Posterior probabilities of aggregate regime indicator zt

19
90

-Q
2

19
91

-Q
2

19
92

-Q
2

19
93

-Q
2

19
94

-Q
2

19
95

-Q
2

19
96

-Q
2

19
97

-Q
2

19
98

-Q
2

19
99

-Q
2

20
00

-Q
2

20
01

-Q
2

20
02

-Q
2

20
03

-Q
2

20
04

-Q
2

20
05

-Q
2

20
06

-Q
2

20
07

-Q
2

20
08

-Q
2

20
09

-Q
2

20
10

-Q
2

20
11

-Q
2

20
12

-Q
2

20
13

-Q
2

20
14

-Q
2

20
15

-Q
2

0

0.2

0.4

0.6

0.8

1
(Nationwide) Posterior probability that all regions are in a contraction phase
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(Non-nationwide) Posterior probability that Cluster 1 is in a contraction phase

19
90

-Q
2

19
91

-Q
2

19
92

-Q
2

19
93

-Q
2

19
94

-Q
2

19
95

-Q
2

19
96

-Q
2

19
97

-Q
2

19
98

-Q
2

19
99

-Q
2

20
00

-Q
2

20
01

-Q
2

20
02

-Q
2

20
03

-Q
2

20
04

-Q
2

20
05

-Q
2

20
06

-Q
2

20
07

-Q
2

20
08

-Q
2

20
09

-Q
2

20
10

-Q
2

20
11

-Q
2

20
12

-Q
2

20
13

-Q
2

20
14

-Q
2

20
15

-Q
2

0

0.1

0.2

0.3

0.4
(Non-nationwide) Posterior probability that Cluster 2 is in a contraction phase

Notes: Shaded regions indicate NBER recessions. Posterior means computed for MCMC sequence based
on N burn−in = 250000 burn-in iterations and Nkeep = 25000 samples retained for inference.
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Table 8: Estimated regime transition probabilities (posterior means)

From
nationwide
expansion

From
nationwide
contraction

From
cluster 1

contraction

From
cluster 2

contraction
To nationwide expansion 0.86 0.10 0.25 0.40

To nationwide contraction 0.03 0.72 0.35 0.21
To cluster 1 contraction 0.03 0.10 0.40 0
To cluster 2 contraction 0.08 0.08 0 0.39

Notes: Bold zeros are transition probabilities that are restricted to take on zero values to ensure that the
MCMC sequence does not switch to a specification with a reverse order of clusters under which the
likelihood would be unchanged.

phases more (less) likely to be followed by a phase of expansion (contraction). The last

two columns of Table 8 show that the idiosyncratic clusters one and two are both equally

persistent (p33 = 0.40 and p44 = 0.39, respectively), with cluster one being much more

likely to be followed by a nation-wide phase of contraction than cluster two (p23 = 0.35 and

p24 = 0.21, respectively).

The estimated transition probabilities generate a measure of duration of all regimes.

The expected recession durations are reported in Table 9. Over the period 1990-2015 nation-

wide expansions are expected to last an average of 7.14 quarters, while nationwide phases of

contraction last an average 3.57 quarters. Contraction phases in clusters one and two last

an average of 1.67 and 1.64 quarters, respectively. If either of these clusters are active and

transition into a nationwide phase of expansion, then these expected durations fall short of

the formal recession definition of two consecutive quarters of negative growth, which in the

empirical context is not based on state or national GDP growth but on employment growth

in small regional divisions. However, the primary interest lies in estimating the probability

that phases of contraction in the clusters are followed by a nationwide contraction, which

would capture the propagation of a regional economic downturn. The probability that a

cluster transitions from a phase of contraction into a nationwide contraction is 0.35 and 0.21

for cluster one and two, respectively.
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Table 9: Expected duration of expansion and contraction phases (in quarters)

Nationwide
expansion

Nationwide
contraction

Cluster 1 in
contraction

Cluster 2 in
contraction

Average number of quarters 7.14 3.57 1.67 1.64

Notes: Average length of each regime as implied by the estimated regime transition probabilities (posterior
means).

5.4 Spatial spillovers and robustness

The observed employment growth rate data is tested for evidence of spatial autocorrelation

using five different spatial weighting structures; see Appendix A.2, Figures 12 and 13. For

each spatial weighting, the vector of employment growth rates, yt, is tested for zero spatial

autocorrelation using Moran’s (1950) I Index and test. Overall, the results strongly reject

the null hypothesis of no spatial autocorrelation in the data across all spatial weightings.

Furthermore, testing indicates positive spatial autocorrelation. This is given by the fact that

Moran’s I Index is generally significantly positive, meaning that values in the dataset tend to

cluster spatially (high values cluster near other high values; low values cluster near other low

values). This supports the application of the proposed spatial model for this data set.

The degree of spatial interactions captured by the SAE component is measured by

ρ, which alleviates the restrictive assumption of a diagonal variance-covariance matrix for

the error vector. The posterior draws of the spatial parameter ρ are shown in Figure 10.

Inference is drawn on the entire surface of the posterior distribution for which the draws of

ρ are summarized by central tendency measures: mean, median and mode of 0.72, 0.73 and

0.68, respectively. The spatial parameter in the spatial autoregressive error (SAE) component

is interpreted as capturing the overall degree of spatial correlation between the unobserved

regional shocks. With a contiguity spatial weighting a positive value of ρ indicates that

shocks are expected to be higher if, on average, shocks to neighboring regions are high. The

strong positive degree of spatial dependence implies that for the period 1990–2015 there were

substantial spatial spillovers between regions.
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Figure 10: Posterior draws of ρ
ρ̂ = 0.72 (red line)

(a) Histogram

(b) Kernel density estimate

Figure 10 provides evidence that the SAE component in the model is capturing infor-

mation that the restricted (i.e. non-spatial) model overlooks. The posterior distribution has

a very high sign certainty probability of 99 percent, meaning that almost all posterior draws

of ρ lie on the same side of zero as the mean. This strongly rejects the hypothesis of ρ = 0,

ruling in favor of the spatial model over the nested restricted model. This is in agreement

with Moran’s test and the cross-validation scores, which also favor the spatial specification.

Recall that the spatial weighting structure, given by the matrix W, is defined based on

shared physical borders between regions. For this weighting structure the evidence identifies

a strong positive degree of spatial correlation. The full model is estimated for four other

weighting specifications of W to assess how robust the finding of a strong positive spatial
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Table 10: Spatial spillovers spanning the period 1990–2015

Wcontig W400km W600km W800km Winv-dist

ρ̂ 0.72 0.77 0.85 0.89 0.94
(0.47,0.97) (0.58, 0.97) (0.72,0.98) (0.78,0.99) (0.88,0.99)

(max = 31152)
Number of weights 912 1882 3926 6552 31152

Notes: The posterior means of ρ are obtained by estimating the full model with two (κ = 2) idiosyncratic
clusters on different spatial weighting matrices W. Wcontig is the contiguity weighting, W400km, W600km
and W800km are 400, 600 and 800 kilometer distance band weightings, and Winv-dist is the symmetric
inverse distance weighting. The 90 percent equal-tailed credible intervals are given in parentheses.

interaction is to various spatial weights. The robustness results are given in Table 10. The

estimates of ρ for each spatial weighting are given in an increasing order of the number of

weights defined in each W matrix for the 177 geographical units. The most sparse matrix is

the contiguity weighting, Wcontig, with 912 non-zero weights. The least sparse matrix is the

symmetric inverse distance weighting, Winv-dist, with 31152 non-zero weights, which is the

maximum number of weights allowed in any given specification. The results show that the

finding of a strong positive degree of spatial correlation is robust to various spatial weighting

measures. Furthermore, ρ̂ increases as more connections are specified between regions.

For the main model specification, the posterior mean (0.72) of the spatial parameter

for the period 1990-2015 is comparable to the findings of recent empirical work analyzing

the United States economy. Fogli et al. (2015), who use a non-regime-switching spatial

autoregressive lag (SAL) model to analyze county-level unemployment and housing price

data in the United States, find that unemployment rates are spatially dispersed and spatially

correlated. They estimate the degree of correlation to vary between 0.46–0.64 over the early

1990’s recession, 0.58–0.82 over the early 2000’s recession and 0.63–0.83 over the Great

Recession. Where their approach concentrates on the evolution of the spatial correlation

parameter through time, with national recession dates exogenous to the model, the spatial

model in this paper captures a non-time varying degree of spatial correlation in a framework

that endogenously identifies business cycle phases and regional clusters. To draw comparable
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inferences estimating the model for different subsamples of the data provides a time varying

assessment of spatial correlation. Table 11 shows the varying degrees of spatial spillovers for

disjoint subsets of the data spanning each of the three observed national recessions for the

period 1990-2015. Focusing on the periods spanning only the national recessions, using either

NBER recession dates or the nationwide contraction periods identified in the model, provides

insufficient data to obtain meaningful estimates in a regime-switching model. Therefore, the

full data set for the period 1990–2015 is split into subsamples of approximately equal length.

The results show that the degree of spatial correlation is substantially higher (0.82) for the

period spanning and following the Great Recession, compared to 0.71 and 0.70 for 1990–1999

and 2000–2006, respectively. The stronger spatial interactions between regional shocks for

the period 2007–2015 suggest that the importance of geographical proximity between regional

markets was amplified during the crisis and in the period that followed. This amplification

is robust to other spatial weightings.

5.5 Policy implications

This section discusses some of the policy implications based on the empirical findings. Sup-

pose you are a regional policy maker or researcher interested in a specific United States county

or small regional area (e.g. BEA Economic Area 146 San Jose-San Francisco-Oakland, CA).

You need to know if your region is likely to become economically at-risk or potentially

distressed separately from the national economy, and to do so you require an informative

assessment of any synchronicities (i.e. co-movements) with other regions in the country

regarding how your small region’s economy has evolved over the last several decades. Fur-

thermore, you have existing knowledge regarding several types of connections to other regions

that you know are important for your local economy, and you wish to explore and compare

them through time. Insights into these dynamics are provided by the spatial and cluster-

ing components in the model, which provide evidence for several policy-relevant questions.
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Table 11: Spatial spillovers spanning the national recessions for the period 1990-2015

Structure
Weighting

(max = 31152)
Number of weights 1990–1999 2000–2006 2007–2015

Wcontig 912 (0.44,0.97)
0.70

(0.42,0.96)
0.70

(0.66,0.98)
0.82

W400km 1882 (0.53,0.97)
0.75

(0.47,0.97)
0.72

(0.71,0.98)
0.85

W600km 3926 (0.71,0.98)
0.85

(0.64,0.98)
0.81

(0.82,0.99)
0.90

W800km 6552 (0.79,0.98)
0.89

(0.73,0.98)
0.86

(0.87,0.99)
0.93

Winv-dist 31152 (0.88,0.99)
0.94

(0.86,0.99)
0.93

(0.93,0.99)
0.97

Notes: The posterior means of ρ are obtained by estimating the full model with two (κ = 2) idiosyncratic
clusters on three subsets of the full data set: 1990q2–1999q4, 2000q1–2006q4 and 2007q1–2015q3. The
same subsets are used to estimate the model with different spatial weighting matrices W. Wcontig is the
contiguity weighting, W400km, W600km and W800km are 400, 600 and 800 kilometer distance band
weightings, and Winv-dist is the symmetric inverse distance weighting.The 90 percent equal-tailed credible
intervals are given in parentheses.

For example, (Q1) “Have there been any geographical concentrations (or clusters) of small

regions in the United States, over the last several decades, that have been impacted by

recessions in similar ways, which have included the counties surrounding the San Jose-San

Francisco-Oakland area?", (Q2) “What geographical or economic factors receive the highest

degree of spatial interaction over that period? Is it shared physical borders with neighboring

regions? Is it connections beyond immediate neighboring regions?", and (Q3) “Over the last

several decades, when was the degree of spatial spillovers between regions the highest?” For

exposition the discussion will use BEA Economic Area 146 as a working example.

The degree of spatial interactions is found to be strong and positive for neighboring

regions over the period spanning the last three national recessions (see Section 5.4 for details).

The degree of spatial spillovers was highest for the period 2007–2015 (ρ̂ = 0.82) than for
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the periods spanning the early 1990’s and early 2000’s national recessions, where ρ̂ = 0.70

for both periods. This is important for policy analysis because it identifies that during the

Great Recession and in its aftermath, the integration of the United States economy played

a more important role. Specifically, the impact of regional shocks on neighboring regions

during this period are expected to be higher than in previous decades. This speaks to the

growing importance of accounting for neighboring regions in any analysis or modeling that

focuses on a specific geographical unit such as a county. These results provide answers to

policy questions like (Q2) and (Q3) in the previous paragraph.

BEA Economic Area 146 is comprised of 22 counties that define the relevant regional

markets surrounding San Jose, San Francisco and Oakland in the state of California. This

region is designated to Cluster 1 with a high probability of 0.69; see Figures 11 and 7. It

is important to refer to Figures 5(a) and 5(b) to see how this region was designated to the

grouping. This region has a low probability of being designated to Cluster 1 based only on

the industrial characteristics of that region, see Figures 5(a). The region is designated to

Cluster 1 with a high probability when the model updates with observed regional employment

growth. Another way to confirm this is to look at the regions characteristics and follow the

discrete derivative analysis in Section 5.2. The industrial characteristics of this region are

given in Table 12, along with the national averages and values of one standard deviation above

the national averages. The numbers in the table confirm that the industrial composition of

this region is very comparable to the national average, which given the models estimated

logistic coefficients discussed earlier, means that it is not likely that the model would assign

this region to Cluster 1 based solely on these covariates. The designation to Cluster 1

is therefore strongly driven by the observed employment growth patterns, see Figures 5(b).

This means that co-movements in observed employment growth for the period 1990–2015 are

more important for affiliating the counties in BEA Economic Area 146 with other regions in

Cluster 1. The estimated average employment growth for this region over periods of national

recessions and regional recessions is µ̂n0 + µ̂n1 = −2.20. In the context of this region,
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Table 12: Industrial Characteristics of BEA EA 146
San Jose-San Francisco-Oakland, CA

Manufacturing
Finance &
insurance

Mining &
quarrying

Oil & gas
extraction Small firms Construction

EA 146 13.86 4.62 0.02 0.00 48.06 5.53
x̄i 15.86 4.32 0.18 0.12 47.31 5.93
x̄i + sxi

22.71 5.67 0.77 0.49 55.00 7.50
Notes: x̄i is the national average of covariate i. x̄i + sxi

is the one standard deviation bound on the
national average of covariate i.

the answer for the policy-relevant question (Q1) posed earlier would be: “Yes, counties

surrounding San Fransisco, CA belong to a geographical concentration in Cluster 1 that has

been impacted by recessions in similar ways in the past several decades.”

Identifying geographical areas that are likely to experience collective regional reces-

sions helps determine which regions would stand to benefit from industry-specific economic

stimulus to prevent chronic economic distress. The importance of specific industries for each

cluster provides guidance for industry-specific analysis. Although industrial composition is

represented by averages over the full period analyzed, having identified the composition of

each cluster, one can turn to a more in-depth industry/sector analysis to better understand

similarities and differences across regions, which is beyond the scope of this paper.

The notion of prolonged economic distress is explained by how each cluster of regions

exhibiting common economic downturns transition between business cycle phases over the

observed period. The mechanism of dynamic change embodied by the estimated transition

probabilities provides a measure of persistence, transition and expected duration for specific

business cycle phases. For the first cluster, where high labor concentration in the financial

sector and low labor concentrations in construction and manufacturing play an important

role, the probability of transitioning into a nationwide state of contraction is highest (0.35).

When active, this cluster has an expected duration of 1.67 quarters and if followed by a

nationwide contraction the joint expected duration is 5.24 quarters. For the second cluster
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the expected duration of a similar occurrence is only slightly lower (5.21 quarters), but the

probability of this cluster transitioning into a nationwide economic downturn is much lower

(0.21). This evidence suggests that over the period 1990–2015 the regions with a higher

probability of being affiliated to the first cluster were more likely group to exhibit prolonged

economic distress.

6 Conclusion

This paper has developed a new framework for measuring spatial interactions when estimat-

ing macroeconomic regimes and regime shifts. The developed model was used to conduct an

empirical investigation of regional business cycles characteristics of the 177 contiguous BEA

economic areas in the United States for the period 1990–2015. Investigating small regional

economies has provided greater geographical detail for understanding regional contagion.

The proposed methodological extension delivers a parsimonious framework for capturing

spatial interactions in a multivariate Markov-switching model, an approach that enables the

spatial interaction aspect of regional business cycles to be measured. This extension also

improves the reliability of inference when investigating a large number of geographical units

by better accounting for spatial regional (cross-sectional) dependence. Significant positive

spatial spillovers between regional shocks have been identified due to the importance of ge-

ographical factors. This regional propagation dynamic would be overlooked if one were to

apply the model without the proposed spatial extension developed in this paper. The esti-

mated degree of spatial dependence implies that shocks to small regions are expected to be

higher, when shocks to neighboring regions are high on average. The magnitude of this effect,

which speaks to the importance of geographical proximity between regional markets, is found

to be amplified for the period spanning and following the Great Recession, 2007–2015.

Two groupings of regions that tend to co-move during regional economic downturns
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have been endogenously identified through common business cycle and industrial character-

istics. The general observation is that the first grouping is driven by regional economies

with important roles in the financial sector, while the second grouping is driven by regional

economies with important roles in oil and gas extraction. Economic downturns experienced

by regions in the first grouping are the most likely to be followed by a nationwide economic

downturn. The empirical results also provide a region-by-region assessment for explaining

the region-specific characteristics that designate regions to the same grouping. Regions with

a high probability of affiliation with either grouping are interpreted as potentially at-risk to

collective economic distress.
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Appendix A Figures, Tables and Convergence

A.1 BEA Economic Areas

Figure 11: BEA Economic Areas

(a) Surrounding statistical areas
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A.2 Testing for spatial correlation

Figure 12: Moran’s I Statistic: Positive (negative) values indicate positive (negative) spatial
autocorrelation
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Figure 13: Moran’s I Test for Spatial Correlation: P-values (H0 : no spatial autocorrelation)
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A.3 Convergence

This section provides a formal assessment of MCMC output convergence. The numerical

diagnostic for chain convergence will follow Gelman and Rubin (1992) (henceforth GR diag-

nostic). The diagnostic is formed for each individual scalar parameter (θ) and is based on

four separate MCMC runs of the full model. The GR measures the potential scale reduction

from continuing the MCMC run further. If the chain has converged the GR value for θ

should be close to one, indicating that further MCMC draws are not needed to improve our

inference about the posterior distribution of θ.

GR is constructed based on within and between chain variability of posterior parameter

draws. The between-chain variance for M chains is defined as

Varb = 1
M − 1

M∑
m=1

(θ̂m − θ̂)2 (30)

where θ̂m is the posterior mean of chain m, and θ̂ is the pooled posterior mean. The within-

chain variance is the average of the M within-sequence variances and is defined as

Varw = 1
M

M∑
m=1

1
Nburn-in − 1

Nkeep∑
n=Nburn-in+1

(θmn − θ̂m)2 (31)

where θmn is the nth posterior draw for chain m. The weighted average of Varb and Varw

gives an estimate of the target variance,

σ̂2
θ = Nkeep − 1

Nkeep Varw + 1
Nkeep Var

b (32)

which overestimates the population variance σ2
θ , while Varw underestimates σ2

θ , both con-

verge in expectation as n→∞.

The GR diagnostic is given by
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GR =

√√√√ V̂

Varw
d

d− 2 , (33)

where V̂ is the scale of a Student’s t-distribution centered at the pooled posterior mean θ̂

and given by

V̂ = σ̂2
θ + Varb

MNkeep , (34)

and d are the degrees of freedom estimated as

d = 2V̂ 2

V̂ ar
V̂

(35)

Table 13: GR convergence diagnostic results

Parameter Group Parameter count All GR < 1.1
ρ 1 Y
µ0 177 Y
µ1 177 Y
Ω 177 Y
z 408 Y
P 14 Y
h1 177 Y
h2 177 Y
β1 7 Y
β2 7 Y

Notes: GR diagnostic values based on four MCMC runs of N burn−in = 250000 burn-in iterations and
Nkeep = 25000 posterior draws retained for inference. The GR value is calculated for each individual
sequence of every single parameter separately.

The results in Table 13 show that all 1322 parameters converge, indicating that the

target posterior distribution based on the retained MCMC draws are reliable for inference

and there is very little potential scale reduction from continuing the MCMC algorithm.
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A.4 Other parameter estimates

Table 14: Regional average employment growth during expansions
κ = 2, estimated coefficients µ0 (posterior means)

Region µ0 Region µ0 Region µ0 Region µ0
1. 0.25 47. 0.45 93. 0.31 138. 0.40
2. 0.33 48. 0.14 94. 0.59 139. 0.28
3. 0.33 49. 1.02 95. 0.79 140. 0.86
4. 0.18 50. 0.41 96. 0.22 141. 0.18
5. 0.42 51. 0.49 97. 0.26 142. 1.49
6. 0.60 52. 0.40 98. 0.70 143. 0.19
7. 0.58 53. 0.45 99. 0.53 144. 1.05
9. 0.98 54. 0.20 100. 0.22 145. 1.02
10. 0.77 55. 1.06 101. 0.85 146. 0.91
11. 1.57 56. 0.92 102. 0.22 147. 0.58
12. 0.16 57. 2.34 103. 0.17 148. 1.26
13. 2.76 58. 0.49 104. 1.70 149. 1.14
14. 0.14 59. 0.33 105. 0.49 150. 0.30
15. 0.99 60. 0.36 106. 0.43 151. 0.27
16. 0.30 61. 1.03 107. 1.60 152. 0.90
17. 2.11 62. 0.74 108. 0.18 153. 0.30
18. 0.43 63. 0.21 109. 0.80 154. 0.43
19. 0.34 64. 0.86 110. 2.36 155. 1.26
20. 1.09 65. 0.22 111. 1.41 156. 0.58
21. 1.84 66. 0.18 112. 0.82 157. 0.90
22. 0.80 67. 0.41 113. 0.45 158. 0.15
23. 0.12 68. 0.54 114. 0.23 159. 1.02
24. 1.12 69. 1.11 115. 0.85 160. 0.27
25. 0.33 70. 0.56 116. 1.34 161. 0.26
26. 0.75 71. 0.67 117. 0.66 162. 0.06
27. 1.03 72. 0.16 118. 0.75 163. 0.92
28. 0.29 73. 1.58 119. 0.82 164. 0.46
29. 0.12 75. 1.25 120. 0.75 165. 0.19
30. 1.35 76. 0.29 121. 1.20 166. 0.34
31. 1.08 77. 0.37 122. 0.52 167. 0.30
32. 0.47 78. 0.70 123. 0.94 168. 0.98
33. 0.51 79. 1.07 124. 0.26 169. 0.59
34. 0.99 80. 0.18 125. 1.12 170. 0.51
35. 0.15 81. 0.17 126. 0.41 171. 0.25
36. 1.73 82. 0.47 127. 0.17 172. 0.87
37. 0.88 83. 0.26 128. 1.75 173. 0.27
38. 0.52 84. 0.66 129. 0.15 174. 0.82
39. 0.69 85. 0.42 130. 0.94 175. 0.42
40. 1.01 86. 1.03 131. 0.97 176. 0.33
41. 0.50 87. 0.24 132. 0.36 177. 1.17
42. 1.76 88. 0.66 133. 1.14 178. 0.19
43. 0.23 89. 0.90 134. 0.48 179. 0.21
44. 0.10 90. 0.92 135. 0.21
45. 1.63 91. 0.91 136. 0.39
46. 0.62 92. 2.61 137. 0.65

Notes: Region number corresponds to the BEA code associated with that economic area. All posterior draws of µ0 lie on the
same side of zero as their respective posterior means.
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Table 15: Regional average employment growth during recessions
κ = 2, estimated coefficients µ0 + µ1 (posterior means)

Region µ1 Region µ1 Region µ1 Region µ1
1. -0.81 47. -1.76 93. -0.82 138. -1.02
2. -0.19 48. -0.52 94. -0.47 139. -0.73
3. -1.28 49. 0.55 95. 0.13 140. -0.03
4. -0.13 50. -1.09 96. -0.26 141. -0.29
5. -0.50 51. -0.41 97. -1.43 142. -0.48
6. -0.34 52. -0.85 98. -0.58 143. -0.54
7. 0.17 53. -0.58 99. -0.35 144. 0.39
9. 0.34 54. -0.25 100. -0.81 145. 0.16
10. -0.46 55. 0.58 101. 0.19 146. -2.20
11. -0.71 56. -0.03 102. -1.32 147. 0.04
12. -0.85 57. 1.73 103. -0.73 148. 0.13
13. 0.07 58. -1.01 104. 0.81 149. 0.25
14. -0.48 59. -1.14 105. -0.98 150. -1.04
15. 0.10 60. -0.87 106. -1.07 151. -0.53
16. -1.02 61. 0.10 107. -0.53 152. -1.59
17. 0.16 62. 0.12 108. -1.15 153. -0.50
18. -0.06 63. -0.27 109. -0.84 154. -0.56
19. -0.23 64. -0.28 110. 0.25 155. 0.45
20. 0.48 65. -1.04 111. 0.21 156. -1.29
21. -0.14 66. -1.53 112. -0.95 157. -0.73
22. -1.30 67. -1.22 113. -0.58 158. -1.00
23. -0.68 68. -1.51 114. -0.76 159. -0.25
24. -0.04 69. -0.33 115. -0.14 160. -1.07
25. -0.27 70. -0.05 116. 0.18 161. -0.33
26. -0.10 71. -0.43 117. -0.73 162. -0.72
27. -0.22 72. -1.24 118. -1.03 163. -0.61
28. -0.50 73. 0.53 119. -0.10 164. -1.42
29. -0.25 75. -0.14 120. -0.53 165. -0.78
30. -0.03 76. -0.47 121. -0.39 166. -0.61
31. -1.08 77. -0.35 122. -0.79 167. -0.43
32. -1.06 78. -0.19 123. -0.30 168. -0.06
33. -0.60 79. -0.79 124. -0.75 169. -0.47
34. 0.53 80. -0.52 125. -0.16 170. -1.14
35. -1.03 81. -0.55 126. -0.73 171. -1.38
36. -0.34 82. -0.97 127. -0.81 172. 0.04
37. 0.29 83. -0.75 128. -0.47 173. -0.07
38. -0.75 84. -0.68 129. -0.55 174. -0.58
39. -0.44 85. 0.10 130. -0.80 175. -0.34
40. 0.15 86. -0.02 131. -1.08 176. -0.22
41. -0.21 87. -0.24 132. -0.69 177. -0.41
42. -0.78 88. 0.18 133. -0.14 178. -1.18
43. -0.81 89. 0.28 134. 0.20 179. -0.82
44. -1.36 90. -0.33 135. -0.55
45. -1.22 91. -0.50 136. -0.77
46. -0.19 92. 1.20 137. -0.55

Notes: Region number corresponds to the BEA code associated with that economic area. All posterior draws of µ1 lie on the
same side of zero as their respective posterior means.
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Table 16: κ = 2, Estimated σ2 (posterior means)
N burn−in = 250000 Nkeep = 25000

Region σ2 Region σ2 Region σ2 Region µ1
1. 6.63 47. 17.26 93. 10.38 138. 2.79
2. 6.93 48. 5.48 94. 2.27 139. 2.28
3. 7.55 49. 4.64 95. 3.35 140. 5.01
4. 1.44 50. 4.72 96. 1.77 141. 4.34
5. 4.65 51. 5.98 97. 3.96 142. 2.76
6. 10.21 52. 2.98 98. 2.11 143. 6.45
7. 3.53 53. 4.12 99. 7.10 144. 3.73
9. 3.12 54. 2.26 100. 6.76 145. 4.40
10. 5.71 55. 3.64 101. 2.30 146. 3.78
11. 2.82 56. 10.13 102. 5.11 147. 10.36
12. 6.10 57. 5.56 103. 4.68 148. 14.92
13. 4.60 58. 22.32 104. 9.35 149. 4.17
14. 4.31 59. 6.37 105. 3.46 150. 11.83
15. 7.94 60. 4.57 106. 4.78 151. 4.14
16. 11.87 61. 19.20 107. 16.75 152. 15.47
17. 12.33 62. 9.01 108. 1.89 153. 5.54
18. 5.74 63. 5.52 109. 1.93 154. 3.25
19. 1.82 64. 3.32 110. 33.47 155. 2.05
20. 5.51 65. 11.16 111. 9.45 156. 5.32
21. 11.44 66. 1.89 112. 5.46 157. 12.05
22. 1.17 67. 4.72 113. 7.91 158. 5.26
23. 2.34 68. 3.70 114. 4.59 159. 4.35
24. 3.65 69. 25.45 115. 4.78 160. 1.88
25. 4.40 70. 1.19 116. 2.92 161. 2.86
26. 7.32 71. 4.60 117. 10.79 162. 1.20
27. 4.13 72. 1.73 118. 0.84 163. 21.71
28. 4.22 73. 5.69 119. 2.80 164. 6.46
29. 1.63 75. 2.77 120. 2.93 165. 5.82
30. 6.45 76. 4.09 121. 5.41 166. 2.83
31. 3.41 77. 5.83 122. 5.35 167. 3.41
32. 1.23 78. 1.74 123. 13.90 168. 6.72
33. 2.25 79. 5.54 124. 9.64 169. 13.46
34. 6.00 80. 2.98 125. 8.74 170. 3.80
35. 1.21 81. 5.32 126. 3.99 171. 4.93
36. 4.58 82. 5.84 127. 0.97 172. 7.97
37. 3.06 83. 3.86 128. 6.10 173. 2.87
38. 6.17 84. 1.95 129. 2.35 174. 1.70
39. 5.44 85. 3.58 130. 4.02 175. 5.43
40. 1.69 86. 34.34 131. 3.35 176. 4.21
41. 5.12 87. 6.98 132. 5.05 177. 68.12
42. 1.59 88. 3.22 133. 2.12 178. 6.73
43. 5.04 89. 4.93 134. 3.53 179. 3.17
44. 2.10 90. 8.71 135. 8.16
45. 3.41 91. 13.50 136. 4.19
46. 2.41 92. 13.96 137. 2.02

Notes: Region number corresponds to the BEA code associated with that economic area.
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Appendix B Statistical Inference, Estimation Algorithms
and Proofs

This appendix provides supplementary information regarding the Bayesian statistical infer-

ence; see Section B.1, the MCMC estimation algorithm; see Section B.2, and the complete

derivations of the posterior conditional distributions that are impacted by the introduction

of the spatial parameter ρ; see Sections B.3, B.4 and B.5.

B.1 Statistical inference

Conditional distribution of transition proability matrix P

Conditional onH and z the inference is that of a standardK-state Markov switching process.

The conditional posterior distribution does not involve ρ. Chib (1996)

p(P|Y, ρ,µn,Ω, H) ∝ π(z|P)π(P)

The transition probability matrix, P, is obtained by independently drawing every column

Pp from π(Pp) ∼ D(α∗p) with the qth hyperparameter, α∗pq, of vector α∗p calculated as

α∗pq =
∑T
t=2 δ(zt−1 = p, zt = q)∑T

t=2 δ(zt−1 = p)
, (36)

the fraction of times regime p is followed by regime q in the drawn sequence

{z1, z2, . . . , zT}.
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Conditional distributions of unobserved latent variables z, h, ξ, λ

The aggregate regime indicator, z, for which zt ∈ {1, 2, . . . , K}, designates which regime is

in active state at date t. The conditional posterior distribution of z is computed using the

two step filter of Hamilton (1994). ρ only enters the forecast error computation (i.e. the

non-constant portion of the likelihood) Chib (1996). In the first step, the Hamilton Filter

is used to obtain the filtered transition probabilities. The second step sequentially draws

zT , zT−1, . . . , z1 by recursively iterating backwards. This is accomplished by multiplying the

filtered probabilities by the forward transition probability.

p(z|Y, ρ,µ,Ω, H, β) ∝ L(ρ,µ,Ω, z, h; Y)π(z|P) (37)

Let H = {h, ξ, λ}. For the set h = {h1,h2, . . . ,hK−2}, each vector hk = (h1kh2k . . . hNk)′

determines which regions belong to cluster k. For hk, introducing ρ affects the likelihood

function.

p(hk|Y,H[k], ρ,µ,Ω,P, β) ∝ L(ρ,µ,Ω, z, h; Y)π(hk|βk)

=
N∏
n=1
L(ρ, µn0, µn1, σ

−2
n , z, hnk, h

[k]; Yn)π(hnk|βk),
(38)

where H[k] is the set of all elements belonging to the cluster affiliation parameters not

associated with cluster k. That is, H[k] = {hj, ξj,λj : j = 1, . . . , K − 2; j 6= k} and

h[k] = {hni : i = 1, . . . , K − 2; i 6= k}.

Each individual hnk indicates the affiliation of region n to cluster k independently

across regions - follows from (17) - and is drawn from

Pr(hnk = 1|Yn, h
[k], ρ,µn, σ

−2
n ,P, z,βk)

= L(hnk = 1, h[k], ρ,µn, σ
−2
n , z; Yn)Pr(hnk = 1|βk)∑1

i=0 L(hnk = i, h[k], ρ,µn, σ
−2
n , z; Yn)Pr(hnk = i|βk)

,
(39)

where Pr(hnk = i|βk) is computed from
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Pr(hnk = i|βk) =


1

1+exp(x′
nk
βk) if i = 0

exp(x′
nkβk)

1+exp(x′
nk
βk) if i = 1

. (40)

Nothing is affected by the inclusion of ρ for the auxiliary parameters ξ and λ, the

outcomes of which influence the generation of hnk. Hamilton and Owyang (2012) introduce

ξ and λ to generate hnk following the auxiliary variable approaches to Bayesian binary and

multinomial regression of Holmes and Held (2006)8. As in Hamilton and Owyang (2012),

the conditional posterior distribution of ξk is

p(ξk|Y,hk,H[k], ρ,µ,Ω,P, z, β) = π(ξk|hk,βk)

=
N∏
n=1

π(ξnk|hnk,βk).
(41)

Each element ξnk is computed from ξnk = x′nkβk − log(u−1
nk − 1), with u−1 computed from

u−1 =


1

1+exp(x′
nk
βk)u

∗
nk if hnk = 0

exp(x′
nkβk)

1+exp(x′
nk
βk) + 1

1+exp(x′
nk
βk)u

∗
nk if hnk = 1

, (42)

where u∗nk is drawn from u ∼ U[0, 1].

The conditional posterior distribution of λk is

p(λk|Y, ξk,hk,H[k], ρ,µ,Ω,P, z, β) = π(λk|ξk,βk)
∝ π(ξk|hk,βk)π(λk)

=
N∏
n=1

π(ξnk|λnk,βk)π(λnk).
(43)

Following Holmes and Held (2006), each element λnk is a draw from λnk ∼ GIG
(

1
2 , 1, r

2
nk

)
where r2

nk is calculated from9

rnk = ξnk − x′nkβk. (44)

8The feasibility of their approach for logistic regression with auxiliary variables is based on the observa-
tions of Andrews and Mallows (1974)

9Generalized Inverse Gaussian distribution
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Conditional distribution of population parameter β

p(β|Y, ρ,µ,Ω,P, z,H) =
κ∏
k=1

p(βk|ξk,λk) (45)

The conditional posterior distribution is just a standard Normal regression model for each

βk. ρ has no impact here. κ = K − 2 is the number of clusters. The conditional posterior

of βk is given by

βk|Y,µn,Ω,P, z,H ∼ N
(
b∗k,B∗k

)
,

with a mean b∗k and variance B∗k

B∗k =
(
B−1
k + XkV−1

k X′k
)−1

b∗k = B∗k
(
B−1
k bk + XkV−1

k ξk

) (46)

which is a standard Normal regression of the form

ξk = Xkβk + εk, εk ∼ N
(
0,Vk

)
Vk = diag(λ1k, λ2k, . . . , λNk)

(47)

B.2 Complete MCMC algorithm

The complete Metropolis-within-Gibbs sampling algorithm, corresponding to the compact

outline of the algorithm given in Table 3 is:

Step 0: Initialize all parameters

Step 1: Draw cluster

(a) Draw β
(j+1)
k from βk|Y,µn,Ω,P, z,H ∼ N

(
b∗k,B∗k

)
with a mean b∗k and variance

B∗k calculated from:
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B∗(j+1)
k =

(
B−1
k + XkV−1(j)

k X′k
)−1

b∗(j+1)
k = B∗(j+1)

k

(
B−1
k bk + XkV−1(j)

k ξ
(j)
k

) (48)

which is a standard Normal regression of the form

ξk = Xkβk + εk, εk ∼ N
(
0,Vk

)
Vk = diag(λ1k, λ2k, . . . , λNk)

(49)

(b) Draw h
(j+1)
nk , the affiliation of region n to cluster k independently across regions

(follows from (17)) from

Pr(h(j+1)
nk = 1|Yn, h

[k], ρ(j),µ(j)
n , σ−2(j)

n ,P(j), z(j), β
(j+1)
k )

= L(h(j+1)
nk = 1, h[k], ρ(j),µ(j)

n , σ−2(j)
n , z(j); Yn)Pr(h(j+1)

nk = 1|β(j+1)
k )∑1

i=0 L(h(j+1)
nk = i, h[k], ρ(j),µ

(j)
n , σ

−2(j)
n , z(j); Yn)Pr(h(j+1)

nk = i|β(j+1)
k )

(50)

where Pr(h(j+1)
nk = i|β(j+1)

k ) is computed from

Pr(h(j+1)
nk = i|β(j+1)

k ) =


1

1+exp(x′
nk
β

(j+1)
k

)
if i = 0

exp(x′
nkβ

(j+1)
k

)
1+exp(x′

nk
β

(j+1)
k

)
if i = 1

(51)

and h[k] = {hni : i = 1, . . . , K − 2; i 6= k}

(c) Draw ξ
(j+1)
nk = x′nkβ

(j+1)
k − log(u−1(j+1)

nk − 1) where u−1(j+1) is computed from

u−1(j+1) =


1

1+exp(x′
nk
β

(j+1)
k

)
u∗nk if h(j+1)

nk = 0
exp(x′

nkβ
(j+1)
k

)
1+exp(x′

nk
β

(j)
k

)
+ 1

1+exp(x′
nk
β

(j+1)
k

)
u∗nk if h(j+1)

nk = 1
(52)

where u∗nk is a draw from u ∼ U[0, 1]

(d) Draw λ
(j+1)
nk from λnk ∼ GIG

(
1
2 , 1, r

2
nk

)
where r2

nk is calculated from10:

rnk = ξ
(j+1)
nk − x′nkβ

(j+1)
k (53)

Step 2: Draw µ(j+1)
n from µn|Y, ρ, σ−2

n ,P, z, h, β ∼ N
(
m∗,Σn

)
with a mean m∗ = A−1b

and variance Σn = A−1 calculated from:
10Generalized Inverse Gaussian distribution
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A = σ−2(j)
n (1 + ρ(j)Wnn)2

T∑
t=1

w(z(j)
t , h(j+1))w(z(j)

t , h(j+1))′ + [σ2(j)
n M]−1

b = σ−2(j)
n

T∑
t=1

(
w(z(j)

t , h(j+1))(1 + ρ(j)Wnn)
)(
ytn − ρ(j)

N∑
j=1

Wnjytj

)
+ [σ2(j)

n M]−1m

(54)

where w(z(j)
t , h(j+1)) = [1, h(j+1)

n,z
(j)
t

]′.

Step 3: Draw σ−2(j+1)
n from σ−2

n |Y, ρ,µn,P, z, h, β ∼ Γ
ν+T

2 , δ+δ̂2

 with the hyperparam-

eter:

δ̂ =
T∑
t=1

(
ytn − µ(j+1)

n0 − µ(j+1)
n1 h

(j+1)
n,z

(j)
t

− ρ(j) ∑
i 6=n

Wnj(yti − µ(j+1)
i0 − µ(j+1)

i1 h
(j)
i,z

(j)
t

)

− ρ(j)Wnn(ytn − µ(j+1)
n0 − µ(j+1)

n1 h
(j+1)
n,z

(j)
t

)
)2

(55)

Step 4: Draw ρ(j+1) using the M-H algorithm defined in Table 2.

Step 5: Draw the aggregate regime indicator, z(j+1) (recall that zt ∈ {1, 2, . . . , K} signifies

which cluster is in recession at date t.).

Filter Step Apply the Hamilton Filter to obtain the filtered transition probabilities

Generation Step Sequentially draw z
(j+1)
T , z

(j+1)
T−1 , . . . , z

(j+1)
1 by recursively iterating

backwards. This is accomplished by multiplying the filtered probabilities by the

forward transition probability

Step 6: Draw the transition probabilities, P(j+1), by independently drawing every column

P(j+1)
p from Pp ∼ D(α∗p) with the qth hyperparameter, α∗pq, of vector α∗p calculated as

α∗(j+1)
pq =

∑T
t=2 δ(z(j + 1)t−1 = p, z(j + 1)t = q)∑T

t=2 δ(z(j + 1)t−1 = p)
(56)

the fraction of times regime p is followed by regime q in the drawn sequence

{z(j+1)
1 , z

(j+1)
2 , . . . , z

(j+1)
T }.
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B.3 Conditional posterior distribution of µ

This section derives the conditional posterior distribution of µ. The key to deriving the

conditional posterior distribution of µn is themultivariate completion of squares or ellipsoidal

rectification identity:

u′Au− 2α′u = (u− A−1α)′A(u− A−1α)− u′A−1α. (57)

The conditional posterior distribution of µ is:

p(µn|Y, ρ, σ−2
n ,P, z, h, β) ∝ π(µn|σ−2

n )L(ρ,µn, σ−2
n z, h;Yn)

=
∣∣∣σ2
nM

∣∣∣−0.5
exp

− 1
2(µn −m)′[σ2

nM]−1(µn −m)


× σ−Tn |IN − ρW|T exp
− 1

2

N∑
n=1

(
σ−2
n

T∑
t=1

(
ytn − ρ

N∑
j=1

Wnjytj − µ′nw(zt, h) + ρ
N∑
j=1

Wnj(µj0 + µj1hj,zt)
)2
)

∝ exp
− 1

2

(
µ′n[σ2

nM]−1µn − 2µ′n[σ2
nM]−1m + m′[σ2

nM]−1m
)

× exp
− 1

2σ
−2
n

 T∑
t=1

(
ytn − ρ

N∑
j=1

Wnjytj

)2

− 2
T∑
t=1

(
µ′nw(zt, h) + ρ

N∑
j=1

Wnj(µj0 + µj1hj,zt)
)(
ytn − ρ

N∑
j=1

Wnjytj

)

+
T∑
t=1

(
µ′nw(zt, h) + ρ

N∑
j=1

Wnj(µj0 + µj1hj,zt)
)2
.

All terms constant with respect to µn including all {µj : j 6= n} drop out into the propor-
tionality constant.

∝ exp
− 1

2

(
µ′n[σ2

nM]−1µn − 2µ′n[σ2
nM]−1m + m′[σ2

nM]−1m
)
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× exp
− 1

2σ
−2
n

− 2
T∑
t=1

(
µ′nw(zt, h)(1 + ρWnn)

)(
ytn − ρ

N∑
j=1

Wnjytj

)
+

T∑
t=1

(
µ′nw(zt, h)(1 + ρWnn)

)2


= exp
− 1

2

(
µ′n[σ2

nM]−1µn − 2µ′n[σ2
nM]−1m + m′[σ2

nM]−1m
)

× exp
− 1

2σ
−2
n

− 2
T∑
t=1

(
µ′nw(zt, h)(1 + ρWnn)

)(
ytn − ρ

N∑
j=1

Wnjytj

)

+
(
µ′n(1 + ρWnn)2

T∑
t=1

w(zt, h)w(zt, h)′µn
)

∝ exp
− 1

2

µ′n[σ2
nM]−1µn + µ′nσ

−2
n (1 + ρWnn)2

T∑
t=1

w(zt, h)w(zt, h)′µn

− 2µ′n[σ2
nM]−1m− 2µ′nσ

−2
n

T∑
t=1

(
w(zt, h)(1 + ρWnn)

)(
ytn − ρ

N∑
j=1

Wnjytj

)
Collecting terms before completing the multivariate square gives

= exp
− 1

2

µ′n(σ−2
n (1 + ρWnn)2

T∑
t=1

w(zt, h)w(zt, h)′ + [σ2
nM]−1

)
µn

− 2µ′n
(
σ−2
n

T∑
t=1

(
w(zt, h)(1 + ρWnn)

)(
ytn − ρ

N∑
j=1

Wnjytj

)
+ [σ2

nM]−1m
).

Considering the term in the exponential

− 1
2(µ′nAµn − 2µ′nb)

and introducing a term to complete the square, along with using I = AA−1, gives

− 1
2(µ′nAµn − 2µ′nAA−1b + b′A−1AA−1b).
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Let Σn = A−1 and m∗ = A−1b, then returning to the complete term in the proof gives

=exp
− 1

2

µ′nΣn
−1µn − 2µ′nΣn

−1m∗ + m∗Σn
−1m∗′


=exp

− 1
2(µn −m∗)′Σn

−1(µn −m∗)
,

(58)

which results in the following posterior distribution for µn:

p(µn|Y, ρ, σ−2
n ,P, z, h, β) ∝ exp

− 1
2(µn −m∗)′Σn

−1(µn −m∗)


µn|Y, ρ, σ−2
n ,P, z, h, β ∼ N

(
m∗,Σn

)

where

Σn = A−1

m∗ = A−1b

A = σ−2
n (1 + ρWnn)2

T∑
t=1

w(zt, h)w(zt, h)′ + [σ2
nM]−1

b = σ−2
n

T∑
t=1

(
w(zt, h)(1 + ρWnn)

)(
ytn − ρ

N∑
j=1

Wnjytj

)
+ [σ2

nM]−1m.

B.4 Conditional posterior distribution of σ−2
n

This section derives the conditional posterior distribution of σ−2
n :
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p(σ−2
n |Y, ρ,µn,P, z, h, β) ∝ π(σ−2

n )L(ρ, µn0, µn1, σ
−2
n z, h;Yn)

∝ σ−ν+2
n exp

(
− 1

2δσ
−2
n

)

× σ−Tn exp
− 1

2σ
−2
n

T∑
t=1

(
ytn − µn0 − µn1hn,zt − ρ

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2


= σ−ν−T+2
n exp

− 1
2σ
−2
n

(
δ +

T∑
t=1

(
ytn − µn0 − µn1hn,zt − ρ

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2
)

= σ−ν−T+2
n exp

− 1
2σ
−2
n

(
δ +

T∑
t=1

(
ytn − ρ

N∑
j=1

Wnjytj − µn0 − µn1hn,zt + ρ
N∑
j=1

Wnj(µj0 + µj1hj,zt)
)2
)

⇔

σ−2
n |Y, ρ,µn,P, z, h, β ∼ Γ

ν + T

2 ,
δ + δ̂

2

,
(59)

where δ̂ = ∑T
t=1

(
ytn−µn0−µn1hn,zt−ρ

∑N
j=1 Wnj(ytj−µj0−µj1hj,zt)

)2
and the last equality

in 59 is written to isolate the term ρ
∑N
j=1 Wnj(µj0 +µj1hj,zt) that is not present in the Spatial

Autoregressive Lag (SAL) specification of the model.

B.5 Conditional posterior distribution of ρ

This section derives the conditional posterior distribution of ρ:

p(ρ|Y,µ,Ω,P, z, h, β) ∝ π(ρ)L(ρ,µ,Ω, z, h; Y)

∝ π(ρ)|IN − ρW|T exp
− 1

2

N∑
n=1

(
σ−2
n

T∑
t=1

(
ytn − µn0 − µn1hn,zt − ρ

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2
)

∝ π(ρ)|IN − ρW|T exp
− 1

2ρ
2
N∑
n=1

σ−2
n

T∑
t=1

( N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2


+ 2
2ρ

N∑
n=1

σ−2
n

T∑
t=1

(
(ytn − µn0 − µn1hn,zt)

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)

= π(ρ)
( N∏
n=1

(1− ργn)
)T

exp
− 1

2ρ
(
ρB1 − 2B2

).
(60)
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The last equality follows from the fact that |IN − ρW| = ∏N
n=1(1 − ργn) (see discussion in

Section 3.2). The terms B1 and B2 are given in (61) and are subsequently vectorized.

B1 =
N∑
n=1

σ−2
n

T∑
t=1

( N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2


= diag(Ω−1)



W1
[
ε̃z1 ε̃z2 . . . ε̃zT

] [
ε̃z1 ε̃z2 . . . ε̃zT

]′
W′

1

W2
[
ε̃z1 ε̃z2 . . . ε̃zT

] [
ε̃z1 ε̃z2 . . . ε̃zT

]′
W′

2
...

WN

[
ε̃z1 ε̃z2 . . . ε̃zT

] [
ε̃z1 ε̃z2 . . . ε̃zT

]′
W′

N


B2 =

N∑
n=1

σ−2
n

T∑
t=1

(
(ytn − µn0 − µn1hn,zt)

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)

= diag(Ω−1)


W1

[
ε̃z1 ε̃1,z1 ε̃z2 ε̃1,z2 . . . ε̃zT

ε̃1,zT

]
W2

[
ε̃z1 ε̃2,z1 ε̃z2 ε̃2,z2 . . . ε̃zT

ε̃2,zT

]
...

WN

[
ε̃z1 ε̃N,z1 ε̃z2 ε̃N,z2 . . . ε̃zT

ε̃N,zT

]



(61)

Given a uniform prior distribution for ρ, (60) is given by:

p(ρ|Y,µ,Ω,P, z, h, β) ∝
( N∏
n=1

(1− ργn)
)T

exp
− 1

2ρ
(
ρB1 − 2B2

). (62)

Term B1:
∑N
n=1

σ−2
n

∑T
t=1

(∑N
j=1 Wnj(ytj − µj0 − µj1hj,zt)

)2


Vectorizing the most common term ∑N
j=1 Wnj(ytj − µj0 − µj1hj,zt)

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt) = Wn(yt − µ0 − µ1 � hzt)

where Wn is the nth row of W and yt is the tth column of the N × T data matrix y.
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The term
(∑N

j=1 Wnj(ytj − µj0 − µj1hj,zt)
)2

is

( N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2

= Wn(yt − µ0 − µ1 � hzt)(yt − µ0 − µ1 � hzt)′W′
n

The term ∑T
t=1

(∑N
j=1 Wnj(ytj − µj0 − µj1hj,zt)

)2
is

T∑
t=1

( N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2

= Wn(y1 − µ0 − µ1 � hz1)(y1 − µ0 − µ1 � hz1)′W′
n

+ Wn(y2 − µ0 − µ1 � hz2)(y2 − µ0 − µ1 � hz2)′W′
n

. . .

+ Wn(yT − µ0 − µ1 � hzT
)(yT − µ0 − µ1 � hzT

)′W′
n

= Wn

[
ε̃z1 ε̃z2 . . . ε̃zT

] [
ε̃z1 ε̃z2 . . . ε̃zT

]′
W′

n

where ε̃zt
= yt − µ0 − µ1 � hzt .

Which gives

N∑
n=1

σ−2
n

T∑
t=1

( N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)2


=
[
σ−2

1 σ−2
2 . . . σ−2

N

]


W1
[
ε̃z1 ε̃z2 . . . ε̃zT

] [
ε̃z1 ε̃z2 . . . ε̃zT

]′
W′

1

W2
[
ε̃z1 ε̃z2 . . . ε̃zT

] [
ε̃z1 ε̃z2 . . . ε̃zT

]′
W′

2
...

WN

[
ε̃z1 ε̃z2 . . . ε̃zT

] [
ε̃z1 ε̃z2 . . . ε̃zT

]′
W′

N

 .

Note: The N×T dimensional matrix
[
ε̃z1 ε̃z2 . . . ε̃zT

]
only needs to computed on time

for the full term Term B1 to be constructed.

Term B2:
∑N
n=1

σ−2
n

∑T
t=1

(
(ytn − µn0 − µn1hn,zt)

∑N
j=1 Wnj(ytj − µj0 − µj1hj,zt)

).
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Again, vectorizing the most common term ∑N
j=1 Wnj(ytj − µj0 − µj1hj,zt) gives

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt) = Wn(yt − µ0 − µ1 � hzt),

where Wn is the nth row of W and yt is the tth column of the N × T data matrix y. This

gives the following:

T∑
t=1

(
(ytn − µn0 − µn1hn,zt)

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)

=

(y1n − µn0 − µn1hn,z1)Wn(y1 − µ0 − µ1 � hz1) + (y2n − µn0 − µn1hn,z2)Wn(y2 − µ0 − µ1 � hz2)
+ . . .+ (yTn − µn0 − µn1hn,zT

)Wn(yT − µ0 − µ1 � hzT
)

= Wn

[
ε̃z1 ε̃z2 . . . ε̃zT

]
ε̃n
′,

where ε̃n is the nth row of N×T dimensional matrix
[
ε̃z1 ε̃z2 . . . ε̃zT

]
and ε̃zt = yt−µ0−

µ1 � hzt . This gives the complete Term B2:

N∑
n=1

σ−2
n

T∑
t=1

(
(ytn − µn0 − µn1hn,zt)

N∑
j=1

Wnj(ytj − µj0 − µj1hj,zt)
)

=
[
σ−2

1 σ−2
2 . . . σ−2

N

]


W1
[
ε̃z1 ε̃1,z1 ε̃z2 ε̃1,z2 . . . ε̃zT

ε̃1,zT

]
W2

[
ε̃z1 ε̃2,z1 ε̃z2 ε̃2,z2 . . . ε̃zT

ε̃2,zT

]
...

WN

[
ε̃z1 ε̃N,z1 ε̃z2 ε̃N,z2 . . . ε̃zT

ε̃N,zT

]

 .
(63)

Note: Again the N×T dimensional matrix
[
ε̃z1 ε̃z2 . . . ε̃zT

]
only needs to computed one

time for the full term Term B2 to be constructed.
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